
Contents

Contents vii

Illustrations xxviii

Preface xxxvii

1 Introduction to Computers, Internet and 
Visual Basic .NET 1
1.1 Introduction 2
1.2 What Is a Computer? 3
1.3 Computer Organization 4
1.4 Evolution of Operating Systems 5
1.5 Personal Computing, Distributed Computing and Client/Server Computing 5
1.6 Machine Languages, Assembly Languages and High-Level Languages 6
1.7 Visual Basic .NET 7
1.8 C, C++, Java™ and C# 9
1.9 Other High-Level Languages 10
1.10 Structured Programming 10
1.11 Key Software Trend: Object Technology 11
1.12 Hardware Trends 13
1.13 History of the Internet and World Wide Web 14
1.14 World Wide Web Consortium (W3C) 15
1.15 Extensible Markup Language (XML) 16
1.16 Introduction to Microsoft .NET 17
1.17 .NET Framework and the Common Language Runtime 18
1.18 Tour of the Book 20
1.19 Internet and World Wide Web Resources 29



VIII

2 Introduction to the Visual Studio .NET IDE 33
2.1 Introduction 34
2.2 Overview of the Visual Studio .NET IDE 34
2.3 Menu Bar and Toolbar 37
2.4 Visual Studio .NET IDE Windows 39

2.4.1 Solution Explorer 40
2.4.2 Toolbox 41
2.4.3  Properties Window 41

2.5 Using Help 44
2.6 Simple Program: Displaying Text and an Image 45
2.7 Internet and World Wide Web Resources 55

3 Introduction to Visual Basic Programming 61
3.1 Introduction 62
3.2 Simple Program: Printing a Line of Text 62
3.3 Another Simple Program: Adding Integers 70
3.4 Memory Concepts 73
3.5 Arithmetic 74
3.6 Decision Making: Equality and Relational Operators 78
3.7 Using a Dialog to Display a Message 82
3.8 Internet and World Wide Web Resources 88

4 Control Structures: Part 1 96
4.1 Introduction 97
4.2 Algorithms 97
4.3 Pseudocode 98
4.4 Control Structures 98
4.5 If/Then Selection Structure 102
4.6 If/Then/Else Selection Structure 104
4.7 While Repetition Structure 106
4.8 Do While/Loop Repetition Structure 108
4.9 Do Until/Loop Repetition Structure 109
4.10 Assignment Operators 110
4.11 Formulating Algorithms: Case Study 1 (Counter-Controlled Repetition) 112
4.12 Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 2 

(Sentinel-Controlled Repetition) 114
4.13 Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 3 

(Nested Control Structures) 119
4.14 Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 4 

(Nested Repetition Structures) 123
4.15 Introduction to Windows Application Programming 127

5 Control Structures: Part 2 144
5.1 Introduction 145
5.2 Essentials of Counter-Controlled Repetition 145
5.3 For/Next Repetition Structure 146
5.4 Examples Using the For/Next Structure 149



IX

5.5 Select Case Multiple-Selection Structure 155
5.6 Do/Loop While Repetition Structure 159
5.7 Do/Loop Until Repetition Structure 160
5.8 Using the Exit Keyword in a Repetition Structure 162
5.9 Logical Operators 164
5.10 Structured Programming Summary 170

6 Procedures 182
6.1 Introduction 183
6.2 Modules, Classes and Procedures 183
6.3 Sub Procedures 185
6.4 Function Procedures 188
6.5 Methods 190
6.6 Argument Promotion 195
6.7 Option Strict and Data-Type Conversions 196
6.8 Value Types and Reference Types 198
6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference 200
6.10 Duration of Identifiers 202
6.11 Scope Rules 203
6.12 Random-Number Generation 206
6.13 Example: Game of Chance 213
6.14 Recursion 218
6.15 Example Using Recursion: Fibonacci Series 221
6.16 Recursion vs. Iteration 225
6.17 Procedure Overloading and Optional Arguments 226

6.17.1 Procedure Overloading 226
6.17.2 Optional Arguments 228

6.18 Modules 231

7 Arrays 245
7.1 Introduction 246
7.2 Arrays 246
7.3 Declaring and Allocating Arrays 248
7.4 Examples Using Arrays 249

7.4.1 Allocating an Array 250
7.4.2 Initializing the Values in an Array 251
7.4.3 Summing the Elements of an Array 252
7.4.4 Using Arrays to Analyze Survey Results 253
7.4.5 Using Histograms to Display Array Data Graphically 256

7.5 Passing Arrays to Procedures 260
7.6 Passing Arrays: ByVal vs. ByRef 264
7.7 Sorting Arrays 268
7.8 Searching Arrays: Linear Search and Binary Search 272

7.8.1 Searching an Array with Linear Search 272
7.8.2 Searching a Sorted Array with Binary Search 275

7.9 Multidimensional Rectangular and Jagged Arrays 279



X

7.10 Variable-Length Parameter Lists 287
7.11 For Each/Next Repetition Structure 288

8 Object-Based Programming 296
8.1 Introduction 297
8.2 Implementing a Time Abstract Data Type with a Class 298
8.3 Class Scope 306
8.4 Controlling Access to Members 306
8.5 Initializing Class Objects: Constructors 308
8.6 Using Overloaded Constructors 308
8.7 Properties 314
8.8 Composition: Objects as Instance Variables of Other Classes 321
8.9 Using the Me Reference 324
8.10 Garbage Collection 326
8.11 Shared Class Members 327
8.12 Const and ReadOnly Members 331
8.13 Data Abstraction and Information Hiding 334
8.14 Software Reusability 335
8.15 Namespaces and Assemblies 336
8.16 Class View and Object Browser 340

9 Object-Oriented Programming: Inheritance 349
9.1 Introduction 350
9.2 Base Classes and Derived Classes 351
9.3 Protected and Friend Members 354
9.4 Relationship between Base Classes and Derived Classes 354
9.5 Case Study: Three-Level Inheritance Hierarchy 372
9.6 Constructors and Finalizers in Derived Classes 376
9.7 Software Engineering with Inheritance 382

10 Object-Oriented Programming: Polymorphism 388
10.1 Introduction 389
10.2 Derived-Class-Object to Base-Class-Object Conversion 389
10.3 Type Fields and Select Case Statements 396
10.4 Polymorphism Examples 397
10.5 Abstract Classes and Methods 398
10.6 Case Study: Inheriting Interface and Implementation 400
10.7 NotInheritable Classes and NotOverridable Methods 408
10.8 Case Study: Payroll System Using Polymorphism 409
10.9 Case Study: Creating and Using Interfaces 419
10.10 Delegates 432

11 Exception Handling 441
11.1 Introduction 442
11.2 Exception Handling Overview 443
11.3 Example: DivideByZeroException 446
11.4 .NET Exception Hierarchy 450



XI

11.5 Finally Block 452
11.6 Exception Properties 459
11.7 Programmer-Defined Exception Classes 464
11.8 Handling Overflows 468

12 Graphical User Interface Concepts: Part 1 475
12.1 Introduction 476
12.2 Windows Forms 478
12.3 Event-Handling Model 480
12.4 Control Properties and Layout 487
12.5 Labels, TextBoxes and Buttons 491
12.6 GroupBoxes and Panels 494
12.7 CheckBoxes and RadioButtons 497
12.8 PictureBoxes 508
12.9 Mouse-Event Handling 510
12.10 Keyboard-Event Handling 513

13 Graphical User Interfaces Concepts: Part 2 523
13.1 Introduction 524
13.2 Menus 524
13.3 LinkLabels 534
13.4 ListBoxes and CheckedListBoxes 538

13.4.1 ListBoxes 540
13.4.2 CheckedListBoxes 542

13.5 ComboBoxes 545
13.6 TreeViews 550
13.7 ListViews 555
13.8 Tab Control 562
13.9 Multiple-Document-Interface (MDI) Windows 567
13.10 Visual Inheritance 576
13.11 User-Defined Controls 580

14 Multithreading 592
14.1 Introduction 593
14.2 Thread States: Life Cycle of a Thread 595
14.3 Thread Priorities and Thread Scheduling 596
14.4 Thread Synchronization and Class Monitor 601
14.5 Producer/Consumer Relationship without Thread Synchronization 603
14.6 Producer/Consumer Relationship with Thread Synchronization 609
14.7 Producer/Consumer Relationship: Circular Buffer 618

15 Strings, Characters and Regular Expressions 633
15.1 Introduction 634
15.2 Fundamentals of Characters and Strings 634
15.3 String Constructors 635
15.4 String Length and Chars Properties, and CopyTo Method 637
15.5 Comparing Strings 639



XII

15.6 String Method GetHashCode 643
15.7 Locating Characters and Substrings in Strings 644
15.8 Extracting Substrings from Strings 647
15.9 Concatenating Strings 648
15.10 Miscellaneous String Methods 649
15.11 Class StringBuilder 651
15.12 StringBuilder Indexer, Length and Capacity Properties, 

and EnsureCapacity Method 652
15.13 StringBuilder Append and AppendFormat Methods 654
15.14 StringBuilder Insert, Remove and Replace Methods 657
15.15 Char Methods 660
15.16 Card Shuffling and Dealing Simulation 663
15.17 Regular Expressions and Class Regex 667

16 Graphics and Multimedia 683
16.1 Introduction 684
16.2 Graphics Contexts and Graphics Objects 686
16.3 Color Control 687
16.4 Font Control 694
16.5 Drawing Lines, Rectangles and Ovals 699
16.6 Drawing Arcs 702
16.7 Drawing Polygons and Polylines 705
16.8 Advanced Graphics Capabilities 709
16.9 Introduction to Multimedia 714
16.10 Loading, Displaying and Scaling Images 714
16.11 Animating a Series of Images 716
16.12 Windows Media Player 729
16.13 Microsoft Agent 731

17 Files and Streams 752
17.1 Introduction 753
17.2 Data Hierarchy 753
17.3 Files and Streams 755
17.4 Classes File and Directory 757
17.5 Creating a Sequential-Access File 767
17.6 Reading Data from a Sequential-Access File 778
17.7 Random-Access Files 789
17.8 Creating a Random-Access File 794
17.9 Writing Data Randomly to a Random-Access File 797
17.10 Reading Data Sequentially from a Random-Access File 802
17.11 Case Study: A Transaction-Processing Program 807

18 Extensible Markup Language (XML) 833
18.1 Introduction 834
18.2 XML Documents 834
18.3 XML Namespaces 839
18.4 Document Object Model (DOM) 842



XIII

18.5 Document Type Definitions (DTDs),  Schemas and Validation 860
18.5.1 Document Type Definitions 861
18.5.2 Microsoft XML Schemas 865

18.6 Extensible Stylesheet Language and XslTransform 870
18.7 Microsoft BizTalk™ 877
18.8 Internet and World Wide Web Resources 880

19 Database, SQL and ADO .NET 887
19.1 Introduction 888
19.2 Relational Database Model 889
19.3 Relational Database Overview: Books Database 890
19.4 Structured Query Language (SQL) 896

19.4.1 Basic SELECT Query 897
19.4.2 WHERE Clause 898
19.4.3 ORDER BY Clause 901
19.4.4 Merging Data from Multiple Tables: INNER JOIN 903
19.4.5 Joining Data from Tables Authors, AuthorISBN,

Titles and Publishers 906
19.4.6 INSERT Statement 909
19.4.7 UPDATE Statement 910
19.4.8 DELETE Statement 911

19.5 ADO .NET Object Model 912
19.6 Programming with ADO .NET: Extracting Information from a DBMS 913

19.6.1 Connecting to and Querying an Access Data Source 913
19.6.2 Querying the Books Database 921

19.7 Programming with ADO .NET: Modifying a DBMS 923
19.8 Reading and Writing XML Files 932

20 ASP .NET, Web Forms and Web Controls 941
20.1 Introduction 942
20.2 Simple HTTP Transaction 943
20.3 System Architecture 945
20.4 Creating and Running a Simple Web-Form Example 946
20.5 Web Controls 958

20.5.1 Text and Graphics Controls 958
20.5.2 AdRotator Control 964
20.5.3 Validation Controls 969

20.6 Session Tracking 979
20.6.1 Cookies 980
20.6.2 Session Tracking with HttpSessionState 989

20.7 Case Study: Online Guest book 998
20.8 Case Study: Connecting to a Database in ASP .NET 1004
20.9 Tracing 1019
20.10 Internet and World Wide Web Resources 1021

