1

Contents

Contents
lllustrations

Preface

Introduction to Computers, Internet and

Visual Basic .NET

11
12
13
14
15
16
17
1.8
1.9
1.10
111
112
1.13
114
115
1.16
117
1.18
1.19

Introduction

What |s a Computer?

Computer Organization
Evolution of Operating Systems

Personal Computing, Distributed Computing and Client/Server Computing
Machine Languages, Assembly Languages and High-Level Languages

Visual Basic .NET

C, C++, Java™ and C#

Other High-Level Languages

Structured Programming

Key Software Trend: Object Technology
Hardware Trends

History of the Internet and World Wide Web
World Wide Web Consortium (W3C)
Extensible Markup Language (XML)
Introduction to Microsoft NET

.NET Framework and the Common L anguage Runtime
Tour of the Book

Internet and World Wide Web Resources

Vil

XXViii

XXXVii

o~No o~ wN B

Vil

21
2.2
2.3
2.4

2.5
2.6
2.7

31
32
33
3.4
35
3.6
3.7
38

41
4.2
43
4.4
45
4.6
4.7
4.8
4.9
4.10
411
412

4.13

414

4.15

51
52
53
54

Introduction to the Visual Studio .NET IDE
Introduction

Overview of the Visual Studio .NET IDE

Menu Bar and Toolbar

Visua Studio .NET IDE Windows

241 Solution Explorer

24.2 Toolbox

24.3 Properties Window

Using Help

Simple Program: Displaying Text and an Image
Internet and World Wide Web Resources

Introduction to Visual Basic Programming
Introduction

Simple Program: Printing a Line of Text

Ancther Simple Program: Adding Integers

Memory Concepts

Arithmetic

Decision Making: Equality and Relational Operators
Using aDialog to Display a Message

Internet and World Wide Web Resources

Control Structures: Part 1
Introduction

Algorithms

Pseudocode

Control Structures

If/Then Selection Structure
If/Then/Else Selection Structure
While Repetition Structure

Do While/Loop Repetition Structure
Do Until/Loop Repetition Structure
Assignment Operators

Formulating Algorithms: Case Study 1 (Counter-Controlled Repetition)

33
34
34
37
39
40
41
41
44
45
55

61
62
62
70
73
74
78
82
88

96
97
97
98
98

102

104

106

108

109

110

112

Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 2

(Sentinel-Controlled Repetition)

114

Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 3

(Nested Control Structures)

119

Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 4

(Nested Repetition Structures)
Introduction to Windows Application Programming

Control Structures: Part 2
Introduction

Essentials of Counter-Controlled Repetition
For/Next Repetition Structure

Examples Using the For/Next Structure

123
127

144
145
145
146
149

55
5.6
57
58
59
5.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18

7.1
7.2
7.3
74

7.5
7.6
7.7
7.8

7.9

Select Case Multiple-Selection Structure
Do/Loop While Repetition Structure

Do/Loop Until Repetition Structure

Using the Exit Keyword in a Repetition Structure
Logical Operators

Structured Programming Summary

Procedures

Introduction

Modules, Classes and Procedures

Sub Procedures

Function Procedures

Methods

Argument Promotion

Option Strict and Data-Type Conversions
Value Types and Reference Types

Passing Arguments: Pass-by-Value vs. Pass-by-Reference
Duration of Identifiers

Scope Rules

Random-Number Generation

Example: Game of Chance

Recursion

Example Using Recursion: Fibonacci Series
Recursion vs. Iteration

Procedure Overloading and Optional Arguments
6.17.1 Procedure Overloading

6.17.2 Optiona Arguments

Modules

Arrays

Introduction

Arrays

Declaring and Allocating Arrays

Examples Using Arrays

74.1 Allocating an Array

74.2 Initializing the Valuesin an Array

743 Summing the Elements of an Array
744 Using Arraysto Analyze Survey Results

7.4.5 Using Histograms to Display Array Data Graphically

Passing Arraysto Procedures

Passing Arrays: ByVal vs. ByRef

Sorting Arrays

Searching Arrays. Linear Search and Binary Search
781 Searching an Array with Linear Search

7.8.2 Searching a Sorted Array with Binary Search
Multidimensional Rectangular and Jagged Arrays

155
159
160
162
164
170

182
183
183
185
188
190
195
196
198
200
202
203
206
213
218
221
225
226
226
228
231

245
246
246
248
249
250
251
252
253
256
260
264
268
272
272
275
279

7.10
711

8.1
8.2
8.3
8.4
85
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

9.1
9.2
9.3
9.4
9.5
9.6
9.7

10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

11

11.1
11.2
11.3
114

Variable-Length Parameter Lists
For Each/Next Repetition Structure

Object-Based Programming

Introduction

Implementing a Time Abstract Data Type with a Class
Class Scope

Controlling Access to Members

Initializing Class Objects: Constructors

Using Overloaded Constructors

Properties

Composition: Objects as Instance V ariables of Other Classes
Using the Me Reference

Garbage Collection

Shared Class Members

Const and Readonly Members

Data Abstraction and Information Hiding

Software Reusability

Namespaces and Assemblies

Class View and Object Browser

Object-Oriented Programming: Inheritance
Introduction

Base Classes and Derived Classes

Protected and Friend Members

Relationship between Base Classes and Derived Classes

Case Study: Three-Level Inheritance Hierarchy

Constructors and Finalizersin Derived Classes

Software Engineering with Inheritance

Object-Oriented Programming: Polymorphism
Introduction

Derived-Class-Object to Base-Class-Object Conversion

Type Fieldsand Select Case Statements

Polymorphism Examples

Abstract Classes and Methods

Case Study: Inheriting Interface and Implementation
NotInheritable Classes and NotOverridable Methods
Case Study: Payroll System Using Polymorphism

Case Study: Creating and Using Interfaces

Delegates

Exception Handling

Introduction

Exception Handling Overview

Example: DivideByZeroException
.NET Exception Hierarchy

287
288

296
297
298
306
306
308
308
314
321
324
326
327
331
334
335
336
340

349
350
351
354
354
372
376
382

388
389
389
396
397
398
400
408
409
419
432

441
442
443
446
450

115
11.6
11.7
11.8

12
12.1
12.2
12.3
124
12.5
12.6
12.7
12.8
12.9
12.10

13
13.1
13.2
133
134

135
13.6
13.7
13.8
13.9
13.10
13.11

14
14.1
14.2
14.3
14.4
14.5
14.6
14.7

15
15.1
15.2
153
15.4
15.5

Finally Block

Exception Properties
Programmer-Defined Exception Classes
Handling Overflows

Graphical User Interface Concepts: Part 1
Introduction

Windows Forms

Event-Handling Model

Control Properties and Layout
Labels, TextBoxesand Buttons
GroupBoxesand Panels
CheckBoxes and RadioButtons
PictureBoxes

Mouse-Event Handling
Keyboard-Event Handling

Graphical User Interfaces Concepts: Part 2
Introduction

Menus

LinkLabels

ListBoxesand CheckedListBoxes
13.4.1 ListBoxes

13.4.2 CheckedListBoxes
ComboBoxes

TreeViews

ListViews

Tab Control

Multiple-Document-Interface (MDI) Windows
Visual Inheritance

User-Defined Controls

Multithreading

Introduction

Thread States: Life Cycle of a Thread

Thread Priorities and Thread Scheduling

Thread Synchronization and ClassMonitor

Producer/Consumer Relationship without Thread Synchronization
Producer/Consumer Relationship with Thread Synchronization
Producer/Consumer Relationship: Circular Buffer

Strings, Characters and Regular Expressions
Introduction

Fundamentals of Characters and Strings

String Constructors

String Length and Chars Properties, and CopyTo Method
Comparing Strings

Xl

452
459
464
468

475
476
478
480
487
491
494
497
508
510
513

523
524
524
534
538
540
542
545
550
555
562
567
576
580

592
593
595
596
601
603
609
618

633
634
634
635
637
639

Xl

156 String Method GetHashCode 643
15.7 Locating Characters and Substringsin strings 644
15.8 Extracting Substrings from strings 647
15.9 Concatenating Strings 648
15.10 Miscellaneous string Methods 649
15.11 ClassStringBuilder 651
15.12 stringBuilder Indexer, Length and Capacity Properties,

and EnsureCapacity Method 652
15.13 StringBuilder Append and AppendFormat Methods 654
15.14 sStringBuilder Insert, Remove and Replace Methods 657
15.15 char Methods 660
15.16 Card Shuffling and Dealing Simulation 663
15.17 Regular Expressions and Class Regex 667
16 Graphics and Multimedia 683
16.1 Introduction 684
16.2 Graphics Contexts and Graphics Objects 686
16.3 Color Control 687
16.4 Font Control 694
16.5 Drawing Lines, Rectangles and Ovals 699
16.6 Drawing Arcs 702
16.7 Drawing Polygons and Polylines 705
16.8 Advanced Graphics Capabilities 709
16.9 Introduction to Multimedia 714
16.10 Loading, Displaying and Scaling Images 714
16.11 Animating a Series of Images 716
16.12 Windows Media Player 729
16.13 Microsoft Agent 731
17 Files and Streams 752
17.1 Introduction 753
17.2 DataHierarchy 753
17.3 Filesand Streams 755
174 ClassesFile and Directory 757
175 Creating a Sequential-Access File 767
17.6 Reading Datafrom a Sequential-Access File 778
17.7 Random-Access Files 789
17.8 Creating a Random-Access File 794
17.9 Writing Data Randomly to a Random-Access File 797
17.10 Reading Data Sequentially from a Random-Access File 802
17.11 Case Study: A Transaction-Processing Program 807
18 Extensible Markup Language (XML) 833
18.1 Introduction 834
18.2 XML Documents 834
18.3 XML Namespaces 839

18.4 Document Object Model (DOM) 842

185

18.6
18.7
18.8

19
19.1
19.2
193
19.4

19.5
19.6

19.7
19.8

20
20.1
20.2
20.3
204
20.5

20.6

20.7
20.8
20.9
20.10

21
21.1

Document Type Definitions (DTDs), Schemas and Validation
18.5.1 Document Type Definitions

1852 Microsoft XML Schemas

Extensible Stylesheet Language and Xs1Transform
Microsoft BizTalk™

Internet and World Wide Web Resources

Database, SQL and ADO .NET

Introduction

Relational Database Model

Relational Database Overview: Books Database

Structured Query Language (SQL)

19.4.1 Basic SELECT Query

19.4.2 WHERE Clause

19.43 ORDER BY Clause

19.4.4 Merging Datafrom Multiple Tables: INNER JOIN

19.45 Joining Datafrom TablesAuthors, AuthorISBN,
Titles and Publishers

1946 INSERT Statement

19.4.7 UPDATE Statement

19.4.8 DELETE Statement

ADO .NET Object Model

Programming with ADO .NET: Extracting Information from aDBMS

19.6.1 Connecting to and Querying an Access Data Source

19.6.2 Querying the Books Database

Programming with ADO .NET: Modifying aDBMS

Reading and Writing XML Files

ASP .NET, Web Forms and Web Controls
Introduction

Simple HTTP Transaction

System Architecture

Creating and Running a Simple Web-Form Example
Web Controls

20.5.1 Text and Graphics Controls

20.5.2 AdRotator Control

2053 Validation Controls

Session Tracking

20.6.1 Cookies

20.6.2 Session Tracking withHttpSessionState
Case Study: Online Guest book

Case Study: Connecting to a Databasein ASP .NET
Tracing

Internet and World Wide Web Resources

ASP .NET and Web Services
Introduction

Xl

860
861
865
870
877
880

887
888
889
890
896
897
898
901
903

906
909
910
911
912
913
913
921
923
932

941
942
943
945
946
958
958
964
969
979
980
989
998

1004

1019

1021

1030
1031

XIvV

21.2
21.3
214
215
21.6
21.7
21.8
21.9

22

Web Services

Simple Object Access Protocol (SOAP) and Web Services
Publishing and Consuming Web Services

Session Tracking in Web Services

Using Web Forms and Web Services

Case Study: Temperature Information Application
User-Defined Typesin Web Services

Internet and World Wide Web Resources

Networking: Streams-Based Sockets

and Datagrams

221
22.2
22.3
224
225
22.6

23
231
23.2
23.3
234
235
23.6

23.7

24
24.1
24.2
24.3
24.4
245
24.6

24.7
24.8

Introduction

Establishing a Simple Server (Using Stream Sockets)
Establishing a Simple Client (Using Stream Sockets)
Client/Server Interaction via Stream-Socket Connections
Connectionless Client/Server Interaction via Datagrams
Client/Server Tic-Tac-Toe Using a Multithreaded Server

Data Structures and Collections
Introduction

Self-Referential Classes

Linked Lists

Stacks

Queues

Trees

23.6.1 Binary Search Tree of Integer Values
23.6.2 Binary Search Tree of IComparable Objects
Collection Classes

23.7.1 ClassArray

23.7.2 ClassArrayList

23.7.3 ClassStack

23.7.4 ClassHashtable

Accessibility

Introduction

Regulations and Resources

Web Accessihility Initiative
Providing Alternatives for Images
Maximizing Readability by Focusing on Structure
Accessibility in Visual Studio .NET
24.6.1 Enlarging Toolbar Icons
24.6.2 Enlarging the Text
24.6.3 Madifying the Toolbox
24.6.4 Maodifying the Keyboard
2465 Rearranging Windows
Accessibility in Visual Basic
Accessibility in XHTML Tables

1032
1036
1037
1053
1066
1072
1081
1091

1096
1097
1098
1100
1101
1110
1116

1136
1137
1137
1139
1152
1156
1160
1161
1168
1175
1176
1179
1185
1189

1203
1204
1205
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1221

24.9

24.10
24.11
24.12
24.13
24.14
24.15

24.16

B.1
B.2
B.3
B.4
B.5
B.6

C1l
C2
C3

C4
C5

C.6

D.1
D.2
D.3

XV

Accessibility in XHTML Frames 1225
Accessibility in XML 1226
Using Voice Synthesis and Recognition with VoiceXML ™ 1226
CalXmML™ 1233
JAWS® for Windows 1240
Other Accessihility Tools 1240
Accessibility in Microsoft® Windows® 2000 1241
24.15.1 Toolsfor Peoplewith Visua Impairments 1243
24.15.2 Tools for People with Hearing Impairments 1246
24.15.3 Toolsfor Users Who Have Difficulty Using the Keyboard 1247
24154 Microsoft Narrator 1251
24.15.,5 Microsoft On-Screen Keyboard 1252
24.15.6 Accessibility Featuresin Microsoft Internet Explorer 5.5 1253
Internet and World Wide Web Resources 1255
Operator Precedence Chart 1264
Number Systems (on CD) 1266
Introduction 1267

Abbreviating Binary Numbers as Octal Numbers and Hexadecima Numbers 1270
Converting Octal Numbers and Hexadecimal Numbers to Binary Numbers 1272

Converting from Binary, Octal or Hexadecimal to Decimal 1272
Converting from Decimal to Binary, Octal, or Hexadecimal 1273
Negative Binary Numbers: Two's Complement Notation 1274
Career Opportunities (on CD) 1280
Introduction 1281
Resources for the Job Seeker 1282
Online Opportunities for Employers 1283
C31 Posting Jobs Online 1285
C.3.2 Problems with Recruiting on the Web 1287
C.33 Diversity in the Workplace 1287
Recruiting Services 1288
Career Sites 1289
C5.1 Comprehensive Career Sites 1289
Cb5h.2 Technical Positions 1290
C53 Wireless Positions 1290
Ch4 Contracting Online 1291
C55 Executive Positions 1292
C5.6 Students and Y oung Professionals 1293
C5.7 Other Online Career Services 1293
Internet and World Wide Web Resources 1294
Visual Studio .NET Debugger 1302
Introduction 1303
Breakpoints 1304

Examining Data 1306

XVI

D.4 Program Control 1308
D.5 Additional Procedure Debugging Capabilities 1312
D.6 Additional Class Debugging Capabilities 1314
E ASCII Character Set 1319
F Unicode® (on CD) 1320
F.1 Introduction 1321
F.2 Unicode Transformation Formats 1322
F.3 Characters and Glyphs 1323
F.4 Advantages/Disadvantages of Unicode 1324
F.5 Unicode Consortium’s Web Site 1324
F.6 Using Unicode 1325
F.7 Character Ranges 1327
G COM Integration (on CD) 1332
G.1 Introduction 1332
G.2 ActiveX Integration 1333
G.3 DLL Integration 1337
G.4 Internet and World Wide Web Resources 1341
H Introduction to HyperText Markup

Language 4: Part 1 (on CD) 1344
H.1 Introduction 1345
H.2 Markup Languages 1345
H.3 Editing HTML 1346
H.4 Common Elements 1346
H.5 Headers 1349
H.6 Linking 1350
H.7 Images 1352
H.8 Specia Characters and More Line Breaks 1356
H.9 Unordered Lists 1358
H.10 Nested and Ordered Lists 1359
H.11 Internet and World Wide Web Resources 1362
I Introduction to HyperText Markup

Language 4: Part 2 (on CD) 1367
1.1 Introduction 1368
1.2 BasicHTML Tables 1368
1.3 Intermediate HTML Tables and Formatting 1370
1.4 Basic HTML Forms 1373
1.5 More Complex HTML Forms 1376
1.6 Internal Linking 1383
1.7 Creating and Using Image Maps 1386
1.8 <meta> Tags 1388
1.9 frameset Element 1390

1.10
.11

J1
J2
J3
J4
J5
J.6
J7
J.8
J9
J.10
J11

K.1
K.2
K.3
K.4
K.5
K.6
K.7
K.8
K.9
K.10
K.11

N.1
N.2
N.3

Nested framesets
Internet and World Wide Web Resources

Introduction to XHTML: Part 1 (on CD)
Introduction

Editing XHTML

First XHTML Example

W3C XHTML Vadidation Service
Headers

Linking

Images

Special Characters and More Line Breaks
Unordered Lists

Nested and Ordered Lists

Internet and World Wide Web Resources

Introduction to XHTML: Part 2 (on CD)
Introduction

Basic XHTML Tables

Intermediate XHTML Tables and Formatting
Basic XHTML Forms

More Complex XHTML Forms

Internal Linking

Creating and Using Image Maps

meta Elements

frameset Element

Nested framesets

Internet and World Wide Web Resources

HTML/XHTML Special Characters
HTML/XHTML Colors

Crystal Reports® for Visual Studio .NET
Introduction

Crystal Reports Web Site Resources

Crystal Reports and Visua Studio .NET

N.3.1 Crystal Reportsin Web Applications

N.3.2 Crystal Reports and Web Services
Bibliography

Index

XVl

1392
1394

1400
1401
1401
1402
1405
1406
1408
1411
1415
1417
1418
1421

1426
1427
1427
1430
1432
1435
1443
1446
1448
1449
1454
1456

1462

1463

1466
1466
1466
1467
1469
1469

1471

1475

2.10
211
212
213
214
215
2.16
217
2.18
2.19
2.20
221
2.22
2.23
2.24

|llustrations

Introduction to Computers, Internet and Visual Basic .NET

.NET Languages. 19
Introduction to the Visual Studio .NET IDE

Start Page in Visua Studio .NET. 35
New Project dialog. 36
Design view of Visual Studio .NET IDE. 37
Visual Studio .NET IDE menu bar. 38
Summary of Visual Studio .NET IDE menus. 38
IDE Toolbar. 38
Tool tip demonstration. 39
Toolbar iconsfor three Visual Studio .NET IDE windows. 39
Auto-hide feature demonstration. 40
Solution Explorer with an open solution. 41
Toolbox window. 42
Properties window. 43
Help menu commands. 44
Dynamic Help window. 44
Simple program executing. 45
Creating anew Windows Application. 46
Setting the project location in the Project Location dialog. 47
Setting the form’s Text property. 47
Form with sizing handles. 48
Changing the form’s BackColor property. 48
Adding alabel to the form. 49
GUI &fter the form and label have been customized. 50
Properties window displaying the label’ s properties. 50

Font dialog for selecting fonts, styles and sizes. 51

lllustrations

2.25
2.26
2.27
2.28
2.29
2.30

3
31
32
33
34
35
3.6
3.7
38
39
3.10
311
312
3.13

3.14
3.15
3.16
3.17
3.18
3.19
3.20
321
3.22
3.23
3.24
3.25
3.26

41
4.2
4.3
44
45
4.6
4.7
4.8
49

Centering the label’ s text.

Inserting and aligning the picture box.

Image property of the picture box.

Selecting an image for the picture box.

Picture box displaying an image.

IDE in run mode, with the running application in the foreground.

Introduction to Visual Basic Programming
Simple Visual Basic program.

Creating aConsole Application with the New Project dialog.
IDE with an open console application.

Renaming the program file in the Properties window.
IntelliSense feature of the Visual Studio .NET IDE.

Parameter Info and Parameter List windows.

Executing the program shown in Fig. 3.1.

IDE indicating a syntax error.

Using multiple statements to print aline of text.

Addition program that adds two numbers entered by the user.
Didog displaying arun-time error.

Memory location showing name and value of variable number1.
Memory locations after values for variables numberl and number2
have been input.

Memory locations after an addition operation.

Arithmetic operators.

Precedence of arithmetic operators.

Order in which a second-degree polynomial is evaluated.

Equality and relational operators.

Performing comparisons with equality and relational operators.
Precedence and associativity of operatorsintroduced in this chapter.
Displaying text in adiaog.

Dialog displayed by caling MessageBox . Show.

Obtaining documentation for a class by using the Index dialog.
Documentation for the MessageBox class.

Adding areference to an assembly in the Visual Studio .NET IDE.
Internet Explorer window with GUI components.

Control Structures: Part 1

Sequence structure flowchart.

Keywordsin Visual Basic.

If/Then single-selection structure flowchart.
If/Then/Else double-selection structure flowchart.
While repetition structure used to print powers of two.
While repetition structure flowchart.

Do While/Loop repetition structure demonstration.
Do While/Loop repetition structure flowchart.

Do Until/Loop repetition structure demonstration.

XIX

51
52
52
53
53
54

63
65
66
66
68
68
68
69
69
70
72
74

74
74
75
76
79
79
80
82
83
85
85
85
86
87

100
101
103
105
107
107
108
109
109

XX

4.10
411
412
4.13

414
4.15

4.16
417
4.18
4.19
4.20
421
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

51
52
53
54
55
56
57
58
59
5.10
511
512
513
514
5.15
5.16
517
5.18
5.19
5.20
521

Illustrations

Do Until/Loop repetition structure flowchart.

Assignment operators.

Exponentiation using an assignment operator.

Pseudocode algorithm that uses counter-controlled repetition to
solve the class-average problem.

Class-average program with counter-controlled repetition.
Pseudocode algorithm that uses sentinel-controlled repetition to
solve the class-average problem.

Class-average program with sentinel-controlled repetition.
Pseudocode for examination-results problem.

Nested control structures used to calculate examination results.
Second refinement of the pseudocode.

Nested repetition structures used to print asquare of *s.

I DE showing program code for Fig. 2.15.

Windows Form Designer generated code when expanded.

Code generated by the IDE for 1b1lWelcome.

Properties window used to set a property value.

Windows Form Designer generated code reflecting new property values.
Changing a property in the code view editor.

New Text property valuereflected in design mode.

Adding program code to FrmASimpleProgram Load.
Method FrmASimpleProgram Load containing program code.
Changing a property value at runtime.

Control Structures: Part 2

Counter-controlled repetition with the while structure.
Counter-controlled repetition with the For/Next structure.
For/Next header components.

For/Next repetition structure flowchart.

For/Next structure used for summation.

Message dialog icon constants.

Message dialog button constants.

For/Next structure used to calculate compound interest.
Formatting codes for Strings.

Select Case structure used to count grades.
Select Case multiple-selection structure flowchart.
Do/Loop Whi le repetition structure.

Do/Loop While repetition structure flowchart.
Do/Loop Until repetition structure.

Do/Loop Until repetition structure flowchart.

Exit keyword in repetition structures.

Truth table for the AndAlso operator.

Truth table for the OrElse operator.

Truth table for the logical exclusive OR (Xor) operator.
Truth table for operator Not (logical NOT).

Logical operator truth tables.

110
111
111

112
112

116
117
122
122
126
126
129
130
130
131
132
132
132
133
134
134

146
146
148
149
150
151
151
152
154
155
158
159
160
160
161
162
165
166
167
167
168

lllustrations

522
523
524
525
526
5.27
5.28
529
5.30

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

6.24
6.25
6.26
6.27
6.28

7

7.1
7.2
7.3
74
7.5

Precedence and associativity of the operators discussed so far.

Visual Basic's single-entry/single-exit sequence and selection structures.

Visual Basic's single-entry/single-exit repetition structures.
Structured programming rules.

Simplest flowchart.

Repeatedly applying rule 2 of Fig. 5.25 to the simplest flowchart.
Applying rule 3 of Fig. 5.25 to the ssimplest flowchart.

Stacked, nested and overlapped building blocks.

Unstructured flowchart.

Procedures

Hierarchical boss-procedure/worker-procedure relationship.
Sub procedure for printing payment information.
Function procedure for squaring an integer.

Method that determines the largest of three numbers.
Parameter Info feature of the Visua Studio .NET IDE.
IntelliSense feature of the Visual Studio .NET IDE.

Math class methods.

Widening conversions.

Property Pages dialogwithoption Strict setto On.
Visual Basic primitive data types.

Literals with type characters.

ByVal and ByRe £ used to pass val ue-type arguments.
Scoping rulesin aclass.

Random integers created by calling method Next of class Random.
Demonstrates 4 dierolls.

Random class used to simulate rolling 12 six-sided dice.
Craps game using class Random.

Recursive evaluation of 5!.

Recursive factorial program.

Recursively generating Fibonacci numbers.

Recursive callsto method Fibonacci.

Overloaded methods.

Syntax error generated from overloaded procedures with identical
parameter lists and different return types.

Optional argument demonstration with method Power.
Module used to define a group of related procedures.
Testing themodDice procedures.

Printing the results of cubing 10 numbers.

Towers of Hanoi for the case with four disks.

Arrays

Array consisting of 12 elements.

Creating an array.

Initializing array elements two different ways.
Computing the sum of the elementsin an array.
Simple student-poll analysis program.

XXI

169
170
171
172
173
173
174
175
175

185
185
188
190
193
193
194
196
197
198
199
201
204
208
209
211
214
219
220
222
224
226

228
229
231
232
238
244

247
250
251
252
254

XXl

7.6

7.7

7.8

7.9

7.10
711
7.12
7.13
7.14
7.15
7.16
717
7.18
7.19

8.1
8.2
8.3
8.4
85
8.6
8.7
8.8
8.9
8.10
811
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
821
8.22

9.1
9.2
9.3
9.4
9.5

Illustrations

Program that prints histograms.

Using arraysto eliminate aSelect Case structure.
Passing arrays and individual array elementsto procedures.
Passing an array reference with Byval and ByRef.
BubbleSort procedureinmodBubbleSort.

Sorting an array with bubble sort.

Procedures for performing alinear search.

Linear search of an array.

Binary search of a sorted array.

Two-dimensional array with three rows and four columns.
Initializing multidimensional arrays.

Using jagged two-dimensional arrays.

Creating variable-length parameter lists.

Using For Each/Next with an array.

Object-Based Programming

Abstract data type representing time in 24-hour format.

Using an abstract data type.

Attempting to access restricted class members results in a syntax error.
Overloading constructors.

Overloaded-constructor demonstration.

Propertiesin aclass.

Graphical user interface for class CTime3.

CDay class encapsulates day, month and year information.

CEmployee class encapsulates employee name, birthday and hire date.

Composition demonstration.

Class using Me reference.

Me reference demonstration.

CEmployee2 class objects share Shared variable.
Shared class member demonstration.
Constantsused in class CCircleConstants.
Const and ReadOnly class member demonstration.
CEmployee3 classto storein classlibrary.

Simple class library project.

ModulemodAssemblyTest references EmployeeLibrary.dll.

Class View of Fig. 8.1 and Fig. 8.2.

Invoking the Object Browser from the development environment.
Object Browser when user selects object from development
environment.

Object-Oriented Programming: Inheritance
Inheritance examples.

Inheritance hierarchy for university CCommunityMembers.
Portion of a cShape class hierarchy.

CPoint classrepresents an x-y coordinate pair.
modPointTest demonstrates class CPoint functionality.

256
257
261
265
268
269
272
273
276
280
281
283
287
288

299
303
307
309
312
314
318
321
323
324
325
326
328
330
332
333
336
338
339
341
342

343

352
353
354
355
357

lllustrations

9.6
9.7
9.8
9.9
9.10
911
9.12

9.13
9.14

9.15
9.16
9.17

9.18

10
10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19

10.20
10.21
10.22
10.23

10.24
10.25

CCircle class contains an x-y coordinate and aradius.
modCircleTest demonstrates class ccircle functionality.
CCircle2 classthat inherits from class CPoint.

CPoint2 class represents an x-y coordinate pair as Protected data.
CCircle3 classthat inheritsfrom class CPoint2.
modCircleTest3 demonstrates class cCircle3 functionadity.
CCircle4 classthat inherits from class CPoint, which does not
provide Protected data

modCircleTest4 demonstrates class cCircle4 functionadity.
CCylinder classinheritsfrom class CCircle4 and Overrides
method Area.

Testing classCcCylinder.

CPoint3 base class contains constructors and finalizer.

CCircleS5 classinheritsfrom class CPoint3 and overrides a
finalizer method.

Demonstrating order in which constructors and finalizers are called.

Object-Oriented Programming: Polymorphism
CPoint classrepresents an x-y coordinate pair.

CCircle classthat inheritsfrom class CPoint.

Assigning derived-class references to base-class references.
Abstract cshape base class.

CPoint2 classinheritsfrom MustInherit classCShape.
ccircle2 classthat inherits from class CPoint2.
CCylinder2 classinheritsfrom classcCircle2.

CTest2 demonstrates polymorphism in Point-Circle-Cylinder hierarchy.
MustInherit class CEmployee definition.

CBoss classinherits from class CEmployee.
CCommissionWorker classinherits from class CEmployee.
CPieceWorker classinherits from class CEmployee.
CHourlyWorker classinherits from class CEmployee.
CTest classteststhe CEmployee class hierarchy.
Interface for returning age of objects of disparate classes.
CPerson classimplements IAge interface.

CTree classimplements IAge interface.

Demonstrate polymorphism on objects of disparate classes.
Ishape interface provides methods Area and Volume and
property Name.

CPoint3 classimplementsinterface IShape.

CCircle3 classinheritsfrom class CPoint3.

CCylinder3 classinheritsfrom classCCircle3.

CTest3 usesinterfaces to demonstrate polymorphism in
Point-Circle-Cylinder hierarchy.

Bubble sort using delegates.

Bubble-sort Form application.

XXl

358
360
362
364
365
367

369
371

373
375
378

379
381

390
391
393
400
401
403
404
406
410
411
412
414
416
417
420
421
422
423

426
426
427
429

431
433
435

XXIV

11
111

11.2

11.3
114

115

11.6

12
121
12.2
12.3
124
125
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21
12.22
12.23
12.24
12.25
12.26
12.27
12.28
12.29
12.30
12.31

Exception Handling

Exception handlers for FormatException and
DivideByZeroException.

Finally statements always execute, regardless of whether an
exception occurs.

Exception properties and stack unwinding.
ApplicationException derived classthrown when a program
performs an illegal operation on a negative number.
FrmSquareRoot classthrows an exception if an error occurs
when calculating the square root.

OverflowException cannot occur if user disables
integer-overflow checking.

Graphical User Interface Concepts: Part 1
GUI components in a sample Internet Explorer window.
Some basic GUI components.

Components and controls for Windows Forms.
Common Form properties, methods and events.
Event-handling model using delegates.

Events section in the Method Name drop-down menu.
Simple event-handling example using visua programming.
List of Form events.

Click event detalls.

Class Control properties and methods.

Anchoring demonstration.

Manipulating the Anchor property of acontrol.
Docking demonstration.

Control layout properties.

Common Label properties.

TextBox properties and events.

Button properties and events.

Program to display hidden text in a password box.
GroupBox properties.

Panel properties.

Creating a Panel with scrollbars.

Using GroupBoxes and Panelsto arrange But tons.
CheckBox properties and events.

Using CheckBoxes to change font styles.
RadioButton properties and events.

Using RadioButtonsto set message-window options.
PictureBox properties and events.

Using aPictureBox to display images.

Mouse events, delegates and event arguments.

Using the mouse to draw on aform.

Keyboard events, delegates and event arguments.

Illustrations

447

454
462

465

466

468

477
477
478
479
480
482
482
486
486
487
489
489
490
490
491
492
493
493
495
495
495
496
498
498
501
502
508
508
510
511
513

lllustrations

12.32
12.33

13
131
13.2
13.3
134
135
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14

13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25
13.26
13.27
13.28
13.29
13.30
13.31
13.32
13.33
13.34
13.35
13.36
13.37
13.38
13.39

13.40

Demonstrating keyboard events.
Abbreviations for controls introduced in chapter.

Graphical User Interfaces Concepts: Part 2
Expanded and checked menus.

Visual Studio .NET Menu Designer

Adding MenuItemsto MainMenu.

MainMenu and MenuItem properties and events.

Menus for changing text font and color.

LinkLabel control in running program.

LinkLabel properties and events.

LinkLabelsused tolink to adrive, aWeb page and an application.
ListBox and CheckedListBox on aform.

ListBox properties, methods and events.

String Collection Editor.

Program that adds, removes and clears ListBox items.
CheckedListBox properties, methods and events.
CheckedListBox and ListBox used in aprogram to display a
user selection.

ComboBox demonstration.

ComboBox properties and events.

ComboBox used to draw a selected shape.

TreeView displaying a sample tree.

TreeView properties and events.

TreeNode properties and methods.

TreeNode Editor.

TreeView used to display directories.

ListView properties and events.

Image Collection Editor window for an ImageList component.
ListView displaying filesand folders.

Tabbed windows in Visual Studio .NET.

TabControl with TabPagesexample.

TabPagesSadded to aTabControl.

TabControl properties and events.

TabControl used to display various font settings.

MDI parent window and M DI child windows.

SDI and MDI forms.

MDI parent and MDI child events and properties.

Minimized and maximized child windows.

MenuItem property MdiList example.

LayoutMdi enumeration values.

MDI parent-window class.

MDI child FrmChild.

Class FrmInheritance, which inherits from class Form, contains
abutton (Learn More).

Visual Inheritance through the Form Designer.

XXV

514
517

525
526
527
527
528
534
534
536
538
538
540
540
543

544
546
546
547
550
550
551
552
553
556
556
557
562
563
563
564
564
568
568
569
570
571
572
572
575

577
578

XXVI

13.41

13.42
13.43
13.44
13.45
13.46
13.47
13.48

14
141
14.2
14.3

144
145
14.6
14.7
14.8

14.9

14.10
1411
14.12

14.13
14.14
14.15
14.16

15
151
15.2
15.3
154
155
15.6
15.7
15.8
15.9

15.10
1511
15.12
15.13
15.14

Illustrations

Class FrmVisualTest, which inherits from class

VisualForm.FrmInheritance, containsan additional button. 579
Custom control creation. 581
UserControl-defined clock. 581
Custom-control creation. 583
Project properties dial og. 583
Custom control added to the ToolBox. 584
Custom control added to a Form. 584
Prefixes for controls used in chapter. 585
Multithreading

Thread life cycle. 595
Thread-priority scheduling. 597
ThreadStart deegate Print displays message and sleeps for

arbitrary duration of time. 598
Threads sleeping and printing. 600
Unsynchronized shared Integer buffer. 604
Producer places Integersin unsynchronized shared buffer. 605
Consumer reads Integersfrom unsynchronized shared buffer. 606
Producer and consumer threads accessing a shared object without

synchronization. 608
Synchronized shared Integer buffer. 610
Producer places Integersin synchronized shared buffer. 612
Consumer reads Integersfrom synchronized shared buffer. 612
Producer and consumer threads accessing a shared object with

synchronization. 613
Synchronized shared circular buffer. 620
Producer places Integersin synchronized circular buffer. 623
Consumer reads Integersfrom synchronized circular buffer. 624
Producer and consumer threads accessing a circular buffer. 625

Strings, Characters and Regular Expressions

String constructors. 635
String Length and Chars properties, and CopyTo method. 637
String test to determine equality. 639
StartsWith and EndswWith methods. 642
GetHashCode method demonstration. 643
Searching for characters and substringsin strings. 644
Substrings generated from Strings. 647
Concat Shared method. 648
String methods Replace, ToLower, ToUpper,
Trim and ToString. 649
StringBuilder class constructors. 651
StringBuilder Size manipulation. 653
Append methods of StringBuilder. 655
StringBuilder’sAppendFormat method. 656

StringBuilder text insertion and removal. 658

lllustrations

15.15
15.16
15.17
15.18
15.19
15.20
1521
15.22
15.23

16

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20
16.21
16.22
16.23
16.24
16.25
16.26
16.27
16.28
16.29
16.30
16.31
16.32
16.33
16.34
16.35

StringBuilder text replacement.

Char’s Sshared character-testing methods and case-conversion methods.

CCard class.

Card dealing and shuffling simulation.

Character classes.

Regular expressions checking birthdays.

Quantifiers used regular expressions.

Validating user information using regular expressions.
Regex methodsReplace and Split.

Graphics and Multimedia

System.Drawing namespace’s Classes and Structures.
GDI+ coordinate system. Units are measured in pixels.
Color structure Shared constants and their RGB values.
Color structure members.

Classes that derive from classBrush.

Color value and a pha demonstration.

ColorDialog used to change background and text color.
Font class read-only properties.

Fontsand FontStyles.

Anillustration of font metrics.

FontFamily methods that return font-metrics information.

FontFamily class used to obtain font-metric information.
Graphics methods that draw lines, rectangles and ovals.
Drawing lines, rectangles and elipses.

Ellipse bounded by arectangle.

Positive and negative arc angles.

Graphics methods for drawing arcs.

Arc method demonstration.

Graphics methods for drawing polygons.

Polygon drawing demonstration.

Shapes drawn on aform.

Paths used to draw stars on aform.

Image resizing.

Animation of a series of images.

Container class for chess pieces.

Chess-game code (part 1 of 9).

Windows Media Player demonstration.

Peedy introducing himself when the window opens.
Peedy’ s Pleased animation.

Peedy’ s reaction when heis clicked.

Peedy flying animation

Peedy waiting for speech input.

Peedy repeating the user’s request for Seattle style pizza.

Peedy repeating the user’s request for anchovies as an additional topping.

Peedy recounting the order.

XXVII

659
661
663
664
668
668
670
670
675

685
686
688
688
689
689
692
694
695
697
697
697
699
700
702
702
703
703
705
705
709
712
714
717
718
720
729
732
733
734
734
735
736
736
737

XXVIII

16.36
16.37
16.38

17
17.1
17.2
17.3
174
17.5
17.6
17.7

17.8

179

17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20
17.21
17.22

17.23

17.24

18
18.1
18.2
183

Illustrations

Peedy calculating the total.
Microsoft Agent demonstration.
GUI for eight queens exercise.

Files and Streams

Data hierarchy.

Visual Basic'sview of an n-bytefile.

File class methods (partia list).

Directory class methods (partial list).

FrmFileTest classtestsclassesFile and Directory.
FrmFileSearch class usesregular expressions to determine file types.
FrmBankUI classisthe base class for GUIsin our

file-processing applications.

CRecord class represents a record for sequential-access file-processing
applications.

FrmCreateSequentialAccessFile classcreates and writes

to sequential-access files.

Sample data for the program of Fig. 17.9.

FrmReadSequentialAccessFile classreads sequentia-accessfiles.

FrmCreditInquiry classisaprogram that displays credit inquiries.
Random-access file with fixed-length records.
CRandomAccessRecord class represents arecord for
random-access file-processing applications.
FrmCreateRandomAccessFile classcreatefilesfor
random-access file-processing applications.
FrmWriteRandomAccessFile classwritesrecordstor
andom-access files.

FrmReadRandomAccessFile classreadsrecords from
random-access files sequentially.

CTransaction class handlesrecord transactions for the
transaction-processor case study.
FrmTransactionProcessor classrunsthe
transaction-processor application.

FrmStartDialog class enables users to access dialog
boxes associated with various transactions.
FrmNewDialog class enables usersto create recordsin
transaction-processor case study.

FrmUpdateDialog class enables users to update records
in transaction-processor case study.

FrmDeleteDialog class enables users to remove records
from filesin transaction-processor case study.

Inventory of a hardware store.

Extensible Markup Language (XML)
XML used to mark up an article.

article.xml displayed by Internet Explorer.
XML to mark up abusiness letter.

737
738
751

755
756
757
758
759
762
767
770
772
779
779
783
790
791
794
798
802
808
812
813
816
819

825
832

834
837
837

lllustrations

184

18.5

18.6

18.7

18.8

18.9

18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17
18.18
18.19
18.20
18.21
18.22
18.23
18.24

19
19.1
19.2

19.3
194
195
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15
19.16

19.17
19.18
19.19

19.20

XML namespaces demonstration.

Default namespaces demonstration.

Tree structure for Fig. 18.1.

XmlNodeReader iterates through an XML document.

DOM structure of an XML document.

XPathNavigator class navigates selected nodes.

XML document that describes various sports.

XPath expressions and descriptions.

Document Type Definition (DTD) for a business letter.

XML document referencing its associated DTD.

XML Vdidator validates an XML document against aDTD.
XML Validator displaying an error message.

XML document that conforms to a Microsoft Schema document.
Schema file that contains structure to which book . xm1 conforms.
Schema-validation example.

XML file that does not conform to the Schemain Fig. 18.17.
XML document containing book information.

XSL document that transforms sorting.xml into XHTML.
XSL style sheet applied to an XML document.

BizTalk terminology.

BizTak markup using an offer Schema.

Database, SQL and ADO .NET

Relational-database structure of an Employee table.

Result set formed by selecting Department and Location data
from the Employee table.

Authors table from Books.

Datafrom the Authors table of Books.

Publishers table from Books.

Datafrom the Publishers table of Books.

AuthorISBN table from Books.

Datafrom AuthorISBN tablein Books.

Titles tablefrom Books.

Datafromthe Titles table of Books.

Tablerelationshipsin Books.

SQL query keywords.

authorID and lastName from the Authors table.

Titleswith copyrights after 1999 from table Titles.

Authors from the Authors table whose last names start with D.
Authors from table Authors whose last names contain i as their
second letter.

Authors from table Authors in ascending order by 1astName.
Authors from table Authors in descending order by 1astName.
Authors from table Authors in ascending order by lastName
and by firstName.

Books from table Titles whose titles end with How to Program
in ascending order by title.

XXIX

839
841
842
843
846
852
859
860
861
863
864
865
865
866
867
869
871
872
875
877
878

889

890
890
890
891
891
892
892
893
893
896
897
898
899
900

901
901
902
903

904

XXX

19.21
19.22

19.23
19.24
19.25
19.26
19.27
19.28
19.29
19.30
19.31

20
20.1

20.2

20.3
204
20.5
20.6
20.7
20.8

20.9

20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21

20.22
20.23
20.24
20.25
20.26
20.27

Illustrations

Authors from table Authors and | SBN numbers of the authors
books, sorted in ascending order by 1lastName and £irstName.
Joining tables to produce a result set in which each record contains
an author, title, ISBN number, copyright and publisher name.
Portion of the result set produced by the query in Fig. 19.22.
Table Authors after an INSERT operation to add a record.
Table Authors after an UPDATE operation to change arecord.
Table Authors after aDELETE operation to remove arecord.
Database access and information display.
SQL statements executed on a database.
Database modification demonstration.
XML representation of aDataset writtento afile.
XML document generated from DataSet in XMLWriter.

ASP .NET, Web Forms and Web Controls

Client interacting with Web server. Step 1: The GET request,
GET /books/downloads.htm HTTP/1.1.

Client interacting with Web server. Step 2: The HTTP response,
HTTP/1.1 200 OK.

Three-tier architecture.

ASPX page that displays the Web server’stime.

Code-behind file for a page that displays the Web server’ stime.
HTML response when the browser requests WebTime . aspx.
Creating an ASP.NET Web Application in Visua Studio.
Visual Studio creating and linking a virtual directory for the
WebTime project folder.

Solution Explorer window for project WebTime.

Web Forms menu in the Toolbox.

Design mode of Web Form designer.

HTML mode of Web-Form designer.

Code-behind file for WebForm1 . aspx generated by Visua Studio .NET.

FlowLayout and GridLayout illustration.

WebForm. aspx after adding two Labels and setting their properties.
Commonly used Web controls.

Web-controls demonstration.

AdRotator class demonstrated on a Web form.

Code-behind file for page demonstrating the AdRotator class.
AdvertisementFile used in AdRotator example.
Validators used in a Web Form that generates possible | etter
combinations from a phone number.

Code-behind file for the word-generator page.

HTML and JavaScript sent to the client browser.

ASPX file that presents alist of programming languages x.
Code-behind file that writes cookies to the client.

ASPX page that displays book information.

Cookies being read from a client in an ASP .NET application.

905

906
907
909
910
911
913
921
923
932
934

944

944
945
946
948
951
953

953
953
954
954
955
956
956
957
958
959
964
965
967

970
972
976
981
983
986
987

lllustrations

20.28
20.29
20.30
20.31
20.32
20.33

20.34
20.35
20.36
20.37
20.38
20.39
20.40
20.41
20.42
20.43
20.44

2]
211
21.2
21.3
214
215
21.6
21.7
21.8
21.9
21.10
2111
21.12
21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21
21.22
21.23
21.24
21.25
21.26

HttpCookie properties.

Options supplied on an ASPX page.

Sessions are created for each user in an ASP .NET Web application.
HttpSessionState properties.

Session information displayed in aListBox.

Session dataread by an ASP .NET Web application to provide
recommendations for the user.

Guest-book application GUI.

ASPX filefor the guest-book application.

Code-behind file for the guest-book application.

Login Web Form.

ASCX code for the header.

Code-behind file for the login page for authors application.

ASPX file that allows a user to select an author from a drop-down list.
Database information being inputted into aDataGrid.

ASPX page with tracing turned off.

Tracing enabled on a page.

Tracing information for a project.

ASP .NET and Web Services

ASMX filerendered in Internet Explorer.

Service description for a Web service.

Invoking a method of a Web service from a Web browser.
Results of invoking a Web-service method from a Web browser.
SOAP request message for the HugeInteger Web service.
HugeInteger Web service

Design view of aWeb service.

Adding aWeb service reference to a project.

Add Web Reference diaog.

Web services|located on localhost.

Web reference selection and description.

Solution Explorer after adding a Web reference to a project.
Using the HugeInteger Web service.

Blackjack Web service.

Blackjack game that usesthe Blackjack Web service.
Airline reservation Web service.

Airline Web Servicein design view.

ASPX file that takes reservation information.

Code-behind file for the reservation page.
TemperatureServer Web service.

Classthat stores weather information about a city.

Receiving temperature and weather data from a Web service.
Classthat stores equation information.

Web service that generates random eguations.

Returning an object from a Web-service method.

Math-tutor application.

XXXI

989
989
991
995
995

996

998

999
1001
1005
1007
1007
1013
1014
1020
1020
1021

1033
1034
1035
1035
1036
1038
1044
1045
1046
1046
1047
1047
1049
1054
1057
1066
1069
1069
1070
1073
1076
1077
1082
1085
1086
1087

XXXII

22
221
222
223
224
22.5
22.6
22.7
22.8
22.9

23
231
23.2
233
234
235
23.6
23.7
23.8
239
23.10
2311
23.12
23.13
23.14
23.15
23.16
23.17
23.18
23.19
23.20
2321
23.22
23.23
23.24
23.25
23.26
23.27
23.28
23.29
23.30
23.31

Illustrations

Networking: Streams-Based Sockets and Datagrams

Server portion of aclient/server stream-socket connection. 1101
Client portion of aclient/server stream-socket connection. 1104
Server-side portion of connectionless client/server computing. 1110
Client-side portion of connectionless client/server computing. 1112
Server side of client/server Tic-Tac-Toe program. 1116
CPlayer classrepresentsa Tic-Tac-Toe player. 1119
Client side of client/server Tic-Tac-Toe program. 1122
CSquare classrepresents a square on the Tic-Tac-Toe board. 1128
English letters of the alphabet and decimal digits as expressed

in international Morse code. 1135

Data Structures and Collections

Self-referential cCNode class definition. 1138
Self-referential class objects linked together. 1139
Linked-list graphical representation. 1141
Self-referential class CListNode. 1141
Linked-list cList class. 1142
Exception thrown when removing node from empty linked list. 1145
Linked-list demonstration. 1146
InsertAtFront graphica representation. 1148
InsertAtBack graphical representation. 1149
RemoveFromFront graphical representation. 1150
RemoveFromBack graphical representation. 1151
Stack implementation by inheritance from class CList. 1153
Stack-by-inheritance test. 1154
Stack-by-composition test. 1155
Queueimplemented by inheritance from classCList. 1157
Queue-by-inheritance test. 1158
Binary tree graphical representation. 1160
Binary search tree containing 12 values. 1160
Tree-node data structure. 1162
Tree data structure. 1163
Tree-traversal demonstration. 1166
A binary search tree. 1167
Tree node contains IComparables as data. 1169
Binary tree stores nodes with IComparable data. 1171
IComparable binary-tree demonstration. 1173
Array class demonstration. 1176
ArrayList methods (partial list). 1180
ArrayList class demonstration. 1180
Stack class demonstration. 1185
Hashtable class demonstration. 1190

CEmployee class. 1194

lllustrations

24
24.1
24.2

24.3
24.4
245
24.6
24.7
24.8
24.9
24.10
2411
24.12
24.13
24.14
24.15
24.16
24.17
24.18
24.19

24.20

24.21
24.22
24.23
24.24
24.25
24.26
24.27
24.28
24.29
24.30
2431
24.32
24.33
24.34
24.35
24.36
24.37
24.38
24.39
24.40
24.41
24.42

Accessibility

Acts designed to ensure Internet access for people with disabilities.

We Media s home page. Wemedia.com home page
(Courtesy of We Medialnc.)

Enlarging icons using the Customize feature.
Enlarged icons in the development window.

Text Editor before modifying the font size.
Enlarging text in the Options window.

Text Editor after the font sizeis modified.

Adding tabsto the Toolbox.

Shortcut key creation.

Removing tabs from the Visual Studio environment.
Console windows with tabs and without tabs.
Properties of class Control related to accessibility.
Application with accessibility features.

XHTML table without accessibility modifications.

Table optimized for screen reading using attribute headers.

Home page written in VoiceXML.

Publication page of Deitel and Associates VoiceXML page.
VoiceXML tags.

Hello World CalXML example. (Courtesy of Voxeo,
© Voxeo Corporation 2000-2001).

CallXML example that reads three ISBN values .
(Courtesy of Voxeo, © Voxeo Corporation 2000-2001.)
CalXML elements.

Text Size diaog.

Display Settings diaog.

Accessibility Wizard initialization options.

Scroll Bar and Window Border Size dialog.

Adjusting up window element sizes.

Display Color Settings options.

Accessibility Wizard mouse cursor adjustment tool.
SoundSentry dialog.

ShowSounds diaog.

StickyKeys window.

BounceKeys dialog.

ToggleKeys window.

Extra Keyboard Help diaog.

MouseKeys window.

Mouse Button Settings window.

Mouse Speed didog.

Set Automatic Timeouts diaog.

Saving new accessibility settings.

Narrator window.

Voice Settings window.

Narrator reading Notepad text.

XXX

1205

1206
1210
1210
1211
1211
1212
1213
1214
1214
1215
1216
1217
1222
1223
1227
1229
1233

1234

1235
1238
1242
1243
1243
1244
1244
1245
1245
1246
1246
1247
1247
1248
1248
1249
1249
1250
1250
1251
1252
1252
1253

XXXIV

24.43
24.44
24.45

Al

B.1
B.2

B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10

C1l
C2
C3
C4

C5

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8
D.9
D.10
D.11
D.12
D.13
D.14
D.15
D.16
D.17

Microsoft On-Screen Keyboard.
Microsoft Internet Explorer 5.5's accessibility options.
Advanced accessihility settingsin Microsoft Internet Explorer 5.5.

Operator Precedence Chart
Operator precedence chart.

Number Systems (on CD)

Digits of the binary, octal, decimal and hexadecimal number systems.

Comparison of the binary, octal, decimal and hexadecimal
number systems.

Positional values in the decimal number system.
Positional values in the binary number system.

Positional values in the octal number system.

Positional values in the hexadecimal number system.
Decimal, binary, octal, and hexadecimal equivaents.
Converting a binary number to decimal.

Converting an octal number to decimal.

Converting a hexadecimal number to decimal.

Career Opportunities (on CD)

Monster .com home page. (Courtesy of Monster.com.]
FlipDog.com job search. (Courtesy of Flipdog.com.)
List of ajob seeker’s criteria.

Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of
Advantage Hiring, Inc.)

eLance.com request for proposal (RFP) example. (Courtesy
of eLance, Inc.]

Visual Studio .NET Debugger
Syntax error.

Debug sample program.

Debug configuration setting.

Setting a breakpoint.

Console application suspended for debugging.
Execution suspended at a breakpoint.
Watch window.

Autos and Locals windows.
Immediate window.

Debug toolbar icons.

Breakpoints window.

Disabled breakpoint.

New Breakpoint dialog.

Breakpoint Hit Count dialog.
Breakpoint Condition dialog.
Demonstrates procedure debugging.
Call Stack window.

Illustrations

1253
1254
1255

1264

1268

1269
1269
1269
1270
1270
1270
1272
1272
1273

1283
1284
1286

1289

1292

1303
1304
1305
1305
1305
1306
1307
1308
1308
1309
1310
1310
1311
1311
1311
1312
1312

Illustrations

D.18
D.19
D.20
D.21
D.22
D.23
D.24

E
El

F

F.1
F.2
F.3
F.4

G

G1
G2
G3
G4
G5
G6

H

IDE displaying a procedures calling point.

Debug program control features.

Using the Immediate window to debug procedures.
Debugging aclass.

Breakpoint location for class debugging.

Expanded classin Watch window.

Expanded array in Watch window.

ASCIl Character Set
ASCII character set.

Unicode® (on CD)

Correlation between the three encoding forms.

Various glyphs of the character A.

Windows application demonstrating Unicode encoding.
Some character ranges.

COM Integration (on CD)
ActiveX control registration.

Customize Toolbox dialog with an ActiveX control selected.

IDE’ stoolbox and LabelScrollbar properties.
ActiveX COM control integration in Visual Basic .NET.
Add Reference diadog DLL Selection.

COM DLL component in Visual Basic.NET.

Introduction to HyperText Markup

Language 4: Part 1 (on CD)

H.1
H.2
H.3
H.4
H.5
H.6
H.7
H.8
H.9

I

Basic HTML file.

Header elements hl through hé.
Linking to other Web pages.

Linking to an email address.

Placing imagesin HTML files.

Using images as link anchors.

Inserting special charactersinto HTML.
Unordered listsin HTML.

Nested and ordered listsin HTML.

Introduction to HyperText Markup

Language 4: Part 2 (on CD)

1.1
1.2
1.3
I.4
1.5
1.6
1.7
1.8

HTML table.

Complex HTML table.

Simple form with hidden fields and a text box.

Form including textareas, password boxes and checkboxes.
Form including radio buttons and pulldown lists.

Using internal hyperlinks to make your pages more navigable.
Picture with links anchored to an image map.

Using meta to provide keywords and a description.

XXXV

1313
1313
1314
1314
1315
1316
1316

1319

1323
1323
1326
1328

1332
1333
1334
1335
1335
1338
1339

1347
1349
1350
1351
1352
1354
1356
1358
1359

1368
1371
1373
1376
1379
1383
1386
1388

XXXVI

1.9
1.10

J1
J2

J3

J4a
J5
J.6
J7
J.8
J9
J.10

K.1
K.2
K.3
K.4
K.5
K.6
K.7
K.8
K.9
K.10
K.11
K.12
K.13

L.1

M.1
M.2

N.1
N.2
N.3

Web site using two frames—navigation and content.
Framed Web site with a nested frameset.

Introduction to XHTML: Part 1 (on CD)
First XHTML example.

Validating an XHTML document. (Courtesy of World Wide
Web Consortium (W3C).)

XHTML validation results. (Courtesy of World Wide
Web Consortium (W3C).)

Header elementshl through hé.

Linking to other Web pages.

Linking to an e-mail address.

Placing imagesin XHTML files.

Using images as link anchors.

Inserting special charactersinto XHTML.

Nested and ordered listsin XHTML.

Introduction to XHTML: Part 2 (on CD)

XHTML table.

Complex XHTML table.

Simple form with hidden fields and a textbox.

Form with textareas, password boxes and checkboxes.

Form including radio buttons and drop-down lists.

Using internal hyperlinks to make pages more easily navigable.
Image with links anchored to an image map.

Using meta to provide keywords and a description.

Web document containing two frames—navigation and content.

XHTML document displayed in the left frame of Fig. K.5.
Framed Web site with a nested frameset.

XHTML table for Exercise K.7.

XHTML table for Exercise K.8.

HTML/XHTML Special Characters
XHTML specia characters.

HTML/XHTML Colors
HTML/XHTML standard colors and hexadecimal RGB values.
XHTML extended colors and hexadecimal RGB values.

Crystal Reports® for Visual Studio .NET
Report expert choices. (Courtesy Crystal Decisions)

Expert formatting menu choices. (Courtesy of Crystal Decisions)
Crystal Reports designer interface. (Courtesy of Crystal Decisions)

Illustrations

1390
1393

1402

1405

1406
1407
1408
1410
1411
1413
1415
1418

1427
1430
1433
1436
1439
1443
1446
1448
1450
1453
1455
1460
1461

1462

1463
1464

1467
1468
1469

Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

We wove a web in childhood,
A web of sunny air.
Charlotte Bronté

Welcome to Visual Basic .NET and the exciting world of Windows, Internet and World-
Wide-Web programming with Visual Studio and the .NET platform! Thisbook isthe first
in our new .NET How to Program series, which presents various |eading-edge computing
technologies in the context of the .NET platform.

Visual Basic .NET provides the features that are most important to programmers, such
as object-oriented programming, strings, graphics, graphical-user-interface (GUI) compo-
nents, exception handling, multithreading, multimedia (audio, images, animation and
video), file processing, prepackaged data structures, database processing, Internet and
World-Wide-Web-based client/server networking and distributed computing. The lan-
guage is appropriate for implementing Internet-based and World-Wide-Web-based appli-
cationsthat seamlessly integrate with PC-based applications. Visual Basic .NET isthe next
phase in the evolution of Visual Basic, the world’s most popular programming language.

The .NET platform offers powerful capabilitiesfor software development and deploy-
ment, including independence from a specific language or platform. Rather than requiring
developersto learn anew programming language, programmers can contribute to the same
software project, but write code using any (or several) of the .NET languages (such as
Visual Basic .NET, Visual C++ .NET, C# and others) with which they are most competent.
In addition to providing language independence, .NET extends program portability by
enabling .NET applications to reside on, and communicate across, multiple platforms—
thus facilitating the delivery of Web services over the Internet. .NET enables Web-based
applications to be distributed to consumer-electronic devices, such as cell phones and per-

XXXVII Preface

sonal digital assistants, aswell asto desktop computers. The capabilities that Microsoft has
incorporated into the .NET platform create a new software-development paradigm that will
increase programmer productivity and decrease development time.

New Features in Visual Basic .NET How to Program: Second Edition
This edition contains many new features and enhancements, including:

e Full-Color Presentation. This book is now in full color. In the book’s previous
edition, the programs were displayed in black and the screen captures appeared in
asecond color. Full color enables readers to see sample outputs as they would ap-
pear on a color monitor. Also, we now syntax color the Visual Basic .NET code,
similar to the way Visua Studio .NET colors the code in its editor window. Our
syntax-coloring conventions are as follows:

keywords appear in dark blue

text, class, method and variable names appear in black
errors and ASP delimiters appear in red
e “CodeWashing.” Thisisour term for the process we use to format the programs
in the book so that they have a carefully commented, open layout. The code ap-
pearsin full color and grouped into small, well-documented pieces. This greatly
improves code readability—an especially important goal for us, considering that
this book contains about 21,000 lines of code.

* Web Servicesand ASP .NET. Microsoft’s .NET strategy embraces the Internet and
Web as integral to the software devel opment and deployment processes. Web ser-
vices, akey technology in this strategy, enables information sharing, commerce and
other interactionsusing standard | nternet protocols and technol ogies, such asHyper-
text Transfer Protocol (HTTP), Simple Object Access Protocol (SOAP) and Exten-
sible Markup Language (XML). Web services enable programmers to package
application functiondlity in aform that turns the Web into alibrary of reusable soft-
ware components. In Chapter 21, ASP .NET and Web Services, we present a Web
servicethat allows usersto make airline seat reservations. In thisexample, auser ac-
cesses aWeb page, chooses a seating option and submitsthe page to the Web server.
The page then calls a Web service that checks seat availability. We also present in-
formation relating to Web servicesin Appendix N, Crystal Reports for Visua Stu-
dio .NET, which discusses popular reporting software for database-intensive Visual
Basic .NET applications. Crystal Reports, which is integrated into Visual Studio
.NET, provides the ability to expose a report as a Web service. The appendix pro-
videsintroductory information and then directs readers to awalkthrough of thispro-
cesson the Crystal DecisionsWeb site (www . crystaldecisions.com/net).

* Web Forms, Web Controlsand ASP .NET. Applications developers must be able
to create robust, scalable Web-based applications. The .NET platform architecture
supports such applications. Microsoft’s .NET server-side technology, Active Serv-
er Pages (ASP) .NET, alows programmers to build Web documents that respond
to client requests. To enable interactive Web pages, server-side programs process
information users input into HTML forms. ASP .NET is a significant departure

Preface XXXIX

from previous versions of ASP, allowing developers to program Web-based appli-
cations using the powerful object-oriented languages of .NET. ASP.NET aso pro-
vides enhanced visua programming capabilities, similar to those used in building
Windows forms for desktop programs. Programmers can create Web pages visual -
ly, by dragging and dropping Web controls onto a Web form. Chapter 20, ASP
.NET, Web Forms and Web Controls, introduces these powerful technologies.

e Object-Oriented Programming. Object-oriented programming isthe most widely
employed technique for developing robust, reusable software, and Visual Basic
.NET offers enhanced object-oriented programming features. This text offers a
rich presentation of object-oriented programming. Chapter 8, Object-Based Pro-
gramming, introduces how to create classes and objects. These concepts are ex-
tended in Chapter 9, Object-Oriented Programming: Inheritance—which
discusses how programmers can create new classes that “absorb” the capabilities
of existing classes. Chapter 10, Object-Oriented Programming: Polymorphism—
familiarizes the reader with the crucial concepts of polymorphism, abstract class-
es, concrete classes and interfaces, which facilitate powerful manipulations
among objects belonging to an inheritance hierarchy.

e XML. Useof Extensible Markup Language (XML) is exploding in the software-de-
velopment industry, the e-business and e-commerce communities, and is pervasive
throughout the .NET platform. Because XML is aplatform-independent technology
for describing data and for creating markup languages, XML’ s data portability inte-
grateswell with Visual Basic .NET’ s portable applications and services. Chapter 18,
Extensible Markup Language (XML) introduces XML. Inthis chapter, weintroduce
basic XML markup and discuss the technol ogies such as DTDs and Schema, which
are used to vaidate XML documents contents. We also explain how to program-
matically manipulate XML documents using the Document Object Model
(DOM ™) and how to transform XML documentsinto other types of documentsvia
Extensible Stylesheet L anguage Transformations (XSLT).

e Multithreading. Computers enable us to perform many tasks in parallel (or con-
currently), such as printing documents, downloading files from a network and
surfing the Web. Multithreading is the technology through which programmers
can develop applications that perform concurrent tasks. Historically, a computer
has contained a single, expensive processor, which its operating system would
share among all applications. Today, processors are becoming so inexpensive that
it is possible to build affordable computers containing many processors that work
in parallel—such computers are called multiprocessors. Multithreading is effec-
tive on both single-processor and multiprocessor systems. Visual Basic .NET’s
multithreading capabilities make the platform and its related technologies better
prepared to deal with today’ s sophisticated multimedia-intensive, database-inten-
sive, network-based, multiprocessor-based, distributed applications. Chapter 14,
Multithreading provides a detailed discussion of multithreading.

¢ Visual Studio .NET Debugger. Debuggers are programs that help programmers
find and correct logic errorsin program code. Visual Studio .NET contains a pow-
erful debugging tool that allows programmers to analyze their program line-by-
line as the program executes. In Appendix D, Visual Studio .NET Debugger, we

XL

Preface

explain how to use key debugger features, such as setting breakpoints and “watch-
es,” stepping into and out of procedures, and examining the procedure call stack.

Appendix C, Career Opportunities. This appendix introduces career services
available on the Internet. We explore online career servicesfrom both the employ-
er’'s and employee' s perspectives. We list many Web sites at which you can sub-
mit applications, search for jobs and review applicants (if you are interested in
hiring someone). We also review services that build recruiting pages directly into
e-businesses. One of our reviewers told us that he had used the Internet as a pri-
mary tool in arecent job search, and that this appendix would have helped him ex-
pand his search dramatically.

Appendix F, Unicode. As computer systems evolved worldwide, computer ven-
dors developed numeric representations of character sets and special symbols for
the local languages spoken in different countries. In some cases, different repre-
sentations were developed for the same languages. Such disparate character sets
hindered communication among computer systems. Visual Basic .NET supports
the Unicode Standard (maintained by a non-profit organization called the Uni-
code Consortium), which maintains asingle character set that specifies unique nu-
meric valuesfor characters and special symbolsin most of the world' s languages.
This appendix discusses the standard, overviews the Unicode Consortium Web
Site (www.unicode.org) and presents a Visual Basic .NET application that
displays “Welcome to Unicode!” in several languages.

COM (Component Object Model) I ntegration. Prior to the introduction of .NET,
many organizations spent tremendous amounts of time and money creating reus-
able software components called COM components, which include ActiveX®
controls and ActiveX DLLs (dynamic link libraries) for Windows applications.
Visual Basic programmerstraditionally have been the largest group of COM com-
ponent users. In the appendix, COM Integration, we discuss some of the tools
available in Visual Studio .NET for integrating these legacy components into
.NET applications. This integration allows programmers to use existing sets of
COM-based controls with .NET components.

XHTML. The World Wide Web Consortium (W3C) has declared HTML to be a
legacy technology that will undergo no further development. HTML is being re-
placed by the Extensible Hypertext Markup Language (XHTML)—an XML-
based technology that is rapidly becoming the standard for describing Web con-
tent. We use XHTML in Chapter 18, Extensible Markup Language (XML), and
offer an introduction to the technology in Appendix J, Introduction to XHTML:
Part 1, and Appendix K, Introduction to XHTML: Part 2. These appendices over-
view headers, images, lists, image maps and other features of this emerging mark-
up language. (We aso present a treatment of HTML in Appendices H and I,
because ASP .NET, used in Chapters 20 and 21, generates HTML content).

Accessibility. Currently, athough the World Wide Web has become an important
part of many peopl€’ s lives, the medium presents many challenges to people with
disabilities. Individuals with hearing and visual impairments, in particular, have
difficulty accessing multimedia-rich Web sites. In an attempt to improve this sit-
uation, the World Wide Web Consortium (W3C) launched the Web Accessibility

Preface XLl

Initiative (WALI), which provides guidelines for making Web sites accessible to
people with disabilities. Chapter 24, Accessibility, describes these guidelines and
highlights various products and services designed to improve the Web-browsing
experiences of individuals with disabilities. For example, the chapter introduces
VoiceXML and CallXML, two XM L -based technol ogiesfor increasing the acces-
sibility of Web-based content for people with visual impairments.

Some Notes to Instructors

Students Enjoy Learning a Leading-Edge Language

Dr. Harvey M. Deitel taught introductory programming coursesin universitiesfor 20 years
with an emphasis on developing clearly written, well-designed programs. Much of what is
taught in these courses represents the basic principles of programming, concentrating on
the effective use of datatypes, control structures, arrays and functions. Our experience has
been that students handle the material in this book in about the same way that they handle
other introductory and intermediate programming courses. There is one noticeable differ-
ence, though: Students are highly motivated by the fact that they are learning a leading-
edge language, Visual Basic .NET, and aleading-edge programming paradigm (object-ori-
ented programming) that will be immediately useful to them asthey enter abusiness world
in which the Internet and the World Wide Web have a massive prominence. Thisincreases
their enthusiasm for the material—which is essential when you consider that there is much
moreto learn in aVisual Basic .NET course now that students must master both the base
language and substantial classlibrariesaswell. Although Visual Basic .NET isasignificant
departure from Visual Basic 6.0, forcing programmersto revamp their skills, programmers
will be motivated to do so because of the powerful range of capabilities that Microsoft is
offering in its .NET initiative.

A World of Object Orientation

When we wrote the first edition of Visual Basic 6 How to Program, universities were till
emphasizing procedural programming. The leading-edge courses were using object-orient-
ed C++, but these courses generally mixed a substantial amount of procedural program-
ming with object-oriented programming—something that C++ lets programmers do. Many
instructors now are emphasizing a pure object-oriented programming approach. This
book—the second edition of Visual Basic .NET How to Program and the first text in our
.NET series—takes a predominantly object-oriented approach because of the enhanced ob-
ject orientation provided in Visual Basic .NET.

Focus of the Book

Our goa wasclear: ProduceaVisual Basic .NET textbook for introductory university-level
coursesin computer programming aimed at students with little or no programming experi-
ence, yet offer the depth and the rigorous treatment of theory and practice demanded by
both professionals and students in traditional, upper-level programming courses. To meet
these objectives, we produced a comprehensive book that patiently teaches the principles
of computer programming and of the Visual Basic .NET language, including control struc-
tures, object-oriented programming, Visual Basic .NET class libraries, graphical-user-in-
terface concepts, event-driven programming and more. After mastering the material in this
book, students will be well-prepared to program in Visual Basic .NET and to employ the
capabilities of the .NET platform.

XLII Preface

Multimedia-1 ntensive Communications

People want to communicate. Sure, they have been communicating since the dawn of civ-
ilization, but the potential for information exchange has increased dramatically with the
evolution of various technologies. Until recently, even computer communications were
limited mostly to digits, alphabetic characters and special characters. The current wave of
communication technology involves the distribution of multimedia—people enjoy using
applications that transmit color pictures, animations, voices, audio clips and even full-mo-
tion color video over the Internet. At some point, we will insist on three-dimensional, mov-
ing-image transmission.

There have been predictions that the Internet will eventually replace radio and televi-
sion as we know them today. Similarly, it is not hard to imagine newspapers, magazines
and books delivered to “the palm of your hand” (or even to specia eyeglasses) viawireless
communications. Many newspapers and magazines already offer Web-based versions, and
some of these services have spread to the wireless world. When cellular phones were first
introduced, they were large and cumbersome. Today, they are small devices that fit in our
pockets, and many are Internet-enabled. Given the current rate of advancement, wireless
technology soon could offer enhanced streaming-video and graphics-packed services, such
as video conference calls, and high-power, multi-player video games.

Teaching Approach

Visual Basic .NET How to Program, Second Edition contains arich collection of examples,
exercises and projects drawn from many fields and designed to provide students with a
chance to solve interesting, rea-world problems. The book concentrates on the principles
of good software engineering, and stressing program clarity. We are educators who teach
edge-of-the-practice topicsin industry classrooms worldwide. We avoid arcane terminolo-
gy and syntax specificationsin favor of teaching by example. Our code exampl eshave been
tested on Windows 2000 and Windows X P. The text emphasizes good pedagogy.*

L1ve-CobDE™ Teaching Approach

Visual Basic .NET How to Program, Second Edition is loaded with numerous LIvE-CODE™
examples. This style exemplifies the way we teach and write about programming, as well as
being the focus of our multimedia Cyber Classrooms and Web-based training courses. Each
new concept is presented in the context of a complete, working example that isimmediately
followed by one or more windows showing the program’s input/output dialog. We call this
method of teaching and writing the L1ve-Cobe™ Approach. We use programming languag-
es to teach programming languages. Reading the examples in the text is much like entering
and running them on a computer.

World Wide Web Access
All of the examplesfor Visual Basic .NET How to Program, Second Edition (and our other
publications) are available on the Internet as downloads from the following Web sites:

www.deitel.com
www.prenhall.com/deitel

1. We usefontsto distinguish between | DE features (such as menu names and menu items) and other
elements that appear in the IDE. Our convention isto emphasize | DE features in a sans-serif bold
Helvetica font (e.g., Project menu) and to emphasize program text in a serif bold Courier font
(e.g.,Dim x As Boolean).

Preface Xl

Registration is quick and easy and these downloads are free. We suggest downloading all
the examples, then running each program as you read the corresponding text. Making
changes to the examples and immediately see the effects of those changes—a great way to
learn programming. Each set of instructions assumes that the user is running Windows
2000 or Windows XP and is using Microsoft’ s Internet Information Services (11S). Addi-
tional setup instructions for Web servers and other software can be found at our Web sites
aong with the examples. [Note: This is copyrighted material. Feel free to use it as you
study, but you may not republish any portion of it in any form without explicit permission
from Prentice Hall and the authors.]

Additionally, Visua Studio .NET, which includes Visua Basic .NET, can be pur-
chased and downloaded from Microsoft. Three different version of Visua Studio .NET are
available—Enterprise, Professional and Academic. Visit developerstore.com/
devstore/ for moredetailsand to order. If you are amember of the Microsoft Developer
Network, visit msdn .microsoft.com/default.asp.

Objectives

Each chapter begins with objectives that inform students of what to expect and give them an
opportunity, after reading the chapter, to determine whether they have met the intended goals.
The objectives serve as confidence builders and as a source of positive reinforcement.

Quotations

The chapter objectives are followed by sets of quotations. Some are humorous, some are
philosophical and some offer interesting insights. We have found that students enjoy relat-
ing the quotationsto the chapter material. Many of the quotations are worth a“ second look”
after you read each chapter.

Outline

The chapter outline enables students to approach the material in top-down fashion. Along
with the chapter objectives, the outline hel ps students anti cipate future topics and set acom-
fortable and effective learning pace.

21,300 Lines of Codein 193 Example Programs (with Program Outputs)

We present Visua Basic .NET features in the context of complete, working Visual Basic
.NET programs. The programs range in size from just a few lines of code to substantial ex-
amples containing severa hundred lines of code. All examples are available on the CD that
accompanies the book or as downloads from our Web site, www .deitel . com.

689 | llustrations/Figures

An abundance of charts, line drawings and program outputs is included. The discussion of
contral structures, for example, features carefully drawn flowcharts. [Note: We do not teach
flowcharting as a program-development tool, but we do use a brief, flowchart-oriented pre-
sentation to explain the precise operation of each Visua Basic .NET control structure.]

458 Programming Tips

Wehaveincluded programming tipsto hel p studentsfocus on important aspects of program
development. We highlight hundreds of these tipsin the form of Good Programming Prac-
tices, Common Programming Errors, Testing and Debugging Tips, Performance Tips,
Portability Tips, Software Engineering Observations and Look-and-Feel Observations.

XLIV Preface

Thesetips and practices represent the best the authors have gleaned from a combined seven
decades of programming and teaching experience. One of our students—a mathematics
major—told usthat she feelsthis approach islike the highlighting of axioms, theorems and
corollariesin mathematics books; it provides afoundation on which to build good software.

Good Programming Practices aretips that call attention to techniques that will help students
produce better programs. When we teach introductory courses to nonprogrammers, we state
that the “ buzzword” for each courseis* clarity,” and we tell the students that we will high-
light (in these Good Programming Practices) techniquesfor writing programsthat are clear-
er, more under standable and more maintai nable.

— E|83 Good Programming Practices

Sudents learning a language—especially in their first programming course—tend to make
certain kinds of errors frequently. Pointing out these Common Programming Errors reduces
the likelihood that students will make the same mistakes. It also shortens long lines outside
instructors' offices during office hours!

— 1136 Common Programming Errors

{ When wefirst des gned this“ tip type,” we thought the tipswould contain suggestions strictly
for exposing bugs and removing them from programs. In fact, many of the tips describe as-
pects of Visual Basic .NET that prevent “ bugs’ fromgetting into programsin thefirst place,
thus simplifying the testing and debugging process.

sl |n our experience, teaching students to write clear and understandable programs is by far

i the most important goal for a first programming course. But studentswant to write programs
that run thefastest, use theleast memory, requirethe smallest number of keystrokesor dazze
in other ways. Sudents really care about performance and they want to know what they can
doto “turbo charge” their programs. We have included 49 Performance Tips that highlight
opportunitiesfor improving program performance—making programsrun faster or minimiz-
ing the amount of memory that they occupy.

% Weinclude Portability Tipsto help studentswrie portable code and to provideinsightson how
L ' Visual Basic .NET achievesits high degree of portability.

éThe object-oriented programming paradigm necessitates a complete rethinking of the way

we build software systems. Visual Basic .NET is an effective language for achieving good
software engineering. The Software Engineering Observations highlight architectural and
design issues that affect the construction of software systems, especially large-scale systems.
Much of what the student learns here will be useful in upper-level coursesand inindustry as
the student begins to work with large, complex real-world systems.

\We provide Look-and-Feel Observations to highlight graphical-user-interface conventions.
These observations help students design attractive, user-friendly graphical user interfaces
that conformto industry norms.

Preface XLV

Summary (1313 Summary bullets)

Each chapter ends with additional pedagogical devices. We present a thorough, bullet-list-
style summary of the chapter. On average, there are 41 summary bullets per chapter. This
helps the students review and reinforce key concepts.

Terminology (2980 Terms)

Weinclude in a Terminology section an alphabetized list of the important terms defined in
the chapter. Again, this serves as further reinforcement. On average, there are 93 terms per
chapter. Each term al so appearsin theindex, so the student can locate terms and definitions
quickly.

654 Self-Review Exercises and Answers (Count | ncludes Separate Parts)

Extensive self-review exercises and answers are included for self-study. These questions
and answers give the student a chance to build confidence with the material and prepare for
the regular exercises. Students should be encouraged to attempt all the self-review exercis-
es and check their answers.

364 Exercises (Solutionsin Instructor’s Manual; Count I ncludes Separate Parts)

Each chapter concludes with a substantial set of exercises that involve simplerecall of im-
portant terminology and concepts; writing individual Visual Basic .NET statements; writ-
ing small portions of Visual Basic .NET methods and classes; writing complete Visual
Basic .NET methods, classes and applications; and writing major projects. These exercises
cover a wide variety of topics, enabling instructors to tailor their courses to the unique
needs of their audiences and to vary course assignments each semester. Instructors can use
the exercises to form homework assignments, short quizzes and major examinations. The
solutions for the exercises are included in the Instructor’ s Manual and on the disks avail-
ableonly to instructorsthrough their Prentice-Hall representatives. [NOTE: Please do not
write to us reguesting the instructor’s manual. Distribution of this publication is
strictly limited to college professor s teaching from the book. Instructors may obtain
the solutions manual from their regular Prentice Hall representatives. Weregret that
we cannot provide the solutions to professionals.] Solutions to approximately half the
exercisesareincluded on the Visual Basic .NET Multimedia Cyber Classroom, Second Edi-
tion CD-ROM (availablein April 2002 at www . InformIT.com/cyberclassrooms;
also see the last few pages of this book or visit wew .deitel. com for ordering instruc-
tions). Also availablein April 2002 isthe boxed product, The Complete Visual Basic .NET
Training Course, Second Edition, which includes both our textbook, Visual Basic .NET
How to Program, Second Edition and the Visual Basic .NET Multimedia Cyber Classroom,
Second Edition. All of our Complete Training Course products are available at bookstores
and online booksellers, including www . InformIT.com.

Approximately 5,400 I ndex Entries (with approximately 6,750 Page References)

We have included an extensive Index at the back of the book. Using this resource, students
can search for any term or concept by keyword. TheIndex is especially useful to practicing
programmers who use the book as areference. Each of the 2980 termsin the Terminology
sections appears in the Index (along with many more index items from each chapter). Stu-
dents can use the index in conjunction with the Terminology sections to ensure that they
have covered the key material in each chapter.

XLVI Preface

“Double Indexing” of All Visual Basic .NET L1veE-CODE™ Examples

Visual Basic .NET How to Program, Second Edition has 193 LivE-CODE™ examples and
364 exercises (including parts). Many of the exercises are challenging problems or projects
requiring substantial effort. We have “double indexed” each of the LivE-CODE™ examples
and most of the more challenging exercises. For every Visual Basic .NET source-code pro-
gram in the book, wetook the file namewith the . vb extension, such asChessGame . vb,
and indexed it both alphabetically (in this case, under “C”) and as a subindex item under
“Examples.” This makes it easier to find examples using particular features.

Visual Basic .NET Multimedia Cyber Classroom, Second Edition and
The Complete Visual Basic .NET Training Course, Second Edition

We have prepared an interactive, CD-ROM-based, software version of Visual Basic .NET
How to Program, Second Edition called the Visual Basic .NET Multimedia Cyber Class-
room, Second Edition. This resource is loaded with e-Learning features that are ideal for
both learning and reference. The Cyber Classroom is packaged with the textbook at a dis-
count in The Complete Visual Basic .NET Training Course, Second Edition. If you already
have the book and would like to purchase the Visual Basic .NET Multimedia Cyber Class-
room, Second Edition separately, please visit www.InformIT.com/cyberclass-
rooms. The ISBN number for the Visual Basic .NET Multimedia Cyber Classroom,
Second Edition, is 0-13-065193-1. All Deitel™ Cyber Classrooms are available in CD-
ROM and Web-based training formats.

The CD provides an introduction in which the authors overview the Cyber Class-
room's features. The textbook’s 193 LiIvE-CODE™ example Visua Basic .NET programs
truly “come alive” in the Cyber Classroom. If you are viewing a program and want to exe-
cuteit, you simply click the lightning-bolt icon, and the program will run. Y ou immediately
will see—and hear, when working with audio-based multimedia programs—the program’s
outputs. If you want to modify a program and see the effects of your changes, simply click
the floppy-disk icon that causes the source code to be “lifted off” the CD and “dropped
into” one of your own directories so you can edit the text, recompile the program and try
out your new version. Click the audio icon, and one of the authors will discuss the program
and “walk you through” the code.

The Cyber Classroom also provides navigational aids, including extensive hyper-
linking. The Cyber Classroomishbrowser based, so it remembers sectionsthat you havevis-
ited recently and allows you to move forward or backward among these sections. The
thousands of index entries are hyperlinked to their text occurrences. Furthermore, when
you key inaterm using the “find” feature, the Cyber Classroomwill locate occurrences of
that term throughout the text. The Table of Contentsentries are “hot,” so clicking a chapter
name takes you immediately to that chapter.

Students like the fact that solutions to approximately half the exercisesin the book are
included with the Cyber Classroom. Studying and running these extra programs is a great
way for students to enhance their learning experience.

Studentsand professional users of our Cyber Classroomstell usthat they like theinter-
activity and that the Cyber Classroom is an effective reference due to its extensive hyper-
linking and other navigational features. We received an e-mail from a person who said that
he lives “in the boonies” and cannot take a live course at a university, so the Cyber Class-
room provided an ideal solution to his educational needs.

Preface XLVII

Professorstell usthat their students enjoy using the Cyber Classroom and spend more
time on the courses and master more of the material than in textbook-only courses. For a
complete list of the available and forthcoming Cyber Classrooms and Complete Training
Courses, see the Deitel ™ Series page at the beginning of this book, the product listing and
ordering information at the end of this book or visit www.deitel.com, www.pren-
hall.com/deitel and www.InformIT.com/deitel.

Deitel e-Learning Initiatives

e-Books and Support for Wireless Devices

Wirelessdeviceswill play an enormousrolein the future of the Internet. Given recent band-
width enhancements and the emergence of 2.5 and 3G technologies, it is projected that,
within two years, more people will access the Internet through wireless devices than
through desktop computers. Deitel & Associates, Inc., is committed to wireless accessibil-
ity and has recently published Wireless Internet & Mobile Business How to Program. To
fulfill the needs of awide range of customers, we currently are devel oping our content both
in traditional print formats and in newly developed e ectronic formats, such as e-books so
that students and professors can access content virtualy anytime, anywhere. Visit
www.deitel.com for periodic updates on thisinitiative.

e-Matter

Deitel & Associates, Inc., ispartnering with Prentice Hall’ s parent company, Pearson PLC,
and its information technology Web site, InformIT. com, to launch the Deitel e-Matter
series at www . InformIT.com/deitel. This series will provide professors, students
and professional swith an additional source of information on specific programming topics.
e-Matter consists of stand-alone sections taken from published texts, forthcoming texts or
pieces written during the Deitel research-and-development process. Developing e-Matter
based on pre-publication books allows usto offer significant amounts of the material to ear-
ly adoptersfor usein courses. Some possible Visual Basic .NET e-Matter titleswe are con-
sidering include Object-Based Programming and Object-Oriented Programming in Visual
Basic .NET; Graphical User Interface Programming in Visual Basic .NET; Multithreading
in Visual Basic .NET; ASP .NET and Web Forms: A Visual Basic .NET View; and ASP
.NET and Web Services: A Visual Basic .NET View.