21 ASP .NET and Web Services 1030
21.1 Introduction 1031



XIV

21.2 Web Services 1032
21.3 Simple Object Access Protocol (SOAP) and Web Services 1036
21.4 Publishing and Consuming Web Services 1037
21.5 Session Tracking in Web Services 1053
21.6 Using Web Forms and Web Services 1066
21.7 Case Study: Temperature Information Application 1072
21.8 User-Defined Types in Web Services 1081
21.9 Internet and World Wide Web Resources 1091

22 Networking: Streams-Based Sockets 
and Datagrams 1096
22.1 Introduction 1097
22.2 Establishing a Simple Server (Using Stream Sockets) 1098
22.3 Establishing a Simple Client (Using Stream Sockets) 1100
22.4 Client/Server Interaction via Stream-Socket Connections 1101
22.5 Connectionless Client/Server Interaction via Datagrams 1110
22.6 Client/Server Tic-Tac-Toe Using a Multithreaded Server 1116

23 Data Structures and Collections 1136
23.1 Introduction 1137
23.2 Self-Referential Classes 1137
23.3 Linked Lists 1139
23.4 Stacks 1152
23.5 Queues 1156
23.6 Trees 1160

23.6.1 Binary Search Tree of Integer Values 1161
23.6.2 Binary Search Tree of IComparable Objects 1168

23.7 Collection Classes 1175
23.7.1 Class Array 1176
23.7.2 Class ArrayList 1179
23.7.3 Class Stack 1185
23.7.4 Class Hashtable 1189

24 Accessibility 1203
24.1 Introduction 1204
24.2 Regulations and Resources 1205
24.3 Web Accessibility Initiative 1207
24.4 Providing Alternatives for Images 1208
24.5 Maximizing Readability by Focusing on Structure 1209
24.6 Accessibility in Visual Studio .NET 1209

24.6.1 Enlarging Toolbar Icons 1210
24.6.2 Enlarging the Text 1211
24.6.3 Modifying the Toolbox 1212
24.6.4 Modifying the Keyboard 1213
24.6.5 Rearranging Windows 1214

24.7 Accessibility in Visual Basic 1215
24.8 Accessibility in XHTML Tables 1221



XV

24.9 Accessibility in XHTML Frames 1225
24.10 Accessibility in XML 1226
24.11 Using Voice Synthesis and Recognition with VoiceXML™ 1226
24.12 CallXML™ 1233
24.13 JAWS® for Windows 1240
24.14 Other Accessibility Tools 1240
24.15 Accessibility in Microsoft® Windows® 2000 1241

24.15.1 Tools for People with Visual Impairments 1243
24.15.2 Tools for People with Hearing Impairments 1246
24.15.3 Tools for Users Who Have Difficulty Using the Keyboard 1247
24.15.4 Microsoft Narrator 1251
24.15.5 Microsoft On-Screen Keyboard 1252
24.15.6 Accessibility Features in Microsoft Internet Explorer 5.5 1253

24.16 Internet and World Wide Web Resources 1255

A Operator Precedence Chart 1264

B Number Systems (on CD) 1266
B.1 Introduction 1267
B.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal Numbers 1270
B.3 Converting Octal Numbers and Hexadecimal Numbers to Binary Numbers 1272
B.4 Converting from Binary, Octal or Hexadecimal to Decimal 1272
B.5 Converting from Decimal to Binary, Octal, or Hexadecimal 1273
B.6 Negative Binary Numbers: Two’s Complement Notation 1274

C Career Opportunities (on CD) 1280
C.1 Introduction 1281
C.2 Resources for the Job Seeker 1282
C.3 Online Opportunities for Employers 1283

C.3.1 Posting Jobs Online 1285
C.3.2 Problems with Recruiting on the Web 1287
C.3.3 Diversity in the Workplace 1287

C.4 Recruiting Services 1288
C.5 Career Sites 1289

C.5.1 Comprehensive Career Sites 1289
C.5.2 Technical Positions 1290
C.5.3 Wireless Positions 1290
C.5.4 Contracting Online 1291
C.5.5 Executive Positions 1292
C.5.6 Students and Young Professionals 1293
C.5.7 Other Online Career Services 1293

C.6 Internet and World Wide Web Resources 1294

D Visual Studio .NET Debugger 1302
D.1 Introduction 1303
D.2 Breakpoints 1304
D.3 Examining Data 1306



XVI

D.4 Program Control 1308
D.5 Additional Procedure Debugging Capabilities 1312
D.6 Additional Class Debugging Capabilities 1314

E ASCII Character Set 1319

F Unicode® (on CD) 1320
F.1 Introduction 1321
F.2 Unicode Transformation Formats 1322
F.3 Characters and Glyphs 1323
F.4 Advantages/Disadvantages of Unicode 1324
F.5 Unicode Consortium’s Web Site 1324
F.6 Using Unicode 1325
F.7 Character Ranges 1327

G COM Integration (on CD) 1332
G.1 Introduction 1332
G.2 ActiveX Integration 1333
G.3 DLL Integration 1337
G.4 Internet and World Wide Web Resources 1341

H Introduction to HyperText Markup 
Language 4: Part 1 (on CD) 1344
H.1 Introduction 1345
H.2 Markup Languages 1345
H.3 Editing HTML 1346
H.4 Common Elements 1346
H.5 Headers 1349
H.6 Linking 1350
H.7 Images 1352
H.8 Special Characters and More Line Breaks 1356
H.9 Unordered Lists 1358
H.10 Nested and Ordered Lists 1359
H.11 Internet and World Wide Web Resources 1362

I Introduction to HyperText Markup 
Language 4: Part 2 (on CD) 1367
I.1 Introduction 1368
I.2 Basic HTML Tables 1368
I.3 Intermediate HTML Tables and Formatting 1370
I.4 Basic HTML Forms 1373
I.5 More Complex HTML Forms 1376
I.6 Internal Linking 1383
I.7 Creating and Using Image Maps 1386
I.8 <meta> Tags 1388
I.9 frameset Element 1390



XVII

I.10 Nested framesets 1392
I.11 Internet and World Wide Web Resources 1394

J Introduction to XHTML: Part 1 (on CD) 1400
J.1 Introduction 1401
J.2 Editing XHTML 1401
J.3 First XHTML Example 1402
J.4 W3C XHTML Validation Service 1405
J.5 Headers 1406
J.6 Linking 1408
J.7 Images 1411
J.8 Special Characters and More Line Breaks 1415
J.9 Unordered Lists 1417
J.10 Nested and Ordered Lists 1418
J.11 Internet and World Wide Web Resources 1421

K Introduction to XHTML: Part 2 (on CD) 1426
K.1 Introduction 1427
K.2 Basic XHTML Tables 1427
K.3 Intermediate XHTML Tables and Formatting 1430
K.4 Basic XHTML Forms 1432
K.5 More Complex XHTML Forms 1435
K.6 Internal Linking 1443
K.7 Creating and Using Image Maps 1446
K.8 meta Elements 1448
K.9 frameset Element 1449
K.10 Nested framesets 1454
K.11 Internet and World Wide Web Resources 1456

L HTML/XHTML Special Characters 1462

M HTML/XHTML Colors 1463

N Crystal Reports® for Visual Studio .NET 1466
N.1 Introduction 1466
N.2 Crystal Reports Web Site Resources 1466
N.3 Crystal Reports and Visual Studio .NET 1467

N.3.1 Crystal Reports in Web Applications 1469
N.3.2 Crystal Reports and Web Services 1469

Bibliography 1471

Index 1475



Illustrations

1 Introduction to Computers, Internet and Visual Basic .NET
1.1 .NET Languages. 19

2 Introduction to the Visual Studio .NET IDE
2.1 Start Page in Visual Studio .NET. 35
2.2 New Project dialog. 36
2.3 Design view of Visual Studio .NET IDE. 37
2.4 Visual Studio .NET IDE menu bar. 38
2.5 Summary of Visual Studio .NET IDE menus. 38
2.6 IDE Toolbar. 38
2.7 Tool tip demonstration. 39
2.8 Toolbar icons for three Visual Studio .NET IDE windows. 39
2.9 Auto-hide feature demonstration. 40
2.10 Solution Explorer with an open solution. 41
2.11 Toolbox window. 42
2.12 Properties window. 43
2.13 Help menu commands. 44
2.14 Dynamic Help window. 44
2.15 Simple program executing. 45
2.16 Creating a new Windows Application. 46
2.17 Setting the project location in the Project Location dialog. 47
2.18 Setting the form’s Text property. 47
2.19 Form with sizing handles. 48
2.20 Changing the form’s BackColor property. 48
2.21 Adding a label to the form. 49
2.22 GUI after the form and label have been customized. 50
2.23 Properties window displaying the label’s properties. 50
2.24 Font dialog for selecting fonts, styles and sizes. 51



Illustrations XIX

2.25 Centering the label’s text. 51
2.26 Inserting and aligning the picture box. 52
2.27 Image property of the picture box. 52
2.28 Selecting an image for the picture box. 53
2.29 Picture box displaying an image. 53
2.30 IDE in run mode, with the running application in the foreground. 54

3 Introduction to Visual Basic Programming
3.1 Simple Visual Basic program. 63
3.2 Creating a Console Application with the New Project dialog. 65
3.3 IDE with an open console application. 66
3.4 Renaming the program file in the Properties window. 66
3.5 IntelliSense feature of the Visual Studio .NET IDE. 68
3.6 Parameter Info and Parameter List windows. 68
3.7 Executing the program shown in Fig. 3.1. 68
3.8 IDE indicating a syntax error. 69
3.9 Using multiple statements to print a line of text. 69
3.10 Addition program that adds two numbers entered by the user. 70
3.11 Dialog displaying a run-time error. 72
3.12 Memory location showing name and value of variable number1. 74
3.13 Memory locations after values for variables number1 and number2

have been input. 74
3.14 Memory locations after an addition operation. 74
3.15 Arithmetic operators. 75
3.16 Precedence of arithmetic operators. 76
3.17 Order in which a second-degree polynomial is evaluated. 79
3.18 Equality and relational operators. 79
3.19 Performing comparisons with equality and relational operators. 80
3.20 Precedence and associativity of operators introduced in this chapter. 82
3.21 Displaying text in a dialog. 83
3.22 Dialog displayed by calling MessageBox.Show. 85
3.23 Obtaining documentation for a class by using the Index dialog. 85
3.24 Documentation for the MessageBox class. 85
3.25 Adding a reference to an assembly in the Visual Studio .NET IDE. 86
3.26 Internet Explorer window with GUI components. 87

4 Control Structures: Part 1
4.1 Sequence structure flowchart. 100
4.2 Keywords in Visual Basic. 101
4.3 If/Then single-selection structure flowchart. 103
4.4 If/Then/Else double-selection structure flowchart. 105
4.5 While repetition structure used to print powers of two. 107
4.6 While repetition structure flowchart. 107
4.7 Do While/Loop repetition structure demonstration. 108
4.8 Do While/Loop repetition structure flowchart. 109
4.9 Do Until/Loop repetition structure demonstration. 109



XX Illustrations 

4.10 Do Until/Loop repetition structure flowchart. 110
4.11 Assignment operators. 111
4.12 Exponentiation using an assignment operator. 111
4.13 Pseudocode algorithm that uses counter-controlled repetition to 

solve the class-average problem. 112
4.14 Class-average program with counter-controlled repetition. 112
4.15 Pseudocode algorithm that uses sentinel-controlled repetition to 

solve the class-average problem. 116
4.16 Class-average program with sentinel-controlled repetition. 117
4.17 Pseudocode for examination-results problem. 122
4.18 Nested control structures used to calculate examination results. 122
4.19 Second refinement of the pseudocode. 126
4.20 Nested repetition structures used to print a square of *s. 126
4.21 IDE showing program code for Fig. 2.15. 129
4.22 Windows Form Designer generated code when expanded. 130
4.23 Code generated by the IDE for lblWelcome. 130
4.24 Properties window used to set a property value. 131
4.25 Windows Form Designer generated code reflecting new property values. 132
4.26 Changing a property in the code view editor. 132
4.27 New Text property value reflected in design mode. 132
4.28 Adding program code to FrmASimpleProgram_Load. 133
4.29 Method FrmASimpleProgram_Load containing program code. 134
4.30 Changing a property value at runtime. 134