Course Management Systems: WebCT, Blackboard, and CourseCompass

We are working with Prentice Hall to integrate our How to Program Series courseware into
three Course Management Systems. WebCT, Blackboard and CourseCompass. These Course
Management Systems enable instructorsto create, manage and use sophisticated Web-based
educational programs. Course Management System features include course customization
(such as posting contact information, policies, syllabi, announcements, assignments, grades,
performance evaluations and progress tracking), class and student management tools, a
gradebook, reporting tools, communication tools (such as chat rooms), a whiteboard, docu-
ment sharing, bulletin boards and more. Instructors can use these products to communicate
with their students, create online quizzes and tests from questions directly linked to the text
and automatically grade and track test results. For more information about these upcoming
products, visit www.deitel.com/whatsnew.html. For demonstrations of existing
WebCT, Blackboard and CourseCompass courses, visit cms .pren_hall.com/WebCT,

XLVIII Preface

cms .prenhall.com/Blackboard and cms.prenhall.com/CourseCompass,

respectively.

Deitel and InformIT Newsletters

Deitel Column in the Informl T Newsletters

Deitel & Associates, Inc., contributes aweekly column to the popular Informl T newsletter,
currently subscribed to by more than 800,000 IT professionals worldwide. For opt-in reg-
istration, visit www . InformIT.com.

Deitel Newsletter

Our own free, opt-in newsdl etter includes commentary on industry trendsand developments,
linksto articles and resources from our published books and upcoming publications, infor-
mation on future publications, product-release schedules and more. For opt-in registration,
visit www.deitel.com.

The Deitel .NET Series

Deitel & Associates, Inc., is making a mgjor commitment to .NET programming through
thelaunch of our .NET Series. Visual Basic .NET How to Program, Second Edition and C#
.NET How to Program are the first books in this new series. We intend to follow these
books with Advanced Visual Basic .NET How to Program and Advanced C# .NET How to
Program, which will be published in December 2002. We also plan to publish Visual C++
.NET How to Programin July 2002, followed by Advanced Visual C++ .NET How to Pro-
gramin July 2003.

Advanced Visual Basic .NET How to Program

Visual Basic .NET How to Program, Second Edition covers introductory through interme-
diate-level Visual Basic .NET programming topics, as well as core programming funda
mentals. By contrast, our upcoming textbook Advanced Visual Basic .NET How to
Programwill be geared toward experienced Visual Basic .NET developers. This new book
will cover enterprise-level programming topics, including: Creating multi-tier, databasein-
tensive ASP .NET applicationsusing ADO .NET and XML ; constructing custom Windows
controls; developing custom Web controls; and building Windows services. The book also
will include more in-depth explanations of object-oriented programming (with the UML),
ADO .NET, XML Web services, wireless programming and security. Advanced Visual Ba-
sic .NET How to Programwill be published in December 2002.

Acknowledgments

One of the great pleasures of writing atextbook is acknowledging the efforts of many peo-
ple whose hames may not appear on the cover, but whose hard work, cooperation, friend-
ship and understanding were crucia to the production of the book.

Many other people at Deitel & Associates, Inc., devoted long hours to this project.

* Matthew R. Kowalewski, agraduate of Bentley Collegewith adegreein Account-
ing Informations Systems, is the Director of Wireless Development at Deitedl &
Associates, Inc., and served as the project manager. He assisted in the develop-

Preface XLIX

ment and certification of Chapters2—7, 13, 15 and 18-21 and AppendicesD, F and
H-M. He also edited the Index and managed the review process for the book.

* Jonathan Gadzik, a graduate of the Columbia University School of Engineering
and Applied Science with adegreein Computer Science, co-authored Chapters 8—
10, 17 and 22. He also reviewed Chapters 10-11, 18 and 23.

» Kyle Lomeli, a graduate of Oberlin College with a degree in Computer Science
and aminor in East Asian Studies, co-authored Chapters 10-15, 19 and 24 and
contributed to Chapter 23. He also reviewed Chapters 3-9.

e Lauren Trees, agraduate of Brown University with adegreein English, edited the
entire manuscript for smoothness, clarity and effectiveness of presentation; she
also co-authored the Preface, Chapter 1 and Appendix N.

« Rashmi Jayaprakash, a graduate of Boston University with a degree in Computer
Science, co-authored Chapter 24 and Appendix F.

e LauraTreibick, agraduate of the University of Colorado at Boulder with adegree
in Photography and Multimedia, is Director of Multimediaat Deitel & Associates,
Inc. She contributed to Chapter 16 and enhanced many of the text’s graphics.

« Betsy Duwaldt, agraduate of Metropolitan State College of Denver with adegree
in Technical Communications and a minor in Computer Information Systems, is
Editorial Director at Deitel & Associates, Inc. She co-authored the Preface, Chap-
ter 1 and Appendix N and managed the permissions process for the book.

« Barbara Deitel applied the copy edits to the manuscript. She did this in parallel
with handling her extensive financial and administrative responsibilities at Deitel
& Associates, Inc., which include serving as Chief Financial Officer. [Everyone
a the company works on book content.]

« Abbey Deitd, agraduate of Carnegie Mellon University’sIndustrial Management
Program and President of Deitel & Associates, Inc., recruited 40 additiona full-
time employees and interns during 2001. She also leased, equipped, and furnished
our second building to create the work environment from which Visual Basic
.NET How to Program, Second Edition and our other year 2001 publicationswere
produced. She suggested the title for the How to Program series, and edited this
preface and several of the book’ s chapters.

We would also like to thank the participants in the Deitel & Associates, Inc., College
Internship Program.2

¢ Andrew C. Jones, a senior in Computer Science at Harvard University, co-au-
thored Chapters 2—7, 15, Appendix A and Appendix D and reviewed Chapters 8—

2. TheDeitel & Associates, Inc. College Internship Program offers alimited number of salaried po-
sitions to Boston-area college students majoring in Computer Science, Information Technol ogy,
Marketing, Management and English. Students work at our corporate headquarters in Sudbury,
Massachusetts full-time in the summers and (for those attending college in the Boston area) part-
time during the academic year. We also offer full-time internship positions for students interested
in taking a semester off from school to gain industry experience. Regular full-time positions are
available to college graduates. For more information about this competitive program, please con-
tact Abbey Deitel at deitel@deitel.com and visit our Web site, www.deitel.com.

Preface

13. He certified the technical integrity of Chapters 16, 19, 23, Appendices F and
H—K . Andrew took the semester off to work full-time at Deitel & Associates, Inc.,
to gain industry experience.

Jeffrey Hamm, a sophomore at Northeastern University in Computer Science, co-
authored Chapters 16, 18, 20-21 and Appendices D and G. He also coded exam-
ples for Chapter 6.

Su Kim, asenior at Carnegie Méellon University with a double major in Informa-
tion Systems and Economics, contributed to Chapter 1 and the Preface, coded so-
lutions for Chapters 3—14 and contributed to code examplesin Chapters 3-22. Su
was the project manager during the early stages of the book.

Jeng Lee, ajunior in Information Systems at Carnegie Melon University, coded
Chapters 3-13in Visual Basic .NET Beta 1 and converted Chapter 19 from Visual
Basic .NET Beta 1 to Beta 2. He researched new features in Visual Basic .NET
and coded examples in Chapters 5-12 and Chapters 17-24, using Visual Basic
.NET, Beta 2.

Thiago Lucas da Silva, a sophomore at Northeastern University in Computer Sci-
ence, He contributed to Chapter 18 and Appendix D. He coded examples and solu-
tions for Chapters 4-5, 17-18, 20-22 and Appendix G and tested all the
programming examples through the various beta rel eases and rel ease candidates of
Visual Studio .NET. He aso created ancillary materials for Chapters 2—7 and 18.

Mike Preshman, a sophomore at Northeastern University with amajor in Comput-
er Science and minorsin Electrical Engineering and Math, produced code exam-
ples for Chapters 9, 21 and 22 and solutions for Chapters 9, 16 and 17. He
researched URL sfor the Internet and World Wide Web Resource sections, hel ped
with the Bibliography and produced PowerPoint-dide ancillaries for Chapters 2—
7,20, 21 and 24.

Wilson Wu, ajunior in Information Systems at Carnegie Méellon University, cod-
ed chapter examples, took screen capturesin Visua Studio .NET Beta 1 for Chap-
ters 3-16 and converted code sections of Chapters 20—21 from Beta 1 to Beta 2.

Christina Carney, a senior in Psychology and Business at Framingham State Col-
lege, researched URLSs for the Internet and World Wide Web Resource sections
and helped with the Preface.

Brian Foster, a sophomore at Northeastern University in Computer Science, cre-
ated ancillariesfor Chapters 1-19 and 22—23 and hel ped with the Preface and Bib-
liography.

Adam Sparrow, asenior at Bentley College with amajor in Computer Information
Systems, created ancillaries for Chapters 1-5, 7-8, 11 and 15-16.

Zach Bouchard, ajunior at Boston Collegein Economicsand Philosophy, contrib-
uted to the Instructor’s Manual and tested code solutions for Chapter 11.

Carlo Garcia, a graduate of Metropolitan College of Boston University in Com-
puter Science, managed the early stages of the project. He created some of the
book’s initial examples using the Visual Studio .NET Technology Preview Edi-
tion and mentored other interns learning Visual Basic .NET.

Preface L

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especialy appreciate the
extraordinary efforts of our Computer Science editor, Petra Recter and her boss—our
mentor in publishing—Marcia Horton, Editorial Director of Prentice-Hall’s Engineering
and Computer Science Division. Vince O’ Brien did amarvel ous job managing the produc-
tion of the book. Sarah Burrows handled editoria responsihilities on the book’ s extensive
ancillary package.

The Visual Basic .NET Multimedia Cyber Classroom, Second Edition was devel oped
in parallel with Visual Basic .NET How to Program, Second Edition. We sincerely appre-
ciate the “new media’ insight, savvy and technical expertise of our electronic-media edi-
tors, Mark Taub and Karen McL ean. They and project manager Mike Ruel did awonderful
job bringing the Visual Basic .NET Multimedia Cyber Classroom, Second Edition and The
Complete Visual Basic .NET Training Course, Second Edition to publication.

We owe special thanks to the creativity of Tamara Newnam (smart art@earth-
link.net), who produced the art work for our programming-tip icons and for the cover.
She created the delightful creaturewho shareswith you the book’ s programming tips. Barbara
Deitel, Tem Nieto and Michelle Gopen contributed the bugs' names for the front cover.

We wish to acknowledge the efforts of our reviewers and to thank Crissy Statuto of
Prentice Hall, who recruited the reviewers and managed the review process. Adhering to a
tight time schedule, these reviewers scrutinized the text and the programs, providing count-
less suggestions for improving the accuracy and completeness of the presentation. It isa
privilege to have the guidance of such talented and busy professionals.

Visual Basic .NET How to Program, Second Edition reviewers:
Lars Bergstrom (Mi crosoft)

Christopher Brumme (Mi crosoft)

Alan Carter (Microsoft)

Greg Lowney (Microsoft)

Cameron McColl (Microsoft)

Tania Means (Microsoft)

Dale Michalk (Microsoft)

Eric Olson (Microsoft)

Paul Vick (Microsoft)

Jeff Welton (Microsoft)

Joan Aliprand (Unicode Consortium)

Paul Bohman (Technology Coordinator, WebAIM)

Harlan Brewer (Utah State University)

Carl Burnham (Southpoint)

Clinton Chadwick (Valtech)

Mario Chavez-Rivas (Trane Corp.)

Ram Choppa (Baker Hughes)

Douglas Bass (University of St. Thomas)

Ken Cox (Sympatico)

Anthony Fadale (State of Kansas, Accessibility Committee)
J. Mel Harris (OnLineLiveTraining.com)

Terry Hull (CEO, Enterprise Component Technologies, Inc.)
Balgji Janamanchi (Texas Tech)

Lt Preface

Amit Kaani (MobiCast, co-author of Inside ASP.NET and .NET Mobile Web
Developer's Guide)

Stan Kurkovsky (Columbus State University)

Stephen Longo (LaSalle University)

Rick McGowan (Unicode Consortium)

Michael Paciello (Founder, WebABLE)

Chris Panell (Heald College)

Kevin Parker (Idaho State College)

Bryan Plaster (Valtech)

Andre Pool (Florida Community College-Jacksonville)

T. J. Racoosin (rSolutions)

Nancy Reyes (Heald College)

Chris Ridpath (A-Prompt Project, University of Toronto)

Wally Roth (Taylor University)

Craig Shofding (CAS Training)

Bill Stutzman (Consultant)

Jutta Treviranus (A-Prompt Project, University of Toronto)

Tim Thomas (Xtreme Computing)

Mark Thomas (University of Cincinnati)

Bill Tinker (Aries Software)

Joel Weinstein (Northeastern University)

We also would like to thank our first edition reviewers:

Sean Alexander (Microsoft Corporation)

Dave Glowacki (Microsoft Corporation)

Phil Lee (Microsoft Corporation)

William Vaughn (Microsoft Corporation)

Scott Wiltamuth (Microsoft Corporation)

Mehdi Abedingjad (Softbank Marketing Services, Inc.)

David Bongiovanni (Bongiovanni Research & Technology, Inc.)
Rockford Lhotka

Wewould sincerely appreciate your comments, criticisms, corrections and suggestions
for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond promptly.
Weéll, that’sit for now. Welcometo the exciting world of Visual Basic .NET program-
ming. We hope you enjoy thislook at leading-edge computer applications. Good luck!

Dr. Harvey M. Deitel
Paul J. Deitel
TemR. Nieto

About the Authors

Dr. Harvey M. Deitel, CEO and Chairman of Deitel & Associates, Inc., has 40 years expe-
rience in the computing field, including extensive industry and academic experience. Dr.

Preface L

Deitel earned B.S. and M.S. degrees from the Massachusetts I nstitute of Technology and a
Ph.D. from Boston University. He worked on the pioneering virtual-memory operating-sys-
tems projects at IBM and MIT that developed techniques now widely implemented in sys-
tems such as UNIX, Linux and Windows NT. He has 20 years of college teaching
experience, including earning tenure and serving as the Chairman of the Computer Science
Department at Boston College before founding Deitel & Associates, Inc., with his son, Paul
J. Deitdl. Heisthe author or co-author of several dozen books and multimedia packages and
iswriting many more. With trangl ations published in Japanese, Russian, Spanish, Tradition-
a Chinese, Simplified Chinese, Korean, French, Polish, Italian and Portuguese, Dr. Deitd’s
texts have earned international recognition. Dr. Deitel has delivered professional seminars
to major corporations and to government organizations and various branches of the military.

Paul J. Deitel, Executive Vice President and Chief Technical Officer of Deitel &
Associates, Inc., is agraduate of the Massachusetts I nstitute of Technology’s Sloan School
of Management, where he studied Information Technology. Through Deitel & Associates,
Inc., he has delivered Java, C, C++, Internet and World Wide Web courses to industry cli-
ents including Compag, Sun Microsystems, White Sands Missile Range, Rogue Wave
Software, Boeing, Dell, Stratus, Fidelity, Cambridge Technology Partners, Open Environ-
ment Corporation, One Wave, Hyperion Software, Lucent Technologies, Adra Systems,
Entergy, CableData Systems, NASA at the Kennedy Space Center, the Nationa Severe
Storm Laboratory, IBM and many other organizations. He has lectured on C++ and Java
for the Boston Chapter of the Association for Computing Machinery and has taught satel-
lite-based Java courses through a cooperative venture of Deitel & Associates, Inc., Prentice
Hall and the Technology Education Network. He and hisfather, Dr. Harvey M. Deitel, are
the world’ s best-selling Computer Science textbook authors.

Tem R. Nieto, Director of Product Development of Deitel & Associates, Inc., is a
graduate of the Massachusetts Institute of Technology, where he studied engineering and
computing. Through Deitel & Associates, Inc., he hasdelivered coursesfor industry clients
including Sun Microsystems, Compag, EMC, Stratus, Fidelity, NASDAQ, Art Tech-
nology, Progress Software, Toys “R” Us, Operational Support Fecility of the National
Oceanographic and Atmospheric Administration, Jet Propulsion Laboratory, Nynex,
Motorola, Federal Reserve Bank of Chicago, Banyan, Schlumberger, University of Notre
Dame, NASA, various military installations and many others. He has co-authored
numerous books and multimedia packages with the Deitel s and has contributed to virtually
every Deitel & Associates, Inc., publication.

For acomplete listing of Deitel & Associates, Inc., textbooks, Cyber Classrooms and
Complete Training Courses, see either the series page at the front of the book, the adverto-
rial pages at the back of the book or our Web sites:

www.deitel.com
www.prenhall.com/deitel
www.InformIT.com/deitel

About Deitel & Associates, Inc.

Deitel & Associates, Inc., is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e
business'e-commerce software technology, object technology and computer programming
languages education. The company provides courses on Internet and World Wide Web/

LIV Preface

programming, wireless Internet programming, object technology, and major programming
languages and platforms, such as Visual Basic .NET, C#, Java, advanced Java, C, C++,
XML, Perl, Python and more. Thefounders of Deitel & Associates, Inc., are Dr. Harvey M.
Deitel and Paul J. Deitel. The company’ s clients include many of the world’ s largest com-
puter companies, government agencies, branches of the military and business organiza-
tions. Through its 25-year publishing partnership with Prentice Hall, Deitel & Associates,
Inc., publishes leading-edge programming textbooks, professional books, interactive CD-
ROM -based multimedia Cyber Classrooms, Complete Training Courses, e-books, e-white-
papers, Web-based training courses and course management systems e-content. Deitel &
Associates, Inc., and the authors can be reached via e-mail at:

deitel@deitel.com

Tolearn more about Deitel & Associates, Inc., its publications and itsworldwide corporate
on-site curriculum, see the last few pages of this book or visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training
Courses and Web-based training courses can do so through bookstores, online booksellers
and through:

www.deitel.com
www.prenhall.com/deitel
www.InformIT.com/deitel

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)

Deitel & Associates, Inc., isamember of the World Wide Web Consortium

(W3C). The W3C wasfounded in 1994 “to devel op common protocolsfor

the evolution of the World Wide Web.” AsaW3C member, Deitel & As

sociates, Inc., holds a seat on the W3C Advisory Committee (the compa-
ny’'s representative is our Chief Technology Officer, Paul Deitel). Advisory Committee
members help provide “strategic direction” to the W3C through meetings held around the
world. Member organizations a so hel p devel op standards recommendationsfor Web tech-
nologies (suchas XHTML, XML and many others) through participation in W3C activities
and groups. Membership in the W3C is intended for companies and large organizations.
To obtain information on becoming a member of the W3C visit www.w3.org/
Consortium/Prospectus/Joining.

Introduction to
Computers, I nternet and
Visual Basic .NET

Objectives

 To understand basic computer concepts.

* To learn about various programming languages.

 To appreciate the importance of object technology.

 To become familiar with the history of the Visual
Basic .NET programming language.

* Tolearn about the evol ution of the Internet and World
Wide Web.

« To understand the Microsoft® .NET initiative.

* To preview the remaining chapters of the book.

Things are always at their best in their beginning.

Blaise Pascal

High thoughts must have high language.

Aristophanes

Our lifeisfrittered away by detail...Smplify, simplify.

Henry David Thoreau

Before beginning, plan carefully....

Marcus Tullius Cicero

Look with favor upon a bold beginning.

Virgil

| think I’ m beginning to learn something about it.

Auguste Renoir

2 Intfroduction to Computers, Internet and Visual Basic .NET Chapter 1

Outline

1.1 Introduction

1.2 What Is a Computer?

1.3 Computer Organization

1.4 Evolution of Operating Systems

15 Personal Computing, Distributed Computing and Client/Server
Computing

1.6 Machine Languages, Assembly Languages and High-level
Languages

1.7 Visual Basic .NET

1.8 C, C++, Java™ and C#

1.9 Other High-level Languages

1.10 Structured Programming

1.11 Key Software Trend: Object Technology

1.12 Hardware Trends

1.13 History of the Internet and World Wide Web

1.14 World Wide Web Consortium (W3C)

1.15 Extensible Markup Language (XML)

1.16 Introduction to Microsoft .NET

1.17 .NET Framework and the Common Language Runtime

1.18 Tour of the Book

1.19 Internet and World Wide Web Resources

Summary ¢ Terminology ¢ Self-Review Exercises « Answers to Self-Review Exercises « Exercises

1.1 Introduction

Welcometo Visual Basic .NET! In creating this book, we have worked hard to provide stu-
dents with the most accurate and complete information regarding the Visual Basic .NET
language and its applications. The book is designed to be appropriate for readers at all lev-
els, from practicing programmersto individuals with little or no programming experience.
We hope that working with this text will be an informative, entertaining and challenging
learning experience for you.

How can one book appeal to both novices and skilled programmers? The core of this
book emphasizes the achievement of program clarity through proven techniques of struc-
tured programming, object-based programming, object-oriented programming (OOP) and
event-driven programming. Nonprogrammers learn basic skills that underlie good pro-
gramming; experienced developersreceive arigorous explanation of the language and may
improve their programming styles. Perhaps most importantly, the book presents hundreds
of complete, working Visual Basic .NET programs and depicts their outputs. We call this

Chapter 1 Infroduction to Computers, Internet and Visual Basic .NET 3

the Live-CoDE™ approach. All of the book’ s examples are avail able on the CD-ROM that
accompanies this book and on our Web site, www.deitel. com.

Computer use is increasing in almost every field of endeavor. In an era of steadily
rising costs, computing costs have decreased dramatically because of rapid developments
in both hardware and software technology. Computers that filled large rooms and cost mil-
lions of dollars just two decades ago now can be inscribed on the surfaces of silicon chips
smaller than a fingernail, costing perhaps a few dollars each. Silicon is one of the most
abundant materials on earth—it is an ingredient in common sand. Silicon-chip technology
has made computing so economical that hundreds of millions of general-purpose com-
putersarein useworldwide, helping peoplein business, industry, government and their per-
sonal lives. Given the current rate of technologica development, this number could easily
double over the next few years.

In beginning to study thistext, you are starting on a challenging and rewarding educa
tional path. Asyou proceed, if you would like to communicate with us, please send an e-
mail to deitel@deitel.com or browse our World Wide Web sites at
www.deitel.com, www.prenhall.com/deitel and www.InformIT.com/
deitel. We hope that you enjoy learning Visual Basic .NET through reading Visual
Basic .NET How to Program, Second Edition.

1.2 What Is a Computer?

A computer is adevice capable of performing computations and making logical decisions
a speeds millions and even billions of times faster than those of human beings. For exam-
ple, many of today’s personal computers can perform hundreds of millions—even bil-
lions—of additions per second. A person operating adesk calculator might require decades
to complete the same number of calculations that a powerful personal computer can per-
form in one second. (Pointsto ponder: How would you know whether the person had added
the numbers correctly? How would you know whether the computer had added the numbers
correctly?) Today’ s fastest supercomputers can perform hundreds of hillions of additions per
second—about as many cal culations as hundreds of thousands of people could performin one
year! Trillion-instruction-per-second computers are aready functioning in research laborato-
ries!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide computers through orderly sets of actions that are specified
by individuals known as computer programmers.

A computer is composed of various devices (such as the keyboard, screen, mouse,
disks, memory, CD-ROM and processing units) known as hardware. The programsthat run
on acomputer arereferred to as software. Hardware costs have been declining dramatically
in recent years, to the point that personal computers have become a commodity. Con-
versely, software-development costs have been rising steadily, as programmers develop
ever more powerful and complex applications without being able to improve significantly
the technology of software development. In this book, you will learn proven software-
development methods that can reduce software-development costs—top-down stepwise
refinement, functionalization and object-oriented programming. Object-oriented program-
ming is widely believed to be the significant breakthrough that can greatly enhance pro-
grammer productivity.

4 Intfroduction to Computers, Internet and Visual Basic .NET Chapter 1

1.3 Computer Organization

Virtually every computer, regardliess of differences in physical appearance, can be envi-
sioned as being divided into six logical units, or sections:

1. Input unit. This“receiving” section of the computer obtains information (dataand
computer programs) from variousinput devices. The input unit then placesthisin-
formation at the disposal of the other unitsto facilitate the processing of the infor-
mation. Today, most users enter information into computers via keyboards and
mouse devices. Other input devices include microphones (for speaking to the
computer), scanners (for scanning images) and digital cameras (for taking photo-
graphs and making videos).

2. Output unit. This “shipping” section of the computer takes information that the
computer has processed and places it on various output devices, making theinfor-
mation available for use outside the computer. Computers can output information
in various ways, including displaying the output on screens, playing it on audio/
video devices, printing it on paper or using the output to control other devices.

3. Memory unit. Thisisthe rapid-access, relatively low-capacity “warehouse” sec-
tion of the computer, which facilitates the temporary storage of data. The mem-
ory unit retains information that has been entered through the input unit,
enabling that information to be immediately available for processing. In addi-
tion, the unit retains processed information until that information can be trans-
mitted to output devices. Often, the memory unit is called either memory or
primary memory—random access memory (RAM) is an example of primary
memory. Primary memory isusually volatile, which meansthat it is erased when
the machine is powered off.

4. Arithmetic and logic unit (ALU). The ALU isthe “manufacturing” section of the
computer. It is responsible for the performance of calculations such as addition,
subtraction, multiplication and division. It aso contains decision mechanisms, al-
lowing the computer to perform such tasks as determining whether two items
stored in memory are equal.

5. Central processing unit (CPU). The CPU servesasthe “administrative” section of
the computer. Thisis the computer’s coordinator, responsible for supervising the
operation of the other sections. The CPU alerts the input unit when information
should be read into the memory unit, instructs the ALU about when to use infor-
mation from the memory unit in calcul ations and tells the output unit when to send
information from the memory unit to certain output devices.

6. Secondary storage unit. Thisunit isthelong-term, high-capacity “warehousing”
section of the computer. Secondary storage devices, such as hard drives and
disks, normally hold programs or data that other units are not actively using; the
computer then can retrieve this information when it is needed—hours, days,
months or even years later. Information in secondary storage takes much longer
to access than does information in primary memory. However, the price per unit
of secondary storage is much less than the price per unit of primary memory.
Secondary storage is usually nonvolatile—it retains information even when the
computer is off.

Chapter 1 Infroduction to Computers, Internet and Visual Basic .NET 5

1.4 Evolution of Operating Systems

Early computers were capable of performing only onejob or task at atime. In this mode of
computer operation, often called single-user batch processing, the computer runs one pro-
gram at a time and processes data in groups called batches. Users of these early systems
typicaly submitted their jobs to a computer center on decks of punched cards. Often, hours
or even days elapsed before printouts were returned to the users’ desks.

To make computer use more convenient, software systems called operating systems
were developed. Early operating systems oversaw and managed computers transitions
between jobs. By minimizing the time it took for a computer operator to switch from one
job to another, the operating system increased the total amount of work, or throughput,
computers could processin a given time period.

As computers became more powerful, single-user batch processing becameinefficient,
because computers spent agreat deal of time waiting for slow input/output devicesto com-
plete their tasks. Developers then looked to multiprogramming techniques, which enabled
many tasks to share the resources of the computer to achieve better utilization. Multipro-
gramming involvesthe “simultaneous’ operation of many jobs on acomputer that splitsits
resources among those jobs. However, users of early multiprogramming operating systems
still submitted jobs on decks of punched cards and waited hours or days for results.

In the 1960s, several industry and university groups pioneered timesharing operating
systems. Timesharing is a specia type of multiprogramming that allows users to access a
computer through terminals, or devices with keyboards and screens. Dozens or even hun-
dreds of people can use atimesharing computer system at once. It isimportant to note that
the computer does not actually run al the users' requests simultaneously. Rather, it per-
forms a small portion of one user’s job and moves on to service the next user. However,
because the computer does this so quickly, it can provide service to each user several times
per second. This gives users programs the appearance of running simultaneously. Time-
sharing offers major advantages over previous computing systems in that users receive
prompt responses to requests, instead of waiting long periods to obtain results.

The UNIX operating system, which is now widely used for advanced computing,
originated as an experimental timesharing operating system. Dennis Ritchie and Ken
Thompson developed UNIX at Bell Laboratories beginning in the late 1960s and devel-
oped C as the language in which they wrote it. They created UNIX as open-sour ce soft-
ware, freely distributing the source code to other programmers who wanted to use,
modify and extend it. A large community of UNIX users quickly developed. The oper-
ating system grew as UNIX users contributed their own programs and tools. Through a
collaborative effort among numerous researchers and developers, UNIX became a pow-
erful and flexible operating system able to handle almost any type of task that a user
required. Many versions of UNIX have evolved, including today’ s phenomenally popular
Linux operating system.

1.5 Personal Computing, Distributed Computing and Client/
Server Computing

In 1977, Apple Computer popularized the phenomenon of personal computing. Initially, it
was a hobbyist’s dream. However, the price of computers soon dropped so far that large
numbers of people could buy them for personal or business use. In 1981, IBM, the world's

6 Intfroduction to Computers, Internet and Visual Basic .NET Chapter 1

largest computer vendor, introduced the IBM Personal Computer. Personal computing rap-
idly became legitimate in business, industry and government organizations.

The computers first pioneered by Apple and IBM were “stand-alone” units—people
did their work on their own machines and transported disks back and forth to share infor-
mation. (This process was often called “sneakernet.”) Although early personal computers
were not powerful enough to timeshare several users, the machines could be linked together
into computer networks, either over telephone lines or via local area networks (LANS)
within an organization. These networks led to the phenomenon of distributed computing,
in which an organization’s computing is distributed over networksto the sites at which the
work of the organization is performed, instead of the computing being performed only at a
central computer installation. Personal computerswere powerful enough to handle both the
computing requirements of individual users, and the basic tasks involved in the electronic
transfer of information between computers. N-tier applications split up an application over
numerous computers. For example, a three-tier application might have a user interface on
one computer, business-logic processing on a second and a database on a third; all three
interact as the application runs.

Today's most advanced personal computers are as powerful as the million-dollar
machines of just two decades ago. High-powered desktop machines—called worksta-
tions—provide individual users with enormous capabilities. Information is easily shared
across computer networks, in which computers called servers store programs and data that
can be used by client computers distributed throughout the network. This type of configu-
ration gave rise to the term client/server computing. Today’s popular operating systems,
suchas UNIX, Linux, Solaris, MacOS, Windows 2000 and Windows X P, provide the kinds
of capabilities discussed in this section.

1.6 Machine Languages, Assembly Languages and High-level
Languages

Programmers write instructions in various programming languages, some of which are di-
rectly understandable by computers and others of which require intermediate translation
steps. Although hundreds of computer languages are in use today, the diverse offerings can
be divided into three general types:

1. Machinelanguages
2. Assembly languages
3. High-level languages

Any computer can understand only its own machine language directly. Asthe “nat-
ural language” of a particular computer, machine language is defined by the computer’s
hardware design. Machine languages generally consist of streams of humbers (ultimately
reduced to 1sand 0s) that instruct computers how to perform their most elementary oper-
ations. Machine languages are machine-dependent, which means that a particular
machine language can be used on only one type of computer. The following section of a
machine-language program, which adds overtime pay to base pay and stores the result in
gross pay, demonstrates the incomprehensibility of machine language to the human
reader.

Chapter 1 Infroduction to Computers, Internet and Visual Basic .NET 7

+1300042774
+1400593419
+1200274027

As the popularity of computers increased, machine-language programming proved to
be excessively slow, tedious and error prone. Instead of using the strings of numbers that
computers could directly understand, programmers began using English-like abbreviations
to represent the elementary operations of the computer. These abbreviations formed the
basisof assembly languages. Translator programs called assemblers convert assembly lan-
guage programs to machine language at computer speeds. The following section of an
assembly-language program also adds overtime pay to base pay and stores the result in
gross pay, but presents the steps more clearly to human readers than does its machine-lan-
guage equivaent:

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

Although such code is clearer to humans, it is incomprehensible to computers until trans-
lated into machine language.

Although computer useincreased rapidly with the advent of assembly languages, these
languages still required many instructions to accomplish even the simplest tasks. To speed
up the programming process, high-level languages, in which single statements accomplish
substantia tasks, were developed. Trandation programs called compilers convert high-
level-language programs into machine language. High-level languages enable program-
mers to write instructions that ook almost like everyday English and contain common
mathematical notations. A payroll program written in ahigh-level language might contain
a statement such as

grossPay = basePay + overTimePay

Obviously, programmers prefer high-level languages to either machine languages or as-
sembly languages. Visual Basic .NET is one of the most popular high-level programming
languages in the world.

The compilation of a high-level language program into machine language can require
aconsiderable amount of time. This problem was solved by the development of interpreter
programs that can execute high-level language programs directly, bypassing the compila
tion step. Although programs already compiled execute faster than interpreted programs,
interpreters are popular in program-development environments. In these environments,
developers change programs frequently as they add new features and correct errors. Once
aprogram isfully developed, a compiled version can be produced so that the program runs
a maximum efficiency.

1.7 Visual Basic .NET

Visual Basic .NET evolved from BASIC (Beginner’s All-Purpose Symbolic Instruction
Code), developed in the mid-1960s by Professors John Kemeny and Thomas Kurtz of
Dartmouth College as a language for writing ssmple programs. BASIC's primary purpose
was to familiarize novices with programming techniques.

8 Intfroduction to Computers, Internet and Visual Basic .NET Chapter 1

The widespread use of BASIC on various types of computers (sometimes called hard-
ware platforms) had led to many enhancements to the language. When Bill Gates founded
Microsoft Corporation, he implemented BASIC on several early personal computers. With
the devel opment of the Microsoft Windows graphical user interface (GUI) inthelate 1980s
and the early 1990s, the natural evolution of BASIC was Visua Basic, introduced by
Microsoft in 1991.

Until Visua Basic appeared in 1991, developing Microsoft Windows-based applica
tions was a difficult and cumbersome process. Although Visual Basic is derived from the
BASIC programming language, it is a distinctly different language that offers such pow-
erful features as graphical user interfaces, event handling, access to the Windows 32-bit
Application Programming Interface (Win32 API), object-oriented programming and
exception handling. Visual Basic .NET is an event-driven, visua programming language
in which programs are created using an Integrated Development Environment (IDE). With
the IDE, aprogrammer can write, run, test and debug Visua Basic programs conveniently,
thereby reducing the time it takes to produce aworking program to a fraction of the time it
would have taken without using the IDE. The process of rapidly creating an application is
typicaly referred to as Rapid Application Development (RAD). Visual Basicistheworld's
most widely used RAD language.

The advancement of programming tools and consumer-electronic devices created many
challenges. Integrating software components from diverse languages proved difficult, and
ingtallation problems were common because new versions of shared components were
incompatible with old software. Devel opers al so discovered they needed Web-based applica-
tionsthat could be accessed and used viathe Internet. As programmable devices, such as per-
sonal digital assistants (PDAS) and cell phones, grew in popularity in the late 1990s, the need
for these components to interact with others viathe Internet rose dramatically. As aresult of
the popularity of maobile electronic devices, software developers redlized that their clients
were no longer restricted to desktop users. Developers recognized the need for software
accessible to anyone from almost any type of device.

To address these needs, Microsoft announced the introduction of the Microsoft .NET
(pronounced “dot-net”) strategy in 2000. The .NET platform is one over which Web-based
applications can be distributed to a variety of devices (such as cell phones) and to desktop
computers. The .NET platform offers anew programming model that allows programs cre-
ated in disparate programming languages to communicate with each other.

Microsoft has designed a version of Visual Basic for .NET. Earlier versions of
Visual Basic did offer object-oriented capabilities, but Visual Basic .NET offers
enhanced object orientation, including a powerful library of components, allowing pro-
grammers to develop applications even more quickly. Visual Basic .NET also enables
enhanced language interoperability: Software components from different languages can
interact as never before. Developers can package even old software to work with new
Visual Basic .NET programs. Also, Visual Basic .NET applications can interact via the
Internet, using industry standards such asthe Simple Object A ccess Protocol (SOAP) and
XML, which we discuss in Chapter 18, Extensible Markup Language (XML). Visual
Basic .NET iscrucial to Microsoft’s.NET strategy, enabling existing Visual Basic devel-
opersto migrate to .NET easily. The advances embodied in .NET and Visual Basic .NET
will lead to a new programming style, in which applications are created from components
called Web Services available over the Internet.

Chapter 1 Infroduction to Computers, Internet and Visual Basic .NET 9

1.8 C, C++, Java™ and C#

Ashigh-level languages devel op, new offerings build on aspects of their predecessors. C++
evolved from C, which in turn evolved from two previous languages, BCPL and B. Martin
Richards developed BCPL in 1967 as a language for writing operating systems, software
and compilers. Ken Thompson modeled his language, B, after BCPL. In 1970, Thompson
used B to create early versions of the UNIX operating system. Both BCPL and B were
“typeless’ languages, meaning that every dataitem occupied one“word” in memory. Using
these languages, programmers assumed responsibility for treating each dataitem asawhole
number or real number.

The C language, which Dennis Ritchie evolved from B at Bell Laboratories, was orig-
inaly implemented in 1973. Although C employs many of BCPL and B’s important con-
cepts, it also offers datatyping and other features. C first gained widespread recognition as
a development language of the UNIX operating system. However, C is now available for
most computers, and many of today’s major operating systems are written in C or C++. C
is a hardware-independent language, and, with careful design, it is possible to write C pro-
grams that are portable to most computers.

C++, an extension of C using elements from Simula 67 (a simulation programming
language) was developed by Bjarne Stroustrup in the early 1980s at Bell Laboratories. C++
provides a number of features that “spruce up” the C language, but, more importantly, it
provides capabilities for object-oriented programming (OOP).

At atime when demand for new and more powerful software is soaring, the ability to
build software quickly, correctly and economically remains an elusive goal. However, this
problem can be addressed in part through the use of objects, or reusable software compo-
nents that model itemsin thereal world (see Section 1.11). Software developers are discov-
ering that a modular, object-oriented approach to design and implementation can make
software development groups much more productive than is possible using only previous
popular programming techniques, such as structured programming. Furthermore, object-
oriented programs are often easier to understand, correct and modify.

In addition to C++, many other object-oriented languages have been developed. These
include Smalltalk, which was created at Xerox's Palo Alto Research Center (PARC).
Smalltalk is a pure object-oriented language, which means that literally everything is an
object. C++ isahybrid language—it is possible to program in a C-like style, an object-ori-
ented style or both. Although some perceive this range of options as a benefit, most pro-
grammers today believe that it is best to program in a purely object-oriented manner.

In the early 1990s, many individuals projected that intelligent consumer-electronic
devices would be the next major market in which microprocessors would have a profound
impact. Recognizing this, Sun Microsystemsin 1991 funded an interna corporate research
project code-named Green. The project resulted in the development of alanguage based on
C and C++. Although the language’ screator, James Godling, called it Oak (after an oak tree
outside his window at Sun), it was later discovered that a computer language called Oak
aready existed. When agroup of Sun employeesvisited alocal coffee place, the name Java
was suggested, and it stuck.

But the Green project ran into some difficulties. The marketplace for intelligent con-
sumer-electronic devices was not developing as quickly as Sun had anticipated. Worse yet,
amajor contract for which Sun competed was awarded to another company. The project
was, at thispoint, in danger of being canceled. By sheer good fortune, the World Wide Web

10 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

exploded in popularity in 1993, and Sun saw immediate potential for using Java to create
dynamic content (i.e., animated and interactive content) for Web pages.

Sun formally announced Java at a conference in May 1995. Ordinarily, an event like
thiswould not generate much publicity. However, Java grabbed the immediate attention of
the business community because of the new, widespread interest in the World Wide Web.
Developers now use Java to create Web pages with dynamic content, to build large-scale
enterprise applications, to enhance the functionality of World Wide Web servers (the com-
puters that provide the content distributed to our Web browsers when we browse Web
sites), to provide applications for consumer devices (e.g., cell phones, pagers and PDAS)
and for many other purposes.

In 2000, Microsoft announced C# (pronounced “C-Sharp”) and its .NET (pronounced
“dot-net”) strategy. The .NET strategy incorporates the Internet with a new programming
model to create Web-based applications that users can access from various devices—
including desktop computers, laptop computers and wireless devices.

The C# programming language, developed at Microsoft by Anders Hejlsberg and Scott
Wiltamuth, was designed specifically for the .NET platform. It has roots in C, C++ and
Java, adapting the best features of each. Like Visual Basic .NET, C#! is object-oriented and
contains apowerful classlibrary of prebuilt components, enabling programmersto develop
applications quickly.

1.9 Other High-level Languages

Although hundreds of high-level languages have been developed, only afew have achieved
broad acceptance. This section overviews several languages that, like BASIC, are long-
standing and popular high-level languages. IBM Corporation developed Fortran (FORmula
TRANSlator) between 1954 and 1957 to create scientific and engineering applications that
require complex mathematical computations. Fortran is still widely used.

COBOL (COmmon Business Oriented L anguage) was developed in 1959 by a group
of computer manufacturers in conjunction with government and industrial computer users.
COBOL isused primarily for commercial applicationsthat require the precise and efficient
manipulation of large amounts of data. A considerable portion of today’ s business software
is still programmed in COBOL. Approximately one million programmers are actively
writing in COBOL.

Pascal was designed in the late 1960s by Professor Nicklaus Wirth and was intended
for academic use. We explore Pascal in the next section.

1.10 Structured Programming

During the 1960s, many large software-development efforts encountered severe difficul-
ties. Development typically ran behind schedule, costs greatly exceeded budgets and the
finished products were unreliable. People began to realize that software development was
afar more complex activity than they had imagined. Research activity, intended to address
these issues, resulted in the evolution of structured programming—a disciplined approach
to the creation of programs that are clear, demonstrably correct and easy to modify.

1. The reader interested in learning C# may want to consider our book, C# How to Program.

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 11

One of the more tangible results of this research was the development of the Pascal
programming language in 1971. Pascal, named after the seventeenth-century mathemati-
cian and philosopher Blaise Pascal, was designed for teaching structured programming in
academic environments and rapidly became the preferred introductory programming lan-
guage in most universities. Unfortunately, because the language lacked many features
needed to make it useful in commercial, industrial and government applications, it was not
widely accepted in these environments. By contrast, C, which also arose from research on
structured programming, did not have the limitations of Pascal, and programmers quickly
adopted it.

The Ada programming language was developed under the sponsorship of the United
States Department of Defense (DOD) during the 1970s and early 1980s. Hundreds of pro-
gramming languages were being used to produce DOD’ s massive command-and-control
software systems. DOD wanted a single language that would meet its needs. Pasca was
chosen as a base, but the final Ada language is quite different from Pascal. The language
was named after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Lovelaceis
generaly credited with writing the world’ s first computer program, in the early 1800s (for
the Analytical Engine mechanical computing device designed by Charles Babbage). One
important capability of Ada is multitasking, which allows programmers to specify that
many activities are to occur in parallel. As we will see in Chapter 14, Visua Basic .NET
offersasimilar capability, called multithreading.

1.11 Key Software Trend: Object Technology

One of the authors, HMD, remembers the great frustration felt in the 1960s by software-
development organizations, especially those developing large-scale projects. During the
summers of his undergraduate years, HMD had the privilege of working at aleading com-
puter vendor on the teams developing time-sharing, virtual-memory operating systems. It
was agreat experience for a college student, but, in the summer of 1967, reality setin. The
company “decommitted” from producing as a commercia product the particular system
that hundreds of people had been working on for severa years. It was difficult to get this
software right. Software is“complex stuff.”

As the benefits of structured programming (and the related disciplines of structured
systems analysisand design) were realized in the 1970s, improved software technology did
begin to appear. However, it was not until the technology of object-oriented programming
became widely used in the 1980s and 1990s that software developers finally felt they had
the necessary tools to improve the software-devel opment process dramatically.

Actually, object technology dates back to at least the mid-1960s, but no broad-based
programming language incorporated the technology until C++. Although not strictly an
object-oriented language, C++ absorbed the capabilities of C and incorporated Simuld's
ability to create and manipulate objects. C++ was never intended for widespread use
beyond the research laboratories at AT& T, but grass-roots support rapidly developed for
the hybrid language.

What are objects, and why are they special ? Object technology is a packaging scheme
for creating meaningful software units. These units are large and focused on particular
applications areas. There are date objects, time objects, paycheck objects, invoice objects,
audio objects, video objects, file objects, record objects and so on. In fact, amost any noun

12 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

can be reasonably represented as asoftware object. Objects have properties(i.e., attributes,
such as color, size and weight) and perform actions (i.e., behaviors, such as moving,
sleeping or drawing). Classes are groups of related objects. For example, all cars belong to
the “car” class, even though individual cars vary in make, model, color and options pack-
ages. A class specifiesthe general format of its objects, and the properties and actionsavail -
able to an object depend on its class.

Weliveinaworld of objects. Just look around you—there are cars, planes, people, ani-
mals, buildings, traffic lights, elevators and so on. Before object-oriented languages
appeared, procedural programming languages (such as Fortran, Pascal, BASIC and C)
focused on actions (verbs) rather than things or objects (nouns). We live in a world of
objects, but earlier programming languages forced individuals to program primarily with
verbs. This paradigm shift made program writing abit awkward. However, with the advent
of popular object-oriented languages, such as C++, C# and Visua Basic .NET, program-
mers can program in an object-oriented manner that reflectsthe way in which they perceive
the world. This process, which seems more natural than procedural programming, has
resulted in significant productivity gains.

One of the key problems with procedural programming is that the program units cre-
ated do not mirror real-world entities effectively and therefore are not particularly reusable.
Programmers often write and rewrite similar software for various projects. Thiswastes pre-
cious time and money as people repeatedly “reinvent the wheel.” With object technology,
properly designed software entities (called classes) can be reused on future projects. Using
libraries of reusable componentry, such as MFC (Microsoft Foundation Classes), can
greatly reduce the amount of effort required to implement certain kinds of systems (ascom-
pared to the effort that would be required to reinvent these capabilitiesin new projects).

Some organizations report that software reusability is not, in fact, the key benefit that
they garner from object-oriented programming. Rather, they indicate that object-oriented
programming tends to produce software that is more understandable because it is better
organized and has fewer maintenance requirements. As much as 80 percent of software
costs are not associated with the original efforts to develop the software, but instead are
related to the continued evolution and maintenance of that software throughout itslifetime.
Object orientation alows programmers to abstract the details of software and focus on the
“big picture.” Rather than worrying about minutiae, the programmer can focus on the
behaviors and interactions of objects. A roadmap that showed every tree, house and
driveway would be difficult, if not impossible, to read—when such detail s are removed and
only the essential information (roads) remains, the map becomes easier to understand. In
the same way, a program that is divided into objects is easy to understand, modify and
update because it hides much of the detail. It is clear that object-oriented programming will
be the key programming methodology for at |east the next decade.

Use a building-block approach to creating programs. By reusing existing pieces, program-
mers avoid reinventing the wheel. Thisis called software reuse, and it is central to object-
oriented programming.

[Note: We will include many of these Software Engineering Observations throughout the
text to explain concepts that affect and improve the overall architecture and quality of a
software system and, particularly, of large software systems. We will also highlight Good
Programming Practices (practices that can help you write programs that are clearer, more

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 13

understandable, more maintainable and easier to test and debug), Common Programming
Errors (problemsto watch for to ensure that you do not make these same errorsin your pro-
grams), Performance Tips (techniques that will help you write programs that run faster and
use less memory), Portability Tips (techniques that will help you write programs that can
run, with little or no modification, on avariety of computers), Testing and Debugging Tips
(techniques that will help you remove bugs from your programs and, more importantly,
write bug-free programs in the first place) and Look-and-Feel Observations (techniques
that will help you design the “look and feel” of your graphical user interfaces for appear-
ance and ease of use). Many of these techniques and practices are only guidelines; you will,
no doubt, develop your own preferred programming style.]

The advantage of creating your own code is that you will know exactly how it works.
The code will be yours to examine, modify and improve. The disadvantage is the time and
effort that goes into designing, developing and testing new code.

1> Reusing proven code componentsinstead of writing your own versions can improve program
2 performance, because these components normally are written to perform efficiently.

Extensive classlibrariesof reusabl e softwar e components areavailable over the Internet and
the World Wide Web; many are offered free of charge.

1.12 Hardware Trends

Every year, people generally expect to pay at least a little more for most products and
services. The opposite has been the case in the computer and communications fields, es-
pecially with regard to the costs of hardware supporting these technol ogies. For many de-
cades, and continuing into the foreseeable future, hardware costs have fallen rapidly, if
not precipitously. Every year or two, the capacities of computers approximately double.?
Thisis especially true in relation to the amount of memory that computers have for pro-
grams, the amount of secondary storage (such as disk storage) they have to hold programs
and data over longer periods of time and their processor speeds—the speeds at which
computers execute their programs (i.e., do their work). The same growth has occurred in
the communicationsfield, in which costs have plummeted as enormous demand for com-
munications bandwidth has attracted tremendous competition. We know of no other
fields in which technology moves so quickly and costs fall so rapidly. Such phenomenal
improvement in the computing and communications fieldsistruly fostering the so-called
“Information Revolution.”

When computer use exploded in the 1960s and 1970s, many people discussed the dra
matic improvements in human productivity that computing and communications would
cause. However, these improvements did not materialize. Organizations were spending
vast sums of capital on computers and employing them effectively, but without realizing
the expected productivity gains. The invention of microprocessor chip technology and its
wide deployment in the late 1970s and 1980s laid the groundwork for the productivity
improvements that individuals and businesses have achieved in recent years.

2. Thisofteniscaled Moore's Law.

14 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

1.13 History of the Internet and World Wide Web

In the late 1960s, one of the authors (HMD) was a graduate student at MIT. His research at
MIT’ sProject Mac (now the Laboratory for Computer Science—the home of the World Wide
Web Consortium) was funded by ARPA—the Advanced Research Projects Agency of the
Department of Defense. ARPA sponsored a conference at which several dozen ARPA-fund-
ed graduate students were brought together at the University of Illinoisat Urbana-Champaign
to meet and share ideas. During this conference, ARPA rolled out the blueprints for network-
ing the main computer systems of approximately a dozen ARPA-funded universities and re-
search institutions. The computers were to be connected with communications linesoperating
at athen-stunning 56 Kbps (1 Kbps is equal to 1,024 bits per second), at a time when most
peopl e (of the few who had networking access) were connecting over telephone linesto com-
puters at arate of 110 bits per second. HMD vividly recallsthe excitement at that conference.
Researchers at Harvard talked about communicating with the Univac 1108 “ supercompuiter,”
which was located at the University of Utah, to handle calculations related to their computer
graphics research. Many other intriguing possibilities were discussed. Academic research
was about to take a giant leap forward. Shortly after this conference, ARPA proceeded toim-
plement what quickly became called the ARPANet, the grandparent of today’ s Inter net.

Things worked out differently from the original plan. Although the ARPAnet did
enable researchers to network their computers, its chief benefit proved to be the capability
for quick and easy communication viawhat came to be known as electronic mail (e-mail).
Thisistrue even on today’ s Internet, with e-mail, instant messaging and file transfer facil-
itating communi cations among hundreds of millions of people worldwide.

The network was designed to operate without centralized control. This meant that, if a
portion of the network should fail, the remaining working portions would still be able to
route data packets from senders to receivers over aternative paths.

The protocaol (i.e., set of rules) for communicating over the ARPAnet became known
as the Transmission Control Protocol (TCP). TCP ensured that messages were properly
routed from sender to receiver and that those messages arrived intact.

In paralel with the early evolution of the Internet, organizations worldwide were
implementing their own networks for both intra-organization (i.e., within the organization)
and inter-organization (i.e., between organizations) communication. A huge variety of net-
working hardware and software appeared. One challenge was to enabl e these diverse prod-
ucts to communicate with each other. ARPA accomplished this by developing the I nternet
Protocol (IP), which created a true “network of networks,” the current architecture of the
Internet. The combined set of protocolsis now commonly called TCP/IP.

Initially, use of the Internet was limited to universities and research institutions; later,
the military adopted the technology. Eventually, the government decided to allow accessto
the Internet for commercial purposes. When this decision was made, there was resentment
among the research and military communities—it was felt that response times would
become poor as “the Net” became saturated with so many users.

Infact, the opposite has occurred. Businessesrapidly realized that, by making effective
use of the Internet, they could refine their operations and offer new and better servicesto
their clients. Companies started spending vast amounts of money to develop and enhance
their Internet presence. This generated fierce competition among communications carriers
and hardware and software suppliers to meet the increased infrastructure demand. The
result is that bandwidth (i.e., the information-carrying capacity of communications lines)

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 15

on the Internet has increased tremendously, while hardware costs have plummeted. It is
widely believed that the Internet played a significant role in the economic growth that the
United States and many other industrialized nations experienced over the last decade.

The World Wide Web allows computer usersto locate and view multimedia-based doc-
uments (i.e., documents with text, graphics, animations, audios and/or videos) on almost
any subject. Even though the Internet was developed more than three decades ago, the
introduction of the World Wide Web (WWW) was arelatively recent event. In 1989, Tim
Berners-Lee of CERN (the European Organization for Nuclear Research) began to develop
atechnology for sharing information via hyperlinked text documents. Basing the new lan-
guage on the well-established Sandard Generalized Markup Language (SGML)—a stan-
dard for business data interchange—Berners-Lee caled his invention the HyperText
Markup Language (HTML). He also wrote communication protocols to form the backbone
of his new hypertext information system, which he referred to as the World Wide Web.

The Internet and the World Wide Web will surely be listed among the most important
and profound creations of humankind. In the past, most computer applications ran on “ stand-
aone’ computers (computers that were not connected to one another). Today’s applications
can bewritten to communicate among the world’'s hundreds of millions of computers (thisis,
aswe will see, the thrust of Microsoft’'s .NET strategy). The Internet and World Wide Web
merge computing and communi cations technologies, expediting and simplifying our work.
They make information instantly and conveniently accessible to large numbers of people.
They enableindividuals and small businesses to achieve worldwide exposure. They are pro-
foundly changing the way we do business and conduct our personal lives.

1.14 World Wide Web Consortium (W3C)

In October 1994, Tim Berners-Lee founded an organization, called the World Wide Web
Consortium (W3C), that is devoted to developing nonproprietary, interoperable technolo-
giesfor the World Wide Web. One of the W3C'’ s primary goalsisto make the Web univer-
sally accessible—regardless of disabilities, language or culture.

The W3C (www.w3 .org) isalso a standardization organization and is comprised of
three hosts—the Massachusetts Institute of Technology (MIT), France's INRIA (Institut
National de Recherche en Informatique et Automatique) and Keio University of Japan—
and over 400 members, including Deitel & Associates, Inc. Members provide the primary
financing for the W3C and help provide the strategic direction of the Consortium.

Web technol ogies standardized by the W3C are called Recommendations. Current W3C
Recommendationsinclude Extensible Hyper Text Mar kup Language (XHTML ™), Cascading
Syle Sheets (CSS™) and the Extensible Markup Language (XML). Recommendations are not
actua software products, but documents that specify the role, syntax and rules of a tech-
nology. Before becoming a W3C Recommendation, a document passes through three major
phases: Working Draft—which, as its name implies, specifies an evolving draft; Candidate
Recommendation—a stable version of the document that industry can begin to implement;
and Proposed Recommendation—a Candidate Recommendation that is considered mature
(i.e., has been implemented and tested over aperiod of time) and is ready to be considered for
W3C Recommendation status. For detailed information about the W3C Recommendation
track, see“6.2 The W3C Recommendation track” at

www.w3 .org/Consortium/Process/Process-19991111/
process.html#RecsCR

16 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

1.15 Extensible Markup Language (XML)

Asthe popularity of the Web exploded, HTML’ s limitations became apparent. HTML’s
lack of extensibility (the ability to change or add features) frustrated developers, and its
ambiguous definition allowed erroneous HTML to proliferate. In response to these prob-
lems, the W3C added limited extensibility to HTML and created a new technology for
formatting HTML documents, called Cascading Style Sheets (CSS). These were, howev-
er, only temporary solutions—the need for a standardized, fully extensible and structur-
aly strict language was apparent. As a result, XML was developed by the W3C. XML
combinesthe power and extensibility of its parent language, Standard Generalized Mark-
up Language (SGML), with the simplicity that the Web community demands. At the
same time, the W3C began developing XML-based standards for style sheets and ad-
vanced hyperlinking. Extensible Stylesheet Language (XS.) incorporates elements of
both CSS and Document Style and Semantics Specification Language (DSSSL), whichis
used to format SGML documents. Similarly, the Extensible Linking Language (XLink)
combines ideas from HyTime and the Text Encoding Initiative (TEI), to provide extensi-
ble linking of resources.

Data independence, the separation of content from its presentation, is the essential
characteristic of XML. Because XML documents describes data, any application con-
ceivably can process XML documents. Recognizing this, software developers are inte-
grating XML into their applications to improve Web functionality and interoperability.
XML’ sflexibility and power make it perfect for the middle tier of client/server systems,
which must interact with awide variety of clients. Much of the processing that was once
limited to server computers now can be performed by client computers, because XML’s
semantic and structural information enables it to be manipulated by any application that
can process text.

This reduces server loads and network traffic, resulting in a faster, more efficient
Web. XML is not limited to Web applications. Increasingly, XML is being employed in
databases—the structure of an XML document enables it to be integrated easily with
database applications. As applications become more Web enabled, it seems likely that
XML will become the universal technology for data representation. All applications
employing XML would be able to communicate, provided that they could understand
each others XML markup, or vocabulary.

Simple Object Access Protocol (SOAP) is a technology for the distribution of
objects (marked up as XML) over the Internet. Developed primarily by Microsoft and
DevelopMentor, SOAP provides a framework for expressing application semantics,
encoding that data and packaging it in modules. SOAP has three parts: The envelope,
which describes the content and intended recipient of a SOAP message; the SOAP
encoding rules, which are XML-based; and the SOAP Remote Procedure Call (RPC)
representation for commanding other computersto perform atask. Microsoft .NET (dis-
cussed in the next two sections) uses XML and SOAP to mark up and transfer data over
the Internet. XML and SOAP are at the core of .NET—they allow software components
to interoperate (i.e., communicate easily with one another). SOAP is supported by many
platforms, because of itsfoundationsin XML and HTTP (Hyper Text Transfer Protocol—
the key communication protocol of the World Wide Web). We discuss XML in Chapter
18, Extensible Markup Language (XML) and SOAP in Chapter 21, ASP .NET and Web
Services.

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 17

1.16 Introduction to Microsoft .NET

In June 2000, Microsoft announced its .NET initiative, a broad new vision for embracing
the Internet and the Web in the devel opment, engineering and use of software. One key as-
pect of the .NET strategy is itsindependence from a specific language or platform. Rather
than forcing developers to use a single programming language, developers can create a
.NET application in any .NET-compatible language. Programmers can contribute to the
same software project, writing codein the NET languages (such asVisua Basic .NET, Vi-
sual C++ .NET, C# and others) in which they are most competent. Part of the initiative in-
cludes Microsoft's Active Server Pages (ASP) .NET technology, which alows
programmers to create applications for the Web.

The .NET architecture can exist on multiple platforms, further extending the porta
bility of .NET programs. In addition, the .NET strategy involves a new program-develop-
ment process that could change the way programs are written and executed, leading to
increased productivity.

A key component of the .NET architecture is Web services, which are applications that
can be used over the Internet. Clients and other applications can use these Web services as
reusabl e building blocks. One example of aWeb serviceis Dollar Rent a Car’ s reservation
system.3 An airline partner wanted to enable customers to make rental-car reservations
from the airline’s Web site. To do so, the airline needed to access Dollar’s reservation
system. Inresponse, Dollar created aWeb servicethat allowed the airlineto access Dollar’ s
database and make reservations. Web services enable the two companies to communicate
over the Web, even though the airline uses UNIX systems and Dollar uses Microsoft Win-
dows. Dollar could have created a one-time solution for that particular airline, but the com-
pany would not have been able to reuse such a customized system. By creating a Web
service, Dollar can alow other airlines or hotels to use its reservation system without cre-
ating a custom program for each relationship.

The .NET strategy extends the concept of software reuse to the Internet, allowing pro-
grammersto concentrate on their speciatieswithout having to implement every component
of every application. Instead, companies can buy Web services and devote their time and
energy to developing their products. The .NET strategy further extends the concept of soft-
ware reuse to the Internet by alowing programmers to concentrate on their specialties
without having to implement every component. Visual programming (discussed in Chapter
2) has become popular, because it enables programmers to create applications easily, using
such prepackaged components as buttons, textboxes and scrollbars. Similarly, program-
mers can create applications using Web services for databases, security, authentication,
data storage and language translation without having to know the details of those compo-
nents. The Web services programming model is discussed in Chapter 21.

The .NET strategy incorporates the idea of software reuse. When companies link their
productsin thisway, anew user experience emerges. For example, asingle application could
manage hill payments, tax refunds, loans and investments, using Web services from various
companies. An online merchant could buy Web servicesfor online credit-card payments, user
authentication, network security and inventory databases to create an e-commerce Web site.

3. Microsoft Corporation, “Dollar Rent A Car E-Commerce Case Study on Microsoft Business,” 1
July 2001 <www.microsoft.com/BUSINESS/casestudies/b2c/dollarrentac-
ar.asp>.

18 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

The keysto this interaction are XML and SOAP, which enable Web services to com-
municate. XML gives meaning to data, and SOAP isthe protocol that allows Web services
to communicate easily with one another. XML and SOAP act as the “glue’ that combines
various Web services to form applications.

Universal data access is another essential concept in the .NET strategy. If two copies
of afile exist (such as on a personal computer and a company computer), the less recent
version must constantly be updated—thisis called file synchronization. If the separate ver-
sions of the file are different, they are unsynchronized, asituation that could lead to serious
errors. Under .NET, data could reside in one central location rather than on separate sys-
tems. Any Internet-connected device could access the data (under tight control, of course),
which would then be formatted appropriately for use or display on the accessing device.
Thus, the same document could be seen and edited on a desktop PC, a PDA, a cell phone
or other device. Users would not need to synchronize the information, because it would be
fully up-to-date in acentral area.

Microsoft's HailStorm Web services facilitate such data organization.4 HailStorm
alows users to store data so that it is accessible from any Hail Storm-compatible device
(suchasaPDA, desktop computer or cell phone). Hail Storm offers a suite of services, such
as an address book, e-mail, document storage, calendars and a digital wallet. Third-party
Web servicesalso can interact with Hail Storm—users can be notified when they win online
auctions or have their calendars updated if their planes arrive late. Information can be
accessed from anywhere and cannot become unsynchronized. Privacy concerns, however,
increase, because all of auser’s dataresides in one location. Microsoft has addressed this
issue by giving users control over their data. Users must authorize access to their data and
specify the duration of that access.

Microsoft plansto create Internet-based client applications. For example, software could
be distributed over the Internet on a subscription basis, enabling immediate corrections,
updates and communication with other applications over the Internet. HailStorm provides
basic services at no charge and users can pay via subscription for more advanced features.

The .NET strategy is an immense undertaking. We discuss various aspects of .NET
throughout this book. Additional information is available on Microsoft's Web site
(www.microsoft.com/net).

1.17 .NET Framework and the Common Language Runtime

The Microsoft .NET Framework is at the heart of the .NET strategy. This framework man-
ages and executes applications and Web services, contains a class library (called the
Framework classlibrary or FCL), enforces security and provides many other programming
capabilities. The details of the .NET Framework are found in the Common Language Spec-
ification (CLS), which contains information about the storage of data types, objects and so
on. The CLS has been submitted for standardization to ECMA (the European Computer
Manufacturers Association), making it easier to create the .NET Framework for other plat-
forms. Thisislike publishing the blueprints of the framework—anyone can build it, follow-
ing the specifications. Currently, the .NET Framework exists only for the Windows
platform, although aversion is under development for the FreeBSD operating system.® The

4. Microsoft Corporation, “Building User-Centric Experiences: An Introduction to Microsoft Hail-
Storm,” 30 July 2001 <http://www.microsoft.com/net/hailstorm.asp>.

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 19

FreeBSD project provides afreely available and open-source UNIX-like operating system
that is based on that UC Berkeley’ s Berkeley System Distribution (BSD).

The Common Language Runtime (CLR) is another central part of the .NET Frame-
work—it executes Visual Basic .NET programs. Programs are compiled into machine-spe-
cific instructions in two steps. First, the program is compiled into Microsoft Intermediate
Language (ML), which definesinstructions for the CLR. Code converted into MSIL from
other languages and sources can be woven together by the CLR. Then, another compiler in
the CLR translatesthe M SIL into machine code (for a particular platform), creating asingle
application.

Why bother having the extra step of converting from Visual Basic .NET to MSIL,
instead of compiling directly into machine language? The key reasons are portability
between operating systems, interoperability between languages and execution-manage-
ment features such as memory management and security.

If the NET Framework exists (and is installed) for a platform, that platform can run
any .NET program. The ability of a program to run (without modification) across multiple
platforms is known as platform independence. Code written once can be used on another
machine without modification, saving both time and money. In addition, software can
target a wider audience—previously, companies had to decide whether converting their
programsto different platforms (sometimes called porting) wasworth the cost. With .NET,
porting is no longer an issue.

The .NET Framework aso provides a high level of language interoperability. Pro-
gramswritten in different languages are al compiled into M SIL—the different parts can be
combined to create asingle, unified program. MSIL allowsthe .NET Framework to belan-
guage independent, because .NET programs are not tied to a particular programming lan-
guage. Any language that can becompiled into MSIL iscalled a .NET-compliant language.
Figure 1.1 lists many of the current languages that support the .NET pl atform.®

Programming Languages

APL Oberon

C# Oz

COBOL Pascal
Component Pascal Perl
Curriculum Python

Eiffel RPG

Fortran Scheme
Haskell Smalltalk

JH Standard ML

Fig. 1.1 .NET Languages (part 1 of 2).

5. Microsoft Corporation, “The Microsoft Shared Source C# and CL| Specifications,” 30 July 2001
<http://www.microsoft.com/net/sharedsourcewp.asp>.
6. Tableinformation from Microsoft Web site, www.microsoft.com.

20 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

Programming Languages (Cont.)

JScript Visual Basic .NET
Mercury Visual C++ .NET

Fig. 1.1 .NET Languages (part 2 of 2).

Language interoperability offers many benefits to software companies. Visual Basic
.NET, C# and Visual C++ .NET developers can work side-by-side on the same project
without having to learn another programming language—all their code compilesinto MSIL
and links together to form one program. In addition, the .NET Framework can package old
and new components to work together. This allows companies to reuse the code that they
have spent years developing and integrate it with the new .NET code that they write. Inte-
gration is crucial, because companies cannot migrate easily to .NET unless they can stay
productive, using their existing developers and software.

Another benefit of the NET Framework isthe CL R’ s execution-management features.
The CLR manages memory, security and other features, relieving the programmer of these
responsibilities. With languages like C++, programmers must take memory management
into their own hands. This leads to problems if programmers request memory and never
return it—programs could consume all available memory, which would prevent applica
tionsfrom running. By managing the program’ s memory, the .NET Framework allows pro-
grammers to concentrate on program logic.

The .NET Framework aso provides programmers with ahuge library of classes. This
library, called the Framework Class Library (FCL), can be used by any .NET language.
The FCL containsavariety of reusable components, saving programmersthetrouble of cre-
ating new components. This book explains how to develop .NET software with Visual
Basic .NET. Steve Ballmer, Microsoft’s CEO, stated in May 2001 that Microsoft was “ bet-
ting the company” on .NET. Such a dramatic commitment surely indicates a bright future
for Visual Basic .NET and its community of developers.

1.18 Tour of the Book

In this section, wetour the chapters of Visual Basic .NET How to Program, Second Edition.
In addition to the topics presented in each chapter, several of the chapters contain an Inter-
net and World Wide Web Resources section that lists additiona sources from which read-
ers can enhance their knowledge of Visual Basic .NET programming.

Chapter 1—Introduction to Computers, I nternet and Visual Basic .NET

The first chapter familiarizes the reader with what computers are, how they work and how
they are programmed. We explain the evolution of programming languages, from their or-
igins in machine languages to the development of high-level, object-oriented languages.
We overview the history of the Internet, World Wide Web and various technologies (such
asHTTP, SOAPand XML) that have led to advancesin how computers are used. We then
discuss the development of the Visual Basic .NET programming language and the Mi-
crosoft .NET initiative, including Web services. We explore the impact of .NET on soft-
ware development and conclude by touring the remainder of the book.

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 21

Chapter 2—I ntroduction to the Visual Studio® .NET IDE

Chapter 2 introduces Microsoft Visual Studio .NET, an integrated devel opment environment
(IDE) for creating Visual Basic .NET programs. Visual Studio .NET enablesvisual program-
ming, in which controls (such as buttons or text boxes) are “dragged” and “dropped” into
place, rather than added by typing code. Visual programming hasled to greatly increased pro-
ductivity of software devel opersbecauseit eliminates many of the tedioustasksthat program-
mers face. For example, object properties (information such as height and color) can be
modified through Visual Studio .NET windows, alowing changes to be made quickly and
causing the results to appear immediately on the screen. Rather than having to guess how the
GUI will appear whilewriting aprogram, programmersview the GUI exactly asit will appear
when the finished program runs. Visua Studio .NET a so contains advanced toolsfor debug-
ging, documenting and writing code. The chapter presentsfeaturesof Visual Studio .NET, in-
cluding its key windows, toolbox and help features and overviews the process of running
programs. We provide an example of the capabilities of Visual Studio .NET by usingitto cre-
ate a simple Windows application without typing asingle line of code.

Chapter 3—I ntroduction to Visual Basic Programming

This chapter introduces readersto our Li1vVE-CODE™ approach. Wetry to present every con-
cept in the context of acomplete working Visual Basic .NET program and follow each pro-
gram with one or more screenshots depicting the program’ s execution. In our first example,
we print aline of text and carefully discuss each line of code. We then discuss fundamental
tasks, such as how a program inputs data from its users and how to write arithmetic expres-
sions. The chapter’ s last example demonstrates how to print a variety of character strings
in awindow called a message box.

Chapter 4—Control Structures. Part 1

This chapter formally introduces the principles of structured programming, atechnique that
will help the reader develop clear, understandable, maintainable programs throughout the
text. Thefirst part of thischapter presents program-devel opment and problem-solving tech-
nigques. The chapter demonstrates how to transform a written specification into a program
by using such techniques as pseudocode and top-down, stepwise refinement. We then
progress through the entire process, from developing a problem statement into a working
Visual Basic .NET program. The notion of algorithmsisalso discussed. We build on infor-
mation presented in the previous chapter to create interactive programs (i.e., programs that
receiveinputsfrom, and display outputsto, the program users). The chapter then introduces
the use of control structures that affect the sequence in which statements are executed.
Proper use of control structures helps produce programs that are easily understood, de-
bugged and maintained. We discuss the three forms of program control—sequence, selec-
tion and repetition—focusing on the I £/Then and While control structures. Flowcharts
(i.e., graphical representations of algorithms) appear throughout the chapter, reinforcing
and augmenting the explanations.

Chapter 5—Control Structures: Part 2

Chapter 5 introduces additional control structures and the logical operators. It uses flow-
charts to illustrate the flow of control through each control structure, including the For/
Next, Do/Loop While and Select Case structures. We explain the Exit keyword
and thelogical operators. Examplesinclude cal culating compound interest and printing the

22 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

distribution of grades on an exam (with some simple error checking). The chapter con-
cludes with a structured programming summary, including each of Visual Basic .NET's
control structures. The techniques discussed in Chapters 4 and 5 constitute a large part of
what has been taught traditionally under the topic of structured programming.

Chapter 6—Procedures

A procedure alows the programmer to create a block of code that can be called from var-
ious pointsin aprogram. A program can be formed by aggregating groups of related pro-
cedures into units called classes and modules. Programs are divided into smple
components that interact in straightforward ways. We discuss how to create our own pro-
ceduresthat can takeinputs, perform calculations and return outputs. We examinethe .NET
library’s Math class, which contains methods (i.e., procedures in a class) for performing
complex caculations (e.g., trigonometric and logarithmic calculations). Recursive proce-
dures (procedures that call themselves) and procedure overloading, which allows multiple
proceduresto havethe same name, areintroduced. We demonstrate overloading by creating
two Square proceduresthat take an integer (i.e., whole number) and afloating-point num-
ber (i.e., anumber with a decimal point), respectively. To conclude the chapter, we create
agraphical simulation of the dice game“craps,” using the random-number generation tech-
niques presented in the chapter.

Chapter 7—Arrays

Chapter 7 discusses our first data structures, arrays. (Chapter 24 discusses the topic of data
structures in depth.) Data structures are crucia to storing, sorting, searching and manipu-
lating large amounts of information. Arrays are groups of related data items that allow the
programmer to access any element directly. Rather than creating 100 separate variablesthat
areall related in someway, the programmer instead can create an array of 100 elementsand
access these elements by their location in the array. We discuss how to declare and allocate
arrays, and we build on the techniques of the previous chapter by passing arrays to proce-
dures. In addition, we discuss how to pass a variable number of arguments to procedures.
Chapters 4 and 5 provide essential background for the discussion of arrays, because repe-
tition structures are used to iterate through elementsin the array. The combination of these
concepts helps the reader create highly-structured and well-organized programs. We then
demonstrate how to sort and search arrays. We discuss multidimensional and jagged arrays,
which can be used to store tables of data.

Chapter 8—Object-Based Programming

Chapter 8 serves as our introduction into the powerful concepts of objects and classes
(classes are programmer-defined types). As mentioned in Chapter 1, object technology has
led to considerable improvements in software development, allowing programmersto cre-
ate reusable components. In addition, objects allow programsto be organized in natural and
intuitive ways. In this chapter, we present the fundamental s of object-based programming,
such as encapsulation, data abstraction and abstract data types (ADTS). These techniques
hide the details of components so that the programmer can concentrate on the “ big picture.”
To demonstrate these concepts, we create atime class, which displays the timein standard
and military formats. Other topics examined include abstraction, composition, reusability
and inheritance. We overview how to create reusable software components with assem-
blies, modules and Dynamic Link Library (DLL) files. We show how to create classeslike

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 23

those in the Framework Class Library. Other Visual Basic .NET features discussed include
propertiesand the Readonly and Const keywords. This chapter lays the groundwork for
the next two chapters, which introduce object-oriented programming.

Chapter 9—Object-Oriented Programming: Inheritance

In this chapter, we discuss inheritance—a form of software reusability in which classes
(called derived classes) are created by absorbing attributes and methods of existing classes
(caled base classes). The inherited class (i.e., the derived class) can contain additional at-
tributes and methods. We show how finding the commonality between classes of objects
can reduce the amount of work it takesto build large software systems. These proven tech-
niques help programmers create and maintain software systems. A detailed case study dem-
onstrates software reuse and good programming techniques by finding the commonality
among athree-level inheritance hierarchy: the point, circle and cylinder classes. We discuss
the software engineering benefits of object-oriented programming. We present important
object-oriented programming fundamentals, such as creating and extending customized
classes and separating a program into discrete components.

Chapter 10—Object-Oriented Programming: Polymor phism

Chapter 10 continues our formal introduction of object-oriented programming. We discuss
polymorphic programming and its advantages. Polymor phism permits classes to be treated
in ageneral manner, allowing the same method call to act differently depending on context
(e.g., “move’ messages sent to abird and afish result in dramatically different types of ac-
tion—abird fliesand afish swims). In addition to treating existing classesin ageneral man-
ner, polymorphism alows new classes to be added to a system easily. We identify
situations in which polymorphism is useful. A payroll system case study demonstrates
polymorphism—the system determines the wages for each employee differently to suit the
type of employee (bosses who are paid fixed salaries, hourly workers paid by the hour,
commission workerswho receive abase salary plus commission and piece workerswho are
paid per item produced). These programming techniques and those of the previous chapter
allow the programmer to create extensible and reusable software components.

Chapter 11—Exception Handling

Exception handling is one of the most important topics in Visual Basic .NET from the
standpoint of building mission-critical and business-critical applications. People can enter
incorrect data, data can be corrupted and clients can try to access records that do not exist
or are restricted. A simple division-by-zero error may cause a calculator program to crash,
but what if such an error occursin the navigation system of aflying airplane? Programmers
must deal with these situations—in some cases, the results of program failure could be di-
sastrous. Programmers need to know how to recognize the errors (exceptions) that could
occur in software components and handle those exceptions effectively, allowing programs
to deal with problemsand continue executing instead of “crashing.” This chapter overviews
the proper use of exception handling and various exception-handling techniques. We cover
the details of Visual Basic .NET exception handling, the termination model of exception
handling, throwing and catching exceptions, and the library class Exception. Program-
mers who construct software systems from reusable components built by other program-
mers must deal with the exceptions that those components may throw.

24 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

Chapter 12—Graphical User I nterface Concepts: Part 1

Chapter 12 explains how to add graphical user interfaces (GUIs) to programs, providing a
professional look and feel. By using the techniques of rapid application development
(RAD), we can create a GUI from reusable components, rather than explicitly program-
ming every detail. The Visual Studio .NET IDE makes developing GUIs even easier by al-
lowing the programmer to position components in a window through so-called visual
programming. We discuss how to construct user interfaces with Windows Forms GUI com-
ponents such as|abels, buttons, textboxes, scroll bars and picture boxes. We also introduce
events, which are messages sent by a program to signal to an object or a set of objects that
an action has occurred. Events are most commonly used to signal user interactions with
GUI components, but also can signal internal actionsin aprogram. We overview event han-
dling and discuss how to handle events specific to controls, the keyboard and the mouse.
Tips are included throughout the chapter to help the programmer create visually appealing,
well-organized and consistent GUIs.

Chapter 13—Graphical User I nterface Concepts: Part 2

Chapter 13 introduces more complex GUI components, including menus, link labels, pan-
s, list boxes, combo boxes and tab controls. In a challenging exercise, readers create an
application that displays a drive’s directory structure in a tree—similar to how Windows
Explorer does this. The Multiple Document Interface (MDI) is presented, which allows
multiple documents (i.e., forms) to be open simultaneously in a single GUI. We conclude
with a discussion of how to create custom controls by combining existing controls. The
techniques presented in this chapter allow readers to create sophisticated and well-orga
nized GUIs, adding style and usability to their applications.

Chapter 14—Multithreading

We have come to expect much from our applications. We want to download files from the
Internet, listen to music, print documents and browse the Web—all at the sametime! To do
this, we need atechnique called multithreading, which allows applications to perform mul-
tipleactivities concurrently. Visua Basic .NET includes built-in capabilities to enable mul-
tithreaded applications, while shielding programmers from complex details. Visual Basic
.NET is better equipped to deal with more sophisticated multimedia, network-based and
multiprocessor-based applications than other languages that do not have multithreading
features. This chapter overviews the built-in threading classes of Visual Basic .NET and
covers threads, thread life-cycles, time-slicing, scheduling and priorities. We analyze the
producer-consumer relationship, thread synchronization and circular buffers. This chapter
lays the foundation for creating the impressive multithreaded programs that clients de-
mand.

Chapter 15—Strings, Characters and Regular Expressions

In this chapter, we discuss the processing of words, sentences, characters and groups of
characters. In Visua Basic .NET, Strings (groups of characters) are objects. Thisis yet
another benefit of Visual Basic .NET's emphasis on object-oriented programming.
String objects contain methods that can copy, create hash codes, search, extract sub-
Strings and concatenate Strings with one another. As an interesting example of
Strings, we create a card shuffling-and-dealing simulation. We discuss regular expres-
sions, a powerful tool for searching and manipulating text.

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 25

Chapter 16—Graphics and Multimedia

In this chapter, we discuss GDI+ (an extension of the Graphics Device Interface—GDI),
the Windows service that provides the graphical features used by .NET. The extensive
graphical capabilities of GDI+ can make programs more visual and fun to create and use.
We discuss Visual Basic .NET’s treatment of graphics objects and color control, and we
discuss how to draw arcs, polygons and other shapes. We use various pens and brushes to
create color effects and include an example demonstrating gradient fills and textures. This
chapter introduces techniques for turning text-only applications into exciting, aesthetically
pleasing programs that even novice programmers can write with ease. The second half of
the chapter focuses on audio, video and speech technology. We discuss adding sound, video
and animated characters to programs (primarily using existing audio and video clips). You
will see how easy it is to incorporate multimediainto Visual Basic .NET applications. This
chapter introduces an exciting technology called Microsoft Agent for adding interactive ani-
mated charactersto a program. Each character allows users to interact with the application,
using natural human communication techniques, such as speech. The agent characters accept
mouse and keyboard interaction, speak and hear (i.e., they support speech synthesis and
speech recognition). With these capabilities, your applications can speak to users and can
even respond to their voice commands!

Chapter 17—Files and Streams

Imagine a program that could not save data to afile. Once the program is closed, &l the
work performed in the program is lost forever. For this reason, this chapter is one of the
most important for programmers who will be developing commercial applications. We ex-
plain how to input and output streams of data from and to files, respectively. We present
how programs read and write data from and to secondary storage devices (such as disks).
A detailed example demonstrates these concepts by allowing the user to read and write
bank account information to and from files. Weintroduce those classes and methodsin Vi-
sual Basic .NET that help perform file input and output conveniently—they demonstrate
the power of object-oriented programming and reusable classes. We discuss benefits of se-
quential files, random-accessfiles and buffering. This chapter is crucid for developing Vi-
sual Basic .NET file-processing applications and networking applications, which aso use
the techniquesin this chapter to send and receive data.

Chapter 18—Extensible Markup Language (XML)’

The Extensible Markup Language (XML) derives from SGML (Standardized Generd
Markup Language), which became an industry standard in 1986. Although SGML is em-
ployed in publishing applications worldwide, it has not been incorporated into mainstream
computing and information technology curricula because of its sheer size and complexity.
XML isan effort to make SGML-like technol ogy available to amuch broader community. It
was created by the World Wide Web Consortium (W3C) for describing datain aportablefor-
mat, is one of most important technologiesin industry today and is being integrated into al-
most every field. XML differs in concept from markup languages such as the HyperText
Markup Language (HTML). HTML is amarkup language for describing how information is
rendered in a browser. XML is alanguage for creating markup languages for virtually any

7. Thereader interested in a deeper treatment of XML may want to consider our book, XML How to
Program.

26 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

type of information. Document authors use XML to create entirely new markup languages to
describe specific types of data, including mathematical formulas, chemical molecular struc-
tures, music and recipes. Markup languages created with XML include WML (Wireless
Markup Language), XHTML (Extensible HyperText Markup Language, for Web content),
MathML (for mathematics), VoiceXML™ (for speech), SMIL™ (Synchronized Multimedia
Integration Language, for multimedia presentations), CML (Chemical Markup Language, for
chemistry) and XBRL (Extensible Business Reporting Language, for financial data ex-
change). Companies and individuals constantly are finding new and exciting usesfor XML.
Inthischapter, we present examplesthat illustrate the basics of marking up datawith XML.
We demonstrate several XM L-derived markup languages, such as XML Schema (for check-
ing an XML document’s grammar), XSLT (Extensible Stylesheet Language Transforma-
tions, for transforming an XML document’s data into an XHTML document) and
Microsoft’s BizTalk™ (for marking up business transactions). (For readers who are unfa-
miliar with XHTML, we provide Appendices Jand K, which carefully introduce XHTML.)

Chapter 19—Database, SQL and ADO .NET

Access and storage of data are integral to creating powerful software applications. This
chapter discusses .NET support for database manipulation. Today's most popular database
systems are relational databases. In this chapter, we introduce the Structured Query Lan-
guage (SQL) for performing queries on relationa databases. We introduce ADO .NET—
an extension of Microsoft's ActiveX Data Objectsthat enables .NET applications to access
and manipulate databases. ADO .NET allows datato be“exported” as XML, which enables
applications that use ADO .NET to communicate with a variety of programs that under-
stand XML. The reader will learn how to create database connections, using tools provided
in Visua Studio .NET, and will learn how to use the classes in the System.Data
namespace.

Chapter 20—ASP .NET, Web Forms and Web Controls

Previous chapters demonstrated how to create applications that execute locally on the us-
er's computer. In this chapter and the next, we discuss how to create Web-based applica
tions using Active Server Pages (ASP) .NET. This is a crucial aspect of .NET and
Microsoft’ svision of how software should be deployed on the Internet. ASP .NET isanin-
tegral technology for creating dynamic Web content marked up as HTML. (For readers
who areunfamiliar with HTML, we provide AppendicesH and |, which carefully introduce
HTML). Web Forms provide GUIs for ASP .NET pages and can contain Web controls,
such aslabels, buttons and text boxeswith which usersinteract. Like Windows Forms, Web
Forms are designed using visual programming. This chapter presents many interesting ex-
amples, which include an online guest book application and amulti-tier, database intensive
application that allows users to query a database for alist of publications by a specific au-
thor. Debugging Web Forms using the Trace property is aso discussed.

Chapter 21—ASP .NET and Web Services

Chapter 21 continues our discussion of ASP .NET. In this chapter, we introduce Web ser-
vices, which are programs that “expose” services (i.e., methods) to clients. Using Web Ser-
vices, programmers can create methods that are accessible over the Internet. This
functionality allows applicationsresiding onalocal computer to invoke methodsthat reside
on other servers. Web services offer increased software reusability, making the Internet, in

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 27

essence, a programming library available to programmers worldwide. Web services use
XML and SOAP to mark up and send information, respectively. This chapter presents sev-
eral examplesthat include Web services for manipulating huge numbers (up to 100 digits),
simulating the card game of blackjack and implementing a simple airline reservation sys-
tem. One particularly interesting example is our temperature server, a Web service that
gathers weather information for dozens of citiesin the United States.

Chapter 22—Networking: Streams-Based Sockets and Datagrams

Chapter 22 introduces the fundamental techniques of Visual Basic .NET-based network-
ing—streams and datagrams. We demonstrate how using sockets allows us to hide many
networking details—we can program as if we were reading from and writing to afile. One
examplein thischapter demonstrates using streams-based socketsto communicate between
two Visua Basic .NET programs. In another example (an interactive tic-tac-toe game), a
server is created that exchanges packets of data with multiple clients. Severd of these net-
working programs use multithreading (discussed in Chapter 14).

Chapter 23—Data Structures and Collections

This chapter discusses arranging data into aggregations—called collections—such as
linked lists, stacks, queues and trees. Each data structure has important properties that are
useful in awide variety of applications, from sorting elements to keeping track of method
calls. We discuss how to build each of these data structures. The examples provide partic-
ularly valuable experiencesin crafting useful classes. In addition, we cover prebuilt collec-
tion classesin the NET Framework Class Library. These data structures have many useful
methods for sorting, inserting, and deleting items, plus methods to enable data structures to
resize themselves dynamically. When possible, Visua Basic .NET programmers should
search the Framework Class Library to reuse existing data structures, rather than imple-
menting these data structures themselves. This chapter reinforces much of the object tech-
nology discussed in Chapters 8, 9 and 10, including classes, inheritance and composition.

Chapter 24—Accessibility

TheWorld Wide Web presents achallengeto individualswith disabilities. Multimedia-rich
Web sitesaredifficult for text readersand other programsto interpret; thus, userswith hear-
ing and visual impairments have difficulty browsing such sites. To rectify thissituation, the
World Wide Web Consortium (W3C) launched the Web Accessibility Initiative (WAI),
which provides guidelines for making Web sites accessible to people with disabilities. This
chapter provides a description of these guidelines, such as the use of the <headers> tag
to make tables more accessible to page readers, the alt attribute of the tag to de-
scribe images, and XHTML and CSS to ensure that a page can be viewed on amost any
type of display or reader. Weillustrate key accessihility features of Visual Studio .NET and
of Windows 2000. We aso introduce VoiceXML and CallXML, two technologies for in-
creasing the accessibility of Web content. VoiceXML helps people with visual impair-
mentsto access Web content via speech synthesis and speech recognition. CallXML alows
users with visual impairments to access Web-based content through a telephone. In the
chapter exercises, readers create their own voice mail applications, using CallXML.

Appendix A—Operator Precedence Chart
This appendix lists Visual Basic .NET operators and their precedence.

28 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

Appendix B—Number Systems

This appendix explainsthe binary, octal, decimal and hexadecimal number systems. It also
reviews the conversion of numbers among these bases and illustrates mathematical opera
tionsin each base.

Appendix C—Career Opportunities
This appendix provides career resources for Visual Basic .NET programmers.

Appendix D—Visual Studio .NET Debugger

This appendix introduces the Visual Studio .NET debugger for locating logic errorsin pro-
grams. Key features of this appendix include setting breakpoints, stepping through pro-
grams line-by-line and “watching” variable values.

Appendix E—ASCI| Character Set
This appendix contains a table of the 128 alphanumeric symbols and their corresponding
ASCII (American Standard Code for Information Interchange) numbers.

Appendix F—Unicode®

This appendix introduces the Unicode Standard, an encoding scheme that assigns unique
numeric values to the characters of most of the world’ s languages. We include a Windows
application that uses Unicode encoding to print welcome messagesin severa different lan-

guages.

Appendix G—COM I ntegration

Prior to .NET, COM (Component Object Model) was critical for specifying how different
Windows programming languages communicate at the binary level. For example, COM
components such as ActiveX controls and ActiveX DLLs often were written in Microsoft
Visual C++, but used in Visual Basic programs. The .NET platform does not directly sup-
port COM components, but Microsoft provides tools for the integration of COM compo-
nents with .NET applications. In this appendix, we explore some of these tools by
integrating an ActiveX control and an ActiveX DLL into Visual Basic .NET applications.

Appendices H and |—I ntroduction to Hyper Text Markup Language 4: 1 & 2 (on CD)
These appendices provide an introduction to HTML—the Hypertext Markup Language.
HTML is a markup language for describing the elements of an HTML document (Web
page) so that abrowser, such as Microsoft’ s I nternet Explorer, can render (i.e., display) that
page. These appendices areincluded for our readerswho do not know HTML or who would
likeareview of HTML before studying Chapter 20, ASP .NET, Web Forms and Web Con-
trols. We do not present any Visual Basic .NET programming in these appendices. Some
key topics covered in Appendix H include: incorporating text and imagesin an HTML doc-
ument, linking to other HTML documents on the Web, incorporating special characters
(such as copyright and trademark symbols) into an HTML document and separating parts
of an HTML document with horizontal lines (called horizontal rules). In Appendix I, we
discuss more substantial HTML elements and features. We demonstrate how to present in-
formation in lists and tables. We discuss how to collect information from people browsing
adite. We explain how to use internal linking and image maps to make Web pages easier
to navigate. We a so discuss how to use frames to display multiple documentsin the brows-
er window.

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 29

Appendices J and K—I ntroduction to XHTML: Parts1 & 2 (on CD)

In these appendices, we introduce the Extensible Hypertext Markup Language (XHTML).
XHTML isaW3C technology designed to replace HTML as the primary means of describ-
ing Web content. As an XM L-based language, XHTML is more robust and extensible than
HTML. XHTML incorporates most of HTML 4's elements and attributes—the focus of
these appendices. Appendices Jand K are included for our readers who do not know XHT-
ML or who would like areview of XHTML before studying Chapter 18, Extensible Mark-
up Language (XML) and Chapter 24, Accessibility.

Appendix L—HTML/XHTML Special Characters (on CD)
This appendix provides many commonly used HTML/XHTML special characters, called
character entity references.

Appendix M—HTML/XHTML Colors (on CD)
This appendix lists commonly used HTML/XHTML color names and their corresponding
hexadecimal values.

1.19 Internet and World Wide Web Resources

www.deitel.com
This site offers updates, corrections and additiona resources for Deitel & Associates, Inc., publica-
tions. We suggest that readers visit our site regularly to obtain any new information.

www.prenhall.com/deitel
Thisisthe Deitel & Associates, Inc. page on the Prentice Hall Web site, which contains information
about our products and publications, downloads, Deitel curriculum and author information.

www.w3.org

The World Wide Web Consortium (W3C) is an organi zation that devel ops technologies for the Inter-
net and World Wide Web. This Web page includes links to W3C technologies, hews, mission state-
ments and frequently asked questions (FAQS).

www.softlord.com/comp

This site outlines the history of computers, from the early days of computing to the evolution of
present-day machines.

www.elsop.com/wrc/h comput.htm

Thissite presentsthe history of computing. It features content about famousinnovators, the evolution
of languages and the devel opment of operating systems.

www.w3.org/History.html

This site overviews the history of the Internet. After briefly covering developments from 1945—
1988, the site detail s technological advances on ayear-by-year basis, from 1989 to the present day.
www.netvalley.com/intval.html

This site provides a short history of the Internet. In particular, it describes the history of the World
Wide Web. Illustrations and abundant links are provided for many of the topics discussed.
www.microsoft.com

Thisis Microsoft’sWeb site. It contai ns extensive resources on topicsincluding .NET, enterprise soft-
ware, Windows and Visual Basic .NET.

SUMMARY
[Thischapter isprimarily a summary of the rest of the book, so we have not provided a sum-
mary section. The remaining chaptersinclude detailed summaries of their contents]

30 Introduction to Computers, Internet and Visual Basic .NET

TERMINOLOGY

action

“administrative” section of the computer

Advanced Research Projects Agency (ARPA)

agorithm

Apple Computer

arithmetic and logic unit (ALU)

assembler

assembly language

bandwidth

batch

batch processing

building-block approach

C programming language

C# programming language

C++ programming language

calculation

Cascading Style Sheets (CSS)

central processing unit (CPU)

clarity

class

classlibraries

Common Language Runtime (CLR)

Common Language Specification (CLS)

compiler

component

computation

computer

computer program

computer programmer

data

data independence

decision

disk

distributed computing

ECMA (European Computer Manufacturer’s
Association)

e-mail (electronic mail)

Framework Class Library (FCL)

Hail Storm Web service

hardware

hardware platform

high-level language

HTML (HyperText Markup Language)

HTTP (HyperText Transfer Protocol)

IBM (International Business Machines)

Information Revolution

input device

input unit

integrated development environment (IDE)

Chapter 1

Internet

interpreter

intranet

IP (Internet Protocol)

Java programming language

job

keyboard

language independence

language interoperability
live-code™ approach

logical decision

logical unit

machine dependent

machine language

maintenance of software
“manufacturing” section of the computer
memory

memory unit

Microsoft .NET

Microsoft Intermediate Language (MSIL)
module

mouse

multiprogramming

multitasking

n-tier application

.NET Framework

NET initiative

.NET language

object

object-based programming
object-oriented language
object-oriented programming (OOP)
operating system

output device

output unit

Pascal programming language
personal computer

platform independence
portability

porting

primary memory

processing unit

program

programmer

property of an object

“receiving” section of the computer
reusabl e software component
screen

share the resources of a computer

Chapter 1 Introduction to Compuiters, Internet and Visual Basic .NET 31
“shipping” section of the computer UNIX
silicon chip universal data access
SOAP (Simple Object Access Protocol) virtual-memory operating system
software Visua Basic .NET programming language
software component visual programming
software reuse “warehouse” section of the computer
structured programming W3C (World Wide Web Consortium)
subscription-based software W3C Recommendation
task Web Form
TCP (Transmission Control Protocol) Web service
TCP/IP (Transmission Control Web site

Protocol/Internet Protocol) Win32 API (Windows 32-bit Application
terminal Programming Interface)
throughput World Wide Web (WWW)
timesharing XML (Extensible Markup Language)

trandator program

SELF-REVIEW EXERCISES

1.1 Fill
a)

b)

0)
d)

e
f)
9)

h)
i)
)

k)

in the blanks in each of the following statements:

Computers can directly understand only their native language, which is
composed only of 1sand Os.

Computers process data under the control of sets of instructions called computer

SOAP isan acronym for .
is atechnology derived from SGML that is used to create mark up languag-
€s.
The three types of languages discussed in the chapter are machine languages,
and .
Programs that translate high-level language programs into machine language are called

Visua Studio .NET isal/an (IDE) inwhich Visua Basic .NET programsare

developed.

C iswidely known as the development language of the operating system.

Microsoft's provides alarge programming library for .NET languages.

The Department of Defense developed the Ada language with a capability called
, which allows programmersto specify activitiesthat can proceed in paralél.

Visua Basic .NET offers a similar capability called multithreading.

Web services use and to mark up and send information over the

Internet, respectively.

1.2 State whether each of the following istrue or false. If false, explain why.

a)
b)
©)
d)

e
f)
9)

Universal data accessis an essential part of .NET.

Wa3C standards are called recommendations.

Visua Basic .NET is an object-oriented language.

The Common Language Runtime (CLR) requires that programmers manage their own
memory.

Visua Basic .NET isthe only language available for programming .NET applications.
Procedura programming models the world better than object-oriented programming.
Computers can directly understand high-level languages.

32 Infroduction to Computers, Internet and Visual Basic .NET Chapter 1

h) MSIL isthe common intermediate format to which al .NET programs compile, regard-
less of their original .NET language.

i) The .NET Framework is portable to non-Windows platforms.

j) Compiled programs run faster than their corresponding interpreted programs.

k) Throughput isthe amount of work acomputer can process in a given time period.

ANSWERS TO SELF-REVIEW EXERCISES

11 a) machine. b) programs. c) Simple Object Access Protocol. d) XML. e) assembly languages,
high-level languages. f) compilers. g) integrated development environment (IDE). h) UNIX. i)
Framework Class Library (FCL). j) multitasking. k) XML, SOAP.

1.2 a) True.b) True. c) True. d) False. The CLR handles memory management. €) False. Visua
Basic .NET is one of many .NET languages (others include C# and Visual C++). f) False. Object-
oriented programming is amore natural way to model the world than is procedural programming. g)
False. Computers can directly understand only their own machine languages. h) True. i) True. j) True.
k) True.

EXERCISES

13 Categorize each of the following items as either hardware or software:
a CPU.
b) Compiler.
c) Input unit.

d) A word-processor program.
€) A Visua Basic .NET program.

1.4 Distinguish between theterms HTML, XML and XHTML.

15 Translator programs, such as assemblers and compilers, convert programsfrom one language
(referred to as the source language) to another language (referred to as the object language or target
language). Determine which of the following statements are true and which are false:

a) A compiler translates high-level language programs into object language.

b) An assembler trandates source language programs into machine language programs.

c) A compiler converts source-language programs into object-language programs.

d) High-level languages are generally machine dependent.

€) A machine-language program requires trandation before it can be run on a computer.

f) TheVisual Basic .NET compiler trandates a high-level languageinto SMIL.

1.6 What are the basic requirements of a.NET language? What is needed to run a.NET program
on anew type of computer (machine)?

1.7 Expand each of the following acronyms:
a) Wa3C.
b) XML.
c) SOAP.
d) TCP/IP.
e) OOP.
f) CLR.
g) CLS.
h) FCL.
i) MSIL.

1.8 What are the key benefits of the .NET Framework and the CLR? What are the drawbacks?

| ntroduction to the
Visua Studio .NET IDE

Objectives

» Tobeintroduced tothe Visual Studio .NET Integrated
Development Environment (IDE).

* To become familiar with the types of commands
contained in the IDE’s menus and toolbars.

* To understand the use of various kinds of windowsin
the Visual Studio .NET IDE.

» To understand Visual Studio .NET’s help features.

To be able to create, compile and execute asimple

Visual Basic program.

Seeing is believing.

Proverb

Form ever follows function.

Louis Henri Sullivan

Intelligence... is the faculty of making artificial objects,

especially tools to make tools.

Henri-Louis Bergson

L]

34 Infroduction to the Visual Studio .NET IDE Chapter 2

Outline
2.1 Introduction
2.2 Overview of the Visual Studio .NET IDE
2.3 Menu Bar and Toolbar
2.4 Visual Studio .NET IDE Windows
2.4.1 Solution Explorer
2.4.2 Toolbox
2.4.3 Properties Window
2.5 Using Help
2.6 Simple Program: Displaying Text and an Image
2.7 Internet and World Wide Web Resources

Summary ¢ Terminology * Self-Review Exercises « Answers to Self-Review Exercises « Exercises

2.1 Introduction

Visual Studio .NET is Microsoft’s Integrated Development Environment (IDE) for creat-
ing, running and debugging programs (al so called applications) writtenin avariety of .NET
programming languages. This IDE is a powerful and sophisticated tool for creating busi-
ness-critical and mission-critical applications. In this chapter, we provide an overview of
theVisual Studio .NET IDE and demonstrate how to create asimple Visual Basic program
by dragging and dropping predefined building blocks into place—this technique is called
visual programming.

2.2 Overview of the Visual Studio .NET IDE

When Visua Studio .NET begins execution, the Start Page® displays (Fig. 2.1). The left-
hand side of the Start Page contains alist of helpful links, such as Get Started. Clicking
alink displaysits contents. Werefer to single-clicking with the left mouse button as selecting,
or clicking, whereaswe refer to double-clicking with the left mouse button as double-clicking.

When clicked, Get Started loads a page that contains a table listing the names of
recent projects (such as ASimpleProgram in Fig. 2.1), along with the dates on which
these projects were last modified. A project is a group of related files, such as the Visual
Basic code and images that make up aprogram. When you load Visual Studio .NET for the
first time, the list of recent projects is empty. There are two buttons on the page—Open
Project and New Project, which are used to open an existing project (such asthe onesin
the table of recent projects) and to create a new project, respectively. We discuss the pro-
cess of creating new projects momentarily.

Other linkson the Start Page offer information and resourcesrelated to Visual Studio
.NET. Clicking What’s New displays apage that lists new features and updates for Visual
Studio .NET, including downloads for code samples and programming tools. Online
Community links to online resources for contacting other software developers through
newsgroups (organized message boards on the Internet) and Web sites.

1. Depending on your version of Visual Studio .NET, the Start Page may be different.

Chapter 2 Introduction to the Visual Studio .NET IDE 35

Navigation buttons Location bar

Hidden window Start Page links Buttons Recent projects

Fig. 2.1 Start Page in Visual Studio .NET.

Headlines provides a page for browsing news, articles and how-to guides. To access
more extengive information, users can select Search Online and begin browsing through
the MSDN (Microsoft Devel oper Network) online library, which contains numerous articles,
downloads and tutorials on varioustechnol ogies of interest to Visual Studio .NET developers.
When clicked, Downloads displays a page that provides programmers access to product
updates, code samples and reference materials. The XML Web Services page provides pro-
grammers with information about Web services, which are reusable pieces of software avail-
able on the Internet. We discuss this technology in Chapter 21, ASP.NET and Web Services.
The Web Hosting page allows programmers to post their software (such as Web services)
onlinefor public use. The My Profile link loads a page where users can adjust and customize
various Visua Studio .NET settings, such as keyboard schemes and window layout prefer-
ences. The programmer also can customize the Visua Studio .NET IDE by selecting the
Tools menu's Options... command and the Tools menu’s Customize... command.
[Note: From thispoint onward, we usethe > character to indicate the sel ection of amenu com-
mand. For example, we usethe notation Tools > Options... and Tools > Customize... to
indicate the selection of the Options... and Customize... commands, respectively.]

36 Infroduction to the Visual Studio .NET IDE Chapter 2

Programmers can browse the Web from the IDE using Internet Explorer (also caled
the internal Web browser in Visual Studio .NET). To request a Web page, type its address
into the location bar (Fig. 2.1) and press the Enter key. [Note: The computer must be con-
nected to the Internet.] Several other windows appear in the IDE besides the Start Page;
we discuss them in subsequent sections.

To createanew Visual Basic program, click the New Project button (Fig. 2.1), which
displaysthe New Project dialog (Fig. 2.2). Dialogs are windows that facilitate user-com-
puter communication.

The Visual Studio .NET IDE organizes programs into projects and solutions, which
contain one or more projects. Multiple-project solutions are used to createlarge-scal e appli-
cations in which each project performs a single, well-defined task.

The Visua Studio .NET IDE provides project types for avariety of programming lan-
guages. This book focuses on Visua Basic, so we select the Visual Basic Projects
folder fromthe Project Types window (Fig. 2.2). We use some of the other project types
inlater chapters. A Windows Application isaprogram that executesinside the Windows
OS (e.g., Windows 2000 or Windows X P). Windows applicationsinclude customized soft-
ware that programmers create, as well as software products like Microsoft Word, Internet
Explorer and Visual Studio .NET.

By default, the Visual Studio .NET IDE assigns the name WindowsApplicationl to
the new project and solution (Fig. 2.2). The Visual Studio Projects folder inthe My Doc-
uments folder isthe default folder referenced when Visua Studio .NET is executed for the
first time. Programmers can change both the name of the project and the location whereit is
created. After selecting aproject’s name and location, click OK to display the IDE in design
view (Fig. 2.3), which contains all the features necessary to begin creating programs.

Visual Basic Windows Application (selected)

x
T:l/wII r-r

B3 E

wade e
L s dnes

Frorsw " ToTeme

— - m e [z Froces:s
I:| LIy L b
I:| LI [B LR

Fﬂ “Eay em- e

Fropue
-t
Il ma. Hand S -

ud|

CT N L (G| TN M 'R R T 5 Rt

heva T >
(loclon 8 |" “HY e renk e
Frovew: ol =wh Task = oF 705 - L we-ba— =heseipr =aHon Description
of selected
Fr-m ;
project

|
Project location

Project name

Fig. 2.2

New Project dialog.

Chapter 2 Introduction to the Visual Studio .NET IDE 37

Tabs Menu Menu bar Solution Explorer

Schnnbhetpp nalard Feceadl Viaeddca ke] ame 2edafize gl |
LB Dnmg Do M A vk YRR b
R = e k| piika - e
R O o L e L T T
1r | Hdwigew-rk, 4 7
MEN TN T T YRR T Y R EH - a5
_IEI: = R P R .
oo oo |M = T miemippd el
1 11 [N TR
1 B PR T R
: -E .
1
1
1
1
L
1
'
1 L | |
: LETRLE 8l 9
. Frml tod e 1]
: 2laulr]w
' s Man A =
L B Ll R O R Fmma M iy
y Fask i a9 d-
FEx™=H ‘E
- Mml
Jienas -
B LH
Toadwl, pdi e icd
e \ I L#

Form (Windows application) Active tab Properties window

Fig. 2.3 Design view of Visual Studio .NET IDE.

The gray rectangle (called aform) titled Form 1 represents the Windows application that
the programmer is creating. Later in this chapter, we discuss how to customize this form by
adding controls (i.e., reusable components, such as buttons). Collectively, the form and con-
trols congtitute the program’s Graphical User Interface (GUI), which isthevisud part of the
program with which the user interacts. Users enter data (inputs) into the program by typing at
the keyboard, by clicking the mouse buttons and in avariety of other ways. Programs display
instructions and other information (outputs) for users to read in the GUI. For example, the
New Project dialog in Fig. 2.2 presents a GUI where the user clicks with the mouse button
to select a project type and then inputs a project name and location from the keyboard.

The name of each open document is listed on atab. In our case, the documents are the
Start Page and Form1.vb [Design] (Fig. 2.3). To view a document, click itstab. Tabs
save space and facilitate easy access to multiple documents. The active tab (the tab of the
document currently displayed in the IDE) is displayed in bold text (e.g., Forml.vb
[Design]) and is positioned in front of al the other tabs.

2.3 Menu Bar and Toolbar

Commands for managing the | DE and for devel oping, maintaining and executing programs
are contained in the menus, which are located on the menu bar (Fig. 2.4). Menus contain
groups of related commands (also called menu items) that, when selected, cause the IDE to

38 Infroduction to the Visual Studio .NET IDE Chapter 2

perform specific actions (e.g., open a window, save afile, print a file and execute a pro-
gram). For example, new projects are created by selecting File > New > Project.... The
menus depicted in Fig. 2.4 are summarized in Fig. 2.5. In Chapter 13, Graphical User In-
terfaces: Part 2, we discuss how programmers can create and add their own menus and
menu itemsto their programs.

Rather than having to navigate the menusfor certain commonly used commands, the pro-
grammer can access them from the toolbar (Fig. 2.6), which contains pictures, called icons,
that graphically represent commands. To execute a command via the toolbar, click itsicon.
Some icons contain a down arrow that, when clicked, displays additional commands.

A: 1l vam ot 4hF 1dx Bl A 1y =milee HA

Fig. 2.4 Visual Studio .NET IDE menu bar.

Menu Description

File Contains commands for opening projects, closing projects, printing project data, etc.
Edit Contains commands such as cut, paste, find, undo, etc.

View Contains commands for displaying | DE windows and toolbars.

Project Contains commands for managing a project and itsfiles.

Build Contains commands for compiling a program.

Debug Contains commands for debugging (i.e., identifying and correcting problemsin apro-
gram) and running a program.

Data Contains commands for interacting with databases (i.e., files that store data, which
we discuss in Chapter 19, Databases, SQL and ADO .NET).

Format Contains commands for arranging aform’s controls.

Tools Contains commands for accessing additional IDE tools and options that enable
customization of the IDE.

Windows Contains commands for arranging and displaying windows.
Help Contains commands for accessing the IDE’s help features.

Fig. 2.5 Summary of Visual Studio .NET IDE menus.

Toolbar Toolbar icon (indicates a command to open a file)

B Mrodrmidrp eeHwnl H=-rreidl Limwdfcale T [d=iks

Down arrow indicates additional commands

Fig. 2.6 IDE Toolbar.

Chapter 2 Introduction to the Visual Studio .NET IDE 39

Positioning the mouse pointer over an icon highlightstheicon and, after afew seconds,
displays a description caled a tool tip (Fig. 2.7). Tool tips help novice programmers
become familiar with the IDE’s features.

2.4 Visual Studio .NET IDE Windows

The IDE provideswindowsfor accessing project filesand customizing controls. In this sec-
tion, we introduce several windows that are essential in the development of Visual Basic
applications. These windows can be accessed viathe toolbar icons (Fig. 2.8) or by selecting
the name of the desired window in the View menu.

Visual Studio .NET provides a space-saving feature called auto-hide (Fig. 2.9). When
auto-hideis enabled, atoolbar appears along one of the edges of the IDE. Thistoolbar con-
tains one or more icons, each of which identifies a hidden window. Placing the mouse
pointer over one of these icons displays that window, but the window is hidden once the
mouse pointer is moved outside the window’ s area. To “pin down” awindow (i.e., to dis-
able auto-hide and keep the window open), click the pinicon. Notice that, when a window
is “pinned down,” the pin icon has a vertical orientation, whereas, when auto-hide is
enabled, the pin icon has a horizontal orientation (Fig. 2.9).

- Tool tip displayed
when the mouse
pointer has rested
on the icon for a
few seconds

Fig. 2.7 Tool tip demonstration.

Solution Explorer Properties Toolbox

A et

@B R

Fig. 2.8 Toolbar icons for three Visual Studio .NET IDE windows.

40 Infroduction to the Visual Studio .NET IDE Chapter 2

Icons for hidden windows Horizontal orientation for pin
icon (auto-hide enabled)

Lzzthage | ormilad [iegn] |I:v| Title bar l
Y 0T 00 Y 0T 0T R 0T |

E Todzo= ¥ + - |r|

-

Tominoaly

! s o e | =

e]| ‘s;l &

- —p———-————————— -

...... E ran
oLl A Lebd

A Ll
W Wk Luskcn
las w-klbes
& [z nnd
ok
= kacoltor
Y T
[Fitasl

¢ R

|||||: n ‘ill mL':t:'.id
[Las:lize

Vertical orientation for pinicon 20 ooltg -
(auto-hide disabled) Tard

e
A
I
=
m
o

P

Mouse pointer over icon label

Close button

Fig. 2.9 Auto-hide feature demonstration.

2.4.1 Solution Explorer

The Solution Explorer window (Fig. 2.10) provides accessto all thefilesin the solution.
When the Visual Studio .NET IDE isfirst loaded, the Solution Explorer is empty; there
areno filesto display. Once asolution is open, the Solution Explorer displaysthat solu-
tion’s contents.

The solution’s startup project is the project that runs when the program executes and
appearsin bold text in the Solution Explorer. For our single-project solution, the startup
project isthe only project (WindowsApplication1). The Visual Basic file, which corre-
spondsto theform shownin Fig. 2.3,isnamed Form1 . vb. (Visual Basicfilesusethe . vb
filename extension, which is short for “Visual Basic.”) The other files and folders are dis-
cussed later in the book.

[Note: We use fonts to distinguish between IDE features (such as menu names and
menu items) and other elementsthat appear inthe IDE. Our conventionisto emphasize IDE
features in asans-serif bold helvetica font and to emphasize other elements, such as
filenames (e.g., Forml . vb) and property names (discussed in Section 2.4.3),inaserif
bold courier font.]

The plus and minus boxes to the left of the project name and the References folder
expand and collapse the tree, respectively. Click a plus box to display items grouped under
the heading to the right of the plus box; click the minus box to collapse atree already in its
expanded state. Other Visua Studio windows also use this plus-box/minus-box convention.

Chapter 2 Introduction to the Visual Studio .NET IDE 4]

Show all files

Lolution Lxplonen - Windcr: =
e | tn\ <—+—Toolbar
a'I nea"mialety d dunl ""\’P\\Propertles window

Minus box ——t= 1 ‘wWindowampplication)

collapses tree /.Jl] [Fdan
when clicked ['_'l Lrrer s ot

Plus box
expands tree
when clicked

Startup project

Fig. 2.10 Solution Explorer with an open solution.

The Solution Explorer window includes atoolbar that contains several icons. When
clicked, the show all files icon displays dl the files in the solution. The number of icons
present in the tool bar is dependent on the type of file selected. We discuss additional toolbar
icons later in the book.

2.4.2 Toolbox

The Toolbox (Fig. 2.11) contains controls used to customize forms. Using visual pro-
gramming, programmers can “drag and drop” controls onto the form instead of building
them by writing code. Just as people do not need to know how to build an engine to drive
acar, programmers do not need to know how to build a control to use the control. The use
of preexisting controls enables developers to concentrate on the “big picture,” rather than
on the minute and complex details of every control. The wide variety of controls that are
contained in the Toolbox is a powerful feature of the Visual Studio .NET IDE. We will
use the Toolbox when we create our own program later in the chapter.

The Toolbox contains groups of related controls (e.g., Data, Components in
Fig. 2.11). When the name of agroup is clicked, thelist expandsto display the various con-
trols contained in the group. Users can scroll through the individual items by using the
black scroll arrows to the right of the group name. When there are no more members to
revea, the scroll arrow appears gray, meaning that it is disabled (i.e., it will not performiits
normal function if clicked). The first item in the group is not a control—it is the mouse
pointer. The mouse pointer is used to navigate the IDE and to manipulate a form and its
controls. In later chapters, we discuss many of the Toolbox’s controls.

2.4.3 Properties Window

The Properties window (Fig. 2.12) displays the properties for aform or control. Proper-
ties specify information such as size, color and position. Each form or control has its own
set of properties; aproperty’ sdescriptionisdisplayed at the bottom of theProperties win-
dow whenever that property is selected. If the Properties window is not visible, selecting
View > Properties Window, displaysthe Properties window.

42 Introduction to the Visual Studio .NET IDE

Group names

Dzto
1Y poner s
A TS

k coroe
Bl
JlaHan

b ERCT
[d To-HEo=
B raikw
| O P
W L2d 2Eubcn
["" crapace

& [oborcEx
_o Fare
] Dskecrd
B Lk
E_'J [g, I,
ﬁ el gl -3
el 1= 3 B
i Tezhkcn
R =
g=: - BT
5] vetcelencs
ad [Ecrci4
43 der
iH Tra

l:'-||l|l||'!'l|| A

erod) /
\/

Group names

Scroll arrow
(enabled)

Scroll arrow
(disabled)

Dxta
T ponar
SN Wi

Chapter 2

#<ila

[H M1 idkTa~
[M1 rilk S
= Teoer

wm [aogoasEa-
E® RlzTz-tEn
ey e ey

T HoERekct
L T=mp

[¥] Cenie-tena
2 T=Ex%

I S

i L U T

BT Cpor3-Da
B ZzeTcDinkq
T FaritDal=c

[y ColcDizcq

Fo Mo o

[FariFres sodizkg
Lea FartFres sealo e
B oo dsr
LA Faripoa-er:
i F:r:t:-EJ]IIﬂ:I;I

-:': TR RIHET

[P e |

Controls

Fig. 2.11 Toolbox window.

In Fig. 2.12, the form’'s Properties window is shown. The left column of the Prop-
erties window lists the form’s properties; the right column displays the current value of
each property. |cons on the toolbar sort the properties either alphabetically (by clicking the
alphabetic icon) or categoricaly (by clicking the categorized icon). Users can scroll
through the list of properties by dragging the scrollbar’s scrollbox up or down. We show

how to set individual properties later in this chapter and throughout the book.

Chapter 2

Introduction to the Visual Studio .NET IDE

43

Component
Propectias J selection
|I'l.|l|'|||:l F T R TR T TR A/_-l
Categorized icon —»f17] &] EI -1 Toolbar
T [P k-
Alphabetic icon — EX 1 il
= Mehrebr
e, owe - ik
toneeoHara et
= Lbal I
11 Hesk | ST |
~ Lunlmgureie
= Tt pet=n
Z Nimka
B w s Scrollbar
(LI I
b Y [Furinl
XA e Tne
= Adw i
fue n- ik
==unTrerkd Tnw
—_ Scrollbox
I TR] I
Lurpund
CubcTza Tna |
P Teuk
Description LI R T L1 T TR TR |
Properties Property values

Fig. 2.12 Properties window.

The Properties window is crucia to visual programming; it allows programmers to
modify controls visually, without writing code. This capability provides a number of ben-
efits. First, programmers can see which properties are available for modification and, in
many cases, can learn the range of acceptable values for agiven property. Second, the pro-
grammer does not have to remember or search the Visua Studio .NET documentation for
the possible settings of a particular property. Third, this window also displays a brief
description of the selected property, helping programmers understand the property’ s pur-
pose. Fourth, a property can be set quickly using this window—usually, only asingle click
is required, and no code needs to be written. All these features are designed to help pro-
grammers avoid repetitive tasks while ensuring that settings are correct and consistent
throughout the project.

At the top of the Properties window is the component selection drop-down list,
which allows programmers to select the form or control whose properties are displayed in
the Properties window. When aform or control in the list is selected, the properties of
that form or control appear in the Properties window.

44 Introduction to the Visual Studio .NET IDE Chapter 2

2.5 Using Help

The Visual Studio .NET IDE provides extensive help features. The Help menu containsa
variety of commands, which are summarized in Fig. 2.13.

Dynamic help (Fig. 2.14) is an excellent way to get information about the IDE and its
features, as it provides a list of articles pertaining to the current content (i.e., the items
around the location of the mouse cursor). To open the Dynamic Help window (if it is not
dready open), select Help > Dynamic Help. Then, when you click aword or component
(such asaform or acontrol), links to relevant help articles appear in the Dynamic Help
window. The window lists help topics, samples and “ Getting Started” information. There
isalso atoolbar that provides accessto the Contents, Index and Search help features.

Command Description

Contents... Displaysacategorized table of contentsin which help articles are organized by

topic.
Index... Displays an a phabetized list of topics through which the programmer can browse.
Search... Allows programmersto find help articles based on search keywords.

Fig. 2.13 Help menu commands.

Selected item Dynamic Help window

Toolbar

Search

Index

Contents

Relevant help articles

Fig. 2.14 Dynamic Help window.

Chapter 2 Introduction to the Visual Studio .NET IDE 45

Visual Studio .NET also provides context-sensitive help, which is similar to dynamic
help, except that it immediately displays arelevant help article, rather than presenting alist
of articles. To use context-sensitive help, click anitem and press F1. Help can appear either
internally or externally. When externa help is selected, arelevant article immediately pops
up in a separate window outside the IDE. When interna help is selected, a help article
appears as atabbed window inside the IDE. The help options can be set inthe Start Page’s
My Profile section by selecting Internal Help (the default) or External Help.

2.6 Simple Program: Displaying Text and an Image

In this section, we create a program that displaysthetext “Welcome to Visual Basic!”
and an image of the Deitel & Associates bug mascot. The program consists of asingle form
that uses alabel contral (i.e., acontrol that displaystext which the user cannot modify) and a
picture box to display the image. Figure 2.15 shows the results of the program asit executes.
The program and theimage are avail able on the CD-ROM that accompanies thisbook, aswell
as on our Web site (www . deitel . com) under the Downloads/Resources link.

To create the program whose output is shown in Fig. 2.15, we did not write a single
line of program code. Instead, we use the techniques of visual programming. Visua Studio
.NET processes programmer actions (such as mouse clicking, dragging and dropping) to
generate program code. In the next chapter, we begin our discussion of how to write pro-
gram code. Throughout the book, we produce increasingly substantial and powerful pro-
grams. Visual Basic programs usually include a combination of code written by the
programmer and code generated by Visual Studio .NET.

Visual programming is useful for building GUI-intensive programs that require a sig-
nificant amount of user interaction. Some programs are not designed to interact with users
and therefore do not have GUIs. Programmers must write the code for the latter type of pro-
gram directly.

Fig. 2.15 Simple program executing.

46

Introduction to the Visual Studio .NET IDE

Chapter 2

To create, run and terminate this first program, perform the following steps:

1. Create the new project. If a project is already open, close it by selecting

File > Close Solution. A dialog asking whether to save the current solution
might appear. Click Yes to save any changes. To create anew Windows applica-
tion for our program, select File > New > Project... to display the New
Project didog (Fig. 2.16). Click the Visual Basic Projects folder to display
alist of project types. From this list, select Windows Application. Name the
project ASimpleProgram, and select the directory in which the project will be
saved. To select a directory, click the Browse... button, which opens the
Project Location dialog (Fig. 2.17). Navigate through the directories, find one
inwhich to place the project and click OK to close the dialog. The selected folder
now appearsin the Location text box. Click OK to closethe New Project dia-
log. The IDE then loads the new single-project solution, which contains a form
named Form1.

. Set thetext in the fornT stitle bar. The text in the form'’ s title bar is determined by
the form’'s Text property (Fig. 2.18). If the Properties window is not open,
click the properties icon in the toolbar or select View > Properties Window.
Click the form to display the form’s propertiesin the Properties window. Click
in the textbox to the right of the Text property’s box and type A Simple Pro-
gram, asin Fig. 2.18. Press the Enter key (Return key) when finished; the form’s
title bar is updated immediately.

Project types

=
o B
=
e Uidvie JmrliE- - e
R e kTR Bropee D= =gk - Sonbrod | - =
L S e
L
EE L RS AT ML FE
Aoe ol 7 T dne-
=l
Project Aol s oo i wliam hanpa Tl
name e

Project ooz " | HFwpes

L.t
location

Frovew s ol = Ttk ok S22

t S |

Rl G LR E, Y 15

Click to change project location

Fig. 2.16 Creating a new Windows Application.

Chapter 2 Introduction to the Visual Studio .NET IDE 47
=
I=nd In IDm_ﬂ_u:q_;:. j a-...ll'_ n}c’ mfll\.'\._.-'
¥ - 4
'!I :..1.“.'._,_-\.-\11.-.-
Mo R e
mprre
L — ""_
SEIeCted -I--T‘I. _'I;‘-'r.r!..!.ll. il
project — X
location F- LTI
L:j g
k. Bl TR PT M
| e
-]
| o
Poor Sarwed

Click to set project location

Fig. 2.17 Setting the project location in the Project Location dialog.

d
|r_r.rm| TR T T i ~—=—— Name and type
B Gl = of object
il -t Db =]
Yol k- =
Selected —_Auuuklﬂulunu - Property value
property H adimur
. Faar
A _ Ly hd
Property — :I':"I' ; I
description '
Fig. 2.18 Setting the form’s Text property.

3. Resize the form. Click and drag one of the form’s enabled sizing handles (the
small white squares that appear around the form shown in Fig. 2.19). The ap-
pearance of the mouse pointer changes (i.e., it becomes a pointer with one or
more arrows) when it is over an enabled sizing handle. The new pointer indi-
cates the direction(s) in which resizing is permitted. Disabled sizing handles ap-
pear in gray and cannot be used to resize the form. The grid on the background
of the form is used by programmersto align controls and is not present when the
program is running.

48

I'|III

Disabled sizing handle

T

Introduction to the Visual Studio .NET IDE

i3>k

Chapter 2

Title bar

Grid

. «<— Mouse pointer over

L/

a sizing handle

Enabled sizing
handle

Fig. 2.19

Form with sizing handles.

4. Change the form's background color. The BackColor property specifies a
form’s or control’ s background color. Clicking BackColor inthe Properties
window causes a down-arrow button to appear next to the value of the property
(Fig. 2.20). When clicked, the down-arrow button displays a set of other options,
which varies depending on the property. In this case, the arrow displays tabs for
System (the default), Web and Custom. Click the Custom tab to display the
palette (a series of colors). Select the box that represents light blue. Once you se-
lect the color, the palette closes, and the form’ s background color changesto light

blue (Fig. 2.21).

L

|rnrrr|l o - -

B u =
LTI IRITE
== rdn

(R T CNTTN

Custom palette ——sr &= sy
T o
::)
“nrw ko
ETTE SO Y]
LTINS
[[LEN
[mETETAY T S
Nerirrinr
e lewo, - aed v
<z

v i P

/ Current color

b ode |'.'.'.».h. | eseema]

HERERE=S

Down-arrow button

[BT T W=
FAEM Emran
T ..
EEEEE
EEEEE
[T

Light blue

Fig. 2.20 Changing the form’s BackColor property.

Chapter 2 Introduction to the Visual Studio .NET IDE 49

5. Add alabdl control to the form. Click the Windows Forms button in the Tool-
box. Next, double-click the Label control in the Toolbox. Thisaction causes a
label to appear in the upper-left corner of the form (Fig. 2.21). Although double-
clicking any Toolbox control places the control on the form, programmers also
can “drag” controls from the Toolbox to the form. Labels display text; our label
displays the text Labell by default. Notice that our label’s background color is
the same as the form’ s background color. When a control is added to the form, its
BackColor property is set to the form’'s BackColor.

6. Customize the label’s appearance. Select the label by clicking it. Its properties
now appear in the Properties window. The label’s Text property determines
the text (if any) that the label displays. The form and label each have their own
Text property. Forms and controls can have the same types of properties (such
as BackColor, Text, etc.) without conflict. Set the |abel’s Text property to
Welcome to Visual Basic!. Resize the label (using the sizing handles) if the
text does not fit. Move the labdl to the top center of the form by dragging it or by
using the keyboard' sleft and right arrow keysto adjust its position. Alternatively,
you can center the label control horizontally by selecting
Format > Center In Form > Horizontally. The form should appear as shown
inFig. 2.22.

Label control ——

New >
background
color

Fig. 2.21 Adding a label to the form.

50

Introduction to the Visual Studio .NET IDE Chapter 2

ko p e mpd i, T Label centered
.- I. IIIIIIIIIIIIIIII"E E . . 5o Wlth updated

LILliIlll Textproperty

Fig. 2.22 GUI after the form and label have been customized.

7. Setthelabel’sfont size and align itstext. Clicking the value of the Font property

causes an ellipsis button (...) to appear next to the value, as shown in Fig. 2.23.
When the ellipsis button is clicked, a dialog that provides additional values—in
this case, the Font dialog (Fig. 2.24)—is displayed. Programmers can select the
font name (MS Sans Serif, Mistral, etc.), font style (Regular, Bold, etc.) and
font size (12, 14, etc.) in thisdialog. Thetext in the Sample areadisplaysthe se-
lected font. Under the Size category, select 24 points and click OK. If thelabel’s
text doesnot fit on asingleline, it wrapsto the next line. Resize thelabdl vertically
if itisnot large enough to hold thetext. Next, select thelabel’s TextAlign prop-
erty, which determines how the text is aligned within the label. A three-by-three
grid of buttons representing alignment choicesis displayed (Fig. 2.25). The posi-
tion of each button corresponds to where the text appears in the label. Click the
top-center button in the three-by-three grid; this selection causes the text to appear
at the top-center position in the label.

(iopesties d
ILuhdl e erdosrl oo sEs d
HENE =
Qr=cr =y = N ﬂ
Fuf=: A ulba
OCEOR ' - -1 = % #1554 A
Fre b -lll'll-i-c
L L) I_ ramel
Fort
hs fon: sad koo zpo- 2t 5 be ocncrel

— Ellipsis button

L8

Fig. 2.23 Properties window displaying the label’s properties.

Chapter 2 Introduction to the Visual Studio .NET IDE 51

MED
Ir-- =d o o
[z Fru. - E [!
Current font ~— : - |

~Elde——————— rapl———————————
S //Fontsample
il albYysz:

Text alignment
options

Tart Wedrrroe b MhiviNedd
TR, - v = +
I el == vk |—|

L Hidi e Top-center

A A J | J alignment option

Fig. 2.25 Centering the label’s text.

8. Add a picture box to the form. The picture-box control displaysimages. The pro-
cessinvolved in this step is similar to that of Step 5, in which we added alabel to
the form. Locate the picture box in the Toolbox and then double click it to add it
to the form. When the picture box appears, move it underneath the label, either by
dragging it or using the arrow keys (Fig. 2.26).

9. Insert an image. Click the picture box to display its propertiesin the Properties
window. Locate the Image property, which displays a preview of the image (if
one exists). No picture has been assigned (Fig. 2.27), so the value of the Image
property displays (none). Click the ellipsis button to display the Open dialog
(Fig. 2.28). Browse for an image to insert, select it with the mouse and press the
Enter key. Supported image formats include PNG (Portable Networks Graphic),
GIF (Graphic Interchange Format), JPEG (Joint Photographic Experts Group)
and BMP (Windows bitmap). The creation of a new image requires image-editing
software, such as Jasc® Paint Shop Pro™" (www.jasc.com), Adobe® Photo-
shop™ Elements (www.adobe . com) or Microsoft Paint (provided with Win-
dows). In our case, the picture is bug.png. Once the image is selected, the

52

10.

Introduction to the Visual Studio .NET IDE Chapter 2

picture box displays the image, and the Image property displays a preview. To
size the image to the picture box, change the sizeMode property to Stretch-
Image, which scales the image to the size of the picture box. Resize the picture
box, making it larger (Fig. 2.29).

Save the project. Select File > Save All to save the entire solution. The solution
file contains the name(s) and location(s) of its project(s), and the project file con-
tains the names and locations of al the files in the project.

<—— Updated

label

Picture box >

Fig. 2.26 Inserting and aligning the picture box.

Image property
value (noimage
selected)

Box where
image preview
is displayed (no

image
displayed)

Fig. 2.27 Image property of the picture box.

Chapter 2 Introduction to the Visual Studio .NET IDE 53

Fig. 2.28 Selecting an image for the picture box.

<— Newly inserted
image

Fig. 2.29 Picture box displaying an image.

11. Run the project. Up to this point, we have been working in the IDE design mode
(i.e., the program being created is not executing). This mode is indicated by the
text Microsoft Visual Basic.NET [design] in the title bar. While in design
mode, programmers have access to all the environment windows (e.g., Toolbox,
Properties, etc.), menus and toolbars. In run mode, the program is executing,
and programmers can interact with only afew |DE features. Features that are not

54 Infroduction to the Visual Studio .NET IDE Chapter 2

available are disabled or grayed out. Thetext Form1.vb [Design] inthetitle bar
means that we are designing the form visualy, rather than programmatically. If
we had been writing code, the title bar would have contained only the text
Form1l.vb. Selecting Debug > Start Without Debugging executes the pro-
gram. Figure 2.30 shows the IDE in run mode. Note that many toolbar icons and
menus are disabled.

12. Terminate execution. To terminate the program, click the running application’s
close button (the x in the top-right corner). This action stops program execution
and returns the IDE to design mode.

%\ﬁwm programming can be simpler and faster than writing code when developing GUI-
based applications.

Designing form

'

Form (with grid) Running application Close button

Fig. 2.30 IDE in run mode, with the running application in the foreground.

Chapter 2 Introduction to the Visual Studio .NET IDE 65

Most programs require more than visual programming. For these programs, at least some,
and often all, code must be written by the programmer. Examples of such programs include
programsthat use event handlers (used to respond to the user’ sactions), aswell as database,
security, networking, text-editing, graphics, multimedia and other types of applications.

In thischapter, weintroduced key features of the Visual Studio .NET Integrated Devel-
opment Environment (IDE). We then used the technique of visual programming to create
aworking Visual Basic .NET program without writing a single line of code! In the next
chapter, we discuss “nonvisual,” or “conventional,” programming—we create programs
that contain code. Visual Basic programming is a mixture of the two styles: Visual pro-
gramming allows usto develop GUIs easily and avoid tedious GUI programming; conven-
tional programming is employed to specify the behavior of our program.

2.7 Internet and World Wide Web Resources

www.msdn.microsoft.com/vstudio
This site is the home page for Microsoft Visua Studio .NET and provides a variety of information, in-
cluding news, documentation, downloads and other resources.

www.worldofdotnet.net
This site offers awide variety of information on .NET. It contains articles, news and links to news-
groups and other resources.

www.vbi.org

This site contains articles, reviews of books and software, documentation, downloads, links and
searchable information on Visual Basic listed by subject.

SUMMARY
e Visua Studio .NET is Microsoft's Integrated Development Environment (IDE) used by Visual
Basic and other languages to create, run and debug programs.

« When Visua Studio .NET is executed, the Start Page is displayed. This page contains helpful
links, such as recent projects, online newsgroups and downloads.

¢ Programsin the Visua Studio .NET IDE are organized into projects and solutions. A project isa
group of related files that form a program, and a solution is a group of projects.

* The Get Started page contains links to recent projects.

* The My Profile page allows programmers to customize the Visual Studio .NET IDE.

¢ IntheVisua Studio .NET IDE, programmers can browse the Web using the internal Web browser.
» Dialogs are windows used to communicate with users.

« Windows applications are programs that execute inside the Windows OS; these include Microsoft
Word, Internet Explorer and Visual Studio .NET. They contain reusable, graphica components,
such as buttons and |abels, with which the user interacts.

« Theform anditscontrols constitute the graphical user interface (GUI) of the program and are what
usersinteract with when the program is run. Control s are the graphical components with which the
user interacts. Users enter data (inputs) into the program by entering information from the key-
board and by clicking mouse buttons. The program displays instructions and other information
(outputs) for usersto read in the GUI.

56 Infroduction to the Visual Studio .NET IDE Chapter 2

* The IDFE'stitle bar displays the name of the project, the programming language, the mode of the
IDE, the name of the file being viewed and the mode of the file being viewed.

* To view atabbed document, click the tab displaying the document’s name.

« Menus contain groups of related commands that, when selected, cause the IDE to perform some
action. They arelocated on the menu bar.

« Thetoolbar contains icons that represent menu commands. To execute a command, click its cor-
responding icon. Click the down-arrow button beside an icon to display additional commands.

« Moving themouse pointer over anicon highlightstheicon and displays adescription called atoal tip.
e TheSolution Explorer window lists all thefilesin the solution.

« Thesolution’s startup project is the project that runs when the program is executed.

e TheToolbox contains controls for customizing forms.

e By using visua programming, programmers can place predefined controls onto the form instead
of writing the code themselves.

« Moving the mouse pointer over a hidden window’s icon opens that window. When the mouse
pointer leaves the area of the window, the window is hidden. This feature is known as auto-hide.
To “pin down” awindow (i.e., to disable auto-hide), click the pin icon in the upper-right corner.

« TheProperties window displays the properties for aform or control. Properties are information
about a form or control, such as size, color and position. The Properties window alows pro-
grammers to modify controls visualy, without writing code.

¢ Each control hasits own set of properties. The left column of the Properties window shows the
properties of the control, whereas the right column displays property values. This window’ s tool -
bar contains options for organizing properties either alphabetically (when the alphabetic icon is
clicked) or categorically (when the categorized icon is clicked).

« The Help menu contains a variety of options: The Contents menu item displays a categorized
table of contents; the Index menu item displays an aphabetical index that the programmer can
browse; the Search feature allows programmersto find particular help articles, by entering search
keywords.

* Dynamic Help provides alist of articles based on the current content (i.e., the items around the
location of the mouse pointer).

» Context-sengitive helpissimilar to dynamic help, except that it immediately bringsup arelevant help
articleinstead of alist of articles. To use context-sensitive help, click an item, and pressthe F1 key.

e Visua Basic programming usualy involves a combination of writing a portion of the program
code and having the Visual Studio .NET IDE generate the remaining code.

« Thetext that appears at the top of the form (thetitle bar) is specified in theform’s Text property.

e To resize the form, click and drag one of the form’s enabled sizing handles (the small squares
around the form). Enabled sizing handles are white; disabled sizing handles are gray.

¢ The grid on the background of the form is used to align controls and is not displayed at run time.

* The BackColor property specifies aform’s or control’s background color. The form’s back-
ground color is the default background color for any controls added to the form.

« Double-clicking any Toolbox control icon placesacontrol of that type ontheform. Alternatively,
programmers can “drag and drop” controls from the Toolbox to the form.

e Thelabd’s Text property determinesthetext (if any) that the label displays. The form and label
each have their own Text property.

« A property’s ellipsis button, when clicked, displays a dialog containing additional options.

Chapter 2 Introduction to the Visual Studio .NET IDE 57

In the Font dialog, programmers can select the font for aform’s or labdl’ s text.

The TextAlign property determines how the text is aigned within the label’ s boundaries.

The picture-box control displaysimages. The Image property specifiestheimagethat is displayed.
Select File > Save All to save the entire solution.

IDE design mode is indicated by the text Microsoft Visual Basic .NET [Design] in thetitle
bar. When in design mode, the program is not executing.

Whilein run mode, the program is executing, and programmers can interact with only afew IDE
fesatures.

When designing a program visually, the name of the Visual Basic file appearsin thetitle bar, fol-
lowed by [Design].

Terminate execution by clicking the close button.

TERMINOLOGY

active tab externd help
Alignment property F1 help key
Alphabetic icon File menu
Appearance category in the find
Properties window Font property
application font size
auto-hide font style
BackColor property Font window
background color form
Build menu Format menu
button form’s background color
Categorized icon form'stitle bar
clicking GUI (graphical user interface)
close aproject Help menu
close button icon
collapse atree IDE (integrated development environment)
compile aprogram input
component selection internal help

context-sensitive help
control

internal Web browser
Internet Explorer

control aform’s layout |abel

customize aform menu

customize Visua Studio .NET menu item

Data menu menu bar in Visual Studio .NET
debug a program mouse pointer

Debug menu new project in Visual Studio .NET
design mode opening a project

dialog output

double-clicking palette

down arrow paste

dynamic help picture box

Dynamic Help window pin awindow

Edit menu print a project

expand atree project

58 Introduction to the Visual Studio .NET IDE

Project menu

Chapter 2

Text property

Properties window title bar

property for aform or control tool tip

recent project toolbar

run mode toolbar icon
selecting Toolbox
single-clicking with left the mouse button Tools menu

sizing handle .vb file extension
solution View menu
Solution Explorer in Visua Studio .NET visual programming
Start Page Visua Studio .NET
startup project window layout
StretchImage property Windows application
tabbed window Windows menu

SELF-REVIEW EXERCISES

2.1 Fill in the blanks in each of the following statements:

a) The technique of

allows programmers to create GUIs without writing any

code.

b) A is agroup of one or more projects that collectively form a Visua Basic
program.

c) The feature hides a window when the mouse pointer is moved outside the
window’s area.

d A appears when the mouse pointer hovers over an icon.

e The window allows programmers to browse solution files.

f) A plusbox indicates that the treein the Solution Explorer can

g) TheProperties window’s properties can be sorted or

h) Aform's property specifies the text displayed in the form’ stitle bar

i) The allows programmers to add controls to the form in a visual manner.

i) displays relevant help articles, based on the current context.

K) Property specifies how text is aligned within alabel’s boundaries.

2.2 State whether each of the following istrue or false. If false, explain why.
a) Thetitle bar displaysthe IDE's mode.
b) The option for customizing the IDE on the Start Page isGet Started.
¢) Thex button toggles auto hide.
d) Thetoolbar icons represent various menu commands.
€) Thetoolbar containsicons that represent controls.
f) A form’'ssizing handles are always enabled.
g) Bothformsand labels have atitle bar.
h) Control properties can be modified only by writing code.
i) Buttonstypically perform actions when clicked.
j) A form’sgridisvisible only in design mode.
k) Visual Basicfilesusethefile extenson .basic.
I) A form’sbackground color is set using the BackColor property.

ANSWERS TO SELF-REVIEW EXERCISES

2.1 a) visual programming. b) solution. c) auto-hide. d) tool tip. €) Solution Explorer. f) ex-
pand. g) aphabetically, categorically. h) Text. i) Toolbox. j) Dynamic Help. k) TextAlign.

Chapter 2 Introduction to the Visual Studio .NET IDE 59

2.2 a) True. b) Fase. The programmer can customize the IDE by clicking the My Profile link
on the Start Page. c) False. The pinicon toggles auto-hide. The x button closes awindow. d) True.
€) False. The Toolbox containsicons that represent controls. f) False. Some of aform’ssizing han-
dles are disabled. g) False. Forms have atitle bar, but labels do not. h) False. Control properties can
be modified using the Properties window. i) True. j) True. k) False. Visua Basic files use the file
extension .vb.) True.

EXERCISES
2.3 Fill in the blanks in each of the following statements:
a) When an ellipses button is clicked, a isdisplayed.
b) Tosaveevery filein asolution, select .
c) help immediately displays arelevant help article. It can be accessed using the

key.
d) “GUI” isan acronym for
2.4 State whether each of the following istrue or false. If false, explain why.
a) A control can be added to aform by double-clicking its control icon in the Toolbox.
b) Theform, label and picture box have identical properties.
¢) If their machines are connected to the Internet, programmers can browse the Internet
from the Visual Studio .NET IDE.
d) Visud Basic programmers often create complex applications without writing any code.
€) Sizing handles are visible during execution.

25 Some features that appear throughout Visua Studio perform similar actions in different con-
texts. Explain and give examples of how the plus and minusboxes, ellipsis buttons, down-arrow buttons
and tool tips act in this manner. Why do you think the Visual Studio .NET IDE was designed this way?

2.6 Build the GUIs given in each part of this exercise. (Y ou need not provide any functionality.)
Execute each program, and determine what happens when a control is clicked with the mouse. Drag
controls from the Toolbox onto the form and resize them as necessary.
a) This GUI consists of aMainMenu and a RichTextBox. After inserting the Main-
Menu, add items by clicking the Type Here section, typing a menu name and pressing
Enter. Resizethe RichTextBox to fill the form.

BEH
he En. mpxn ALu <——1—— MainMenu

TrmTad lua

<———t— RichTextBox

60

2.7

2.8

Introduction to the Visual Studio .NET IDE

Chapter 2

b) This GUI consists of two Labels (12-point font size, yellow background), aMonth-
Calendar and aRichTextBox. Thecaendar isdisplayed when theMonthCalen-
dar is dragged onto the form. [Hint: Use the BackColor property to change the
background color of the labels.]

T I
EEER <——— Label
Gt Toowalllma Fi %
[T . .
1 ; !‘;:' i @ e MonthCalendar
L T e L
Ho@oE R &R
1 - H = - H v
= admax Lj2ian
S el <«————— Label
Toame s md i
<«—————— RichTextBox
Fill in the blanks in each of the following statements:
a) The property specifies which image a picture box displays.
b) The has anicon inthe Toolbox, but is not acontrol.
c) The menu contains commands for arranging and displaying windows.
d) Property determines aform’s or control’s background color.
Briefly describe each of the following terms:
a) toolbar
b) menu bar
¢) Toolbox
d) control
e) form
f) project
g) titlebar

h) solution

Introduction to Visual
Basic Programming

Objectives

 To be able to write simple Visual Basic programs.

* To be able to use input and output statements.

* To become familiar with data types.

* To understand basic memory concepts.

* To be able to use arithmetic operators.

 To understand the precedence of arithmetic operators.
* To be able to write decision-making statements.
 To be able to use equality and relational operators.
 To be able to use dialogs to display messages.
Comment is free, but facts are sacred.

C. P. Scott

The creditor hath a better memory than the debtor.

James Howell

When faced with a decision, | always ask, “ What would be
the most fun?”

Peggy Walker

Equality, in a social sense, may be divided into that of
condition and that of rights.

James Fenimor Cooper

62 Intfroduction to Visual Basic Programming Chapter 3

Outline

3.1 Introduction

3.2 Simple Program: Printing a Line of Text

3.3 Another Simple Program: Adding Integers

34 Memory Concepts

3.5 Arithmetic

3.6 Decision Making: Equality and Relational Operators
3.7 Using a Dialog to Display a Message

3.8 Internet and World Wide Web Resources

Summary ¢ Terminology Self-Review Exercises » Answers to Self-Review Exercises « Exercises

3.1 Introduction

Visual Basic .NET enables a disciplined approach to computer-program design. In this
chapter, we introduce Visual Basic programming and present examples that illustrate sev-
era important features of the language. To help readers better understand the examplesin
this and other chapters, program codeis analyzed one line at atime. In this chapter, wein-
troduce consol e applications—applications that contain only text output. There are several
types of Visual Basic projects; the console application is one of the simplest types. Text
output in a console application is displayed in a command window (also called a console
window). On Microsoft Windows 95/98, the command window is called the MS-DOS
prompt; on Microsoft Windows NT/2000/X P, the command window is called the command
prompt. With asophisticated language like Visua Basic, programmers can create programs
that input and output information in a variety of ways, which we discuss throughout the
book. For instance, in Chapter 2, we created a simple graphical user interface (GUI) for a
Windows application, using visual programming techniques. Windows applications are
discussed in greater detail in Chapters4 and 5, Control Structures: Part 1 and Control Struc-
tures: Part 2, respectively. These chapters provide amore detailed introduction to program
development in Visual Basic.

3.2 Simple Program: Printing a Line of Text

Visual Basic .NET uses some notations that might appear strange to nonprogrammers. To
explain these notations, we begin by considering a simple program (Fig. 3.1) that displays
aline of text. When this program is run, the output appearsin a command window.

This program illustrates several important Visual Basic features. For the reader’s con-
venience, all program listingsin thistext include line numbers—these line numbers are not
part of Visual Basic programs. In addition, each program is followed by one or more win-
dows showing the program’ s output.

Line 1 begins with a single-quote character (') which indicates that the remainder of
the line is a comment. Programmers insert comments in a program, or code listing, to
improve the readability of their code. Comments can be placed either on their own line (we
call these “full-line comments”) or at the end of aline of Visual Basic code (we call these

Chapter 3 Infroduction to Visual Basic Programming 63

Module modFirstWelcome

Sub Main()
Console.WriteLine ()
End Sub

QUOWO~NOOUITAWNPE

[EnY

End Module
Welcome to Visual Basic!

Fig. 3.1 Simple Visual Basic program .

“end-of-line comments’). The Visua Basic compiler ignores comments, which meansthat
comments do not cause the computer to perform any actions when the programisrun. The
comment in line 1 simply indicates the figure number and file name for this program. Line
2 provides a brief description of the program. By convention, every program in this book
beginsin this manner—you can write anything you want in acomment. In this case, thefile
isnamed Welcomel.vb. Recal that . vb isthefile extension for Visual Basic files.

Good Programming Practice 3.1
@ Every program should begin with one or more comments describing the program’ s pur pose.

Good Programming Practice 3.2

@ Comments written at the end of a line should be preceded by one or more spaces to enhance
program readability.

Lines 4-10 define our first module (these lines collectively are called a module defini-
tion). Visual Basic console applications consist of pieces called modules, which arelogical
groupings of proceduresthat simplify program organization. Procedures perform tasks and
can return information when the tasks are completed. Every console application in Visual
Basic consists of at least one module definition and one procedure. In Chapter 6, Proce-
dures, we discuss modules and procedures in detail.

The word Module is an example of a keyword (or reserved word). Keywords are
reserved for use by Visual Basic (acompletelist of Visual Basic keywordsis presented in
the next chapter). The name of the Module (i.e., modFirstWelcome) iS known as an
identifier, which is a series of characters consisting of letters, digits, and underscores ().
Identifiers cannot begin with a digit and cannot contain spaces. Examples of valid identi-
fiersare valuel, xy coordinate, total and cmdExit. Thename 7Welcome
isnot avalid identifier because it begins with a digit, and the name input £ield isnot
avalid identifier because it contains a space.

Good Programming Practice 3.3
@ Begin each module identifier with mod to make modules easier to identify.

64 Intfroduction to Visual Basic Programming Chapter 3

Visual Basic keywords and identifiers are not case sensitive. This means that upper-
case and lowercase |etters are considered to be identical, which causesmodfirstwel-
come and modFirstWelcome to be interpreted as the same identifier. Although
keywords appear to be case sensitive, they are not. Visua Studio applies the “ proper” case
to each letter of akeyword, so, whenmodule istyped, it is changed to Module when the
Enter key is pressed.

Lines 3 and 5 are blank lines. Often, blank lines and space characters are used
throughout a program to make the program easier to read. Collectively, blank lines, space
characters and tab characters are known as whitespace (space characters and tabs are
known specifically as whitespace characters). Several conventions for using whitespace
characters are discussed in this and subsequent chapters.

Good Programming Practice 3.4

@ Useblank lines, space charactersand tab charactersin a programto enhance programread-
ability.

Line 6 is present in all Visua Basic console applications. These applications begin
executing at Main, which isknown as the entry point of the program. The parentheses that
appear after Main indicatethat Main isa procedure.

Notice that lines 6-8 areindented relative to lines 4 and 10. Thisis one of the spacing
conventions mentioned earlier. Indentation improves program readability. We refer to each
spacing convention as a Good Programming Practice.

Keyword sub (line 7) begins the body of the procedure definition (the code that will
be executed as part of our program). Keywords End Sub (line 8) close the procedure def-
inition’ sbody. Notice that theline of code (line 7) in the procedure body isindented several
additional spacesto the right relative to lines 6 and 8.

Good Programming Practice 3.5

@ Indent the entire body of each procedure definition one“ level” of indentation. This empha-
sizes the structure of the procedure, improving the procedure definition’s readability.

Line7inFig. 3.1doesthe”real work” of the program, displaying the phraseWelcome
to Visual Basic! onthe screen. Line 7 instructs the computer to perform an action—
namely, to print the series of characters contained between the double quotation marks.
Characters delimited in this manner are called strings, which also are called character
strings or string literals.

The entire line, including Console.WriteLine and its argument in the paren-
theses (the string), is caled a statement. When this statement executes, it displays (or
prints) the message Welcome to Visual Basic! inthe command window (Fig. 3.1).

Notice that Console.WriteLine containstwo distinct identifiers (i.e.,, Console
and writeLine) separated by the dot operator (.). The identifier to the right of the dot
operator is the method name, and the identifier to the left of the dot operator is the class
name to which the method belongs. Classes organize groups of related methods and data,
whereas methods perform tasks and can return information when the tasks are completed.
For instance, the Conso1le class contains methods, such aswriteLine, that communi-
cate with users via the command window. We discuss classes and methods in detail in
Chapter 8, Object-Based Programming. Chapter 6 introduces methods.

When method WwriteLine completesitstask, it positions the output cursor (theloca
tion wherethe next character will be displayed) at the beginning of the next linein the com-

Chapter 3 Infroduction to Visual Basic Programming 65

mand window. This behavior produces a result similar to that of pressing the Enter key
when typing in atext editor window—the cursor isrepositioned at the beginning of the next
line in the file. Program execution terminates when the program encounters the End Sub

inline8.

Now that we have presented our first console application, we provide a step-by-step
explanation of how to create and run it using the features of the Visual Studio .NET IDE.

1.

Create the console application. Select File > New > Project... to display the
New Project dialog (Fig. 3.2). In the left pane, select Visual Basic Projects,
and, in theright pane, select Console Application. Inthedialog’'sName field,
type Welcomel. Thelocation in which project files will be created is specified
inthe Location field. By default, projects are saved in the folder Visual Studio
Projects inside the My Documents folder (on the Windows desktop). Click
OK to create the project. The IDE now contains the open console application, as
shown in Fig. 3.3. Notice that the editor window contains four lines of code pro-
vided by the IDE. The coloring scheme used by the IDE is caled syntax-color
highlighting and hel ps programmersvisually differentiate programming elements.
Keywords appear in blue, whereastext is black. When present, comments are col-
ored green. In Step 4, we discuss how to use the editor window to write code.

Change the name of the program file. For programs in this book, we change the
name of the program file (i.e., Modulel . vb) to amore descriptive name. Tore-
name the file, click Modulel.vb inthe Solution Explorer window, this step
will display the program file's properties in the Properties window (Fig. 3.4).
Change the File Name property to Welcomel . vb.

name

Project U] RO R TI [TR T (R T DT T ||
Tdaryn: [t T T

location | I R [e T 1 Sl T It I T T L U7 T CH LT T TPt ||

Left pane Right pane
=
[NCETE N PR 1 wvglyene: mﬂ
3 adzo. o ‘ — 2]
SO e MIEE et @ ﬁ hl
et e T N A T ok
__—l wh -7 Sep e 2 e Syl A e - 1 1=
S [, 11 NN LN T £
B I T Y — | by |
S ®F
el LI LT ok Pre gt
T - lI

File y‘l"::l?.--luia-ldi{. EATR .'j"-+.':--.l'.1i..-'.'.'.‘.h.j Er_:m-. |

Trar | | cwa | F |

Fig. 3.2

Creating a Console Application with the New Project dialog.

66 Introduction to Visual Basic Programming Chapter 3

Editor window
(containing program code)

I 'MHmrel - Hinaand VMss Mk ST [dealgr | - Sarkd el xh - || =
v k. oW e, pabh opoop L-- mphe oo
Iid-nm- = =7 7l e - . A v
Bl U fmst == =2 A%
T | ot zags Mokl | 4k | e T
E | e Aumbabe = | e =] A
D EHoed: Dol \ b ke L LR LU
o trg WA rrme |
i k=] =aks n==r
a = T i - P
—
E - End Itia -
el Fri== -ae n
e et I"'|l|hL'I..1u [9 L TN ;I
ZHTIE -
LRI P T | 1=
Ak~ Coek
T oy Tee
= = oy Te- b -
. | | D H ~dar LI
1"k L
Fig. 3.3 IDE with an open console application.
Solution EXplorer — - =y «on = aiors - tadenranl L
N H
Lo sdn “onnal L paRedd
= g Wl Click Modulel.vb to

% e ;""‘/ display its properties
L TP PA LR
— M k-

] - Properties window

[Hadielan - eF --wtes T

alkl (IS

B Adumarerd
Thak 1 I}
adal aa
LI

File Name M P
—_—
property Luicu

i 4sme
Fard. ol

Fig. 3.4 Renaming the program file in the Properties window.

@ Syntax-color highlighting helps programmers avoid accidentally misusing keywords.

Chapter 3 Introduction to Visual Basic Programming 67

3. Changethe name of the module. Notice that changing the name of the program file
does not affect the module name in the program code. Module hames must be
modified in the editor window. To do so, replace the identifier Modulel with
modFirstWelcome by deleting the old name and typing the new name after the
keyword Module.

4. Writing code. In the editor window, type the code contained in line 7 of Fig. 3.1 be-
tween Sub Main () and End Sub. After the programmer types the class name and
the dot operator (i.e., Console.), a window containing a scrollbar is displayed
(Fig. 3.5). This Visua Studio .NET IDE festure, caled IntelliSense, lists a class's
members, which include method names. As the programmer types characters, the
first member that matches all the characterstyped is highlighted, and atool tip con-
taining a description of that member is displayed. The programmer can either type
the complete member name (e.g., WriteLine), double-click the member namein
thelist or press the Tab key to complete the name. Once the compl ete name is pro-
vided, the IntelliSense window closes. When the programmer types the open paren-
thesis character, (, after Console.WriteLine, two additional windows are
displayed (Fig. 3.6). These are the Parameter Info and Parameter List windows.
The Parameter Info window displaysinformation about amethod’ s arguments. This
window indicates how many versions of the selected method are available and pro-
vides up and down arrowsfor scrolling through the different versions. For example,
there are 18 versions of theWriteLine method used in our example. The Param-
eter List window lists possible arguments for the method shown in the Parameter
Info window. These windows are part of the many features provided by the IDE to
aid program development. Y ou will learn more about information displayed in these
windows over the next several chapters. In this case, because we know that we want
to usethe version of WwriteLine that takes a string argument, we can close these
windows by pressing the Escape key twice (i.e., once for each of the windows).

¢) Visual Basic provides a large number of classes and methods. The Parameter Info and Pa-
rameter List windows help ensure that a method is being used correctly.

5. Run the program. We are now ready to compile and execute our program. To do
this, we simply follow steps similar to those provided in Chapter 2. To compile
the program, select Build > Build Solution. This creates a new file, named
Welcomel.exe, in the project’ s directory that contains the Microsoft Interme-
diate Language (MSIL) code for our program. The . exe file extension denotes
that thefileisexecutable (i.e., containsinstructionsthat can be executed by anoth-
er program, such as the Common Language Runtime). To run this console appli-
cation (i.e., Welcomel.exe), select Debug > Start Without Debugging.t

1. Selecting Debug Start Without Debugging causes the command window to prompt the user
to press a key after the program terminates, allowing the user to observe the program’s output. In
contrast, if we run this program using Debug > Start, aswe did for the Windows application in
Chapter 2, a command window opens, the program displays the message Welcome to Visual
Basic!, then the command window closes immediately.

68 Introduction to Visual Basic Programming Chapter 3

Partially-typed member Member list
Hat:"@ Hwii" =l

2L Ha !
'.'.llm...'.li'.-..'l..l
To S gy zarhedt s K Description of
LIRS ITE highlighted member
End "rdule 2y
L L]
ALK T Y
W
L
L TR

B RLLRT
Highlighted member —» &Ry - || = = o e wree - de e e e |

Fig. 3.5 IntelliSense feature of the Visual Studio .NET IDE.

Up arrow Down arrow
=1 r-b4 <—f——— Parameter List window
'EET ol
L LR Ay SCRF R BT S |I
=" =F I = -a el Ao Faalesn .
weluE; TFe -8 oo o -] Parameter Info window

Zwe Dol

Fig. 3.6 Parameter Info and Parameter List windows.

When the program runs, procedure Main is invoked, which is considered the entry
point to the program. Next, the statement on line 7 of Main displays Welcome to
Visual Basic!. Figure 3.7 showsthe result of program execution.

When the programmer types aline of code and pressesthe Enter key, the Visual Studio
.NET IDE responds either by applying syntax-color highlighting or by generating a syntax
error (also called acompile-time error), which indicates aviolation of the language syntax
(i.e., one or more statements are not written correctly). Syntax errors occur for various rea
sons, such aswhen keywords are misspelled. When asyntax error occurs, the Visual Studio
.NET IDE underlines the error in blue, and provides a description of the error in the Task
List window (Fig. 3.8). If the Task List window is not visible in the IDE, select
View > Other Windows > Task List to display it. [Note: One syntax error can lead to
multiple entriesin the Task List window.]

A mabsk Gl bk 200 - v E R pE - armmphan . SRS RIS Wa K
Hu 1 Auarind

i
I"'varr mnp kay Ea cnntdnnem

Fig. 3.7 Executing the program shown in Fig. 3.1.

Chapter 3 Introduction to Visual Basic Programming 69

Omitted parenthesis character
(syntax error)

“mt S W rrives Lab® 4F =
ki-\.:.lll.ljl‘rll.'u'l".‘ll.l.ll!.' _NJ | FFan d
= Hovolo ixvFon JJologm "
Blue underline ERTT T W T y
indicates a P bt 1 R L b b i o O RS T W, L3 R
- Tk
syntax error "
“Kun Hil. r
0 | .|—I
Task List window —»
I ERE TR
' - mr Lk |
L l/,:_i,'!..ﬁ——rhn. [U © T T T T
Error description(s) THL M ranin o bl Weiens - s,

I I

4

Fig. 3.8 IDE indicating a syntax error.

The message Welcome to Visual Basic! can be displayed using multiple
method calls. The program in Fig. 3.9 uses two statements to produce the same output as
that of the programin Fig. 3.1.

Lines 7-8 of Fig. 3.9 display one line of text in the command window. The first state-
ment calls Console method write to display a string. Unlike WriteLine, Write
does not position the output cursor at the beginning of the next line in the command window
after displaying its string. Instead, the next character displayed in the command window
appears immediately after the last character displayed with write. Thus, when line 8 exe-
cutes, the first character displayed, “v,” appears immediately after the last character dis-
played withwrite (i.e, the space character after theword "to" inline 7). EachWrite
or WriteLine outputsits characters at the exact location where the previouswrite'sor
WriteLine’'soutput ended.

Module modSecondWelcome

Sub Main()
Console.Write ()
Console.WriteLine ()
End Sub

RPOOWO~NOOUOITWNE

e

End Module
Welcome to Visual Basic!

Fig. 3.9 Using multiple statements to print a line of text.

70 Intfroduction to Visual Basic Programming Chapter 3

3.3 Another Simple Program: Adding Integers

Our next program (Fig. 3.10) inputstwo integers (whole numbers) provided by auser, com-
putes the sum of these integers and displays the result. As the user inputs each integer and
presses the Enter key, the integer isread into the program and added to the total.

Good Programming Practice 3.6

@ Precede every full-line comment or group of full-line comments with a blank line. The blank
line makes the comments stand out and improves program readability.

Lines 9 and 12 are declarations, which begin with keyword Dim. Thewords first-
Number, secondNumber, numberl, number2 and sumOfNumbers are the names
of variables, or locations in the computer’ s memory where values can be stored for use by
aprogram. All variables must be declared before they can be used in a program. The dec-
laration in line 9 specifies that the variables firstNumber and secondNumber are
data of type string, which indicates that these variables store strings of characters. Line
12 declares that variables numberl, number2 and sumOfNumbers are data of type
Integer, Which meansthat these variables storeinteger values (i.e., whole numbers such
as 919, —11, 0 and 138624). Data types already defined in Visual Basic, such as String
and Integer, are known as built-in data types or primitive data types. Primitive datatype
names are keywords. The 11 primitive data types are summarized in Chapter 6.

1

2

3

4 Module modAddition

5

6 Sub Main ()

he

8

9 Dim firstNumber, secondNumber As String

10

11

12 Dim numberl, number2, sumOfNumbers As Integer

13

14

15 Console.Write ()
16 firstNumber = Console.ReadLine ()

17

18

19 Console.Write ()
20 secondNumber = Console.ReadLine ()

21

22

23 numberl = firstNumber

24 number2 = secondNumber

25

26 sumOfNumbers = numberl + number2

27

28

29 Console.WriteLine (, sumOfNumbers)

Fig. 3.10 Addition program that adds two numbers entered by the user (part 1 of 2).

Chapter 3 Introduction to Visual Basic Programming 71

30
31 End Sub
32
33 End Module

Please enter the first integer: 45
Please enter the second integer: 72
The sum is 117

Fig. 3.10 Addition program that adds two numbers entered by the user (part 2 of 2).

A variable name can be any valid identifier. Variables of the same type can be declared
in separate statements or they can be declared in one statement with each variable in the
declaration separated by a comma. The latter format uses a comma-separated list of vari-
able names.

Good Programming Practice 3.7

@ Choosing meaningful variable names helps a program to be “ self-documenting” (i.e., the
program can be under stood by others without the use of manuals or excessive comments).

Good Programming Practice 3.8

@ By convention, variable-name identifiers begin with a lowercase letter. As with module
names, every word in the name after the first word should begin with a capital letter. For
example, identifier £irstNumber hasa capital N beginning its second word, Number.

Good Programming Practice 3.9

Some programmer s prefer to declare each variable on a separateline. Thisformat allowsfor
easy insertion of a comment next to each declaration.

Line 15 prompts the user to enter the first of two integers that will be added together.
Line 16 obtains the value entered by the user and assigns it to variable £irstNumber.
The argument passed to write (line 15) is called a prompt, because it directs the user to
take a specific action. The method ReadLine (line 16) causes the program to pause and
wait for user input. After entering the integer via the keyboard, the user presses the Enter
key to send the integer to the program.

Technically, the user can send any character to the program asinput. For this program,
if the user types a non-integer value, such as“hello,” arun-timeerror (an error that has
its effect at execution time) occurs (Fig. 3.11). Chapter 11, Exception Handling, discusses
how to handle such an error to make programs more robust.

Oncethe user has entered anumber and pressed Enter, this number is assigned to vari-
able firstNumber (line 16) with the assignment operator, =. The statement is read as,
“firstNumber gets the value returned by method ReadLine of the Console class.”
The assignment operator is called a binary operator, because it has two operands—
firstNumber andthevauereturned by Console.ReadLine. Theentire statement is
called an assignment statement because it assigns avalueto avariable.

Good Programming Practice 3.10

@ Place spaceson either side of a binary operator . The spaces make the operator stand out and
improve the readability of the statement.

72 Infroduction to Visual Basic Programming Chapter 3

P sl Peesnz el Bisira il

L U N]

Tj TS T T T T TR L T CRF P I B ST T T BT {TL ﬂ

Shlrard wirdran enL A L Tele g | et s L]

Fig. 3.11 Dialog displaying a run-time error.

Lines 19-20 prompt the user to enter a second integer and assign the input value to
secondNumber. User input from the command window is sent to a console application
asasString. For example, if the user typesthe characters 7 and 2 and then presses Enter,
the value returned by ReadLine is "72". To perform arithmetic operations using the
input values, the stringsfirst must be converted to Integers.

Lines 23-24 implicitly convert the two Strings typed by the user to Integer
values. Visual Basic performs data-type conversions whenever necessary. In this case, the
assignment of asString valueto an Integer variable (i.e.,, numberl) invokesthe con-
version, because Integer variables can accept only Integer values. The vaue
obtained by converting the String value in line 23 is assigned to Integer variable
numberl. In this program, any subsequent references to the value of number1 indicate
this Integer value. Likewise, the Integer value obtained by converting the String
in line 24 is assigned to variable number2. The value of number2 refers to this
Integer valueintheensuing discussion. Thevaluesstoredin firstNumber and sec-
ondNumber reman Strings.

Alternatively, this implicit conversion, can be performed so as to eliminate the need
for the sString variables. For example,

Dim numberl As Integer
numberl = Console.ReadLine ()

does not use aString variable (i.e., firstNumber). In this case, Visua Basic knows
that Console.ReadLine returns a String, and the program performs the necessary
conversion. When the string is both read and converted in a single line of code, the
String variable (i.e, £irstNumber) becomes unnecessary.

The assignment statement on line 26 calculates the sum of the Integer variables
numberl and number2 and assigns the result to variable sumOfNumbers, using the
assignment operator, =. The statement is read as, “sumOfNumbers gets the value of
numberl + number2.” Most caculations are performed in assignment statements.

After the calculation is completed, line 29 displays the result of the addition. The
comma-separated argument list giventoWriteLine

, sumOfNumbers

use {0} to indicate that we are printing out the contents of a variable. If we assume that
sumOfNumbers containsthe value 117, the expression evaluates as follows: Visua Ba

Chapter 3 Introduction to Visual Basic Programming 73

sic encounters anumber in curly braces, ({0}), known asaformat. A format indicates that
the argument after the string (in this case, sumofNumbers) will be evaluated and incor-
porated into the string, in place of the format. The resulting string is“The sum is 117."
Additional formats ({1}, {2}, {3}, etc.) can be inserted into the string. Each additional
format requires a corresponding variable name or value. For example, if the arguments to
WriteLine are

, numberl, number2,

the value of numberl replaces {0} (because it is the first variable), the value of
number2 replaces {1} (becauseit is the second variable) and the value 7 replaces {2}
(because it is the third value). Assuming numberl is 45 and number2 iS72, the string
contains "The values are 45, 72 and 7".

Good Programming Practice 3.11

@ Place a space after each comma in a method' s argument list to make method calls more
readable.

When reading or writing a program, some programmers find it difficult to match End
Sub statements with their procedure definitions. For this reason, programmers sometimes
include an end-of -line comment after End Sub, aswedo in line 31. This practice is espe-
cially helpful when modules contain multiple procedures. Although, for now, our modules
contain only one procedure, we place the comment after End Sub as agood programming
practice. We discuss how to create procedures in Chapter 6, Procedures.

Good Programming Practice 3.12

@ Follow a procedure’'s End Sub with a end-of-line comment. This comment should contain
the procedure name that the End Sub terminates.

3.4 Memory Concepts

Variable names, such asnumberl, number2 and sumO fNumbers, correspond to actual
locationsin the computer's memory. Every variable has a name, type, size and value. In the
addition program in Fig. 3.10, when the statement (line 23)

numberl = firstNumber

executes, the String previously input by the user in the command window and stored in
firstNumber isconvertedto an Integer. This Integer isplaced into amemory lo-
cation to which the name number1 has been assigned by the compiler. Suppose the user
enters the characters 45 and presses Enter. This input is returned by ReadLine as a
String and assigned to firstNumber. The program then convertsthe String "45"
to an Integer, and the computer placesthe Integer value 45 into location number1,
asshownin Fig. 3.12.

Whenever avalue is placed in amemory location, this value replaces the value previ-
oudly stored in that location. The previous value is destroyed (lost).

Suppose that the user then enters the characters 72 and presses Enter. Line 20

secondNumber = Console.ReadLine()

converts secondNumber t0 an Integer, placing the Integer value 72 into location
number2, and memory appears as shown in Fig. 3.13.

74 Infroduction to Visual Basic Programming Chapter 3

numberl 45

Fig. 3.12 Memory location showing name and value of variable numberl.

numberl 45

number2 72

Fig. 3.13 Memory locations after values for variables numberl and number2
have been input.

Once the program has obtained values for numberl and number2, it adds these
values and places their total into variable sumO £Numbers. The statement

sumOfNumbers = numberl + number2

performs the addition and replaces (i.e., destroys) sumOfNumbers’spreviousvaue. Af-
ter sumOfNumbers is calculated, memory appears as shown in Fig. 3.14. Note that the
values of number1 and number2 appear exactly asthey did before they were used in the
calculation of sumo £Numbers. Although these values were used when the computer per-
formed the calculation, they were not destroyed. Thisiillustrates that, when avaueisread
from amemory location, the processis nondestructive.

3.5 Arithmetic

Most programs perform arithmetic calculations. The arithmetic operators are summarized
in Fig. 3.15. Note the use of various special symbols not used in algebra. For example, the
asterisk (*) indicates multiplication, and the keyword Mod represents the modulus opera-
tor, which is discussed shortly. The majority of arithmetic operatorsin Fig. 3.15 are binary
operators, because each operates using two operands. For example, the expression sum +
value containsthe binary operator + and the two operands sum and value. Visual Basic
also provides unary operators, i.e., operators that take only one operand. For example, una-
ry versions of plus (+) and minus (=) are provided, so that programmers can write expres-
sionssuchas +9 and -19.

numberl 45
number?2 72
sumOfNumbers 117

Fig. 3.14 Memory locations after an addition operation.

Chapter 3 Introduction to Visual Basic Programming 75

Visual Basic Arithmetic Algebraic Visual Basic
operation operator expression expression
Addition + f+7 f +
Subtraction - p-c p -c
Multiplication * bm b *
Division (float) / X x/ vy

x/ly or=or x+y

y

Division (integer) \ none v \u
Modulus Mod r modulo s r Mod s
Exponentiation ~ qP a’p
Unary Negative - - -e
Unary Positive + +g +g

Fig. 3.15 Arithmetic operators.

Visual Basic has separate operatorsfor integer division (the backslash, \) and floating-
point division (theforward slash, /). Integer division takestwo Integer operandsand
yields an Integer result; for example, the expression 7 \ 4 evauates to 1, and the
expression 17 \ 5 evaluates to 3. Note that any fractional part in the Integer division
result smply is discarded (i.e., truncated)—no rounding occurs. When floating-point num-
bersare used with the integer division operator, the numbers are first rounded to the nearest
whole number, then divided. Thismeansthat, although 7 .1 \ 4 evaluatesto 1 asexpected,
the statement 7.7 \ 4 evaluates to 2, because 7.7 is rounded to 8 before the division
OCCurs.