5 Control Structures: Part 2
5.1 Counter-controlled repetition with the While structure. 146
5.2 Counter-controlled repetition with the For/Next structure. 146
5.3 For/Next header components. 148
5.4 For/Next repetition structure flowchart. 149
5.5 For/Next structure used for summation. 150
5.6 Message dialog icon constants. 151
5.7 Message dialog button constants. 151
5.8 For/Next structure used to calculate compound interest. 152
5.9 Formatting codes for Strings. 154
5.10 Select Case structure used to count grades. 155
5.11 Select Case multiple-selection structure flowchart. 158
5.12 Do/Loop While repetition structure. 159
5.13 Do/Loop While repetition structure flowchart. 160
5.14 Do/Loop Until repetition structure. 160
5.15 Do/Loop Until repetition structure flowchart. 161
5.16 Exit keyword in repetition structures. 162
5.17 Truth table for the AndAlso operator. 165
5.18 Truth table for the OrElse operator. 166
5.19 Truth table for the logical exclusive OR (Xor) operator. 167
5.20 Truth table for operator Not (logical NOT). 167
5.21 Logical operator truth tables. 168



Illustrations XXI

5.22 Precedence and associativity of the operators discussed so far. 169
5.23 Visual Basic’s single-entry/single-exit sequence and selection structures. 170
5.24 Visual Basic’s single-entry/single-exit repetition structures. 171
5.25 Structured programming rules. 172
5.26 Simplest flowchart. 173
5.27 Repeatedly applying rule 2 of Fig. 5.25 to the simplest flowchart. 173
5.28 Applying rule 3 of Fig. 5.25 to the simplest flowchart. 174
5.29 Stacked, nested and overlapped building blocks. 175
5.30 Unstructured flowchart. 175

6 Procedures
6.1 Hierarchical boss-procedure/worker-procedure relationship. 185
6.2 Sub procedure for printing payment information. 185
6.3 Function procedure for squaring an integer. 188
6.4 Method that determines the largest of three numbers. 190
6.5 Parameter Info feature of the Visual Studio .NET IDE. 193
6.6 IntelliSense feature of the Visual Studio .NET IDE. 193
6.7 Math class methods. 194
6.8 Widening conversions. 196
6.9 Property Pages dialog with Option Strict set to On. 197
6.10 Visual Basic primitive data types. 198
6.11 Literals with type characters. 199
6.12 ByVal and ByRef used to pass value-type arguments. 201
6.13 Scoping rules in a class. 204
6.14 Random integers created by calling method Next of class Random. 208
6.15 Demonstrates 4 die rolls. 209
6.16 Random class used to simulate rolling 12 six-sided dice. 211
6.17 Craps game using class Random. 214
6.18 Recursive evaluation of 5!. 219
6.19 Recursive factorial program. 220
6.20 Recursively generating Fibonacci numbers. 222
6.21 Recursive calls to method Fibonacci. 224
6.22 Overloaded methods. 226
6.23 Syntax error generated from overloaded procedures with identical 

parameter lists and different return types. 228
6.24 Optional argument demonstration with method Power. 229
6.25 Module used to define a group of related procedures. 231
6.26 Testing the modDice procedures. 232
6.27 Printing the results of cubing 10 numbers. 238
6.28 Towers of Hanoi for the case with four disks. 244

7 Arrays
7.1 Array consisting of 12 elements. 247
7.2 Creating an array. 250
7.3 Initializing array elements two different ways. 251
7.4 Computing the sum of the elements in an array. 252
7.5 Simple student-poll analysis program. 254



XXII Illustrations 

7.6 Program that prints histograms. 256
7.7 Using arrays to eliminate a Select Case structure. 257
7.8 Passing arrays and individual array elements to procedures. 261
7.9 Passing an array reference with ByVal and ByRef. 265
7.10 BubbleSort procedure in modBubbleSort. 268
7.11 Sorting an array with bubble sort. 269
7.12 Procedures for performing a linear search. 272
7.13 Linear search of an array. 273
7.14 Binary search of a sorted array. 276
7.15 Two-dimensional array with three rows and four columns. 280
7.16 Initializing multidimensional arrays. 281
7.17 Using jagged two-dimensional arrays. 283
7.18 Creating variable-length parameter lists. 287
7.19 Using For Each/Next with an array. 288

8 Object-Based Programming
8.1 Abstract data type representing time in 24-hour format. 299
8.2 Using an abstract data type. 303
8.3 Attempting to access restricted class members results in a syntax error. 307
8.4 Overloading constructors. 309
8.5 Overloaded-constructor demonstration. 312
8.6 Properties in a class. 314
8.7 Graphical user interface for class CTime3. 318
8.8 CDay class encapsulates day, month and year information. 321
8.9 CEmployee class encapsulates employee name, birthday and hire date. 323
8.10 Composition demonstration. 324
8.11 Class using Me reference. 325
8.12 Me reference demonstration. 326
8.13 CEmployee2 class objects share Shared variable. 328
8.14 Shared class member demonstration. 330
8.15 Constants used in class CCircleConstants. 332
8.16 Const and ReadOnly class member demonstration. 333
8.17 CEmployee3 class to store in class library. 336
8.18 Simple class library project. 338
8.19 Module modAssemblyTest references EmployeeLibrary.dll. 339
8.20 Class View of Fig. 8.1 and Fig. 8.2. 341
8.21 Invoking the Object Browser from the development environment. 342
8.22 Object Browser when user selects Object from development 

environment. 343

9 Object-Oriented Programming: Inheritance
9.1 Inheritance examples. 352
9.2 Inheritance hierarchy for university CCommunityMembers. 353
9.3 Portion of a CShape class hierarchy. 354
9.4 CPoint class represents an x-y coordinate pair. 355
9.5 modPointTest demonstrates class CPoint functionality. 357



Illustrations XXIII

9.6 CCircle class contains an x-y coordinate and a radius. 358
9.7 modCircleTest demonstrates class CCircle functionality. 360
9.8 CCircle2 class that inherits from class CPoint. 362
9.9 CPoint2 class represents an x-y coordinate pair as Protected data. 364
9.10 CCircle3 class that inherits from class CPoint2. 365
9.11 modCircleTest3 demonstrates class CCircle3 functionality. 367
9.12 CCircle4 class that inherits from class CPoint, which does not 

provide Protected data. 369
9.13 modCircleTest4 demonstrates class CCircle4 functionality. 371
9.14 CCylinder class inherits from class CCircle4 and Overrides

method Area. 373
9.15 Testing class CCylinder. 375
9.16 CPoint3 base class contains constructors and finalizer. 378
9.17 CCircle5 class inherits from class CPoint3 and overrides a 

finalizer method. 379
9.18 Demonstrating order in which constructors and finalizers are called. 381

10 Object-Oriented Programming: Polymorphism
10.1 CPoint class represents an x-y coordinate pair. 390
10.2 CCircle class that inherits from class CPoint. 391
10.3 Assigning derived-class references to base-class references. 393
10.4 Abstract CShape base class. 400
10.5 CPoint2 class inherits from MustInherit class CShape. 401
10.6 CCircle2 class that inherits from class CPoint2. 403
10.7 CCylinder2 class inherits from class CCircle2. 404
10.8 CTest2 demonstrates polymorphism in Point-Circle-Cylinder hierarchy. 406
10.9 MustInherit class CEmployee definition. 410
10.10 CBoss class inherits from class CEmployee. 411
10.11 CCommissionWorker class inherits from class CEmployee. 412
10.12 CPieceWorker class inherits from class CEmployee. 414
10.13 CHourlyWorker class inherits from class CEmployee. 416
10.14 CTest class tests the CEmployee class hierarchy. 417
10.15 Interface for returning age of objects of disparate classes. 420
10.16 CPerson class implements IAge interface. 421
10.17 CTree class implements IAge interface. 422
10.18 Demonstrate polymorphism on objects of disparate classes. 423
10.19 IShape interface provides methods Area and Volume and 

property Name. 426
10.20 CPoint3 class implements interface IShape. 426
10.21 CCircle3 class inherits from class CPoint3. 427
10.22 CCylinder3 class inherits from class CCircle3. 429
10.23 CTest3 uses interfaces to demonstrate polymorphism in 

Point-Circle-Cylinder hierarchy. 431
10.24 Bubble sort using delegates. 433
10.25 Bubble-sort Form application. 435



XXIV Illustrations 

11 Exception Handling
11.1 Exception handlers for FormatException and 

DivideByZeroException. 447
11.2 Finally statements always execute, regardless of whether an 

exception occurs. 454
11.3 Exception properties and stack unwinding. 462
11.4 ApplicationException derived class thrown when a program 

performs an illegal operation on a negative number. 465
11.5 FrmSquareRoot class throws an exception if an error occurs 

when calculating the square root. 466
11.6 OverflowException cannot occur if user disables 

integer-overflow checking. 468

12 Graphical User Interface Concepts: Part 1
12.1 GUI components in a sample Internet Explorer window. 477
12.2 Some basic GUI components. 477
12.3 Components and controls for Windows Forms. 478
12.4 Common Form properties, methods and events. 479
12.5 Event-handling model using delegates. 480
12.6 Events section in the Method Name drop-down menu. 482
12.7 Simple event-handling example using visual programming. 482
12.8 List of Form events. 486
12.9 Click event details. 486
12.10 Class Control properties and methods. 487
12.11 Anchoring demonstration. 489
12.12 Manipulating the Anchor property of a control. 489
12.13 Docking demonstration. 490
12.14 Control layout properties. 490
12.15 Common Label properties. 491
12.16 TextBox properties and events. 492
12.17 Button properties and events. 493
12.18 Program to display hidden text in a password box. 493
12.19 GroupBox properties. 495
12.20 Panel properties. 495
12.21 Creating a Panel with scrollbars. 495
12.22 Using GroupBoxes and Panels to arrange Buttons . 496
12.23 CheckBox properties and events. 498
12.24 Using CheckBoxes to change font styles . 498
12.25 RadioButton properties and events. 501
12.26 Using RadioButtons to set message-window options. 502
12.27 PictureBox properties and events. 508
12.28 Using a PictureBox to display images . 508
12.29 Mouse events, delegates and event arguments. 510
12.30 Using the mouse to draw on a form. 511
12.31 Keyboard events, delegates and event arguments. 513



Illustrations XXV

12.32 Demonstrating keyboard events. 514
12.33 Abbreviations for controls introduced in chapter. 517

13 Graphical User Interfaces Concepts: Part 2
13.1 Expanded and checked menus. 525
13.2 Visual Studio .NET Menu Designer 526
13.3 Adding MenuItems to MainMenu. 527
13.4 MainMenu and MenuItem properties and events. 527
13.5 Menus for changing text font and color. 528
13.6 LinkLabel control in running program. 534
13.7 LinkLabel properties and events. 534
13.8 LinkLabels used to link to a drive, a Web page and an application. 536
13.9 ListBox and CheckedListBox on a form. 538
13.10 ListBox properties, methods and events. 538
13.11 String Collection Editor. 540
13.12 Program that adds, removes and clears ListBox items. 540
13.13 CheckedListBox properties, methods and events. 543
13.14 CheckedListBox and ListBox used in a program to display a 

user selection. 544
13.15 ComboBox demonstration. 546
13.16 ComboBox properties and events. 546
13.17 ComboBox used to draw a selected shape. 547
13.18 TreeView displaying a sample tree. 550
13.19 TreeView properties and events. 550
13.20 TreeNode properties and methods. 551
13.21 TreeNode Editor. 552
13.22 TreeView used to display directories. 553
13.23 ListView properties and events. 556
13.24 Image Collection Editor window for an ImageList component. 556
13.25 ListView displaying files and folders. 557
13.26 Tabbed windows in Visual Studio .NET. 562
13.27 TabControl with TabPages example. 563
13.28 TabPages added to a TabControl. 563
13.29 TabControl properties and events. 564
13.30 TabControl used to display various font settings. 564
13.31 MDI parent window and MDI child windows. 568
13.32 SDI and MDI forms. 568
13.33 MDI parent and MDI child events and properties. 569
13.34 Minimized and maximized child windows. 570
13.35 MenuItem property MdiList example. 571
13.36 LayoutMdi enumeration values. 572
13.37 MDI parent-window class. 572
13.38 MDI child FrmChild. 575
13.39 Class FrmInheritance, which inherits from class Form, contains 

a button (Learn More). 577
13.40 Visual Inheritance through the Form Designer. 578