The modulus operator, Mod, yields the remainder after Integer divisionin Visua
Basic programs. The expression x Mod y yieldstheremainder after x isdivided by y. Thus,
7 Mod 4 yields 3 and 17 Mod 5 yields 2. This operator is used most commonly with
Integer operands, but also can be used with other types. In later chapters, we consider
interesting applications of the modulus operator, such the determination of whether one
number isamultiple of another.

Arithmetic expressions in Visua Basic must be written in straight-line form so that
programs can be entered into a computer. Thus, expressions such as“a divided by b” must
bewritten asa / b so that all constants (such as45 and 72 in the previous example), vari-
ables and operators appear in a straight line. The following algebraic notation generally is
not acceptable to compilers:

a
b

Parentheses are used in Visual Basic expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + ¢, we write

a* (b+c)

76

Intfroduction to Visual Basic Programming Chapter 3

Visual Basic applies the operators in arithmetic expressions in a precise sequence,
determined by the following rules of operator precedence, which are generally the same as
those followed in algebra:

1.

Operatorsin expressions contained within apair of parentheses are eval uated first.
Thus, parentheses can be used to force the order of evaluation to occur in any se-
quence desired by the programmer. Parentheses are at the highest level of prece-
dence. With nested (or embedded) parentheses, the operators contained in the
innermost pair of parentheses are applied first.

Exponentiation is applied next. If an expression contains several exponentiation
operations, operators are applied from |eft to right.

Unary positive and negative, + and -, are applied next. If an expression contains
several sign operations, operators are applied from left to right. Sign operations +
and - are said to have the same level of precedence.

Multiplication and floating-point division operations are applied next. If an ex-
pression contains several multiplication and floating-point division operations,
operators are applied from left to right. Multiplication and floating-point division
have the same level of precedence.

Integer division is applied next. If an expression contains several Integer
division operations, operators are applied from left to right.

Modulus operations are applied next. If an expression contains several modulus
operations, operators are applied from |eft to right.

Addition and subtraction operationsare applied last. If an expression contains sev-
era addition and subtraction operations, operators are applied from left to right.
Addition and subtraction have the same level of precedence.

Therules of operator precedence enable Visua Basic to apply operatorsin the correct
order. When we say operators are applied from “left to right,” we are referring to the asso-
ciativity of the operators. If there are multiple operators, each with the same precedence,
the order in which the operators are applied is determined by the operators associativity.
Figure 3.16 summarizes the rules of operator precedence. This table will be expanded as
we introduce additional Visual Basic operators in subsequent chapters. A complete oper-
ator-precedence chart is available in Appendix A.

Operator(s) Operation Order of evaluation (precedence)

)

Parentheses Evaluated first. If the parentheses are nested, the
expression in theinnermost pair is evaluated first. If
there are several pairs of parentheses “on the same
level” (i.e., not nested), they are evaluated from left
toright.

Exponentiation Evaluated second. If there are several such
operators, they are evaluated from | eft to right.

Fig. 3.16 Precedence of arithmetic operators (part 1 of 2).

Chapter 3 Introduction to Visual Basic Programming 77

Operator(s) Operation Order of evaluation (precedence)
+, - Sign operations Evaluated third. If there are several such operators,
they are evaluated from left to right.
* / Multiplicationand Evaluated fourth. If there are several such operators,
Division they are evaluated from left to right.
\ Integer Evaluated fifth. If there are several such operators,
divison they are evaluated from left to right.
Mod Modulus Evaluated sixth. If there are several such operators,
they are evaluated from left to right.
+, - Addition and Evaluated last. If there are several such operators,
Subtraction they are evaluated from left to right.

Fig. 3.16 Precedence of arithmetic operators (part 2 of 2).

Notice, in the table, that we make note of nested parentheses. Not all expressions with
severd pairsof parentheses contain nested parentheses. For example, although the expression

a* (b+c) +c* (d+e)

contains multiple sets of parentheses, none of the parentheses are nested. Rather, these sets
are referred to as being “on the same level.”

Let us consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its Visual Basic equivalent.

The following is an example of an arithmetic mean (average) of five terms:

Algebra :M
5
VisillBasic. m = (a +b +c+d+e) /5

The parentheses are required, because floating-point division has higher precedence than
addition. Theentirequantity (a +b + c +d + e) istobedivided by 5. If the parentheses
are omitted, erroneously, weobtaina + b + ¢ + d + e / 5, which evaluates as

+b+c+d+g
5

The following is the equation of a straight line:
Algebra y =mx+hb
VisudlBasic. y =m * x + b

No parentheses are required. The multiplication is applied first, because multiplication has
a higher precedence than addition. The assignment occurs last because it has a lower pre-
cedence than multiplication and addition.

78 Intfroduction to Visual Basic Programming Chapter 3

Thefollowing example contains modulus (Mod), multiplication, division, addition and
subtraction operations (we use % to represent the modulusin algebra):

Algebra z = pr%q+ w/x—y

Visual Basic: z = r Mod q +

p * w / x - ¥
1 ne Circied rnuImers unaer e stalermernt maicate wie oraer i wnicrn visud bdsiC applies
the operators. The multiplication and division operators are evauated first in left-to-right
order (i.e., they associate from left to right). The modulus operator is evaluated next. The
addition and subtraction operators are applied next, from left to right. The assignment op-
erator is evaluated last.

To develop a better understanding of the rules of operator precedence, consider how a
second-degree polynomial (y = ax? + bx + c) is evaluated:

y = a * x * + b * x + ¢
‘I Ne CIrciea NUIMDErS unaer tne statement 1INalcate tne oraer 1N WNicn visua Basic applies
the operators. In Visua Basic, X2 isrepresented asx * 2.
Now, suppose that a, b, ¢ and x areinitialized asfollows. a = 2,b=3,c =7 andx
= 5. Figure 3.17 illustrates the order in which the operators are applied.
As in agebra, it is acceptable to place unnecessary parentheses in an expression to

make the expression easier to read—these parentheses are called redundant parentheses.
For example, the preceding assignment statement might be parenthesized as

y=(a*x") + (b *x) + ¢

Good Programming Practice 3.13

@ The use of redundant parenthesesin more complex arithmetic expressions can make the ex-
pressions easier to read.

3.6 Decision Making: Equality and Relational Operators

This section introduces Visual Basic's If/Then structure, which allows a program to
make a decision based on the truth or falsity of some expression. The expression in an
If/Then structure is caled the condition. If the condition is met (i.e., the condition is
true), the statement in the body of the I £/Then structure executes. If the condition is not
met (i.e., the condition is false), the body statement is not executed. Conditionsin I £/
Then structures can be formed by using the equality operators and relational operators
(also called comparison operators), which are summarized in Fig. 3.18. The relational
and equality operators all have the same level of precedence and associate from left to
right.

Chapter 3 Introduction to Visual Basic Programming 79

A

Sepl. y =2 * 5 2 +3 *5 4+ 7

5% 2 is (Exponentiation first)

Sep2. y =2 * 25 + 3 * 5 4+ 7
2 * 25 is [50] (Leftmost multiplication)
Sep3. y = 50 + 3 * 5 + 7

3 %5 is (Multiplication before addition)

Sep4d. y = 50 + 15 + 7

50 + 15 is ! (Leftmost addition)
Sep5. y = 65 + 7
65 + 7 is ’ (Last addition)
Sepb. y = 72 (Last operation—place 72 into y)

Fig. 3.17 Order in which a second-degree polynomial is evaluated.

Visual Basic Example
Standard algebraic equality of Visual
equality operator or or relational Basic Meaning of
relational operator operator condition Visual Basic condition
Equality operators
= = X =Yy xisequal toy
+ <> X <>y x isnot equal toy

Relational operators

\%
\Y
v

~

x isgreater than y

< < X<y xislessthany
> >= >= x isgreater than or equal toy
< <= X <= x islessthan or equal to y

Fig. 3.18 Equality and relational operators.

80 Infroduction to Visual Basic Programming

Common Programming Error 3.1

Chapter 3

@ Itisa syntax error to add spaces between the symbolsin the operators <>, >= and<= (asin

< > > =< =)

Common Programming Error 3.2

@ Reversal of the operators <>, >= and <= (asin ><, =>, =<) isasyntax error.

The next example uses six I £/Then statements to compare two numbers entered into
a program by the user. If the condition in any of these I £/Then statements is true, the
output statement associated with that I£/Then executes. The user inputs these values,
which are converted to Integers and stored in variables numberl and number2,
respectively. The comparisons are performed, and the results of the comparison are dis-
played in the command window. The program and outputs are shown in Fig. 3.19.

1

2

3

4 Module modComparison

5

6 Sub Main()

7

8

9 Dim numberl, number2 As Integer
10

11

12 Console.Write (

13 numberl = Console.ReadLine ()
14

15

16 Console.Write (

17 number2 = Console.ReadLine ()
18

19 If numberl = number2 Then
20 Console.WriteLine (

21 End If

22

23 If numberl <> number2 Then
24 Console.WriteLine (

25 End If

26

27 If numberl < number2 Then
28 Console.WriteLine (

29 End If

30

31 If numberl > number2 Then
32 Console.WriteLine (

33 End If

34

35 If numberl <= number2 Then
36 Console.WriteLine (

37 End If

numberl, number2)

numberl, number2)

numberl, number2)

numberl, number2)

numberl, number2)

Fig. 3.19 Performing comparisons with equality and relational operators (part 1 of 2).

Chapter 3 Introduction to Visual Basic Programming 81

39 If numberl >= number2 Then
40 Console.WriteLine (numberl, number?2)
41 End If

43 End Sub

45 End Module

Please enter first integer: 1000
Please enter second integer: 2000
1000 <> 2000

1000 < 2000

1000 <= 2000

Please enter first integer: 515
Please enter second integer: 49

515 <> 49
515 > 49
515 >= 49

Please enter first integer: 333
Please enter second integer: 333

333 = 333
333 <= 333
333 >= 333

Fig. 3.19 Performing comparisons with equality and relational operators (part 2 of 2).

Line 9 declaresthe variables that are used in procedure Main. In thisline, two variables
of type Integer are declared. Remember that variables of the same type may be declared
either inone declaration or in multiple declarations. Also recall that, when morethan onevari-
ableis placed in a declaration, those variables must be separated by commas (,). The com-
ment that precedes the declaration indicates the purpose of the variablesin the program.

Lines13 and 17 both retrieveinputsfrom the user, convert theinputstotype Integer
and assign the valuesto the appropriate variables(i.e., number1 or number2) in one step.

The I£/Then structureinlines 19-21 comparesthe values of the variables number1
and number2 for equality. If the values are equal, the program outputs the String gen-
erated by the arguments that are given to WriteLine inline 20.

If numberl contains the vaue 1000 and number2 contains the value 1000, the
expression evaluates as follows: numberl and number2 are converted to Strings,
which are placed inthestring " {0} = {1} " inplaceof the {0} and {1} formats. At this
point, the String, namely "1000 = 1000", issenttoWriteLine to be printed. Asthe
program proceeds through the I£/Then structures, additional Strings are output by
these Console.WriteLine statements. For example, when given the value 1000 for
numberl and number2, the I£/Then conditionsin lines 35 (<=) and 39 (>=) also are
true. Thus, the output displayed is

82 Intfroduction to Visual Basic Programming Chapter 3

A
mnn

\

Notice the indentation in the I£/Then statements throughout the program. Such
indentation enhances program readability.
Good Programming Practice 3.14

@ Indent the statement in the body of an I £/ Then structure to emphasize the body of the struc-
ture and to enhance program readability.

—a- Common Programming Error 3.3
@ Omission of the Then keyword in an If/Then structureisa syntax error.

Thetablein Fig. 3.20 showsthe precedence of the operatorsintroduced in this chapter.
The operators are displayed from top to bottom in decreasing order of precedence. All oper-
atorsin Visual Basic .NET associate from left to right.

When uncertain about the order of evaluation in a complex expression, use parentheses to
force the order, as you would do in an algebraic expression. Doing so can help avoid subtle
bugs.

3.7 Using a Dialog to Display a Message

Although the programs discussed thusfar display output in the command window, most Vi-
sual Basic programs use dialogs to display output. Dialogs are windows that typicaly dis-
play messages to the user. Visual Basic provides class MessageBox for creating dialogs.
The program in Fig. 3.21 uses adialog to display the square root of 2.

Inthis example, we present aprogram that containsasimple GUI (i.e., thedialog). The
.NET Framework Class Library (FCL) containsarich collection of classesthat can be used
to construct GUIs. FCL classes are grouped by functionality into namespaces. Line 4 isan
Imports statement that indicates we are using the features provided by the
System.Windows.Forms namespace. For example, System.Windows.Forms
contains windows-related classes (i.e., forms and dialogs). We discuss this namespace in
detail after we discuss the code in this example.

Operators Type

() parentheses

~ exponentiation

* / multiplicative

\ Integer divison
Mod modulus

Fig. 3.20 Precedence and associativity of operators introduced in this chapter
(part 1 of 2).

Chapter 3 Infroduction to Visual Basic Programming 83

Operators Type
+ - additive
= <> < <= > >= equality and relational

Fig. 3.20 Precedence and associativity of operators introduced in this chapter
(part 2 of 2).

1

2

3

4 Imports System.Windows.Forms

5

6 Module modSquareRoot

7

8 Sub Main ()

9

10

11 Dim root As Double = Math.Sqrt(2)
12

13

14 MessageBox. Show (& root, _
15)

16

17 End Sub

18

19 End Module

B
Y
I - T e

Tin: Suur: PresL oI]

[RS RTS T T IS S WS- U O |

o | Empty I‘,ommand

window

Fig. 3.21 Displaying text in a dialog.

Line 11 callsthe sgrt method of the Ma th classto compute the square root of 2. The
value returned is a floating-point number, so we declare the variable root as type
Double. The Double data type stores floating-point numbers (i.e., humbers such as
2.3456 and —845.7840). Notice that we declare and initialize root on asingleline.

Notice the use of spacing in lines 14-15 of Fig. 3.21. To improve readability, long state-
ments may be split over severd lines using the line-continuation character, . Line 14 uses
the line-continuation character to indicate that line 15 is a continuation of the previous line.
A single statement can contain as many line-continuation characters as necessary. However,
at least one whitespace character must precede each line-continuation character.

84 Intfroduction to Visual Basic Programming Chapter 3

Common Programming Error 3.4

Solitting a statement over several lines without including the line-continuation character is
a syntax error.

- Common Programming Error 3.5

Failure to precede the line-continuation character with at least one whitespace character is
a syntax error.

- Common Programming Error 3.6
Placing anything, including comments, after a line-continuation character isa syntax error.

oy ok

—o- Common Programming Error 3.7
Solitting a statement in the middle of an identifier or stringisa syntax error.

Good Programming Practice 3.15

A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines with one level of indentation.

Lines 14-15 (Fig. 3.21) call method Show of class MessageBox. This method takes
two arguments. The first argument is the String that is displayed in the dialog. The
second argument isthe String that isdisplayed in the dialog’ stitle bar.

In this case, the first argument to method Show is the expression

B

& root

which uses the string concatenation operator, &, to combine a String (the literal "The
square root of 2 is ") and thevaueof thevariable root (the Doub1le variable con-
taining the squareroot of 2). The string concatenation operator is abinary operator used to
combine two Strings. This operation resultsin anew, longer String. If an argument
given to the string concatenation operator is not of type string, the program creates a
String representation of the argument.

When executed, lines 14-15 display the dialog shown in Fig. 3.22. The dialog includes
an OK button that allows the user to dismiss (or close) the dialog by positioning the mouse
pointer (also called the mouse cursor) over the OK button and clicking the mouse. Once
the dialog has been dismissed, the program terminates.

Many classes provided by Visual Basic .NET (such asMessageBox) must be added
to the project before they can be used in a program. These compiled classes are located in
afile, called an assembly, that hasa . d11 (or dynamic link library) extension.

Information about the assembly that we need can be found in the Visual Studio .NET
documentation (also called the MSDN Documentation). The easiest way to locate thisinfor-
mation is by selecting Help > Index... to display the Index dialog (Fig. 3.23).

TypetheclassnameintheLook for: box, and select the appropriatefilter, which nar-
rows the search to a subset of the documentation. Visual Basic programmers should select
Visual Basic and Related. Next, click the MessageBox class link to display docu-
mentation for theMessageBox class (Fig. 3.24). TheRequirements section of the doc-
umentation lists the assembly that contains the class. Class MessageBox is located in
assembly System.Windows.Forms.d11.

Chapter 3 Infroduction to Visual Basic Programming 85

Dialog sized to Title bar

accommodate
contents T wd Close box
th=a arr ol o Fec A S 2056

OK button allows

the user to dismiss = W |_.;<—— Mouse pointer
the dialog.

Fig. 3.22 Dialog displayed by calling MessageBox . Show.

4
Zoge
Search string ——»[“wews™=- =
b
Filter — — = s Becho <Fabdoe =l _
Link to MessageBox
oot~ < = .
1 T m e class documentation
L S b
[T TR TH LT —1
1
cupar
e =l ™ = =t o e ;l

Fig. 3.23 Obtaining documentation for a class by using the Index dialog.

Requirements MessageBox class
section heading documentation

Vli-;ul.tln-cu-un LT 11| 11 =

[=] Tk ek PR
FHpay il Chia " ok |

P | ;l

ni &k

Pezyuirzimivnls
R T I T LT | R G AT B PR I B P
Flddurme: =1 owne T8 W0 darna BT w00 w' o v e Bl . | U dans 2000 J
mp=mnsE = Ira Ttren W netec PR Feee cnel, VU rd-= RTT Savacbamale

Nneamnly: L=empn D ped=ee For—=- 017 S=clem nd==n Fa =+ =1

Assembly containing
class MessageBox

Fig. 3.24 Documentation for the MessageBox class.

It is necessary to add a reference to this assembly (i.e., to place an assembly in the
Solution Explorer’s References folder) if we wish to use class MessageBox in our
program. Visual Studio provides a simple process by which to add areference. Let usdis-
cuss the process of adding areferenceto System.Windows . Forms.

86 Introduction to Visual Basic Programming Chapter 3

Common Programming Error 3.8
@ Including a namespace with the Impor t s statement without adding a referenceto the prop-
er assembly isa syntax error.

To add areferenceto an existing project, select Project > Add Reference... todis
play the Add Reference dialog (Fig. 3.25). Locate and double click System.Win-
dows . Forms .d11 to add thisfileto the References folder, and then click OK. Notice
that System.Windows . Forms isnow listed inthe References folder of the Solution

Explorer (Fig. 3.25).

Alo-mkkos

1. aw e,

[L) L I |}
o we i

v =roxhssas

Ao easdedr Sy Lo L LU T L g P! Bt ﬂ

"l] == ks
== bu | T | TlNA | E=rioa |

o= -. ur.ll | a= LML el =

Solution Explorer after

Solution Explorer before
reference is added

reference is added

=k -y [+ oren = ez
F 5 A
et s s

[LS - e
I— LRIT UL Ty EIY
ok -

-1
I T

References folder System.Windows.Forms
(expanded) reference

Fig. 3.25 Adding areference to an assembly in the Visual Studio .NET IDE.

Chapter 3 Introduction to Visual Basic Programming 87

Now that the assembly System.Windows.Forms.dl1l isreferenced, we can use
the classes that are a part of the assembly. The namespace that includes class Mes -
sageBox, System.Windows.Forms, aso is specified with the Imports statement
in line 4 of our code (Fig. 3.21). [Note: The Imports statement is not added to the pro-
gram by Visual Studio; programmers must add this line to their code.]

—s- Common Programming Error 3.9
@ Forgetting to add an Imports statement for a referenced assembly is a syntax error.

We did not have to add references to any of our previous programs, because Visua
Studio .NET adds some references to assemblies when the project is created. The references
added depend on the project type that is selected in the New Project dialog. Some assem-
blies do not need to be referenced. Class Console, for instance, is located in the assembly
mscorlib.dl11, but wedid not need to reference this assembly explicitly to useit.

The System.Windows . Forms hamespace contains many classes that help Visual
Basic programmers define graphical user interfaces (GUIs) for their applications. GUI
components (such as buttons) facilitate both data entry by the user and the formatting or
presenting of data outputs to the user. For example, Fig. 3.26 is an Internet Explorer
window with a menu bar containing various menus, such as File, Edit, and View. Below
the menu bar is atool bar that consists of buttons. Each button, when clicked, executes a
task. Beneath the tool bar is atext box in which the user can type the location of a World
Wide Web siteto visit. To the left of the text box isalabel that indicates the purpose of the
text box. The menus, buttons, text boxes and labelsare part of Internet Explorer’ sGUI, they
enable users to interact with the Internet Explorer program. Visua Basic provides classes
for creating the GUI components shown here. Other classes that create GUI components
will be described in Chapters 12 and 13, Graphical User Interface Concepts: Part 1 and
Graphical User Interface Concepts: Part 2.

In this chapter, we have introduced important features of Visual Basic, including dis-
playing data on the screen, inputting data from the keyboard, performing calculations and
making decisions. Many similar techniques are demonstrated in the next chapter as we re-
introduce Visual Basic Windows applications (applications that provide a graphical user
interface). The next chapter also begins our discussion of structured programming and famil-
iarizes the reader further with indentation techniques. We study how to specify and vary the
order in which statements are executed—this order is called flow of control.

3.8 Internet and World Wide Web Resources

www.vb-world.net
VB-World provides avariety of information on Visua Basic, including offering users the opportunity
to query an expert in the .NET platform. This site also hosts an active discussion list.

www.devx.com/dotnet
This Web site contains information about the .NET platform, with topics ranging from Visual Basic
.NET to Active Server Pages .NET. The site includes links to articles, books and current news.

www.vbcity.com

The vbCity Web site lists numerous links to articles, books and tutorials on Visual Basic .NET. The
site allows programmersto submit code and haveit rated by other devel opers. Thissite also pollsvis-
itors on avariety of Visua Basic topics and provides access to archives, which include code listings
and news.

88 Introduction to Visual Basic Programming Chapter 3

Button
Label (displaying anicon) Menu (e.g., Help) Textbox Menu bar

t

e LA B Aneraalon. dar “Rurawu LLd zpad Eapkerir

Al

=i, - = r-ﬂ-i =im Crawadia By LR ﬁ"”"-' '-ﬂl% '-i'Eﬂ'DE.;."EE
akk . El';-llﬂ'.d-ciu Ty d E\.:.ul

T -

= id=vud wal e w e e sl bR i m A e
-".- LO DR Rl T A SR S N TR NIERLLE T LEES DR LE RS Lo ol [l

DElTEI

e hemriares Inn SRR A N 2L S = FRT

Sl cm o omaoan

[T BT TR IR

b Now Awvailable!

|] |
) T [T

Fig. 3.26 Internet Explorer window with GUI components.

www.cyber-matrix.com/vb.htm
This site links to Visual Basic tutorias, books, tips and tricks, controls, programming tools, maga-
Zines, news groups and more.

searchvb. techtarget.com
This site offers a search engine designed specifically to discover Visual Basic Web sites.

www.aewnet.com/root/dotnet/vbnet
The site links to demos, articles, tutorials, and to other Visua Basic .NET sitesin various languages
(e.g., German).

SUMMARY

« A console application is an application that primarily displays text output in acommand window.
In Microsoft Windows 95/98, the command window is called the MS-DOS prompt. In Microsoft
Windows NT/2000/X P, the command window is called the command prompt.

« Thesingle quote character, ', indicates that the remainder of alineis acomment.

« Programmers insert comments in a program to improve the readability of their code. Comments
areignored by the Visual Basic compiler; they do not cause the computer to perform any actions
when the program is run.

« Visua Basic console applications consist of pieces called modules, which arelogica groupings of
procedures that ssimplify program organization.

« Procedures perform tasks and can return information when the tasks are compl eted. Every console
application in Visual Basic consists of at least one module definition and one procedure.

« Keywords are words that are reserved for use by Visua Basic; programmers must choose other
names as identifiers.

* The name of amodule isan example of anidentifier. Anidentifier isaseries of characters, con-
sisting of letters, digits and underscores (), that does not begin with adigit and does not con-
tain spaces.

Chapter 3 Introduction to Visual Basic Programming 89

» Visual Basic keywords and identifiers are case insensitive—uppercase and lowercase letters are
considered to be identical. Thus, modfirstwelcome and modFirstWelcome are the same
identifier.

« Blank lines, tabs and space characters are often used throughout a program to make the program
easier to read. Collectively, blank lines, tabs and space characters are known as whitespace.

« Console applications begin executing at procedureMa in, which isknown asthe entry point of the
program.

« Keyword sub beginsthe body of aprocedure definition. Keywords End Sub close the procedure
definition’s body.

¢ Charactersdelimited by double quotation marks are called strings, character strings or string literals.

« Methods perform tasks and return data when the tasks are completed. Groups of related methods
are organized into classes.

e The dot operator, ., denotes a member of a particular class. The identifier to the right of the dot
operator is the member name, and the identifier to the left of the dot operator indicates the name
of the class name to which the member belongs.

* TheConsole classcontains methods, such aswriteLine, that communicate with usersviathe
command window.

» Syntax-color highlighting helps programmers visualy differentiate programming elements. Key-
words appear in blue, whereas text is black. When present, comments are colored green.

* The IntelliSense feature lists a class's members, which include method names.

* TheParameter Info window displaysinformation about amethod’ sarguments. The Parameter List
window lists possible arguments for the method highlighted in the Parameter Info window. These
windows are part of the many features provided by the IDE to aid program devel opment.

¢ TheReadLine method causesthe program to pause and wait for user input. Oncethe user presses
the Enter key, theinput is returned to the program, and execution resumes.

« A syntax error (also called acompile error) isaviolation of the language syntax.

e UnlikewriteLine, Write doesnot position the output cursor at the beginning of the next line
in the command window after displaying its string.

« Declarations begin with keyword Dim and allow the programmer to specify the name, type, size
and value of avariable.

« Variables are locations in the computer’s memory where values can be stored for use by a pro-
gram. Every variable has a name, type, size and value.

« All variables must be declared before they can be used in a program.

» Datatypes aready defined in Visua Basic, such as String and Integer, are known as built-
in data types or primitive data types.

¢ Primitive type names are keywords.
e Variables of type Integer store integer values (i.e., whole numbers such as 919, —11 and 0).

¢ Arun-timeerror isan error that affects the program during execution (unlike asyntax error, which
affects the program when it is compiled).

« Theassignment operator, =, assigns avalue to avariable.

¢ Visua Basic performs an implicit conversion between data types whenever necessary. For exam-
ple, astring isconverted to an Integer to perform an arithmetic operation.

90 Intfroduction to Visual Basic Programming Chapter 3

« A format, suchas {0}, in aString indicates that the argument after the String will be eval-
uated and incorporated into the String in place of the format.

« Whenever avalueis placed in amemory location, this value replaces the value previously stored
in that location. The previous vaue is destroyed.

« When avdueisread from amemory location, the process is nondestructive, meaning thevalueis
not changed.

« Binary operators operate on two operands; unary operators operate on one operand.

 Visual Basic has separate operators for Integer division (the backslash, \) and floating-point
division (theforward dash, /). Integer divisionyiedsan Integer result. Any fractiona part
in Integer divisionisdiscarded (i.e., truncated).

« The modulus operator, Mod, yields the remainder after Integer division.

e Arithmetic expressionsin Visua Basic must be written in straight-line form to facilitate entering
programs into a computer.

¢ Parentheses are used in Visual Basic expressions in the same manner asin algebraic expressions.

» Visual Basic appliesthe operatorsin arithmetic expressionsin a precise sequence, which is deter-
mined by the rules of operator precedence.

« If an expression contains multiple operators with the same precedence, the order in which the op-
erators are applied is determined by the associativity of the operators.

* Asinagebra, it is acceptable to place unnecessary parentheses in an expression to make the ex-
pression easier to read.

» Visua Basic’sI£/Then structureallowsaprogram to make adecision based on thetruth or falsity
of some condition. If the condition is met (i.e., the condition is true), the statement in the body of
the I£/Then structure executes. If the condition is not met (i.e., the condition is false), the body
statement is not executed.

¢ Conditionsin I £/Then structures can beformed by using the equality operatorsand relational op-
erators. (Equality operators and relational operators also are called comparison operators.)

« All relational and equality operators have the same level of precedence and associate from |eft
to right.

» Diaogsarewindowsthat typically display messagesto theuser. Visual Basic providesclassMes -
sageBox for the creation of dialogs.

¢ The .NET Framework Class Library organizes groups of related classes into namespaces.

¢ The System.Windows .Forms namespace contains windows-related classes (i.e., forms and
diadogs) that help Visua Basic programmers define graphical user interfaces (GUIs) for their ap-
plications.

* GUI components facilitate data entry by the user and the formatting or presenting of data outputs
to the user.

¢ An Imports statement indicates that a program uses the features provided by a specific
namespace, such as System.Windows . Forms.

« Toimprove readability, long statements may be split over several lines with the line-continuation
character, . Although a single statement can contain as many line-continuation characters as

necessary, at least one whitespace character must precede each line-continuation character.

» Compiled classes, called assemblies, are located in a file with a .d11 (or dynamic link library)
extension.

Chapter 3

TERMINOLOGY

' comment

" (double quotation)

_ (underscore) line-continuation character
, (comma)

< (less-than operator)

<= (less-than-or-equal-to operator)
<> (inequality operator)

= assignment operator

= equality operator

> (greater-than operator)

>= (greater-than-or-equal-to operator)
Add Reference dialog
algebraic notation

application

argument

arithmetic calculation

arithmetic operator

assembly

assignment statement
associativity of operators

asterisk (*) indicating multiplication
average

binary operator

blank line

body of aprocedure definition
built-in data type

button

carriage return

case sensitive

character set

character string

class

class name

command prompt

command window
commarseparated list

comment

comparison operator

compiler

compile-time error

concatenation of Strings
condition

console application

Console class

console window
Console.Write method
Console.WriteLine method
datatype

decision

Infroduction to Visual Basic Programming

declaration

dialog

Dim keyword

display output
documentation

dot (.) operator

embedded parentheses

empty string (" ")

End Sub keywords

Enter (or Return) key

entry point of a program

error handling

escape sequence
exponentiation

falsity

flow of control

format

formatting strings

GUI component

identifier

If/Then structure
Imports keyword
indentation in I£/Then structure
indentation techniques

Index dialog

innermost pair of parentheses
inputting data from the keyboard
integer division

keyword

left-to-right evaluation
location in the computer’s memory
logic error

Main procedure

making decisions
MessageBox class

method

Mod (modulus operator)
MS-DOS prompt

name of avariable
namespace

nested parentheses
nondestructive

OK button on adialog
operand

operator precedence

output

parentheses ()

parentheses “on the same level”
performing a calculation

91

92 Infroduction to Visual Basic Programming Chapter 3
pop-up menu string formatting

precedence string literal

primitive data type string of characters
programmer-defined class String type

prompt structured programming

readability Sub keyword

ReadLine method syntax error

real number System hamespace

redundant parentheses System.dl1 assembly

reserved word System.Windows.Forms assembly
reuse System.Windows.Forms hamespace
robust Task List window

rounding Then keyword

run-time logic error truncate

self-documenting truth

single-line comment type of avariable

space character unary operator

spacing convention unnecessary parentheses

special character valid identifier

split a statement value of avariable

standard output variable

statement Visua Basic compiler

straight-line form whitespace character

string Windows application

String concatenation

SELF-REVIEW EXERCISES

3.1

Fill in the blanks in each of the following statements:

a)

b)
©)
d)
e
f)
9)
h)

i)
)
k)
1)

m)
n)

Keyword begins the body of a module, and keyword(s) end(s)
the body of amodule.

begins a comment.

, and collectively are known as whitespace.
Class contains methods for displaying dialogs.

arereserved for use by Visual Basic.
Visua Basic console applications begin execution at procedure .

Methods and display information in the command window.

Keyword begins the procedure body and keyword(s) end(s) the

procedure body.

A Visual Basic program uses alan statement to indicate that a namespaceis

being used.

When avalue is placed in a memory location, this value the previous value

in that location.

Theindication that operators are applied from left to right refersto the of the

operators.

Visua Basic’s I£/Then structure alows a program to make a decision based on the
or of acondition.

Typessuch as Integer and String are often called data types.

A variableisalocation inthe computer’s where avalue can be stored for use

by a program.

Chapter 3 Introduction to Visual Basic Programming 93

0) Theexpressiontothe of the assignment operator (=) isaways evaluated first
before the assignment occurs.
p) Arithmetic expressionsin Visual Basic .NET must be written in formto fa-

cilitate entering programs into the computer.

3.2 State whether each of the following istrue or false. If false, explain why.

a) Commentscausethe computer to print thetext after the * on the screen when the program
executes.

b) All variables must be declared before they can be used in aVisua Basic .NET program.

¢) Visud Basic considersthe variablesnumber and NuMbEr to be different.

d) Thearithmetic operators *, /, + and - al have the same level of precedence.

€) A dtring of characters contained between double quotation marks is called a phrase or
phrase literal.

f) Visua Basic console applications begin executing in procedure Main.

0) Integer divisionyieldsan Integer result.

ANSWERS TO SELF-REVIEW EXERCISES

3.1 a) Module, End Module. b) Single quotation mark, '. c) Blank lines, space characters,
tab characters. d) MessageBox. €) Keywords. f) Main. g)Write, WriteLine. h) Sub, End
Sub. i) Imports. j) replaces. k) associativity. 1) truth, falsity. m) primitive (or built-in). n)
memory. 0) right. p) straight-line.

3.2 a) Fase. Comments do not cause any action to be performed when the program executes.
They are used to document programs and improve their readability. b) True. ¢) False. Visua Basic
identifiers are not case sensitive, so these variables are identical. d) False. The operators * and / are
on the same level of precedence, and the operators + and - are on a lower level of precedence. €)
False. A string of charactersis called astring or string literal. f) True. g) True.

EXERCISES

33 Write Visual Basic statements that accomplish each of the following tasks:
a) Display the message "Hello" using classMessageBox.
b) Assign the product of variablesnumber and userData to variable result.
c) Statethat aprogram performsasample payroll calculation (i.e., usetext that helpsto doc-
ument a program).

3.4 What displaysin the dialog when each of thefollowing statementsis performed? Assumethe
valueof x is2 and thevaueof y is 3.

a) MessageBox.Show (, X)

b) MessageBox.Show((x + x), _

)
C) MessageBox.Show ()
d) MessageBox.Show(_
(x +vy), (y +v))

3.5 Given z= 8€° —n, which of the following are correct statements for this equation?

a z = * e -n

b) z = (* e) * - n

C) z = (e”) - n

d z = * e © - n)

€ z = (*e) " (() - n)
f) z = * e * e - n

94 Infroduction to Visual Basic Programming Chapter 3

3.6 Indicate the order of evaluation of the operators in each of the following Visual Basic state-
ments, and show the value of x after each statement is performed.

a) X = + * \ -

by x = Mod + * - /

) x=(2*9* (3 4+ (9*3/ (32))))

3.7 Write aprogram that displays the numbers 1 to 4 on the same line, with each pair of adjacent
numbers separated by one space. Write the program using the following:

a) UseonewWrite statement.

b) Usefour write statements.

3.8 Write a program that asks the user to enter two numbers, obtains the two numbers from the
user and prints the sum, product, difference and quotient of the two numbers. Use the command win-
dow for input and output.

3.9 Write a program that inputs from the user the radius of acircle and prints the circle’s diam-
eter, circumference and area in the command window. Use the following formulas (r is the radius):
diameter = 2r, circumference = 2zr, area = zr?. Use 3.14159 for .

3.10 Writeaprogram that displays abox, an oval, an arrow and adiamond using asterisks (*) as
follows:

khkkkkkkkk * % % * *

* * * * * k% * %

* * * * *kkk* * *

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

* * * * * * *
*khkkkkkkkk * % % * *

Use the command window for output.

3.11 What does the following code print?

Console.Write ()
Console.Write ()
Console.WriteLine ()
Console.Write ()
Console.WriteLine ()

3.12 What do the following statements print?

Console.WriteLine (,)
Console.WriteLine (’)
Console.WriteLine (’ p)
Console.WriteLine (’)
Console.WriteLine (, p)

3.13 Write a program that reads in two integers and determines and prints whether the first is a
multiple of the second. For example, if the user inputs 15 and 3, the first number isa multiple of the
second. If the user inputs 2 and 4, the first number is not a multiple of the second. Use the command
window for input and output. [Hint: Use the modulus operator.]

Chapter 3 Introduction to Visual Basic Programming 95

3.14 Write aprogram that inputs one number consisting of five digits from the user, separates the
number into itsindividual digitsand printsthe digits separated from one another by three spaces each.
For example, if the user typesin the number 42339, the program should print

Use the command window for input and output. [Hint: This exercise is possible with the tech-
niques discussed in this chapter. You will need to use both division and modulus operations to “ pick
off” each digit.]

For the purpose of this exercise, assume that the user enters the correct number of digits. What
happens when you execute the program and type a number with more than five digits? What happens
when you execute the program and type a number with fewer than five digits?

3.15 Using only the programming techniques discussed in this chapter, write a program that cal-
cul ates the squares and cubes of the numbers from 0 to 5 and prints the resulting valuesin table for-
mat as follows:

number square cube

0 0 0

1 1 1

2 4 8

3 9 27
4 16 64
5 25 125

Use the command window for input and output. [Note: This program does not require any input from
the user.]

Control Structures:
Part 1

Objectives

 To understand basic problem-solving techniques.

* To develop algorithms through the process of top-
down, stepwise refinement.

» Tousethe If/Then and If/Then/Else Selection
structures to choose among alternative actions.

* TousetheWhile, Do While/Loop and Do
Until/Loop repetition structuresto execute
statements in a program repeatedly.

 To understand counter-controlled repetition and
sentinel-controlled repetition.

 To use the assignment operators.

* To create basic Windows applications.

Let’s all move one place on.

Lewis Carroll

The wheel is come full circle.

William Shakespeare, King Lear

How many apples fell on Newton’'s head before he took the

hint?

Robert Frost, comment

Chapter 4 Control Structures: Part 1 97

Outline

4.1 Introduction

4.2 Algorithms

4.3 Pseudocode

4.4 Control Structures

4.5 If/Then Selection Structure

4.6 If/Then/Else Selection Structure
4.7 While Repetition Structure

4.8 Do While/Loop Repetition Structure

4.9 Do Until/Loop Repetition Structure

4.10 Assignment Operators

4.11 Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)

4.12 Formulating Algorithms with Top-Down, Stepwise Refinement: Case
Study 2 (Sentinel-Controlled Repetition)

4.13 Formulating Algorithms with Top-Down, Stepwise Refinement: Case
Study 3 (Nested Control Structures)

4.14 Formulating Algorithms with Top-Down, Stepwise Refinement: Case
Study 4 (Nested Repetition Structures)

4.15 Introduction to Windows Application Programming

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises ¢ Exercises

4.1 Introduction

Before writing aprogram to solve aproblem, it is essential to have a thorough understand-
ing of the problem and a carefully planned approach. When writing aprogram, it isequally
important to recognize the types of building blocksthat are available and to employ proven
program-construction principles. In this chapter and the next, we present the theory and
principles of structured programming. The techniques presented are applicable to most
high-level languages, including Visual Basic .NET. When we study object-based program-
ming in greater depthin Chapter 8, we will seethat control structuresare helpful in building
and manipulating objects. The control structures discussed in this chapter enable such ob-
jectsto be built quickly and easily. In this chapter, we continue our study of console appli-
cations and our discussion of Windows applications that we began in Chapter 2.

4.2 Algorithms

Any computing problem can be solved by executing a series of actions in a specific order.
A procedurefor solving a problem, in terms of

1. the actions to be executed and
2. the order in which these actions are to be executed,

98 Control Structures: Part 1 Chapter 4

is called an algorithm. The following example demonstrates the importance of correctly
specifying the order in which the actions are to be executed.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) get out of bed, (2) take off pgjamas, (3) take a shower, (4)
get dressed, (5) eat breakfast and (6) carpool to work. This routine prepares the executive
for a productive day at the office.

However, suppose that the same steps are performed in a dlightly different order: (1)
get out of bed, (2) take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6)
carpool to work. In this case, our junior executive shows up for work soaking wet.

Indicating the appropriate sequence in which to execute actions is equally crucial in
computer programs. Program control refers to the task of ordering a program’s state-
ments correctly. In this chapter, we begin to investigate the program-control capabilities
of Visual Basic.

4.3 Pseudocode

Pseudocode is an informa language that helps programmers develop algorithms. The
pseudocode we present is particularly useful in the development of algorithms that will be
converted to structured portions of Visual Basic programs. Pseudocode is similar to every-
day English; it is convenient and user-friendly, but it is not an actual computer program-
ming language.

Pseudocode programs are not executed on computers. Rather, they help the programmer
“think out” aprogram before attempting to writeit in aprogramming language, suchas Visua
Basic. In this chapter, we provide several examples of pseudocode programs.

Pseudocode hel ps the programmer conceptualize a programduring the program-design pro-
cess. The pseudocode program can be converted to Visual Basic at a later point.

The style of pseudocode that we present consists solely of characters, so that program-
mers can create, share and modify pseudocode programs using editor programs. A carefully
prepared pseudocode program can be converted easily by aprogrammer to a corresponding
Visual Basic program. Much of this conversion is as simple as replacing pseudocode state-
ments with their Visual Basic equivalents.

Pseudocode normally describes only executable statements—the actions that are per-
formed when the corresponding Visual Basic program is run. Declarations are not execut-
able statements. For example, the declaration

Dim number As Integer

informs the compiler of number’ stype and instructs the compiler to reserve space in mem-
ory for this variable. The declaration does not cause any action, such asinput, output or acal-
culation, to occur when the program executes. Some programmers chooseto list variablesand
their purposes at the beginning of a pseudocode program.

4.4 Control Structures

Normally, statementsin aprogram are executed one after another in the order in which they
are written. Thisis called sequential execution. However, various Visua Basic statements

Chapter 4 Control Structures: Part 1 99

enable the programmer to specify that the next statement to be executed might not be the
next one in sequence. A transfer of control occurs when an executed statement does not di-
rectly follow the previously executed statement in the written program.

During the 1960s, it became clear that the indiscriminate use of transfers of control was
causing difficulty for software devel opment groups. The problem wasthe GoTo statement,
which allows the programmer to specify atransfer of control to one of awide range of pos-
sible destinationsin aprogram. The excessive use of GoTo statements caused programs to
become quite unstructured and hard to follow. Since that point in time, the notion of struc-
tured programming became almost synonymous with “ GoTo elimination.”

The research of Bohm and Jacopini 1 demonstrated that all programs containing GoTo
statements could be written without them. Programmers’ challenge during the era was to
shift their stylesto “GoTo-less programming.” It was not until the 1970s that programmers
started taking structured programming seriously. The results have been impressive, as soft-
ware development groups have reported reduced development times, more frequent on-
time delivery of systems and more frequent within-budget completion of software projects.
The key to these successes is that structured programs are clearer, easier to debug and
modify and more likely to be bug-free in the first place.

Bohm and Jacopini’ swork demonstrated that all programs could be written in terms of
only three control structures: Namely, the sequence structure, the selection structure and
the repetition structure. The sequence structure is built into Visual Basic. Unless directed
to act otherwise, the computer executes Visual Basic statements sequentialy. The flow-
chart segment of Fig. 4.1 illustrates atypical sequence structure in which two calculations
are performed in order.

A flowchart is a graphical representation of an algorithm or of a portion of an algo-
rithm. Flowcharts are drawn using certain special-purpose symbols, such asrectangles, dia
monds, ovals and small circles. These symbols are connected by arrows called flowlines,
which indicate the order in which the actions of the algorithm execute. The order of execu-
tion is known as the flow of control.

Like pseudocode, flowcharts often are useful for developing and representing algo-
rithms, although many programmers prefer pseudocode. Flowcharts show clearly how con-
trol structures operate; that is their instructive purpose in this text. The reader should
compare carefully the pseudocode and flowchart representations of each control structure.

Consider the flowchart segment for the sequence structure in Fig. 4.1. We use the
rectangle symbol, also called the action symbol, to indicate any type of action, including
acalculation or an input/output operation. The flowlinesin the figure indicate the order
in which the actions are to be performed—first, grade isto be added to total, then 1
isto beadded to counter. We can have asmany actions as we want in a sequence struc-
ture. Anywherein asequence that a single action may be placed, several actions may also
be placed.

When drawing a flowchart that represents a complete algorithm, an oval symbol con-
taining the word “Begin” (by convention) is the first symbol used; an oval symbol con-
taining the word “End” (by convention) indicates the termination of the algorithm. When
drawing only aportion of an algorithm, asin Fig. 4.1, the oval symbolsare omitted in favor
of using small circle symbols, also called connector symbols.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Val. 9, No. 5, May 1966, pp. 336-371.

100 Control Structures: Part 1 Chapter 4

]

add grade to total total = total + grade

'

add 1 to counter counter = counter +

;

Fig. 4.1 Sequence structure flowchart.

Perhaps the most important flowcharting symbol is the diamond symbol, alternatively
referred to as the decision symbol, which indicates that adecision isto be made. We discuss
the diamond symbol in Section 4.5.

Visual Basic provides three types of selection structures, which we discuss in this
chapter and the next. The I£/Then selection structure performs (selects) an action (or
sequence of actions) if acondition istrue or skips the action (or sequence of actions) if the
conditionisfalse. The I £/Then/Else selection structure performs an action (or sequence
of actions) if acondition is true and performs a different action (or sequence of actions) if
the conditionisfalse. The Select Case structure, discussed in Chapter 5, Control Struc-
tures: Part 2, performs one of many actions (or sequences of actions), depending on the
value of an expression.

The If/Then structure is called a single-selection structure because it selects or
ignores asingle action (or a sequence of actions). The T£/Then/Else structureiscalled a
double-selection structure because it selects between two different actions (or sequences of
actions). The select Case structure is called a multiple-selection structure because it
selects among many different actions or sequences of actions.

Visual Basic provides seven types of repetition structures—While, Do While/
Loop, Do/Loop While, Do Until/Loop, Do/Loop Until, For/Next and For
Each/Next. (Repetition structuresWwhile, Do While/Loop and Do Until/Loop are
covered in this chapter; Do/Loop While, Do/Loop Until, and For/Next are covered
in Chapter 5, Control Structures: Part 2; and For Each/Next is covered in Chapter 7,
Arrays.) Thewords If, Then, Else, End, Select, Case,While, Do, Until, Loop,
For,Next and Each areall Visua Basic keywords (Fig. 4.2). We discuss many of Visual
Basic's keywords and their respective purposes throughout this book. Visual Basic has a
much larger set of keywords than most other popular programming languages.

Visual Basic has 11 control structures—sequence, three types of selection and seven
types of repetition. Each program is formed by combining as many of each type of control
structure as is necessary. As with the sequence structure in Fig. 4.1, each control structure
isflowcharted with two small circle symbols—one at the entry point to the control structure
and one at the exit point.

Sngle-entry/single-exit control structures (i.e., control structures that each have one
entry point and one exit point) make it easy to build programs—the control structures are
attached to one another by connecting the exit point of one control structure to the entry
point of the next. Thisissimilar to stacking building blocks, so, we call it control-structure

Chapter 4 Control Structures: Part 1 101

stacking. There is only one other method of connecting control structures, and that is
through control-structure nesting, where one control structure can be placed inside another.
Thus, algorithmsin Visual Basic programs are constructed from only 11 different types of
control structures combined in only two ways—the essence of simplicity.

Visual Basic Keywords

AddHandler AddressOf Alias And
AndAlso Ansi As Assembly
Auto Boolean ByRef Byte
ByVal Call Case Catch
CBool CByte CChar CDhate
CDec CDbl Char CInt
Class CLng CObj Const
CShort CSng CStr CType
Date Decimal Declare Default
Delegate Dim DirectCast Do
Double Each Else ElseIf
End Enum Erase Error
Event Exit False Finally
For Friend Function Get
GetType GoTo Handles If
Implements Imports In Inherits
Integer Interface Is Lib

Like Long Loop Me

Mod Module MustInherit MustOverride
MyBase MyClass Namespace New

Next Not Nothing NotInheritable
NotOverridable Object On Option
Optional Or OrElse Overloads
Overridable Overrides ParamArray Preserve
Private Property Protected Public
RaiseEvent ReadOnly ReDim REM
RemoveHandler Resume Return Select
Set Shadows Shared Short
Single Static Step Stop
String Structure Sub SyncLock
Then Throw To True

Fig. 4.2 Keywords in Visual Basic (part 1 of 2).

102 Control Structures: Part 1 Chapter 4

Visual Basic Keywords

Try TypeOf Unicode Until
When While With WithEvents
WriteOnly Xor

The following are retained as keywords, although they are no longer supported in Visual
Basic.NET

Let Variant Wend

Fig. 4.2 Keywords in Visual Basic (part 2 of 2).

45 If/Then Selection Structure

In aprogram, a selection structure chooses among alternative courses of action. For exam-
ple, suppose that the passing grade on an examination is 60 (out of 100). Then the
pseudocode statement

If student’s grade is greater than or equal to 60
Print “ Passed”

determines whether the condition “ student’ s grade is greater than or equal to 60” istrue or
false. If the condition is true, then “Passed” is printed, and the next pseudocode statement
in order is “performed” (remember that pseudocode is not areal programming language).
If the condition is false, the print statement is ignored, and the next pseudocode statement
in order is performed.

The preceding pseudocode If statement may be written in Visual Basic as

If studentGrade >= Then
Console.WriteLine ()
End If

Noticethat the Visual Basic code corresponds closely to the pseudocode, demonstrating the
usefulness of pseudocode as a program-devel opment tool. The statement in the body of the
If/Then structure outputs the string "Passed™. Note also that the output statement in
this selection structure is indented. Such indentation is optional, but it is highly recom-
mended because it emphasi zes the inherent organization of structured programs.

The Visual Basic compiler ignores white-space characters, such as spaces, tabs and
newlines used for indentation and vertical spacing, unless the whitespace characters are
contained in Strings. Some whitespace characters are required, however, such as the
newline at the end of a statement and the space between variable names and keywords. Pro-
grammers insert extra white-space characters to enhance program readability.

Good Programming Practice 4.1

@ Consistent application of indentation conventions throughout programs improves program

readability. We suggest a fixed-size tab of about 1/4 inch, or three spaces per indent. In Vi-
sual Studio, tab sizes can be set by selecting Tools > Options, navigating to
Text Editor > Basic > Tabs in the directory tree at |eft side of the Options dialog and
changing the numbersin the Tab size and Indent size text fields.

Chapter 4 Control Structures: Part 1 103

The preceding I £/Then selection structure also could be written on asingle line as
If studentGrade >= Then Console.WriteLine ()

In the multiple-line format, all statementsin the body of the I£/Then are executed if the
condition is true. In the single-line format, only the statement immediately after the Then
keyword is executed if the condition istrue. Although writing the I £/Then selection struc-
ture in the latter format saves space, we believe that the organization of the structure is
clearer when the multiple-line format is used.

Good Programming Practice 4.2

@ Although I £/ Then single-selection structures can be written on oneline, using the multiple-
line format i mproves programreadability and adaptability, asit iseasier to insert statements
into the body of a structure that is not confined to a single line.

Common Programming Error 4.1

@ Writing the closing End I £ keywords after a single-line I £/Then structureis a syntax
error.

Whereas syntax errors are caught by the compiler, logic errors, such as the error
caused when the wrong comparison operator is used in the condition of a selection struc-
ture, affect the program only at execution time. A fatal logic error causes a program to fail
and terminate prematurely. A nonfatal logic error does not terminate a program’ s execu-
tion but causes the program to produce incorrect results.

Theflowchartin Fig. 4.3 illustratesthe single-selection I £/Then structure. Thisflow-
chart contains the most important flowcharting symbol—the diamond (or decision)
symbol—which indicates that a decision is to be made. The decision symbol contains a
condition, that iseither true or false. The decision symbol hastwo flowlines emerging from
it. Oneindicatesthe direction to be taken when the condition in the symbol istrue; the other
indicates the direction to be taken when the condition is false.

Notethat the I £/Then structure, isasingle-entry/single-exit structure. The flowcharts
for the remaining control structuresalso contain (aside from small circle symbolsand flow-
lines) only rectangle symbols, indicating actions to be performed, and diamond symbols,
indicating decisionsto be made. Representing control structuresin thisway emphasizesthe
action/decision model of programming.

true
grade >= 60 Console.WriteLine ("Passed")

false |«

O

Fig. 4.3 I f£/Then single-selection structure flowchart.

104 Control Structures: Part 1 Chapter 4

To understand the process of structured programming better, we can envision 11 bins,
each containing a different type of the 11 possible control structures. The control structures
in each bin are empty, meaning that nothing is written in the rectangles or diamonds. The
programmer’ s task is to assemble a program using as many control structures as the algo-
rithm demands, combining those control structuresin only two possible ways (stacking or
nesting) and filling in the actions and decisionsin a manner appropriate to the algorithm.

4.6 If/Then/Else Selection Structure

As we explained, the I£/Then selection structure performs an indicated action (or se-
guence of actions) only when the condition evaluates to true; otherwise, the action (or se-
gquence of actions) is skipped. The If/Then/Else selection structure allows the
programmer to specify that a different action (or sequence of actions) be performed when
the condition is true than when the condition is false. For example, the pseudocode state-
ment

If student’s grade is greater than or equal to 60
Print “ Passed”

Else
Print “ Failed”

prints “Passed” if the student’s grade is greater than or equal to 60, and prints “Failed” if
the student’ s grade islessthan 60. In either case, after printing occurs, the next pseudocode
statement in sequence is “ performed.”

The preceding pseudocode I f/Else structure may be written in Visual Basic as

If studentGrade >= Then
Console.WriteLine ()
Else
Console.WriteLine ()
End If

Note that the body of the E1se clauseisindented so that it lines up with the body of the
If clause.

Good Programming Practice 4.3
@ Indent both body statements of an I £/Then/E1lse structure to improve readability.

A standard indentati on convention should be applied consistently throughout your pro-
grams. It isdifficult to read programs that do not use uniform spacing conventions.

The flowchart in Fig. 4.4 illustrates the flow of control in the I £/Then/Else struc-
ture. Following the action/decision model of programming, the only symbols (besides
small circles and arrows) used in the flowchart are rectangles (for actions) and a diamond
(for adecision).

Nested I£f/Then/Else structures test for multiple conditions by placing I £/Then/
Else structures inside other If/Then/Else structures. For example, the following
pseudocode statement will print “A” for exam grades greater than or equal to 90, “B” for
grades in the range 8089, “C” for grades in the range 70-79, “D” for gradesin the range
6069 and “F’ for al other grades.

Chapter 4 Control Structures: Part 1 105

grade >= 60

.

Fig. 4.4 If/Then/Else double-selection structure flowchart.

A
Console.WriteLine("Failed")|

A
| Console.WriteLine ("Passed")

If student’s grade is greater than or equal to 90
Print“ A”
Else
If student’s grade is greater than or equal to 80
Print“ B”
Else
If student’s grade is greater than or equal to 70
Print“ C”
Else
If student’s grade is greater than or equal to 60
Print“D”
Else
Print“ F”

The pseudocode above may be written in Visual Basic as

If studentGrade >= Then
Console.WriteLine ()
Else
If studentGrade >= Then
Console.WriteLine ()
Else
If studentGrade >= Then
Console.WriteLine ()
Else
If studentGrade >= Then
Console.WriteLine ()
Else
Console.WriteLine ()
End If
End If
End If
End If

If studentGrade isgreater than or equal to 90, thefirst four conditions are true, but only
the Console.WriteLine statement in the body of the first test is executed. After that

106 Control Structures: Part 1 Chapter 4

particular Console.WriteLine executes, the Else part of the “outer” I£/Then/
Else statement is skipped.
Good Programming Practice 4.4

@ If there are several levels of indentation, each level should be indented additionally by the
same amount of space.

Most Visua Basic programmers prefer to write the preceding I £/Then/Else struc-
ture using the E1seIf keyword as

If grade >= Then
Console.WriteLine ()
ElseIf grade >= Then
Console.WriteLine ()
ElseIf grade >= Then
Console.WriteLine ()
ElseIf grade >= Then
Console.WriteLine ()
Else
Console.WriteLine ()
End If

Both forms are equivalent, but the latter form is popular because it avoids the deep
indentation of the code. Such deep indentation often leaves little room on a line, forcing
lines to be split and decreasing program readability.

4.7 While Repetition Structure

A repetition structure allows the programmer to specify that an action should be repeated,
depending on the value of a condition. The pseudocode statements

While there are more items on my shopping list
Purchase next item
Crossit off my list

describe the repetitive actions that occur during a shopping trip. The condition, “there are
more items on my shopping list” can betrue or false. If it istrue, then the actions, “Purchase
next item” and “ Crossit off my list” are performed in sequence. These actions execute repeat-
edly while the condition remains true. The statement(s) contained in the While repetition
structure congtitute the body of the While. Eventually, the condition becomesfalse (when the
last item on the shopping list has been purchased and crossed off the list). At this point, the
repetition terminates, and the first statement after the repetition structure executes.

As an example of a while structure, consider a program designed to find the first
power of two larger than 1000 (Fig. 4.5). Inline 7, we take advantage of aVisua Basic fea
ture that allows variable initialization to be incorporated into a declaration. When the
While structure is entered (line 11), product is 2. Variable product is repeatedly
multiplied by 2 (line 13), taking onthevalues 4, 8,16, 32, 64,128, 256,512 and 1024,
successively. When product becomes 1024, the condition product <= 1000 in the
While structure becomes false. Thisterminates the repetition with 1024 as product’s
final value. Execution continues with the next statement after the keywords End While.
[Note: If awhile structure' s condition isinitially false, the body statement(s) are not per-
formed.]

Chapter 4 Control Structures: Part 1 107

The flowchart in Fig. 4.6 illustrates the flow of control of the While repetition struc-
ture shown in Fig. 4.5. Note that (besides small circles and arrows) the flowchart contains
only arectangle symbol and a diamond symbol.

The flowchart clearly shows the repetition. The flowline emerging from the rectangle
wraps back to the decision, creating aloop. The decision istested each timetheloop iterates
until the condition in the decision eventually becomesfalse. At thispoint, thewhile struc-
ture is exited, and control passes to the next statement in the program following the loop.

1

2

3

4 Module modWhile

5

6 Sub Main ()

7 Dim product As Integer =

8

9

10

11 While product <=

12 Console.Write (, product)
13 product = product *

14 End While

15

16 Console.WriteLine ()

17

18

19 Console.WriteLine (& _
20 , product)
21 End Sub

22

23 End Module

2 4 8 16 32 64 128 256 512
Smallest power of 2 greater than 1000 is 1024

Fig. 45 While repetition structure used to print powers of two.

product <= 1000 product = product * 2

Fig. 4.6 While repetition structure flowchart.

108 Control Structures: Part 1 Chapter 4

Common Programming Error 4.2

@ Failure to provide the body of a whi 1e structure with an action that eventually causes the
condition to become falseisalogic error. Normally, such a repetition structure never termi-
nates, resulting in an error called an “ infinite loop.”

4.8 Do While/Loop Repetition Structure

The Do Whilel/Loop repetition structure behaves like the whi le repetition structure. As
an example of aDo While/Loop structure, consider another version of the program de-
signed to find the first power of two larger than 1000 (Fig. 4.7).

When the Do While/Loop structureis entered, the value of product is2. Thevari-
ableproduct isrepeatedly multiplied by 2, taking on thevalues 4, 8, 16, 32, 64, 128,
256,512 and 1024, successively. When product becomes 1024, the condition in the
Do While/Loop structure, product <= 1000, becomes fase. This terminates the rep-
etition, with the final value of product being 1024. Program execution continues with
the next statement after the Do While/Loop structure. The flowchart in Fig. 4.8 illustrates
the flow of control of the Do While/Loop repetition structure, which is identical to the
flow of control in the flowchart of the while repetition structure Fig. 4.6.

Common Programming Error 4.3

@ Failure to provide the body of a Do While/Loop structure with an action that eventually
causes the condition in the Do Whi 1e/Loop to become false creates an infinite loop.

1

2

3

4 Module modDoWhile

5

6 Sub Main ()

7 Dim product As Integer =

8

9

10

11 Do While product <=

12 Console.Write(, product)
13 product = product *

14 Loop

15

16 Console.WriteLine ()

17

18

19 Console.WriteLine (& _
20 , product)
21 End Sub

22

23 End Module

2 4 8 16 32 64 128 256 512
Smallest power of 2 greater than 1000 is 1024

Fig. 4.7 Do While/Loop repetition structure demonstration.

Chapter 4 Control Structures: Part 1 109

true

product <= 1000 product = product * 2

L false

Fig. 4.8 Do While/Loop repetition structure flowchart.

4.9 Do Until/Loop Repetition Structure

Unlikethewhile and Do While/Loop repetition structures, the Do Until/Loop repe-
tition structure tests a condition for falsity for repetition to continue. Statementsin the body
of aDo Until/Loop areexecuted repeatedly aslong as the loop-continuation test evalu-
atesto false. Asan example of aDo Until/Loop repetition structure, once again consider
aprogram (Fig. 4.9) designed to find the first power of two larger than 1000.

1

2

3

4 Module modDoUntil

5

6 Sub Main ()

7 Dim product As Integer =

8

9

10 Do Until product >

11 Console.Write (, product)
12 product = product *

13 Loop

14

15 Console.WriteLine ()

16

17

18 Console.WriteLine (&
19 , product)
20 End Sub

21

22 End Module

2 4 8 16 32 64 128 256 512
Smallest power of 2 greater than 1000 is 1024

Fig. 4.9 Do Until/Loop repetition structure demonstration.

110 Control Structures: Part 1 Chapter 4

The flowchart in Fig. 4.10 illustrates the flow of control in the Do Until/Loop rep-
etition structure shown in Fig. 4.9.

Common Programming Error 4.4

@ Failure to provide the body of a Do Until/Loop structure with an action that eventually
causes the condition in the Do Until/Loop to become true creates an infinite loop.

4.10 Assignment Operators

Visual Basic .NET provides severa assignment operators for abbreviating assignment
statements. For example, the statement

value = value +
can be abbreviated with the addition assignment operator += as
value +=

The += operator adds the value of the right operand to the value of the left operand and
stores the result in the left operand’ s variable. Any statement of the form

variable = variable operator expression
can be written in the form

variable operator= expression

A

where operator isone of thebinary operators +, -, *, *, &, / or \, and variableisan <lIval-
ue (“left value’). An lvalue is a variable that can appear on the left side of an assignment
statement. Figure 4.11 includes the arithmetic assignment operators, sample expressions
using these operators and explanations.

Although the symbols =, +=, -=, *=, /=, \=, *= and &= are operators, we do not
include them in operator-precedence tables. When an assignment statement is evaluated,
the expression to the right of the operator is always evaluated first, then assigned to the
Ivalue on theleft. Unlike Visual Basic’s other operators, the assignment operators can only
occur once in a statement. Figure 4.12 calculates a power of two using the exponentiation
assignment operator.

product = product * 2

Fig. 4.10 Do Until/Loop repetition structure flowchart.

Chapter 4 Control Structures: Part 1 111
Sample

Assighment operator expression Explanation Assigns
Assume ¢ = 4,4 =
+= c += c =c + toc
-= c -= c =c - toc
*= c *= c =c * toc
/= c /= c=c/ toc
\= c \= c=c \ toc
A c = c=c” toc
&= d &= d =4 & tod

Fig. 4.11 Assignment operators.

1

2

3

4 Module modAssignment

5

6 Sub Main ()

7 Dim exponent As Integer

8 Dim result As Integer =

9

10

11 Console.Write()

12 exponent = Console.ReadLine/()

13

14 result "= exponent

15 Console.WriteLine (, result)

16

17 result =

18 result = result ~ exponent

19 Console.WriteLine (, result)

20

21 End Sub

22

23 End Module

Enter an
result "=
result =

Fig. 4.12 Ex

integer exponent: 8
exponent: 256
result " exponent: 256

ponentiation using an assignment operator.

Lines 14 and 18 have the same effect on the variable result. Both statementsraise
result to the value of variable exponent. Notice that the results of these two calcula
tionsareidentical.

112 Control Structures: Part 1 Chapter 4

4.11 Formulating Algorithms: Case Study 1 (Counter-
Controlled Repetition)

To illustrate how agorithms are developed, we solve two variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integersin the range from 0 to 100)
for this quiz are available to you. Determine the class average on the quiz.

The class averageis equal to the sum of the grades divided by the number of students. The
agorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation and print the result.

L et us use pseudocode to list the actions to be executed and to specify the order of exe-
cution. We use counter-controlled repetition to input the grades one at atime. This tech-
nique usesavariable called a counter to specify the number of timesthat a set of statements
will execute. Counter-controlled repetition also is called definite repetition because the
number of repetitionsisknown beforetheloop begins executing. In thisexample, repetition
terminates when the counter exceeds 10. This section presents a pseudocode algorithm
(Fig. 4.13) and the corresponding program (Fig. 4.14). In Sections 4.12, 4.13 and 4.14, we
show how pseudocode algorithms are devel oped.

et total to zero
Set grade counter to one

While grade counter islessthan or equal to 10
Input the next grade
Add the grade to the total
Add one to the grade counter

Set the class average to the total divided by 10
Print the class average

Fig. 4.13 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

Module modAverage

Sub Main ()
Dim total As Integer
Dim gradeCounter As Integer
Dim grade As Integer
Dim average As Double

POOWO~NOUAWNE

e

Fig. 4.14 Class-average program with counter-controlled repetition (part 1 of 2).

Chapter 4 Control Structures: Part 1 113

13 total =
14 gradeCounter =

17 While gradeCounter <=

20 Console.Write()
21 grade = Console.ReadLine()

23 total += grade

25 gradeCounter +=
26 End While

29 average = total /

32, Console.WriteLine ()
33 Console.WriteLine (, average)

35 End Sub

37 End Module

Enter integer grade: 89
Enter integer grade: 70
Enter integer grade: 73
Enter integer grade: 85
Enter integer grade: 64
Enter integer grade: 92
Enter integer grade: 55
Enter integer grade: 57
Enter integer grade: 93
Enter integer grade: 67

Class average is 74.5

Fig. 4.14 Class-average program with counter-controlled repetition (part 2 of 2).

Note the referencesin the algorithm (Fig. 4.13) to atotal and a counter. A total isavari-
able used to ca culate the sum of aseriesof values. A counter isavariablethat counts—in this
case, the counter records the number of grades input by the user. It isimportant that variables
used astotals and counters have appropriate initial values before they are used. Counters usu-
ally areinitialized to one. Totalsgenerally areinitialized to zero. If anumerical variableisnot
initialized before itsfirst use, Visual Basicinitializes it to a default value of 0.

Good Programming Practice 4.5

@ Although Visual Basic initializes numerical variablesto 0, it isa good practice to initialize
variables explicitly to avoid confusion and improve program readability.

114 Control Structures: Part 1 Chapter 4

Lines 7-10 declare variables total, gradeCounter, and grade to be of type
Integer and average t0 be of typeDouble. Inthisexample, total accumulatesthe
sum of the grades entered, and gradeCounter counts the number of grades entered.
Variable grade storesthe value entered (line 21).

Good Programming Practice 4.6

@ Always place a blank line between declarations and executable statements. This makes the
declarations stand out in a program and contributes to program readability.

Notice from the output that although each grade entered is an integer, the averaging
calculation is likely to produce a number with a decima point (i.e., a floating-point
number). The type Integer cannot represent floating-point numbers, so this program
uses data type Double, which stores double-precision floating-point numbers. Visual
Basic also provides datatype Single for storing single-precision floating-point numbers.
Datatype Double requires more memory to store afloating-point value, but ismore accu-
rate than type single. Type Single is useful in applications that need to conserve
memory and do not require the accuracy provided by type Double.

Lines 13-14 initialize total to 0 and gradeCounter to 1. Line 17 indicates that
the while structure should iterate while the value of gradeCounter is less than or
equal to 10. Lines 20-21 correspond to the pseudocode statement “ Input the next grade.”
The statement on line 20 displaysthe prompt Enter integer grade: inthe command
window. The second statement (line 21) reads the value entered by the user, and stores that
valuein thevariable grade.

Next, the program updates the total with the new grade entered by the user—line
23 adds grade to the previous value of total and assigns the result to total—using
the += assignment operator. VariablegradeCounter isincremented (line 25) to indicate
that a grade has been processed. Line 25 adds 1 to gradeCounter, S0 the condition in
the while structure eventually becomes false, terminating the loop. Line 29 assigns the
results of the average calculation to variable average. Line 32 writes a blank line to
enhance the appearance of the output. Line 33 displays a message containing the string
"Class average is " followed by the value of variable average.

4.12 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 2 (Sentinel-Controlled Repetition)

Let us generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that averages an arbitrary number of grades each time
the programisrun.

Inthefirst class-average example, the number of grades (10) was known in advance. In this
example, noindicationisgiven of how many grades areto be input. The program must pro-
cess an arbitrary number of grades. How can the program determine when to stop the input
of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called asignal value, adummy value or a flag value) to indicate “end of data entry.” The
user inputs all grades and then types the sentinel value to indicate that the last grade has
been entered. Sentinel-controlled repetition is called indefinite repetition because the
number of repetitions is not known before the loop begins its execution.

Chapter 4 Control Structures: Part 1 115

Itiscrucia to employ asentinel valuethat cannot be confused with an acceptableinput
value. Grades on aquiz are normally nonnegative integers, thus—1 is an acceptabl e sentinel
valuefor thisproblem. A run of the class-average program might process a stream of inputs
such as 95, 96, 75, 74, 89 and —1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89. The sentinel value, —1, should not enter into
the averaging calculation.

Common Programming Error 4.5

@ Choosing a sentinel value that is also a legitimate data value could result in a logic error
that would cause a program to produce incorrect results.

When solving more complex problems, such as that contained in this example, the
pseudocode representation might not appear obvious. For this reason we approach the
class-average program with top-down, stepwise refinement, a technique for developing
well-structured algorithms. We begin with a pseudocode representation of the top:

Determine the class average for the quiz

The top is a single statement that conveys the overall function of the program. As such, the
top is a complete representation of a program. Unfortunately, the top rarely conveys a suffi-
cient amount of detail from which to write the Visual Basic algorithm. Therefore, we conduct
the refinement process. This involves dividing the top into a series of smaller tasks that are
listed in the order in which they must be performed resulting in the following fir st refinement:

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

Here, only the sequence structure has been used—the steps listed are to be executed in or-
der, one after the other.

Each refinement, including the top, is a compl ete specification of the algorithm; only the lev-
== ¢l of detail in each refinement varies.

To proceed to the next level of refinement (i.e., the second refinement), we commit to
specific variables. We need a running tota of the numbers, a count of how many numbers
have been processed, avariable to receive the value of each grade and a variable to hold the
calculated average. The pseudocode statement

Initialize variables
can be refined as follows:

Initialize total to zero
Initialize counter to zero

Noticethat only the variablestotal and counter areinitialized before they are used; the vari-

ables average and grade (the program in Fig. 4.16 uses these variables for the calculated

average and the user input, respectively) need not be initialized because the assignment of

their values does not depend on their previous values, asis the case for total and counter.
The pseudocode statement

Input, sum and count the quiz grades

116 Control Structures: Part 1 Chapter 4

requires arepetition structure (i.e., aloop) that processes each grade. We do not know how
many grades are to be processed, thus we use sentinel-controlled repetition. The user enters
legitimate grades one at atime. After the last legitimate grade is typed, the user types the
sentinel value. The program tests for the sentinel value after each grade is input and termi-
nates the loop when the user enters the sentinel value. The second refinement of the preced-
ing pseudocode statement is then

Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade to the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

The pseudocode statement
Calculate and print the class average
may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “ No grades were entered”

Wetest for the possibility of division by zero—alogic error that, if undetected, causes the
program to produce invalid output. The complete second refinement of the pseudocode al-
gorithm for the class-average problem is shown in Fig. 4.15.

Initialize total to zero
Initialize counter to zero

Input thefirst grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade to the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “ No grades were entered”

Fig. 4.15 Pseudocode algorithm that uses sentinel-controlled repetition to solve
the class-average problem.

Chapter 4 Control Structures: Part 1 117

) When performing division by an expression whose value could be zero, explicitly test for this
caseand handleit appropriately in your program. Such handling could beassimpleasprint-
ing an error message. Sometimes more sophisticated processing is required.

Good Programming Practice 4.7

Include blank lines in pseudocode programsto improve readability. The blank lines separate
pseudocode control structures and the program’s phases.

Many algorithms can be divided logically into three phases: Aninitialization phase that ini-
=tializes the program variables, a processing phase that inputs data values and adjusts pro-
gramvariables accordingly and a termination phase that calculates and prints the results.

The pseudocode algorithm in Fig. 4.15 solves the general class-averaging problem
presented at the beginning of this section. This algorithm was developed after only two
levels of refinement—sometimes more levels of refinement are necessary.

. The programmer terminates the top-down, stepwise refinement process when the pseudocode
ﬁ-‘ algorithmis specified in sufficient detail for the pseudocode to be converted to a Visual Basic
program. Theimplementation of the Visual Basic programthen occursin a normal, straight-
forward manner.

The Visua Basic program for this pseudocode is shown in Fig. 4.16. In this example,
we examine how control structures can be “stacked on top of one another,” in sequence.
The while structure (lines 23-31) is followed immediately by an I£/Then structure
(lines 34—42). Much of the code in this program isidentical to the codein Fig. 4.14, so we
concentrate only on the new features.

1

2

3

4

5 Module modClassAverage

6

7 Sub Main ()

8 Dim total As Integer

9 Dim gradeCounter As Integer
10 Dim grade As Integer

11 Dim average As Double

12

13

14 total =

15 gradeCounter =

16

17

18

19 Console.Write ()
20 grade = Console.ReadLine ()

Fig. 4.16 Class-average program with sentinel-controlled repetition (part 1 of 2).

118 Control Structures: Part 1 Chapter 4

21

22

23 While grade <>

24 total += grade

25 gradeCounter +=

26

27

28 Console.Write()
29 grade = Console.ReadLine ()

30 End While

31

32

33 If gradeCounter <> Then

34 average = total / gradeCounter

35

36

37 Console.WriteLine ()

38 Console.WriteLine (, average)
39 Else

40 Console.WriteLine ("No grades were entered")
41 End If

42

43 End Sub

44

45 End Module

Enter integer grade, -1 to quit: 97
Enter integer grade, -1 to quit: 88
Enter integer grade, -1 to quit: 72
Enter integer grade, -1 to quit: -1

Class average is 85.67

Fig. 4.16 Class-average program with sentinel-controlled repetition (part 2 of 2).

Line 11 declares variable average to be of type Double. This allows the result of
the class-average calculation to be stored as a floating-point number. Line 15 initializes
gradeCounter to 0 because no grades have been input yet—recall that this program
uses sentinel-controlled repetition. To keep an accurate record of the number of grades
entered, variable gradeCounter isincremented only when avalid grade value isinput.

Notice the differences between sentinel-controlled repetition and the counter-con-
trolled repetition of Fig. 4.14. In counter-controlled repetition, we read a value from the
user during each iteration of thewhile structure. In sentinel-controlled repetition, we read
one value (line 20) before the program reachesthe while structure. Thisvalue determines
whether the program’ s flow of control should enter the body of thewhile structure. If the
While structure condition isfalse (i.e., the user has entered the sentinel value), the body
of thewhi 1e structure does not execute (no grades were entered). If, on the other hand, the
condition istrue, the body begins execution, and the value entered by the user is processed
(added to the total). After the value is processed, the next value is input by the user
beforethe end of thewhi 1l e structure’ sbody. When End while isreached at line 30, exe-
cution continueswith the next test of thewhi 1e structure condition. The new value entered

Chapter 4 Control Structures: Part 1 119

by the user indicateswhether thewhi 1 e structure sbody should execute again. Notice that
the next value aways isinput from the user immediately before the while structure con-
dition is evaluated (line 23). This allows the program to determine if the value is the sen-
tinel value before processing that vaue (i.e., adding it to the total). If the value is the
sentinel value, thewhile structure terminates, and the value is not added to the total.

Good Programming Practice 4.8

g In a sentinel-controlled loop, the prompts requesting data entry should remind the user of the
sentinel value.

—s- Common Programming Error 4.6

Using floating-point numbersin amanner that assumesthat they are precisely represented real
numbers can lead to incorrect results. Computersrepresent real numbers only approximately.

Good Programming Practice 4.9

g Do not compare floating-point valuesfor equality or inequality. Rather, test that the absolute
value of the differenceis less than a specified small value.

Despitethe fact that floating-point numbers are not always “ 100 percent precise,” they
have numerous applications. For example, when we speak of a“normal” body temperature
of 98.6, we do not need to be precise to alarge number of digits. When we view the tem-
perature on a thermometer and read it as 98.6, it may actually be 98.5999473210643.
Calling such anumber simply 98.6 is appropriate for most applications.

Floating-point numbers aso develop through division. When we divide 10 by 3, the
result is 3.3333333..., with the sequence of 3srepeating infinitely. The computer allocates
only afixed amount of space to hold such avalue, so the stored floating-point value can be
only an approximation.

Inline 38 of Fig. 4.16, method WriteLine usestheformat {0 :F} to print the value
of average inthe command window as a fixed-point number, (i.e., anumber with a spec-
ified number of places after the decimal point). Visual Basic provides the standard number
formats for controlling the way numbers are printed as Strings. We discuss the various
standard number formats in Chapter 5, Control Structures Part 2.

4.13 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)

Let us consider another complete problem. Again we formulate the algorithm using
pseudocode and top-down, stepwise refinement; we then write acorresponding Visual Ba
sic program. We have seen in previous examples that control structures may be stacked on
top of one another (in sequence) just as a child stacks building blocks. In this case study,
we demonstrate the only other structured way that control structures can be combined,
namely through the nesting of one control structure inside another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, 10 of the students who completed this course took the licensing examina-
tion. The college wants to know how well its students did on the exam. You have been asked
to write a program to summarize the results. You have been given a list of the 10 students.
Next to each nameiswrittena “ P” if the student passed the examand an “ F” if the student
failed the exam.

120 Control Structures: Part 1 Chapter 4

Your program should analyze the results of the exam as follows:
1. Input each examresult (i.e., a“P” or an“F”). Display the message “ Enter result”
each time the program requests another examresult.
2. Count the number of passes and failures.
3. Disgplay a summary of the exam results, indicating the number of students who passed
and the number of students who failed the exam.
4. If more than 8 students passed the exam, print the message “ Raise tuition.”

After reading the problem statement, we make the following observations about the problem:

1. The program must process exam results for 10 students, so a counter-controlled
loop is appropriate.

2. Each exam result is a sString—either a“P” or an “F’. Each time the program
reads an exam result, the program must determine if theinput isa“P”’ or an “F.”
Wetest for a“P’ in our algorithm. If theinputisnota“P,” weassumeitisan“F.”
(An exercise at the end of the chapter considers the consequences of this assump-
tion. For instance, consider what happens in this program when the user enters a
lowercase “p.”)

3. Two counters store the exam results—one to count the number of students who
passed the exam and one to count the number of students who failed the exam.

4. After the program has processed all the exam results, it must determine if more
than eight students passed the exam.

L et us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide if tuition should be raised

Onceagain, it isimportant to emphasize that the top is acompl ete representation of the pro-
gram, but several refinementslikely are needed before the pseudocode can be evolved into
aVisual Basic program. Our first refinement is

Initialize variables
Input the ten exam grades and count passes and failures
Print a summary of the exam results and decide if tuition should be raised

Even though we have a complete representation of the entire program, further refinement
isnecessary. We must commit to specific variables. Counters are needed to record the pass-
esand failures. A counter controls the looping process and a variabl e stores the user input.
The pseudocode statement

Initialize variables
may be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

Only the counters for the number of passes, number of failures and number of students are
initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures

Chapter 4 Control Structures: Part 1 121

requires a loop that inputs the result of each exam. Here it is known in advance that there
are precisely ten exam results, so counter-controlled repetition is appropriate. Inside the
loop (i.e., nested within the loop) a double-selection structure determines whether each
exam result is a pass or afailure, and the structure increments the appropriate counter ac-
cordingly. The refinement of the preceding pseudocode statement is then

While student counter islessthan or equal to ten
Input the next exam result

If the student passed
Add one to passes
Else
Add oneto failures

Add one to student counter

Noticethe use of blank linesto set off the If/Else control structureto improve program read-
ability. The pseudocode statement

Print a summary of the exam results and decide if tuition should be raised
may be refined as follows:

Print the number of passes
Print the number of failures

If more than eight students passed
Print “ Raise tuition”

The complete second refinement appearsin Fig. 4.17. Notice that blank lines also offset the
While structure (lines 13-25) for program readability.

The pseudocode now is refined sufficiently for conversion to Visua Basic. The pro-
gram and sample executions are shown in Fig. 4.18.

Thewhile loop (lines 13-25) inputs and processes the 10 examination results. The
If/Then/Else structureon lines 1822 isanested control structure becauseit isenclosed
inside thewhile. The condition in line 18 tests if String variable result isequal to
npr |f 50, passes isincremented by 1. Otherwise, failures isincremented by 1.
[Note: strings are case sensitive—uppercase and lowercase letters are different. Only
npn represents apassing grade. In the exercises, we ask the reader to enhance the program
by processing lowercase input such as "p".]

Note that line 29 contains an identifier, vbCrL £, that is not declared explicitly in
the program code. ldentifier vbCrL£ is one of several constants provided by Visua
Basic. Constants contain values that programmers cannot modify. In the case of
vbCrL£, the value represented is the combination of the carriage return and linefeed
characters, which cause subsegquent output to print at the beginning of the next line. When
printed, the effect of this constant is similar to calling Console.WriteLine ().

Although not demonstrated in this example, Visual Basic also provides the vbTab
constant, which represents atab character. Several of the chapter exercises ask you to use
these constants. In Chapter 6, Procedures, we discuss how programmers can create their
own constants.

122 Control Structures: Part 1 Chapter 4

Initialize passesto zero
Initialize failuresto zero
Initialize student to one

While student counter is lessthan or equal to ten
Input the next exam result

If the student passed
Add one to passes
Else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “ Raise tuition”

Fig. 4.17 Pseudocode for examination-results problem.

1

2

3

4 Module modAnalysis

5

6 Sub Main ()

7 Dim passes As Integer =

8 Dim failures As Integer =
9 Dim student As Integer =
10 Dim result As String

11

12

13 While student <=

14 Console.Write ()
5 result = Console.ReadLine ()
16

17

18 If result = Then
19 passes +=

20 Else

21 failures +=

22 End If

23

Fig. 4.18 Nested control structures used to calculate examination results (part 1 of 2).

Chapter 4

Control Structures: Part 1

123

24 student +=

25 End While

26

27

28 Console.WriteLine (

29 , failures)

30

31

32 If passes > Then

33 Console.WriteLine (

34 End If

35

36 End Sub

37

38 End Module

Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Passed: 9

Failed: 1

Raise Tuition

Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):
Enter result (P = pass, F = fail):

Passed: 6
Failed: 4

WwvovoyddydlD

Lol LI e e I L L oI

, passes, _

Fig. 4.18 Nested control structures used to calculate examination results (part 2 of 2).

4.14 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 4 (Nested Repetition Structures)

Let us present another complete example. Once again, we formulate the algorithm using
pseudocode and top-down, stepwise refinement, then write the corresponding program.

124 Control Structures: Part 1 Chapter 4

Again, we use stacked and nested control structuresto solve the problem. In this case study,
we demonstrate nested repetition structures.
Consider the following problem statement:

Write a program that draws in the command window a filled square consisting
solely of * characters. The side of the square (i.e., the number of * charactersto be
printed side by side) should be input by the user and should not exceed 20.
Y our program should draw the square as follows:
1. Input the side of the square.

2. Validate that the side is less than or equal to 20. (Note: It is possible for the user
to input values less than 1. We explore in the chapter exercises how this can be
prevented.)

3. Userepetition to draw the square by printing only one * at atime.

After reading the problem statement, we make the following observations (in no par-
ticular order):

1. The program must draw n rows, each containing n * characters. Counter-con-
trolled repetition should be used.

2. A test must be employed to ensure that the value of nislessthan or equal to 20.

3. Three variables should be used—one that represents the length of the side of the
sguare, onethat representsthe row in which each * appears and one that represents
the column in which each * appears.

L et us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Draw a sguare of * characters

Onceagain, it isimportant to emphasize that the top is a compl ete representation of the
program, but several refinements are likely to be needed before the pseudocode can be nat-
urally evolved into a program. Our first refinement is

Initialize variables

Prompt for the side of the square

Input the side of the square, making sure that it isless than or equal to 20
Draw the square

Here, too, even though we have a compl ete representation of the entire program, further
refinement is necessary. We now commit to specific variables. A variable is needed to store
the length of the side, a variable is needed to store the row where printing is occurring and a
variableisneeded to store the column where printing is occurring. The pseudocode statement

Initialize variables
can be refined as follows:

Initialize row to one
Initialize side to the value input

The pseudocode statement
Input the side of the square, making sure that it isless than or equal to 20

Chapter 4 Control Structures: Part 1 125

requires that a value be obtained from the command window. The pseudocode statement
Validate that the sideis less than or equal to 20

can be refined as
If sideislessthan or equal to 20

which explicitly tests whether side isless than or equal to 20. If the condition (i.e., sideis
less than or equal to 20) istrue, the first statement in the body of the If is executed. If the
condition isfalse, the body of the If is not executed. These two control structures are said
to be nested—meaning that one isinside the body of the other.

The pseudocode statement

Draw the square

can be implemented by using nested loops to draw the square. In this example, it is known
in advance that there are precisely nrows of n * characters each, so counter-controlled rep-
etition isappropriate. Oneloop controlsthe row in which each * is printed. Inside thisloop
(i.e., nested within this loop), a second loop prints each individual *. The refinement of the
preceding pseudocode statement is, then,

Set column to one

While column isless than or equal to side
Print *
Increment column by one

Print a line feed/carriage return
Increment row by one

After column is set to one, the inner loop executes to completion (i.e., until column
exceeds side). Each iteration of the inner loop prints a single *. A line feed/carriage
return is then printed to move the cursor to the beginning of the next line, to prepare to
print the next row of the square. Variable row is incremented by one. If the outer loop
condition allows the body of the loop to be executed, column is reset to one, because we
want the inner loop to execute again and print another row of * characters. If column is
not initialized to 1 before each iteration of the inner loop, the repetition condition of the
inner loop will fail for al but the first row of output. Variable row isincremented by one.
This processis repeated until the value of row exceeds side at which point the square of
*'s has been printed.

The complete second refinement appearsin Fig. 4.19. Notice that blank lines are used
to separate the nested control structures for program readability. Also notice that we added
an Else clause that prints a message if the value input for sideistoo large.

Good Programming Practice 4.10

@ Too many levels of nesting can make a program difficult to understand. If possible, try to
avoid using more than three levels of nesting.

The pseudocode now isrefined sufficiently for conversionto Visual Basic. The Visual
Basic program and sample executions are shown in Fig. 4.20.

126 Control Structures: Part 1

Chapter 4

Initialize side to the value input
Initializerowto 1

If sideislessthan or equal to 20

Whilerow islessthan or equal to side
Set column to one

While column isless than or equal to side
Print *
Increment column by one

Print a line feed/carriage return
Increment row by one

Else
Print “ Sdeistoo large”

Fig. 4.19 Second refinement of the pseudocode.

EThe most difficult part of solving a problem on a computer is developing the algorithm for
é the solution. Once a correct algorithm has been specified, the process of producing a work-
ing Visual Basic program from the algorithm is usually straightforward.

1

2

3

4 Module modPrintSquare

5

6 Sub Main ()

7 Dim side As Integer

8 Dim row As Integer =
9 Dim column As Integer
10

11

12 Console.Write (

13 side = Console.ReadLine()
14

15 If side <= Then

16

17

18 While row <= side
19 column =

20

Fig. 4.20 Nested repetition structures used to print a square of *s (part 1 of 2).

Chapter 4 Control Structures: Part 1 127

23 While column <= side
24 Console.Write ()
25 column +=

26 End While

28 Console.WriteLine ()

29 row +=

30 End While

32 Else

33 Console.WriteLine ()
34 End If

36 End Sub

38 End Module

B

* Ok k % * * X ¥ (T
®

* ¥ ¥ * * ¥ ¥ * H

ide length (must be 20 or less): 8

* * *

* F F ¥ * * ¥ * H

=)
*
*
*
*
*
*
*
*

* ¥ ¥ * * * ¥
* * ¥ Ok * ¥ * *
* ¥ ¥ F * F *
* * ¥ * * ¥ ¥

Fig. 4.20 Nested repetition structures used to print a square of *s (part 2 of 2).

Many experienced programmers write programs without ever using program development
=tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob-
lem on a computer and that writing pseudocode merely delays producing final outputs. Al-
though this might work for simple and familiar problems, it can lead to serious problems on
large, complex projects.

4.15 Introduction to Windows Application Programming

Today, users demand software with rich graphical user interfaces (GUIs) that alow them
to click buttons, select items from menus and much more. In this chapter and the previous
one, we created consol e applications. However, the vast majority of Visua Basic programs
used in industry are Windows applications with GUIs. For this reason, we have chosen to
introduce Windows applications early in the book, although doing so exposes some con-
cepts that cannot be explained fully until later chapters.

In Chapter 2, Introduction to the Visual Studio .NET IDE, we introduced the concept
of visual programming, which allows programmersto create GUIswithout writing any pro-
gram code. In this section, we combine visual programming with the conventional pro-
gramming techniquesintroduced in this chapter and Chapter 3, Introductionto Visual Basic

128 Control Structures: Part 1 Chapter 4

Programming. Through this combination, we can enhance considerably the Windows
application introduced in Chapter 2.

Before proceeding, load the project ASimpleProgram from Chapter 2 into the IDE,
and change the (Name) properties of the form, label and picture box to FrmASim-
pleProgram, lblWelcome and picBug, respectively. The modification of these
names enables usto identify easily the form and its controlsin the program code. [Note: In
this section, we changed the file name from Forml.vb t0 ASimpleProgram.vb t0O
enhance clarity.]

Good Programming Practice 4.11

@ The prefixes Frm, 1b1 and pi c allow forms, labels and picture boxesto beidentified easily
in program code.

With visual programming, the IDE generates the program code that creates the GUI.
This code containsinstructions for creating the form and every control on it. Unlike a con-
sole application, a Windows application’s program code is not displayed initially in the
editor window. Once the program’s project (e.g., ASimpleProgram) is opened in the
IDE, the program code can be viewed by selecting View > Code. Figure 4.21 shows the
code editor displaying the program code.

Notice that no module is present. Instead, Windows applications use classes. We
already have seen examples of classes such as Console and MessageBox, which are
defined within the .NET Framework Class Library. Like modules, classes are logical
groupings of procedures and data that simplify program organization. Modules are dis-
cussed in detail in Chapter 6, Procedures. In-depth coverage of classes is provided in
Chapter 8, Object-Based Programming.

Every Windows application consists of at least one classthat Inheri ts from class
Form (which represents a form) in the .NET Framework Class Library’s
System.Windows.Forms namespace. The keyword Class beginsaclass definition
and is followed immediately by the class name (FrmASimpleProgram). Recall that
the form’s name is set using the (Name) property. Keyword Inherits indicates that
the class FrmASimpleProgram inherits existing pieces from another class.

The class from which FrmASimpleProgram inherits—here, System.Win-
dows . Forms . Form—appears to the right of the Inherits keyword. In thisinherit-
ance relationship, Form is caled the superclass or base class, and
FrmASimpleProgram is caled the subclass or derived class. The use of inheritance
results in a FrmASimpleProgram class definition that has the attributes (data) and
behaviors (methods) of class Form. We discussthe significance of the keyword Public
in Chapter 8, Object-Based Programming.

A key benefit of inheriting from class Form is that someone else has previously
defined “what it means to be a form.” The Windows operating system expects every
window (e.g., form) to have certain capabilities (attributes and behaviors). However,
because class Form aready provides those capabilities, programmers do not need to
“reinvent the wheel” by defining all those capabilities themselves. In fact, class Form
has over 400 methods! In our programs up to this point, we have used only one method
(i.e., Main), S0 you can imagine how much work went into creating class Form. The use
of Inherits to extend from class Form enables programmers to create forms quickly
and easily.

Chapter 4 Control Structures: Part 1 129

rapk gar-[Ua] AbnpPlreran bt =
|":I'|rﬂ'|qn|'lllhr-1n11|1ﬂn11r-ﬂ |i IR eArEaH IR =
A=Al e Clmes Teghd = rpla==aran =
Tra=ire foerep linder=s. b [y
COIlapSEd — || Mnde=x F=r, Deecpomer anera=ead oie
code

-
1| | 3

Fig. 4.21 IDE showing program code for Fig. 2.15.

In the editor window (Fig. 4.21), notice the text Windows Form Designer gen-
erated code, whichiscolored gray and has aplusbox next to it. The plus box indicates
that this section of codeis collapsed. Although collapsed code is not visible, it is still part
of the program. Code collapsing allows programmersto hide code in the editor, so that they
can focus on key code segments. Noticethat the entire class definition also can be collapsed
by clicking the minus box to the left of Public. In Fig. 4.21, the description to the right
of the plus box indicates that the collapsed code was created by the Windows Form
Designer (i.e., the part of the IDE that creates the code for the GUI). This collapsed code
contains the code created by the IDE for the form and its controls, as well as code that
enables the program to run. Click the plus box to view the code.

Upon initial inspection, the expanded code (Fig. 4.22) appears complex.This code is
created by the IDE and normally is not edited by the programmer. We feel it isimportant
for novice programmers to see the code that is generated by the IDE, even though much of
the codeis not explained until later in the book. Thistype of codeis present in every Win-
dows application. Allowing the IDE to create this code saves the programmer considerable
development time. If the IDE did not provide the code, the programmer would haveto write
it, and this would require a considerable amount of time. The vast majority of the code
shown has not been introduced yet, so you are not expected to understand how it works.
However, certain programming constructs, such as comments and control structures,
should be familiar. Our explanation of this code enable us to discuss visua programming
in greater detail. As you continue to study Visual Basic, especialy in Chapters 8-13, the
purpose of this code will become clearer.

When we created this application in Chapter 2, we used the Properties window to set
properties for the form, label and picture box. Once a property was set, the form or control
was updated immediately. Forms and controls contain a set of default properties, which are
displayed initially in the Properties window when a form or control is selected. These
default properties provide the initial characteristics of aform or control when it is created.
When acontrol, such asalabel, is placed on the form, the IDE adds code to the class (e.g.,
FrmASimpleProgram) that creates the control and that sets some of the control’s prop-
erty values, such as the name of the control and itslocation on the form. Figure 4.23 shows
a portion of the code generated by the IDE for setting the label’s (i.e., 1lblWelcome’'S)
properties. These include the label’s Font, Location, Name, Text and TextAlign
properties. Recall from Chapter 2 that we explicitly set values for the |abel’s Name, Text
and TextAlign properties. Other properties, such as Location are set only when the
label is placed on the form.

130 Control Structures: Part 1

Expanded code

Chapter 4

3L ASmpleIrarr. FA rerdt Wnied Meal= HT | Aredqn| - nSmpd=Fa g A ivh — M| x
= B e huo. Pk ol oo mphas A4
IEU-E-HHG|JI'-E|-'---'“J:I-F.. § Fram - =
Gl oo = 2 A Y W
BRropdrR rammash | 07 ke as L | 4 F =
I"'.':'I-ruﬁhud:l'rwull j |r'.lfl.ll\.'|.|\.r..i.n.l|||.!l j
Heoweloe Vlesn Frand aule.zoauva "
Lenpale Zralopn My so Fozp ooz Y
T!’-Pl;;-:: " Tiudova T Carigsar geoacesed. o-ds 7
1 F:F'i= 7:F ==
RLILLE L |
"Iha wall o obovob=o L Lo Japea oo Fozia boooyasL.
—nal s copzpaia.a)
oA A A =im e mand e s fpEe mhe T lndwt s oEmlepeane =l ouwt o
o E-l Sl
Sy respaoz Jaogeos Loowelosoap Loo cogioazn. oLk,
F Pon ool Voo onade weesieaves UL baozeooab-vul conpoaoiy Ao zualang
- I a s s aBans The x
L] k
(LET1S anl oo d1 (i

Fig. 4.22 Windows Form Designer generated code when expanded.

Click here for Click here for Property initializations
code view design view for lblWelcome

Moamagd-d o) v Vi on dl A el Beva o9 1 il—ap] = AmigdeFump

™ FE| s 5 ol Bl L Sk whha -
Wt W R PWEL s e b Dy - |
O R T 3 -

|l

Al ll.l."x'u'i ILA AR m T ‘|.-1. I =kl |

| ImesA Tosd 03 am e LT T ST

ol oy R

'
Fa lE_dnloows . Fons = Zas Srroer. fopaorg Focs 'Ol

ke 11 d=h. wr..

=i Zerr Tacle'.

Alu = H=m =l it go= ah
YO I I PTI [DETER B I B IR L

LITI | B | -
| Lo T N L [e B) L]

I e dodoowe . Toom = '2odszl o szcocdancc®

LS W] i o PR i N T) LL T) T BT HRSLEH) EPL BB) S - P] S] 4

' T L TR B LTI 1 1

oyl

Mo,

e I | I e] -

Fig. 4.23 Code generated by the IDE for 1blWelcome.

Chapter 4 Control Structures: Part 1 131

The values assigned to the properties are based on the values in the Properties
window. We now demonstrate how the IDE updates the Windows Form Designer gener-
ated code created when a property value in the Properties window changes. During this
process, we must switch between code view and design view. To switch views, select the
corresponding tabs—ASimpleProgram.vb for code view and ASimpleProgram.vb
[Design] for design view. Alternatively, the programmer can select View > Code or
View > Designer. Perform the following steps:

1. Modify the file name. First, change the name of the file from Forml.vb to
AsimpleProgram.vb by clicking the file name in the Solution Explorer
and changing the File Name property.

2. Modify the label control’s Text property using the Properties window. Recall
that properties can be changed in design view by clicking a form or control to se-
lect it, then modifying the appropriate property in the Properties window.
Change the Text property of the label to “Deitel and Associates”
(Fig. 4.24).

3. Examinethe changesin the code view. Switch to code view and examine the code.
Notice that the label’s Text property is now assigned the text that we entered in
the Properties window (Fig. 4.25). When aproperty is changed in design mode,
the Windows Form Designer updates the appropriate line of code in the class to
reflect the new value.

4. Modifying a property value in code view. In the code view editor, locate the three
lines of commentsindicating the initialization for 1Lb1Welcome, and change the
String assignedto Me.lblWelcome.Text from“Deitel and Associ-
ates” t0“Visual Basic .NET” (Fig. 4.26). Now, switch to design mode. The
label now displays the updated text, and the Properties window for 1b1lwel -
come displaysthe new Text value (Fig. 4.27). [Note: Property values should not
be set using the techniques presented in this step. Here, we modify the property
value in the IDE generated code only as a demonstration of the relationship be-
tween program code and the Windows Form Designer.]

ERE R J:l-.-"l

|Ih-l'|'|'|:ll:-:|-n1: LRl s o =hel d

T ==

FgITdll H -
Text property —— =l Tl im | Aieam 1al
wte g Lnpl arder
Lss " mrore [IR-] e
Ti-d

e k= corkerec ke ol

-E'll-"q H li-r. n Irsi-1 1 =H 1 |

Fig. 4.24 Properties window used to set a property value.

132 Control Structures: Part 1 Chapter 4

53wy mpdeinE e - eI d B4l 1] - PR EERETER BCARS =10 1]
T [4 == < [k T Vros HES

=R TRACEy - NPT | TR T) R - = -
= Dl E S A Y ma, T

NPT TR BT TR e
“anhre A irmdl inmand = | Ir-ﬂ:l:':kll:l'ul j
[y PN

T T e L e I R R I R TEL I T N |

TR P I T I BRI L

Y RE— |
wEmsaae T i e T

LI I B B n . n

Text

property . . e g = oo e amray fae =il grme T i dﬂ
T [0 1 T T T = .

Fig. 4.25 Windows Form Designer generated code reflecting new property values.

rapk o [Un, 1Y AbnpPdreranyl? | =
|-':n i R rapdefa rep A |85 mwmj l.‘ll'rlHHbH’lmn"-rr j

' =

"albet e

R TN LN | T] I ! FRRC L L IR | Y LT RPN | RCY SCE By [Ltu Y R N A
PR IR N I | Sy PR Y ey T || How 2ol 23, Spavwozy Moo ie. L
Sl LTeloores Hoeen - VoEIUZLIors" —I
et T l=rem . Sdra w Sa= Sueear fipa—cny S o emaTTE, T
I Tl =mrem, Toy ey =)
Sl AITTrAAL IRIT o m o ocEm] Am1T (LRI

1

g T B R] L TR TR T R PP A al ..llﬂ

Text property

IR

Fig. 4.26 Changing a property in the code view editor.

Text property value

|
|I1M'|-Irrm|- T = wlbe s T vn e "'l
Rl E
&= =Tod ot Wi = |
e (TR
Tt A Tap arkar
A L] ;l
I
et o« dome milles -

Fig. 4.27 New Text property value reflected in design mode.

Chapter 4 Control Structures: Part 1 133

5. Changethelabel’s Text property at runtime. In the previous steps, we set prop-
erties at design time. Often, however, it is necessary to modify a property while a
program is running. For example, to display the result of a calculation, alabel’s
text can be assigned a st ring containing the result. In console applications, such
codeislocated in Main. In Windows applications, we must create a method that
executes when the form is loaded into memory during program execution. Like
Main, thismethod isinvoked when the program is run. Double-clicking the form
in design view addsamethod named FrmASimpleProgram Loadtotheclass
(Fig. 4.28). Notice that FrmASimpleProgram Load is not part of the Win-
dows Form Designer generated code. Add the statement 1blWelcome . Text =
"Visual Basic" inthebody of the method definition (Fig. 4.28). InVisua Ba-
sic, properties are accessed by placing the property name (i.e., Text) after the
class name (i.e., 1blWelcome), Separated by the dot operator. This syntax is
similar to that used when accessing class methods. Notice that the I ntelli Sense fea-
ture displays the Text property in the member list after the class name and dot
operator have been typed (Fig. 4.29). In Chapter 8, Object-Based Programming,
we discuss how programmers can create their own properties.

6. Examine the results of the FrmASimpleProgram Load method. Notice that
the text in the label looks the same in Design mode as it did in Fig. 4.27. Note
also that the Property window still displaysthevalue“visual Basic .NET”
asthelabel’ sText property. The IDE-generated code has not changed either. Se-
lect Build > Build Solution then Debug > Start to run the program. Once the
form is displayed, the text in the label reflects the property assignment in
FrmASimpleProgram Load (Fig. 4.30).

FrmASimpleProgram Load method

30 LS mpbeEranrans - Mn et SHial Teed- ST | deddpn| = 2SI =l x|
I T T S TTUR T T, RO [T TP P & 1)

-7 =S PR T e ™ u
LB L - T -t N FME
Ay rand t ST Al e | 1k

|‘°"_'_||rr||-||r|rlr+1r-1n11 j |.||l 1 Il M M I AT j
|J'| Te wale ®oan Fegaerbras ol micna Lo K= csmn s & Hoaloamesn 3

Lo cow

!.'_A.'. e |q_.1 iy :l —
zad owoa o - P |
1 e
L - i
1"k E;-__: wde = | e s
& -y .
wde qules <«—1— Intellisense
R kST L] window with
E:"f"_-' :i Text property
highlighted

Fig. 4.28 Adding program code to FrmASimpleProgram Load.

134 Control Structures: Part 1 Chapter 4

B nSinorde oy am - FieneesrdlE Yiaoal Made BET [desinn] - A5 nari=P _I' Ill
e C® Lew Euwt Bd Lag Ib o Sk e
il R 5 - RS R IR ™ 3 P - |
i A et £ ZIES
SibmogrdaHrrapameyh I Sty daare A [owe-A] I | =
|"|1'r|n1|".'5|mpltF1-:||;|ru'n j l:!rmmEH'npleFlnn'-:mJ.oad j
i
Eoiraze Svh JrnaRlong leFrogosm_LosdiZviial sencac = Zy=ten.Obie
I Sy AN RT T PO Y) Cuoaad. Euooo
- Ies= il
-Znd. [l=== =
: 0
P b [Lo Ao i | [

Fig. 429 Method FrmASimpleProgram Load containing program code.

Close button

CRranprRmea —ln A
WVisual Basict

Fig. 4.30 Changing a property value at runtime.

7. Terminate program execution. Click the close button to terminate program execu-
tion. Once again, notice that both the label and the label’ s Text property contain
the text visual Basic .NET. The IDE generated code also contains the text
Visual Basic .NET, whichisassigned to the label’s Text property.

In this chapter, we introduced program building blocks called control structures. We
also discussed aspects of Windows application programming. In Chapter 5, Control Struc-
tures: Part 2, we continue our discussion of control structures by presenting additional
selection and repetition structures. In addition, we also build upon the Windows application
concepts presented in this chapter by creating a richer Windows application.

Chapter 4 Control Structures: Part 1 135

SUMMARY

Any computing problem can be solved by executing a series of actionsin a specific order.

An agorithm is a procedure for solving a problem in terms of the actions to be executed and the
order in which these actions are to be executed.

Program control refers to the task of ordering a program’ s statements correctly.

Pseudocodeisan informa language that hel ps programmers devel op algorithms and hel psthe pro-
grammer “think out” a program before attempting to write it in a programming language.

A carefully prepared pseudocode program can be converted easily by a programmer to a corre-
sponding Visual Basic program.

Normally, statements in a program are executed one after another in the order in which they are
written. Thisis called sequential execution.

Various Visud Basic statements enable the programmer to specify that the next statement to be
executed might not be the next one in sequence. Thisis called atransfer of control.

Many programming complications in the 1960s were aresult of the GoTo statement, which al-
lows the programmer to specify atransfer of control to one of awide range of possible destina-
tions in a program. The notion of structured programming became almost synonymous with
“GoTo elimination.”

Bohm and Jacopini’ s work demonstrated that all programs could be written in terms of only three
control structures—the sequence structure, the selection structure and the repetition structure.

The seguence structure is built into Visual Basic. Unless directed to act otherwise, the computer
executes Visual Basic statements one after the other in the order in which they are written.

A flowchart is a graphical representation of an algorithm or of a portion of an algorithm. Flow-
charts are drawn using certain specia -purpose symbols, such as rectangles, diamonds, ovals and
small circles. These symbols are connected by arrows called flowlines, which indicate the order in
which the actions of the algorithm execute.

The I£/Then single-selection structure selects or ignores asingle action (or asingle group of ac-
tions) based on the truth or falsity of a condition.

The If/Then/Else double-selection structure selects between two different actions (or groups
of actions) based on the truth or falsity of a condition.

A multiple-selection structure selects among many different actions or groups of actions.

Programs are formed by combining as many of each type of Visua Basic's 11 control structures
asis appropriate for the algorithm the program implements.

Single-entry/single-exit control structures make it easy to build programs.

In control-structure stacking, the control structures are attached to one another by connecting the
exit point of one control structure to the entry point of the next.

In control-structure nesting, one control structureis placed inside another.

Algorithmsin Visua Basic programs are constructed from only 11 different types of control struc-
tures combined in only two ways.

In the action/decision model of programming, control structure flowcharts contain (besides small
circle symbols and flowlines) only rectangle symbols to indicate actions and diamond symbols to
indicate decisions.

The decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the condition in the symbol istrue; the other indicates the direction to be taken when the con-
dition isfalse.

136 Control Structures: Part 1 Chapter 4

« Syntax errors are caught by the compiler. Logic errors affect the program only at execution time.
Fatal logic errors cause a program to fail and terminate prematurely. Nonfatal logic errors do not
terminate a program’ s execution but cause the program to produce incorrect results.

* Nested If/Then/Else structures test for multiple conditions by placing I £/Then/Else struc-
turesinside other I £/Then/Else structures.

¢ Thewhile and Do While/Loop repetition structures allow the programmer to specify that an
action is to be repeated while a specific condition remains true.

« Eventudly, the condition in awhile or Do While/Loop structure becomesfalse. At this point,
the repetition terminates, and the first statement after the repetition structure executes.

¢ Failureto providein the body of awhile or Do While/Loop Structure an action that eventually
causes the condition to become false is alogic error. Normally, such a repetition structure never
terminates, resulting in an error called an “infinite loop.”

« Statementsin the body of aDo Until/Loop are executed repeatedly as long as the loop-contin-
uation test evaluates to fal se.

« Failure to provide the body of aDo Until/Loop structure with an action that eventually causes
the condition in the Do Until/Loop to become true creates an infinite loop.

e Visua Basic provides the assignment operators +=, -=, *=, /=, \=, *= and &= for abbreviating
assignment statements.

« In counter-controlled repetition, a counter is used to repeat a set of statements a certain number of
times. Counter-controlled repetition is aso called definite repetition because the number of repe-
titionsis known before the loop begins executing.

¢ A total isavariable used to calculate the sum of a series of vaues.

 Itisimportant that variables used astotals and counters have appropriateinitial values before they
are used. Counters usually are initialized to one. Totals generally areinitialized to zero.

« DatatypesDouble and Single store floating-point numbers. Datatype Double requires more
memory to store afloating-point value, but is more accurate and generally more efficient than type
Single.

« In sentinel-controlled repetition, the number of repetitionsis not known before the loop beginsits
execution. Sentinel-controlled repetition uses a sentinel value (also called asignal value, dummy
value or flag value) to terminate repetition.

« We approach programming problems with top-down, stepwise refinement, a technique essential
to the development of well-structured algorithms.

« Thetop isasingle statement that conveys the overall function of the program. As such, thetop is
acomplete representation of aprogram.

¢ Through the process of refinement, we divide the top into a series of smaller tasks that are listed
in the order in which they must be performed. Each refinement, including the top, is a complete
specification of the algorithm; only the level of detail in each refinement varies.

¢ Many algorithms can be divided logically into three phases: An initialization phase that initializes
the program variables, a processing phase that inputs data values and adjusts program variables
accordingly, and a termination phase that calculates and prints the results.

¢ The programmer terminates the top-down, stepwise refinement process when the pseudocode d -
gorithm is specified in sufficient detail for the pseudocode to be converted to a Visual Basic pro-
gram. The implementation of the Visual Basic program then occurs in a normal, straightforward
manner.

¢ The constants vbCrL£f and vbTab represent the carriage return/linefeed character and the tab
character, respectively.

Chapter 4

Control Structures: Part 1 137

With visual programming, the IDE actually generates program code that creates the GUI. This
code contains instructions for creating the form and every control onit.

Windows application code is contained in a class. Like modules, classes are logica groupings of
procedures and data that simplify program organization.

Using keyword Inherits to extend from class Form enables programmers to create forms
quickly, without “ reinventing the wheel.” Every Windows application consists of at least oneclass
that Inherits from class Formin the System.Windows . Forms namespace.

The region of collapsed code labelled Windows Form Designer generated code contains
the code created by the IDE for the form and its controls, aswell as code that enables the program
to run.

Forms and controls contain a set of default properties, which are displayed initialy in the Prop-
erties window when a form or control is selected. These default properties provide the initial
characteristics aform or control haswhen it is created.

When a change is made in design mode, such as changing a property value, the Windows Form
Designer creates code that implements the change.

Often it is necessary to madify a property while a program is running. In Windows applications,
such code is placed in a procedure that executes when the form isloaded, which can be created by
double-clicking the form in design view.

In Visua Basic, properties are accessed by placing the property name (e.g., Text) after the class

name (e.g., lb1Welcome), separated by the dot operator.

TERMINOLOGY

&= (string concatenation assignment operator)

*= (multiplication assignment operator)
+= (addition assignment operator)

/= (division assignment operator)

= (assignment operator)

- = (Subtraction assignment operator)

\= (Integer division assignment operator)
*= (exponentiation assignment operator)

action symbol

action/decision model of programming
algorithm

atribute

behavior

body of awhile

building block

collapsed code

compl ete representation of a program
conditional expression

connector symbol

constant

control structure

control-structure nesting
control-structure stacking

counter

counter-controlled repetition

decision symbol

declaration

default property

definite repetition

diamond symbol

division by zero

Do While/Loop repetition structure
Do Until/Loop repetition structure
Double primitive datatype
double-selection structure
Else keyword

ElseIf keyword

end of data entry

entry point of control structure
exit point of control structure
expanded code

first refinement

flag value

floating-point division
floating-point number

flow of control

flowchart

flowline

fractional result

GoTo €elimination

“GoTo-less programming”

graphical representation of an algorithm

138 Control Structures: Part 1 Chapter 4

If/Then selection structure real number
If/Then/Else Selection structure rectangle symbol
indefinite repetition refinement process

infinite loop repetition control structure
inheriting from unary operator

System.Windows.Forms.Formclass While repetition structure
initialization at the beginning of each repetition whitespace character

initialization phase Windows Form Designer

initialize second refinement

input/output operation selection control structure

Integer primitive datatype sentinel-controlled repetition

level of refinement sentinel value

logic error sequence control structure

loop sequential execution

looping process signal value

multiple-selection structure Single primitive datatype
multiplicative operators. *, /, \ and Mod single-entry/single-exit control structure
nested loop single-selection structure

nonfatal logic error String datatype

oval symbol structured programming

primitive (or built-in) data type syntax error

procedure for solving a problem System.Windows.Forms.Form class
processing phase termination phase

program control top

pseudocode top-down, stepwise refinement
pseudocode a gorithm transfer of control

pseudocode statement

SELF-REVIEW EXERCISES

4.1 Answer each of the following questions.
a) All programs can be written in terms of three types of control structures: ,
and .
b) The selection structure executes one action (or sequence of actions) when a
condition is true and another action (or sequence of actions) when a condition is false.
¢) Repetition of aset of instructions a specific number of timesis called repe-
tition.
d) Whenitisnot known in advance how many times a set of statements will be repeated, a
value can be used to terminate the repetition.
€) Specifying the order in which statements are to be executed in a computer program is
called program .
f) isan artificial and informal language that hel ps programmers devel op algo-
rithms.
0) arereserved by Visual Basic to implement various features, such asthe lan-
guage’ s control structures.
h) The selection structure is called a multiple-sel ection structure because it se-
lects among many different actions (or sequence of actions).

4.2 State whether each of the following istrue or false. If false, explain why.
a) Itisdifficult to convert pseudocode into aVisual Basic program.
b) Sequential execution refersto statementsin a program that execute one after another.

Chapter 4 Control Structures: Part 1 139

4.3
4.4

4.5

4.6

c) Itisrecommended that Visua Basic programmers use the GoTo statement for program
control.

d) TheIf/Then structureis called asingle-selection structure.

e) Structured programs are clear, easy to debug, modify and more likely than unstructured
programs to be bug-free in the first place.

f) The sequence structure is not built into Visual Basic.

g) Pseudocode closely resembles actual Visual Basic code.

h) Thewhile structureisterminated with keywords End While.

Write two different Visual Basic statementsthat each add 1 to Integer variablenumber.

Write a statement or a set of statements to accomplish each of the following:

a) Sumtheodd Integersbetween 1 and 99 using awhile structure. Assume that vari-
ables sum and count have been declared explicitly as Integers.

b) Sum the squares of even numbers between 1 and 15 using aDo While/Loop repetition
structure. Assume that the Integer variables sum and count have been declared and
initialized to 0 and 2, respectively.

¢) Print the numbersfrom 20 to 1 in aMessageBox using aDo Until/Loop and In-
teger counter variable counterIndex. TheMessageBox should display one num-
ber at atime. Assume that the variable counterIndex isinitialized to 20.

d) Repeat Exercise 4.4 (c) using aDo While/Loop structure.

Write a Visual Basic statement to accomplish each of the following tasks:

a) Declarevariables sum and number to be of type Integer.

b) Assign1 tovariable number.

¢) Assign 0 to variable sum.

d) Total variablesnumber and sum, and assign the result to variable sum.
€) Print "The sum is: " followed by the vaue of variable sum.

Combine the statements that you wrote in Exercise 4.5 into a program that cal cul ates and

prints the sum of the Integersfrom 1 to 10. Use the while structure to loop through the cal-
culation and increment statements. The loop should terminate when the value of control variable
number becomes 11.

4.7

Identify and correct the error(s) in each of the following (you may need to add code):
a) Assume that value has been initialized to 50. The values from 0 to 50 should be
summed.

While value >=
sum += value
End While

b) This segment should read an unspecified number of values from the user and sum them.
Assume that number and total aredeclared as Integers.

total =

Do Until number =
Console.Write ()
number = Console.ReadLine ()
total += number

Loop

Console.WriteLine(total)

140 Control Structures: Part 1 Chapter 4

c) Thefollowing code should print the squares of 1 t0 10 in aMessageBox.
Dim number As Integer =

Do While number <
MessageBox.Show (number * 2)
While End

d) Thissegment should print the valuesfrom 888 t0 1000. Assume value to be declared
asan Integer.

value =

While value <=
value -=
End While

4.8 State whether each of the following are true or false. If the answer isfalse, explain why.
a) Pseudocode isastructured programming language.
b) Thebody of aDo While/Loop isexecuted only if the loop continuation test is false.
¢) Thebody of awhile isexecuted only if the loop continuation test is false.
d) Thebody of aDo Until/Loop isexecuted only if the loop continuation test isfalse.

ANSWERS TO SELF-REVIEW EXERCISES

4.1 a) sequence, selection, repetition. b) If/Then/Else.) counter-controlled or
definite. d) sentinel, signal, flag or dummy. €) control. f) pseudocode. @) keywords. h)
Select Case.

4.2 a) False. Pseudocode should convert easily into Visual Basic code. b) True. c¢) False.
Some programmers argue that GoTo statements violate structured programming and cause consider-
ableproblems. d) True. €)True. f)False ThesequencestructureisbuiltintoVisual Basic; lines
of code execute in the order in which they are written, unless explicitly directed to do otherwise. g)
True. h) True.

4.3 number = number +
number +=

4.4
a) count =
sum =

While count <=
sum += count
count +=

End While

b) Do while count <=
sum += count *
count +=

Loop

Chapter 4 Control Structures: Part 1

C) Do Until counterIndex <
MessageBox.Show (counterIndex)
counterIndex -=

Loop

d) Do While counterIndex >=

MessageBox.Show (counterIndex)

141

counterIndex -=
Loop
4.5 @) Dim sum, number As Integer
b) number =
C) sum =
d) sum += number Of sum = sum + number
€) Console.WriteLine (& sum) Or
Console.WriteLine (, Ssum)
4.6
1
2
3
4 Module modCalculate
5
6 Sub Main ()
7 Dim sum = 0, number As Integer =
8
9 While number <=
10 sum += number
11 number +=
12 End While
13
14 Console.WriteLine (& sum)
15 End Sub
16
17 End Module
4.7 a) Error: Repetition condition may never become fase, resulting in an infinite loop.

While value >=
sum += value

value -=
End While
b) Error: The sentinel value (-1) isadded to total producing an incorrect sum.
total =
Console.Write()

number = Console.ReadLine ()

Do Until number =
total += number

Console.WriteLine ()
number = Console.ReadLine()
Loop

Console.WriteLine (total)

142 Control Structures: Part 1 Chapter 4

¢) Errors: The counter isnever incremented, resulting in aninfiniteloop. The repetition con-
dition uses the wrong comparison operator. Keywords while End are used instead of
keyword Loop.
Dim number As Integer =

Do While number <=
MessageBox.Show (number * 2)
number +=
Loop
d) Error: The vaues are never printed and are decremented instead of incremented.
value =

While value <=
Console.WriteLine (value)
value +=

End While

4.8 a) False. Pseudocode is not a programming language.
b) False. Theloop condition must evaluate to true for the body to be executed.
¢) Fase. Theloop condition must eval uate to true for the body to be executed.
d) True.

EXERCISES

4.9 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. De-
velop a program that inputs the miles driven and gallons used (both as Doubles) for each tankful.
The program should calcul ate and display the miles per gallon obtained for each tankful and print the
combined miles per gallon obtained for dl tankfuls. All average cal culations should produce floating-
point results.

4.10 Develop aprogram that determines if a department store customer has exceeded the credit
limit on a charge account. For each customer, the following facts are available:

a) Account number

b) Balance at the beginning of the month

c) Totd of al items charged by this customer this month

d) Tota of al credits applied to this customer's account this month

e) Allowed credit limit

The program should input as Integers each of these facts, calculate the new balance (=
beginning balance + charges — credits), display the new balance and determine if the new balance
exceeds the customer's credit limit. For those customers whose credit limit is exceeded, the program
should display the message, “ Credit limit exceeded.”

4.11 A palindrome is a number or atext phrase that reads the same backwards as forwards. For
example, each of the following five-digit Integers are paindromes: 12321, 55555, 45554 and
11611. Write an application that readsin afive-digit Integer and determines whether itisapdin-
drome. [Hint: Check if 1st digit equals 5th, 2nd digit equals 4th.]

4.12 A company wants to transmit data over the telephone, but they are concerned that their
phones may be tapped. All their dataistransmitted as four-digit Integers. They have asked you to
write a program that encrypts their data so that it may be transmitted more securely. Y our program
should read afour-digit Integer entered by the user and encrypt it as follows. Replace each digit

Chapter 4 Control Structures: Part 1 143

by (the sum of that digit plus 7) modulo 10. Then swap the first digit with the third, and swap the sec-
ond digit with the fourth. Print the encrypted Integer. Write a separate program that inputs an en-
crypted four-digit Integer and decryptsit to form the original number.

4.13 Thefactoria of anonnegative Integer niswritten n! (pronounced “n factorial”) and isde-
fined as follows:
nN=n-(n-1)-(n-2)-...-1 (for valuesof n greater than or equal to 1)
and
nl=1 (forn=0).
For example, 5! =5-4-3-2 -1, whichis 120.
a) Write an application that reads a nonnegative Integer from an input dialog and com-
putes and printsits factorial .
b) Write an application that estimates the value of the mathematical constant e by using the
formula

4.14 Modify the programin Fig. 4.18 to process the four Strings: "P", "p", "F" and "£". If
any other String input is encountered, a message should be displayed informing the user of invalid
input. Only increment the loop’ s counter if one of the four previously mentioned stringsisinput.

4.15 Moaodify the program in Fig. 4.20 to test if the value input for the side is less than 1. [Hint:
Thisrequires that another I £/Then structure be added to the code.]

4.16 Write aprogram that uses looping to print the following table of values:

N 10*N 100*N 1000*N
1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

[Hint: Use vbTab to separate the columns of output.]

Control Structures:
Part 2

Objectives

» To be ableto usethe For/Next, Do/Loop While
and Do/Loop Until repetition structuresto execute
statements in a program repeatedly.

 To understand multiple selection using the Select
Case selection structure.

* Tobeabletousethe Exit Do and Exit For
program control statements.

» To be ableto use logical operators.

* To be able to form more complex conditions.

Who can control his fate?

William Shakespeare, Othello

The used key is always bright.

Benjamin Franklin

Man is a tool-making animal.

Benjamin Franklin

Intelligence... is the faculty of making artificial objects,

especially tools to make tools.

Henri Bergson

Chapter 5 Control Structures: Part 2 145

Outline

5.1 Introduction

5.2 Essentials of Counter-Controlled Repetition

5.3 For/Next Repetition Structure

5.4 Examples Using the For/Next Structure

5.5 Select Case Multiple-Selection Structure

5.6 Do/Loop While Repetition Structure

5.7 Do/Loop Until Repetition Structure

5.8 Using the Exit Keyword in a Repetition Structure

5.9 Logical Operators
5.10 Structured Programming Summary

Summary ¢ Terminology * Self-Review Exercises « Answers to Self-Review Exercises « Exercises

5.1 Introduction

Before writing a program to solve a particular problem, it is essential to have a thorough
understanding of the problem and a carefully planned approach to solvingit. It is equally
essential to understand the types of building blocks available and to employ proven pro-
gram-construction principles. In this chapter, we discuss these issuesin conjunction with
our presentation of the theory and principles of structured programming. The techniques
we explore are applicable to most high-level languages, including Visual Basic. In Chap-
ter 8, Object-Based Programming, we show how the control structures we present in this
chapter are useful in the construction and manipulation of objects.

5.2 Essentials of Counter-Controlled Repetition

In the last chapter, we introduced the concept of counter-controlled repetition. In this sec-
tion, we formalize the elements needed in counter-controlled repetition, namely:

1. Thenameof acontrol variable (or loop counter) that isused to determine whether
the loop continuesto iterate.

2. Theinitial value of the control variable.

3. The increment (or decrement) by which the control variable is modified during
each iteration of the loop, or each time the loop is performed).

4. The condition that tests for the final value of the control variable (i.e., whether
looping should continue).

The examplein Fig. 5.1 uses the four elements of counter-controlled repetition to dis-
play the even digits from 2-10.

The declaration in line 8 names the control variable (counter), indicatesthat it is of
datatype Integer, reservesspacefor itin memory and setsit to aninitial valueof 2. This

146 Control Structures: Part 2 Chapter 5

1

2

3

4

5 Module modWhileCounter

6

7 Sub Main ()

8 Dim counter As Integer =
9

10 While counter <=

11 Console.Write(counter &)
12 counter +=

13 End While

14

15 End Sub

16

17 End Module
2 4 6 8 10

Fig. 5.1 Counter-controlled repetition with the While structure.

declaration includes an initialization. The initialization portion of this statement is execut-
able, and, therefore, the statement itself aso is executable.

Consider the while structure (lines 10-13). Line 11 displays the current value of
counter, and line 12 incrementsthe control variable by 2 upon each iteration of the loop.
The loop-continuation condition in the While structure (line 10) tests whether the value
of the control variable is less than or equal to 10, meaning that 10 is the final value for
which the condition is true. The body of thiswhile is performed even when the control
variable is 10. The loop terminates when the control variable exceeds 10 (i.e.,, when
counter becomes 12 because the loop isincrementing each time by 2).

5.3 For/Next Repetition Structure

The For/Next repetition structure handles the details of counter-controlled repetition. To
illustrate the power of For/Next, we now rewrite the program in Fig. 5.1. The result is
displayed in Fig. 5.2.

Module modForCounter

Sub Main ()
Dim counter As Integer

OCO~NOOOITD WN P

Fig. 5.2 Counter-controlled repetition with the For/Next structure (part 1 of 2).

Chapter 5 Control Structures: Part 2 147

12 For counter = To Step

13 Console.Write (counter &)
14 Next

16 End Sub

18 End Module
2 4 6 810

Fig. 5.2 Counter-controlled repetition with the For/Next structure (part 2 of 2).

Good Programming Practice 5.1
@ Place a blank line before and after each control structureto makeit stand out in the program.

Good Programming Practice 5.2

@ Vertical spacing above and below control structures, as well as indentation of the bodies of
control structures, gives programs a two-dimensional appearance that enhances readability.

TheMain procedure of the program operates as follows: When the For/Next struc-
ture (lines 12—14) begins its execution, the control variable counter isinitialized to 2,
thus addressing the first two elements of counter-controlled repetition—control variable
name and initial value. Next, the implied loop-continuation condition counter <= 10 is
tested. The To keyword isrequired inthe For/Next structure. The optional step keyword
specifies the increment (i.e., the amount that is added to counter each time the For/
Next body is executed). The increment of a For/Next structure could be negative, in
which case it is a decrement, and the loop actually counts downwards. If sStep and the
value following it are omitted, the increment defaultsto 1. Programmers typically omit the
Step portion for increments of 1.

Because, the initial value of counter is 2, the implied condition is satisfied (i.e.,
True), and the counter’s value 2 is output in line 13. The required Next keyword
marks the end of the For/Next repetition structure. When the Next keyword is reached,
variable counter isincremented by the specified value of 2, and the loop begins again
with the loop-continuation test.

At thispoint, the control variableisequal to 4. Thisvalue does not exceed thefina value,
so the program performsthe body statement again. Thisprocess continuesuntil thecounter
valueof 10 hasbeen printed and the control variable counter isincrementedto 12, causing
the loop-continuation test to fail and repetition to terminate. The program continues by per-
forming the first statement after the For /Next structure. (In this case, procedure Main ter-
minates, because the program reaches the End Sub statement on line 16.)

¢) Use a For/Next |oop for counter-controlled repetition. Off-by-one errors (which occur
when a loop is executed for one more or one less iteration than is necessary) tend to disap-
pear, because the terminating value is not ambiguous.

148 Control Structures: Part 2 Chapter 5

Figure 5.3 takes a closer look at the For/Next structure from Fig. 5.2. The first line
of the For/Next structure sometimesis called the For/Next header. Noticethat the For/
Next header specifies each of the items needed to conduct counter-controlled repetition
with a control variable.

Common Programming Error 5.1

@ Counter-controlled loops should not be controlled with floating-point variables. Floating-
point values are represented only approximately in the computer’ s memory, often resulting
in imprecise counter values and inaccur ate tests for termination.

In many cases, the For/Next structure can be represented with another repetition
structure. For example, an equivalent while structure would be of the form
variable = start
While variable <= end
Statement

variable += increment
End While

For example, lines 8-13 of Fig. 5.1 are equivaent to lines 8-14 of Fig. 5.2.

The starting value, ending value and increment portions of a For/Next structure can
contain arithmetic expressions. The expressions are evaluated once (when the For/Next
structure begins executing) and used as the starting value, ending value and increment of
the For/Next header. For example, assume that valuel = 2 and value2 = 10. The
header

For j = valuel To * valuel * value2 Step value2 \ valuel
is equivalent to the header
For j = To Step

If the loop-continuation condition isinitially false (e.g., if the starting value is greater
than the ending value and the increment is positive), the For/Next’s body is not per-
formed. Instead, execution proceeds with the statement after the For/Next structure.

The control variable frequently is printed or used in calculations in the For/Next
body, but it does not haveto be. It iscommon to use the control variable exclusively to con-
trol repetition and never mention it in the For/Next body.

Initialvalue ~ Finalvalue
For of control of control Increment of
keyword variable variable control variable
For counter = To Step
Control To Step

variable name keyword keyword

Fig. 5.3 For/Next header components.

Chapter 5 Control Structures: Part 2 149

x| Although the value of the control variable can be changed in the body of a For/Next loop,
avoid doing so, because this practice can lead to subtle errors.
Common Programming Error 5.2

@ In nested For/Next loops, the use of the same control-variable name in mor e than one loop
isa syntax error.

The flowchart for the For/Next structure is similar to that of the While structure.
For example, the flowchart of the For/Next structure

For counter = To
Console.WriteLine (counter *)
Next

isshownin Fig. 5.4. Thisflowchart clarifiesthat theinitialization occurs only once and that
incrementing occurs after each execution of the body statement. Note that, besides small
circles and flowlines, the flowchart contains only rectangle symbols and a diamond sym-
bol. The rectangle symbols and diamond symbol are filled with actions and decisions that
are appropriate to the algorithm the programmer isimplementing.

5.4 Examples Using the For/Next Structure

The following examples demonstrate different ways of varying the control variable in a
For/Next structure. In each case, we write the appropriate For/Next header.

a) Vary thecontrol variable from 1 to 100 inincrements of 1.
For i = To or For i = To Step
b) Vary the control variable from 100 to 1 inincrements of -1 (decrements of 1).

For i = To Step

Establish initial value
of control variable.

Determine if final
value of control -
variable has
been reached.

true

counter <= Console.WriteLine (| |counter += 1

(implicit) counter * 10) (implicit)
Body of loop Increment
false (this can be multiple the control
statements) variable.

Fig. 5.4 For/Next repetition structure flowchart.

150 Control Structures: Part 2 Chapter 5

¢) Vary the control variable from 7 to 77 inincrements of 7.
For i = To Step

d) Vary thecontrol variable from 20 to 2 inincrements of -2 (decrements of 2).
For i = To Step

€) Vary the control variable over the sequence of the following values: 2, 5, 8, 11,
14,17, 20.

For i = To Step

f) Vary the control variable over the sequence of the following vaues: 99, 88, 77,
66,55,44,33,22,11,0.

For i = To Step

The next two examples demonstrate simple applications of the For/Next repetition
structure. The program in Fig. 5.5 uses the For/Next structure to sum the even integers
from 2 to 100. Remember that the use of the MessageBox class requires the addition of
areferenceto System.Windows.Forms.d11, asexplained in Section 3.7.

1
2
3
4 Imports System.Windows.Forms
5
6 Module modSum
he
8 Sub Main ()
9 Dim sum = 0, number As Integer
10
11
12 For number = To Step
13 sum += number
14 Next
15
16 MessageBox. Show (& sum, _
17 g _
18 MessageBoxButtons.OKX, MessageBoxIcon.)
19
20 End Sub
21
22 End Module

MessageBoxIcon. Title bar text

\\\\\\\\\\Esnﬂmumamlm 4‘//;r/
:fl_.ll -am e ¥ — Message text
MessageBoxButton. = |

Fig. 5.5 For/Next structure used for summation.

Chapter 5

Control Structures: Part 2 151

The version of method MessageBox . Show called in Fig. 5.5 (lines 16-18) is dif-
ferent from the version discussed in earlier examplesin that it takes four argumentsinstead
of two. The dialog shown at the bottom of Fig. 5.5 is labelled to emphasize the four argu-
ments. The first two arguments are Strings displayed in the dialog and the diaog' s title
bar, respectively. The third and fourth arguments are constants representing buttons and
icons. The third argument indicates which button(s) to display, and the fourth argument
indicates an icon that appears to the left of the message. The MSDN documentation pro-
vided with Visual Studio includes the complete listing of MessageBoxButtons and
MessageBoxIcon constants. Message dialog icons are described in Fig. 5.6; message
dialog buttons are described in Fig. 5.7, including how to display multiple buttons.

MessageBoxIcon Constants

MessageBoxIcon.

MessageBoxIcon.

MessageBoxIcon.

MessageBoxIcon.

Icon Description

Icon containing an exclamation point.
i"j Typicaly used to caution the user
against potential problems.

Icon containing the letter “i.” Typicaly
used to display information about the
state of the application.

Icon containing a question mark. Typi-
cally used to ask the user a question.
Icon containing an x in ared circle.

Typicaly used to alert the user of errors
or critical situations.

-0

L%

Fig. 5.6 Message dialog icon constants.

MessageBoxBut ton constants

MessageBoxButtons.

MessageBoxButtons.

MessageBoxButtons.

MessageBoxButtons.

MessageBoxButtons.

Description

OK bhutton. Allows the user to acknowledge
amessage. Included by default.

OK and Cancel buttons. Allow the user to
either continue or cancel an operation.

Yes and No buttons. Allow the user to
respond to a question.

Yes, No and Cancel buttons. Allow the
user to respond to a question or cancel an
operation.

Retry and Cancel buttons. Typically used
to allow the user to either retry or cancel an
operation that has failed.

Fig. 5.7 Message dialog button constants (part 1 of 2).

152 Control Structures: Part 2 Chapter 5

MessageBoxButton constants Description

MessageBoxButtons. Abort, Retry and Ignore buttons. When
one of aseries of operations has failed, these
buttons allow the user to abort the entire
sequence, retry the failed operation or ignore
the failed operation and continue.

Fig. 5.7 Message dialog button constants (part 2 of 2).

The next example computes compound interest using the For/Next structure. Con-
sider the following problem statement:

A person invests $1000.00 in a savings account that yields 5% interest. Assuming that all
interest is left on deposit, calculate and print the amount of money in the account at the end
of each year over a period of 10 years. To determine these amounts, use the following for-
mula:

a=p@+nn
where
p isthe original amount invested (i.e., the principal)
r isthe annual interest rate (e.g., .05 stands for 5%)
n isthe number of years
a isthe amount on deposit at the end of the nth year.
This problem involves aloop that performs the indicated cal culation for each of the 10
years that the money remains on deposit. The solution is shown in Fig. 5.8.
Line 9 declares two Decimal variables. Type Decimal isused for monetary calcu-
lations. Line 10 declaresrate astypeDouble and lines 14-15initiadlizeprincipal to
1000.00 and rate to 0. 05, (i.e., 5%).

1

2

3

4 Imports System.Windows.Forms

5

6 Module modInterest

b

8 Sub Main ()

9 Dim amount, principal As Decimal
10 Dim rate As Double

11 Dim year As Integer

12 Dim output As String

13

14 principal =

15 rate =

16

17 output = & & &
18

Fig. 5.8 For/Next structure used to calculate compound interest (part 1 of 2).

Chapter 5 Control Structures: Part 2 153

19

20 For year = To

21 amount = principal * (1 + rate) * year

22 output &= year & &

23 String.Format (, amount) &

24 Next

25

26

27 MessageBox.Show (output, 0 _
28 MessageBoxButtons.0X, MessageBoxIcon.)
29

30 End Sub

31

32 End Module

1 s | G £l

) LTl LR I TR TR T |

'~,_1‘> 21330
N Bl |
=TT 0D
R |
=275 00
=l ey
S St
=1, T A
o I |

2 - .23 852

B |

o

—a s MifrTaf "

Fig. 5.8 For/Next structure used to calculate compound interest (part 2 of 2).

The For/Next structure executes its body 10 times, varying control variable year
from 1 to 10 inincrements of 1. Line 21 performs the calculation from the problem state-
ment

a=p@a+nn
wherea isamount, pisprincipal,risrate andnisyear.

Lines 22—23 append additional text to the end of String output. Thetext includes
the current year value, a tab character (vbTab) to position to the second column, the
result of the method call string.Format ("{0:C}", amount) and, findly, a newline
character (vbCrL£) to start the next output on the next line. The first argument passed to
Format is the format string. We have seen Strings containing {0}, {1} and so on,
where the digit within the braces indicates the argument being displayed. In Chapter 4, we
used amore complicated format string to print afloating-point number with two digits after
the decimal. In these more complicated format strings, suchas " {0: ¢} ", thefirst digit (0)
servesthe same purpose. Theinformation specified after the colon (:) iscalled the format-
ting code. The ¢ (for “currency”) formatting code indicates that its corresponding argument
(amount) should be displayed in monetary format. Figure 5.9 shows several formatting
codes; a complete list can be found in the MSDN documentation “ Standard Numeric
Format Strings.” All formatting codes are case insensitive. Note that format codes D and X
can be used only with integer values.

154 Control Structures: Part 2 Chapter 5

Format Code Description

c Currency. Precedes the number with $, separates every three digits with
commas and sets the number of decimal places to two.

E Scientific notation. Displays one digit to the left of the decimal and six dig-

itsto theright of the decimad, followed by the character E and athree-digit
integer representing the exponent of a power of 10. For example, 956 .2 is
formatted as9.562000E+002.

F Fixed point. Sets the number of decimal placesto two.
Genera. Visua Basic chooses either E or F for you, depending on which
representation generates a shorter string.

D Decimal integer. Displays an integer as awhole number in standard base-10
format.

N Number. Separates every three digits with acommaand sets the number of
decimal placesto two.

X Hexadecimal integer. Displays the integer in hexadecima (base-16)

notation. We discuss hexadecimal notation in Appendix B.

Fig. 5.9 Formatting codes for Strings.

Variables amount and principal are of type Decimal. We do this because we
are dealing with fractional parts of dollars and need a type that allows precise calculations
with monetary amounts—Single and Double do not. Using floating-point data types,
such as Single or Double, to represent dollar amounts (assuming that dollar amounts
are displayed with two digits to the right of the decimal point) can cause errors. For
example, two Double dollar amounts stored in the machine could be 14.234 (normally
rounded to 14.23) and 18.673 (normally rounded to 18.67). When these amounts are added
together, they produce the internal sum 32.907, which normally roundsto 32.91. Thus, the
printout could appear as

14.23
+ 18.67

32.91

but a person adding the individual numbers as printed would expect the sum 32.90. There-
fore, it isinappropriate to use Single or Double for dollar anounts.

Good Programming Practice 5.3

@ Do not use variables of type Single or Double to perform precise monetary calculations.
The imprecision of floating-point numbers can cause errorsthat result in incorrect monetary
values. Use the data type Decimal for monetary calculations.

Variable rate is of type Double becauseit is used in the calculation 1.0 + rate,
which appears as the right operand of the exponentiation operator. In fact, this calculation
produces the same result each time through the loop, so performing the calculation in the
body of the For/Next loop is wasteful.

Chapter 5 Control Structures: Part 2 155

Performance Tip 5.1

4 Avoid placing inside a loop the calculation of an expression whose value does not change
" each time through the loop. Such an expression should be evaluated only once and prior to
the loop.

5.5 Select Case Multiple-Selection Structure

In the last chapter, we discussed the I £/Then single-selection structure and the I £/Then/
Else double-selection structure. Occasionally, an algorithm contains a series of decisions
in which the algorithm tests avariable or expression separately for each value that the vari-
able or expression might assume. The algorithm then takes different actions based on those
values. Visua Basic provides the Select Case multiple-selection structure to handle
such decision making. The programin Fig. 5.10 usesaSelect Case to count the number
of different letter grades on an exam. Assume the exam is graded as follows: 90 and above
isanA, 80-89%isaB, 70-79isaC, 60-69isaD and 0-59isan F. This“generous’ instruc-
tor gives aminimum grade of 10 for students who were present for the exam. Students not
present for the exam receive a 0.

Line 7 in Fig. 5.10 declares variable grade as type Integer. This variable stores
each grade that isinput. Lines 8-12 declare variables that store the total number grades of
each type. Lines 18-57 use awhile loop for sentinel-controlled repetition.

Line 20

Select Case grade

begins the Select Case structure. The expression following the keywords Select
Case is caled the controlling expression. The controlling expression (i.e., the value of
grade) iscompared sequentialy with each Case. If amatching case isfound, the code
in the Case executes, then program control proceeds to the first statement after the Se-
lect Case structure (line 55).

—s- Common Programming Error 5.3
@ Duplicate Case statementsarelogic errors. At runtime, thefirst matching Case isexecuted.

1

2

3

4 Module modEnterGrades

5

6 Sub Main ()

7 Dim grade As Integer =

8 Dim aCount As Integer =

9 Dim bCount As Integer =

10 Dim cCount As Integer =

11 Dim dCount As Integer =

12 Dim fCount As Integer =

13

14 Console.Write()
15 grade = Console.ReadLine ()

Fig. 5.10 Select Case structure used to count grades (part 1 of 3).

156 Control Structures: Part 2 Chapter 5

16

17

18 While grade <>

19

20 Select Case grade

21

22 Case

23 Console.WriteLine (& &
24 &)

25 aCount +=

26

27 Case To

28 Console.WriteLine (&)
29 aCount +=

30

&l Case To

32 Console.WriteLine (&)
33 bCount +=

34

35 Case To

36 Console.WriteLine (&)
37 cCount +=

38

39 Case To

40 Console.WriteLine (&)
41 dCount +=

42

43

44 Case 0, To

45 Console.WriteLine (&)
46 fCount +=

47

48 Case Else

49

50

51 Console.WriteLine (&

52 &)

53 End Select

54

55 Console.Write ()

56 grade = Console.ReadLine()

57 End While

58

59

60 Console.WriteLine (&

61 & &
62 & aCount & & & bCount _

63 & & & cCount & & &

64 dCount & & & fCount)

65

66 End Sub

67

68 End Module

Fig. 5.10 Select Case structure used to count grades (part 2 of 3).

Chapter 5 Control Structures: Part 2 157

Enter a grade, -1 to quit: 84
Letter Grade: B

Enter a grade, -1 to quit: 100
Perfect Score!

Letter grade: A

Enter a grade, -1 to quit: 3000
Invalid Input. Please enter a valid grade.

Enter a grade, -1 to quit: 95
Letter Grade: A

Enter a grade, -1 to quit: 78
Letter Grade: C

Enter a grade, -1 to quit: 64
Letter Grade: D

Enter a grade, -1 to quit: 10
Letter Grade: F

Enter a grade, -1 to quit: -1

Totals for each letter grade are:
2

HOnNQwp
R RRR

Fig.5.10 Select Case structure used to count grades (part 3 of 3).

Thefirst case statement (line 22) determinesif the value of grade is exactly equal to
100. The next Case statement (line 27) determinesif grade isbetween 90 and 99 inclu-
sive. Keyword To specifies the range. Lines 31-44 use this keyword to present a series of
similar Cases.

Common Programming Error 5.4

@ If the value on the left side of the To keyword in a Case statement is larger than the value
on theright side, the case isignored during program execution, potentially causing a logic
error.

When multiple values are tested in a Case statement, they are separated by commas
(line 44). Either 0 or any value in the range 10 to 59, inclusive matches this case. Line
48 contains the optional case E1se, which is executed when input does not match any of
the previous Cases. Case Else commonly is used to check for invalid input. When
employed, the Case E1se must bethelast case.

The reguired End Select keywords terminate the Select Case structure. Note
that the body of the Select Case structure is indented to emphasize structure and
improve program readability.

158 Control Structures: Part 2 Chapter 5

—ao- Common Programming Error 5.5

When using the optional Case Else Statement in a Select Case structure, failure to
placethe Case Else asthelast Caseisa syntax error.

@ Providea Case Elsein Select Case structures. Casesnot handledina Select Case

structureareignored unlessa case Elseisprovided. Theinclusion of a Case Else State-
ment facilitates the processing of exceptional conditions. In some situations, no Case Else
processing is needed.

Case statements also can use relational operatorsto determine whether the controlling
expression satisfies a condition. For example

Case Is <

uses keyword Is aong with the relational operator, <, to test for values less than O.
Figure 5.11 flowchartsthe Select Case structure.

true -
Case a action(s)

Case b action(s)

true -
Case z action(s) |—»

false

| Case Else action(s) |

)
O

Fig. 5.11 Select Case multiple-selection structure flowchart.

Chapter 5 Control Structures: Part 2 159

Again, note that (besides small circles and flowlines) the flowchart contains only rect-
angle and diamond symbols. Imagine, as we did in the previous chapter, that the pro-
grammer has access to a deep bin of empty structures. Thistime, the bin contains Select
Case structures, and the programmer can stack and nest as many as are necessary with
other control structures to form astructured implementation of an algorithm’sflow of con-
trol. The programmer fills the rectangles and diamonds with actions and decisions appro-
priate to the algorithm. Although nested control structures are common, it is rare to find
nested Select Case structuresin aprogram.

In Chapter 10, Object-Oriented Programming: Part 2, we present a more elegant
method of implementing multiple selection logic. We use atechnique called polymorphism
to create programs that are often clearer, more manageable, and easier to extend than pro-
gramsthat use Select Case logic.

5.6 Do/Loop While Repetition Structure

The Do/Loop While repetition structure is similar to the while structure and Do
While/Loop structure. Inthewhile and Do While/Loop structures, the loop-continu-
aion condition is tested at the beginning of the loop, before the body of the loop is per-
formed. The Do/Loop Whi 1 e structure tests the loop-continuation condition after theloop
body is performed. Therefore, in aDo/Loop While structure, the loop body is always ex-
ecuted at least once. When a Do/Loop While structure terminates, execution continues
with the statement after the Loop While clause. TheprograminFig. 5.12 usesaDo/Loop
While structure to output the values 1-5.

Infinite loops occur when the loop-continuation condition ina while, Do Whilel/Loop or
DolLoop While structure never becomes false.

L

1

2

3

4 Module modDoWhile

5

6 Sub Main ()

7 Dim counter As Integer =
8

9

10 Do

11 Console.Write (counter &)
12 counter +=

13 Loop While counter <=

14

15 End Sub

16

17 End Module
12345

Fig. 5.12 Do/Loop While repetition structure.

160 Control Structures: Part 2 Chapter 5

Lines 10-13 demonstrate the Do/Loop While structure. Thefirst timethat the structure
isencountered, lines 11-12 are executed, displaying the value of counter (at thispoint, 1)
then incrementing counter by 1. Then, the condition in line 13 is evaluated. Variable
counter is 2, which isless than or equal to 5; because the condition is met, the Do/Loop
While structure executes again. Thefifth timethat the structure executes, line 11 outputsthe
value 5, and, inline 12, counter isincremented to 6. At this point, the condition on line 13
evauates to false, and the program exits the Do/Loop While structure.

The Do/Loop While flowchart (Fig. 5.13) illustrates the fact that the loop-continua-
tion condition is not evaluated until the structure body is executed at least once. The flow-
chart contains only a rectangle and a diamond. Imagine, once again, that the programmer
has access to a bin of empty Do/Loop While structures—as many as the programmer
might need to stack and nest with other control structures to form a structured implemen-
tation of an algorithm. The programmer fills the rectangles and diamonds with actions and
decisions appropriate to the algorithm.

5.7 Do/Loop Until Repetition Structure

TheDo/Loop Until structureissimilar totheDo Until/Loop structure, except that the
loop-continuation condition is tested after the loop body is performed; therefore, the loop
body executes at |east once. When aDo/Loop Until terminates, execution continueswith
the statement after the Loop Until clause. Figure 5.14 usesaDo/Loop Until structure
to print the numbers from 1-5.

Fig. 5.13 Do/Loop While repetition structure flowchart.

Module modLoopUntil

Sub Main()
Dim counter As Integer =

~NoO o, WNE

Fig. 5.14 Do/Loop Until repetition structure (part 1 of 2).

Chapter 5 Control Structures: Part 2 161

10 Do

11 Console.Write (counter &)
12 counter +=

13 Loop Until counter >

14

15 End Sub

16

17 End Module

12345
Fig. 5.14 Do/Loop Until repetition structure (part 2 of 2).

The Do/Loop Until structure is flowcharted in Fig. 5.15. This flowchart makes it
clear that the loop-continuation condition is not evaluated until after the body is executed
a least once. Again, note that (besides small circles and flowlines) the flowchart contains
only arectangle symbol and a diamond symboal.

Imagine, again, that the programmer has access to a deep bin of empty Do/Loop
Until structures—as many as the programmer might need to stack and nest with other
control structures to form a structured implementation of an algorithm’s flow of contral.
And again, the rectangles and diamonds are then filled with actions and decisions appro-
priate to the algorithm.

Common Programming Error 5.6

@ Including an incorrect relational operator or an incorrect final value for a loop counter in
the condition of any repetition structure can cause off-by-one errors.

Infinite loops occur when the loop-continuation condition in a Do Until/Loop of Dol
Loop Until structure never becomes true.

Fig. 5.15 Do/Loop Until repetition structure flowchart.

162 Control Structures: Part 2 Chapter 5

In a counter-controlled loop, make surethe control variableisincremented (or decremented)
appropriately in the body of the loop.

T
% In a sentinel-controlled loop, make sure the sentinel value is eventually input.

Including a final valuein the condition of a repetition structure (and choosing the appropri-
aterelational operator) can reduce the risk of off-by-one errors. For example, ina while
loop used to print the values 1-10, the loop-continuation condition should be counter <=
10, rather than counter < 10 (which isan off-by-one error) or counter < 11 (whichis
nevertheless correct).

5.8 Using the Exit Keyword in a Repetition Structure

The Exit Do, Exit While and Exit For Statements alter the flow of control by caus-
ing immediate exit from a repetition structure. The Exit Do statement can be executed in
aDo While/Loop, Do/Loop While, Do Until/Loop Or Do/Loop Until structure,
to cause the program to exit immediately from that repetition structure. Similarly, theExit
For and Exit While statements cause immediate exit from For/Next and While
loops, respectively. Execution continues with the first statement that follows the repetition
structure.

Figure 5.16 demonstrates the Exit For, Exit Do and Exit While statementsin
various repetition structures.

1

2

3
4 Imports System.Windows.Forms

5

6 Module modExitTest

he

8 Sub Main ()

9 Dim output As String
10 Dim counter As Integer
11
12 For counter = To
13
14
15 If counter = Then
16 Exit For
17 End If
18
19 Next
20
21 output = & counter & _
22 &

Fig. 5.16 Exit keyword in repetition structures (part 1 of 2).

Chapter 5 Control Structures: Part 2 163

23

24 Do Until counter >

25

26

27 If counter = Then

28 Exit Do

29 End If

30

31 counter +=

32 Loop

33

34 output &= & counter & _
35 &
36

37 While counter <=

38

39

40 If counter = Then

41 Exit While

42 End If

43

44 counter +=

45 End While

46

a7 output &= & counter &
48

49

50 MessageBox.Show (output, 0o
51 MessageBoxButtons.0X, MessageBoxIcon.)
52 End Sub

53

54 End Module

THt Tast |
| "i" rmimbar " st sl Tortoes doee w
.._rJ [OTT IE TR | I QR T TR I T SRR W

[STTIT QR [FE A FETES [T FEi TP

Fig. 5.16 Exit keyword in repetition structures (part 2 of 2).

The header of the For/Next structure (line 12) indicates that the body of the loop
should execute ten times. During each execution, the I£/Then structure (lines 15-17)
checksif the control variable, counter, isequal to 3. If so, the Exit For statement (line
16) executes. Thus, as the body of the For/Next structure executes for the third time (i.e,
counter is 3), the Exit For statement terminates execution of the loop. Program con-
trol then proceeds to the assignment statement (lines 21-22) which appends the current
value of counter to String variable output.

The header of the Do Until/Loop structure (line 24) indicates that the loop should
continue executing until counter isgreater than 10. (Note that counter is 3 when the
Do Until/Loop structure begins executing.) When counter hasthevalues 3 and 4, the

164 Control Structures: Part 2 Chapter 5

body of the I£/Then structure (lines 27-29) does not execute, and counter is incre-
mented (line 31). However, when counter is 5, the Exit Do statement (line 28) exe-
cutes, terminating the loop. The assignment statement (lines 34-35) appends the value of
counter to output. Note that the program does not increment counter (line 31) after
the Exit Do statement executes.

Thewhile structure (lines 37-45) behaves similarly to the Do While/Loop. Inthis
case, the value of counter is 5 when the loop begins executing. When counter is 7,
the Exit While statement (line 41) executes, terminating execution of the while struc-
ture. Lines47-48 append thefinal value of counter to String variableoutput, which
isdisplayed in amessage dialog (lines 50-51).

Some programmers feel that Exit Do, Exit While and Exit For violatethe principles
of structured programming. The effects of these statements can be achieved by structured
programming techniques that we discuss soon.

Debates abound regarding the relative importance of quality software engineering and pro-
gram performance. Often, one of these goals is accomplished at the expense of the other. For
all but the most performance-intensive situations, apply thefollowing guidelines. First, make
your code simple and correct; then make it fast and small, but only if necessary.

5.9 Logical Operators

So far, we have studied only simple conditions, such as count <= 10, total > 1000
and number <> sentinelValue. Each selection and repetition structure evaluated
only one condition with one of the operators >, <, >=, <=, = and <>. To make a decision
that relied on the evaluation of multiple conditions, we performed these tests in separate
statements or in nested I £/Then or I £/Then/Else Structures.

To handle multiple conditions more efficiently, Visual Basic provides logical opera-
tors that can be used to form complex conditions by combining simple ones. The logica
operatorsare AndAlso, And, OrElse, Or, Xor and Not. We consider examplesthat use
each of these operators.

Suppose we wish to ensure that two conditionsare both truein a program before acertain
path of execution is chosen. In such case, we can use the logical AndAlso operator asfol-
lows:

If gender = AndAlso age >= Then
seniorFemales +=
End If

This I£/Then statement contains two simple conditions. The condition gender = "F"

determines whether a person isfemale and the condition age >= 65 determines whether a
personisasenior citizen. The two simple conditions are evaluated first, because the prece-
dences of = and >= are both higher than the precedence of AndAlso. The I £/Then State-
ment then considers the combined condition

gender = AndAlso age >=

Chapter 5 Control Structures: Part 2 165

Thiscondition evaluatesto trueif and only if both of the smple conditionsaretrue. When this
combined condition is true, the count of seniorFemales isincremented by 1. However,
if either or both of the simple conditions are fal se, the program skips the increment and pro-
ceeds to the statement following the I £/Then structure. The readability of the preceding
combined condition can be improved by adding redundant (i.e., unnecessary) parentheses:

(gender =) AndAlso (age >=)

Figure 5.17 illustrates the effect of using the AndA1 so operator with two expressions.
The table lists all four possible combinations of true and false values for expressionl and
expression2. Such tables often are called truth tables. Visual Basic evaluatesto true or false
expressions that include relational operators, equality operators and logical operators.

Now let us consider the OrElse operator. Suppose we wish to ensure that either or
both of two conditions are true before we choose a certain path of execution. We use the
OrElse operator in the following program segment:

If (semesterAverage >= OrElse finalExam >=) Then
Console.WriteLine ()
End If

This statement also contains two simple conditions. The condition semesterAverage
>= 90 isevaluated to determine whether the student deservesan “A” in the course because
of an outstanding performance throughout the semester. The condition finalExam >=
90 isevaluated to determine if the student deservesan “A” in the course because of an out-
standing performance on the final exam. The I£/Then statement then considers the com-
bined condition

(semesterAverage >= OrElse finalExam >=)

and awardsthe student an “A” if either or both of the conditions are true. Note that the text
“Student grade is A" is always printed, unless both of the conditions are fase.
Figure 5.18 provides a truth table for the OrElse operator.

The AndAlso operator has a higher precedence than the orElse operator. An
expression containing AndAlso or OrElse operatorsis evaluated only until truth or fal-
sity isknown. For example, evaluation of the expression

(gender = AndAlso age >=)
expressionl expression2 expressionl AndAlso expression2
False False False
False True False
True False False
True True True

Fig. 5.17 Truth table for the AndAlso operator.

166 Control Structures: Part 2 Chapter 5

expressionl expression2 expressionl OrElse expression2
False False False
False True True
True False True
True True True

Fig. 5.18 Truth table for the OrEl se operator.

stops immediately if gender isnot equal to "F" (i.e., the entire expression is false); the
evauation of the second expression is irrelevant because the first condition is false. Eval-
uation of the second condition occursif and only if gender isequal to "F* (i.e, theentire
expression could still be trueif the condition age >= 65 istrue). This performance feature
for the evaluation of AndAlso and OrElse expressionsis called short-circuit evaluation.

e In expressions using operator AndAlso, if the separate conditions are independent of one

©221 another, place the condition most likely to be false as the leftmost condition. In expressions
using operator orElse, make the condition most likely to be true the leftmost condition.
Each of these suggestions can reduce a program' s execution time.

The logical AND operator without short-circuit evaluation (And) and the logical
inclusive OR operator without short-circuit evaluation (or) are similar to the AndAlso
and OrElse operators, with one exception—the And and Or logical operators always
evauate both of their operands. No short-circuit evaluation occurs when And and Or are
employed. For example, the expression

(gender = And age >=)

evaluates age >= 65, even if gender isnot equal to "F".

Normally, there is no compelling reason to use the And and or operators instead of
AndAlso and OrElse. However, some programmers make use of them when the right
operand of a condition produces a side effect (such as amodification of avariable’ svalue) or
if the right operand includes arequired method call, asin the following program segment:

Console.WriteLine ()

If (gender = And Console.ReadLine() >=) Then
Console.WriteLine ()

End If

Here, the And operator guarantees that the condition Console.ReadLine () >= 65 iS
evauated, so ReadLine is called regardless of whether the overall expression istrue or
false. It would be better to write this code as two separate statements—the first would store
the result of Console.ReadLine () in avariable, then the second would use that vari-
able with the AndAlso operator in the condition.

% Avoid expressionswith side effectsin conditions; these side effects often cause subtle errors.

Chapter 5 Control Structures: Part 2 167

A condition containing the logical exclusive OR (Xor) operator is true if and only if
one of itsoperands resultsin a true value and the other resultsin a false value. If both oper-
andsaretrue or both arefalse, the entire condition isfalse. Figure 5.19 presents atruth table
for the logical exclusive OR operator (Xor). This operator always evaluates both of its
operands (i.e., there is no short-circuit evaluation).

Visual Basic'sNot (logical negation) operator enables a programmer to “reverse” the
meaning of a condition. Unlike the logical operators AndAlso, And, OrElse, Or and
Xor, that each combine two conditions (i.e., these are al binary operators), the logical
negation operator is a unary operator, requiring only one operand. The logical negation
operator is placed before a condition to choose a path of execution if the original condition
(without the logical negation operator) is false. The logical negation operator is demon-
strated by the following program segment:

If Not (grade = sentinelValue) Then
Console.WriteLine (& grade)
End If

The parentheses around the condition grade = sentinelValue are necessary,
becausethelogica negation operator (Not) has ahigher precedence than the equality oper-
ator. Figure 5.20 provides a truth table for the logical negation operator.

In most cases, the programmer can avoid using logical negation by expressing the con-
dition differently with relational or equality operators. For example, the preceding state-
ment can be written as follows:

If grade <> sentinelValue Then
Console.WriteLine (& grade)
End If

Thisflexibility aids programmersin expressing conditions more naturally.

expressionl expression2 expressionl Xor expression2
False False False

False True True

True False True

True True False

Fig. 5.19 Truth table for the logical exclusive OR (Xor) operator.

expression Not expression
False True
True False

Fig. 5.20 Truth table for operator Not (logical NOT).

168 Control Structures: Part 2 Chapter 5

The Windows application in Fig. 5.21 demonstrates the use of the logical operators by
displaying their truth tablesin six labels.

1

2

3

4 Public Class FrmLogicalOperator

5 Inherits System.Windows.Forms.Form

6

7

8

9 Private Sub FrmLogicalOperator Load(_

10 ByVal sender As System.Object,

11 ByVal e As System.EventArgs) Handles MyBase.Load

12

13 1blAndAlso.Text = & & & _

14 & (False AndAlso False) & _
15 & &

16 (False AndAlso True) & & _

17 & (True AndAlso False) & _

18 & & (True AndAlso True)
19

20 1blOrElse.Text = & & &

21 & (False OrElse False) & _

22 & & (False OrElse True) & _
23 & & (True OrElse False) & _
24 & & (True OrElse True)
25

26 1blAnd.Text = & & & _

27 & (False And False) & &
28 & (False And True) & &
29 & (True And False) & &
30 & (True And True)

31

32 1blOr.Text = & &

33 & & (False Or False) & _
34 & & (False Or True) & _

35 & & (True Or False) & _

36 & & (True Or True)

37

38 lblXor.Text = & &

39 & & (False Xor False) & _
40 & & (False Xor True) & _
41 & & (True Xor False) & _
42 & & (True Xor True)

43

44 1blNot.Text = & & & _

45 & (Not False) & & &
46 (Not True)

47

48 End Sub

49

50 End Class

Fig. 5.21 Logical operator truth tables (part 1 of 2).

Chapter 5

Control Structures: Part 2

169

~131x]
st ard o
Fasvd: GauFanwe Foloo ETETR T I SRR SacoFaFoleo Tuae
Tmcwsamon TmeCacn [elvad TieTaca IEELE T TLE T
T-u- ;antiles =_l:o Funwe T.vin. =l Fuse Tou- ko Foloo, Tiue
T dedy T T T s o] T, Tiae Tou® o Toow Folee

B L r H-1
Alve oAl aca e L) T L L B T L L L]
Iasaridive | A oA Ial:are Tnaes T ot r.Aa e
Tiu. irZacFuse v | SR PN K 1T
I cared e | i oA nat lme | =

Fig. 5.21

Logical operator truth tables (part 2 of 2).

Line 4 beginsclass FrmLogicalOperator. Recal from our discussion in Chapter
4 that Visual Studio createsthe initial code for a Windows application. Programmers then
enhance this code to create their own applications. Because the code created by Visual
Studio uses many concepts that have not been presented yet, we replace the Visual Studio
generated code with the comment in line 7. In Chapter 12, we carefully explain the Visual
Studio generated code line-by-line. Line 9 begins the definition of procedure
FrmLogicalOperator Load.Anempty procedure definition for aWindows applica-
tion can be obtained by double-clicking the form in the Design view. Procedures created
thisway are executed when the program loads. In this case, the procedure creates Strings
representing the truth tables of the logical operators and displays them on six labels using
the Text property. Lines 13-18 demonstrate operator AndAlso; lines 20-24 demonstrate
operator OorElse. Theremainder of procedure FrmLogicalOperator Load demon-
strates the And, Or, Xor and Not operators. We use keywords True and False inthe
program to specify values of the Boolean datatype. Notice that when aBoolean vaue
is concatenated to a String, Visua Basic concatenates the string "False" or "True™
on the basis of the Boolean’svalue.

Thechartin Fig. 5.22 displaysthe precedence of the Visual Basic operatorsintroduced
so far. The operators are shown from top to bottom in decreasing order of precedence.

Operators Type

() parentheses

~ exponentiation

+ - unary plus and minus
* / multiplicative

\ integer division

Mod modulus

Fig. 5.22 Precedence and associativity of the operators discussed so far
(part 1 of 2).

170 Control Structures: Part 2

Operators

+ -

&

< <= > >= = <>
Not

And AndAlso

Or OrElse

Xor

Chapter 5

Type

additive
concatenation
relational and equality
logical NOT

logical AND

logical inclusive OR
logical exclusive OR

Fig. 5.22 Precedence and associativity of the operators discussed so far

(part 2 of 2).

5.10 Structured Programming Summary

Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We have learned that structured programming
produces programs that are easier to understand, test, debug, modify and prove correctin a
mathematical sense than unstructured programs. Visua Basic’s control structures are sum-

marized in Fig. 5.23 and Fig. 5.24.

Sequence

: If/Then structure
(single selection)

[,

O

' If/Then/Else structure

(double selection)

[,

o

Selection

Select Case structure
(multiple selection)

% i
F

Y
O

Fig. 5.23 Visual Basic’s single-entry/single-exit sequence and selection structures.

Chapter 5 Control Structures: Part 2 171

Small circles in the figures indicate the single entry point and the single exit point of
each structure. Connecting individual flowchart symbols arbitrarily can lead to unstruc-
tured programs. Therefore, the programming profession has chosen to employ only alim-
ited set of control structures and to build structured programs by combining control
structures in only two simple ways.

Repetition

While structure For/Next structure

%@

Do/Loop Until structure

O
y
E
T
O

Do While/Loop structure Do Until/Loop structure

T F
(I
F T

For Each/Next structure (introduced in Chapter 7)

Fig. 5.24 Visual Basic’s single-entry/single-exit repetition structures.

172 Control Structures: Part 2 Chapter 5

For the sake of simplicity, only single-entry/single-exit control structures are used—
thereis only one way to enter and only one way to exit each control structure. To connect
control structures in sequence to form structured programs, the exit point of one control
structure is connected to the entry point of the next control structure (i.e., the control struc-
tures simply are placed one after another in a program). We call this process control struc-
ture stacking. The rules for the formation of structured programs also alow control
structures to be nested, i.e., placed one inside the other. Figure 5.25 contains the rules for
the formation of properly structured programs. The rules assume that the rectangle flow-
chart symbol can indicate any action, including input/output.

Applying the rules of Fig. 5.25 always results in a structured flowchart with a neat,
building-block appearance. For example, repeatedly applying rule 2 to the simplest flow-
chart (Fig. 5.26) resultsin a structured flowchart that contains many rectangles in sequence
(Fig. 5.27). Notice that rule 2 generates a stack of control structures; therefore, we call rule
2 the stacking rule.

Rule 3 isthe nesting rule. Repeatedly applying rule 3 to the simplest flowchart results
in aflowchart with neatly nested control structures. For example, in Fig. 5.28, the rectangle
in the simplest flowchart (in the top-left portion of the figure) is first replaced with a
double-selection (I £/Then/Else) structure. Then, rule 3 is applied again to both rectan-
gles in the double-selection structure, replacing each of these rectangles with a double-
selection structure. The dashed boxes around each of the double-selection structures repre-
sent the rectangles that were replaced with these structures.

Good Programming Practice 5.4

Excessivelevels of nesting can make a program difficult to understand. Asa general rule, try
to avoid using more than three levels of nesting.

Rule 4 generates larger, more involved and deeply-nested structures. The flowcharts
that emerge from applying the rulesin Fig. 5.25 constitute the set of all possible structured
flowcharts and the set of all possible structured programs.The structured approach has the
advantage of using only eleven simple single-entry/single-exit pieces and alowing us to
combine them in only two simple ways. Figure 5.29 depicts the kinds of correctly stacked
building blocks that emerge from applying rule 2 and the kinds of correctly nested building
blocks that emerge from applying rule 3. The figure also shows the kind of overlapped
building blocks that cannot appear in structured flowcharts.

Rules for Forming Structured Programs

1) Beginwiththe“simplest flowchart” (Fig. 5.26).

2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

3) Any rectangle (action) can be replaced by any control structure (sequence, I£/Then, I£/
Then/Else, Select Case,While, Do/Loop While, Do While/Loop, Do Until/
Loop, Do/Loop Until, For/Next or the For Each/Next structure introduced in
Chapter 7, Arrays).

4) Rules2and 3 may be applied as often as you like and in any order.

Fig. 5.25 Structured programming rules.

Chapter 5 Control Structures: Part 2 173

S

Fig. 5.26 Simplest flowchart.

o OO

Y Rule 2 Y

e e L

G

/

D

e
=%
(0]
[N

s

B

Fig. 5.27 Repeatedly applying rule 2 of Fig. 5.25 to the simplest flowchart.

If the rules in Fig. 5.25 are followed, an unstructured flowchart (such as that in
Fig. 5.30) cannot be created. If you are uncertain about whether a particular flowchart is
structured, apply the rulesin Fig. 5.25 in reverse to try to reduce the flowchart to the sim-
plest flowchart. If the flowchart can be reduced to the simplest flowchart, the original flow-
chart is structured; otherwise, it is not.

Structured programming promotes simplicity. Bohm and Jacopini have demonstrated
that only three forms of control are necessary:

e sequence
e selection
e repetition

Sequence istrivial. Selection isimplemented in one of three ways:
e If/Then structure (single selection)

e If/Then/Else structure (double selection)

e Select Case structure (multiple selection)

It can be proven straightforwardly that the I £/Then structure is sufficient to provide any
form of selection. Everything done with the I £/Then/Else structure and the Select
Case structure can be implemented by combining multiple I £/Then structures (although
perhaps not as elegantly).

174 Control Structures: Part 2 Chapter 5

Repetition isimplemented in one of seven ways:

e While structure

¢ Do While/Loop Structure

* Do/Loop While structure

e Do Until/Loop structure

e Do/Loop Until structure

e For/Next structure

e For Each/Next structure (introduced in Chapter 7)

It can be proven straightforwardly that the while structure is sufficient to provide any
form of repetition. Everything that can be done with the Do While/Loop, Do/Loop
While, Do Until/Loop, Do/Loop Until, For/Next and For Each/Next structures
can be done with the while structure (although perhaps not as elegantly).

Rule 3 ;" Rule 3

Fig. 5.28 Applying rule 3 of Fig. 5.25 to the simplest flowchart.

Chapter 5 Control Structures: Part 2 175

Stacked building blocks Nested building blocks

|]| |
L]

00

Overlapping building blocks
(llegal in structured programs)

Fig. 5.29 Stacked, nested and overlapped building blocks.

C D

Fig. 5.30 Unstructured flowchart.

The combination of these results illustrates that any form of control ever needed in a
Visual Basic program can be expressed in terms of:

e sequence
e If/Then structure (selection)
e While structure (repetition)

These control structures can be combined in only two ways—stacking and nesting. Indeed,
structured programming promotes simplicity.