XXVI Illustrations 

13.41 Class FrmVisualTest, which inherits from class 
VisualForm.FrmInheritance, contains an additional button. 579

13.42 Custom control creation. 581
13.43 UserControl-defined clock. 581
13.44 Custom-control creation. 583
13.45 Project properties dialog. 583
13.46 Custom control added to the ToolBox. 584
13.47 Custom control added to a Form. 584
13.48 Prefixes for controls used in chapter. 585

14 Multithreading
14.1 Thread life cycle. 595
14.2 Thread-priority scheduling. 597
14.3 ThreadStart delegate Print displays message and sleeps for 

arbitrary duration of time. 598
14.4 Threads sleeping and printing. 600
14.5 Unsynchronized shared Integer buffer. 604
14.6 Producer places Integers in unsynchronized shared buffer. 605
14.7 Consumer reads Integers from unsynchronized shared buffer. 606
14.8 Producer and consumer threads accessing a shared object without 

synchronization. 608
14.9 Synchronized shared Integer buffer. 610
14.10 Producer places Integers in synchronized shared buffer. 612
14.11 Consumer reads Integers from synchronized shared buffer. 612
14.12 Producer and consumer threads accessing a shared object with

synchronization. 613
14.13 Synchronized shared circular buffer. 620
14.14 Producer places Integers in synchronized circular buffer. 623
14.15 Consumer reads Integers from synchronized circular buffer. 624
14.16 Producer and consumer threads accessing a circular buffer. 625

15 Strings, Characters and Regular Expressions
15.1 String constructors. 635
15.2 String Length and Chars properties, and CopyTo method. 637
15.3 String test to determine equality. 639
15.4 StartsWith and EndsWith methods. 642
15.5 GetHashCode method demonstration. 643
15.6 Searching for characters and substrings in Strings. 644
15.7 Substrings generated from Strings. 647
15.8  Concat Shared method. 648
15.9 String methods Replace, ToLower, ToUpper,

Trim and ToString. 649
15.10 StringBuilder class constructors . 651
15.11 StringBuilder size manipulation. 653
15.12 Append methods of StringBuilder. 655
15.13 StringBuilder’s AppendFormat method. 656
15.14 StringBuilder text insertion and removal. 658



Illustrations XXVII

15.15 StringBuilder text replacement. 659
15.16 Char’s Shared character-testing methods and case-conversion methods. 661
15.17 CCard class. 663
15.18 Card dealing and shuffling simulation. 664
15.19 Character classes. 668
15.20 Regular expressions checking birthdays. 668
15.21 Quantifiers used regular expressions. 670
15.22 Validating user information using regular expressions. 670
15.23 Regex methods Replace and Split. 675

16 Graphics and Multimedia
16.1  System.Drawing namespace’s Classes and Structures. 685
16.2 GDI+ coordinate system. Units are measured in pixels. 686
16.3 Color structure Shared constants and their RGB values. 688
16.4  Color structure members. 688
16.5 Classes that derive from class Brush. 689
16.6 Color value and alpha demonstration. 689
16.7 ColorDialog used to change background and text color. 692
16.8 Font class read-only properties. 694
16.9 Fonts and FontStyles. 695
16.10 An illustration of font metrics. 697
16.11 FontFamily methods that return font-metrics information. 697
16.12 FontFamily class used to obtain font-metric information. 697
16.13 Graphics methods that draw lines, rectangles and ovals. 699
16.14 Drawing lines, rectangles and elipses. 700
16.15 Ellipse bounded by a rectangle. 702
16.16 Positive and negative arc angles. 702
16.17 Graphics methods for drawing arcs. 703
16.18 Arc method demonstration. 703
16.19 Graphics methods for drawing polygons. 705
16.20 Polygon drawing demonstration. 705
16.21 Shapes drawn on a form. 709
16.22 Paths used to draw stars on a form. 712
16.23 Image resizing. 714
16.24 Animation of a series of images. 717
16.25 Container class for chess pieces . 718
16.26 Chess-game code (part 1 of 9). 720
16.27 Windows Media Player demonstration. 729
16.28 Peedy introducing himself when the window opens. 732
16.29 Peedy’s Pleased animation. 733
16.30 Peedy’s reaction when he is clicked. 734
16.31 Peedy flying animation 734
16.32 Peedy waiting for speech input. 735
16.33 Peedy repeating the user’s request for Seattle style pizza. 736
16.34 Peedy repeating the user’s request for anchovies as an additional topping. 736
16.35 Peedy recounting the order. 737



XXVIII Illustrations 

16.36 Peedy calculating the total. 737
16.37 Microsoft Agent demonstration. 738
16.38 GUI for eight queens exercise. 751

17 Files and Streams
17.1 Data hierarchy. 755
17.2 Visual Basic’s view of an n-byte file. 756
17.3 File class methods (partial list). 757
17.4 Directory class methods (partial list). 758
17.5 FrmFileTest class tests classes File and Directory. 759
17.6 FrmFileSearch class uses regular expressions to determine file types. 762
17.7 FrmBankUI class is the base class for GUIs in our 

file-processing applications. 767
17.8 CRecord class represents a record for sequential-access file-processing 

applications. 770
17.9 FrmCreateSequentialAccessFile class creates and writes 

to sequential-access files. 772
17.10 Sample data for the program of Fig. 17.9. 779
17.11 FrmReadSequentialAccessFile class reads sequential-access files. 779
17.12 FrmCreditInquiry class is a program that displays credit inquiries. 783
17.13 Random-access file with fixed-length records. 790
17.14 CRandomAccessRecord class represents a record for 

random-access file-processing applications. 791
17.15 FrmCreateRandomAccessFile class create files for 

random-access file-processing applications. 794
17.16 FrmWriteRandomAccessFile class writes records to r

andom-access files. 798
17.17 FrmReadRandomAccessFile class reads records from 

random-access files sequentially. 802
17.18 CTransaction class handles record transactions for the 

transaction-processor case study. 808
17.19 FrmTransactionProcessor class runs the 

transaction-processor application. 812
17.20 FrmStartDialog class enables users to access dialog 

boxes associated with various transactions. 813
17.21 FrmNewDialog class enables users to create records in 

transaction-processor case study. 816
17.22 FrmUpdateDialog class enables users to update records 

in transaction-processor case study. 819
17.23 FrmDeleteDialog class enables users to remove records 

from files in transaction-processor case study. 825
17.24 Inventory of a hardware store. 832

18 Extensible Markup Language (XML)
18.1 XML used to mark up an article. 834
18.2 article.xml displayed by Internet Explorer. 837
18.3 XML to mark up a business letter. 837



Illustrations XXIX

18.4 XML namespaces demonstration. 839
18.5 Default namespaces demonstration. 841
18.6 Tree structure for Fig. 18.1. 842
18.7 XmlNodeReader iterates through an XML document. 843
18.8 DOM structure of an XML document. 846
18.9 XPathNavigator class navigates selected nodes. 852
18.10 XML document that describes various sports. 859
18.11 XPath expressions and descriptions. 860
18.12 Document Type Definition (DTD) for a business letter. 861
18.13 XML document referencing its associated DTD. 863
18.14 XML Validator validates an XML document against a DTD. 864
18.15 XML Validator displaying an error message. 865
18.16 XML document that conforms to a Microsoft Schema document. 865
18.17 Schema file that contains structure to which book.xml conforms. 866
18.18 Schema-validation example. 867
18.19 XML file that does not conform to the Schema in Fig. 18.17. 869
18.20 XML document containing book information. 871
18.21 XSL document that transforms sorting.xml into XHTML. 872
18.22 XSL style sheet applied to an XML document. 875
18.23 BizTalk terminology. 877
18.24 BizTalk markup using an offer Schema. 878

19 Database, SQL and ADO .NET
19.1 Relational-database structure of an Employee table. 889
19.2 Result set formed by selecting Department and Location data

from the Employee table. 890
19.3 Authors table from Books. 890
19.4 Data from the Authors table of Books. 890
19.5 Publishers table from Books. 891
19.6 Data from the Publishers table of Books. 891
19.7 AuthorISBN table from Books. 892
19.8 Data from AuthorISBN table in Books. 892
19.9 Titles table from Books. 893
19.10 Data from the Titles table of Books. 893
19.11 Table relationships in Books. 896
19.12 SQL query keywords. 897
19.13 authorID and lastName from the Authors table. 898
19.14 Titles with copyrights after 1999 from table Titles. 899
19.15 Authors from the Authors table whose last names start with D. 900
19.16 Authors from table Authors whose last names contain i as their 

second letter. 901
19.17 Authors from table Authors in ascending order by lastName. 901
19.18 Authors from table Authors in descending order by lastName. 902
19.19 Authors from table Authors in ascending order by lastName

and by firstName. 903
19.20 Books from table Titles whose titles end with How to Program

in ascending order by title. 904



XXX Illustrations 

19.21 Authors from table Authors and ISBN numbers of the authors’ 
books, sorted in ascending order by lastName and firstName. 905

19.22 Joining tables to produce a result set in which each record contains 
an author, title, ISBN number, copyright and publisher name. 906

19.23 Portion of the result set produced by the query in Fig. 19.22. 907
19.24 Table Authors after an INSERT operation to add a record. 909
19.25 Table Authors after an UPDATE operation to change a record. 910
19.26 Table Authors after a DELETE operation to remove a record. 911
19.27  Database access and information display. 913
19.28 SQL statements executed on a database. 921
19.29  Database modification demonstration. 923
19.30 XML representation of a DataSet written to a file. 932
19.31 XML document generated from DataSet in XMLWriter. 934

20 ASP .NET, Web Forms and Web Controls
20.1 Client interacting with Web server. Step 1: The GET request, 

GET /books/downloads.htm HTTP/1.1. 944
20.2 Client interacting with Web server. Step 2: The HTTP response, 

HTTP/1.1 200 OK. 944
20.3 Three-tier architecture. 945
20.4 ASPX page that displays the Web server’s time. 946
20.5 Code-behind file for a page that displays the Web server’s time. 948
20.6 HTML response when the browser requests WebTime.aspx. 951
20.7 Creating an ASP.NET Web Application in Visual Studio. 953
20.8 Visual Studio creating and linking a virtual directory for the 

WebTime project folder. 953
20.9 Solution Explorer window for project WebTime. 953
20.10 Web Forms menu in the Toolbox. 954
20.11 Design mode of Web Form designer. 954
20.12 HTML mode of Web-Form designer. 955
20.13 Code-behind file for WebForm1.aspx generated by Visual Studio .NET. 956
20.14 FlowLayout and GridLayout illustration. 956
20.15 WebForm.aspx after adding two Labels and setting their properties. 957
20.16 Commonly used Web controls. 958
20.17 Web-controls demonstration. 959
20.18 AdRotator class demonstrated on a Web form. 964
20.19 Code-behind file for page demonstrating the AdRotator class. 965
20.20 AdvertisementFile used in AdRotator example. 967
20.21 Validators used in a Web Form that generates possible letter 

combinations from a phone number. 970
20.22 Code-behind file for the word-generator page. 972
20.23 HTML and JavaScript sent to the client browser. 976
20.24 ASPX file that presents a list of programming languages x. 981
20.25 Code-behind file that writes cookies to the client. 983
20.26 ASPX page that displays book information. 986
20.27 Cookies being read from a client in an ASP .NET application. 987



Illustrations XXXI

20.28 HttpCookie properties. 989
20.29 Options supplied on an ASPX page. 989
20.30 Sessions are created for each user in an ASP .NET Web application. 991
20.31 HttpSessionState properties. 995
20.32 Session information displayed in a ListBox. 995
20.33 Session data read by an ASP .NET Web application to provide 

recommendations for the user. 996
20.34 Guest-book application GUI. 998
20.35 ASPX file for the guest-book application. 999
20.36 Code-behind file for the guest-book application. 1001
20.37 Login Web Form. 1005
20.38 ASCX code for the header. 1007
20.39 Code-behind file for the login page for authors application. 1007
20.40 ASPX file that allows a user to select an author from a drop-down list. 1013
20.41 Database information being inputted into a DataGrid. 1014
20.42 ASPX page with tracing turned off. 1020
20.43 Tracing enabled on a page. 1020
20.44 Tracing information for a project. 1021