In this chapter, we discussed the composition of programs from control structures that
contain actions and decisions. In Chapter 6, Procedures, we introduce another program
structuring unit called the procedure. We show how to construct large programs by com-
bining procedures that are composed of control structures. We also discuss the ways in
which procedures promote software reusability. In Chapter 8, Object-Based Programming,
we offer adetailed introduction to another Visual Basic program structuring unit, called the
class. We then create objects from classes (that are composed of procedures) and proceed
with our treatment of object-oriented programming—the key focus of this book.

176 Control Structures: Part 2 Chapter 5

SUMMARY

Counter-controlled repetition requires the name of a control variable (or loop counter), the initial
value of the control variable, the increment (or decrement) by which the control variable is modi-
fied during each iteration of the loop and the condition that tests for the final value of the control
variable (i.e., whether looping should continue).

Declarations that include initialization are executable statements.

The For/Next repetition structure handles the details of counter-controlled repetition. The re-
quired To keyword specifies the initial value and the final value of the control variable. The op-
tional step keyword specifies the increment.

Counting loops should not be controlled with floating-point variables. Floating-point values are
represented only approximately in the computer’s memory, often resulting in imprecise counter
vaues and inaccurate tests for termination.

When supplying four arguments to method MessageBox . Show, the first two arguments are
strings displayed in the dialog and the dialog’ s title bar. The third and fourth arguments are con-
stants representing buttons and icons, respectively.

Method String.Format insertsvaluesinto a String using Visua Basic's format codes.

Visual Basic providesthe Decimal datatype, whichis designed specifically for monetary calcu-
lations. It isinappropriate to use Single or Double for dollar amounts.

Visual Basic providesthe Select Case multiple-selection structure to test avariable or expres-
sion separately for each vaue that the variable or expression might assume. The Select Case
structure consists of a series of Case labels and an optional Case Else. Each Case contains
statements to be executed if that Case is selected.

Each case in aSelect Case structure can test for a specific value, a range of values (using
keyword To) or acondition (using keyword Is and arelationa operator). The comma can be used
to specify alist of values, ranges and conditions that satisfy a Case statement.

The Do/Loop While and Do/Loop Until structures test the loop-continuation condition after
theloop body is performed; therefore, the loop body is always executed at least once.

The Exit Do, Exit While and Exit For statements alter the flow of control by causing im-
mediate exit from arepetition structure.

The logical operators are AndAlso (logical AND with short-circuit evaluation), And (logical
AND without short-circuit evaluation), orElse (logical inclusive OR with short-circuit evalua-
tion), or (logica inclusive OR without short-circuit evaluation), Xor (logical exclusive OR) and
Not (logical NOT, also called logical negation).

The AndAlso operator can be used to ensure that two conditions are both true.
The orElse operator can be used to ensure that at least one of two conditionsis true.

The And and Or operators are similar to the AndAlso and OrElse operators, except that they
always evaluate both of their operands.

A condition containing the logical exclusive OR (Xor) operator istrueif and only if exactly one
of itsoperandsistrue.

A condition that begins with thelogical NOT (Not) operator istrueif and only if the condition to
theright of the logica NOT operator isfalse.
In flowcharts, small circlesindicate the single entry point and exit point of each structure.

Connecting individual flowchart symbolsarbitrarily can lead to unstructured programs. Therefore,
the programming profession has chosen to employ only alimited set of control structures and to
build structured programs by combining control structuresin only two simple ways.

Chapter 5 Control Structures: Part 2 177

To connect control structuresin sequence to form structured programs, the exit point of one control
structure is connected to the entry point of the next control structure (i.e., the control structures sim-
ply are placed one after another in aprogram). We call this process “control structure stacking.”

The rules for forming structured programs a so allow control structures to be nested.

Structured programming promotes simplicity.

Bohm and Jacopini have demonstrated that only three forms of control are necessary—sequence,
selection and repetition.

Selection is implemented with one of three structures—If/Then, If/Then/Else and
Select Case.

Repetition is implemented with one of seven structures—while, Do While/Loop, Do/Loop
While, Do Until/Loop, Do/Loop Until, For/Next, and For Each/Next (introduced in

Chapter 7, Arrays).

e The If/Then structureis sufficient to provide any form of selection.
« Thewhile structure is sufficient to provide any form of repetition.
« Control structures can be combined in only two ways—stacking and nesting.

TERMINOLOGY

AbortRetryIgnore constant
body of aloop

Boolean values

buttons for a message dialog
Case keyword

Case Else Statement
control structure
control-structure nesting
control-structure stacking
controlling expression
counter-controlled repetition
Decimal datatype
decrement of loop

diamond symbol

Do/Loop Until structure
Do/Loop While structure
double-selection structure
End Select statement
entry point of acontrol structure
Exit Do statement

Exit For statement

Exit While statement

For Each/Next structure
For/Next structure
For/Next header
hexadecimal (basel6) number system
icon for amessage dialog
If/Then structure
If/Then/Else structure
increment of control variable
Is keyword

iteration of aloop

levels of nesting

logical AND with short-circuit
evaluation (AndAlso)

logical AND without short-circuit
valuation (And)

logical exclusive OR (Xor)

logical inclusive OR with short-circuit
evaluation (OrElse)

logical inclusive OR without short-circuit
evaluation (Or)

logical NOT (Not)

logical operator

loop body

loop counter

|oop-continuation condition

message dialog button

message dialog icon

MessageBoxButtons.
AbortRetryIgnore constant

MessageBoxButtons .OK constant

MessageBoxButtons.OKCancel constant

MessageBoxButtons.RetryCancel
constant

MessageBoxButtons.YesNo constant

MessageBoxButtons.YesNoCancel
congtant

MessageBoxButtons class

MessageBoxIcon Class

MessageBoxIcon.Error constant

MessageBoxIcon.Exclamation constant

178 Control Structures: Part 2 Chapter 5

MessageBoxIcon.Information constant sequence

MessageBoxIcon.Question constant short-circuit evaluation
multiple-selection structure Show method of classMessageBox
nested building block simplest flowchart

nested control structure single selection

nesting single-entry/single-exit sequence, selection and
nesting rule repetition structures

Next keyword stacking rule

overlapped building block Step keyword in a For/Next structure
program construction principle String formatting code

rectangle symbol structured programming

repetition To keyword in a For/Next structure
Select Case structure unary operator

selection unstructured flowchart

SELF-REVIEW EXERCISES

5.1 State whether each of the following istrue or false. If false, explain why.

a)
b)
©)
d)

e

f)

9

h)

D)
52 Fill

a)

b)
©)

d)
e
f)

9)

TheCase Else isrequiredinthe Select Case selection structure.
Theexpressionx > y AndAlso a < bistrueif eitherx > yistrueora < bistrue.
An expression containing the OrElse operator istrueif either or both of its operandsis
true.

Theexpressionx <= y And y > 4 istrueif x islessthan or equal toy andy isgreater
than 4.

Logical operator or performs short-circuit evaluation.

A While structure with the header

While (x> AndAlsox <)

iterateswhile10 <x < 100.

TheExit Do, Exit For and Exit While statements, when executed in arepetition
structure, cause immediate exit from the repetition structure.

History has shown that good software engineering always alows programmers to
achieve the highest levels of performance.

The OrElse operator has a higher precedence than the Andalso operator.

in the blanks in each of the following statements:

Keyword isoptional in a For/Next header when the control variable’'sin-
crement isone.

Monetary values should be stored in variables of type

A Case that handles all valueslarger than a specified value must precedethe > operator

with the keyword.

In aFor/Next structure, incrementing occurs the body of the structure is
performed.

Placing expressions whose values do not change inside structures can lead

to poor performance.
The four types of MessageBox icons are exclamation, information, error and

The expression following the keywords Select Case iscaled the

5.3 Write aVisual Basic statement or a set of Visua Basic statements to accomplish each of the

following:

Chapter 5 Control Structures: Part 2 179

a) Sum the odd integers between 1 and 99 using a For/Next structure. Assume that the
integer variables sum and count have been declared.

b) Write astatement that exitsawhile loop.

c) Printtheintegersfrom 1 to 20, using aDo/Loop While loop and the counter variable x.
Assume that the variable x has been declared, but not initialized. Print only five integers
per line. [Hint: Use the calculation x Mod 5. When the value of thisis 0, print a newline
character; otherwise, print a tab character. Call Console.WriteLine to output the
newline character and call Console.Write (vbTab) to output the tab character.]

d) Repeat part ¢, using aFor/Next structure.

ANSWERS TO SELF-REVIEW EXERCISES

5.1 a) Fase Thecase Else isoptiona. b) False Both of the relational expressions must be
truefor the entire expression to betrue. ¢) True. d) True. 4. €) False. Logical operator or alwayseval-
uates both of its operands. f) True. g) True. h) False. Thereis often atrade-off between good software
engineering and high performance. i) False. The AndAlso operator has higher precedence than the
OrElse operator.

5.2 a) Step.bh)Decimal.c) Is.d)after. €) repetition. f) question mark. g) controlling expres-
sion.

5.3 a) sum =

For count = To Step
sum += count
Next
b) Exitwhile
C) X =
Do

Console.Write(x)

If x Mod = Then
Console.WriteLine()
Else
Console.Write ()
End If

X +=
Loop While x <=

or

Do

If x Mod = Then
Console.WriteLine (x)
Else
Console.Write(x &)
End If

180 Control Structures: Part 2 Chapter 5

X +=
Loop While x <=
d) For x = To
Console.Write(x)

If x Mod = Then
Console.WriteLine ()
Else
Console.Write ()
End If

Next
or
For x = To

If x Mod = Then
Console.WriteLine (x)
Else
Console.Write(x &)
End If

Next

EXERCISES

5.4 The factorial method is used frequently in probability problems. The factorial of a positive
integer n (written n! and pronounced “n factorial”) isequal to the product of the positiveintegersfrom
1ton. Evenfor relatively small values of n, thefactorial method yields extremely large numbers. For
instance, when nis 13, n! is 6227020800—a number too large to be represented with data type In-
teger (a32-hit integer value). To calculate thefactorials of large values of n, datatype Long (a 64-
bit integer value) must be used. Write a program that eva uates the factorials of the integersfrom 1 to
20 using data type Long. Display the resultsin atwo column output table. [Hint: create a Windows
application, use Labelsasthe columns and the vbCrL£ constant to line up the rows.] Thefirst col-
umn should display the n values (1-20). The second column should display n!.

55 Write two programs that each print atable of the binary, octal, and hexadecimal equiva ents
of the decimal numbersin the range 1-256. If you are not familiar with these number systems, read
Appendix B, Number Systems, first.
a) Forthefirst program, print the resultsto the console without using any String formats.
b) For the second program, print the resultsto the console using both the decimal and hexa-
decimal string formats (there are no formats for binary and octal in Visual Basic).

5.6 (Pythagorean Triples) Some right triangles have sidesthat are all integers. A set of threein-
teger valuesfor the sides of aright triangleis called a Pythagorean triple. These three sides must sat-
isfy the relationship that the sum of the squares of the two sides is equal to the sgquare of the
hypotenuse. Write a program to find all Pythagorean triplesfor sidel, side2 and hypotenuse,
none larger than 30. Use atriple-nested For/Next loop that triesall possibilities. Thisisan example
of “brute force” computing. Y ou will learn in more advanced computer science coursesthat there are
some problems for which there is no known a gorithmic approach other than using sheer brute force.

Chapter 5 Control Structures: Part 2 181

5.7 Write a program that displays the following patterns separately, one below the other. Use
For/Next |oopsto generate the patterns. All asterisks (*) should be printed by a single statement of
the form Console.Write ("*") (this causes the asterisks to print side by side). A statement of
theform Console.WriteLine () can be used to position to the next line and a statement of the
form Console.WriteLine (" ") can be used to display spaces for the last two patterns. There
should be no other output statements in the program. [Hint: The last two patterns require that each
line begin with an appropriate number of blanks.] Maximize your use of repetition (with nested For/
Next structures) and minimize the number of output statements.

(a) (B) (c) (D)
* khkkkkhkkhkkk hkhkkkkkkkkk *
* % *khkkkhkkhkk *khkkhkkkkkk * %
* %% *khkkkkkk*k *khkkkkkk* * k%
*kkk *hkkkkkk *khkkkkkk *k k%
*kkk*k *kkkk*k *hkkkk*k *kkk*
*kkkkk*k *kkkk *kkk*k *kkkk*k
kkkkkkk *k %k Kk *k k% *hkkkkkk
*khkkkkkk*k * %% * k% *hkkkkkkk
khkkkkkkkk * % * % kkhkkkkkkkk
khkkkkkkkkk % * kkkkkkkkkk

5.8 Modify Exercise 5.7 to combine your code from the four separate triangles of asterisksinto
a single program that prints all four patterns side by side, making clever use of nested For/Next
loops.

5.9 Writeaprogram that printsthe following diamond shape. Y ou may use output statementsthat
print asingle asterisk (*), asingle space or a single newline character. Maximize your use of repeti-
tion (with nested For/Next structures) and minimize the number of output statements.

*

* %%k
*kkk*k
*khkkkkkk
*khkkkkkhkk
*khkkkkkk
*kkk*k
* %k %k
*

5.10 Modify the program you wrote in Exercise 5.9 to read an odd number in the range from 1 to
19 to specify the number of rowsin the diamond. Y our program should then display adiamond of the
appropriate size. Use aDo/Loop Until to validate user input.

Procedures

Objectives

 To construct programs modularly from pieces called

procedures.

* Tointroducethe common Math methods availablein

the Framework Class Library.

« To create new procedures.

* To understand the mechanisms used to pass
information between procedures.

« To introduce simul ation techniques that employ
random-number generation.

* To understand how the visibility of identifiersis
limited to specific regions of programs.

* To understand how to write and use recursive
procedures (procedures that call themselves).

Form ever follows function.

Louis Henri Sullivan

E pluribus unum.

(One composed of many.)

Virgil

O! call back yesterday, bid time return.

William Shakespeare, Richard |1

Call me Ishmael.

Herman Melville, Moby Dick

When you call me that, smile.

Owen Wister

Chapter 6 Procedures 183

Outline

6.1 Introduction
6.2 Modules, Classes and Procedures

6.3 Sub Procedures

6.4 Function Procedures

6.5 Methods

6.6 Argument Promotion

6.7 Option Strict and Data-Type Conversions

6.8 Value Types and Reference Types

6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference

6.10 Duration of Identifiers

6.11 Scope Rules

6.12 Random-Number Generation

6.13 Example: Game of Chance

6.14 Recursion

6.15 Example Using Recursion: Fibonacci Series

6.16 Recursion vs. Iteration

6.17 Procedure Overloading and Optional Arguments
6.17.1 Procedure Overloading
6.17.2 Optional Arguments

6.18 Modules

Summary ¢ Terminology ¢ Self-Review Exercises « Answers to Self-Review Exercises « Exercises

6.1 Introduction

Most computer programsthat solve real-world problems are much larger than the programs
presented in the first few chapters of this text. Experience has shown that the best way to
develop and maintain alarge program isto construct it from small, manageabl e pieces. This
technique is known as divide and conquer. In this chapter, we describe many key features
of the Visual Basic languagethat facilitate the design, implementation, operation and main-
tenance of large programs.

6.2 Modules, Classes and Procedures

Visual Basic programs consist of many pieces, including modules and classes. The program-
mer combines new modules and classes with “prepackaged” classes available in the .NET
Framework Class Library (FCL). These modules and classes are composed of smaller pieces
called procedures. When procedures are contained in a class, we refer to them as methods.
The FCL provides arich collection of classes and methods for performing common
mathematical calculations, string manipulations, character manipulations, input/output

184 Procedures Chapter 6

operations, error checking and many other useful operations. This framework makes the
programmer’s job easier, because the methods provide many of the capabilities program-
mers need. In earlier chapters, we introduced some FCL classes, such as Console, which
provides methods for inputting and outputting data.

Familiarize yourself with the rich collection of classes and methods in the Framework Class
Library.

When possible, use .NET Framework classes and methods instead of writing new classesand
methods. This reduces program development time and avoids introducing new errors.

;@ .NET Framework Class Library methods are written to perform efficiently.

Although the FCL provides methods that perform many common tasks, it cannot pro-
vide every conceivable feature that a programmer could want, so Visual Basic allows pro-
grammers to create their own programmer-defined procedures to meet the unique
requirements of a particular problem. Three types of procedures exist: Sub procedures,
Function procedures and event procedures. Throughout this chapter, the term “proce-
dure” refersto both sub procedures and Function procedures unless otherwise noted.

Programmers write procedures to define specific tasks that a program may use many
times during its execution. Although the same programmer-defined procedure can be exe-
cuted at multiple points in a program, the actual statements that define the procedure are
written only once.

A procedureisinvoked (i.e., made to perform its designated task) by aprocedure call.
The procedure call specifies the procedure name and provides information (as arguments)
that the callee (i.e, the procedure being called) requires to do its job. When the procedure
completesitstask, it returns control to thecaller (i.e., the calling procedure). In some cases,
the procedure also returns a result to the caller. A common analogy for this is the hierar-
chical form of management. A boss (the caller) asksawaorker (the callee) to perform atask
andreturn (i.e., report on) the resultswhen the task isdone. The boss does hot need to know
how the worker performs the designated task. For example, the worker might call other
workers—the boss would be unaware of this. Soon, we show how this hiding of implemen-
tation details promotes good software engineering. Figure 6.1 depicts a Boss procedure
communicating with worker procedures Workerl, Worker2 and Worker3 in ahierar-
chical manner. Notethat Worker1l actsasa“boss’ procedureto Worker4 and Worker5
in this particular example.

Thereare severa motivationsfor the division of codeinto procedures. First, thedivide-
and-conquer approach makes program development more manageable. Another motivation
is software reusability—the ability to use existing procedures as building blocks for new
programs. When proper naming and definition conventions are applied, programs can be
created from standardized pieces that accomplish specific tasks, to minimize the need for
customized code. A third motivation involves avoiding the repetition of code in a program.
When code is packaged as a procedure, the code can be executed from several locationsin
aprogram simply by calling, or invoking, the procedure.

Chapter 6 Procedures 185

Boss
A
yd Y a4
Workerl Worker2 Worker3
T4 »>
A
Worker4 Worker5

Fig. 6.1 Hierarchical boss-procedure/worker-procedure relationship.

Good Programming Practice 6.1

@ Use modularity to increase the clarity and organization of a program. This not only helps oth-
ers understand the program, but also aids in program devel opment, testing and debugging.

To promote reusability, the capabilities of each procedure should be limited to the perfor-
mance of a single, well-defined task, and the name of the procedure should express that task
effectively.

If you cannot choose a concise name that expresses the task performed by a procedure, the
procedure could be attempting to performtoo many diversetasks. It isusually best to divide
such a procedure into several smaller procedures.

6.3 Sub Procedures

The programs presented earlier in the book each contained at least one procedure definition
(e.g., Main) that called FCL methods (such as Console.WriteLine) to accomplish
the program’ s tasks. We now consider how to write customized procedures.

Consider the console application in Fig. 6.2, which uses a sub procedure (invoked
from the application’sMain procedure) to print aworker’s payment information.

1

2

3

4 Module modPayment

5

6 Sub Main()

he

8

9 PrintPay (40,)
10 PrintPay (22,)

Fig. 6.2 Sub procedure for printing payment information (part 1 of 2).

186 Procedures Chapter 6

11 PrintPay (20,)

12 PrintPay (50,)

13

14 End Sub

15

16

17 Sub PrintPay (ByVal hours As Double, ByVal wage As Decimal)
18

19

20 Console.WriteLine (, hours * wage)
21 End Sub

22

23 End Module

The payment is $420.00
The payment is $826.50
The payment is $260.00
The payment is $700.00

Fig. 6.2 Sub procedure for printing payment information (part 2 of 2).

The program contains two procedure definitions. Lines 6-14 define Sub procedure
Main, which executes when the console application is loaded. Lines 17-21 define Sub
procedure PrintPay, Which executes when it is invoked, or called, from another proce-
dure, in thiscase Main.

Main makes four calls (lines 9-12) to Sub procedure PrintPay, causing
PrintPay to execute four times. Although the procedure arguments in this example are
constants, arguments can aso be variables or expressions. For example, the statement

PrintPay (employeeOneExtraHours, employeeOneWage *)

could be used to display payment information for an employee who is being paid time-and-
ahalf for working overtime.

When Main calls PrintPay, the program makes a copy of the value of each argu-
ment (e.g., 40 and 10. 5 on line 9), and program control transfers to the first line of pro-
cedure PrintPay. Procedure PrintPay receives the copied values and stores them in
the parameter variableshours and wage. Then, PrintPay calculateshours * wage
and displays the result, using the currency format (line 20). When the End Sub statement
on line 21 is encountered, control is returned to the calling procedure, Main.

The first line of procedure PrintPay (line 17) shows (inside the parentheses) that
PrintPay declares aDouble variable hours and aDecimal variable wage. These
parameters hold the values passed to PrintPay within the definition of this procedure.
Notice that the entire procedure definition of PrintPay appears within the body of
modulemodPayment. All procedures must be defined inside a module or a class.

The format of a procedure definition is

Ssub procedure-name (parameter-list)
declarations and statements
End Sub

Chapter 6 Procedures 187

Good Programming Practice 6.2

@ Place a blank line between procedure definitions to separate the procedures and enhance
program readability.

—3- Common Programming Error 6.1
@ Defining a procedure outside of a class or module definition is a syntax error.

The first line is sometimes known as the procedure header. The procedure-name, which
directly follows the sub keyword in the procedure header, can be any vaid identifier and
isused to cal this sub procedure within the program.

The parameter-list is a comma-separated list in which the Sub procedure declares
each parameter variabl€ stype and name. There must be one argument in the procedure call
for each parameter in the procedure header (we will see an exception to this rule in
Section 6.17). The arguments also must be compatible with the parameter’s type (i.e.,
Visual Basic must be able to assign the value of the argument to the parameter). For
example, a parameter of type Double could receive the value of 7.35, 22 or —.03546, but
not "hello™", because aDouble value cannot contain aString. In Section 6.6 we dis-
cuss this issue in detail. If a procedure does not receive any values, the parameter list is
empty (i.e., the procedure name is followed by an empty set of parentheses).

Notice that the parameter declarations in the procedure header for PrintPay (line
17) look similar to variable declarations, but use keyword ByVal instead of Dim. ByVal
specifies that the calling program should pass a copy of the value of the argument in the
procedure call to the parameter, which can be used in the sub procedure body. Section 6.9
discusses argument passing in detail.

Common Programming Error 6.2

@ Declaring a variable in the procedure’ s body with the same name as a parameter variable
in the procedure header is a syntax error.

¢ Although itisallowable, an argument passed to a procedure should not have the same name
as the corresponding parameter in the procedure definition. This distinction prevents ambi-
guity that could lead to logic errors.

The declarations and statements in the procedure definition form the procedure body.
The procedure body contains Visual Basic code that performs actions, generally by manip-
ulating or interacting with the parameters. The procedure body must be terminated with
keywords End Sub, which define the end of the procedure. The procedure body is also
referred to as a block. A block is a sequence of statements and declarations grouped
together as the body of some structure and terminated with an End, Next, E1se or Loop
statement, depending on the type of structure. Variables can be declared in any block, and
blocks can be nested.

Common Programming Error 6.3

@ Defining a procedure inside another procedure is a syntax error—procedures cannot be
nested.

Contral returns to the caller when execution reaches the End Sub statement (i.e., the
end of the procedure body). Alternatively, keywords Return and Exit Sub can be used

188 Procedures Chapter 6

anywhere in a procedure to return control to the point at which a Sub procedure was
invoked. We discuss Return and Exit Sub in detail, momentarily.

Good Programming Practice 6.3

@ The selection of meaningful procedure names and parameter names makes programs more
readable and reduces the need for excessive comments.

Procedure names tend to be verbs because procedur es typically perform operations on data.
By convention, programmer-defined procedure names begin with an uppercase first letter.
For example, a procedure that sends an e-mail message might be named SendMai 1.

%A procedurethat requiresalarge number of parameters might be performing too many tasks.
Consider dividing the procedure into smaller procedures that perform separate tasks. As a
“rule of thumb,” the procedure header should fit on oneline (if possible).

As a*“rule of thumb,” a procedure should be limited to one printed page. Better yet, a pro-
cedure should be no longer than half a printed page. Regardless of how long a procedureis,
it should perform one task well.

% Small procedures are easier to test, debug and under stand than large procedures.

Performance Tip 6.2

e When a programmer divides a procedure into several procedures that communicate with one
"I anather, this communication takes time and sometimes leads to poor execution performance.

o)
x

/=8y The procedure header and procedure calls all must agree with regard to the number, type
1 (Y

and order of parameters. We discuss exceptions to thisin Section 6.17.

6.4 Function Procedures

Function procedures are similar to Sub procedures, with one important difference:
Function procedures return a value (i.e., send avalue) to the caler, whereas sub pro-
cedures do not. The console application in Fig. 6.3 uses Function procedure Square to
calculate the squares of the Integersfrom 1-10.

Module modSquareInteger

Sub Main()
Dim i As Integer

O~NOOUITDWNBE

Fig. 6.3 Function procedure for squaring an integer (part 1 of 2).

Chapter 6 Procedures 189

9 Console.WriteLine (& & &)
10

11

12 For i = To

13 Console.WriteLine(i & & Square(i))
14 Next

15

16 End Sub

17

18

19

20 Function Square(ByVal y As Integer) As Integer
21 Return y *

22 End Function

23

24 End Module

E"
[0}
[

Square

1

4

9
16
25
36
49
64
81
100

HWVWooJoauUu b wWNPRE

o

Fig. 6.3 Function procedure for squaring an integer (part 2 of 2).

The For structure (lines 12-14) displaysthe results of squaring the Integersfrom 1—
10. Each iteration of the loop calcul ates the square of control variable i and displaysit in the
command window.

Function procedure Square isinvoked (line 13) with the expression Square (i) .
When program control reachesthisexpression, theprogram callsFunction Square (lines
20-22). At this point, the program makes a copy of the value of i (the argument), and pro-
gram control transfers to the first line of Function Square. Square receives the copy
of i’svaue and stores it in the parameter y. Line 21 isa Re turn statement, which termi-
nates execution of the procedure and returns the result of y * 2 to the calling program. The
result is returned to the point on line 13 where Square was invoked. Line 13 displays the
value of i and the value returned by Square in the command window. This process is
repeated 10 times.

The format of a Function procedure definition is

Function procedure-name(parameter-list) as return-type
declarations and statements
End Function

The procedure-name, parameter-list, and the declarations and statementsin aFunction
procedure definition behave like the corresponding elementsin a Sub procedure definition.

190 Procedures Chapter 6

Inthe Function header, the return-typeindicates the data type of the result returned from
the Function toits caller. The statement

Return expression

can occur anywhere in a Function procedure body and returns the value of expression
to the caller. If necessary, Visual Basic attempts to convert the expression to the Func -
tion procedure’s return-type. Functions Return exactly one value. When a Re -
turn statement is executed, control returns immediately to the point at which that
procedure was invoked.

Common Programming Error 6.4

@ If the expression in a Re turn statement cannot be converted to the Func t ion procedure’ s
return-type, aruntime error is generated.

Common Programming Error 6.5

@ Failureto return a valuefroma Function procedure (e.g., by forgetting to provide a Re -
turn statement) causes the procedure to return the default value for the return-type, often
producing incorrect outpuit.

6.5 Methods

A method is any procedure that is contained within a class. We have already presented sev-
era FCL methods (i.e., methods contained in classes that are part of the FCL). Program-
mers also can define custom methods in programmer-defined classes, such as a class used
to define a Windows application. The Windows application in Fig. 6.4 uses two methods
to calculate the largest of three Doubles.

1

2

3

4 Public Class FrmMaximum

5 Inherits System.Windows.Forms.Form

6

7

8 Friend WithEvents lblOne As System.Windows.Forms.Label

9 Friend WithEvents lblTwo As System.Windows.Forms.Label

10 Friend WithEvents 1lblThree As System.Windows.Forms.Label
11

12

13 Friend WithEvents lblMaximum As System.Windows.Forms.Label
14

15

16 Friend WithEvents txtFirst As System.Windows.Forms.TextBox
17 Friend WithEvents txtSecond As System.Windows.Forms.TextBox
18 Friend WithEvents txtThird As System.Windows.Forms.TextBox
19

20

21 Friend WithEvents cmdMaximum As System.Windows.Forms.Button
22

Fig. 6.4 Method that determines the largest of three numbers (part 1 of 2).

Chapter 6 Procedures 191

23

24

25

26 Private Sub cmdMaximum Click(ByVal sender As System.Object,
27 ByVal e As System.EventArgs) Handles cmdMaximum.Click
28

29 Dim valuel, value2, value3 As Double

30

31 valuel = txtFirst.Text

32 value2 = txtSecond.Text

33 value3 = txtThird.Text

34

35 lblMaximum.Text = Maximum(valuel, value2, value3)

36 End Sub

37

38

39 Function Maximum(ByVal valueOne As Double, _

40 ByVal valueTwo As Double, ByVal valueThree As Double)
41

42 Return Math.Max (Math.Max(valueOne, valueTwo), valueThree)
43 End Function

44

45 End Class

o nunlrepgran all] x|

Coluy ~exl oz e FﬂJl
Fobar =aians e s i

Leaben Ll e B

|| [CEE IRl 1

Fig. 6.4 Method that determines the largest of three numbers (part 2 of 2).

Until now, many of our applications have facilitated user interaction via either the
command window (in which the user can type an input value into the program) or a mes-
sage diaog (which displaysamessage to the user and allowsthe user to click OK to dismiss
the dialog). In Chapter 4, Control Structures: Part 1, we introduced Windows applications
by creating a program that displaysinformation in alabel on aform.

Although the command window and message dialogs are valid ways to receive input
from a user and display output, they are limited in their capabilities—the command
window can obtain only one line of input at atime from the user, and a message dialog
can display only one message. It is common to receive multiple inputs at the same time
(such as the three values in this example), or to display many pieces of data at once. To
introduce more sophisticated user interface programming, the program in Fig. 6.4 uses
GUI event handling (i.e., the ability to respond to a state changein the GUI, such aswhen
the user clicks a button).

192 Procedures Chapter 6

Class FrmMaximum uses a GUI consisting of three TextBoxes(txtFirst, txt-
Second and txtThird) for user input, aBut ton (cmdMaximum) to invoke the calcu-
lation and four Labels, including 1blMaximum, which displays the results. We create
these components visually, using the Toolbox, and change their properties in the Prop-
erties window. Lines 7-21 are declarations indicating the name of each component.
Although these lines of code are actualy part of the Visua Studio .NET generated code,
we display them to indicate the objects that are part of the form (as always, the complete
code for this program is on the CD-ROM that accompanies this book and at
www.deitel.com).

Line 5 indicates that class FrmMaximum Inherits from System.Win-
dows .Forms.Form. Remember that all forms inherit from class System.Win-
dows .Forms.Form. A class can inherit attributes and behaviors (data and methods)
from another classif that classis specified to theright of the Inherits keyword. Wedis-
cussinheritance in detail in Chapter 9, Object-Oriented Programming: I nheritance.

FrmMaximum contains two programmer-defined methods. Method Maximum (lines
39-43) takesthree Doub1e parameters and returnsthe value of the largest parameter. Note
that this method definition looks just like the definition of a Function procedure in a
module. The program also includes method cmdMaximum Click (lines 26-36). When
the user double-clicks a component, such asaButton, in Design mode, the IDE gener-
ates a method that Handles an event (i.e., an event handler). An event represents a user
action, such asclicking aButton or atering avalue. An event handler isamethod that is
executed (caled) when a certain event is raised (occurs). In this case, method
cmdMaximum Click handles the event in which Button emdMaximum is clicked.
Programmers write code to perform certain tasks when such events occur. By employing
both events and objects, programmers can create applications that enable more sophisti-
cated user interactions than those we have seen previously. Event-handler names created
by the IDE begin with the object’s name, followed by an underscore and the name of the
event. We explain how to create our own event handlers, which can be given any name, in
Chapter 12, Graphical User Interface Concepts. Part 1.

When the user clicks cmdMaximum, procedure cmdMaximum Click (lines26-36)
executes. Lines 31-33 retrieve the values in the three TextBoxes, using the Text prop-
erty. The values are converted implicitly to type Double and stored in variablesvaluel,
value2 and value3.

Line 35 calls method Maximum (lines 39-43) with the argumentsvaluel, value2
and value3. The values of these arguments are then stored in parameters valueOne,
valueTwo and valueThree in method Maximum. Maximum returns the result of the
expression on line 42, which makes two calls to method Max of the Math class. Method
Max returnsthe largest of itstwo Double arguments, meaning the computation in line 42
first compares valueOne and valueTwo, then compares the value returned by the first
method call to valueThree. Calsto methods, such asMath.Max, that are defined in a
class in the FCL must include the class name and the dot (.) operator (also called the
member access operator). However, calls to methods defined in the class that contains the
method call need only specify the method name.

When control returns to method emdMaximum Click, line 35 assigns the value
returned by method Maximum t0 1blMaximum's Text property, causing it to be dis-
played for the user.

Chapter 6 Procedures 193

The reader may notice that typing the opening parenthesis after amethod or procedure
name causes Visual Studio to display a window containing the procedure’s argument
names and types. Thisis the Parameter Info feature (Fig. 6.5) of the IDE. Parameter Info
greatly simplifies coding by identifying accessible procedures and their arguments. The
Parameter Info feature displays information for programmer-defined procedures and all
methods contained in the FCL.

Good Programming Practice 6.4

Selecting descriptive parameter names makesthe information provided by the Parameter Info
feature more meaningful .

Visual Basic also provides the IntelliSense feature, which displays al the membersin
a class. For instance, when the programmer types the dot (.) operator (also called the
member access operator) after the class name, Math, in Fig. 6.6, IntelliSense provides a
list of all the available methodsin classMa th. TheMath class contains numerous methods
that allow the programmer to perform avariety of common mathematical calculations.

Parameter Info window

[P LY f"l-ullﬂllllll.'l‘l.l"l k=
a2 rH R (Hindrom j |+|l'rr|rlr|m i ik j
Scrownteel, cralne, vsmbhiall Sm telale j
wndusl Loaaz ool Uial
endusl Ln_Zocans, Dol

wndush LaaTe=lld Tos

(-

"FIHs< rere. Tmxm = Tavirirn Y
Efe. D OLY " PRTHESCKITS My y v waafae e firghbe, -0 aToy e "= =4 cnpTh ee v - l‘\.lm'":.'.'\rlﬂ

-

1] |

Fig. 6.5 Parameter Info feature of the Visual Studio .NET IDE.

f-T PO [Flw.llllluu.-d.l’l I x
I"_‘_I‘lnﬁmmm('«’lrﬂn’lmj j |-.‘l'l'|l|drr|rr| j
T ocralieTma e Caa oA, Nlfat vetaThrea e sl ﬂ
aclurs JalL.Zu
Erv. Suile v -y ,,l
T g TENY VY
Zzd llerr =

Fig. 6.6 IntelliSense feature of the Visual Studio .NET IDE.

194 Procedures Chapter 6

As an example of the variety of FCL methods, someMath class methods are summa:
rizedin Fig. 6.7. Throughout the table, the variablesx and y are of type Double; however,
many of the methods also provide versions that take values of other data types as argu-
ments. In addition, the Ma th class also defines two mathematical constants: Math. PT and
Math.E. Theconstant Math.PI (3.14159265358979323846) of classMath isthe
ratio of a circle's circumference to its diameter (i.e., twice the radius). The constant
Math.E (2.7182818284590452354) isthe base vaue for natural |ogarithms (calcu-
lated with the Math . Log method).

Common Programming Error 6.6

@ Failure to invoke a Ma th class method by preceding the method name with the class name
Math and a dot operator (.) isa syntax error.

Method Description Example
Abs (x) returns the absol ute value of x Abs () is
Abs (0) is
Abs () is
Ceiling (x) rounds x to the smallest integer Ceiling() is
not less than x Ceiling () is
Cos (x) returnsthetrigonometriccosine Cos () is
of X (x in radians)
Exp (x) returns the exponential e Exp (1 .0) isapproximately

Exp () isapproximately

Floor (x) rounds x to the largest integer Floor () is
not greater than x Floor () is
Log (x) returns the natura logarithm of Log ()
X (base €) is approximately
Log ()
is approximately
Max (x, y) returnsthelarger valueof x and Max (,) is
y (also has versions for Max (’) is
Single, Integer and Long
values)
Min(x, y) returns the smaller value of x Min (,) is
and y (aso has versions for Min (P) is
Single, Integer and Long
values)
Pow (x, y) calculates x raised to power y Pow (:) is
() Pow (, .5)is
Sin (x) returnsthetrigonometricsineof Sin () is

X (x in radians)

Fig. 6.7 Math class methods (part 1 of 2).

Chapter 6 Procedures 195

Method Description Example

sqgrt (x) returns the square root of x sqrt () is
sqgrt () is

Tan (x) returns the trigonometric Tan () is
tangent of x (x in radians)

Fig. 6.7 Math class methods (part 2 of 2).

It isnot necessary to add an assembly reference to usethe Ma t h class methodsin a program,
because class Math islocated in namespace Sy stem, which isimplicitly added to all con-
sole applications.

6.6 Argument Promotion

An important feature of procedure definitionsis the coercion of arguments (i.e., theforcing
of argumentsto the appropriate data type so that they can be passed to a procedure). Visual
Basic supports both widening and narrowing conversions. Widening conversion occurs
when atypeis converted to another type (usually one that can hold more data) without los-
ing data, whereas a narrowing conversion occurs when there is potential for data loss dur-
ing the conversion (usually to atype that holds a smaller amount of data). Figure 6.8 lists
the widening conversions supported by Visual Basic.

For example, theMath classmethod Sqrt can be called withan Integer argument,
even though the method is defined in the Math class to receive aDouble argument. The
statement

Console.Write(Math.Sqgrt(4))

correctly evaluates Math.sSqrt (4) and prints the value 2. Visua Basic promotes (i.e.,
converts) the Integer vaue 4 to the Double value 4. 0 before the value is passed to
Math.Sqrt. Inthiscase, the argument value does not correspond precisely to the param-
eter type in the method definition, so an implicit widening conversion changes the value to
the proper type before the method is called. Visual Basic also performs narrowing conver-
sions on arguments passed to procedures. For example, if String variable number con-
tains the value "4, the method call Math.Sqgrt (number) correctly evaluates to 2.
However, some implicit narrowing conversions can fail, resulting in runtime errors and
logic errors. For example, if number containsthevalue "hello", passing it as an argu-
ment to method Math. Sqrt causes aruntime error. In the next section, we discuss some
measures the programmer can take to help avoid such issues.

—9- Common Programming Error 6.7

When performing a narrowing conversion (e.g., Double t0 Integer), conversion of a
primitive-data-type value to another primitive data type might change the value. Also, the
conversion of any integral value to a floating-point value and back to an integral value could
introduce rounding errors into the result.

196 Procedures Chapter 6

Type Conversion Types

Boolean Object

Byte Short, Integer, Long, Decimal, Single, Double Or Object
Char String Or Object

Date Object

Decimal Single, Double OFr Object

Double Object

Integer Long, Decimal, Single, Double Of Object

Long Decimal, Single, Double Or Object

Object none

Short Integer, Long, Decimal, Single, Double Or Object
Single Double Or Object

String Object

Fig. 6.8 Widening conversions.

Argument promotion applies not only to primitive data-type values passed as arguments
to methaods, but also to expressions contai ning val ues of two or more datatypes. Such expres-
sionsarereferred to as mixed-type expressions. |n amixed-type expression, each valueispro-
moted to the “highest” datatype in the expression (i.e., widening conversions are made until
the values are of the same type). For example, if singleNumber is of type Single and
integerNumber isof type Integer, when Visual Basic evaluates the expression

singleNumber + integerNumber

the value of integerNumber is converted to type Single, then added to single-
Number, producing a Single result. Although the values' original datatypes are main-
tained, atemporary version of each value is created for use in the expression, and the data
types of the temporary versions are modified appropriately.

6.7 Option Strict and Data-Type Conversions

Visual Basic provides severa options for controlling the way the compiler handles data
types. These options can help programmers eliminate such errors as those caused by nar-
rowing conversions, making code more reliable and secure. The first option is Option
Explicit,whichissetto On by default, meaning it was enabled in the Visua Basic pro-
grams created in Chapters 2-5. Option Explicit forcesthe programmer to declare ex-
plicitly al variables before they are used in a program. Forcing explicit declarations
eliminates spelling errors and other subtle errors that may occur if Option Explicit is
turned off. For example, when option Explicit is set to Off, the compiler interprets
misspelled variable names as new variable declarations, which create subtle errorsthat can
be difficult to debug.

A second option, whichisby default setto Off,isoption Strict. Visual Basic pro-
videsoption Strict asameansto increase program clarity and reduce debugging time.

Chapter 6 Procedures 197

When set to On, Option Strict causes the compiler to check all conversions and
requires the programmer to perform an explicit conversion for all narrowing conversions
that could cause dataloss (e.g., conversion fromDouble to Integer) Or program termi-
nation (e.g., conversion of astring, suchas "hello", totype Integer).

The methods in class Convert change data types explicitly. The name of each con-
version method isthe word To, followed by the name of the data type to which the method
converts its argument. For instance, to store a String input by the user in variable
number of type Integer (represented in Visual Basic .NET as type Int32, a 32-bit
integer) with Option Strict setto On, we use the statement

number = Convert.ToInt32 (Console.ReadLine())

When option Strict isset to Off, Visua Basic performs such type conversions
implicitly, meaning the programmer might not realize that a narrowing conversionis being
performed. If the data being converted is incompatible with the new data type, a runtime
error occurs. Option Strict draws the programmer’s attention to narrowing conver-
sions so that they can be eliminated or handled properly. In Chapter 11, Exception Han-
dling, we discuss how to handle the errors caused by failed narrowing conversions.

Performing explicit conversions allows programsto execute more efficiently by eliminating the
need to determine the data type of the val ue being changed before the conversion executes.

From this point forward, all code examples have Option Strict set to On.
Option Strict can be activated through the IDE by right-clicking the project name in
the Solution Explorer. From the resulting menu, select Properties to open the Prop-
erty Pages dialog Fig. 6.9. From the directory tree on the left side of the dialog, select
Build fromthe Common Properties list. Inthe middle of the dialog isa drop-down box
labeled Option Strict:. By default, the option is set to Off. Choose On from the drop-
down box and pressApply.

|

sl s h.l ﬂ CL IR h.l ﬂ LR I T
e mAgalm D LE- —
LN RS = -
- | =T Y|
T
s mar ed o=t el
MATTL 0 el o -l
R L AT] g woata or =l

R [, -.-|

| Zier 'L | H:

Fig. 6.9 Property Pages dialog with Option Strict setto On.

198 Procedures Chapter 6

Setting option Strict toOn intheProperty Pages appliesthe change globally,
to the entire project. The programmer also can enable Option Strict within an indi-
vidual code file by typing Option Strict On at the start of the file above any declara-
tionsor Imports Statements.

6.8 Value Types and Reference Types

In the next section, we discuss passing arguments to procedures by value and by reference.
To understand this, we first need to make a distinction between data typesin Visua Basic.
All Visual Basic data types can be categorized as either value types or reference types. A
variable of avalue type contains data of that type. Normally, value types are used for asin-
gle piece of data, such as an Integer or aDouble vaue. By contrast, a variable of a
reference type (sometimes called areference) contains alocation in memory where datais
stored. The location in memory can contain many individual pieces of data. Collectively,
reference types are known as objects and are discussed in detail in Chapters 8, 9 and 10,
Object-Based Programming, Object-Oriented Programming: I nheritance, and Object-Ori-
ented Programming: Polymorphism.

Both value types and reference types include built-in types and types that the pro-
grammer can create. The built-in value types include the integral types (Byte, Short,
Integer and Long), the floating-point types (Single and Double) and types
Boolean,Date,Decimal and Char. The built-in reference typesinclude Object and
String (athough type string often behaves more like a value type, as we discuss in
the next section). The value types that can be constructed by the programmer include
Structures and Enumerations. The reference types that can be created by the pro-
grammer include classes, interfaces and delegates. Programmer-defined types are dis-
cussed in greater detail in Chapter 8, Object-Based Programming, Chapter 9, Object-
Oriented Programming: Inheritance and Chapter 15, Strings, Characters and Regular
Expressions.

Thetablein Fig. 6.10 liststhe primitive data types, which form the building blocks for
more complicated types, such asclasses. If Option Explicit issettoOn, al variables
must have a type before they can be used in a program. This requirement is referred to as
strong typing.

Size
Type in bits Values Standard
Boolean True Or False
Char One Unicode character (Unicode character set)
Byte to
Date 1 January 0001 to 31 December 9999

0:00:00 to 23:59:59

Decimal to
Short to

Fig. 6.10 Visual Basic primitive data types (part 1 of 2).

Chapter 6 Procedures 199

Size
Type in bits Values Standard
Integer to
Long

to

Single to (IEEE 754 floating point)
Double to (IEEE 754 floating point)
Object Data of any type
String 0 to ~2000000000 Unicode characters (Unicode character set)

Fig. 6.10 Visual Basic primitive data types (part 2 of 2).

Each valuetypein thetableis accompanied by itssizein bits (there are 8 bitsto abyte)
and its range of values. To promote portability, Microsoft chose to use internationally rec-
ognized standards for both character formats (Unicode) and floating-point numbers (IEEE
754). We discuss the Unicode character formatsin Appendix F, Unicode.

Values typed directly in program code are called literals. Each literal corresponds to
one of the primitive data types. We already have seen literals for commonly-used types,
suchasString, Integer and Double. However, someof Visual Basic' sdatatypesuse
special notations for creating literals. For instance, to create alitera of type Char, follow
asingle-character string with the type character ¢. The statement

Dim character As Char =

declares Char variable character and initializesit to the "z character.

Similarly, literals of specific integral datatypes can be created by following an integer
with the type character s (for short), I (for Integer) or L (for Long). To create
floating-point literals, follow a floating-point number with type character F (for Single)
or R (for Double). Type character D can be used to create Decimal literals.

Visual Basic also alows programmersto type floating-point literals in scientific nota:
tion, by following a floating-point number by the character E and a positive or negative
exponent of 10. For example, 1.909E-5 corresponds to the value 0.00001909. This
notation is useful for specifying floating-point values that are too large or too small to be
written in fixed-point notation.

Figure 6.11 displays Visual Basic's type characters and examples of literals for each
datatype. All literadsmust be within the rangefor thelitera’ stype, asspecified in Fig. 6.10.

Type Type character Example
Char
Single F

Fig. 6.11 Literals with type characters (part 1 of 2).

200 Procedures Chapter 6

Type Type character Example
Double R
Decimal D
Short S
Integer I
Long L

Fig. 6.11 Literals with type characters (part 2 of 2).

6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference

Arguments are passed in one of two ways: Pass-by-value and pass-by-reference (also
called call-by-value and call-by-reference). When an argument is passed by value, the pro-
gram makes a copy of the argument’s value and passes that copy to the called procedure.
With pass-by-value, changes to the called procedure’ s copy do not affect the original vari-
able's value. In contrast, when an argument is passed by reference, the caler gives the
called procedure the ability to access and modify the caler's original data directly.
Figure 6.12 demonstrates passing value-type arguments by value and by reference.!

The program passesthree value-type variables, numberl, number2 and number3, in
different waysto procedures SquareByValue (lines39-45) and SquareByReference
(lines48-54). Keyword By'Val in the procedure header of SquareByValue (line39) indi-
cates that value-type arguments should be passed by value. When number1l is passed to
SquareByValue (line 13), acopy of thevalue stored in number1 (i.e, 2) ispassed to the
procedure. Therefore, the value of number1 inthe calling procedure, Main, isnot modified
when parameter number is squared in procedure SquareByValue (line42).

Procedure squareByReference uses keyword ByRef (line 48) to receive its
value-type parameter by reference. When Main cals SquareByReference (line 23),
a reference to the value stored in number2 is passed, which gives SquareByRefer-
ence direct access to the value stored in the original variable. Thus, the value stored in
number?2 after SquareByReference finishes executing is the same as the final value
of parameter number.

When arguments are enclosed in parentheses, (), acopy of the value of the argument
is passed to the procedure, even if the procedure header includes keyword ByRe£. Thus,
the value of number3 does not change after it is passed to SquareByReference (line
33) via parentheses.

Passing value-type arguments with keyword ByRef£ is useful when procedures need
to alter argument values directly. However, passing by reference can weaken security,
because the called procedure can modify the caller’s data.

Reference-type variables passed with keyword Byval are effectively passed by refer-
ence, as the value that is copied is the reference for the object. Although Visual Basic
allows programmers to use keyword ByRe £ with reference-type parameters, it is usually

1. In Chapter 7 we discuss passing reference-type arguments by value and by reference.

Chapter 6 Procedures 201

not necessary to do so except with type string. Although they technically are reference
types, string arguments cannot be modified directly when passed with keyword Byval,
due to some subtle details of the string data type, which we discuss in Chapter 15,
Strings, Characters and Regular Expressions.

1

2

3

4 Module modByRefTest

5

6

7 Sub Main()

8 Dim numberl As Integer =

9

10 Console.WriteLine (

11 Console.WriteLine (& _
12 , numberl)

13 SquareByValue (numberl)

14 Console.WriteLine (&
15 & , numberl)

16

17 Dim number2 As Integer =

18

19 Console.WriteLine (&
20)

21 Console.WriteLine (&
22 , number2)

23 SquareByReference (number2)

24 Console.WriteLine (&

25 & , number2)
26

27 Dim number3 As Integer =

28

29 Console.WriteLine ("&
30)

31 Console.WriteLine (&
32 , number3)

33 SquareByReference ((number3))

34 Console.WriteLine (& _

35 , number3)

36

37 End Sub

38

39

40 Sub SquareByValue (ByVal number As Integer)

41 Console.WriteLine (& _
42 , number)

43 number *= number

44 Console.WriteLine (&
45 , number)

46 End Sub

a7

Fig. 6.12 ByVal and ByRef used to pass value-type arguments (part 1 of 2).

202 Procedures Chapter 6

48

49 Sub SquareByReference (ByRef number As Integer)

50 Console.WriteLine (&
51 , number)

52 number *= number

53 Console.WriteLine (&
54 , number)

55 End Sub

56

57 End Module

Passing a value-type argument by wvalue:

Before calling SquareByValue, numberl is 2

After entering SquareByValue, number is 2

Before exiting SquareByValue, number is 4

After returning from SquareByValue, numberl is 2

Passing a value-type argument by reference:

Before calling SquareByReference, number2 is 2
After entering SquareByReference, number is 2

Before exiting SquareByReference, number is 4

After returning from SquareByReference, number2 is 4

Passing a value-type argument by reference, but in parentheses:
Before calling SquareByReference using parentheses, number3 is 2
After entering SquareByReference, number is 2

Before exiting SquareByReference, number is 4

After returning from SquareByReference, number3 is 2

Fig. 6.12 ByVal and ByRef used to pass value-type arguments (part 2 of 2).

) When passing arguments by value, changes to the called procedure’s copy do not affect the
original variable' s value. This prevents possible side effects that could hinder the develop-
ment of correct and reliable software systems. Always pass value-type arguments by value
unless you explicitly intend for the called procedure to modify the caller’ s data.

%Ntmugh keywords By Va1l and ByRef may be used to passreference-type variables by val -

ue or by reference, the called procedure can manipulate the caller’ s reference-type variable
directly in both cases. Therefore, it is rarely appropriate to use ByRe £ with reference-type
variables. We discuss this subtleissue in detail in Chapter 7, Arrays.

6.10 Duration of Identifiers

Throughout the earlier chapters of this book, we have used identifiers for various purposes,
including as variable names and as the names of user-defined procedures, modules and
classes. Every identifier has certain attributes, including duration and scope.

Anidentifier’sduration (also caled its lifetime) is the period during which the identi-
fier existsin memory. Someidentifiers exist briefly, some are created and destroyed repeat-
edly, yet others are maintained through the entire execution of a program.

Chapter 6 Procedures 203

When returning information froma Function procedurevia a Return statement, value-
type variables always arereturned by value (i .., a copy isreturned), whereasrefer ence-type
variables always are returned by reference (i.e., a reference to an object is returned).

The scope of an identifier is the portion of a program in which the variable' s identifier
can be referenced. Some identifiers can be referenced throughout a program; others can be
referenced only from limited portions of a program (such as within asingle procedure). This
section discusses the duration of identifiers. Section 6.11 discusses the scope of identifiers.

Identifiers that represent local variables in a procedure (i.e., parameters and variables
declared in the procedure body) have automatic duration. Automatic-duration variablesare
created when program control enters the procedure in which they are declared, exist while
the procedure is active and are destroyed when the procedure is exited.? For the remainder
of the text, we refer to variables of automatic duration simply as automatic variables, or
local variables.

Variables declared inside amodule or class, but outside any procedure definition, exist
as long as their containing class or module is loaded in memory. Variables declared in a
module exist throughout a program’ s execution. By default, a variable declared in a class,
such as a Form class for a Windows application, is an instance variable. In the case of a
Form, this means that the variable is created when the Form loads and exists until the
Form is closed. We discuss instance variables in detail in Chapter 8, Object-Based Pro-
gramming.

Automatic duration is an example of the principle of least privilege. This principle states that
= each component of a system should have only therights and privilegesit needsto accomplish
its designated task. This helps prevent accidental and/or malicious errors from occurring in
systems. Why have variables stored in memory and accessible when they are not needed?

6.11 Scope Rules

The scope (sometimes called declaration space) of avariable, reference or procedure iden-
tifier is the portion of the program in which the identifier can be accessed. The possible
scopes for an identifier are class scope, module scope, namespace scope and block scope.

Members of a class have class scope, which means that they are visible in what is
known as the declaration space of a class. Class scope begins at the class identifier after
keyword Class and terminates at the End Class statement. This scope enables amethod
of that class to invoke directly all members defined in that class and to access members
inherited into that class.3 In a sense, members of a class are global to the methods of the
classinwhich they are defined. This means that the methods can modify instance variables
of the class (i.e., variables declared in the class definition, but outside any method defini-
tion) directly and invoke other methods of the class.

2. Variablesin aprocedure can also be declared using keyword static, in which case the variable
is created and initialized during the first execution of the procedure then maintains its value be-
tween subsequent calls to the procedure.

3. In Chapter 8, Object-Based Programming, we see that Shared members are an exception to this
rule.

204 Procedures Chapter 6

InVisua Basic .NET, identifiers declared inside ablock, such asthe body of aprocedure
definition or the body of an I£/Then selection structure, have block scope (local-variable
declaration space). Block scope begins at the identifier’ s declaration and ends at the block’s
End statement (or equivalent, e.g., Next). Local variables of a procedure have block scope.
Procedure parameters also have block scope, because they are considered local variables of
the procedure. Any block can contain variable declarations. When blocks are nested in abody
of aprocedure, an error is generated if an identifier declared in an outer block has the same
name as an identifier declared in an inner block. However, if alocal variablein acalled pro-
cedure sharesits namewith avariable with class scope, such asan instance variable, the class-
scope variableis “hidden” until the called procedure terminates execution.

Variables declared in a module have module scope, which is similar to class scope.
Variables declared in a module are accessible to all procedures defined in the module.
M odule scope and class scope are sometimes referred to collectively asmodule scope. Like
class-scope variables, modul e-scope variables are hidden when they have the same identi-
fier asalocal variable.

By default, procedures defined in a module have namespace scope, which generally
means that they may be accessed throughout a project. Namespace scope is useful in
projects that contain multiple pieces (i.e., modules and classes). If a project contains a
module and aclass, methodsin the class can access the procedures of the module. Although
variables declared in a module have module scope, they can be given namespace scope by
replacing keyword Dim with keyword Public in the declaration. We discuss how to add
modules to projectsin Section 6.18.

Good Programming Practice 6.5
@ Avoid |ocal-variable names that hide class-variable or module-variable names.

Theprogram in Fig. 6.13 demonstrates scoping issues with instance variablesand local
variables. Instance variable value isdeclared and initialized to 1 in line 12. Asexplained
previoudly, this variable is hidden in any procedure that declares avariable named value.
TheFrmScoping Load method declaresalocal variablevalue (line19) andinitializes
itto 5. Thisvariableisdisplayed on 1bloutput (notethe declaration on line 7, which is
actually part of the Visual Studio .NET generated code) to illustrate that the instance vari-
ablevalue ishiddenin FrmScoping Load.

1

2

3

4 PpPublic Class FrmScoping

5 Inherits System.Windows.Forms.Form
6

7 Friend WithEvents 1lblOutput As System.Windows.Forms.Label
8

9

10

11

12 Dim value As Integer =

13

Fig. 6.13 Scoping rules in a class (part 1 of 2).

Chapter 6 Procedures 205

14

15 Private Sub FrmScoping Load(ByVal sender As System.Object,
16 ByVal e As System.EventArgs) Handles MyBase.Load

17

18

19 Dim value As Integer =

20

21 lblOutput.Text = &

22 & value

23

24 MethodaA ()

25 MethodB ()

26 MethodaA ()

27 MethodB ()

28

29 1blOutput.Text &= & & &
30 & value

31 End Sub

32

33

34 Sub MethodaA ()

35 Dim value As Integer =

36

37 1blOutput.Text &= & & &
38 & value &

39 value +=

40 lblOutput.Text &= & &

41 & value &

42 End Sub

43

44

45 Sub MethodB ()

46 1lblOutput.Text &= & & &
47 & value &

48 value *=

49 lblOutput.Text &= & &

50 & value &

51 End Sub

52

53 End Class

I..-hl.upuu Leanuislralisn ..J.n.lil
oI ovMEIEeELE] TRIII W lodd b

R LR TR % SR TR R et
smm et e deteedc U bebves sal w) Hetaeen

L RSP L L I B L LR RE [EE 5
R TR LURTY . TR el LT [T T KV TROTE LT :3

B ey M0 1 1 = e Y D [I T FRTE EOT 7}
L TER WL LTI SN T TR RY TR I T

el

cAe o - o b [0 e (Holem S
S v ek - Y hene mabre] Hehe-

Y TS ol] TH RTY 1

Fig. 6.13 Scoping rules in a class (part 2 of 2).

206 Procedures Chapter 6

The program defines two other methods—MethodA and Me thodB—which take no
arguments and return nothing. Each method is called twice from FrmScoping Load.
MethodaA defineslocal variablevalue (line35) and initializesitto 25. WhenMethodA s
called, the variable is displayed in the label 1bloutput, incremented and displayed again
before exiting the method. Automatic variable value is destroyed when MethodA termi-
nates. Thus, each timethismethod iscalled, value must berecreated and reinitialized to 25.

MethodB does not declare any variables. Therefore, when this procedure refersto vari-
able value, the instance variable value (line 12) is used. When MethodB is called, the
instance variable is displayed, multiplied by 10 and displayed again before exiting the
method. The next time method MethodB is called, the instance variable retains its modified
value, 10 and line48 causesvalue (line12) to become 100. Finally, the program again dis-
plays the local variable value in method FrmScoping Load to show that none of the
method calls modified this variable value—hoth methods refer to variablesin other scopes.

6.12 Random-Number Generation

We now take a brief and hopefully entertaining diversion into a popular programming ap-
plication—simulation and game playing. In this section and the next, we develop a struc-
tured game-playing program that includes multiple methods. The program employs many
of the control structuresthat we have studied to this point, in addition to introducing several
new concepts.

There is something in the air of a gambling casino that invigorates a wide variety of
people, ranging from the high rollers at the plush mahogany-and-felt craps tables to the
quarter-poppers at the one-armed bandits. Many of these individuals are drawn by the ele-
ment of chance—the possibility that luck will convert apocketful of money into amountain
of wealth. The element of chance can be introduced into computer applications through
class Random (located in namespace Sy stem).

Consider the following statements:

Dim randomObject As Random = New Random()
Dim randomNumber As Integer = randomObject.Next ()

The first statement declares randomObject asareferenceto an object of type Random.
The value of randomObject isinitialized using keyword New, which creates a new in-
stance of class Random (i.€., aRandom object). In Visua Basic, keyword New creates an
object of a specified type and returns the object’ s location in memory.

The second statement declares Integer variable randomNumber and assignsit the
value returned by calling Random method Next. We access method Next by following
the reference name, randomObject, by the dot (.) operator and the method name.
Method Next generates a positive Integer value between zero and the constant
Int32.MaxValue (2,147,483,647). If Next produces values at random, every valuein
thisrange has an equal chance (or probability) of being chosen when Next is called. The
values returned by Next are actually pseudo-random numbers, or a sequence of values
produced by acomplex mathematical calculation. This mathematical calculation requiresa
seed value, which, if different each time the program isrun, causes the series of mathemat-
ical calculationsto be different aswell (so that the numbers generated are indeed random).
When we create a Random object, the current time of day becomes the seed value for the
calculation. Alternatively, we can pass a seed value as an argument in the parentheses after

Chapter 6 Procedures 207

New Random. Passing in the same seed twice results in the same series of random num-
bers. Using the current time of day as the seed value is effective, because the time islikely
to change for each Random object we create.

The generation of random numbers often is necessary in a program. However, the
range of values produced by Next (i.e., values between 0-2,147,483,647) often is different
from that needed in a particular application. For example, a program that simulates coin-
tossing might require only O for “heads’ and 1 for “tails.” A program that simulates the
rolling of asix-sided die would require random Integersfrom 1-6. Similarly, aprogram
that randomly predicts the next type of spaceship (out of four possibilities) that flies across
the horizon in avideo game might require random Integersfrom 1-4.

By passing an argument to method Next as follows

value = + randomObject.Next (¢)

we can produce integers in the range 1-6. When a single argument is passed to Next, the
values returned by Nex t will bein therange from O to (but not including) the value of that
argument. Thisis caled scaling. The number 6 isthe scaling factor. We shift the range of
numbers produced by adding 1 to our previous result, so that the return values are between
1 and 6, rather than 0 and 5. The values produced by Next are alwaysin the range

x £ x + randomObject.Next(y) < y

Visual Basic simplifies this process by alowing the programmer to pass two argu-
ments to Next. For example, the above statement also could be written as

value = randomObject.Next (1, 7)

Note that we must use 7 as the second argument to method Next to produce integers
intherangefrom 1-6. Thefirst argument indicates the minimum value in our desired range,
whereas the second is equal to 1 + the maximum value desired. Thus, the vaues produced
by thisversion of Next will always be in the range

x < randomObject.Next(x, y) <y

In this case, x isthe shifting value, and y - x isthe scaling factor. Figure 6.14 demonstrates
the use of class Random and method Next by simulating 20 rolls of a six-sided die and
showing the value of each roll in aMessageBox. Notethat all the values arein the range
from 1-6, inclusive.

The program in Fig. 6.15 uses class Random to simulate rolling four six-sided dice. We
then use some of the functionality from this program in another example (Fig. 6.16) to dem-
onstrate that the numbers generated by Next occur with approximately equal likelihood.

In Fig. 6.15, we use event-handling method emdRo11 _Click, which executes when-
ever the user clicks emdRo11, resulting in method DisplayDie being caled four times,
once for each Label onthe Form. Calling DisplayDie (lines 35-44) causesfour diceto
appear as if they are being rolled each time emdRo11 is clicked. Note that, when this pro-
gram runs, the dice images do not appear until the user clicks emdRo11 for the first time.

Method DisplayDie specifies the correct image for the face value calculated by
method Next (line 38). Notice that we declare randomObject asan instance variable of
FrmRollDice (line 21). Thisalowsthe same Random object to be used each time Dis-

208 Procedures Chapter 6

playDie executes. Weusethe Image property (line41) to display animageon alabel. We
et the property’ s value with an assignment statement (lines 41-43). Notice that we specify
the image to display through procedure FromFile in class Image (contained in the
System.Drawing namespace). Method Directory.GetCurrentDirectory
(contained inthe Sy stem. I0 namespace) returnsthe location of the folder in which the cur-
rent project islocated, including bin, the directory containing the compiled project files. The
dieimages must be placed in thisfolder for the solutionsin Fig. 6.15 and Fig. 6.16 to operate
properly. The graphics used in this example and several other examplesin this chapter were
created with Adobe® Photoshop™ Elements and are located in the project directory available
on the CD-ROM that accompaniesthis book and at www.deitel . com.

Notice that we must include an Imports directive (line 4) to use classes in
System. IO, but not to use classesin System.Drawing. By default, Windows appli-
cations import several hamespaces, including Microsoft.VisualBasic, System,
System.Drawing, System.Windows.Forms and System.Collections. The
se namespaces are imported for the entire project, eliminating the need for Imports direc-
tivesin individual project files. Other namespaces can be imported into a project via the
Property Pages dialog (opened by selecting Project > Properties from the menu bar)
in the Imports listing under Common Properties. Some of the namespaces imported
by default are not used in this example. For instance, we do not yet use namespace
System.Collections, whichalowsprogrammersto create collections of objects (see
Chapter 24, Data Structures and Collections).

TheWindows applicationin Fig. 6.16 rolls 12 dice to show that the numbers generated
by class Random occur with approximately equal frequencies. The program displays the
cumulative frequencies of each facein aTextBox.

1

2

3
4 TImports System.Windows.Forms

5

6 Module modRandomInteger

7

8 Sub Main ()

9 Dim randomObject As Random = New Random()
10 Dim randomNumber As Integer
11 Dim output As String =
12 Dim i As Integer
13
14 For i = To
s randomNumber = randomObject.Next(l, 7)
16 output &= randomNumber &
17
18 If i Mod = Then
19 output &=
20 End If
21
22 Next

Fig. 6.14 Random integers created by calling method Next of class Random
(part 1 of 2).

Chapter 6 Procedures 209
23
24 MessageBox. Show (output, .
25 MessageBoxButtons.OK, MessageBoxIcon.)
26 End Sub
27
28 End Module
x|
T R LIE
i«_,l‘) 12134
S 364
ELIT
e
Fig. 6.14 Random integers created by calling method Next of class Random

(part 2 of 2).

OCO~NOOUOITRAWNPE

Imports S

ystem.IO

Public Class FrmRollDice
Inherits System.Windows.Forms.Form

Friend

Friend
Friend
Friend
Friend

WithEvents

WithEvents
WithEvents
WithEvents
WithEvents

cmdRoll As

1blDiel As
1blDie2 As
1blDie3 As
1blDie4 As

Dim randomNumber As Random =

System.Windows.

System.Windows.
System.Windows.
System.Windows.
System.Windows.

New Random()

Forms.

Forms.
Forms.
Forms.
Forms.

Button

Label
Label
Label
Label

Private Sub cmdRoll Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdRoll.Click

DisplayDie(lblDiel)
DisplayDie(lblDie2)
DisplayDie(1lblDie3)
DisplayDie (1lblDie4)

End Su

b

Fig. 6.15 Demonstrates 4 die rolls (part 1 of 2).

210 Procedures Chapter 6

35 Sub DisplayDie (ByVal dieLabel As Label)
38 Dim face As Integer = randomNumber.Next (1, 7)

41 dieLabel.Image = Image.FromFile(_

42 Directory.GetCurrentDirectory & &
43 face &)

44 End Sub

46 End Class

%t uee——SRTE

Fig. 6.15 Demonstrates 4 die rolls (part 2 of 2).

Figure 6.16 contains two screenshots: One on the left that shows the program when the
program initially executes and one on the right that shows the program after the user has
clicked Roll over 200 times. If the values produced by method Next are indeed random,
the frequencies of the face values (1-6) should be approximately the same (as the left
screenshot illustrates).

To show that the die rolls occur with approximately equal likelihood, the program in
Fig. 6.16 has been modified to keep some simple statistics. We declare counters for each of
the possible rollsin line 31. Notice that the counters are instance variables, i.e., variables
with class scope. Lines 60—76 display the frequency of each roll as percentages using the
npr format code.

As the program output demonstrates, we have utilized function Next to simulate the
rolling of asix-sided die. Over the course of many dierolls, each of the possible facesfrom
1-6 appears with equal likelihood, or approximately one-sixth of the time. Note that no
Case Elseisprovidedinthe select structure (lines91-111), because we know that the
values generated are in the range 1-6. In Chapter 7, Arrays, we explain how to replace the
entire Select structure in this program with a single-line statement.

Run the program several times and observethe results. Notice that adifferent sequence
of random numbersis obtained each time the program is executed, causing the resulting fre-
quenciesto vary.

Chapter 6 Procedures 211
1

2

3

4 Imports System.IO

5

6 Public Class FrmRollTwelveDice

7 Inherits System.Windows.Forms.Form

8

9
10 Friend WithEvents lblDiel As System.Windows.Forms.Label
11 Friend WithEvents lblDie2 As System.Windows.Forms.Label
12 Friend WithEvents lblDie3 As System.Windows.Forms.Label
13 Friend WithEvents lblDie4 As System.Windows.Forms.Label
14 Friend WithEvents lblDie5 As System.Windows.Forms.Label
15 Friend WithEvents lblDie6 As System.Windows.Forms.Label
16 Friend WithEvents lblDie7 As System.Windows.Forms.Label
17 Friend WithEvents lblDie8 As System.Windows.Forms.Label
18 Friend WithEvents lblDie9 As System.Windows.Forms.Label
19 Friend WithEvents 1lblDiel0 As System.Windows.Forms.Label
20 Friend WithEvents 1lblDiell As System.Windows.Forms.Label
21 Friend WithEvents l1lblDiel2 As System.Windows.Forms.Label
22
23
24 Friend WithEvents displayTextBox As _
25 System.Windows.Forms.TextBox
26
27
28
29
30 Dim randomObject As Random = New Random()
31 Dim ones, twos, threes, fours, fives, sixes As Integer
32
33 Private Sub emdRoll Click _
34 (ByVal sender As System.Object, _
35 ByVal e As System.EventArgs) Handles cmdRoll.Click
36
37
38 DisplayDie(lblDiel)
39 DisplayDie(lblDie2)
40 DisplayDie(lblDie3)
41 DisplayDie(lblDie4)
42 DisplayDie(lblDie5)
43 DisplayDie (1lblDie6)
44 DisplayDie(lblDie7)
45 DisplayDie(lblDie8)
46 DisplayDie(lblDie9)
47 DisplayDie (1lblDiel0)
48 DisplayDie(1lblDiell)
49 DisplayDie(lblDiel2)
50
51 Dim total As Integer = ones + twos + threes + fours +
52 fives + sixes
53

Fig. 6.16 Random class used to simulate rolling 12 six-sided dice (part 1 of 3).

212

Procedures

Chapter 6

104
105
106

Dim output As String

output = & & &

output &= & & &
& & String.Format (

output &= & & &
& String.Format (o

output &= & & &
& String.Format (0

output &= & & &
& String.Format (,

output &= & & &
& String.Format (o

output &= & & &
& String.Format (0

displayTextBox.Text =
End Sub

output

& ones & _
, ones / total)

& twos & &
twos / total)

& threes & &
threes / total)

& fours & &
fours / total)

& fives & &
fives / total)

& sixes & &
sixes / total) &

Sub DisplayDie (ByVal dielLabel As Label)

Dim face As Integer =

dieLabel.Image =

randomObject.Next (1, 7)

Image.FromFileTDirectory.GetCurrentDirectory &

& face &)

Select Case face

Case
ones +=

Case
twos +=

Case
threes +=

Case
fours +=

Case
fives +=

Fig. 6.16 Random class used to simulate rolling 12 six-sided dice (part 2 of 3).

Chapter 6 Procedures 213

107

108 Case

109 sixes +=
110

111 End Select

112

113 End Sub

114

I::Ftr.l Tearl v Mk H ;l:lll

Fig. 6.16 Random class used to simulate rolling 12 six-sided dice (part 3 of 3).

6.13 Example: Game of Chance

One of the most popular games of chanceis adice game known as*“ craps,” played in casi-
nos and back alleys throughout the world. The rules of the game are straightforward:

A player ralls two dice. Each die has six faces. Each face contains 1, 2, 3, 4, 5 or 6 spots.
After the dice have cometo rest, the sum of the spots on the two upward faces is calcul ated.
If the sumis 7 or 11 on the first throw, the player wins. If the sumis 2, 3 or 12 on the first
throw (called “ craps’), the player loses (i.e., the“ house” wins). If thesumis4, 5, 6, 8, 9 or
10 on thefirst throw, that sum becomes the player’s “ point.” To win, players must continue
rolling the dice until they “ maketheir point” (i.e., roll their point value). The player loses by
rolling a 7 before making the point.

The application in Fig. 6.17 simul ates the game of craps.

214 Procedures Chapter 6

Notice that the player must roll two dice on the first and all subsequent rolls. When
executing the application, click the Play button to play the game. The form displays the
results of each roll. The screen captures depict the execution of two games.

Lines 9-21 indicate that this program uses classes PictureBox, Label, Button
and GroupBox from namespace System.Windows . Forms. Although the Windows
Form Designer uses the full name for these classes (e.g., System.Win-
dows . Forms . PictureBox), we show only the class namesfor simplicity. Classnames
are sufficient in this case, because System.Windows . Forms isimported by default for
Windows applications.

Thisprogram introduces several new GUI components. Thefirst, called a GroupBox,
displays the user’s point. A GroupBox is a container used to group related components.
Within the GroupBox pointDiceGroup, we add two PictureBoxes, which are
components that display images. Components are added to a GroupBox by dragging and
dropping a component onto the GroupBox.

Before introducing any method definitions, the program includes several declarations,
including our first Enumeration on lines 26—-32 and our first Cons tant identifiers on lines
35-36. constant identifiers and Enumerations enhance program readability by providing
descriptive identifiers for numbers or Strings that have special meaning. Constant
identifiers and Enumerations help programmers ensure that values are consistent
throughout a program. Keyword Const creates a single constant identifier; Enumerations
are used to define groups of related constants. In this case, we create Constant identifiers
for the file names that are used throughout the program and create an Enumeration of
descriptive names for the various dice combinationsin Craps (i.e., SNAKE EYES, TREY,
CRAPS, YO LEVEN and BOX_ CARS). Constant identifiers must be assigned constant
values and cannot be modified after they are declared.

1

2

3

4 Imports System.IO

5

6 Public Class FrmCrapsGame

7 Inherits System.Windows.Forms.Form

8

9 Friend WithEvents cmdRoll As Button

10 Friend WithEvents cmdPlay As Button

11

12

13 Friend WithEvents picDiel As PictureBox

14 Friend WithEvents picDie2 As PictureBox

15

16

17 Friend WithEvents pointDiceGroup As GroupBox
18 Friend WithEvents picPointDiel As PictureBox
19 Friend WithEvents picPointDie2 As PictureBox
20

21 Friend WithEvents lblStatus As Label

22

Fig. 6.17 Craps game using class Random (part 1 of 4).

Chapter 6

Procedures

215

Enum DiceNames

End Enum

Const As String
Const As String

Dim myPoint As Integer
Dim myDiel As Integer
Dim myDie2 As Integer

Dim randomObject As Random = New Random()

Private Sub cmdPlay Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles cmdPlay.Click

myPoint =
pointDiceGroup.Text =
lblStatus.Text =

picPointDiel.Image = Nothing
picPointDie2.Image Nothing

Dim sum As Integer = RollDice()

Select Case sum

Case DiceNames. , DiceNames.

cmdRoll.Enabled = False
lblStatus.Text =

Case DiceNames. ro_
DiceNames. , DiceNames.

cmdRoll.Enabled = False
lblStatus.Text =

Case Else
myPoint = sum
pointDiceGroup.Text =

sum

Fig. 6.17

Craps game using class Random (part 2 of 4).

216 Procedures Chapter 6
76 lblStatus.Text =
77 DisplayDie (picPointDiel, myDiel)
78 DisplayDie (picPointDie2, myDie2)
79 cmdPlay.Enabled = False
80 cmdRoll.Enabled = True
81
82 End Select
83
84 End Sub
85
86
87 Private Sub cmdRoll Click(ByVal sender As System.Object,
88 ByVal e As System.EventArgs) Handles cmdRoll.Click
89
90 Dim sum As Integer = RollDice()
91
92
93 If sum = myPoint Then
94 lblStatus.Text =
95 cmdRoll.Enabled = False
96 cmdPlay.Enabled = True
97 ElseIf sum = DiceNames. Then
98 lblStatus.Text =
99 cmdRoll.Enabled = False
100 cmdPlay.Enabled = True
101 End If
102
103 End Sub
104
105
106 Sub DisplayDie(ByVal picDie As PictureBox, _
107 ByVal face As Integer)
108
109
110 picDie.Image = _
111 Image.FromFile (Directory.GetCurrentDirectory & _
112 & face &)
113 End Sub
114
115
116 Function RollDice() As Integer
117 Dim diel, die2 As Integer
118
119
120 diel = randomObject.Next (1, 7)
121 die2 = randomObject.Next (1, 7)
122
123
124 DisplayDie(picDiel, diel)
125 DisplayDie(picDie2, die2)
126

Fig. 6.17 Craps game using class Random (part 3 of 4).

Chapter 6 Procedures 217

127
128 myDiel = diel
129 myDie2 = die2
130
131 Return diel + die2
132 End Function
133
134 End Class
GroupBox PictureBoxes (displaying images)

Fig. 6.17 Craps game using class Random (part 4 of 4).

After the constant-identifier declarations and the declarations for several instance vari-
ables (lines 38-41), method cmdPlay Click is defined (lines 44-84). Method
cmdPlay Click is the event handler for the event cmdPlay.Click (created by
double-clicking emdPlay in Design mode). In this example, the method’ stask isto pro-
cessauser’ sinteraction with But ton emdPlay (which displaysthetext Play on the user
interface).

When the user clicksthe Play button, method cmdPlay Click setsup anew game
by initializing severa vaues (lines 48-50). Setting the Image property of
picPointDiel and picPointDie2 t0 Nothing (lines 53-54) causes the Pic-
tureBoxes to appear blank. Keyword Nothing can be used with reference-type vari-
ables to specify that no object is associated with the variable.

Method emdPlay Click executes the game’s opening roll by calling RollDice
(line 56). Internally, Ro11Dice (lines 116-132) generates two random numbers and calls
method DisplayDie (lines106-113), which loadsan appropriate dieimageonthePic-
tureBox passed toit.

218 Procedures Chapter 6

When RollDice returns, the Select structure (lines 59-82) anayzes the roll
returned by Rol1Dice to determine how play should continue (i.e., by terminating the
game with awin or loss, or by enabling subsequent rolls). Depending on the value of the
roll, the buttons emdRo11 and cmdPlay become either enabled or disabled. Disabling a
Button causes no action to be performed when the But ton isclicked. But tonscan be
enabled and disabled by setting the Enabled property to True or False.

If Button ecmdRoll is enabled, clicking it invokes method emdRoll Click
(lines 87-103), which executes an additional roll of the dice. Method cmdRol1l Click
then analyzes theroll, letting users know whether they won or lost.

6.14 Recursion

In most of the programs we have discussed so far, procedures have called one another in a
disciplined, hierarchical manner. However, in some instances, it is useful to enable proce-
duresto call themselves. A recursive procedureisaprocedure that callsitself either direct-
ly or indirectly (i.e., through another procedure). Recursion is an important topic that is
discussed at length in upper-level computer science courses. In this section and the next,
we present simple examples of recursion.

Prior to examining actua programs containing recursive procedures, we first consider
recursion conceptually. Recursive problem-solving approaches have anumber of elements
in common. A recursive procedure is called to solve a problem. The procedure actually
knows how to solve only the simplest case(s), or base case(s). If the procedure is called
with a base case, the procedure returns aresult. If the procedureis called with a more com-
plex problem, the procedure divides the problem into two conceptual pieces; a piece that
the procedure knows how to perform (base case), and a piece that the procedure does not
know how to perform. To make recursion feasible, the latter piece must resemble the orig-
ina problem, but be a dlightly simpler or smaller version of it. The procedure invokes
(calls) afresh copy of itself to work on the smaller problem—thisis referred to asarecur-
sive call, or a recursion step. The recursion step also normaly includes the keyword
Return, because its result will be combined with the portion of the problem that the pro-
cedure knew how to solve. Such a combination will form aresult that will be passed back
tothe original caller.

The recursion step executes while the original call to the procedureisstill “open” (i.e.,
has not finished executing). The recursion step can result in many more recursive calls, as
the procedure divides each new subproblem into two conceptual pieces. As the procedure
continues to call itself with dlightly simpler versions of the original problem, the sequence
of smaller and smaller problems must converge on the base case, so that the recursion can
eventually terminate. At that point, the procedure recognizes the base case and returns a
result to the previous copy of the procedure. A sequence of returns ensues up the line until
the original procedure call returnsthe final result to the caller. As an example of these con-
cepts, let uswrite arecursive program that performs a popular mathematical calculation.

Thefactoria of anonnegativeinteger n, written n! (and read “nfactoria”), isthe product

n-(n-1)-(n-2)-...-1

with 1! equal to 1, and 0! defined as 1. For example, 5! isthe product 5-4 -3 -2 - 1, which
isequa to 120.

Chapter 6 Procedures 219

Thefactorial of an integer number greater than or equal to 0 can be calculated itera-
tively (nonrecursively) using a For repetition structure, as follows:

Dim counter, factorial As Integer =

For counter = number To Step
factorial *= counter
Next

We arrive at a recursive definition of the factorial procedure with the following rela-
tionship:

n=n-(n-1)
For example, 5! is clearly equal to 5 - 4!, asis shown by the following:

51=5.4.3.2-1
51=5.(4-3-2-1)
51=5.(41)

A recursive evaluation of 5! would proceed as in Fig. 6.18. Figure 6.18a shows how
the succession of recursive calls proceedsuntil 1! isevaluated to be 1, which terminates the
recursion. Figure 6.18b depicts the values that are returned from each recursive call to its
caller until the final valueis calculated and returned.

The program of Fig. 6.19 recursively calculates and prints factorials. (The choice of
the datatype Long will be explained soon). The recursive method Factorial (lines33—
41) first tests (line 35) to determine whether itsterminating condition istrue (i.e., number
islessthan or equal to 1). If number islessthan or equal to 1, Factorial returnsl, no
further recursion is necessary, and the method returns. If number is greater than 1, line 38
expressesthe problem asthe product of number and arecursivecall to Factorial, eval-
uating the factorial of number - 1. Note that Factorial (number - 1) isadlightly
simpler problem than the original calculation, Factorial (number).

E Final value = 120

51 =5*24 =120 s returned

h 41 =4*6=24is returned

31=3*2=6Isreturned

2 * 11 2 * 11
2 * 1] 2 * 1t
“ 1 returned

(a) Procession of recursive calls (b) Values returned from each recursive call

21=2*1=2isreturned

Fig. 6.18 Recursive evaluation of 5!.

220 Procedures Chapter 6

Function Factorial (line 33) receives a parameter of type Long and returns a
result of type Long. Asis seen in the output window of Fig. 6.19, factorial values escalate
quickly. We choose data type Long to enable the program to calcul ate factorias greater than
12!. Unfortunately, the values produced by the Factorial method increase a such arate
that the range of even the Long type is quickly exceeded. This points to aweakness in most
programming languages: They are not easily extended to handle the unique requirements of
various applications, such asthe evaluation of largefactorials. Aswewill seein our treatment
of object-oriented programming beginning in Chapter 8, Visual Basic is an extensble lan-
guage—programmers with unique requirements can extend the language with new datatypes
(cdlled classes). For example, aprogrammer could create aHugeInteger classthat would
enable a program to cal culate the factorials of arbitrarily large numbers.

1

2

3

4 Public Class FrmFactorial

5 Inherits System.Windows.Forms.Form

6

7 Friend WithEvents lblEnter As Label

8 Friend WithEvents lblFactorial As Label

9

10 Friend WithEvents txtInput As TextBox

11 Friend WithEvents txtDisplay As TextBox

12

13 Friend WithEvents cmdCalculate As Button

14

15

16

17 Private Sub cmdCalculate Click(ByVal sender As System.Object,
18 ByVal e As System.EventArgs) Handles cmdCalculate.Click
19

20 Dim value As Integer = Convert.ToInt32 (txtInput.Text)
21 Dim i As Integer

22 Dim output As String

23

24 txtDisplay.Text =

25

26 For i = To value

27 txtDisplay.Text &= i & & Factorial(i) &
28 Next

29

30 End Sub

31

32

33 Function Factorial (ByVal number As Long) As Long

34

35 If number <= Then

36 Return

37 Else

38 Return number * Factorial (number - 1)

39 End If

Fig. 6.19 Recursive factorial program (part 1 of 2).

Chapter 6 Procedures 221

40
41 End Function

43 End Class

e
TR Rl R IR [1r

i Bl It | W E

M= -l
b i

K1

qi- A

I e

[I

H Bt

§= 47350

M §--FrFll

- -2 d

Fig. 6.19 Recursive factorial program (part 2 of 2).

—a- Common Programming Error 6.8
@ Forgetting to return a value from a recursive procedure can result in logic errors.

Common Programming Error 6.9

@ Omitting the base case or writing the recursive step so that it does not converge on the base
case will cause infinite recursion, eventually exhausting memory. This is analogous to the
problem of an infinite loop in an iterative (nonrecursive) solution.

6.15 Example Using Recursion: Fibonacci Series
The Fibonacci series

0,1,1235,8,13,21, ...

begins with 0 and 1 and defines each subsequent Fibonacci number as the sum of the pre-
vious two Fibonacci numbers.

The series occurs in nature and, in particular, describes aform of spiral. The ratio of
successive Fibonacci numbers converges on a constant value near 1.618. This number
occurs repeatedly in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings so that their ratios of length to width are equal to the golden
mean. Similarly, postcards often are designed with a golden-mean width-to-height ratio.