21 ASP .NET and Web Services
21.1 ASMX file rendered in Internet Explorer. 1033
21.2 Service description for a Web service. 1034
21.3 Invoking a method of a Web service from a Web browser. 1035
21.4 Results of invoking a Web-service method from a Web browser. 1035
21.5 SOAP request message for the HugeInteger Web service. 1036
21.6 HugeInteger Web service. 1038
21.7 Design view of a Web service. 1044
21.8 Adding a Web service reference to a project. 1045
21.9 Add Web Reference dialog. 1046
21.10 Web services located on localhost. 1046
21.11 Web reference selection and description. 1047
21.12 Solution Explorer after adding a Web reference to a project. 1047
21.13 Using the HugeInteger Web service. 1049
21.14 Blackjack Web service. 1054
21.15 Blackjack game that uses the Blackjack Web service. 1057
21.16 Airline reservation Web service. 1066
21.17 Airline Web Service in design view. 1069
21.18 ASPX file that takes reservation information. 1069
21.19 Code-behind file for the reservation page. 1070
21.20 TemperatureServer Web service. 1073
21.21 Class that stores weather information about a city. 1076
21.22 Receiving temperature and weather data from a Web service. 1077
21.23 Class that stores equation information. 1082
21.24 Web service that generates random equations. 1085
21.25 Returning an object from a Web-service method. 1086
21.26 Math-tutor application. 1087



XXXII Illustrations 

22 Networking: Streams-Based Sockets and Datagrams
22.1 Server portion of a client/server stream-socket connection. 1101
22.2 Client portion of a client/server stream-socket connection. 1104
22.3 Server-side portion of connectionless client/server computing. 1110
22.4 Client-side portion of connectionless client/server computing. 1112
22.5 Server side of client/server Tic-Tac-Toe program. 1116
22.6 CPlayer class represents a Tic-Tac-Toe player. 1119
22.7 Client side of client/server Tic-Tac-Toe program. 1122
22.8 CSquare class represents a square on the Tic-Tac-Toe board. 1128
22.9 English letters of the alphabet and decimal digits as expressed 

in international Morse code. 1135

23 Data Structures and Collections
23.1 Self-referential CNode class definition. 1138
23.2 Self-referential class objects linked together. 1139
23.3 Linked-list graphical representation. 1141
23.4 Self-referential class CListNode. 1141
23.5 Linked-list CList class. 1142
23.6 Exception thrown when removing node from empty linked list. 1145
23.7 Linked-list demonstration. 1146
23.8 InsertAtFront graphical representation. 1148
23.9 InsertAtBack graphical representation. 1149
23.10 RemoveFromFront graphical representation. 1150
23.11 RemoveFromBack graphical representation. 1151
23.12 Stack implementation by inheritance from class CList. 1153
23.13 Stack-by-inheritance test. 1154
23.14 Stack-by-composition test. 1155
23.15 Queue implemented by inheritance from class CList. 1157
23.16 Queue-by-inheritance test. 1158
23.17 Binary tree graphical representation. 1160
23.18 Binary search tree containing 12 values. 1160
23.19 Tree-node data structure. 1162
23.20 Tree data structure. 1163
23.21 Tree-traversal demonstration. 1166
23.22 A binary search tree. 1167
23.23 Tree node contains IComparables as data. 1169
23.24 Binary tree stores nodes with IComparable data. 1171
23.25 IComparable binary-tree demonstration. 1173
23.26 Array class demonstration. 1176
23.27 ArrayList methods (partial list). 1180
23.28 ArrayList class demonstration. 1180
23.29 Stack class demonstration. 1185
23.30 Hashtable class demonstration. 1190
23.31 CEmployee class. 1194



Illustrations XXXIII

24 Accessibility
24.1 Acts designed to ensure Internet access for people with disabilities. 1205
24.2 We Media’s home page. Wemedia.com home page 

(Courtesy of We Media Inc.) 1206
24.3 Enlarging icons using the Customize feature. 1210
24.4 Enlarged icons in the development window. 1210
24.5 Text Editor before modifying the font size. 1211
24.6 Enlarging text in the Options window. 1211
24.7 Text Editor after the font size is modified. 1212
24.8 Adding tabs to the Toolbox. 1213
24.9 Shortcut key creation. 1214
24.10 Removing tabs from the Visual Studio environment. 1214
24.11 Console windows with tabs and without tabs. 1215
24.12 Properties of class Control related to accessibility. 1216
24.13 Application with accessibility features. 1217
24.14 XHTML table without accessibility modifications. 1222
24.15 Table optimized for screen reading using attribute headers. 1223
24.16 Home page written in VoiceXML. 1227
24.17 Publication page of Deitel and Associates’ VoiceXML page. 1229
24.18 VoiceXML tags. 1233
24.19 Hello World CallXML example. (Courtesy of Voxeo, 

© Voxeo Corporation 2000–2001). 1234
24.20 CallXML example that reads three ISBN values . 

(Courtesy of Voxeo, © Voxeo Corporation 2000–2001.) 1235
24.21 CallXML elements. 1238
24.22 Text Size dialog. 1242
24.23 Display Settings dialog. 1243
24.24 Accessibility Wizard initialization options. 1243
24.25 Scroll Bar and Window Border Size dialog. 1244
24.26 Adjusting up window element sizes. 1244
24.27 Display Color Settings options. 1245
24.28  Accessibility Wizard mouse cursor adjustment tool. 1245
24.29 SoundSentry dialog. 1246
24.30 ShowSounds dialog. 1246
24.31 StickyKeys window. 1247
24.32 BounceKeys dialog. 1247
24.33 ToggleKeys window. 1248
24.34 Extra Keyboard Help dialog. 1248
24.35 MouseKeys window. 1249
24.36 Mouse Button Settings window. 1249
24.37 Mouse Speed dialog. 1250
24.38 Set Automatic Timeouts dialog. 1250
24.39 Saving new accessibility settings. 1251
24.40 Narrator window. 1252
24.41 Voice Settings window. 1252
24.42 Narrator reading Notepad text. 1253



XXXIV Illustrations 

24.43 Microsoft On-Screen Keyboard. 1253
24.44 Microsoft Internet Explorer 5.5’s accessibility options. 1254
24.45 Advanced accessibility settings in Microsoft Internet Explorer 5.5. 1255

A Operator Precedence Chart
A.1 Operator precedence chart. 1264

B Number Systems (on CD)
B.1 Digits of the binary, octal, decimal and hexadecimal number systems. 1268
B.2 Comparison of the binary, octal, decimal and hexadecimal 

number systems. 1269
B.3 Positional values in the decimal number system. 1269
B.4 Positional values in the binary number system. 1269
B.5 Positional values in the octal number system. 1270
B.6 Positional values in the hexadecimal number system. 1270
B.7 Decimal, binary, octal, and hexadecimal equivalents. 1270
B.8 Converting a binary number to decimal. 1272
B.9 Converting an octal number to decimal. 1272
B.10 Converting a hexadecimal number to decimal. 1273

C Career Opportunities (on CD)
C.1 Monster.com home page. (Courtesy of Monster.com.] 1283
C.2 FlipDog.com job search. (Courtesy of Flipdog.com.) 1284
C.3 List of a job seeker’s criteria. 1286
C.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of 

Advantage Hiring, Inc.) 1289
C.5 eLance.com request for proposal (RFP) example. (Courtesy 

of eLance, Inc.] 1292

D Visual Studio .NET Debugger
D.1 Syntax error. 1303
D.2 Debug sample program. 1304
D.3 Debug configuration setting. 1305
D.4 Setting a breakpoint. 1305
D.5 Console application suspended for debugging. 1305
D.6 Execution suspended at a breakpoint. 1306
D.7 Watch window. 1307
D.8 Autos and Locals windows. 1308
D.9 Immediate window. 1308
D.10 Debug toolbar icons. 1309
D.11 Breakpoints window. 1310
D.12 Disabled breakpoint. 1310
D.13 New Breakpoint dialog. 1311
D.14 Breakpoint Hit Count dialog. 1311
D.15 Breakpoint Condition dialog. 1311
D.16 Demonstrates procedure debugging. 1312
D.17 Call Stack window. 1312



Illustrations XXXV

D.18 IDE displaying a procedures calling point. 1313
D.19 Debug program control features. 1313
D.20 Using the Immediate window to debug procedures. 1314
D.21 Debugging a class. 1314
D.22 Breakpoint location for class debugging. 1315
D.23 Expanded class in Watch window. 1316
D.24 Expanded array in Watch window. 1316

E ASCII Character Set
E.1 ASCII character set. 1319

F Unicode® (on CD)
F.1 Correlation between the three encoding forms. 1323
F.2 Various glyphs of the character A. 1323
F.3 Windows application demonstrating Unicode encoding. 1326
F.4 Some character ranges. 1328

G COM Integration (on CD) 1332
G.1 ActiveX control registration. 1333
G.2 Customize Toolbox dialog with an ActiveX control selected. 1334
G.3 IDE’s toolbox and LabelScrollbar properties. 1335
G.4 ActiveX COM control integration in Visual Basic .NET. 1335
G.5 Add Reference dialog DLL Selection. 1338
G.6 COM DLL component in Visual Basic.NET. 1339

H Introduction to HyperText Markup 
Language 4: Part 1 (on CD)
H.1 Basic HTML file. 1347
H.2 Header elements h1 through h6. 1349
H.3 Linking to other Web pages. 1350
H.4 Linking to an email address. 1351
H.5 Placing images in HTML files. 1352
H.6 Using images as link anchors. 1354
H.7 Inserting special characters into HTML. 1356
H.8 Unordered lists in HTML. 1358
H.9 Nested and ordered lists in HTML. 1359

I Introduction to HyperText Markup 
Language 4: Part 2 (on CD)
I.1 HTML table. 1368
I.2 Complex HTML table. 1371
I.3 Simple form with hidden fields and a text box. 1373
I.4 Form including textareas, password boxes and checkboxes. 1376
I.5 Form including radio buttons and pulldown lists. 1379
I.6 Using internal hyperlinks to make your pages more navigable. 1383
I.7 Picture with links anchored to an image map. 1386
I.8 Using meta to provide keywords and a description. 1388



XXXVI Illustrations 

I.9 Web site using two frames—navigation and content. 1390
I.10 Framed Web site with a nested frameset. 1393

J Introduction to XHTML: Part 1 (on CD)
J.1 First XHTML example. 1402
J.2 Validating an XHTML document. (Courtesy of World Wide 

Web Consortium (W3C).) 1405
J.3 XHTML validation results. (Courtesy of World Wide 

Web Consortium (W3C).) 1406
J.4 Header elements h1 through h6. 1407
J.5 Linking to other Web pages. 1408
J.6 Linking to an e-mail address. 1410
J.7 Placing images in XHTML files. 1411
J.8 Using images as link anchors. 1413
J.9 Inserting special characters into XHTML. 1415
J.10 Nested and ordered lists in XHTML. 1418

K Introduction to XHTML: Part 2 (on CD)
K.1 XHTML table. 1427
K.2 Complex XHTML table. 1430
K.3 Simple form with hidden fields and a textbox. 1433
K.4 Form with textareas, password boxes and checkboxes. 1436
K.5 Form including radio buttons and drop-down lists. 1439
K.6 Using internal hyperlinks to make pages more easily navigable. 1443
K.7 Image with links anchored to an image map. 1446
K.8 Using meta to provide keywords and a description. 1448
K.9 Web document containing two frames—navigation and content. 1450
K.10 XHTML document displayed in the left frame of Fig. K.5. 1453
K.11 Framed Web site with a nested frameset. 1455
K.12 XHTML table for Exercise K.7. 1460
K.13 XHTML table for Exercise K.8. 1461

L HTML/XHTML Special Characters
L.1 XHTML special characters. 1462

M HTML/XHTML Colors
M.1 HTML/XHTML standard colors and hexadecimal RGB values. 1463
M.2 XHTML extended colors and hexadecimal RGB values. 1464

N Crystal Reports® for Visual Studio .NET
N.1 Report expert choices. (Courtesy Crystal Decisions) 1467
N.2 Expert formatting menu choices. (Courtesy of Crystal Decisions) 1468
N.3 Crystal Reports designer interface. (Courtesy of Crystal Decisions) 1469



Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

We wove a web in childhood,
A web of sunny air.
Charlotte Brontë

Welcome to Visual Basic .NET and the exciting world of Windows, Internet and World-
Wide-Web programming with Visual Studio and the .NET platform! This book is the first
in our new .NET How to Program series, which presents various leading-edge computing
technologies in the context of the .NET platform.

Visual Basic .NET provides the features that are most important to programmers, such
as object-oriented programming, strings, graphics, graphical-user-interface (GUI) compo-
nents, exception handling, multithreading, multimedia (audio, images, animation and
video), file processing, prepackaged data structures, database processing, Internet and
World-Wide-Web-based client/server networking and distributed computing. The lan-
guage is appropriate for implementing Internet-based and World-Wide-Web-based appli-
cations that seamlessly integrate with PC-based applications. Visual Basic .NET is the next
phase in the evolution of Visual Basic, the world’s most popular programming language.

The .NET platform offers powerful capabilities for software development and deploy-
ment, including independence from a specific language or platform. Rather than requiring
developers to learn a new programming language, programmers can contribute to the same
software project, but write code using any (or several) of the .NET languages (such as
Visual Basic .NET, Visual C++ .NET, C# and others) with which they are most competent.
In addition to providing language independence, .NET extends program portability by
enabling .NET applications to reside on, and communicate across, multiple platforms—
thus facilitating the delivery of Web services over the Internet. .NET enables Web-based
applications to be distributed to consumer-electronic devices, such as cell phones and per-



XXXVIII Preface

sonal digital assistants, as well as to desktop computers. The capabilities that Microsoft has
incorporated into the .NET platform create a new software-development paradigm that will
increase programmer productivity and decrease development time.

New Features in Visual Basic .NET How to Program: Second Edition
This edition contains many new features and enhancements, including:

• Full-Color Presentation. This book is now in full color. In the book’s previous
edition, the programs were displayed in black and the screen captures appeared in
a second color. Full color enables readers to see sample outputs as they would ap-
pear on a color monitor. Also, we now syntax color the Visual Basic .NET code,
similar to the way Visual Studio .NET colors the code in its editor window. Our
syntax-coloring conventions are as follows:

   comments appear in green
   keywords appear in dark blue
   literal values appear in light blue
   text, class, method and variable names appear in black
   errors and ASP delimiters appear in red

• “Code Washing.” This is our term for the process we use to format the programs
in the book so that they have a carefully commented, open layout. The code ap-
pears in full color and grouped into small, well-documented pieces. This greatly
improves code readability—an especially important goal for us, considering that
this book contains about 21,000 lines of code.

• Web Services and ASP .NET. Microsoft’s .NET strategy embraces the Internet and
Web as integral to the software development and deployment processes. Web ser-
vices, a key technology in this strategy, enables information sharing, commerce and
other interactions using standard Internet protocols and technologies, such as Hyper-
text Transfer Protocol (HTTP), Simple Object Access Protocol (SOAP) and Exten-
sible Markup Language (XML). Web services enable programmers to package
application functionality in a form that turns the Web into a library of reusable soft-
ware components. In Chapter 21, ASP .NET and Web Services, we present a Web
service that allows users to make airline seat reservations. In this example, a user ac-
cesses a Web page, chooses a seating option and submits the page to the Web server.
The page then calls a Web service that checks seat availability. We also present in-
formation relating to Web services in Appendix N, Crystal Reports for Visual Stu-
dio .NET, which discusses popular reporting software for database-intensive Visual
Basic .NET applications. Crystal Reports, which is integrated into Visual Studio
.NET, provides the ability to expose a report as a Web service. The appendix pro-
vides introductory information and then directs readers to a walkthrough of this pro-
cess on the Crystal Decisions Web site (www.crystaldecisions.com/net).

• Web Forms, Web Controls and ASP .NET. Applications developers must be able
to create robust, scalable Web-based applications. The .NET platform architecture
supports such applications. Microsoft’s .NET server-side technology, Active Serv-
er Pages (ASP) .NET, allows programmers to build Web documents that respond
to client requests. To enable interactive Web pages, server-side programs process
information users input into HTML forms. ASP .NET is a significant departure



Preface XXXIX

from previous versions of ASP, allowing developers to program Web-based appli-
cations using the powerful object-oriented languages of .NET. ASP .NET also pro-
vides enhanced visual programming capabilities, similar to those used in building
Windows forms for desktop programs. Programmers can create Web pages visual-
ly, by dragging and dropping Web controls onto a Web form. Chapter 20, ASP
.NET, Web Forms and Web Controls, introduces these powerful technologies.

• Object-Oriented Programming. Object-oriented programming is the most widely
employed technique for developing robust, reusable software, and Visual Basic
.NET offers enhanced object-oriented programming features. This text offers a
rich presentation of object-oriented programming. Chapter 8, Object-Based Pro-
gramming, introduces how to create classes and objects. These concepts are ex-
tended in Chapter 9, Object-Oriented Programming: Inheritance—which
discusses how programmers can create new classes that “absorb” the capabilities
of existing classes. Chapter 10, Object-Oriented Programming: Polymorphism—
familiarizes the reader with the crucial concepts of polymorphism, abstract class-
es, concrete classes and interfaces, which facilitate powerful manipulations
among objects belonging to an inheritance hierarchy.

• XML. Use of Extensible Markup Language (XML) is exploding in the software-de-
velopment industry, the e-business and e-commerce communities, and is pervasive
throughout the .NET platform. Because XML is a platform-independent technology
for describing data and for creating markup languages, XML’s data portability inte-
grates well with Visual Basic .NET’s portable applications and services. Chapter 18,
Extensible Markup Language (XML) introduces XML. In this chapter, we introduce
basic XML markup and discuss the technologies such as DTDs and Schema, which
are used to validate XML documents’ contents. We also explain how to program-
matically manipulate XML documents using the Document Object Model
(DOM™) and how to transform XML documents into other types of documents via
Extensible Stylesheet Language Transformations (XSLT).

• Multithreading. Computers enable us to perform many tasks in parallel (or con-
currently), such as printing documents, downloading files from a network and
surfing the Web. Multithreading is the technology through which programmers
can develop applications that perform concurrent tasks. Historically, a computer
has contained a single, expensive processor, which its operating system would
share among all applications. Today, processors are becoming so inexpensive that
it is possible to build affordable computers containing many processors that work
in parallel—such computers are called multiprocessors. Multithreading is effec-
tive on both single-processor and multiprocessor systems. Visual Basic .NET’s
multithreading capabilities make the platform and its related technologies better
prepared to deal with today’s sophisticated multimedia-intensive, database-inten-
sive, network-based, multiprocessor-based, distributed applications. Chapter 14,
Multithreading provides a detailed discussion of multithreading.

• Visual Studio .NET Debugger. Debuggers are programs that help programmers
find and correct logic errors in program code. Visual Studio .NET contains a pow-
erful debugging tool that allows programmers to analyze their program line-by-
line as the program executes. In Appendix D, Visual Studio .NET Debugger, we



XL Preface

explain how to use key debugger features, such as setting breakpoints and “watch-
es,” stepping into and out of procedures, and examining the procedure call stack.

• Appendix C, Career Opportunities. This appendix introduces career services
available on the Internet. We explore online career services from both the employ-
er’s and employee’s perspectives. We list many Web sites at which you can sub-
mit applications, search for jobs and review applicants (if you are interested in
hiring someone). We also review services that build recruiting pages directly into
e-businesses. One of our reviewers told us that he had used the Internet as a pri-
mary tool in a recent job search, and that this appendix would have helped him ex-
pand his search dramatically.

• Appendix F, Unicode. As computer systems evolved worldwide, computer ven-
dors developed numeric representations of character sets and special symbols for
the local languages spoken in different countries. In some cases, different repre-
sentations were developed for the same languages. Such disparate character sets
hindered communication among computer systems. Visual Basic .NET supports
the Unicode Standard (maintained by a non-profit organization called the Uni-
code Consortium), which maintains a single character set that specifies unique nu-
meric values for characters and special symbols in most of the world’s languages.
This appendix discusses the standard, overviews the Unicode Consortium Web
site (www.unicode.org) and presents a Visual Basic .NET application that
displays “Welcome to Unicode!” in several languages.

• COM (Component Object Model) Integration. Prior to the introduction of .NET,
many organizations spent tremendous amounts of time and money creating reus-
able software components called COM components, which include ActiveX®
controls and ActiveX DLLs (dynamic link libraries) for Windows applications.
Visual Basic programmers traditionally have been the largest group of COM com-
ponent users. In the appendix, COM Integration, we discuss some of the tools
available in Visual Studio .NET for integrating these legacy components into
.NET applications. This integration allows programmers to use existing sets of
COM-based controls with .NET components.

• XHTML. The World Wide Web Consortium (W3C) has declared HTML to be a
legacy technology that will undergo no further development. HTML is being re-
placed by the Extensible Hypertext Markup Language (XHTML)—an XML-
based technology that is rapidly becoming the standard for describing Web con-
tent. We use XHTML in Chapter 18, Extensible Markup Language (XML), and
offer an introduction to the technology in Appendix J, Introduction to XHTML:
Part 1, and Appendix K, Introduction to XHTML: Part 2. These appendices over-
view headers, images, lists, image maps and other features of this emerging mark-
up language. (We also present a treatment of HTML in Appendices H and I,
because ASP .NET, used in Chapters 20 and 21, generates HTML content). 

• Accessibility. Currently, although the World Wide Web has become an important
part of many people’s lives, the medium presents many challenges to people with
disabilities. Individuals with hearing and visual impairments, in particular, have
difficulty accessing multimedia-rich Web sites. In an attempt to improve this sit-
uation, the World Wide Web Consortium (W3C) launched the Web Accessibility



Preface XLI

Initiative (WAI), which provides guidelines for making Web sites accessible to
people with disabilities. Chapter 24, Accessibility, describes these guidelines and
highlights various products and services designed to improve the Web-browsing
experiences of individuals with disabilities. For example, the chapter introduces
VoiceXML and CallXML, two XML-based technologies for increasing the acces-
sibility of Web-based content for people with visual impairments.

Some Notes to Instructors

Students Enjoy Learning a Leading-Edge Language
Dr. Harvey M. Deitel taught introductory programming courses in universities for 20 years
with an emphasis on developing clearly written, well-designed programs. Much of what is
taught in these courses represents the basic principles of programming, concentrating on
the effective use of data types, control structures, arrays and functions. Our experience has
been that students handle the material in this book in about the same way that they handle
other introductory and intermediate programming courses. There is one noticeable differ-
ence, though: Students are highly motivated by the fact that they are learning a leading-
edge language, Visual Basic .NET, and a leading-edge programming paradigm (object-ori-
ented programming) that will be immediately useful to them as they enter a business world
in which the Internet and the World Wide Web have a massive prominence. This increases
their enthusiasm for the material—which is essential when you consider that there is much
more to learn in a Visual Basic .NET course now that students must master both the base
language and substantial class libraries as well. Although Visual Basic .NET is a significant
departure from Visual Basic 6.0, forcing programmers to revamp their skills, programmers
will be motivated to do so because of the powerful range of capabilities that Microsoft is
offering in its .NET initiative.

A World of Object Orientation
When we wrote the first edition of Visual Basic 6 How to Program, universities were still
emphasizing procedural programming. The leading-edge courses were using object-orient-
ed C++, but these courses generally mixed a substantial amount of procedural program-
ming with object-oriented programming—something that C++ lets programmers do. Many
instructors now are emphasizing a pure object-oriented programming approach. This
book—the second edition of Visual Basic .NET How to Program and the first text in our
.NET series—takes a predominantly object-oriented approach because of the enhanced ob-
ject orientation provided in Visual Basic .NET.

Focus of the Book
Our goal was clear: Produce a Visual Basic .NET textbook for introductory university-level
courses in computer programming aimed at students with little or no programming experi-
ence, yet offer the depth and the rigorous treatment of theory and practice demanded by
both professionals and students in traditional, upper-level programming courses. To meet
these objectives, we produced a comprehensive book that patiently teaches the principles
of computer programming and of the Visual Basic .NET language, including control struc-
tures, object-oriented programming, Visual Basic .NET class libraries, graphical-user-in-
terface concepts, event-driven programming and more. After mastering the material in this
book, students will be well-prepared to program in Visual Basic .NET and to employ the
capabilities of the .NET platform.