222 Procedures Chapter 6

The Fibonacci series can be defined recursively as follows:

fibonacci(0) =0

fibonacci(1) =1

fibonacci(n) = fibonacci(n—1) + fibonacci(n—2)
Note that there are two base cases for the Fibonacci cal culation—fibonacci(0) is defined to
be 0, and fibonacci (1) isdefined to be 1. The application in Fig. 6.20 recursively calculates
the it Fibonacci number via method Fibonacei. The user enters an integer in the text
box, indicating the it Fibonacci number to calculate, then clicksemdCalculate. Meth-
od cmdCalculate Click executes in response to the user clicking Calculate and
calls recursive method Fibonacci to calculate the specified Fibonacci number. Notice
that Fibonacci numbers, like the factorial values discussed in the previous section, tend to
become large quickly. Therefore, we use data type Long as the parameter type and the re-
turn type in method Fibonacci. In Fig. 6.20, the screen captures display the results of
severa Fibonacci-number calculations performed by the application.

The event handling in this example is similar to that of the Maximum application in
Fig. 6.4. In this example, the user enters a value in a text box and clicks Calculate
Fibonacci, causing method cmdCalculate Click to execute.

The call to Fibonacci (line 23) from ecmdCalculate Click isnot arecursive
call, but al subsequent cals to Fibonacci (line 33) are recursive. Each time that
Fibonacci is invoked, it immediately tests for the base case, which occurs when
number isequa to 0 or 1 (line 30). If this condition istrue, number isreturned, because
fibonacci(0) is 0 and fibonacci(1) is1. Interestingly, if number isgreater than 1, therecur-
sion step generates two recursive calls, each representing aslightly ssmpler problem thanis
presented by the original call to Fibonacci. Figure6.21 illustrates how method
Fibonacci would evaluate Fibonacci (3).

1

2

3

4 Public Class FrmFibonacci

5 Inherits System.Windows.Forms.Form

6

7 Friend WithEvents 1lblPrompt As Label

8 Friend WithEvents lblResult As Label

9

10 Friend WithEvents cmdCalculate As Button

11

12 Friend WithEvents txtInputBox As TextBox

13

14

15

16

17 Private Sub cmdCalculate Click(ByVal sender As System.Object, _
18 ByVal e As System.EventArgs) Handles cmdCalculate.Click
19

20

21 Dim number As Integer = Convert.ToInt32(txtInputBox.Text)
22

Fig. 6.20 Recursively generating Fibonacci numbers (part 1 of 3).

Chapter 6 Procedures 223

23 lblResult.Text = & Fibonacci (number)
24 End Sub

25

26

27 Function Fibonacci (ByVal number As Integer) As Long

28

29

30 If number = OrElse number = Then

31 Return number

32 Else

33 Return Fibonacci(number - 1) + Fibonacci (number - 2)
34 End If

35

36 End Function

81

38 End Class

| il i Henln e 1
Law of riege” |?

| Filun m bl [E

Cdlizul= e Fbonaese Lo o Mege I_"_

Fiters i ahe s

Cdlzulale Mbonaco

| M Fitunnm il [a b
Lo o riegc” |$
Fitos i wah e s =

Calizulale Mbonaee m =1l

LA om rteqe” |-:_}

Fites i ahe s =d

Cdlizulale Mibonac

Fig. 6.20 Recursively generating Fibonacci numbers (part 2 of 3).

224 Procedures Chapter 6

= x
L T [I_.i

T Yo v [T

Cleulaly Cikaonaesi

Fig. 6.20 Recursively generating Fibonacci numbers (part 3 of 3).

A word of caution about using arecursive program to generate Fibonacci numbers. Each
invocation of the Fibonacci method that does not match one of the base cases (i.e.,, 0 or 1)
results in two additional recursive calsto the Fibonacci method. This quickly resultsin
an exponentia “explosion” of calls. For example, the calculation of the Fibonacci value of 20
using the programin Fig. 6.20 requires 21,891 cdllsto the Fibonacci method; the calcula-
tion of the Fibonacci value of 30 requires 2,692,537 callsto the Fibonaceci method.

As the programmer evaluates larger Fibonacci numbers, each consecutive Fibonacci
that the program is asked to cal culate results in asubstantial increase in the number of calls
to the Fibonaceci method and hence in calculation time. For example, the Fibonacci
value 31 requires 4,356,617 cals, whereas the Fibonacci vaue of 32 requires 7,049,155
calls. Asyou can see, the number of callsto Fibonacci increases quickly—1,664,080 addi-
tional calls between the Fibonacci values of 30 and 31, and 2,692,538 additional calls
between the Fibonacci values of 31 and 32. This difference in number of cals made
between the Fibonacci vaues of 31 and 32 is more than 1.5 times the difference between
30 and 31. Problems of this nature humble even the world’s most powerful computers! In
thefield called complexity theory, computer scientists determine how hard algorithms must
work to do their jobs. Complexity issues usually are discussed in detail in the upper-level
computer science courses called “ Algorithms.”

Fibonacci(3)

\ I
return | Fibonacci(2)| 4+ |Fibonaceci(1)

, i

[I I

return |[Fibonacci(1) | + |Fibonaceci(0) return 1
\ A
[—— 1 1
return 1 return 0

Fig. 6.21 Recursive calls to method Fibonacci.

Chapter 6 Procedures 225

;@ Avoid Fibonacci-stylerecursive programs, which resultin an exponential “ explosion” of calls.

6.16 Recursion vs. lteration

In the previous sections, we studied two methods that can be implemented either recursive-
ly or iteratively. In this section, we compare the two approaches and discuss the reasons
why the programmer might choose one approach over the other.

Iteration and recursion are based on control structures—iteration uses a repetition
structure (such as For, While or Do/Loop Until), whereas recursion uses a selection
structure (such as If/Then, If/Then/Else or Select). Although both processes
involve repetition, iteration involves an explicit repetition structure, and recursion achieves
repetition through repeated procedure calls. The termination tests employed by the two pro-
cedures are also different. Iteration with counter-controlled repetition continues to modify
a counter until the counter’s value satisfies the loop-continuation condition. By contrast,
recursion produces simpler versions of the original problem until abase caseisreached and
execution stops. However, both iteration and recursion can execute infinitely: An infinite
loop occurs in an iterative structure if the loop-continuation test is never satisfied; infinite
recursion occursif the recursion step does not reduce the problem so that it eventually con-
verges on the base case.

Recursion has many disadvantages. It repeatedly invokes the mechanism, and conse-
quently the overhead, of procedure calls, consuming both processor time and memory
space. Each recursive call causes another copy of the procedure’ s variables to be created;
when many layers of recursion are necessary, this can consume considerable amounts of
memory. lteration normally occurs within aprocedure, which enablesthe program to avoid
the overhead of repeated procedure calls and extra memory assignment. Why, then, would
aprogrammer choose recursion?

Any problem that can be solved recursively also can be solved iteratively (nonrecursively).
= A recursive approach normally is chosen over an iterative approach when the recursive ap-
proach more naturally mirrorsthe problemand resultsin a programthat is easier to under-
stand and debug. Recursive solutions also are employed when iterative solutions are not
apparent.

g Avoid using recursion in performance situations. Recursive calls take time and consume ad-

22 ditional memory.

Common Programming Error 6.10

@ Accidentally having a nonrecursive procedure call itself through another procedure can
cause infinite recursion.

Most programming textbooks introduce recursion much later than we have donein this
book. However, we fedl that recursion is a rich and complex topic; thus, we introduce it
early and include additional examples throughout the remainder of the text.

226 Procedures Chapter 6

6.17 Procedure Overloading and Optional Arguments

Visual Basic provides several ways of allowing procedures to have variable sets of param-
eters. Overloading allows the programmer to create multiple procedures with the same
name, but differing numbers and types of arguments. Thisallowsthe programmer to reduce
the complexity of the program and create a more flexible application. Procedures also can
receive optional arguments. Defining an argument as optional allows the calling procedure
to decide what argumentsto pass. Optional arguments normally specify adefault value that
is assigned to the parameter if the optional argument is not passed. Overloaded procedures
are generally moreflexible than procedures with optional arguments. For instance, the pro-
grammer can specify varying return types for overloaded procedures. However, optional
arguments present a simple way of specifying default values.

6.17.1 Procedure Overloading

By overloading, a programmer can define several procedures with the same name, as long
as these procedures have different sets of parameters (number of parameters, types of pa
rameters or order of the parameters). When an overloaded procedureis called, the compiler
selects the proper procedure by examining the number, types and order of the call’s argu-
ments. Often, procedure overloading is used to create several procedures with the same
name that perform similar tasks on different data types.

Good Programming Practice 6.6

@ The overloading of procedures that perform closely related tasks can make programs more
readable and under standable.

The program in Fig. 6.22 uses overloaded method Square to calculate the square of
both an Integer and aDouble.

1

2

3

4 PpPublic Class FrmOverload

5 Inherits System.Windows.Forms.Form

6

7 Friend WithEvents outputLabel As Label

8

9

10

11 Private Sub FrmOverload Load(ByVal sender As System.Object,
12 ByVal e As System.EventArgs) Handles MyBase.Load

13

14 outputLabel.Text = &
15 square(7) & & &
16 & square(7.5)

17 End Sub

18

19 Function Square (ByVal value As Integer) As Integer

20 Return Convert.ToInt32 (value " 2)

21 End Function

Fig. 6.22 Overloaded methods (part 1 of 2).

Chapter 6 Procedures 227

22

23 Function Square(ByVal value As Double) As Double
24 Return value *

25 End Function

26

27 End Class

E-LEER— =iz

I zega co don g e 24
IF=sqzo b bz < ok bz %

Fig. 6.22 Overloaded methods (part 2 of 2).

Overloaded procedures are distinguished by their signatures, which are acombination
of the procedure’'s name and parameter types. If the compiler looked only at procedure
names during compilation, the codein Fig. 6.22 would be ambiguous—the compiler would
not know how to differentiate between the two Square methods. The compiler usesalog-
ical process known as overload resolution to determine which procedure should be called.
This process first searches for all procedures that could be used on the basis of the number
and type of arguments that are present. Although it might seem that only one procedure
would match, it is important to remember that Visua Basic promotes variables with
implicit conversions when they are passed as arguments. Once all matching procedures are
found, the compiler then selects the closest match. This match is based on a“best-fit” algo-
rithm, which analyzes the implicit conversions that will take place.

Let us look at an example. In Fig. 6.22, the compiler might use the logical name
“Square Of Integer” for the Square method that specifies an Integer parameter
(line 19) and “square of Double” for the Square method that specifies a Double
parameter (line 23). If amethod ExampleSub’s definition begins as

Function ExampleSub (ByVal a As Integer, ByVal b As Double)
As Integer

the compiler might usethelogical name*“ ExampleSub of Integer and Double.” Sim-
ilarly, if the parameters are specified as

Function ExampleSub (ByVal a As Double, ByVal b As Integer)
As Integer

the compiler might use the logical name “ExampleSub of Double and Integer.” The
order of the parametersisimportant to the compiler; it considersthe preceding two Exam-
pleSub methodsto be distinct.

So far, the logical method names used by the compiler have not mentioned the
methods' return types. This is because procedure calls cannot be distinguished by return
type. The program in Fig. 6.23 illustrates the syntax error that is generated when two pro-
cedures have the same signature and different return types. Overloaded procedures with
different parameter lists can have different return types. Overloaded procedures need not
have the same number of parameters.

228 Procedures Chapter 6

Common Programming Error 6.11

@ The creation of overloaded procedures with identical parameter lists and different return
types produces a syntax error.

The output window displayed in Fig. 6.23 is the Task List of Visua Studio. By
default, the Task List displaysat the bottom of the IDE when acompiler error isgenerated.

6.17.2 Optional Arguments

Visual Basic alows programmersto create procedures that take one or more optional argu-
ments. When a parameter is declared as optional, the caller has the option of passing that
particular argument. Optional arguments are specified in the procedure header with key-
word Optional. For example, the procedure header

1

2

3

4

5 Public Class FrmOverload2

6 Inherits System.Windows.Forms.Form

he

8 Friend WithEvents outputLabel As Label

9

10

11

12 Private Sub FrmOverload2 Load(ByVal sender As System.Object, _
13 ByVal e As System.EventArgs) Handles MyBase.Load

14

15 outputLabel.Text = &
16 square(7) & & &
17 & square(7.5)

18 End Sub

19

20 Function Square(ByVal value As Double) As Integer

21 Return Convert.ToInt32(value " 2)

22 End Function

23

24 Function Square(ByVal value As Double) As Double

25 Return value *

26 End Function

27

28 End Class

Teek: 1 b - | Tuilld Foorar ka=d: shreen 10k= w13 M|

| I &.JJMI

e bt ey e g
B N AT T TN TE LAY SN URNY- W | LT JPFT T IT LN L TRT T T T LU R IR R, LUy L ANTE I TR I T e

Fig. 6.23 Syntax error generated from overloaded procedures with identical
parameter lists and different return types.

Chapter 6 Procedures 229

Sub ExampleProcedure (ByVal valuel As Boolean, Optional
ByVal value2 As Long = 0)

specifies the last parameter as Optional. Any cdl to ExampleProcedure must pass
at least one argument, or else asyntax error is generated. If the caller chooses, a second ar-
gument can be passed to ExampleProcedure. Thisis demonstrated by the following
callsto ExampleProcedure:

ExampleProcedure ()
ExampleProcedure (True)
ExampleProcedure (False,)

The first cal to ExampleProcedure generates a syntax error, because a minimum of
one argument is required. The second call to ExampleProcedure isvalid because one
argument is being passed. The Optional argument, value2, isnot specified in the pro-
cedure call. The last call to ExampleProcedure asoisvalid: False ispassed asthe
one required argument, and 10 is passed asthe Optional argument.

In the call that passes only one argument (True) to ExampleProcedure, value2
defaultsto 0, which isthe value specified in the procedure header. Optional arguments
must specify a default value, using the equals sign followed by the value. For example, the
header for ExampleProcedure sets 0 asthe default value for value2. Default values
can be used only with parameters declared asOptional.

—s- Common Programming Error 6.12
@ Not specifying a default value for an Optional parameter isa syntax error.

Common Programming Error 6.13

@ Declaring anon-optional parameter to theright of an Optional parameter isa syntax
error.

The example in Fig. 6.24 demonstrates the use of optional arguments. The program
calculatesthe result of raising abaseto an exponent, both of which are specified by the user.
If the user does not specify an exponent, the Optional argument is omitted, and the
default value, 2, is used.

Line 27 determines whether txtPower contains a value. If true, the values in the
TextBoxes are converted to Integers and passed to Power. Otherwise, txtBase’s
value is converted to an Integer and passed as the first of two arguments to Power in
line 31. The second argument, which hasavalue of 2, is provided by the Visual Basic com-
piler and is not visible to the programmer in the call.

Method Power (lines 38-49) specifies that its second argument isOptional. When
omitted, the second argument defaults to the value 2.

Public Class FrmPower
Inherits System.Windows.Forms.Form

OO WNE

Fig. 6.24 Optional argument demonstration with method Power (part 1 of 2).

230 Procedures

Chapter 6

7 Friend WithEvents txtBase As TextBox
8 Friend WithEvents txtPower As TextBox
9
10 Friend WithEvents inputGroup As GroupBox
11
12 Friend WithEvents lblBase As Label
13 Friend WithEvents lblPower As Label
14 Friend WithEvents lblOutput As Label
5
16 Friend WithEvents cmdCalculate As Button
17
18
19
20
21 Private Sub cmdCalculate Click(ByVal sender As System.Object,
22 ByVal e As System.EventArgs) Handles cmdCalculate.Click
23
24 Dim value As Integer
25
26
27 If Not txtPower.Text = Then
28 value = Power (Convert.ToInt32 (txtBase.Text),
29 Convert.ToInt32 (txtPower.Text))
30 Else
31 value = Power (Convert.ToInt32 (txtBase.Text))
32 End If
33
34 1blOutput.Text = Convert.ToString(value)
35 End Sub
36
37
38 Function Power (ByVal base As Integer, _
39 Optional ByVal exponent As Integer = 2) As Integer
40
41 Dim total As Integer =
42 Dim i As Integer
43
44 For i = To exponent
45 total *= base
46 Next
47
48 Return total
49 End Function
50
51 End Class
T -Iml= EIETEET -Ini=|
Gexw [Moovsr o Gaxe Muowosr 1

[.] =i | [W wal =i |

Fig. 6.24 Optional argument demonstration with method Power (part 2 of 2).

Chapter 6 Procedures 231

6.18 Modules

Programmers use modules to group related procedures so that they can be reused in other
projects. Modules are similar in many ways to classes; they alow programmers to build re-
usable components without a full knowledge of object-oriented programming. Using mod-
ulesin aproject requires knowledge of scoping rules, because some procedures and variables
in amodule are accessible from other parts of a project. In general, modules should be self-
contained, meaning that the procedures in the modul e should not require access to variables
and procedures outside the modul e, except when such values are passed as arguments.

Figure 6.25 presents modDice, which groups severa dice-related procedures into a
modulefor reusein other programsthat use dice. Function Ro11Die (lines 11-13) simulates
a single die roll and returns the result. Function Rol1AndSum (lines 17-28) uses a For
structure (lines22—24) to call Ro11Die thenumber of timesindicated by diceNumber and
totals the results. Function GetDieImage (lines 30-37) returns a die Image that corre-
sponds to parameter dieValue. Optional parameter baseImageName represents the
prefix of the image name to be used. If the argument is omitted, the default prefix "die™ is
used. [Note: New modules are added to a project by selecting Project > Add Module.]

FrmDiceModuleTest inFig. 6.26 demonstrates using themodDi ce proceduresto
respond to button clicks. Procedure cmdRol1Diel Click (lines23-27) rollsadie and
obtains the default image. We call procedures contained in modDice by following the
module name with the dot (.) operator and the procedure name. Using the functionality
provided by modDice, the body of this procedure requires only one statement (line 26).
Thus, we easily can create a similar Button, cmdRollDie2. In this case, procedure
cmdRollDie2 Click (lines29-34) usesthe Optional argument to prefix theimage
name and select adifferentimage. Procedure cmdRo11Ten Click (lines36—40) setsthe
Text property of 1b1lSum to the result of 10 rolls.

1

2

3

4 Imports System.IO

5

6 Module modDice

he

8 Dim randomObject As Random = New Random()
9

10

11 Function RollDie() As Integer

12 Return randomObject.Next (1, 7)
13 End Function

14

15

16 Function RollAndSum(ByVal diceNumber As Integer) _
17 As Integer

18

19 Dim i As Integer

20 Dim sum As Integer =

21

Fig. 6.25 Module used to define a group of related procedures (part 1 of 2).

232 Procedures

Chapter 6

22 For i = To diceNumber

23 sum += RollDie()

24 Next

25

26 Return sum

27 End Function

28

29

30 Function GetDieImage (ByVal dieValue As Integer,
31 Optional ByVal baseImageName As String

32 As System.Drawing.Image

33

34 Return Image.FromFile(_

35 Directory.GetCurrentDirectory &

36 & baseImageName & dieValue &
311 End Function

38

39 End Module

Fig. 6.25 Module used to define a group of related procedures (part 2 of 2).

For the program in Fig. 6.26, we add DiceModule.vb to the project to provide access
to the procedures defined in modDice. To include a module in a project, select
File > Add Existing Item.... In the dialog that is displayed, select the module file name
and click Open. By default, acopy thefileisadded to the project directory unless you specify
to open the module file as alinked file. Once a module has been added to a project, the pro-
cedures contained in the module have namespace scope. By default, procedures with
namespace scope are accessible to al other parts of a project, such as methods in classes and
procedures in other modules. Although it is not necessary, the programmer may placethefile
containing the modul€' s code in the same directory asthe other files for the project.

1

2

3

4 Imports System.Drawing

5

6 Public Class FrmDiceModuleTest

7 Inherits System.Windows.Forms.Form

8

9 Friend WithEvents 1lblSum As Label

10

11 Friend WithEvents diceGroup As GroupBox
12

13

14 Friend WithEvents picDiel As PictureBox
15 Friend WithEvents picDie2 As PictureBox
16

17 Friend WithEvents cmdRollDiel As Button
18 Friend WithEvents cmdRollTen As Button
19 Friend WithEvents cmdRollDie2 As Button

Fig. 6.26 Testing the modDice procedures (part 1 of 2).

Chapter 6 Procedures 233

Private Sub cmdRollDiel Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdRollDiel.Click

picDiel.Image = modDice.GetDieImage (modDice.RollDie())
End Sub

Private Sub cmdRollDie2 Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cmdRollDie2.Click

picDie2.Image = modDice.GetDieImage (modDice.RollDie(), _
)
End Sub

Private Sub cmdRollTen Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cmdRollTen.Click

1blSum.Text = Convert.ToString(modDice.RollAndSum(10))
End Sub

End Class

Fig. 6.26 Testing the modDice procedures (part 2 of 2).

SUMMARY

Experience has shown that the best way to develop and maintain alarge program isto construct it
from small, manageabl e pieces. This technique is known as divide and conquer.

Visual Basic programs consist of many pieces, including modules and classes.

Modules and classes are composed of smaller pieces called procedures. When procedures are con-
tained in aclass, we refer to them as methods.

Visual Basic provides many classes and methods in the .NET Framework Class Library (FCL).
Thisrich collection of features allows programmers to develop robust applications quickly.

Three types of procedures exist: Sub procedures, Function procedures and event procedures.

Procedures promote software reusability—the ability to use existing procedures as building blocks
for new programs.

Thefirst statement of a procedure definition is the procedure header.

234 Procedures Chapter 6

« Thedeclarations and statements in the procedure definition form the procedure body.

» The procedure header and procedure call must agree with regard to the number, type and order of
arguments.

¢ The characteristics of Function procedures are similar to those of Sub procedures. However,
Function procedures return avdue (i.e., send back avalue) to the caller.

¢ In a Function header, the return type indicates the data type of the result returned from the
Function toitscaler.

* Keyword Return, followed by an expression, returns avalue from a Function procedure.

¢ If aFunction procedure body doesnot specify aReturn statement, program control returnsto
the point at which aprocedure wasinvoked when the End Func t ion keywords are encountered.

« An event represents a user action, such asthe clicking of a button or the alteration of avalue.

¢ Callsto methods, such asMath.Max, that are defined in a separate class must include the class
name and the dot (.) operator (a so called the member access operator). However, calsto methods
defined in the class that contains the method call need only specify the method name.

¢ The Parameter Info feature of the IDE identifies accessible procedures and their arguments. Pa-
rameter Info greatly simplifies coding. The Parameter Info feature provides information not only
about programmer-defined procedures, but about all methods contained in the FCL.

¢ TheInteliSense feature displays all the membersin aclass.

« Widening conversion occurs when atype is converted to another type (usually one that can hold
more data) without losing data.

« Narrowing conversion occurs when thereis potentia for dataloss during aconversion (usually to
atypethat holds a smaller amount of data). Some narrowing conversions canfail, resulting in run-
time errors and logic errors.

» Visua Basic supports both widening and narrowing conversions.

e OptionExplicit,whichissettoOn by default, forcesthe programmer to declareall variables
explicitly before they are used in a program. Forcing explicit declarations eliminates spelling er-
rors and other subtle errors that may occur if Option Explicit isturned Off.

e Option Strict, whichis set to Off by default, increases program clarity and reduces debug-
ging time. When set to On, Option Strict requiresthe programmer to perform all narrowing
conversions explicitly.

* Themethodsin class Convert changesdatatypesexplicitly. The name of each conversion meth-
od is the word To, followed by the name of the data type to which the method convertsits argu-
ment.

« All data types can be categorized as either value types or reference types. A variable of avalue
type contains data of that type. A variable of a reference type contains the location in memory
where the datais stored.

« Both value and reference types include built-in types and types that programmers can create.

» Values typed directly in program code are called literals. Each literal corresponds to one of the
primitive datatypes. Some of Visual Basic's data types use special notations, such as type charac-
ters, for creating literals.

« Arguments are passed in one of two ways. Pass-by-val ue and pass-by-reference (also called call-
by-value and call-by-reference).

* When an argument is passed by val ue, the program makesacopy of theargument’ svalueand pass-
esthat copy to the called procedure. Changesto the called procedure’ s copy do not affect the orig-
ind variable’svalue.

Chapter 6 Procedures 235

* When an argument is passed by reference, the caller gives the procedure the ability to access and
modify the caller’s original data directly. Pass-by-reference can improve performance, because it
eliminatesthe need to copy large dataitems, such aslarge objects; however, pass-by-reference can
weaken security, because the called procedure can modify the caller’s data.

» By default, the code editor includes keyword ByVal in parameter declarationsto indicate that the
parameter is passed by value. In the case of value-type variables, this means that the value stored
inthevariableis copied and passed to the procedure, preventing the procedure from accessing the
original valuein the variable.

* Vaue-type arguments enclosed in parentheses, (), are passed by value even if the procedure
header declares the parameter with keyword ByRe£.

e Anidentifier'sduration (also called its lifetime) is the period during which the identifier existsin
memory.

« ldentifiers that represent local variablesin a procedure (i.e., parameters and variables declared in
the procedure body) have automatic duration. Automatic-duration variables are created when pro-
gram control enters the procedure in which they are declared, exist while the procedure is active
and are destroyed when the procedure is exited.

« Variables declared with keyword Static inside a procedure definition have static duration,
meaning they have the same duration asthe Class or Module that contains the procedure.

« The scope (sometimes called declaration space) of avariable, reference or procedure identifier is
the portion of the program in which the identifier can be accessed. The possible scopesfor an iden-
tifier are class scope, module scope, namespace scope and block scope.

¢ InVisual Basic .NET, identifiers declared inside a block, such as the body of a procedure defini-
tion or the body of an I £ selection structure, have block scope. Block scope begins at the identi-
fier's declaration and ends at the block’ s End statement.

¢ Procedures in a module have namespace scope, which means that they may be accessed through-
out a project.

« Itispossibleto create variables with namespace scope by replacing keyword Dim with keyword
Public inthe declaration of avariablein amodule.

e Constant identifiers and Enumerations enhance program readability by providing descriptive
identifiers for numbers or Stringsthat have special meaning.

« A recursive procedureisaprocedure that callsitself, either indirectly (i.e., through another proce-
dure) or directly.

* Any problem that can be solved recursively also can be solved iteratively (nonrecursively).

* The element of chance can be introduced into computer applications through class Random (lo-
cated in namespace System). Method Next returns a random number.

« Overloading alows the programmer to define several procedures with the same name, as long as
these procedures have different sets of parameters (number of parameters, types of the parameters
and order of the parameters). Thisallowsthe programmer to reduce the complexity of the program
and create a more flexible application.

« Overloaded procedures are distinguished by their signatures, which are a combination of the pro-
cedure’s name and parameter types. The compiler usesalogical process known as overload reso-
Iution to determine which procedure should be called.

» Procedure calls cannot be distinguished by return type. A syntax error is generated when two pro-
cedures have the same signature and different return types. However, overloaded procedures with
different signatures can have different return types.

236 Procedures Chapter 6

« Programmers use modules to group related procedures so that they can be reused in other projects.
Modules are similar in many ways to classes; they alow programmers to build reusable compo-
nents without a full knowledge of object-oriented programming.

* Once a module has been added to a project, the procedures contained in the module have
namespace scope. By default, procedures with namespace scope are accessible to all other parts of
aproject, such as methods in classes and procedures in other modules.

< Visua Basic allows programmers to create procedures that take one or more optional arguments.
When aparameter is declared as optional, the caller has the option of passing that particular argu-
ment. Optional arguments are specified in the procedure header with keyword Optional.

TERMINOLOGY

. (dot operator)

argument to a procedure call
automatic duration

automatic initialization of avariable
base case

block scope

Button class

ByRef keyword

ByVal keyword
call-by-reference

call-by-value

calling procedure

class

class scope

Click event

coercion of arguments
commar-separated list of arguments
complexity theory

Const keyword

constant identifier

control structuresin iteration
control structuresin recursion
convergence

declaration

default argument
divide-and-conquer approach
duration of an identifier

Enum keyword

enumeration

event handling

exhausting memory

exponential “explosion” of calls
Factorial method

Fibonacci series, defined recursively
Function procedure

golden ratio

hierarchical structure

infinite loop

infinite recursion
inheritance

instance variables of a class
interface

invoke

iteration

lifetime of an identifier
local variable

Math class method

method

method body

method call

method overloading
mixed-type expression
Module

modularizing a program with procedures
named constant

narrowing conversion
nested block

nested control structure
Next method

optional argument
Optional keyword
overloaded procedure
parameter list

parentheses
pass-by-reference
pass-by-value

precedence

principle of least privilege
procedure

procedure body

procedure call

procedure overloading
programmer-defined procedure
promotions for primitive data types
Public keyword

Random class

Chapter 6 Procedures 237

recursive evaluation signature

recursive method simulation
reference type software reusability
Return keyword Static duration
return-value type Sub procedure
scaling factor termination test
scientific notation type character
scope of an identifier user-interface event
sequence of random numbers valuetype

shifting value widening conversion
side effect

SELF-REVIEW EXERCISES

6.1 Fill in the blanksin each of the following statements:

a)
b)
0)
d)

e

f)
9)
h)
i)
)
K)
1)
m)
n)
0)

P)
a)

n

S)
B

u)

Proceduresin Visual Basic can be defined in and

A procedure isinvoked with a

A variableknown only withinthe procedurelnwhlch itisdefinediscalled a .

The statement in acalled Function procedure can be used to passthe val -

ue of an expression back to the calling procedure.

A procedure defined with keyword does not return avalue.

The of anidentifier isthe portion of the program in which the identifier can

be used.

The three waysto return control from acalled sub procedureto acaller are ,
and .

The method in class Random produces random numbers.

Variables declared in a block or in a procedure’ s parameter list are of dura-

tion.

A procedure that callsitself either directly or indirectly isa procedure.

A recursive procedure typically has two components: One that provides a means for the

recursion to terminate by testing for a case, and one that expresses the prob-

lem asarecursive call for a problem slightly smpler than the original call.

InVisual Basic, it ispossible to have various procedures with the same name that operate

on different types or numbers of arguments. Thisis called procedure .

Local variables declared at the beginning of a procedure have Scope, as do

procedure parameters, which are considered local variables of the procedure.

Iteration uses a structure.

Recursion uses a structure.

Recursion achieves repetition through repeated cals.

It is possible to define procedures with the same , but different parameter
lists.

Recursion terminates when the isreached.

The isacomma-separated list containing the declarations of the parameters
received by the called procedure.

The is the data type of the result returned from a called Function proce-
dure.

An isasignal that is sent when some action takes place, such asabutton be-
ing clicked.

6.2 State whether each of the following istrue or false. If false, explain why.

a)

Math method Abs rounds its parameter to the smallest integer.

238 Procedures Chapter 6

b) Math method Exp isthe exponential method that calculates €°.

¢) A recursive procedureisone that cdlsitself.

d) Conversion from type Single to type Double requires awidening conversion.

€) Variabletype Char cannot be converted to type Integer.

f) When aprocedure recursively callsitself, it is known as the base case.

g) Forgetting to return a value from a recursive procedure when one is needed resultsin a
logic error.

h) Infinite recursion occurs when a procedure converges on the base case.

i) Visual Basic supportsOptional arguments.

j) Any problem that can be solved recursively also can be solved iteratively.

6.3 For the programin Fig. 6.27, state the scope (either class scope or block scope) of each of the
following elements:

a) Thevariablei.

b) Thevariablebase.

¢) Themethod Cube.

d) Themethod FrmCubeTest Load.

€) Thevariable output.

6.4 Write an application that tests whether the examples of the Math class method calls shown
in Fig. 6.7 actually produce the indicated results.

6.5 Give the procedure header for each of the following:

a) Procedure Hypotenuse, which takes two double-precision, floating-point arguments,
sidel and side2, and returns a double-precision, floating-point result.

b) Procedure smallest, which takesthreeintegers, x, y and z, and returns an integer.

¢) Procedure Instructions, which does not take any arguments and does not return a
value.

d) Procedure IntegerToSingle, Which takes an integer argument, number, and re-
turns a floating-point result.

6.6 Find the error in each of the following program segments and explain how the error can be
corrected:

1

2

3

4 PpPublic Class FrmCubeTest

5 Inherits System.Windows.Forms.Form

6

7 Friend WithEvents lblOutput As Label

8

9

10

11 Dim i As Integer

12

13 Private Sub FrmCubeTest Load(ByVal sender As System.Object,
14 ByVal e As System.EventArgs) Handles MyBase.Load
15

16 Dim output As String =

17

Fig. 6.27 Printing the results of cubing 10 numbers (part 1 of 2).

Chapter 6 Procedures 239
18 For i = To
19 output &= Cube(i) &
20 Next
21
22 1blOutput.Text = output
23 End Sub
24
25 Function Cube(ByVal base As Integer) As Integer
26 Return Convert.ToInt32 (base * 3)
27 End Function
28

29 End Class

Fig. 6.27 Printing the results of cubing 10 numbers (part 2 of 2).

a) Sub Generall()
Console.WriteLine ()

Sub General2()
Console.WriteLine ()
End Sub

End Sub
b) Function Sum(ByVal x As Integer, ByVal y As Integer)
As Integer

Dim result As Integer

result = x + y
End Function
C) Sub Printerl(ByVal value As Single)
Dim value As Single
Console.WriteLine (value)
End Sub
d) Sub Product ()
Dim a As Integer =
Dim b As Integer =
Dim result As Integer = a * b
Console.WriteLine (& result)

Return result
End Sub
€) Function Sum(ByVal value As Integer) As Integer

If value = Then

Return
Else

value += Sum(value - 1)
End If

End Function

240 Procedures Chapter 6

ANSWERS TO SELF-REVIEW EXERCISES

6.1 a) classes, modules. b) procedure call. ¢) loca variable. d) Return. €) Sub. f) scope.
g) Return, Exit Sub, encountering the End Sub statement. h) Next. i) automatic. j) recursive.
k) base. I) overloading. m) block. n) repetition. 0) selection. p) procedure. g) name. r) base case. s)
parameter list. t) return-value type. u) event.

6.2 a) False. Math method Abs returns the absol ute value of anumber. b) True. ¢) True. d) True.
€) False. Type Char can be converted to type Integer with a narrowing conversion. f) False. A
procedure’ srecursively calling itself isknown astherecursive call or recursion step. g) True. h) False.
Infinite recursion occurs when a recursive procedure does not converge on the base case. i) True.
j) True.

6.3 a) Class scope. b) Block scope. ¢) Class scope. d) Class scope. €) Block scope.

6.4 The following code demonstrates the use of someMath library method calls:

1

2

3

4 Module modMathTest

5

6 Sub Main ()

7 Console.WriteLine (&

8 Convert.ToString(Math.Abs ()))

9 Console.WriteLine (&

10 Convert.ToString(Math.Abs (0)))

11 Console.WriteLine (&

12 Convert.ToString(Math.Abs ()))

13 Console.WriteLine (&
14 Convert.ToString(Math.Ceiling ()))

15 Console.WriteLine (& _
16 Convert.ToString(Math.Ceiling ()))

17 Console.WriteLine (&

18 Convert.ToString(Math.Cos (0)))

19 Console.WriteLine (& _

20 Convert.ToString(Math.Exp(1)))

21 Console.WriteLine (&

22 Convert.ToString(Math.Exp(2)))

23 Console.WriteLine (&

24 Convert.ToString (Math.Floor ()))

25 Console.WriteLine (&

26 Convert.ToString (Math.Floor ()))

27 Console.WriteLine (& _
28 Convert.ToString (Math.Log ()))

29 Console.WriteLine (& _
30 Convert.ToString(Math.Log ()))

31 Console.WriteLine (&
32 Convert.ToString (Math.Max (,)))

33 Console.WriteLine (&
34 Convert.ToString (Math.Max (;)))

35 Console.WriteLine (&
36 Convert.ToString (Math.Min (7)))

37 Console.WriteLine (& _
38 Convert.ToString (Math.Min (5)))

Chapter 6

Procedures

241

Console.WriteLine (

Convert.ToString (Math.

Console.WriteLine (
Convert.ToString (Math
Console.WriteLine (

Convert.ToString (Math.

Console.WriteLine (

Convert.ToString (Math.

Console.WriteLine (

Convert.ToString(Math.

Console.WriteLine (

Convert.ToString(Math.

End Sub

54 End Module

Math.
Math.
.Abs (-23.7) =
.Ceiling(9.2) = 10
Math.
Math.
Math.
Math.
Math.
Math.
Math.
.Log(7.389056)

Math
Math

Math
Math

Math.
Math.
Math.
Math.
Math.
Math.
Math.

Math
Math

6.5

6.6

.8grt(2.0)
. Tan(0.0) = 0

Abs (23.7) = 23.7
Abs(0.0) =0
23.7

Ceiling(-9.8) = -9

Cos(0.0) =1

Exp(1.0) 2.71828182845905
Exp(2.0) = 7.38905609893065
Floor(9.2) = 9

Floor(-9.8) = -10
Log(2.718282) =

.Max (2.3, 12.7) = 12.7
Max(-2.3, -12.7) = -2.3
Min(2.3, 12.7) = 2.3
Min(-2.3, -12.7) = -12.7
Pow(2, 7) = 128

Pow(9, .5) = 3

Sin(0.0) = 0

Sqrt(9.0) = 3
= 1.4142135623731

Pow (2,

.Pow (9,

Sin(0)))
Sqrt(29)))
sgrt(2)))

Tan (0)))

1.00000006310639
= 1.99999998661119

)))

@) Function Hypotenuse (ByVal sidel As Double,

ByVal side2 As Double) As Double

b) Function Smallest (ByVal x As Integer,

ByVal y As Integer,
C) Sub Instructions|()

ByVal z As Integer) As Integer

d) Function IntegerToSingle (ByVal number As Integer) As Single

a) Error: Procedure General2 isdefined in procedure Generall.

Correction: Move the definition of General2 out of the definition of Generall.

b) Error: The procedureis supposed to return an Integer, but does not.
Correction: Delete the statement result = x + y and place the following statement in

the method:

242 Procedures Chapter 6

Return x + y
or add the following statement at the end of the method body:
Return result
c) Error: Parameter value isredefined in the procedure definition.
Correction: Delete the declaration Dim value As Single.
d) Error: The procedure returns avalue, but is defined as a Sub procedure.
Correction: Change the procedure to a Function procedure with return type Inte-
ger.
€) Error: Theresult of value += Sum (value - 1) isnot returned by thisrecursive meth-
od, resulting in alogic error.
Correction: Rewrite the statement in the E1 se clause as
Return value + sum(value - 1)

EXERCISES

6.7 What is the value of x after each of the following statements is performed?
d x = Math.Abs()

b) x = Math.Floor ()

C) x = Math.Abs()

d x = Math.Ceiling()

€) x = Math.Abs()

f) x = Math.Ceiling()

0) x = Math.Ceiling(-Math.Abs(+ Math.Floor ()))

6.8 A parking garage charges a $2.00 minimum fee to park for up to three hours. The garage
charges an additional $0.50 per hour for each hour or part thereof in excess of three hours. The max-
imum charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24
hours at atime. Write a program that calculates and displays the parking charges for each customer
who parked acar in this garage yesterday. Y ou should enter in a TextBox the hours parked for each
customer. The program should display the charge for the current customer. The program should use
the method CalculateCharges to determine the charge for each customer. Use the techniques
described in the chapter to read the Double value from aTextBox.

6.9 Write amethod IntegerPower (base, exponent) that returnsthe value of
baseexponent

For example, IntegerPower (3, 4) =3 * 3 * 3 * 3, Assumethat exponent isapositive integer
and that base isaninteger. Method IntegerPower should use aFor/Next loop or While loopto
control the calculation. Do not use any Math library methods or the exponentiation operator, *. Incor-
porate this method into a Windows application that reads integer values from TextBoxes for base
and exponent from the user and performs the calculation by calling method IntegerPower.

6.10 Defineamethod Hypotenuse that calculates the length of the hypotenuse of aright trian-
glewhen the other two sides are given. The method should take two arguments of type Double and
return the hypotenuse as a Doub1le. Incorporate this method into a Windows application that reads
integer values for sidel and side2 from TextBoxes and performs the calculation with the Hy -
potenuse method. Determine the length of the hypotenuse for each of the following triangles:

Chapter 6 Procedures 243

Triangle Side 1 Side 2
1 3.0 4.0

12.0
3 8.0 15.0

6.11 Writeamethod SquareOfAsterisks that displaysasolid square of asteriskswhose side
is specified in integer parameter side. For example, if side is 4, the method displays

* k%%

* k%%

*k k%

* %k % %k

Incorporate this method into a Windows application that reads an integer value for side from the
user and performs the drawing with the SquareOfAsterisks method. This method should
gather data from Textboxes and should print to a Label.

6.12 Modify the method created in Exercise 6.11 to form the square out of whatever character is
contained in parameter £illCharacter. Thus, if side is5 and fillCharacter is“#”, this
method should print

HH#H##

#iHH#

4

H#H##

HH#H##

6.13 Write aWindows application that simulates coin tossing. L et the program toss the coin each
timethe user pressesthe Toss button. Count the number of times each side of the coin appears. Dis-
play the results. The program should call aseparate method F1 ip, which takes no arguments and re-
turns False for tails and True for heads. [Note: If the program simulates the coin
tossing redlistically, each side of the coin should appear approximately half the time.]

6.14 Computers are playing an increasing role in education. Write a program that will help an d-
ementary school student learn multiplication. Use the Next method from an object of type Random
to produce two positive one-digit integers. It should display a question, such as

How much is 6 times 77?

The student should then type the answer into a TextBox. Your program should check the student’s
answer. If it is correct, display "Very good! " in aLabel, then ask another multiplication ques-
tion. If the answer isincorrect, display "No. Please try again." inthe same Label, then let
the student try the same question again until the student finally gets it right. A separate method
should be used to generate each new question. This method should be called once when the program
begins execution and then each time the user answers a question correctly.

6.15 (Towersof Hanoi) Every budding computer scientist must grapple with certain classic prob-
lems; the Towers of Hanoi (Fig. 6.28) is one of the most famous. Legend has it that, in atemple in
the Far East, priests are attempting to move astack of disksfrom one peg to ancther. Theinitial stack
had 64 disks threaded onto one peg and arranged from bottom to top by decreasing size. The priests
are attempting to move the stack from this peg to a second peg, under the constraints that exactly one
disk ismoved at atime and that at no time may alarger disk be placed above a smaller disk. A third
peg is available for temporarily holding disks. Supposedly, the world will end when the priests com-
plete their task, so there islittle incentive for usto facilitate their efforts.

244 Procedures Chapter 6

Fig. 6.28 Towers of Hanoi for the case with four disks.

Let us assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an agorithm that prints the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional techniques, we would find ourselves
hopelesdy knotted up in managing the disks. However, if we approach the problem with recursionin
mind, it becomes tractable. Moving n disks can be viewed in terms of moving only n— 1 disks (and
hence, the recursion) as follows:

a) Moven—1disksfrom peg 1 to peg 2, using peg 3 as atemporary holding area.
b) Movethelast disk (the largest) from peg 1 to peg 3.
¢) Movethen—1 disksfrom peg 2 to peg 3, using peg 1 as atemporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This is
accomplished by moving the disk without the need for atemporary holding area.

Write a program to solve the Towers of Hanoi problem. Allow the user to enter the number of
disksin aTextBox. Use arecursive Tower method with four parameters:
a) The number of disksto be moved
b) The peg on which these disks are threaded initially
¢) The peg to which this stack of disksisto be moved
d) The peg to be used as atemporary holding area

Your program should display in a TextBox with scrolling functionality the precise instruc-
tions for moving the disks from the starting peg to the destination peg. For example, to move a stack
of three disks from peg 1 to peg 3, your program should print the following series of moves:

1 — 3 (This means move one disk from peg 1 to peg 3.)

152

352

1-3

251

253

153

Arrays

Objectives

 To introduce the array data structure.

 To understand how arrays store, sort and search lists
and tables of values.

 To understand how to declare an array, initiaize an
array and refer to individual elements of an array.

* To be able to pass arrays to methods.

 To understand basic sorting techniques.

* To be able to declare and manipulate
multi-dimensional arrays.

With sobs and tears he sorted out

Those of the largest size ...

Lewis Carroll

Attempt the end, and never stand to doubt;

Nothing's so hard, but search will find it out.

Robert Herrick

Now go, write it before themin a table,

and noteit in a book.

Isaiah 30:8

‘Tisin my memory lock’d,

And you yourself shall keep the key of it.

William Shakespeare

246 Arrays Chapter 7

Outline

7.1 Introduction
7.2 Arrays
7.3 Declaring and Allocating Arrays
7.4 Examples Using Arrays
7.4.1 Allocating an Array
7.4.2 Initializing the Values in an Array
7.4.3 Summing the Elements of an Array
7.4.4 Using Arrays to Analyze Survey Results
7.4.5 Using Histograms to Display Array Data Graphically
7.5 Passing Arrays to Procedures
7.6 Passing Arrays: ByVal vs. ByRef
7.7 Sorting Arrays
7.8 Searching Arrays: Linear Search and Binary Search
7.8.1 Searching an Array with Linear Search
7.8.2 Searching a Sorted Array with Binary Search
7.9 Multidimensional Rectangular and Jagged Arrays
7.10 Variable-Length Parameter Lists
7.11 For Each/Next Repetition Structure

Summary ¢ Terminology Self-Review Exercises « Answers to Self-Review Exercises » Exercises
Soecial Section: Recursion Exercises

7.1 Introduction

This chapter introduces basic concepts and features of datastructures. Arraysare data struc-
tures consisting of data items of the same type. Arraysare “static” entities, in that they re-
main the same size once they are created, although an array reference may be reassigned to
anew array of adifferent size. We begin by discussing constructing and accessing arrays,
we build on this knowledge to conduct more complex manipulations of arrays, including
powerful searching and sorting techniques. We then demonstrate the creation of more so-
phisticated arrays that have multiple dimensions. Chapter 24, Data Structures and Collec-
tions, introduces dynamic data structures, such aslists, queues, stacks and trees, which can
grow and shrink as programs execute. This later chapter also presents Visua Basic's pre-
defined data structures that enable the programmer to use existing data structures for lists,
queues, stacks and trees, rather than “reinventing the wheel.”

7.2 Arrays

An array isagroup of contiguous memory locationsthat have the same name and the same
type. Array names follow the same conventions that apply to other variable names, as was
discussed in Chapter 3, Introduction to Visual Basic Programming. To refer to a particular

Chapter 7 Arrays 247

location or element in an array, we specify the name of the array and the position number
of the element to which we refer. Position numbers are values that indicate specific loca
tions within arrays.

Figure 7.1 depictsan integer array named numberArray. Thisarray contains 12 ele-
ments, any one of which can be referred to by giving the name of the array followed by the
position number of the element in parentheses () . The first element in every array is the
zeroth element. Thus, thefirst element of array numberArray isreferred to asnumber -
Array (0), the second element of array numberArray is referred to as number-
Array (1), the seventh element of array numberArray is referred to as
numberArray (6) and so on. Theith element of array numberArray isreferred to as
numberArray (i - 1).

The position number in parentheses more formally is called an index (or a subscript).
Anindex must be an integer or an integer expression. If aprogram uses an expression as an
index, the expression is evaluated first to determine the index. For example, if variable
valuel isequal to 5, and variable value2 isequal to 6, then the statement

numberArray (valuel + value2) +=

adds 2 to array element numberArray (11) . Note that an indexed array name (i.e., the
array name followed by an index enclosed in parentheses) is an lvalue—it can be used on
the left side of an assignment statement to place a new value into an array element.

Name of array (note

that all elements of this » numberArray (0) -45
array have the same

name, numberArray) numberArray (1) 6

numberArray (2) 0

numberArray (3) 72

numberArray (4) 1543

numberArray (5) -89

numberArray (6) 0

numberArray (7) 62

numberArray (8) -3

numberArray (9) 1
Position number (index or

subscript) of the element numberArray (10) 6453
within array numberArray

numberArray (11) 78

A

Fig. 7.1 Array consisting of 12 elements.

248 Arrays Chapter 7

Let us examine array numberArray in Fig. 7.1 more closely. The name of the array
isnumberArray. The 12 elements of the array are referred to as numberArray (0)
through numberArray (11). The value of numberArray (0) is -45, the value of
numberArray (1) is 6, the value of numberArray (2) is 0, the vaue of number-
Array (7) is62 andthevalueof numberArray (11) is78.Vauesstoredinarrayscan
be employed in various calculations and applications. For example, to determine the sum
of the values contained in the first three elements of array numberArray and then store
theresult in variable sum, we would write

sum = numberArray(0) + numberArray(l) + numberArray(2)

To divide the value of the seventh element of array numberArray by 2 and assign the
result to the variable result, we would write

result = numberArray(c) \

Common Programming Error 7.1

@ It isimportant to note the difference between the “ seventh element of the array” and “ array

element seven.” Array indices begin at O, which means that the “ seventh element of the ar-
ray’ has the index 6, whereas “ array element seven” has the index 7 and is actually the
eighth element of the array. This confusion is a common source of “ off-by-one” errors.

Every array in Visual Basic “knows’ its own length. The length of the array (i.e., 12
in this case) is determined by the following expression:

numberArray.Length

All arrays have access to the methods and properties of class System.Array, including
the Length property. For instance, method Ge tUpperBound returns the index of the
last element in the array. Method GetUpperBound takes one argument indicating a di-
mension of the array. We discuss arrays with multiple dimensionsin Section 7.9. For one-
dimensional arrays, such as numberArray, the argument passed to GetUpperBound
is 0. For example, expression

numberArray.GetUpperBound (0)

returns 11. Notice that the value returned by method GetUpperBound is one less than
thevalueof thearray’ sLength property. Classes, objectsand class methods are discussed
in detail in Chapter 8, Object-Based Programming.

7.3 Declaring and Allocating Arrays

Arrays occupy spacein memory. The amount of memory required by an array depends on
the length of the array and the size of the data type of the elementsin the array. The decla
ration of an array creates avariable that can store areferenceto an array but does not create
the array in memory. To declare an array, the programmer provides the array’s name and
datatype. The following statement declares the array in Fig. 7.1:

Dim numberArray As Integer ()

Chapter 7 Arrays 249

The parentheses that follow the data type indicate that numberArray is an array.
Arrays can be declared to contain any data type. In an array of primitive data types, every
element of the array contains one value of the declared data type. For example, every ele-
ment of an Integer array contains an Integer vaue.

Before the array can be used, the programmer must specify the size of the array and
dlocate memory for the array, using keyword New. Recall from Chapter 6 that keyword
New creates an object. Arrays are represented as objects in Visual Basic, so they too, must
be alocated using keyword New. The value stored in the array variable is actualy arefer-
ence to the location in the computer’ s memory where the array object is created. All non-
primitive-type variables are reference variables (normally called references). To alocate
memory for the array numberArray after it has been declared, the statement

numberArray = New Integer (11) {}

isused. In our example, the number 11 definesthe upper bound for the array. Array bounds
determine what indices can be used to access an element in the array. Here, the array
bounds are 0 (which isimplicit in the preceding statement) and 11, meaning that an index
outside these bounds cannot be used to access elementsin the array. Notice that the actual
size of the array is one larger than the upper bound specified in the alocation.

Therequired braces ({ and }) arecalled aninitializer list and specify theinitial values
of the elementsin the array. When the initializer list is empty, the elementsin the array are
initialized to the default value for the data type of the elements of the array. The default
valueis 0 for numeric primitive data-type variables, False for Boolean variables and
Nothing for references. Keyword Nothing denotes an empty reference (i.e., a value
indicating that a reference variable has not been assigned an address in the computer’s
memory). The initializer list al'so can contain a comma-separated list specifying the initial
values of the elementsin the array. For instance,

Dim numbers As Integer()
numbers = New Integer() {1, 2, 3, 6}

declares and dlocates an array containing four Integer values. Visua Basic can deter-
minethe array bounds from the number of elementsin theinitializer list. Thus, it is not nec-
essary to specify the size of the array when a non-empty initializer list is present.

The allocation of an array can be combined into the declaration, asin the statement

Dim numberArray As Integer() = New Integer(11) {}

Separating the declaration and all ocation statementsis useful, however, when the size of an
array depends on user input or on values calculated at runtime.

Programmers can declare arrays via several aternative methods, which we discuss
throughout this chapter. For example, severa arrays can be declared with a single state-
ment; the following statement declares two array variables of type Double () :

Dim arrayl, array2 As Double()

7.4 Examples Using Arrays

This section presents several examplesthat demonstrate the declaration, allocation and ini-
tidization of arrays, aswell as various manipulations of array elements. For simplicity, the

250 Arrays Chapter 7

examplesin this section use arraysthat contain elements of type Integer. Please remem-
ber that a program can declare an array to have elements of any data type.

7.4.1 Allocating an Array

The program of Fig. 7.2 uses keyword New to allocate an array of 10 Integer elements,
which areinitially zero (the default value in an array of type Integer). The program dis-
playsthe array elementsin tabular format in a dialog.

1

2

3

4 TImports System.Windows.Forms

5

6 Module modCreateArray

he

8 Sub Main ()

9 Dim output As String

10 Dim i As Integer

11

12 Dim array As Integer ()

13 array = New Integer(9) {}

14

15 output &= & & &
16

17

18 For i = 0 To array.GetUpperBound(0)

19 output &= i & & array(i) &

20 Next

21

22 output &= & & _
23 array.Length &

24

25 MessageBox.Show (output, o _
26 MessageBoxButtons.OX, MessageBoxIcon.)
27 End Sub

28

29 End Module

T=m & == -pnka-c 1 = e e

—

Fig. 7.2 Creating an array.

Chapter 7 Arrays 251

Line 12 declares array—a variable capable of storing a reference to an array of
Integer elements. Line 13 allocates an array of 10 elements using New and assigns it to
array. The program buildsitsoutput in String output. Line 15 appendsto output
the headings for the columns displayed by the program. The columns represent the index
for each array element and the value of each array element, respectively.

Lines 18-20 use a For structure to append the index number (represented by i) and
value of each array element (array (i)) to output. Note the use of zero-based counting
(remember, indices start at 0), so that the loop accesses every array element. Also notice,
in the header of the For structure, the expression array .GetUpperBound (0), used
to retrieve the upper bound of the array. The Length property (lines 22-23) returns the
number of elementsin the array.

7.4.2 Initializing the Values in an Array

The program of Fig. 7.3 creates two integer arrays of 10 elements each and sets the values
of the elements, using aninitializer list and aFor structure. The arraysare displayed in tab-
ular format in a message dialog.

Line 12 uses one statement to declare arrayl and array2 as variables that are
capable of referring to arrays of integers. Lines 16-17 allocate the 10 elementsof arrayl
with New and initialize the values in the array, using an initializer list. Line 20 allocates
array2, whose size is determined by the expression arrayl.GetUpperBound (0),
meaning arrayl and array2, in this particular program, have the same upper bound.

1

2

3

4 Imports System.Windows.Forms

5

6 Module modInitArray

he

8 Sub Main ()

9 Dim output As String

10 Dim i As Integer

11

12 Dim arrayl, array2 As Integer()

13

14

15

16 arrayl = New Integer() {32, 5 5 7 '
17 7 7 7 7

18

19

20 array2 = New Integer (arrayl.GetUpperBound(0)) {}
21

22

23 For i = To array2.GetUpperBound (0)
24 array2 (i) = + L

25 Next

26

Fig. 7.3 Initializing array elements two different ways (part 1 of 2).

252 Arrays Chapter 7
27 output &= & & & & _
28 &
29
30
31 For i = To arrayl.GetUpperBound (0)
32 output &= i & & arrayl(i) & & array2(i) & _
33
34 Next
35
36 MessageBox.Show (output, .
37 MessageBoxButtons.OKX, MessageBoxIcon.)
38 End Sub
39
40 End Module

2 rg ul nliogur T =
) are o sl 0wk
J-‘J N ar >

. -
= = -]
a (L] 0
- bl In
H - -
L] " 1
B U I
L1 (1l In
a D A

Fig. 7.3

Initializing array elements two different ways (part 2 of 2).

The For structurein lines 23-25 initializeseach element in array2. The elementsin

array2 areinitidized (line 24) to the even integers 2, 4, 6, ..., 20. These numbers are
generated by multiplying each successive value of the loop counter by 2 and adding 2 to
the product. The For structurein lines 31-34 usesthevaluesinthearraysto build String
output, whichisdisplayed in aMessageBox (lines 36-37).

7.4.3 Summing the Elements of an Array

Often, the elements of an array represent a series of valuesthat are employed in acalculation.
For example, if the elements of an array represent a group of students' exam grades, the in-
structor might wish to total the elements of the array, then calculate the class average for the
exam. The program in Fig. 7.4 sums the values contained in a 10-element integer array.

~NoO o, WNE

Imports System.Windows.Forms

Module modSumArray

Fig. 7.4

Computing the sum of the elements in an array (part 1 of 2).

Chapter 7 Arrays 253

8 Sub Main()

9 Dim array As Integer() = New Integer() _

10 {l i ’ ’ 7 7 Il Il i }

12 Dim total As Integer = 0, i As Integer =

15 For i = To array.GetUpperBound (0)

16 total += array (i)

17 Next

19 MessageBox. Show (& total, _

20 , MessageBoxButtons.OX,
21 MessageBoxIcon.)

22 End Sub

24 End Module

' the derient= ol anAner B2

':.__‘l-‘) Ioksd o™ sy my @ ayeEnis Lo

L= 1

Fig. 7.4 Computing the sum of the elements in an array (part 2 of 2).

Lines9-10 declare, alocate and initialize the 10-element array array. Line 16, inthe
body of the For structure, performs the addition. Alternatively, the values supplied asini-
tidizers for array could have been read into the program. For example, the user could
enter the values through a TextBox, or the values could be read from afile on disk. Addi-
tional information about reading vaues into a program can be found in Chapter 17, Files
and Streams.

7.4.4 Using Arrays to Analyze Survey Results

Our next example uses arrays to summarize data collected in asurvey. Consider thefollow-
ing problem statement:

Forty students were asked to rate on a scale of 1 to 10 the quality of the food in the student
cafeteria, with 1 being “ awful” and 10 being “ excellent” . Place the 40 responsesin an inte-
ger array and determine the frequency of each rating.

This exercise represents a typical array-processing application (Fig. 7.5). We wish to
summarize the number of responses of each type (i.e., 1-10). Array responses (lines
14-16) isa40-element integer array containing the students’ responsesto the survey. Using
an 1l-element array frequency, we can count the number of occurrences of each
response. We ignore the first element, frequency (0), becauseit is more logical to have
a survey response of 1 result in frequency(1) being incremented rather than incre-
menting £requency(0) . We can use each response directly as an index on the fre-
quency array. Each element of the array is used as a counter for one of the possible types

254 Arrays Chapter 7

of survey responses—frequency (1) countsthe number of students who rated the food
as 1, frequency (7) countsthe number of studentswho rated the food 7 and so on.

1

2

3

4 TImports System.Windows.Forms

5

6 Module modStudentPoll

7

8 Sub Main ()

9 Dim answer, rating As Integer

10 Dim output As String

11

12

13 Dim responses As Integer()

14 responses = New Integer() {1, 2, 6, 4, 8, 5, 9, 7, _
15 4 14 I 4 I 7 14 I 7 14 4 I I I 7 r
16 4 I I I 1 14 14 4 I 7 I 7 14 14 4 }
17

18

19 Dim frequency As Integer() = New Integer (10) {}

20

21

22 For answer = To responses.GetUpperBound (0)

23 frequency (responses (answer)) +=

24 Next

25

26 output &= & & &

27

28 For rating = To frequency.GetUpperBound (0)

29 output &= rating & & frequency(rating) &
30 Next

31

32 MessageBox.Show (output, 0 _
33 MessageBoxButtons.OX, MessageBoxIcon.)
34 End Sub

35

36 End Module

Sharbznl Pl Prugers |

-
=
&
4

= amorarn

=l T b
-

Fig. 7.5 Simple student-poll analysis program.

Chapter 7 Arrays 255

Good Programming Practice 7.1

@ Strivefor programclarity. Sometimes, it isworthwhile to forgo the most efficient use of mem-
ory or processor time if the trade-off resultsin a clearer program.

__—-@ Sometimes, performance considerations outweigh clarity considerations.

The For structure (lines 22—24) reads the responses from the array responses one
a a time and increments one of the 10 counters in the frequency array (fre-
quency (1) to frequency (10)). Thekey statement intheloop appearsin line23. This
statement increments the appropriate £requency counter as determined by the value of
responses (answer).

Let us consider several iterations of the For structure. When counter answer is 0,
responses (answer) isthe value of responses (0) (i.e, 1—see line 14). There-
fore, frequency(responses (answer)) actuadly is interpreted as fre-
quency (1), meaning the first counter in array £requency isincremented by one. In
evauating the expression frequency (responses (answer)), Visua Basic starts
with the value in the innermost set of parentheses (answer, currently 0). The value of
answer is plugged into the expression, and Visual Basic evaluates the next set of paren-
theses (responses (answer)). That value is used as the index for the frequency
array to determine which counter to increment (in this case, the 1 counter).

When answer is1, responses (answer) isthevaue of responses (1) (i.e,
2—see line 14). As aresult, frequency (responses (answer)) actualy is inter-
preted as frequency (2), causing array element 2 (the third element of the array) to be
incremented.

When answer is2, responses (answer) isthevaueof responses (2) (i.e,
6—see line 14), s0 frequency (responses (answer)) is interpreted as fre-
quency (6), causing array e ement 6 (the seventh element of the array) to beincremented
and so on. Note that, regardless of the number of responses processed in the survey, only
an 11-element array (in which weignore element zero) isrequired to summarize the results,
because al the response values are between 1 and 10, and the index values for an 11-ele-
ment array are 0-10. Note that, in the output in Fig. 7.5, the numbers in the frequency
column correctly add to 40 (the elements of the frequency array wereinitiaized to zero
when the array was allocated with New).

If the data contained out-of -range values, such as 13, the program would attempt to add
1to frequency (13). Thisisoutside the bounds of the array. In other languages like C
and C++ programming languages, such areference would be allowed by the compiler and
at execution time. The program would “walk” past the end of the array to where it thought
element number 13 was located and would add 1 to whatever happened to be stored at that
memory location. This could modify another variable in the program, possibly causing
incorrect results or even premature program termination. Visual Basic provides mecha
nisms that prevent accessing elements outside the bounds of arrays.

—s- Common Programming Error 7.2
@ Referencing an element outside the array boundsisaruntimeerror.

256 Arrays Chapter 7

% When a programis executed, array element indices are checked for validity (i.e., all indices
must be greater than or equal to 0 and lessthan thelength of the array). If an attempt ismade
to use aninvalid index to access an element, Visual Basic generates an IndexOutOfRan-
geException exception. Exceptions are discussed in greater detail in Chapter 11, Excep-
tion Handling.

% When looping through an array, the array index should remain between 0 and the upper
bound of the array (i.e., the value returned by method GetUpperBound). The initial and
final values used in the repetition structure should prevent accessing elements outside this
range.

Programs should confirm the validity of all input values to prevent erroneous information
from affecting calculations.

L

7.4.5 Using Histograms to Display Array Data Graphically

Many programs present datato usersin avisua or graphical format. For example, numeric
values are often displayed as barsin a bar chart, in which longer bars represent larger nu-
meric values. Figure 7.6 displays numeric data graphically by creating a histogram that de-
picts each numeric value as a bar of asterisks (*).

1

2

3

4 Imports System.Windows.Forms

5

6 Module modHistogram

he

8 Sub Main ()

9 Dim output As String

10 Dim i, j As Integer

11

12

13 Dim arrayl As Integer() = New Integer() _
14 { I 7 7 7 7 14 7 7 I }

15

16 output &= & & & & _
17

18

19 For i = To arrayl.GetUpperBound (0)

20 output &= & i & & arrayl(i) &
21

22 For j = To arrayl (i)

23 output &=

24 Next

25

26 Next

Fig. 7.6 Program that prints histograms (part 1 of 2).

Chapter 7 Arrays 257

27
28 MessageBox.show (output, o _
29 MessageBoxButtons.OK, MessageBoxIcon.)
30 End Sub
31
32 End Module

Foutueproa Pratang rogran =]

oI e

e

Fig. 7.6 Program that prints histograms (part 2 of 2).

The program reads numbers from an array and graphs the information in the form of a
bar chart, or histogram. Each number is printed, and a bar consisting of a corresponding
number of asterisks is displayed beside the number. The nested For loops (lines 19-26)
append the barsto the string that isdisplayed in the MessageBox. Note the end value
(arrayl (i)) of theinner For structure on line 22. Each time the inner For structureis
reached (line 22), it countsfrom 1 to arrayl (i), using avaluein arrayl to determine
the final value of the control variable §—the number of asterisks to display.

Sometimes programs use a series of counter variables to summarize data, such asthe
results of asurvey. In Chapter 6, Procedures, we used a series of countersin our die-rolling
program to track the number of occurrences of each side on a six-sided die as the program
rolled the die 12 times. We indicated that there is a more elegant way of doing what we did
in Fig. 6.11 for writing the dice-rolling program. An array version of this application is
shownin Fig. 7.7.

1

2

3

4

5

6

7

8

9 Imports System.IO

10 Imports System.Windows.Forms
11

12 Public Class FrmRollDie

13 Inherits System.Windows.Forms.Form
14

Fig. 7.7 Using arrays to eliminate a Select Case structure (part 1 of 4).

258 Arrays

Chapter 7

5 Dim randomNumber As Random = New Random()
16 Dim frequency As Integer() = New Integer(6) {}
17

18

19 Friend WithEvents lblDiel As Label

20 Friend WithEvents lblDie2 As Label

21 Friend WithEvents lblDie3 As Label

22 Friend WithEvents lblDie4 As Label

23 Friend WithEvents lblDie5 As Label

24 Friend WithEvents lblDieé As Label

25 Friend WithEvents lblDie7 As Label

26 Friend WithEvents lblDie8 As Label

27 Friend WithEvents lblDie9 As Label

28 Friend WithEvents l1lblDiell As Label

29 Friend WithEvents lblDiel0 As Label

30 Friend WithEvents lblDiel2 As Label

31

32

33 Friend WithEvents txtDisplay As TextBox
34

35

36 Friend WithEvents cmdRoll As Button

37

38

39

40

41 Private Sub cmdRoll Click(ByVal sender As System.Object,
42 ByVal e As System.EventArgs) Handles cmdRoll.Click
43

44

45

46 DisplayDie(1lblDiel)

47 DisplayDie(lblDie2)

48 DisplayDie (1lblDie3)

49 DisplayDie(lblDie4)

50 DisplayDie(1lblDie5)

51 DisplayDie(1lblDie6)

52 DisplayDie(1lblDie7)

53 DisplayDie(1lblDie8)

54 DisplayDie(1lblDie9)

55 DisplayDie (1blDielO0)

56 DisplayDie(lblDiell)

57 DisplayDie(1lblDiel2)

58

59 Dim total As Double =

60 Dim i As Integer

61

62 For i = To frequency.GetUpperBound (0)
63 total += frequency (i)

64 Next

65

66 txtDisplay.Text = & & & &
67 & & &

Fig. 7.7

Using arrays to eliminate a Select Case structure (part 2 of 4).

Chapter 7 Arrays 259

70 For i = To frequency.GetUpperBound (0)

71 txtDisplay.Text &= i & & & frequency (i) & _
72 & & & String.Format (.o

73 frequency (i) / total *) & &

74 Next

76 End Sub

80 Sub DisplayDie (ByVal 1lblDie As Label)
81 Dim face As Integer = + randomNumber .Next (6)

83 lblDie.Image = _
84 Image.FromFile (Directory.GetCurrentDirectory & _

85 & face &)

87 frequency (face) +=
88 End Sub

90 End Class

Fig. 7.7 Using arrays to eliminate a Select Case structure (part 3 of 4).

260 Arrays Chapter 7

Fig. 7.7 Using arrays to eliminate a Select Case structure (part 4 of 4).

Lines 91-111 of Fig. 6.16 are replaced by line 87, which uses face’s value as the
index for array frequency to determine which element should be incremented during
each iteration of the loop. The random number calculation on line 81 produces numbers
from 1-6 (the valuesfor asix-sided die); thus, the frequency array must have seven ele-
ments to allow the index values 1-6. In this program, we ignore element O of array fre-
quency. Lines 66-74 replace lines 57—78 from Fig. 6.16. We can loop through array
frequency; therefore, we do not have to enumerate each line of text to display in the
Label, aswedid in Fig. 6.16.

7.5 Passing Arrays to Procedures

To pass an array argument to a procedure, specify the name of the array without using pa-
rentheses. For example, if array hourlyTemperatures hasbeen declared as

Dim hourlyTemperatures As Integer() = New Integer(24) {}
the procedure call
DayData (hourlyTemperatures)

passes array hourlyTemperatures to procedure DayData.

Chapter 7 Arrays 261

Every array object “knows” itsown upper bound (i.e., the value returned by the method
GetUpperBound), SO, when we pass an array object to a procedure, we do not need to
pass the upper bound of the array as a separate argument.

For aprocedureto receive an array through aprocedure call, the procedure’ s parameter
list must specify that an array will be received. For example, the procedure header for Day -
Data might be written as

Sub DayData(ByVal temperatureData As Integer())

indicating that DayData expects to receive an Integer aray in parameter tempera-
tureData. In Visual Basic, arrays aways are passed by reference, yet it isnormally inap-
propriate to use keyword ByRef£ in the procedure definition header. We discuss this subtle
(and somewhat complex) issue in more detail in Section 7.6.

Although entire arrays are always passed by reference, individual array € ements can be
passed in the same manner as simple variables of that type. For instance, array element values
of primitive datatypes, such as Integer, can be passed by value or by reference, depending
on the procedure definition. To pass an array element to a procedure, use the indexed name
of thearray element asan argument in the call to the procedure. The programin Fig. 7.8 dem-
onstrates the difference between passing an entire array and passing an array element.

1

2

&

4 Imports System.Windows.Forms

5

6 Module modPassArray

7 Dim output As String

8

9 Sub Main ()

10 Dim arrayl As Integer() = New Integer() {1, 2, 3, 4, 5}
11 Dim i As Integer

12

13 output = &
14 & & &

15 &
16

17

18 For i = To arrayl.GetUpperBound (0)

19 output &= & arrayl (i)

20 Next

21

22 ModifyArray (arrayl)

23

24 output &= &

25 &
26

27

28 For i = To arrayl.GetUpperBound (0)

29 output &= & arrayl (i)

30 Next

Fig. 7.8 Passing arrays and individual array elements to procedures (part 1 of 3).

262

Arrays Chapter 7

output &= & &
&_
& & & &
& arrayl(3)

ModifyElementByVal (arrayl (3))

output &= & &
& arrayl(2)

output &= & & &
& & &
& arrayl (3)

ModifyElementByRef (arrayl (3))

output &= & &
& arrayl(2)

MessageBox.Show (output, o _
MessageBoxButtons. , MessageBoxIcon.)
End Sub

Sub ModifyArray(ByVal arrayParameter As Integer())
Dim j As Integer

For j = To arrayParameter.GetUpperBound (0)
arrayParameter (j) *=
Next

End Sub

Sub ModifyElementByVal (ByVal element As Integer)

output &= & &
& element

element *

output &= & &
& element

End Sub

Sub ModifyElementByRef (ByRef element As Integer)

output &= & &
& element

Passing arrays and individual array elements to procedures (part 2 of 3).

Chapter 7 Arrays 263

84 element *=

85 output &= & &
86 & element

87 End Sub

88

89 End Module

Fasmnmes 2
|j‘J | Sy sl i o LA o el IO T gl e
1 =a1 = " marm 1 1
ik

[RLE B At Bk LRE L LRE O H

-
E*ET I (F =l AT AE T I 2

FCET S B TR T I -
== = Ve = Me=Al)
LT S TERS S ol % =l 1 I 1
1 W= ko erHe S 2

E-+. oF el AlTe- A o7 e
ERE R T T I BN | TET I |
LTl I R D"t | (LU LA |

PTG TERSS ol % TRl AT L 1Y
ERE- P B L) J o 8 4 e A

Fig. 7.8 Passing arrays and individual array elements to procedures (part 3 of 3).

The For/Next structure on lines 18-20 appends the five elements of integer array
arrayl (line 10) to String output. Line 22 passes array1l to procedure Modi f -
yArray (line 58), which then multiplies each element by 2 (line 62). To illustrate that
arrayl’selements were modified in the called procedure (i.e., as enabled by passing by
reference), the For/Next structure in lines 28-30 appends the five elements of arrayl
to output. Asthe screen capture indicates, the eements of array1 areindeed modified
by Modi fyArray.

To show thevalueof arrayl (3) beforethecall toModifyElementByVal, lines
32-35 append the value of arrayl (3) to String output. Line 38 invokes procedure
ModifyElementByVal and passes arrayl (3). When arrayl (3) is passed by
value, the Integer value in the fourth position of array arrayl (now an 8) is copied
and is passed to procedure Modi fyElementByVal, whereit becomesthevalue of argu-
ment element. Procedure Modi fyElementByVal then multiplies element by 2
(line 73). The parameter of Modi fyElementByVal isaloca variable that is destroyed
when the procedure terminates. Thus, when control is returned to Main, the unmodified
value of arrayl (3) isappended to the string variable output (lines 40-41).

Lines 43-51 demonstrate the effects of procedure ModifyElementByRef (lines
80-87). This procedure performs the same calculation asModi fyElementByVal, mul-
tiplying element by 2. In this case, array1l (3) is passed by reference, meaning the
value of array1 (3) appended to output (lines 50-51) is the same as the value calcu-
lated in the procedure.

Common Programming Error 7.3

@ In the passing of an array to a procedure, including an empty pair of parentheses after the
array nameisa syntax error.

264 Arrays Chapter 7

7.6 Passing Arrays: ByVal vs. ByRef

InVisual Basic .NET, avariable that “ stores’ an object, such as an array, does not actually
store the object itself. Instead, such avariable stores areference to the object (i.e., the loca
tion in the computer’ s memory where the object is aready stored). The distinction between
reference variables and primitive data type variables raises some subtle issues that pro-
grammers must understand to create secure, stable programs.

When used to declare avalue-type parameter, keyword ByVal causes the value of the
argument to be copied to alocal variablein the procedure. Changesto thelocal variable are
reflected in thelocal copy of that variable, but not in the original variablein the calling pro-
gram. However, if the argument passed using keyword ByVval is of areference type, the
value copied is also areferenceto the original object in the computer’s memory. Thus, ref-
erencetypes (like arrays and other objects) passed viakeyword ByVal are actually passed
by reference, meaning changes to the objectsin called procedures affect the original objects
inthe callers.

e Passing arrays and other objects by reference makes sense for performance reasons. If ar-
= rays were passed by value, a copy of each element would be passed. For large, frequently
passed arrays, thiswould waste time and would consume consider able storage for the copies

of the arrays—both of these problems cause poor performance.

Visual Basic also allows procedures to pass references with keyword ByRe£. Thisis
asubtle capability, which, if misused, can lead to problems. For instance, when areference-
type object like an array is passed with ByRe £, the called procedure actually gains control
over the passed reference itself, allowing the called procedure to replace the original refer-
enceinthe caller with adifferent object or even with Nothing. Such behavior can lead to
unpredictable effects, which can be disastrous in mission-critical applications. The pro-
gramin Fig. 7.9 demonstrates the subtle difference between passing areference Byval vs.
passing areference ByRef£.

Lines 11-12 declare two integer array variables, firstArray and firstArray-
Copy (we make the copy so we can determine whether reference £irstArray getsover-
written). Line 15 alocates an array containing Integer values 1, 2 and 3 and stores the
array referenceinvariable £irstArray. The assgnment statement on line 16 copies refer-
encefirstArraytovariable firstArrayCopy, causingthesevariablesto referencethe
same array object. The For/Next structure in lines 24-26 prints the contents of £irs-
tArray beforeit ispassed to procedure FirstDouble online 29 so we can verify that this
array ispassed by reference (i.e., the called method indeed changes the array’ s contents).

The For/Next structure in procedure FirstDouble (lines 94-96) multiplies the
values of al the elements in the array by 2. Line 99 alocates a new array containing the
values11, 12 and 13; thereference for this array then isassigned to parameter array (in
an attempt to overwrite reference firstArray in Main—this, of course, will not
happen, because the reference was passed Byval). After procedure FirstDouble exe-
cutes, the For/Next structure on lines 35-37 prints the contents of £irstArray, dem-
onstrating that the values of the elements have been changed by the procedure (and
confirming that in Visua Basic, .NET arrays are always passed by reference). The I£
structure on lines 4046 usesthe Is operator to compare references £irstArray (which
we just attempted to overwrite) and £irstArrayCopy. Visua Basic provides operator

Chapter 7 Arrays 265

Is for comparing references to determine whether they are referencing the same object.
The expression on line40istrueif the operands to binary operator Is indeed referencethe
same object. In this case, the object represented is the array allocated in line 15—not the
array alocated in procedure FirstDouble (line 99).

1

2

3

4

5 Module modArrayReferenceTest

6

7 Sub Main ()

8 Dim i As Integer

9

10

11 Dim firstArray As Integer ()

12 Dim firstArrayCopy As Integer ()

13

14

15 firstArray = New Integer() {1, 2, 2}

16 firstArrayCopy = firstArray

17

18 Console.WriteLine (&
19)

20 Console.Write(&
21)

22

23

24 For i = To firstArray.GetUpperBound (0)

25 Console.Write (firstArray (i) &)

26 Next

27

28

29 FirstDouble (firstArray)

30

31 Console.Write (& &
32)

33

34

35 For i = To firstArray.GetUpperBound (0)

36 Console.Write (firstArray (i) &)

37 Next

38

39

40 If firstArray Is firstArrayCopy Then

41 Console.WriteLine (& & _
42)

43 Else

44 Console.WriteLine (& &
45)

46 End If

47

Fig. 7.9 Passing an array reference with ByVal and ByRef (part 1 of 3).

266 Arrays Chapter 7

49 Dim secondArray As Integer ()
50 Dim secondArrayCopy As Integer ()

53 secondArray = New Integer() {1, 2, 2}
54 secondArrayCopy = secondArray

56 Console.WriteLine (& &
57)
58 Console.Write(&
59)

62 For i = To secondArray.GetUpperBound (0)
63 Console.Write (secondArray (i) &)
64 Next

67 SecondDouble (secondArray)

69 Console.Write (& &

73 For i = To secondArray.GetUpperBound (0)
74 Console.Write (secondArray (i) &)
75 Next

78 If secondArray Is secondArrayCopy Then

79 Console.WriteLine (& &
80)

81 Else

82 Console.WriteLine (& &
83)

84 End If

86 End Sub

90 Sub FirstDouble (ByVal array As Integer())
91 Dim i As Integer

94 For i = To array.GetUpperBound (0)
95 array (i) *=
96 Next

99 array = New Integer() {11, o }
100 End Sub

Fig. 7.9 Passing an array reference with ByVal and ByRef (part 2 of 3).

Chapter 7 Arrays 267

101

102

103

104 Sub SecondDouble (ByRef array As Integer())
105 Dim i As Integer

106

107

108 For i = To array.GetUpperBound (0)
109 array (i) *=

110 Next

111

112

113 array = New Integer() {11, , }
114 End Sub

115

116 End Module

Test passing array reference using ByVal.

Contents of firstArray before calling FirstDouble: 1 2 3
Contents of firstArray after calling FirstDouble: 2 4 6
The references are equal.

Test passing array reference using ByRef.

Contents of secondArray before calling SecondDouble: 1 2 3
Contents of secondArray after calling SecondDouble: 11 12 13
The references are not equal.

Fig. 7.9 Passing an array reference with ByVal and ByRef£ (part 3 of 3).

Lines48-84in procedure Main perform similar tests, using array variables second-
Array and secondArrayCopy and procedure SecondDouble (lines 104-114). Pro-
cedure SecondDouble performsthe sameoperationsas FirstDouble, but receivesits
array argument with ByRe£. In this case, the reference stored in secondArray after the
procedure call is areference to the array allocated on line 113 of SecondDouble, dem-
onstrating that a reference passed with ByRe £ can be modified by the called procedure so
that the reference actually pointsto a different object, in this case an array allocated in pro-
cedure SecondDouble. The I£ structure in lines 78-84 demonstrates that second-
Array and secondArrayCopy ho longer represent the same array.

Using ByVal to receive a reference-type object parameter does not cause the object to pass
by value—the object still passes by reference. Rather, Byval causes the object’s reference
to pass by value. This prevents a called procedure fromoverwriting areferenceinthe caller.
In the vast majority of cases, protecting the caller’s reference from modification is the de-
sired behavior. If you encounter a situation where you truly want the called procedure to
modify the caller’ s reference, pass the reference-type object ByRef—but, again, such situ-
ationsarerare.

In Visual Basic .NET, reference-type objects (including arrays) always pass by reference. So,
acalled procedurereceiving areferenceto an objectinacaller can changethecaller’ sobject.

268 Arrays Chapter 7

7.7 Sorting Arrays

Sorting data (i.e., arranging the data into some particular order, such as ascending or de-
scending order) is one of the most popular computing applications. For example, a bank
sorts all checks by account number, so that it can prepare individual bank statements at the
end of each month. Telephone companies sort their lists of accounts by last name and, with-
in last-name listings, by first name, to make it easy to find phone numbers. Virtually every
organization must sort some data and, often, massive amounts of it. Sorting is an intriguing
problem that has attracted some of the most intense research effortsin the computer-science
field. This section discusses one of the simplest sorting schemes. I n the exercises at the end
of this chapter, we investigate a more sophisticated sorting algorithm.

Performance Tip 7.3

> Sometimes, the simplest algorithms performpoorly. Their virtueisthat they are easy towrite,
"J test and debug. Complex algorithms may be needed for a program to achieve maximum per-
formance.

The module shownin Fig. 7.10 contains proceduresfor sorting the values of an integer
array into ascending order. The technique we use is called the bubble sort, or the sinking
sort, because in an ascending sort smaller values gradually “bubble” their way to the top of
the array (i.e., toward thefirst element) like air bubblesrising in water, while larger values
sink to the bottom (i.e., toward the end) of the array. The technique uses nested loops to
make several passes through the array. Each pass compares successive pairs of elements. If
apair isin increasing order (or the values are equal), the bubble sort leaves the values as
they are. If apair isin decreasing order, the bubble sort swaps their valuesin the array.

Module modBubbleSort

Sub BubbleSort (ByVal sortArray As Integer())
Dim pass, i As Integer

OCO~NOOTD,WNPE

10 For pass = To sortArray.GetUpperBound (0)

12 For i = To sortArray.GetUpperBound(0) -
14 If sortArray(i) > sortArray(i + 1) Then
s Swap (sortArray, 1)

16 End If

18 Next

20 Next

22 End Sub

Fig. 7.10 BubbleSort procedure in modBubbleSort (part 1 of 2).

Chapter 7 Arrays 269
24
25 Sub Swap (ByVal swapArray As Integer(),
26 ByVal first As Integer)
27
28 Dim hold As Integer
29
30 hold = swapArray (first)
31 swapArray (first) = swapArray(first + 1)
32 swapArray (first + 1) = hold
33 End Sub
34

35 End Module

Fig. 7.10 BubbleSort procedure inmodBubbleSort (part 2 of 2).

The module contains procedures BubbleSort and Swap. Procedure BubbleSort
(lines 7-22) sorts the elements of its parameter, sortArray. Procedure BubbleSort
calls procedure swap (lines 25-33) as necessary to transpose two of the array elements.
The Windows application in Fig. 7.11 demonstrates procedure BubbleSort (Fig. 7.10)
by sorting an array of 10 randomly-generated elements (which may contain duplicates).

1

2

3

4 Imports System.Windows.Forms

5

6 Public Class FrmBubbleSort

7 Inherits System.Windows.Forms.Form

8

9

10 Friend WithEvents cmdCreate As Button

11 Friend WithEvents cmdSort As Button

12

13

14 Friend WithEvents lblOriginal As Label

15 Friend WithEvents lblSorted As Label

16

17

18 Friend WithEvents txtOriginal As TextBox
19 Friend WithEvents txtSorted As TextBox

20

21

22

23 Dim array As Integer() = New Integer(9) {}
24

25

26 Private Sub cmdCreate Click(ByVal sender As System.Object,
27 ByVal e As System.EventArgs) Handles cmdCreate.Click
28

Fig. 7.11 Sorting an array with bubble sort (part 1 of 3).

270 Arrays Chapter 7
29 Dim output As String
30 Dim randomNumber As Random = New Random()
3ilk Dim i As Integer
32
33 txtSorted.Text =
34
35
36 For i = To array.GetUpperBound (0)
37 array (i) = randomNumber.Next ()
38 output &= array(i) &
39 Next
40
41 txtOriginal.Text = output
42 cmdSort.Enabled = True
43 End Sub
44
45
46 Private Sub cmdSort Click(ByVal sender As System.Object,
47 ByVal e As System.EventArgs) Handles cmdSort.Click
48
49 Dim output As String
50 Dim i As Integer
51
52
53 modBubbleSort.BubbleSort (array)
54
55
56 For i = To array.GetUpperBound(0)
57 output &= array(i) &
58 Next
59
60 txtSorted.Text = output
61 cmdSort.Enabled = False
62 End Sub
63
64 End Class
e T -nx B o T
Cai i 1 na- SR R I T Cai i I - SRS e

T l- 11 =i | T -1 11 |
»

Fig. 7.11 Sorting an array with bubble sort (part 2 of 3).

Chapter 7 Arrays 271

S sr T

Cai i I na- TURE S LR

i

Co -1 10 | = !'J

Fig. 7.11 Sorting an array with bubble sort (part 3 of 3).

The program contains methods cmdCreate Click and cmdSort Click.
Method cmdCreate Click (lines 26-43) assigns 10 random values to the elements of
array and displays the contents of the array in txtOriginal. Method
cmdSort Click (lines 46-62) sorts array by calling procedure BubbleSort from
modBubbleSort.