XLII Preface

Multimedia-Intensive Communications
People want to communicate. Sure, they have been communicating since the dawn of civ-
ilization, but the potential for information exchange has increased dramatically with the
evolution of various technologies. Until recently, even computer communications were
limited mostly to digits, alphabetic characters and special characters. The current wave of
communication technology involves the distribution of multimedia—people enjoy using
applications that transmit color pictures, animations, voices, audio clips and even full-mo-
tion color video over the Internet. At some point, we will insist on three-dimensional, mov-
ing-image transmission.

There have been predictions that the Internet will eventually replace radio and televi-
sion as we know them today. Similarly, it is not hard to imagine newspapers, magazines
and books delivered to “the palm of your hand” (or even to special eyeglasses) via wireless
communications. Many newspapers and magazines already offer Web-based versions, and
some of these services have spread to the wireless world. When cellular phones were first
introduced, they were large and cumbersome. Today, they are small devices that fit in our
pockets, and many are Internet-enabled. Given the current rate of advancement, wireless
technology soon could offer enhanced streaming-video and graphics-packed services, such
as video conference calls, and high-power, multi-player video games.

Teaching Approach
Visual Basic .NET How to Program, Second Edition contains a rich collection of examples,
exercises and projects drawn from many fields and designed to provide students with a
chance to solve interesting, real-world problems. The book concentrates on the principles
of good software engineering, and stressing program clarity. We are educators who teach
edge-of-the-practice topics in industry classrooms worldwide. We avoid arcane terminolo-
gy and syntax specifications in favor of teaching by example. Our code examples have been
tested on Windows 2000 and Windows XP. The text emphasizes good pedagogy.1

LIVE-CODE™ Teaching Approach
Visual Basic .NET How to Program, Second Edition is loaded with numerous LIVE-CODE™
examples. This style exemplifies the way we teach and write about programming, as well as
being the focus of our multimedia Cyber Classrooms and Web-based training courses. Each
new concept is presented in the context of a complete, working example that is immediately
followed by one or more windows showing the program’s input/output dialog. We call this
method of teaching and writing the LIVE-CODE™ Approach. We use programming languag-
es to teach programming languages. Reading the examples in the text is much like entering
and running them on a computer. 

World Wide Web Access
All of the examples for Visual Basic .NET How to Program, Second Edition (and our other
publications) are available on the Internet as downloads from the following Web sites: 

www.deitel.com
www.prenhall.com/deitel

1. We use fonts to distinguish between IDE features (such as menu names and menu items) and other
elements that appear in the IDE. Our convention is to emphasize IDE features in a sans-serif bold
Helvetica font (e.g., Project menu) and to emphasize program text in a serif bold Courier font
(e.g., Dim x As Boolean).



Preface XLIII

Registration is quick and easy and these downloads are free. We suggest downloading all
the examples, then running each program as you read the corresponding text. Making
changes to the examples and immediately see the effects of those changes—a great way to
learn programming. Each set of instructions assumes that the user is running Windows
2000 or Windows XP and is using Microsoft’s Internet Information Services (IIS). Addi-
tional setup instructions for Web servers and other software can be found at our Web sites
along with the examples. [Note: This is copyrighted material. Feel free to use it as you
study, but you may not republish any portion of it in any form without explicit permission
from Prentice Hall and the authors.]

Additionally, Visual Studio .NET, which includes Visual Basic .NET, can be pur-
chased and downloaded from Microsoft. Three different version of Visual Studio .NET are
available—Enterprise, Professional and Academic. Visit developerstore.com/
devstore/ for more details and to order. If you are a member of the Microsoft Developer
Network, visit msdn.microsoft.com/default.asp.

Objectives
Each chapter begins with objectives that inform students of what to expect and give them an
opportunity, after reading the chapter, to determine whether they have met the intended goals.
The objectives serve as confidence builders and as a source of positive reinforcement. 

Quotations
The chapter objectives are followed by sets of quotations. Some are humorous, some are
philosophical and some offer interesting insights. We have found that students enjoy relat-
ing the quotations to the chapter material. Many of the quotations are worth a “second look”
after you read each chapter.

Outline
The chapter outline enables students to approach the material in top-down fashion. Along
with the chapter objectives, the outline helps students anticipate future topics and set a com-
fortable and effective learning pace. 

21,300 Lines of Code in 193 Example Programs (with Program Outputs) 
We present Visual Basic .NET features in the context of complete, working Visual Basic
.NET programs. The programs range in size from just a few lines of code to substantial ex-
amples containing several hundred lines of code. All examples are available on the CD that
accompanies the book or as downloads from our Web site, www.deitel.com.

689 Illustrations/Figures
An abundance of charts, line drawings and program outputs is included. The discussion of
control structures, for example, features carefully drawn flowcharts. [Note: We do not teach
flowcharting as a program-development tool, but we do use a brief, flowchart-oriented pre-
sentation to explain the precise operation of each Visual Basic .NET control structure.] 

458 Programming Tips
We have included programming tips to help students focus on important aspects of program
development. We highlight hundreds of these tips in the form of Good Programming Prac-
tices, Common Programming Errors, Testing and Debugging Tips, Performance Tips,
Portability Tips, Software Engineering Observations and Look-and-Feel Observations.



XLIV Preface

These tips and practices represent the best the authors have gleaned from a combined seven
decades of programming and teaching experience. One of our students—a mathematics
major—told us that she feels this approach is like the highlighting of axioms, theorems and
corollaries in mathematics books; it provides a foundation on which to build good software.

83 Good Programming Practices
Good Programming Practices are tips that call attention to techniques that will help students
produce better programs. When we teach introductory courses to nonprogrammers, we state
that the “buzzword” for each course is “clarity,” and we tell the students that we will high-
light (in these Good Programming Practices) techniques for writing programs that are clear-
er, more understandable and more maintainable.  0.0

136 Common Programming Errors
Students learning a language—especially in their first programming course—tend to make
certain kinds of errors frequently. Pointing out these Common Programming Errors reduces
the likelihood that students will make the same mistakes. It also shortens long lines outside
instructors’ offices during office hours!  0.0

49 Testing and Debugging Tips
When we first designed this “tip type,” we thought the tips would contain suggestions strictly
for exposing bugs and removing them from programs. In fact, many of the tips describe as-
pects of Visual Basic .NET that prevent “bugs” from getting into programs in the first place,
thus simplifying the testing and debugging process.  0.0

49 Performance Tips
In our experience, teaching students to write clear and understandable programs is by far
the most important goal for a first programming course. But students want to write programs
that run the fastest, use the least memory, require the smallest number of keystrokes or dazzle
in other ways. Students really care about performance and they want to know what they can
do to “turbo charge” their programs. We have included 49 Performance Tips that highlight
opportunities for improving program performance—making programs run faster or minimiz-
ing the amount of memory that they occupy.  0.0

14 Portability Tips
We include Portability Tips to help students wrie portable code and to provide insights on how
Visual Basic .NET achieves its high degree of portability.  0.0

102 Software Engineering Observations
The object-oriented programming paradigm necessitates a complete rethinking of the way
we build software systems. Visual Basic .NET is an effective language for achieving good
software engineering. The Software Engineering Observations highlight architectural and
design issues that affect the construction of software systems, especially large-scale systems.
Much of what the student learns here will be useful in upper-level courses and in industry as
the student begins to work with large, complex real-world systems.  0.0

25 Look-and-Feel Observations
We provide Look-and-Feel Observations to highlight graphical-user-interface conventions.
These observations help students design attractive, user-friendly graphical user interfaces
that conform to industry norms.  0.0



Preface XLV

Summary (1313 Summary bullets)
Each chapter ends with additional pedagogical devices. We present a thorough, bullet-list-
style summary of the chapter. On average, there are 41 summary bullets per chapter. This
helps the students review and reinforce key concepts.

Terminology (2980 Terms)
We include in a Terminology section an alphabetized list of the important terms defined in
the chapter. Again, this serves as further reinforcement. On average, there are 93 terms per
chapter. Each term also appears in the index, so the student can locate terms and definitions
quickly.

654 Self-Review Exercises and Answers (Count Includes Separate Parts)
Extensive self-review exercises and answers are included for self-study. These questions
and answers give the student a chance to build confidence with the material and prepare for
the regular exercises. Students should be encouraged to attempt all the self-review exercis-
es and check their answers. 

364 Exercises (Solutions in Instructor’s Manual; Count Includes Separate Parts)
Each chapter concludes with a substantial set of exercises that involve simple recall of im-
portant terminology and concepts; writing individual Visual Basic .NET statements; writ-
ing small portions of Visual Basic .NET methods and classes; writing complete Visual
Basic .NET methods, classes and applications; and writing major projects. These exercises
cover a wide variety of topics, enabling instructors to tailor their courses to the unique
needs of their audiences and to vary course assignments each semester. Instructors can use
the exercises to form homework assignments, short quizzes and major examinations. The
solutions for the exercises are included in the Instructor’s Manual and on the disks avail-
able only to instructors through their Prentice-Hall representatives. [NOTE: Please do not
write to us requesting the instructor’s manual. Distribution of this publication is
strictly limited to college professors teaching from the book. Instructors may obtain
the solutions manual from their regular Prentice Hall representatives. We regret that
we cannot provide the solutions to professionals.] Solutions to approximately half the
exercises are included on the Visual Basic .NET Multimedia Cyber Classroom, Second Edi-
tion CD-ROM (available in April 2002 at www.InformIT.com/cyberclassrooms;
also see the last few pages of this book or visit www.deitel.com for ordering instruc-
tions). Also available in April 2002 is the boxed product, The Complete Visual Basic .NET
Training Course, Second Edition, which includes both our textbook, Visual Basic .NET
How to Program, Second Edition and the Visual Basic .NET Multimedia Cyber Classroom,
Second Edition. All of our Complete Training Course products are available at bookstores
and online booksellers, including www.InformIT.com.

Approximately 5,400 Index Entries (with approximately 6,750 Page References)
We have included an extensive Index at the back of the book. Using this resource, students
can search for any term or concept by keyword. The Index is especially useful to practicing
programmers who use the book as a reference. Each of the 2980 terms in the Terminology
sections appears in the Index (along with many more index items from each chapter). Stu-
dents can use the index in conjunction with the Terminology sections to ensure that they
have covered the key material in each chapter. 



XLVI Preface

“Double Indexing” of All Visual Basic .NET LIVE-CODE™ Examples
Visual Basic .NET How to Program, Second Edition has 193 LIVE-CODE™ examples and
364 exercises (including parts). Many of the exercises are challenging problems or projects
requiring substantial effort. We have “double indexed” each of the LIVE-CODE™ examples
and most of the more challenging exercises. For every Visual Basic .NET source-code pro-
gram in the book, we took the file name with the .vb extension, such as ChessGame.vb,
and indexed it both alphabetically (in this case, under “C”) and as a subindex item under
“Examples.” This makes it easier to find examples using particular features.

Visual Basic .NET Multimedia Cyber Classroom, Second Edition and
The Complete Visual Basic .NET Training Course, Second Edition
We have prepared an interactive, CD-ROM-based, software version of Visual Basic .NET
How to Program, Second Edition called the Visual Basic .NET Multimedia Cyber Class-
room, Second Edition. This resource is loaded with e-Learning features that are ideal for
both learning and reference. The Cyber Classroom is packaged with the textbook at a dis-
count in The Complete Visual Basic .NET Training Course, Second Edition. If you already
have the book and would like to purchase the Visual Basic .NET Multimedia Cyber Class-
room, Second Edition separately, please visit www.InformIT.com/cyberclass-
rooms. The ISBN number for the Visual Basic .NET Multimedia Cyber Classroom,
Second Edition, is 0-13-065193-1. All Deitel™ Cyber Classrooms are available in CD-
ROM and Web-based training formats.