Procedure BubbleSort receives the array as parameter sortArray. The nested
For/Next structuresin lines 10-20 of Fig. 7.10 performs the sort. The outer loop controls
the number of passes of the array. The inner loop (lines 12-18) controls the comparisons
and swapping (if necessary) of the elements during each pass.

Procedure BubbleSort first compares sortArray (0) t0 sortArray (1), then
sortArray (1) to sortArray (2), and soon until it completesthe pass by comparing
sortArray (8) t0 sortArray (9). Although there are 10 elements, the comparison
loop performs only nine comparisons (because the comparisons each involve apair of num-
bers).

The comparisons performed in a bubble sort could cause a large value to move down
the array (sink) many positions on a single pass. However, a small value cannot move up
(bubble) more than one position per pass. On the first pass, the largest value is guaranteed
to sink to the bottom element of the array, sortArray (9). On the second pass, the
second-largest valueis guaranteed to sink to sortArray (8) . Onthe ninth pass, the ninth
largest value sinks to sortArray (1), leaving the smallest value in sortArray (0).
Thus, only nine passes are required to sort a 10-element array (and, in general, only n-1
passes are needed to sort an n-element array).

If acomparison reveals that the two elements are in descending order, BubbleSort
calls procedure swap to exchange the two elements, placing them in ascending order inthe
array. Procedure swap receivesthe array (whichit calls swapArray) and theindex of the
first element of the array to transpose (with the subsequent element). The exchangeis per-
formed by three assignments

hold = swapArray(first)
swapArray (first) = swapArray(first + 1)
swapArray (first + 1) = hold

272 Arrays Chapter 7

wherethe extravariable hold temporarily storesone of the two values being swapped. The
swap cannot be performed with only the two assignments

swapArray (first) = swapArray(first + 1)
swapArray (first + 1) = swapArray(first)

If swapArray (first) is7 and swapArray (first + 1) is5, after thefirst assign-
ment both array elements contains 5, and the value 7 islost—hence, the need for the extra
variable hold.

The advantage of the bubble sort isthat it is easy to program. However, the bubble sort
runs slowly, as becomes apparent when sorting large arrays. In the exercises, we develop
efficient versions of the bubble sort and investigate amore efficient and more complex sort,
quicksort. More advanced courses (often titled “Data Structures’ or “Algorithms’ or
“Computational Complexity”) investigate sorting and searching in greater depth.

7.8 Searching Arrays: Linear Search and Binary Search

Often, programmers work with large amounts of data stored in arrays. It might be necessary
in this case to determine whether an array contains a val ue that matches a certain key value.
The process of locating a particular element valuein an array is called searching. In this sec-
tion, we discuss two searching techniques—the simple linear search technique and the more
efficient (but more complex) binary search technique. Exercises 7.8 and 7.9 at the end of this
chapter ask you to implement recursive versions of the linear and binary searches.

7.8.1 Searching an Array with Linear Search

Module modLinearSearch in Fig. 7.12 contains a procedure for performing a linear
search. Procedure LinearSearch (lines 7-22) usesaFor/Next structure containing an
If structure (lines 15-17) to compare each element of an array with a search key. If the
search key is found, the procedure returns the index value for the element, indicating the
position of the search key in the array. If the search key is not found, the procedure returns
-1. (Thevalue -1 isagood choice because it is not avalid index number.) If the elements
of the array being searched are unordered, it isjust as likely that the value will be found in
the first element as in the last, so the procedure will have to compare the search key with
half the elements of the array, on average.

1

2

3

4 Module modLinearSearch

5

6

7 Function LinearSearch(ByVal key As Integer, _
8 ByVal numbers As Integer()) As Integer
9

10 Dim n As Integer

11

Fig. 7.12 Procedures for performing a linear search (part 1 of 2).

Chapter 7

Arrays 273

13 For

n = 0 To numbers.GetUpperBound (0)

If numbers(n) = key Then

Return n

17 End If

19 Nex

t

21 Return
22 End Function

24 End Modul

e

Fig. 7.12 Procedures for performing a linear search (part 2 of 2).

Theprogramin Fig. 7.13 uses modulemodLinearSearch to search a 20-element
array filled with random values created when the user clicks cmdCreate. The user then
types asearch key in a TextBox (named txtInput) and clicks cmdSearch to start

the search.

1

2

3

4 TImports System.Windows.Forms

5

6 Public Class FrmLinearSearchTest

7 Inherits System.Windows.Forms.Form

8

9
10 Friend WithEvents cmdSearch As Button
11 Friend WithEvents cmdCreate As Button
12
13
14 Friend WithEvents txtInput As TextBox
15 Friend WithEvents txtData As TextBox
16
17
18 Friend WithEvents lblEnter As Label
19 Friend WithEvents lblResult As Label
20
21
22
23 Dim arrayl As Integer() = New Integer(19) {}
24
25
26 Private Sub cmdCreate Click(ByVal sender As System.Object, _
27 ByVal e As System.EventArgs) Handles cmdCreate.Click
28
29 Dim output As String
30 Dim randomNumber As Random = New Random()
31 Dim i As Integer

Fig. 7.13 Linear search of an array (part 1 of 3).

274 Arrays Chapter 7

32

33 output = & & &

34

35

36 For i = To arrayl.GetUpperBound (0)

81 arrayl (i) = randomNumber.Next ()

38 output &= i & & arrayl(i) &

39 Next

40

41 txtData.Text = output

42 txtInput.Text =

43 cmdSearch.Enabled = True

44 End Sub

45

46

47 Private Sub cmdSearch Click(ByVal sender As System.Object,
48 ByVal e As System.EventArgs) Handles cmdSearch.Click
49

50

51

52 If txtInput.Text = Then

53 MessageBox.Show ()

54 Exit Sub

55 End If

56

57 Dim searchKey As Integer = Convert.ToInt32 (txtInput.Text)
58 Dim element As Integer = LinearSearch(searchKey, arrayl)
59

60 If element <> Then

61 lblResult.Text = & element
62 Else

63 1blResult.Text =

64 End If

65

66 End Sub

67

68 End Class

=inix =Inlx
LS | [e R [Pl | AP P P D |
= lirelzze CHINE ﬂ
"]
| R
& £z
. S
= ” |
Tlm=w o flozo =
e =asrsh 1=-3] oasrsh

Fig. 7.13 Linear search of an array (part 2 of 3).

Chapter 7 Arrays 275

CREREN R R S e

e MRLAT mLTTLT L

live]z i STINT
v zul v 0|
| eI | &7
£ £z £ £z

T [

e

Conan ™ Lezin il

_IHIJICI
=

el b =L :
"':f-: | | ::-aa:hL| "':?: | ::aa:hLl

Fig. 7.13 Linear search of an array (part 3 of 3).

7.8.2 Searching a Sorted Array with Binary Search

The linear search method works well for small or unsorted arrays. However, for large ar-
rays, linear searching isinefficient. If the array is sorted, the high-speed binary sear ch tech-
nique can be used.

After each comparison, the binary search algorithm eliminates from consideration half
the elementsin the array that is being searched. The algorithm locates the middle array ele-
ment and compares it with the search key. If they are equal, the search key has been found,
and the index of that element is returned. Otherwise, the problem is reduced to searching
half of the array. If the search key is less than the middle array element, the second half of
the array is eliminated from consideration, and searching continues with only the first half
of the array; otherwise, the second half of the array is searched. If the search key is not the
middle element in the specified subarray (a piece of the origina array), the algorithm is
repeated in one quarter of the original array. The search continues until the search key is
equal to the middle element of asubarray, or until the subarray consists of one element that
isnot equal to the search key (i.e., the search key is not found).

In aworst-case scenario, searching a sorted array of 1024 elements via binary search
requires only 10 comparisons. Repeatedly dividing 1024 by 2 (after each comparison, we
eliminate from consideration half the array) yieldsthe successive values 512, 256, 128, 64,
32,16, 8, 4, 2 and 1. The number 1024 (210) is divided by 2 only ten timesto get the value
1, and division by 2 is equivalent to one comparison in the binary search algorithm. A
sorted array of 1,048,576 (220) elements takes a maximum of 20 comparisons to find the
key! Similarly, akey can be found in a sorted array of one billion elementsin a maximum
of 30 comparisons! This is a tremendous increase in performance over the linear search,
which required comparing the search key with an average of half the elementsin the array.
For a one-billion-element array, the difference is between an average of 500 million com-
parisons and a maximum of 30 comparisons! The maximum number of comparisons
needed to complete a binary search of any sorted array is indicated by the exponent of the
first power of 2 that is greater than or equal to the number of elementsin the array.

Figure 7.14 presents the iterative version of method BinarySearch (lines 60-86).
The method receives two arguments—integer array arrayl (the array to search), and
integer searchKey (the search key). The array is passed to BinarySearch, even

276 Arrays Chapter 7

though the array is an instance variable of the class. Once again, this is done because an
array normally is passed to a procedure of another class for searching.

1

2

3

4 TImports System.Windows.Forms

5

6 Public Class FrmBinarySearch

7 Inherits System.Windows.Forms.Form

8

9

10 Friend WithEvents lblEnterKey As Label

11 Friend WithEvents lblResult As Label

12 Friend WithEvents lblResultOutput As Label

13 Friend WithEvents lblDisplay As Label

14 Friend WithEvents lblIndex As Label

15 Friend WithEvents lblIndexes As Label

16

17

18 Friend WithEvents cmdFindKey As Button

19

20

21 Friend WithEvents txtInput As TextBox

22

23

24

25 Dim arrayl As Integer() = New Integer(14) {}

26

27

28

29 Private Sub FrmBinarySearch Load(ByVal sender As System.Object,
30 ByVal e As System.EventArgs) Handles MyBase.Load

31

32 Dim i As Integer

33

34 For i = To arrayl.GetUpperBound (0)

35 arrayl (i) = * i

36 Next

37

38 End Sub

39

40

41 Private Sub cmdFindKey Click(ByVal sender As System.Object,
42 ByVal e As System.EventArgs) Handles cmdFindKey.Click
43

44 Dim searchKey As Integer = Convert.ToInt32 (txtInput.Text)
45

46 1blDisplay.Text =

47

48

49 Dim element As Integer = BinarySearch(arrayl, searchKey)
50

Fig. 7.14 Binary search of a sorted array (part 1 of 3).

Chapter 7 Arrays 277

5l If element <> Then

52 1blResultOutput.Text = & element
53 Else

54 1blResultOutput.Text =

55 End If

56

St End Sub

58

59

60 Function BinarySearch(ByVal array As Integer(),
61 ByVal key As Integer) As Integer

62

63 Dim low As Integer =

64 Dim high As Integer = array.GetUpperBound (0)
65 Dim middle As Integer

66

67 While low <= high

68 middle = (low + high) \

69

70

71

72

73 BuildOutput (low, middle, high)

74

75 If key = array(middle) Then

76 Return middle

77 ElseIf key < array(middle) Then

78 high = middle -

79 Else

80 low = middle +

81 End If

82

83 End While

84

85 Return

86 End Function

87

88 Sub BuildOutput (ByVal low As Integer, _

89 ByVal middle As Integer, ByVal high As Integer)
90

91 Dim i As Integer

92

93 For i = 0 To arrayl.GetUpperBound (0)

94

95 If i < low OrElse i > high Then

96 1lblDisplay.Text &=

97 ElseIf i = middle Then

98 1lblDisplay.Text &= String.Format (o _
99 arrayl(i)) &

100 Else

101 lblDisplay.Text &= String.Format (0 _
102 arrayl(i)) &

103 End If

Fig. 7.14 Binary search of a sorted array (part 2 of 3).

278 Arrays Chapter 7

104

105 Next i

106

107 lblDisplay.Text &=
108 End Sub

109

110 End Class

L
“rrac ey |l:=

I-d:-x 3

- T A & F F %7 7 odAr 1 cF Aa -d
noTF oNL a4 cF A 5 Ar 1 T e FimN
TR | LT B

==Ll Fonnd walds © e et s Find e

L
=n'.-'-'lii=.-.*|L=—

1d:as

T onE Taoonn 1.1 R A | - T T T R Ty

I | L L L

s 1t F
uu

=azLl. Frnnd w01

canmirtd Find v

L)
Srrat ke |'£.-'

ir -1 B H R
n " N T4 onon 1 cF AL 5 F Fa TF L FS TN

Zx 1% X EdT- Ev T KW
e TARTORR

Ll

-
1
=
r
n
-
-1
-
=

==Ll EEl BN Wl 11Ty Find e~

Fig. 7.14 Binary search of a sorted array (part 3 of 3).

Chapter 7 Arrays 279

Line 68 calculates the middle element of the array being searched by determining the
number of elements in the array and then dividing this value by 2. Recall that using the \
operator causes the remainder to be discarded. What happens, then, when there is an even
number of elementsin the array? In this case thereisno “middle” element, and the middie
of our array is actualy between the two middle elements. When this occurs, the calculation
on line 68 returns the smaller of the two middle values.

The I£/Else structure onlines 75-81 comparesthe middlie element of thearray to key.
If key matchesthemiddle element of asubarray (line 75), middle (theindex of the cur-
rent element) is returned, indicating that the value was found and the search is complete.

If key does not match themiddle element of a subarray, the 1ow index or high
index (both declared in the method) is adjusted so that a smaller subarray can be searched.
If key islessthan the middle element (line 77), thehigh index isset tomiddle - 1, and
the search is continued on the elements from 1low tomiddle - 1. If key is greater than
the middle element (line 79), the low index is set tomiddle + 1, and the search is con-
tinued on the elementsfrommiddle + 1 to high.

The program uses a 15-element array. The first power of 2 greater than or equal to the
number of array elements is 16 (24), so at most four comparisons are required to find the
key. To illustrate this concept, method BinarySearch calls method Buildoutput
(line 88) to output each subarray during the binary search process. The middle element in
each subarray is marked with an asterisk (*) to indicate the element with which the key is
compared. The format string "{0:D2}" on lines 98 and 101 causes the values to be for-
matted as integers with at least two digits. Each search in this example results in a max-
imum of four lines of output—one per comparison.

7.9 Multidimensional Rectangular and Jagged Arrays

So far, we have studied one-dimensional (or single-subscripted) arrays—i.e., those that
contain onerow of values. In this section, weintroduce multidimensional (often called mul-
tiple-subscripted) arrays, which require two or moreindicesto identify particular elements.
We concentrate on two-dimensional (often called double-subscripted) arrays, or arraysthat
contain multiple rows of values. There are two types of multidimensional arrays—rectan-
gular and jagged. Rectangular arrays with two indices often represent tables of values con-
sisting of information arranged in rows and columns. Each row is the same size, and each
column is the same size (hence, the term “rectangular”). To identify a particular table ele-
ment, we must specify the two indices—by convention, the first identifies the element’s
row, the second the element’ s column. Figure 7.15 illustrates a two-dimensional rectangu-
lar array, a, containing three rows and four columns. A rectangular two-dimensional array
with mrows and n columnsiis called an m-by-n array; the array in Fig. 7.15 isreferred to
asa3-by-4 array.

Every element in array a is identified in Fig. 7.15 by an element name of the form
a(i, j),whereaisthe nameof thearray and i and j are theindices that uniquely iden-
tify the row and column of each element in array a. Notice that, because array indices are
determined through zero-based counting, the names of the elementsin the first row have a
first index of 0; the names of the elements in the fourth column have a second index of 3.

Multidimensional arrays are initialized in declarations using the same process and nota-
tions employed for one-dimensional arrays. For example, a two-dimensional rectangular
array numbers with two rows and two columns could be declared and initialized with

280 Arrays Chapter 7

Column 0 Column 1 Column 2 Column 3
Row 0 a(o, 0) a(o, 1) a(0, 2) a(o, 3)
Row 1 a(l, 0) a(l, 1) a(l, 2) a(l, 3)
Row 2 a(2, 0) a(2, 1) a(2, 2) a(2, 3)

L Column index (or subscript)

Row index (or subscript)

Array name

Fig. 7.15 Two-dimensional array with three rows and four columns.
Dim numbers As Integer(,) = New Integer(l,1) {}

numbers (0, 0)
numbers (0, 1)
numbers (1, 0)
numbers (1, 1)

Alternatively, the initialization can be written on one line, as shown below:
Dim numbers As Integer(,) = New Integer(,) {{1, 2}, {3, 4}}

The values are grouped by row in braces, with 1 and 2 initializing numbers (0, 0) and
numbers (0,1), and 3 and 4 initializing numbers (1, 0) and numbers (1,1). The
compiler determines the number of rows by counting the number of subinitializer lists (rep-
resented by sets of braces) in the main initializer list. Then, the compiler determines the
number of columnsin each row by counting the number of initializer valuesin the subini-
tidizer list for that row. In rectangular arrays, each row has the same number of values.

Jagged arrays are maintained as arrays of arrays. Unlike rectangular arrays, rows in
jagged arrays can be of different lengths. The statements

Dim array2 As Integer() ()

array2 = New Integer (1) () {}

array2(0) = New Integer() {1, 2}

array2 (1) = New Integer() {3, 4, 5}

create Integer array array2 with row 0 (which is an array itself) containing two ele-
ments (1 and 2), and row 1 containing three elements (3, 4 and 5). Notice that the array
name, followed by asingleindex (e.g., array2 (0)), behaves exactly like a normal one-
dimensional array variable. A one-dimensional array can be created and assigned to that
value,

Chapter 7 Arrays 281

The program in Fig. 7.16 demonstrates the initialization of a rectangular array
(arrayl) and ajagged array (array?2) in declarations and the use of nested For/Next
loops to traverse the arrays (i.e., to manipulate every array element).

The program declarestwo arrays in method Main. The alocation of array1l (line 14)
provides six initializersin two sublists. Thefirst sublist initializesthefirst row (row 0) of the
array tothevalues 1, 2 and 3; the second sublist initializesthe second row (row 1) of thearray
tothevalues 4, 5 and 6. The declaration and alocation of array2 (line 17) create ajagged
array of 3 arrays (specified by the 2 in thefirst set of parentheses after keyword Integer).
Lines 18-20 initialize each subarray so that the first subarray containsthe values 1 and 2, the
second contains the value 3 and the last containsthe values 4, 5 and 6.

The nested For/Next structures in lines 24-31 append the elements of array1l to
string output. The nested For/Next structures traverse the arrays in two dimensions.
The outer For/Next structure traverses the rows; the inner For/Next structure traverses
the columns within arow. Each For/Next structure calls method GetUpperBound to
obtain the upper bound of the dimension it traverses. Notice that the dimensions are zero-
based, meaning the rows are dimension 0 and the columns are dimension 1.

1

2

3

4 TImports System.Windows.Forms

5

6 Module modMultidimensionalArrays

e

8 Sub Main ()

9 Dim output As String

10 Dim i, j As Integer

11

12

13 Dim arrayl As Integer(,)

14 arrayl = New Integer(,) {{1, 2, 3}, {4, 5, 6}}
15

16

17 Dim array2 As Integer() () = New Integer(2) () {}
18

19 array2(0) = New Integer() {1, 2}

20 array2(l) = New Integer() {3}

21 array2(2) = New Integer() {4, 5, 6}

22

23 output = &
24

25 For i = To arrayl.GetUpperBound (0)

26

27 For j = To arrayl.GetUpperBound (1)
28 output &= arrayl(i, j) &

29 Next

30

31 output &=

32 Next

33

Fig. 7.16 Initializing multidimensional arrays (part 1 of 2).

282 Arrays Chapter 7

34 output &= & & _
35
36
37 For i = To array2.GetUpperBound (0)
38
39 For j = To array2 (i) .GetUpperBound (0)
40 output &= array2 (i) (j) &
41 Next
42
43 output &=
44 Next
45
46 MessageBox.Show (output, _
47 g _
48 MessageBoxButtons. , MessageBoxIcon.)
49 End Sub
50
51 End Module
1inteahcan Pl Uninsies =]
-"‘!i-') i|_.l_rr\.l wle zamn

EREE N [LEN L LN

1:

3

Fig. 7.16 Initializing multidimensional arrays (part 2 of 2).

The nested For/Next structures in lines 3643 behave similarly for array2. How-
ever, in ajagged two-dimensional array, the second dimension is actually the first dimen-
sion of a separate array. In the example, the inner For/Next structure determines the
number of columnsin each row of the array by passing argument 0 to method GetUpper-
Bound, called on the array returned by accessing a single row of the jagged array. Arrays
of dimensions higher than two can be traversed using one nested For/Next structure for
each dimension.

Many common array manipulations use For/Next repetition structures. Imagine a
jagged array jaggedArray, which contains 3 rows, or arrays. Thefollowing For/Next
structure sets all the elementsin the third row of array jaggedArray to zero:

For column = 0 To jaggedArray (2) .GetUpperBound (0)
jaggedArray (2) (column) =
Next

We specified the third row; therefore, we know that the first index isalways 2 (0 isthefirst
row and 1 isthe second row). The For/Next loop varies only the second index (i.e., the
columnindex). Noticethe use of jaggedArray (2) . GetUpperBound (0) astheend
value of the For/Next structure. In this expression, we call the GetUpperBound meth-
od on the array contained in thethird row of jaggedArray. This statement demonstrates
that each row of jaggedArray isitself anarray, and therefore methods called on thisval-

Chapter 7 Arrays 283

ue behave as they would for atypical array. The preceding For/Next structureis equiva
lent to the assignment statements

jaggedArray (2) (0)
jaggedArray (2) (1)
jaggedArray (2) (2)
jaggedArray(2) (3)

The following nested For/Next structure determines the total of al the elementsin array
jaggedArray. We use method GetUpperBound in the headers of the For/Next
structures to determine the number of rowsin jaggedArray and the number of columns
in each row.

Dim total, row, column As Integer

For row = To jaggedArray.GetUpperBound (0)
For column = To jaggedArray (row) .GetUpperBound (0)
total += jaggedArray (row) (column)
Next
Next

Thenested For/Next structuretota sthe elements of the array onerow at atime. The outer
For/Next structure begins by setting the row index to 0, so the elements of the first row
can betotaled by theinner For/Next structure. The outer For/Next structure thenincre-
ments row to 1, so the second row can be totaled. The outer For/Next structure incre-
ments row to 2, so the third row can be totaled. The result can be displayed when the outer
For/Next structure terminates.

The programin Fig. 7.17 performs several other array manipulations on a 3-by-4 array
grades. Each row of the array represents a student, and each column represents a grade
on one of the four examsthat the student took during the semester. The array manipulations
are performed by four procedures. Procedure Minimum (line 44) determines the lowest
grade of any student for the semester. Procedure Max imum (line 66) determinesthe highest
grade of any student for the semester. Procedure Average (line 89) determines a partic-
ular student’s semester average. Procedure Buildstring (line 103) appends the two-
dimensional array to string output in tabular format.

Imports System.Windows.Forms

Module modJaggedArray
Dim lastStudent, lastExam As Integer
Dim output As String

Sub Main()
Dim i As Integer

POOWO~NOUAWNE

e

Fig. 7.17 Using jagged two-dimensional arrays (part 1 of 4).

284 Arrays Chapter 7

12

13

14 Dim gradeArray As Integer() () = New Integer(2) () {}
15

16

17 gradeArray(0) = New Integer() {77, , 5 }
18 gradeArray(l) = New Integer() {98, 5 o }
19 gradeArray(2) = New Integer() {70, , , 3}
20

21

22 lastStudent = gradeArray.GetUpperBound (0)

23 lastExam = gradeArray (0) .GetUpperBound (0)

24

25 output = &

26

27

28 BuildString (gradeArray)

29 output &= & & &
30 Minimum(gradeArray) & & &
31 Maximum(gradeArray) &

32

33

34 For i = To lastStudent

35 output &= & &
36 i& & Average (gradeArray(i))

37 Next

38

39 MessageBox.Show (output, .
40 MessageBoxButtons.OK, MessageBoxIcon.)
41 End Sub

42

43

44 Function Minimum(ByVal grades As Integer() ()) _
45 As Integer

46

47 Dim lowGrade As Integer =

48 Dim i, j As Integer

49

50 For i = To lastStudent

51

52 For j = To lastExam

53

54 If grades(i) (j) < lowGrade Then

55 lowGrade = grades (i) (3)

56 End If

B

58 Next

59

60 Next

61

62 Return lowGrade

63 End Function

64

Fig. 7.17 Using jagged two-dimensional arrays (part 2 of 4).

Chapter 7 Arrays

285

114
115

Function Maximum(ByVal grades As Integer() ()) _
As Integer

Dim highGrade As Integer =
Dim i, j As Integer

For i = To lastStudent
For j = To lastExam
If grades(i) (j) > highGrade Then
highGrade = grades(i) (j)
End If
Next

Next

Return highGrade
End Function

Function Average (ByVal setOfGrades As Integer()) _
As Double

Dim i As Integer, total As Integer =
For i = To lastExam
total += setOfGrades(i)
Next
Return total / setOfGrades.Length

End Function

Sub BuildString(ByVal grades As Integer () ())
Dim i, j As Integer

output &=
For i = To lastExam
output &= & 1 &

Next

For i = To lastStudent
output &= & & i &

Fig. 7.17 Using jagged two-dimensional arrays (part 3 of 4).

286 Arrays Chapter 7

116 For j = To lastExam

117 output &= grades (i) (j) &
118 Next

119

120 Next

121

122 End Sub

123

124 End Module

Lokl ey x|
m Faed: " Tim-
l:-\._‘.") {1 T T T e I |
[1 i o ol "
151 LYo
[I T
Laessg ade G0
Kk gade Yl

guspycsbor kacek C s TE
ovepme fop sk acenk L 5 2093
fenrmem Fop ok ek £ L, o

Fig. 7.17 Using jagged two-dimensional arrays (part 4 of 4).

Procedures Minimum, Maximum and BuildString use array grades and the
variables 1lastsStudent (upper bound for rows in the array) and 1lastExam (upper
bound for columns in the array). Each procedure uses nested For/Next structures to
iterate through array grades. Consider the nested For/Next structures in procedure
Minimum (lines 50-60). The outer For/Next structure sets i (i.e., therow index) to 0 so
the elements of the first row can be compared with variable 1lowGrade in theinner For/
Next structure (line 54). The inner For/Next structure loops through the four grades of
a particular row and compares each grade with LlowGrade. If agrade islessthan Low-
Grade, then 1lowGrade isassigned that grade. The outer For/Next structure thenincre-
ments the row index by 1. The elements of the second row are compared with variable
lowGrade. The outer For/Next structure then increments the row index to 2. The ele-
ments of the third row are compared with variable 1lowGrade. When execution of the
nested structuresis complete (line 62), 1lowGrade contains the smallest grade in the two-
dimensional array. Procedure Maximum behaves similarly to procedure Minimum.

Procedure Average takes one argument—a one-dimensional array of test results for
aparticular student. Average iscalled (line 36) with argument gradeArray (i), which
is row i of the jagged two-dimensional array grades. For example, the argument
grades (1) represents the four grades for student 1 (i.e., a one-dimensional array of
grades). Remember that a jagged two-dimensional array is an array with elements that are
one-dimensional arrays. Procedure Average calculates the sum of the array elements,
divides the total by the number of test results (obtained using the Length property) and
then returns the floating-point result as aDouble value (line 89).

Chapter 7 Arrays 287

7.10 Variable-Length Parameter Lists

It is possible to create procedures that receive a variable number of arguments, using key-
word ParamArray. The program in Fig. 7.18 cals programmer-defined procedure
AnyNumberArguments three times, passing a different number of values each time.
The values passed into procedure AnyNumberArguments are stored in one-dimensional
Integer array arrayl, whichisdeclared using ParamArray.

Common Programming Error 7.4

@ Attempting to declare a parameter variableto theright of the ParamArray array variable
isa syntax error.

—s- Common Programming Error 7.5
@ Attempting to use ParamArray with a multidimensional array isa syntax error.

1

2

3

4 Module modParamArrayTest

5

6 Sub Main ()

7 AnyNumberArguments ()

8 AnyNumberArguments (2, 3)

9 AnyNumberArguments (7, 8, 9, P ’)
10

11 End Sub

12

13

14 Sub AnyNumberArguments (ByVal ParamArray arrayl _
15 As Integer())

16

17 Dim i, total As Integer

18 total =

19

20 If arrayl.Length = Then

21 Console.WriteLine (&
22)

28 Else

24 Console.Write ()

25

26 For i = To arrayl.GetUpperBound (0)
27 Console.Write(arrayl (i) &)

28 total += arrayl(i)

29 Next

30

31 Console.WriteLine (, total)
32 End If

33

34 End Sub

35

36 End Module

Fig. 7.18 Creating variable-length parameter lists (part 1 of 2).

288 Arrays Chapter 7

Procedure AnyNumberArguments received 0 arguments.
The total of 2 3 is 5.
The total of 7 8 9 10 11 12 is 57.

Fig. 7.18 Creating variable-length parameter lists (part 2 of 2).

—s- Common Programming Error 7.6
@ Using ByRef with ParamArrayisa syntax error.

We call procedure AnyNumberArguments inlines 7-9, passing a different number
of arguments each time. This procedure is defined on lines 14-34 and applies keyword
ParamArray toarraylinline14. The I£ structure on lines 20-32 determines whether
the number of arguments passed to the procedure is zero. If not, lines 24-31 display
arrayl’selements and their sum. All arguments passed to the ParamArray array must
be of the same type as the array, otherwise a syntax error occurs. Though we used an
Integer array in this example, any type of array can be used.

In the last chapter, we discussed procedure overloading. Often, programmers prefer to
use procedure overloading rather than writing procedures with variable-length parameter
lists.

Good Programming Practice 7.2

@ To increase a program’s readability and performance, the programmer should use proce-
dure overloading in favor of procedures with variable-length parameter lists.

7.11 For Each/Next Repetition Structure

Visual Basic provides the For Each/Next repetition structure for iterating through the
values in a data structure, such as an array. When used with one-dimensional arrays, For
Each/Next behaveslike a For/Next structure that iterates through the range of indices
from 0 to the value returned by GetUpperBound (0) . Instead of a counter, For Each/
Next usesavariableto represent the value of each element. The program in Fig. 7.19 uses
the For Each/Next structure to determine the minimum value in atwo-dimensional array
of grades.

1

2

3

4 Module modForEach

5

6 Sub Main()

7 Dim gradeArray As Integer(,) = New Integer(,) _
8 {{ ’ ’ i }l { ’ ’ ’ }l { ’ ’ ’ }}
9

10 Dim grade As Integer

11 Dim lowGrade As Integer =

12

Fig. 7.19 Using For Each/Next with an array (part 1 of 2).

Chapter 7 Arrays 289

13 For Each grade In gradeArray
14

15 If grade < lowGrade Then
16 lowGrade = grade

17 End If

18

19 Next

20

21 Console.WriteLine (, lowGrade)
22 End Sub

23

24 End Module
The minimum grade is: 68

Fig. 7.19 Using For Each/Next with an array (part 2 of 2).

The program behaves similarly to procedure Minimum of Fig. 7.17, but consolidates
the nested For structuresinto one For Each structure. The header of the For Each rep-
etition structure (line 13) specifies a variable, grade, and an array, gradeArray. The
For Each/Next structureiteratesthrough all theelementsin gradeArray, sequentially
assigning each value to variable grade. The values are compared to variable lowGrade
(line 15), which stores the lowest grade in the array.

For rectangular arrays, the repetition of the For Each/Next structure beginswith the
element whose indices are all zero, then iterates through all possible combinations of
indices, incrementing the rightmost index first. When the rightmost index reaches its upper
bound, it is reset to zero, and the index to the left of it is incremented by 1. In this case,
grade takes the values as they are ordered in the initiaizer list in line 8. When all the
grades have been processed, lowGrade is displayed.

Although many array calculations are handled best with acounter, For Each isuseful
when the indices of the elements are not important. For Each/Next particularly is useful
for looping through arrays of objects, as we discuss in Chapter 10, Object-Oriented Pro-
gramming: Polymorphism

In this chapter, we showed how to program with arrays. We mentioned that Visual
Basic .NET arrays are objects. In Chapter 8, Object-Based Programming, we show how to
create classes, which are essentially the “blueprints’” from which objects are instantiated
(i.e., created).

SUMMARY

* Anarray isagroup of contiguous memory locations that have the same name and are of the same
type.

e Thefirst element in every array isthe zeroth element (i.e., element 0).

¢ The position number in parentheses more formally is caled theindex (or the subscript). Anindex
must be an integer or an integer expression.

< All arrays have access to the methods and properties of class System.Array, including the
GetUpperBound method and the Length property.

« Toreference the it element of an array, usei - 1 astheindex.

290 Arrays Chapter 7

« The declaration of an array creates a variable that can store a reference to an array but does not
create the array in memory.

« Arrays can be declared to contain elements of any datatype.

« Arrays are represented as objects in Visua Basic, so they must aso be allocated with keyword
New. Thevaluestored inthe array variableisareferenceto thelocation in the computer’ s memory
where the array object is created.

« Array bounds determine what indices can be used to access an element in the array.

e Theinitiadizer list enclosed in braces ({ and }) specifies the initial values of the elementsin the
array. Theinitializer list can contain acomma-separated list specifying theinitial values of the el -
ements in the array. If theinitidizer list is empty, the elements in the array are initialized to the
default value for the data type of the array.

» Keyword Nothing denotes an empty reference (i.e., avalue indicating that a reference variable
has not been assigned an address in the computer’ s memory).

¢ Unlike languages such as C and C++, Visual Basic provides mechanismsto prevent the accessing
of elements that are outside the bounds of an array.

« If aprogram attemptsto useaninvalid index (i.e., anindex outside the bounds of an array), Visual
Basic generates an exception.

* To passan array argument to a procedure, specify the name of the array and do not include paren-
theses.

< Although entire arrays are passed by reference, individual array elements of primitive data types
can be passed by value.

« To passan array element to aprocedure, usethe indexed name of the array element as an argument
in the procedure call.

« Thesorting of data(i.e., the arranging of datainto some particular order, such as ascending or de-
scending order) is one of the most important computing applications.

« A bubble sort makes several passes through the array. Each pass compares successive pairs of -
ements. On an ascending bubble sort, if apair isin increasing order (or the values are equal), the
bubble sort leavesthe values asthey are; if apair isin decreasing order, the bubble sort swapstheir
vauesinthearray.

« The advantage of the bubble sort isthat it is easy to program. However, the bubble sort runs slow-
ly, as becomes apparent during the sorting of large arrays.

e Thelinear search agorithm compares each element of an array against a search key. If the ele-
ments of the array being searched are not in any particular order, it isjust as likely that the value
will be found in thefirst element asin the last. Thus, the procedure compares the search key with
half the elements of the array, on average. Linear search workswell for small arraysand is accept-
able even for large unsorted arrays.

 For sorted arrays, the binary search algorithm eliminates from consideration half the elementsin
the array after each comparison. The algorithm locates the middle array €l ement and compares it
with the search key. If they are equal, the search key has been found, and the index of that element
is returned. Otherwise, the problem is reduced to searching half of the array. If the search key is
lessthan the middle array el ement, thefirst half of thearray is searched; otherwise, the second hal f
of the array is searched.

« In aworst-case scenario, searching an array of 1024 elements via binary search requires only 10
comparisons. The maximum number of comparisons needed to complete a binary search of any
sorted array isindicated by the exponent of the first power of two that is greater than or equal to
the number of elementsin the array.

Chapter 7 Arrays 291

There are two types of multidimensional arrays—rectangular and jagged.

Rectangular arrays with two indices often are used to represent tables of values consisting of in-
formation arranged in rows and columns. Each row is the same size, and each column is the same
size (leading to the term “rectangular”).

A two-dimensional array with mrows and n columnsis called an m-by-n array.

Multidimensiona arrays are initialized in declarations using the same process and notations em-
ployed for one-dimensional arrays.

When amultidimensional array isdlocated viaaninitializer list, the compiler determinesthe num-
ber of rows by counting the number of subinitiaizer lists (represented by sets of braces) in the
maininitializer list. Then, the compiler determinesthe number of columnsin each row by counting
the number of initializer valuesin the subinitializer list for that row.

Jagged arrays are maintained as arrays of arrays. Unlike rectangular arrays, rowsin jagged arrays
can be of different lengths (so jagged arrays cannot be referred to as m-by-n arrays).

Keyword ParamArray in aprocedure definition header indicates that the procedure receives a
variable number of arguments.

Visual Basic providesthe For Each/Next repetition structure for iterating through the valuesin

adata structure, such as an array.

TERMINOLOGY

array alocated with New

array as an object

array bounds

array declaration

array elements passed by value
array initialized to zeros

array of arrays

bar chart

binary search

braces ({ and })

bubble sort

column

computational complexity
declaration and initialization of array
dice-rolling program

element

exception for invalid array indexing
For Each/Next structure
GetUpperBound method
histogram

ignoring array element zero
index

IndexOutOfRange exception
initializer list

iterative binary search
jegged array

key value (in searching)
Length property
linear search

Ivalue (“left value”)
m-by-n array
multidimensional array
nested For structure
New keyword
Nothing keyword
“off-by-one” error
one-dimensional array
outer For structure
outer set of parentheses
ParamArray keyword
pass of a bubble sort
passing an array
passing an array element
position number
program termination
rectangular array
search key

searching

initializing two-dimensional arraysin declarationssinking sort

inner For structure

inner loop

innermost set of parentheses
iteration of aFor loop

size of an array
sorting

sorting alarge array
subarray

292 Arrays Chapter 7

subinitializer list TextBox

subscript two-dimensional array
swapping elementsin an array variable number of arguments
System.Array class “walk” past end of an array
table zero-based counting

table element zeroth element

tabular format

SELF-REVIEW EXERCISES

7.1 Fill in the blanks in each of the following statements:
a) Listsand tables of values can be storedin .
b) The elements of an array are related by the fact that they have the same and

¢) Thenumber that refersto a particular element of an array is called its

d) The process of placing the elements of an array in order is called the array.

e) Determining whether an array contains a certain value is called the array.

f) Arraysthat usetwo or moreindices are referred to as arrays.

0) Keyword in a procedure definition header indicates that the procedure re-
celves avariable number of arguments.

h) arrays are maintained as arrays of arrays.

i) All arrays have access to the methods and properties of class .

i) Whenaninvalid array reference is made, alan exception is thrown.

7.2 State whether each of the following istrue or false. If false, explain why.

a) An array can store many different types of values.

b) An array index normally should be of datatype Double.

¢) Method GetUpperBounds returns the highest numbered index in an array.

d) The maximum number of comparisons needed for the binary search of any sorted array
is the exponent of the first power of two greater than or equal to the number of elements
inthe array.

€) Therearetwo types of multidimensional arrays—sqguare and jagged.

f) After each comparison, the binary search algorithm eliminates from consideration one
third of the elementsin the portion of the array being searched.

g) Todeterminethenumber of elementsin an array, we can usetheNumberOfElements
property.

h) Thelinear search works well for unsorted arrays.

i) Inanmby-narray, the mstands for the number of columnsand the n stands for the num-
ber of rows.

ANSWERS TO SELF-REVIEW EXERCISES

7.1 a) arrays. b) name, type. ¢) index, subscript or position number. d) sorting. €) searching.
f) multidimensional. g) ParamArray. h) Jagged. i) System.Array. j) IndexOutOfRange-
Exception.

7.2 a) Fase Anarray can store only values of the same type. b) False. An array index must be
an integer or an integer expression. c) True. d) True. €) False. The two different types are called rect-
angular and jagged. f) False. After each comparison, the binary search algorithm eliminatesfrom con-
sideration half the elements in the portion of the array being searched. g) False. To determine the
number of elementsin an array, we can use the Length property. h) True. i) False. In an m-by-n ar-
ray, the m stands for the number of rows and the n stands for the number of columns.

Chapter 7 Arrays 293

EXERCISES

7.3 Write statements to accomplish each of the following tasks:

a) Display the value of the seventh element of array numbers.

b) Initialize each of the five elements of one-dimensional Integer array values to 8.

c) Total the 100 elements of floating-point array results.

d) Copy 11-element array source into the first portion of 34-element array source-
Copy.

e) Determine the smallest and largest values contained in 99-element floating-point array
data.

7.4 Useaone-dimensional array to solvethe following problem: A company paysits salespeople
on acommission basis. The salespeople receive $200 per week, plus 9% of their gross sales for that
week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9% of
$5000, or atotal of $650. Write a program (using an array of counters) that determines how many of
the sal espeopl e earned salaries in each of the following ranges (assume that each salesperson’s salary
istruncated to an integer amount):

a) $200-$299

b) $300-$399

c) $400-$499

d) $500-$599

e) $600-$699

f) $700-$799

g) $800-$899

h) $900-$999

i) $1000 and over

7.5 Use a one-dimensional array to solve the following problem: Read in 20 numbers, each of
which is between 10 and 100, inclusive. As each number isread, print it only if it isnot a duplicate
of anumber already read. Provide for the “worst case” (in which al 20 numbers are different). Use
the smallest possible array to solve this problem.

7.6 Thebubble sort presented in Fig. 7.10isinefficient for large arrays. Makethefollowing sim-
ple modifications to improve the performance of the bubble sort:

a) After thefirst pass, the largest number is guaranteed to be in the highest-numbered ele-
ment of the array; after the second pass, the two highest numbers are “in place”; and so
on. Instead of making nine comparisons on every pass, modify the bubble sort to make
eight comparisons on the second pass, seven on the third pass and so on.

b) Thedatain the array already may bein the proper order or in near-proper order, so why
make nine passes if fewer will suffice? Modify the sort to check at the end of each pass
on whether any swaps have been made. If none have been made, the data must already
be in the proper order, so the program should terminate. If aswap has been made, at least
one more pass is needed.

SPECIAL SECTION: RECURSION EXERCISES

7.7 (Palindromes) A padindromeis aString that is spelled the same forward and backward.
Some examples of palindromes are: “radar,” “ablewasi erei saw elba’ and, if blanks areignored, “a
man a plan a canal panama.” Write a recursive procedure TestPalindrome that returns True if
the String stored in the array isapalindrome, but False otherwise. The procedure should ignore
spaces and punctuation in the String. [Hint: A String can be converted to a Char array using
method ToCharArray. For instance, the statement

294 Arrays Chapter 7

myArray = myString.ToCharArray ()

stores the contents of string variablemyString in aone-dimensiona Char array myArray.]

7.8 (Linear Search) Modify Fig. 7.12 to use recursive LinearSearch procedure. This proce-
dure should receive an integer array, a search key, the starting index and the ending index as argu-
ments. If the search key isfound, return the array index; otherwise, return -1.

7.9 (Binary Search) Modify the program in Fig. 7.14 to use arecursiveBinarySearch proce-
dure. This procedure should receive an integer array, a search key, the starting index and the ending
index as arguments. If the search key isfound, return the array index; otherwise, return -1.

7.10 (Quicksort) Inthischapter, weintroduced the bubble sort. We now present the recursive sort-
ing technique called Quicksort. The basic algorithm for a one-dimensional array of valuesis asfol-
lows:

a) Partitioning Sep: Take thefirst element of the unsorted array and determineitsfinal lo-
cationinthe sorted array (i.e., all valuestothe left of the dlement inthe array arelessthan
the element, and all valuesto the right of the element in the array are greater than the el-
ement). We now have one element in its proper |ocation and two unsorted subarrays.

b) Recursive Sep: Perform step 1 on each unsorted subarray.

Each time step 1 is performed on a subarray, another element is placed in its final location of the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, it
must be sorted; therefore, that element isin its final location.

The basic algorithm seems simple, but how do we determine the final position of the first ele-
ment of each subarray? Consider the following set of values (the element in bold is the partitioning
element—it will be placed in itsfinal location in the sorted array):

3y 2 6 4 8 8 10 12 68 45

a) Starting from the rightmost element of the array, compare each element to 37 until an e -
ement less than 37 is found, then swap 37 and that element. The first element less than
37is12, so 37 and 12 are swapped. The new array is

2 2 6 4 8 8 10 37 68 45

Element 12 isitalicized to indicate that it was just swapped with 37.

b) Starting from the left of the array, but beginning with the element after 12, compare each
element to 37 until an element greater than 37 is found, then swap 37 and that element.
Thefirst element greater than 37 is 89, so 37 and 89 are swapped. The new array is

2 2 6 4 3 8 10 8 68 45

c) Starting from the right, but beginning with the element before 89, compare each element
to 37 until an element less than 37 is found, then swap 37 and that element. Thefirst -
ement lessthan 37 is 10, so 37 and 10 are swapped. The new array is

2 2 6 4 10 8 37 8 68 45

d) Starting from the left, but beginning with the element after 10, compare each element to
37 until an element greater than 37 isfound, then swap 37 and that element. Thereare no
more elements greater than 37, so when we compare 37 to itsdlf, we know that 37 has
been placed inits final location of the sorted array.

Once the partition has been applied to the above array, there are two unsorted subarrays. The subar-
ray with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37

Chapter 7 Arrays 295

contains 89, 68 and 45. The sort continues with both subarrays being partitioned in the same manner
asthe original array.

Using the preceding discussion, write recursive procedure QuickSort to sort a one-dimen-
sional Integer array. The procedure should receive as arguments an Integer array, a starting
index and an ending index. Procedure Partition should be called by QuickSort to perform the
partitioning step.

7.11 (MazeTraversal) Thefollowing grid of #sand dots (.) isatwo-dimensional array represen-
tation of amaze.

#
.

3
3+
3+
+*
3+
+*

= 3 H 3

3+ 3 3 3 .

.
. # .
#

3= 3 3 3 3 3 3 3.

. ##
#HHEHEHHRH

ET

#

H 3 3k 3 3 3
H .
HH 3

**
HH .

The #s represent the walls of the maze, and the dots represent squares in the possible paths through
the maze. Moves can be made only to alocation in the array that contains a dot.

Thereisasimple agorithm for walking through a maze that guarantees finding the exit (assuming
there is an exit). If there is not an exit, you will arrive at the starting location again. Place your right
hand on the wall to your right and begin walking forward. Never remove your hand from the wall. If
the maze turnsto the right, you follow the wall to the right. Aslong as you do not remove your hand
from the wall, eventually you will arrive at the exit of the maze. There may be a shorter path than the
one you have taken, but you are guaranteed to get out of the mazeif you follow the algorithm.

Write recursive procedure MazeTraverse to wak through the maze. The procedure should
receive as arguments a 12-by-12 Char array representing the maze and the starting location of the
maze. AsMazeTraverse attemptsto locate the exit from the maze, it should place the character X
in each sguare in the path. The procedure should display the maze after each move so, the user can
watch as the maze is solved.

Object-Based
Programming

Objectives

 To understand encapsul ation and data hiding.

* To understand the concepts of data abstraction and
abstract datatypes (ADTS).

 To be able to create, use and destroy objects.

« To be able to control access to object instance
variables and methods.

 To be able to use properties to keep objectsin
consistent states.

 To understand the use of the Me reference.

* To understand namespaces and assemblies.

» To be ableto use the Class View and Object
Browser.

My object all sublime

| shall achieve in time.

W. S. Gilbert

Isit a world to hide virtuesin?

William Shakespeare, Twelfth Night

Your public servants serve you right.

Adlai Stevenson

Classes struggle, some classes triumph, others are

eliminated.

Mao Zedong

This above all: to thine own self be true.

William Shakespeare, Hamlet

Chapter 8 Object-Based Programming 297

Outline

8.1 Introduction

8.2 Implementing a Time Abstract Data Type with a Class
8.3 Class Scope

8.4 Controlling Access to Members

8.5 Initializing Class Objects: Constructors

8.6 Using Overloaded Constructors

8.7 Properties

8.8 Composition: Objects as Instance Variables of Other Classes
8.9 Using the Me Reference

8.10 Garbage Collection

8.11 Shared Class Members

8.12 Const and ReadOnly Members

8.13 Data Abstraction and Information Hiding
8.14 Software Reusability

8.15 Namespaces and Assemblies

8.16 Class View and Object Browser

Summary ¢ Terminology Self-Review Exercises » Answers to Self-Review Exercises « Exercises

8.1 Introduction

In this chapter, we investigate object orientation in Visual Basic. Some readers might ask,
why did we defer thistopic until now? There are several reasons. First, the objectswe build
in this chapter are composed partially of structured program pieces; to explain the organi-
zation of objects, we needed to establish a basis in structured programming with control
structures. We also wanted to study methodsin detail before introducing object orientation.
Finally, we wanted to familiarize readers with arrays, which are Visual Basic objects.

In our discussions of object-oriented programs in Chapters 1-7, we introduced many
basic concepts (i.e., “object think”) and terminology (i.e., “object speak”) that relate to
Visual Basic object-oriented programming. We also discussed our program-devel opment
methodology: We analyzed many typical problems that required a program to be built and
determined what classes from the .NET Framework Library were needed to implement
each program. We then selected appropriate instance variables and methods for each pro-
gram, as well as specifying the manner in which an object of our class collaborated with
objects from the .NET Framework classes to accomplish the program’s overal goals.

Let us briefly review some key concepts and terminology of object orientation. Object
orientation uses classes to encapsulate instance variables (data) and methods (behaviors).
Objects have the ability to hide their implementation from other objects (this principle is
called information hiding). Although some objects can communicate with one another
across well-defined interfaces, objects are unaware of how other objects are implemented.

298 Object-Based Programming Chapter 8

Normally, implementation details are hidden within the objects themselves. Surely, it is
possible to drive a car effectively without knowing the details of how engines, transmis-
sions and exhaust systems operate. Later, we will see why information hiding is so crucial
to good software engineering.

In C and other procedural programming languages, programming tends to be action
oriented. Visua Basic programming, however, is object oriented. In C, the unit of pro-
gramming is the function (called proceduresin Visua Basic). In Visua Basic, the unit of
programming is the class (although programs often are written with modules as well).
Objects eventually are instantiated (i.e., created) from these classes, whereas procedures
are encapsulated within the “boundaries’ of classes as methods.

C programmers concentrate on writing functions. They group actions that perform
some task into a function and then group functions to form a program. Data is certainly
important in C, but it exists primarily to support the actions that functions perform. The
verbs in a system-requirements document help a C programmer determine the set of func-
tions that will work together to implement the system.

Visual Basic programmers concentrate on creating their own user-defined types called
classes. We also refer to classes as programmer-defined types. Each class contains both
dataand a set of methods that manipulate the data. The datacomponents, or data members,
of aclass are called instance variables, or member variables. Just aswe call an instance of
abuilt-in type—such as Integer—avariable, we cal an instance of a user-defined type
(i.e., aclass) an object. In Visual Basic, attention isfocused on classes, rather than methods.
The nouns in a system-requirements document help the Visua Basic programmer deter-
mine aninitial set of classes with which to begin the design process. These classes then are
used to instantiate objects that work together to implement the system.

This chapter explains how to create and use classes and objects, a subject known as
object-based programming (OBP). Chapters 9 and 10 introduce inheritance and polymor-
phism—two key technologies that enable object-oriented programming (OOP). Although
wedo not discussinheritancein detail until Chapter 9, it ispart of severa Visual Basic class
definitions. An example of inheritance was demonstrated when we derived a class from
System.Windows.Forms.Formin Chapter 4.

ﬁAﬂ Visual Basic objects are passed by reference. Visual Basic classes are reference types.

8.2 Implementing a Time Abstract Data Type with a Class

Classes in Visual Basic facilitate the creation of specia data types, caled abstract data
types (ADT), which hide their implementation from clients. A problem in procedural pro-
gramming languages, isthat client code often isimplementation-dependent; client code has
to be written so that it uses specific data members and must be rewritten if the code with
which it interfaces changes. ADTseliminate this problem by providing implementation-in-
dependent interfaces to their clients. The creator of a class can change the implementation
of that class without having to change the clients of that class.

élt isimportant to write programs that are understandable and easy to maintain. Change is
the rule rather than the exception. Programmers should anticipate that their code will be
modified. Aswe will see, classes facilitate program modifiability.

Chapter 8 Object-Based Programming 299

Before discussing classesin detail, we review how to add classesto aproject in Visual
Studio. By now, you are familiar with adding a module to a project. The process of adding
aclassto aproject isamost identical to that of adding a module to aproject. To add aclass
toaproject, select Project > Add Class. Enter the classnamein the Name text field and
click the Open button. Note that the class name (ending with the .vb file extension)
appears in the Solution Explorer below the project name.

The following application consists of class CTime (Fig. 8.1) and module modTime-
Test (Fig. 8.2). ClassCcTime containstheinformation needed to represent aspecifictime;
modulemodTimeTest contains method Main, which uses an instance of class CTime to
run the application.

In Fig. 8.1, lines 4-5 begin the cTime class definition, indicating that class CTime
inherits from class object (of namespace System). Visual Basic programmers use
inheritance to create classes from existing classes. The Inherits keyword (line 5) fol-
lowed by class name Object indicates that class CTime inherits existing pieces of class
Object. If the programmer does not include line 5, the Visual Basic compiler includesit
implicitly. Because thisis the first chapter that exposes classes, we include these declara
tions for the classes in this chapter; however, we remove them in Chapter 9. A complete
understanding of inheritance is not necessary to the understanding of the concepts and pro-
gramsin this chapter. We explore inheritance in detail in Chapter 9.

1

2

3

4 Class CTime

5 Inherits Object

6

7

8 Private mHour As Integer

9 Private mMinute As Integer

10 Private mSecond As Integer

11

12

13

14 Public Sub New ()

15 SetTime (0, 0, 0)

16 End Sub

17

18

19

20

21 Public Sub SetTime(ByVal hourValue As Integer, _
22 ByVal minuteValue As Integer, ByVal secondValue As Integer)
23

24

25 If (hourValue >= AndAlso hourValue <) Then
26 mHour = hourValue

27 Else

28 mHour =

29 End If

Fig. 8.1 Abstract data type representing time in 24-hour format (part 1 of 2).

300 Object-Based Programming Chapter 8
30
31
32, If (minuteValue >= AndAlso minuteValue <) Then
33 mMinute = minuteValue
34 Else
35 mMinute =
36 End If
37
38
39 If (secondvValue >= AndAlso secondValue <) Then
40 mSecond = secondValue
41 Else
42 mSecond =
43 End If
44
45 End Sub
46
47
48 Public Function ToUniversalString() As String
49 Return String.Format (g _
50 mHour, mMinute, mSecond)
51 End Function
52
53
54 Public Function ToStandardString() As String
55 Dim suffix As String =
56 Dim format As String =
517 Dim standardHour As Integer
58
59
60 If mHour < Then
61 suffix =
62 End If
63
64
65 If (mHour = OrElse mHour = 0) Then
66 standardHour =
67 Else
68 standardHour = mHour Mod
69 End If
70
71 Return String.Format (format, standardHour, mMinute,
72 mSecond) & suffix
73 End Function
74

75 End Class

Fig. 8.1

Abstract data type representing time in 24-hour format (part 2 of 2).

Lines4 and 75 delineate the body of the cTime class definition with keywordsClass

and End Class. Any information that we place in this body is contained within the class.
For example, class CTime contains three Integer instance variables—mHour, mMi -

nut

e and mSecond (lines 8-10)—that represent the time in universal-time format (24-

Chapter 8 Object-Based Programming 301

hour clock format). Note that our member-naming preference is to prefix an ‘m’ to each
instance variable.

— [|Good Programming Practice 8.1

Begin class names using a capital “ ¢ to distinguish those names as class hames.

Keywords Public and Private are member access modifiers. Instance variables or
methods with member access modifier Public are accessible wherever the program has
a reference to a CTime object. The declaration of instance variables or methods with
member access modifier Private makes them accessible only to methods of that class.
Member access modifiers can appear in any order in a class definition.

- E|Good Programming Practice 8.2

For clarity, every instance variable or method definition should be preceded by a member
access modifier.

— E|C-iood Programming Practice 8.3

Group membersin a class definition according to their member access modifiersto enhance
clarity and readability.

Lines 8-10 declare each of the three Integer instance variables—mHour, mMi -
nute and mSecond—with member access modifier Private, indicating that these
instance variables of the class are accessible only to members of the class. When an object
of the class encapsulates such instance variables, only methods of that object’s class can
access the variables. Normally, instance variables are declared Private, whereas
methods are declared Public. However, it is possible to have Private methods and
Public instance variables, as we will see later. Often, Private methods are called
utility methods, or hel per methods, because they can be called only by other methods of that
class, and their purpose is to support the operation of those methods. The creation of
Public data membersin aclassis an uncommon and dangerous programming practice.
The provision of such access to a class's data members is unsafe; foreign code could set
these membersto invalid values, producing potentially disastrous results.

éMakeaclas%member Privateifthereisnoreasonfor it to be accessed outside of the class
definition.

Access methods can read or display data. Another common use for access methods is
to test the truth of conditions—such methods often are called predicate methods. For
example, we could design predicate method IsEmpty for a container class—a class
capable of holding many objects, such as alinked list, astack or a queue (these data struc-
tures are discussed in detail in Chapter 23, Data Structures and Collections). This method
would return True if the container is empty and False otherwise. A program might test
IsEmpty before attempting to read another item from the container object. Similarly, a
program might call another predicate method (e.g., IsFull) before attempting to insert
another item into a container object.

1. For alist of Microsoft recommended naming conventions visit medn.microsoft.com/11i-
brary/default.asp?url=/library/en-us/vbcon98/html/vbconobject-
namingconventions.asp.

302 Object-Based Programming Chapter 8

Class cTime contains the following Public methods—New (lines 14-16), Set-
Time (lines 21-45), ToUniversalString (lines 48-51) and ToStandardString
(lines 54-73). These are the Public methods (also called the Public services, or
Public interfaces) of the class. Clients, such as module modTimeTest (discussed
momentarily), use these methods to manipulate the data stored in the class objects or to
cause the class to perform some service.

New is a constructor method. (As we will see, a class can have many constructors—
all share the same name (New), but each must have unique parameters.) A constructor isa
specia method that initializes an object’ s instance variables. The instantiation of an object
of aclasscallsthat class s constructor method. This constructor method (lines 14-16) then
calls method setTime (discussed shortly) with mHour, mMinute and mSecond values
specified as 0. Constructors can take arguments but cannot return values. Animportant dif-
ference between constructors and other methods isthat constructors cannot specify areturn
data type—for this reason, Visual Basic constructors are implemented as Sub procedures
(because sub procedures cannot return values). Generaly, constructors are Public
methods of a class.

— 1Commc.)n Programming Error 8.1

Attempting to declare a constructor asa Function and/or attempting to Return avalue
froma constructor isa syntax error.

Method setTime (lines21-45) isaPublic method that usesthree Integer argu-
ments to set the time. A conditiona expression tests each argument to determine whether
the value is in a specified range. For example, the mHour value must be greater than or
equal to 0 and lessthan 24, because universal-time format represents hours asintegers from
0 to 23. Similarly, both minute and second values must fall between 0 and 59. Any values
outside these ranges are invalid values and default to zero, at least ensuring that a CTime
object always contains valid data. Thisis also known as keeping the object in a consistent
state. When users supply invalid datato set Time, the program might want to indicate that
the entered time setting was invalid.

— EIGood Programming Practice 8.4

Always define a class so that its instance variables maintain a consistent state.

Method ToUniversalString (lines 48-51) takes no arguments and returns a
String in universal-time format, consisting of six digits—two for the hour, two for the
minute and two for the second. For example, if the timewere 1:30:07 PM, method ToUni -
versalString would return the String "13:30:07". String method Format
helpsto configure the universal time. Line 49 passesto the method the format control string
"{0}:{1:D2}:{2:D2}", which indicates that argument 0 (the first argument after the
format String argument) should take the default format; and that arguments 1 and 2 (the
last two arguments after the format string argument) should take the format D2 (base 10
decimal number format using two digits) for display purposes—thus, 8 would be converted
to 08. Thetwo colons that separate the curly braces } and { represent the colons that sep-
arate the hour from the minute and the minute from the second, respectively.

Method ToStandardString (lines 54-73) takes no arguments and returns a
String in standard-time format, consisting of the mHour, mMinute and mSecond
values separated by colons and followed by an AM or PM indicator (e.g., 1:27: 06 PM).

Chapter 8 Object-Based Programming 303

Like method ToUniversalString, method ToStandardString calls method
Format of class String to guarantee that the mMinute and mSecond values each
appear as two digits. Lines 60—69 determine the proper formatting for the hour.

After defining the class, we can use it as atype in declarations such as

Dim sunset As CTime

The class name (CTime) isatype. A class can yield many objects, just as a primitive data
type (e.g., Integer) can yield many variables. Programmers can create class types as
needed; thisis one reason why Visual Basic is known as an extensible language.

Module modTimeTest (Fig. 8.2) uses an instance of class CTime. Method Main
(lines 8-33) declares and initializes instance time of class cTime (line 9). When the
object isinstantiated, keyword New alocates the memory in which the CTime object will
be stored, then callsthe cTime constructor (method New in lines 14-16 of Fig. 8.1) toini-
tidize the instance variables of the cTime object. As mentioned before, this constructor
invokes method SsetTime of class CTime to initialize each Private instance variable
explicitly to 0. Method New then returns a reference to the newly created object; this ref-
erenceisassigned to time.

Note that the TimeTest .vb file does not use keyword Imports to import the
namespace that contains class CTime. If aclassisin the same namespace and . vb file as
the class that uses it, the Imports statement is not required. Every classin Visual Basic
is part of a namespace. If a programmer does not specify a namespace for a class, the class
is placed in the default namespace, which includes the compiled classes in the current
directory (in Visual Studio, thisis a project’s directory). We must import classes from the
.NET Framework, because their namespaces and source files are located in a different
source file than those compiled with each program we write.

Line 10 declares a string reference output that will store the string con-
taining the results, which later will be displayed in aMessageBox. Lines 12-15 assign
the time to output in universal-time format (by invoking method ToUniversal -
String of CTime) and standard-time format (by invoking method ToStandard-
String of CTime).

1

2

3

4 Imports System.Windows.Forms

5

6 Module modTimeTest

7

8 Sub Main ()

9 Dim time As New CTime ()

10 Dim output As String

11

12 output = &
13 time.ToUniversalString() & &
14 B _
15 time.ToStandardString ()

16

Fig. 8.2 Using an abstract data type (part 1 of 2).

304 Object-Based Programming Chapter 8

17 time.SetTime (13, , 6)

19 output &= & &

21 time.ToUniversalString() & &
23 time.ToStandardString ()
25 time.SetTime (99, o)

27 output &= & &

28 & &
29 & time.ToUniversalString() & _
30 & & time.ToStandardString ()

32 MessageBox.Show (output,)
33 End Sub

35 End Module

1:4i0 1130 € WIERN x|

IFZ Ao Savi: J
LI VERR G U R e o

Livoaa dawdin.n Liie A
v s (ol o e T o | el et B O
LN EL N | B I D IETE L

LS L I R e
R el ol TL LR BT |

| & |

Fig. 8.2 Using an abstract data type (part 2 of 2).

i . When keyword New creates an object of a class, that class's method New (constructor meth-
od) is called to initialize the instance variables of that object.

Line 17 setsthetime of the CTime object by passing valid timeargumentsto CTime's
method SetTime. Lines 19-23 concatenate the time to output in both universal and
standard formats to confirm that the time was set correctly.

To illustrate that method SetTime validates the values passed to it, line 25 passes
invalid time arguments to method SetTime. Lines 27-30 concatenates the time to
output in both formats, and line 32 displays aMe ssageBox with the results of our pro-
gram. Notice in the last two lines of the output window that the time is set to midnight,
which isthe default value of a cTime object.

CTime is our first example of a nonapplication class, which is a class that does not
define aMain method and therefore not executable. A module (modTimeTest), though
technically not a class, acts like an application class in the sense that it defines aMain
method, which isthe starting point (referred to asthe entry point) for an executable program
in Visual Basic. Class cTime does not define Main and thus cannot be used as a starting
point in this program.

Chapter 8 Object-Based Programming 305

Note that the program declares instance variables mHour, mMinute and mSecond
asPrivate. Instance variables declared Private are not accessible outside the classin
which they are defined. The class' s clients are not concerned with the actual data represen-
tation of that class. For example, the class could represent the time internally as the number
of seconds that have elapsed since the previous midnight. Suppose this representation
changes. Clients still are able to use the same Pub 1 ic methods and obtain the sameresults
(Return vaues) without becoming aware of the change in internal representation. In this
sense, the implementation of aclassis said to be hidden from its clients.

él nformation hiding promotes program modifiability and simplifies the client’ s perception of
a class.

éd ients of a class can (and should) use the class without knowing the internal details of how

the class is implemented. If the class implementation is changed (to improve performance,
for example), provided that the class' s interface remains constant, the class clients' source
code need not change. This makes it much easier to modify systems.

In this program, the CTime constructor initializes the instance variablesto 0 (i.e., the
universal time equivalent of 12 AM) to ensure that the object is created in a consistent state
(i.e., dl instance variable values are valid). The instance variables of a CTime object
cannot storeinvalid values, because the constructor (which calls Set Time) is called when
the CTime object iscreated. Method SetTime scrutinizes subsequent attemptsby aclient
to modify the instance variables.

Normally, instance variables are initialized in a class's constructor, but they also can
be initialized when they are declared in the class body. If a programmer does not initialize
instance variables explicitly, the compiler initializes them. When this occurs, the compiler
sets primitive numeric variablesto 0, Booleansto False and referencesto Nothing).

Methods ToUniversalString and ToStandardString take no arguments
because, by default, these methods manipulate the instance variables of the particular
CTime object for which they are invoked. This makes method calls more concise than
conventional function callsin procedural programming. It also reduces the likelihood of
passing the wrong arguments, the wrong types of arguments or the wrong number of
arguments.

éThe use of an object-oriented programming approach often simplifies method calls by re-

ducing the number of parameters that must be passed. This benefit of object-oriented
programming derives from the fact that encapsulation of instance variables and methods
within an object gives the object’s methods the right to accessits instance variables.

Classes simplify programming, because the client (or user of the class object) need be
concerned only with the Public operations encapsulated in the object. Usually, such
operations are designed to be client-oriented, rather than implementation-oriented. Clientsare
neither aware of, nor involved in, a class' simplementation. I nterfaces change less frequently
than do implementations. When animplementati on changes, implementation-dependent code
must change accordingly. By hiding the implementation, we eliminate the possibility that
other program parts will become dependent on the class-implementation details.

306 Object-Based Programming Chapter 8

Often, programmersdo not haveto create classes“from scratch.” Rather, they can derive
classesfrom other classesthat provide behaviors required by the new classes. Classesalso can
include references to objects of other classes as members. Such software reuse can greatly
enhance programmer productivity. Chapter 9 discusses inheritance—the process by which
new classes are derived from existing classes. Section 8.8 discusses composition (aggrega-
tion), in which classes include as members references to objects of other classes.

8.3 Class Scope

In Section 6.11, we discussed method scope; now, we discuss class scope. A class's in-
stance variables and methods belong to that class's scope. Within a class's scope, class
members are accessible to all of that class's methods and can be referenced by name. Out-
side a class's scope, class members cannot be referenced directly by name. Those class
membersthat arevisible (such as Public members) can be accessed only through a*“han-
die’ (i.e., memberscan bereferenced viathe format objectReferenceName . member Name).

If avariableis defined in a method, only that method can access the variable (i.e., the
variableis alocal variable of that method). Such variables are said to have block scope. If
amethod defines avariable that has the same name as a variable with class scope (i.e., an
instance variable), the method-scope variable hides the class-scope variable in that
method’ s scope. A hidden instance variable can be accessed in a method by preceding its
name with the keyword Me and the dot operator, asin Me .mHour. We discuss keyword
Me later in this chapter.

8.4 Controlling Access to Members

The member access modifiers Public and Private control accessto aclass sinstance
variables and methods. (In Chapter 9, we introduce the additional access modifiers Pro-
tected and Friend.)

Aswe stated previoudly, Pub1ic methods serve primarily to present to the class' scli-
ents aview of the services that the class provides (i.e., the Public interface of the class).
We have mentioned the merits of writing methods that perform only one task. If a method
must execute other tasks to calculate its final result, these tasks should be performed by a
utility method. A client does not need to call these utility methods, nor does it need to be
concerned with how the class usesiits utility methods. For these reasons, utility methods are
declared as Private members of aclass.

— 1Common Programming Error 8.2

Attempting to access a Private class member fromoutside that classisa syntax error.

The application of Fig. 8.3 demonstrates that Private class members are not acces-
sible outside the class. Line 9 attempts to access Private instance variable mHour of
CTime object time. The compiler generates an error stating that the Private member
mHour isnot accessible. [Note: This program assumes that the CTime class from Fig. 8.1
isused.]

— [|Good Programming Practice 8.5

Weprefer tolist instancevariablesof aclassfirst, so that, when reading the code, programmers
see the name and type of each instance variable before it is used in the methods of the class.

Chapter 8 Object-Based Programming 307

1

2

3

4 Module modRestrictedAccess
5

6 Sub Main ()

7 Dim time As New CTime ()
8

9 time.mHour = 7

10 End Sub

11

12 End Module

Lick il 1 HildHeor Lok o s Nileal) :':- ﬂ

!| |H Leac Ll

| Ik wr-boode s e ik |
[N R T A U T TTRT R T TR s (T8 T MR Il P R T TR QS oy Iy

<] I il
-l 3 -.I.| T I

Fig. 8.3 Attempting to access restricted class members results in a syntax error.

——un Good Programming Practice 8.6

\.ﬂ Even though Private and Public members can be repeated and intermixed, list all the
Private members of a classfirst in one group, then list all the Public membersin an-
other group.

! Declare all instance variables of a class as Private. When necessary, provide Public

methodsto set and get thevalues of Private instancevariables. Thisarchitecture hidesthe
class'simplementation fromits clients, reduces bugs and improves program modifiability.

Accessto Private datashould becontrolled carefully by aclass'smethods. To alow
clients to read the values of Private data, the class can provide a property definition,
which enables users to access this Private data safely. Properties, which we discussin
detail in Section 8.7, contain accessors, or portions of code that handle the detail s of mod-
ifying and returning data. A property definition can contain a Get accessor, a Set
accessor or both. A Get accessor enablesaclient to read aPrivate datavalue, whereas
a Set accessor enables the client to modify that value. Such modification would seem to
violate the notion of Private data. However, a Set accessor can provide data-validation
capabilities (such as range checking) to ensure that the value is set properly. A Set
accessor aso can trandate between the format of the data used in the interface and the
format used in the implementation. A Get accessor need not expose the data in “raw”
format; rather, the Get accessor can edit the data and limit the client’ s view of that data.

@Declaring the instance variables of a class as Private and the methods of the class as
Public facilitates debugging, because problems with data manipulations are localized to
the class's methods.

308 Object-Based Programming Chapter 8

8.5 Initializing Class Objects: Constructors

A constructor method initiaizes its class' s members. The programmer writes code for the
constructor, which isinvoked each time an object of that classis instantiated. | nstance vari-
ables can be initialized implicitly to their default values (0 for primitive numeric types,
False for Booleans and Nothing for references). Visual Basic initializes variables to
their default values when they are declared at runtime. Variables can be initialized when de-
clared in either the class body or constructor. Regardless of whether an instance variable is
initialized in aconstructor, that variableisinitialized (either to itsdefault value or to the value
assigned in its declaration) by the runtime before any constructors are called. Classes can con-
tain overloaded constructors to provide multiple ways to initialize objects of that class.

E Because instance variables are always initialized to default values by the runtime, avoid ini-
T tializing instance variables to their default values in the constructor.

Itisimportant to note that, although references do not need to beinitialized immediately
by invoking a constructor, an uninitialized reference cannot be used until it refersto an actual
object. If aclassdoes not define any constructors, the compiler provides adefault constructor.

| When appropriate, provide a constructor to ensure that every object isinitialized with mean-
ingful values.

When creating an object of a class, the programmer can provide initializers in paren-
thesesto the right of the class name. These initializers are the argumentsto the class’ s con-
structor. In general, declarations take the form

Dim objectReference As New ClassName(arguments)

where objectReferenceisareference of the appropriate datatype, New indicates that an ob-
ject is being created, ClassName indicates the type of the new object and arguments spec-
ifies the values used by the class's constructor to initialize the object. A constructor that
takes arguments often is called a parameterized constructor. The next example (Fig. 8.4)
demonstrates the use of initializers.

If aclass does not have any defined constructors, the compiler provides a default con-
structor. This constructor contains no code (i.e., the constructor is empty) and takes no
arguments. Programmers also can provide a default constructor, as we demonstrated in
class cTime (Fig. 8.1), and aswe will seein the next example.

— 1Common Programming Error 8.3

If constructors are provided for a class, but none of the Pub1ic constructorsis a default
constructor, and an attempt is made to call a default constructor to initialize an object of the
class, a syntax error occurs. A constructor can be called with no argumentsonly if there are
no constructors for the class (the default constructor is called) or if the class includes a de-
fault constructor.

8.6 Using Overloaded Constructors

Like methods, constructors of aclass can be overloaded. This means that several construc-
torsin aclass can have the exact same method name (i.e., New). To overload a constructor
of aclass, provide a separate method definition with the same name for each version of the

Chapter 8 Object-Based Programming 309

method. Remember that overloaded constructors must have different numbers and/or types
and/or orders of parameters.

— 1Common Programming Error 8.4

Attempting to overload a constructor of a class with another method that has the exact same
signature (method name and number, types and order of parameters) is a syntax error.

The cTime constructor in Fig. 8.1 initialized mHour, mMinute and mSecond to 0
(i.e,, 12 midnight in universal time) with a cal to the class's SetTime method. Class
cTime2 (Fig. 8.4) overloads the constructor method to provide a variety of ways to ini-
tialize cTime2 objects. Each constructor calls method SetTime of the CTime2 object,
which ensures that the object begins in a consistent state by setting out-of-range values to
zero. The Visua Basic runtime invokes the appropriate constructor by matching the
number, types and order of the arguments specified in the constructor call with the number,
types and order of the parameters specified in each constructor method definition.

Because most of the codein classCcTime2 isidentical tothat in class CTime, thissec-
tion concentrates only on the overloaded constructors. Line 14 defines the default con-
structor. Line 20 definesaCcTime2 constructor that receivesasingle Integer argument,
representing the mHour. Line 26 defines a CTime2 constructor that receives two
Integer arguments, representing themHour and mMinute. Line 33 definesa CTime2
constructor that receives three Integer arguments representing the mHour, mMinute
and mSecond. Line 40 definesaCcTime2 constructor that receives areference to another
CTime2 object. When thislast constructor isemployed, the valuesfrom the CTime2 argu-
ment are used to initidize themHour, mMinute and mSecond values. Even though class
CTime2 declares these values as Private (lines 8-10), the CTime2 object can access
these values directly using the expressions timeValue.mHour, timeValue.mMi -
nute and timeValue.mSecond.

No constructor specifiesareturn type; doing so isasyntax error. Also, notice that each
constructor receives a different number or different types of arguments. Even though only
two of the constructorsreceive valuesfor themHour, mMinute andmSecond, each con-
structor calls SetTime with values for mHour, mMinute and mSecond and substitutes
zeros for the missing values to satisfy setTime’s requirement of three arguments.

| When one object of a class has a reference to another object of the same class, thefirst object
can access all the second object’ s data and methods (including those that are Private).

Class CTime2
Inherits Object

Private mHour As Integer
Private mMinute As Integer
Private mSecond As Integer

POOWO~NOUAWNE

e

Fig. 8.4 Overloading constructors (part 1 of 3).

310 Object-Based Programming Chapter 8

12

13

14 Public Sub New ()

15 SetTime ()

16 End Sub

17

18

19

20 Public Sub New(ByVal hourValue As Integer)

21 SetTime (hourValue)

22 End Sub

23

24

25

26 Public Sub New(ByVal hourValue As Integer, _

27 ByVal minuteValue As Integer)

28

29 SetTime (hourValue, minuteValue)

30 End Sub

31

32

33 Public Sub New(ByVal hourValue As Integer, _

34 ByVal minuteValue As Integer, ByVal secondValue As Integer)
35

36 SetTime (hourValue, minuteValue, secondValue)
37 End Sub

38

39

40 Public Sub New(ByVal timeValue As CTime2)

41 SetTime (timeValue.mHour, timeValue.mMinute, timeValue.mSecond)
42 End Sub

43

44

45

46

47 Public Sub SetTime (Optional ByVal hourValue As Integer = 0, _
48 Optional ByVal minuteValue As Integer = 0, _
49 Optional ByVal secondValue As Integer = 0)
50

51

52 If (hourvValue >= AndAlso hourValue <) Then
53 mHour = hourValue

54 Else

55 mHour =

56 End If

517

58

59 If (minuteValue >= AndAlso minuteValue <) Then
60 mMinute = minuteValue

61 Else

62 mMinute =

63 End If

64

Fig. 8.4 Overloading constructors (part 2 of 3).

Chapter 8 Object-Based Programming 311

65

66 If (secondValue >= AndAlso secondValue <) Then
67 mSecond = secondValue

68 Else

69 mSecond =

70 End If

71

72 End Sub

73

74

75 Public Function ToUniversalString() As String
76 Return String.Format (o _
77 mHour, mMinute, mSecond)

78 End Function

79

80

81 Public Function ToStandardString() As String
82 Dim suffix As String =

83 Dim format As String =

84 Dim standardHour As Integer

85

86

87 If mHour < Then

88 suffix =

89 End If

90

91

92 If (mHour = OrElse mHour = () Then

93 standardHour =

94 Else

95 standardHour = mHour Mod

96 End If

97

98 Return String.Format (format, standardHour, mMinute, _
99 mSecond) & suffix

100 End Function

101

102 End Class

Fig. 8.4 Overloading constructors (part 3 of 3).

A constructor can call other class methods that use instance variables not yet initialized. Us-

——az- Common Programming Error 8.5
@ ing instance variables before they have been initialized can lead to logic errors.

Figure 8.5 (modTimeTest2) demonstrates the use of overloaded constructors
(Fig. 8.4). Lines 1116 creste six CTime2 objects that invoke various constructors of the
class. Line 11 specifies that it invokes the default constructor by placing an empty set of
parentheses after the class name. Lines 12-16 of the program demonstrate the passing of
arguments to the cTime2 constructors. To invoke the appropriate constructor, pass the
proper number, typesand order of arguments (specified by the constructor’ sdefinition) to that
congtructor. For example, line 13 invokes the constructor that is defined in lines 26-30 of

312 Object-Based Programming Chapter 8

Fig. 8.4. Lines21-55invokemethods ToUniversalString and ToStandardString
for each cTime2 object to demonstrate how the constructors initialize the objects.

1

2

3

4 TImports System.Windows.Forms

5

6 Module modTimeTest2

he

8 Sub Main ()

9

10

11 Dim timel As New CTime2 ()

12 Dim time2 As New CTime2(2)

13 Dim time3 As New CTime2 (21,)

14 Dim time4 As New CTime2 (12, 0)

15 Dim time5 As New CTime2 (27, ,)

16 Dim time6 As New CTime2 (time4)

17

18 Const As Integer =

19

20

21 Dim output As String = & &
22 & &

23 Space () & timel.ToUniversalString() &

24 & Space () & timel.ToStandardString()

25

26

27 output &= & _

28 &
29 & Space () &

30 time2.ToUniversalString() & & Space () &
31 time2.ToStandardString ()

32

33

34 output &= &

35 &
36 & Space() & time3.ToUniversalString() & _
37 & Space () & time3.ToStandardString()

38

39

40 output &= & _

41 &

42 & Space() & time4.ToUniversalString() & _
43 & Space() & time4.ToStandardString()

44

45

46 output &= &

47 &

48 & Space () & time5.ToUniversalString() & _
49 & Space() & time5.ToStandardString()

50

Fig. 8.5 Overloaded-constructor demonstration (part 1 of 2).

Chapter 8 Object-Based Programming 313

52 output &= & _

53 & &
54 Space () & time6.ToUniversalString() &

55 & Space() & time6.ToStandardString()
St MessageBox.Show (output,

59 End Sub

61 End Module

Liriri=iral e Jusrudn k] G ﬂ

L e
reu sl pd s et D ettt el el

Hea%bed el v - masmhed; oz ok e

[T [R R R 1 P A Y |
L TEY
LT)

HesS:bd o, 0 -z and s sone zociHAd

Fig. 8.5 Overloaded-constructor demonstration (part 2 of 2).

Each cTime2 constructor can be written to include a copy of the appropriate statements
from method setTime. Thismight be dightly more efficient, becauseit eliminatesthe extra
call to setTime. However, consider what would happen if the programmer changesthe rep-
resentation of the time from three Integer vaues (requiring 12 bytes of memory) to a
single Integer vaue representing the total number of seconds that have el apsed in the day
(requiring 4 bytes of memory). Placing identical code in the cTime2 constructors and
method SetTime makes such a change in the class definition more difficult. If the imple-
mentation of method SetTime changes, the implementation of the CTime2 constructors
would need to change accordingly. If the cTime2 constructors call SetTime directly, any
changesto the implementation of SetTime must be made only once, thusreducing the like-
lihood of a programming error when altering the implementation.

ﬁlf a method of a class provides functionality required by a constructor (or other method) of
the class, call that method from the constructor (or other method). This simplifies the main-
tenance of the code and reduces the likelihood of introducing an error in the code.

314 Object-Based Programming Chapter 8

8.7 Properties

Methods of a class can manipulate that class's Private instance variables. A typical ma-
nipulation might be the adjustment of a customer’s bank balance—a Private instance
variable of aclass CBankAccount—aComputeInterest method.

Classes often provide Public propertiesto allow clientsto set (i.e., assign valuesto)
or set (i.e., obtain the values of) Private instance variables. In Fig. 8.6, we show how to
create three properties—Hour, Minute and Second. Hour accesses variable mHour,
Minute accesses variable mMinute and Second accesses variable mSecond. Each
property contains a Get accessor (to retrieve the field value) and a Set accessor (to
modify the field value).

Although providing Set and Get accessors appears to be the same as making the
instance variables Public, thisis not the case. Thisis another one of Visual Basic’s sub-
tleties that makes the language so attractive from a software-engineering standpoint. If an
instance variableis Public, theinstance variable can be read or written by any method in
the program. If an instance variable is Private, a Public get method seems to allow
other methods to read the data at will. However, the get method can control the formatting
and display of the data. A Public set method can scrutinize attempts to modify the
instance variable's value, thus ensuring that the new value is appropriate for that data
member. For example, an attempt to set the day of the month to 37 would be rejected, and
an attempt to set a person’s weight to a negative value would be rejected. Therefore,
although set and get methods provide accessto Private data, theimplementation of these
methods can restrict access to that data.

The declaration of instance variables as Private does not guarantee data integrity.
Programmers must provide validity checking—Visual Basic provides only the framework
with which programmers can design better programs.

Methods that set the values of Private data should verify that the intended new values are
proper; if they are not, the set methods should place the Private instance variablesinto
an appropriate consistent state.

A class's Set accessors cannot return values indicating a failed attempt to assign
invalid data to objects of the class. Such return values could be useful to a class's clients
for handling errors. In this case, clients could take appropriate actions if the objects occupy
invalid states. Chapter 11 presents exception handling—a mechanism that can be used to
notify aclass's clients of failed attempts to set objects of that class to consistent states.

Figure 8.6 enhances our CTime class (now caled CTime3) to include properties for
themHour, mMinute andmSecond Private instancevariables. The Set accessors of
these properties strictly control the setting of the instance variables to valid values. An
attempt to set any instance variable to an incorrect value causes the instance variable to be
set to zero (thus leaving the instance variable in a consistent state). Each Get accessor
returns the appropriate instance variable’ s value.

1
2
3

Fig. 8.6 Properties in a class (part 1 of 4).

Chapter 8 Object-Based Programming 315

4 Class CTime3

5 Inherits Object

6

7

8 Private mHour As Integer

9 Private mMinute As Integer

10 Private mSecond As Integer

11

12

13

14 Public Sub New ()

15 SetTime (0, 0, 0)

16 End Sub

17

18

19

20 Public Sub New(ByVal hourValue As Integer)
21 SetTime (hourvalue, 0, 0)

22 End Sub

23

24

25

26 Public Sub New(ByVal hourValue As Integer,
27 ByVal minuteValue As Integer)

28

29 SetTime (hourValue, minutevValue, 0)

30 End Sub

31

32

33 Public Sub New(ByVal hourValue As Integer, _
34 ByVal minuteValue As Integer, ByVal secondValue As Integer)
35

36 SetTime (hourValue, minuteValue, secondValue)
37 End Sub

38

39

40 Public Sub New(ByVal timeValue As CTime3)

41 SetTime (timeValue.mHour, timeValue.mMinute,
42 timeValue.mSecond)

43 End Sub

44

45

46

47 Public Sub SetTime (ByVal hourValue As Integer, _
48 ByVal minuteValue As Integer, ByVal secondValue As Integer)
49

50 Hour = hourValue

51 Minute = minuteValue

52 Second = secondValue

53 End Sub

54

Fig. 8.6 Properties in a class (part 2 of 4).

316 Object-Based Programming Chapter 8
55
56 Public Property Hour () As Integer
57
58
59 Get
60 Return mHour
61 End Get
62
63
64 Set (ByVal value As Integer)
65
66 If (value >= AndAlso value <) Then
67 mHour = value
68 Else
69 mHour =
70 End If
71
72 End Set
73
74 End Property
75
76
77 Public Property Minute() As Integer
78
79
80 Get
81 Return mMinute
82 End Get
83
84
85 Set (ByVal value As Integer)
86
87 If (value >= AndAlso value <) Then
88 mMinute = value
89 Else
90 mMinute =
91 End If
92
93 End Set
94
95 End Property
96
97
98 Public Property Second() As Integer
99
100
101 Get
102 Return mSecond
103 End Get
104

Properties in a class (part 3 of 4).

Chapter 8 Object-Based Programm