The CD provides an introduction in which the authors overview the Cyber Class-
room’s features. The textbook’s 193 LIVE-CODE™ example Visual Basic .NET programs
truly “come alive” in the Cyber Classroom. If you are viewing a program and want to exe-
cute it, you simply click the lightning-bolt icon, and the program will run. You immediately
will see—and hear, when working with audio-based multimedia programs—the program’s
outputs. If you want to modify a program and see the effects of your changes, simply click
the floppy-disk icon that causes the source code to be “lifted off” the CD and “dropped
into” one of your own directories so you can edit the text, recompile the program and try
out your new version. Click the audio icon, and one of the authors will discuss the program
and “walk you through” the code.

The Cyber Classroom also provides navigational aids, including extensive hyper-
linking. The Cyber Classroom is browser based, so it remembers sections that you have vis-
ited recently and allows you to move forward or backward among these sections. The
thousands of index entries are hyperlinked to their text occurrences. Furthermore, when
you key in a term using the “find” feature, the Cyber Classroom will locate occurrences of
that term throughout the text. The Table of Contents entries are “hot,” so clicking a chapter
name takes you immediately to that chapter. 

Students like the fact that solutions to approximately half the exercises in the book are
included with the Cyber Classroom. Studying and running these extra programs is a great
way for students to enhance their learning experience.

Students and professional users of our Cyber Classrooms tell us that they like the inter-
activity and that the Cyber Classroom is an effective reference due to its extensive hyper-
linking and other navigational features. We received an e-mail from a person who said that
he lives “in the boonies” and cannot take a live course at a university, so the Cyber Class-
room provided an ideal solution to his educational needs.



Preface XLVII

Professors tell us that their students enjoy using the Cyber Classroom and spend more
time on the courses and master more of the material than in textbook-only courses. For a
complete list of the available and forthcoming Cyber Classrooms and Complete Training
Courses, see the Deitel™ Series page at the beginning of this book, the product listing and
ordering information at the end of this book or visit www.deitel.com, www.pren-
hall.com/deitel and www.InformIT.com/deitel.

Deitel e-Learning Initiatives

e-Books and Support for Wireless Devices
Wireless devices will play an enormous role in the future of the Internet. Given recent band-
width enhancements and the emergence of 2.5 and 3G technologies, it is projected that,
within two years, more people will access the Internet through wireless devices than
through desktop computers. Deitel & Associates, Inc., is committed to wireless accessibil-
ity and has recently published Wireless Internet & Mobile Business How to Program. To
fulfill the needs of a wide range of customers, we currently are developing our content both
in traditional print formats and in newly developed electronic formats, such as e-books so
that students and professors can access content virtually anytime, anywhere. Visit
www.deitel.com for periodic updates on this initiative.

e-Matter 
Deitel & Associates, Inc., is partnering with Prentice Hall’s parent company, Pearson PLC,
and its information technology Web site, InformIT.com, to launch the Deitel e-Matter
series at www.InformIT.com/deitel. This series will provide professors, students
and professionals with an additional source of information on specific programming topics.
e-Matter consists of stand-alone sections taken from published texts, forthcoming texts or
pieces written during the Deitel research-and-development process. Developing e-Matter
based on pre-publication books allows us to offer significant amounts of the material to ear-
ly adopters for use in courses. Some possible Visual Basic .NET e-Matter titles we are con-
sidering include Object-Based Programming and Object-Oriented Programming in Visual
Basic .NET; Graphical User Interface Programming in Visual Basic .NET; Multithreading
in Visual Basic .NET;  ASP .NET and Web Forms: A Visual Basic .NET View; and ASP
.NET and Web Services: A Visual Basic .NET View.

Course Management Systems: WebCT, Blackboard, and CourseCompass
We are working with Prentice Hall to integrate our How to Program Series courseware into
three Course Management Systems: WebCT, Blackboard and CourseCompass. These Course
Management Systems enable instructors to create, manage and use sophisticated Web-based
educational programs. Course Management System features include course customization
(such as posting contact information, policies, syllabi, announcements, assignments, grades,
performance evaluations and progress tracking), class and student management tools, a
gradebook, reporting tools, communication tools (such as chat rooms), a whiteboard, docu-
ment sharing, bulletin boards and more. Instructors can use these products to communicate
with their students, create online quizzes and tests from questions directly linked to the text
and automatically grade and track test results. For more information about these upcoming
products, visit www.deitel.com/whatsnew.html. For demonstrations of existing
WebCT, Blackboard and CourseCompass courses, visit cms.pren_hall.com/WebCT,



XLVIII Preface

cms.prenhall.com/Blackboard and cms.prenhall.com/CourseCompass,
respectively. 

Deitel and InformIT Newsletters

Deitel Column in the InformIT Newsletters 
Deitel & Associates, Inc., contributes a weekly column to the popular InformIT newsletter,
currently subscribed to by more than 800,000 IT professionals worldwide. For opt-in reg-
istration, visit www.InformIT.com.

Deitel Newsletter 
Our own free, opt-in newsletter includes commentary on industry trends and developments,
links to articles and resources from our published books and upcoming publications, infor-
mation on future publications, product-release schedules and more. For opt-in registration,
visit www.deitel.com.

The Deitel .NET Series

Deitel & Associates, Inc., is making a major commitment to .NET programming through
the launch of our .NET Series. Visual Basic .NET How to Program, Second Edition and C#
.NET How to Program are the first books in this new series. We intend to follow these
books with Advanced Visual Basic .NET How to Program and Advanced C# .NET How to
Program, which will be published in December 2002. We also plan to publish Visual C++
.NET How to Program in July 2002, followed by Advanced Visual C++ .NET How to Pro-
gram in July 2003.

Advanced Visual Basic .NET How to Program

Visual Basic .NET How to Program, Second Edition covers introductory through interme-
diate-level Visual Basic .NET programming topics, as well as core programming funda-
mentals. By contrast, our upcoming textbook Advanced Visual Basic .NET How to
Program will be geared toward experienced Visual Basic .NET developers. This new book
will cover enterprise-level programming topics, including: Creating multi-tier, database in-
tensive ASP .NET applications using ADO .NET and XML; constructing custom Windows
controls; developing custom Web controls; and building Windows services. The book also
will include more in-depth explanations of object-oriented programming (with the UML),
ADO .NET, XML Web services, wireless programming and security. Advanced Visual Ba-
sic .NET How to Program will be published in December 2002.

Acknowledgments

One of the great pleasures of writing a textbook is acknowledging the efforts of many peo-
ple whose names may not appear on the cover, but whose hard work, cooperation, friend-
ship and understanding were crucial to the production of the book.

Many other people at Deitel & Associates, Inc., devoted long hours to this project. 

• Matthew R. Kowalewski, a graduate of Bentley College with a degree in Account-
ing Informations Systems, is the Director of Wireless Development at Deitel &
Associates, Inc., and served as the project manager. He assisted in the develop-



Preface XLIX

ment and certification of Chapters 2–7, 13, 15 and 18–21 and Appendices D, F and
H–M. He also edited the Index and managed the review process for the book.

• Jonathan Gadzik, a graduate of the Columbia University School of Engineering
and Applied Science with a degree in Computer Science, co-authored Chapters 8–
10, 17 and 22. He also reviewed Chapters 10–11, 18 and 23.

• Kyle Lomelí, a graduate of Oberlin College with a degree in Computer Science
and a minor in East Asian Studies, co-authored Chapters 10–15, 19 and 24 and
contributed to Chapter 23. He also reviewed Chapters 3–9.

• Lauren Trees, a graduate of Brown University with a degree in English, edited the
entire manuscript for smoothness, clarity and effectiveness of presentation; she
also co-authored the Preface, Chapter 1 and Appendix N.

• Rashmi Jayaprakash, a graduate of Boston University with a degree in Computer
Science, co-authored Chapter 24 and Appendix F.

• Laura Treibick, a graduate of the University of Colorado at Boulder with a degree
in Photography and Multimedia, is Director of Multimedia at Deitel & Associates,
Inc. She contributed to Chapter 16 and enhanced many of the text’s graphics. 

• Betsy DuWaldt, a graduate of Metropolitan State College of Denver with a degree
in Technical Communications and a minor in Computer Information Systems, is
Editorial Director at Deitel & Associates, Inc. She co-authored the Preface, Chap-
ter 1 and Appendix N and managed the permissions process for the book.

• Barbara Deitel applied the copy edits to the manuscript. She did this in parallel
with handling her extensive financial and administrative responsibilities at Deitel
& Associates, Inc., which include serving as Chief Financial Officer. [Everyone
at the company works on book content.]

• Abbey Deitel, a graduate of Carnegie Mellon University’s Industrial Management
Program and President of Deitel & Associates, Inc., recruited 40 additional full-
time employees and interns during 2001. She also leased, equipped, and furnished
our second building to create the work environment from which Visual Basic
.NET How to Program, Second Edition and our other year 2001 publications were
produced. She suggested the title for the How to Program series, and edited this
preface and several of the book’s chapters. 

We would also like to thank the participants in the Deitel & Associates, Inc., College
Internship Program.2

• Andrew C. Jones, a senior in Computer Science at Harvard University, co-au-
thored Chapters 2–7, 15, Appendix A and Appendix D and reviewed Chapters 8–

2. The Deitel & Associates, Inc. College Internship Program offers a limited number of salaried po-
sitions to Boston-area college students majoring in Computer Science, Information Technology,
Marketing, Management and English. Students work at our corporate headquarters in Sudbury,
Massachusetts full-time in the summers and (for those attending college in the Boston area) part-
time during the academic year. We also offer full-time internship positions for students interested
in taking a semester off from school to gain industry experience. Regular full-time positions are
available to college graduates. For more information about this competitive program, please con-
tact Abbey Deitel at deitel@deitel.com and visit our Web site, www.deitel.com.



L Preface

13. He certified the technical integrity of Chapters 16, 19, 23, Appendices F and
H–K . Andrew took the semester off to work full-time at Deitel & Associates, Inc.,
to gain industry experience.

• Jeffrey Hamm, a sophomore at Northeastern University in Computer Science, co-
authored Chapters 16, 18, 20–21 and Appendices D and G. He also coded exam-
ples for Chapter 6.

• Su Kim, a senior at Carnegie Mellon University with a double major in Informa-
tion Systems and Economics, contributed to Chapter 1 and the Preface, coded so-
lutions for Chapters 3–14 and contributed to code examples in Chapters 3–22. Su
was the project manager during the early stages of the book.

• Jeng Lee, a junior in Information Systems at Carnegie Mellon University, coded
Chapters 3–13 in Visual Basic .NET Beta 1 and converted Chapter 19 from Visual
Basic .NET Beta 1 to Beta 2. He researched new features in Visual Basic .NET
and coded examples in Chapters 5–12 and Chapters 17–24, using Visual Basic
.NET, Beta 2.

• Thiago Lucas da Silva, a sophomore at Northeastern University in Computer Sci-
ence, He contributed to Chapter 18 and Appendix D. He coded examples and solu-
tions for Chapters 4–5, 17–18, 20–22 and Appendix G and tested all the
programming examples through the various beta releases and release candidates of
Visual Studio .NET. He also created ancillary materials for Chapters 2–7 and 18.

• Mike Preshman, a sophomore at Northeastern University with a major in Comput-
er Science and minors in Electrical Engineering and Math, produced code exam-
ples for Chapters 9, 21 and 22 and solutions for Chapters 9, 16 and 17. He
researched URLs for the Internet and World Wide Web Resource sections, helped
with the Bibliography and produced PowerPoint-slide ancillaries for Chapters 2–
7, 20, 21 and 24. 

• Wilson Wu, a junior in Information Systems at Carnegie Mellon University, cod-
ed chapter examples, took screen captures in Visual Studio .NET Beta 1 for Chap-
ters 3–16 and converted code sections of Chapters 20–21 from Beta 1 to Beta 2. 

• Christina Carney, a senior in Psychology and Business at Framingham State Col-
lege, researched URLs for the Internet and World Wide Web Resource sections
and helped with the Preface.

• Brian Foster, a sophomore at Northeastern University in Computer Science, cre-
ated ancillaries for Chapters 1–19 and 22–23 and helped with the Preface and Bib-
liography.

• Adam Sparrow, a senior at Bentley College with a major in Computer Information
Systems, created ancillaries for Chapters 1–5, 7–8, 11 and 15–16.

• Zach Bouchard, a junior at Boston College in Economics and Philosophy, contrib-
uted to the Instructor’s Manual and tested code solutions for Chapter 11.

• Carlo Garcia, a graduate of Metropolitan College of Boston University in Com-
puter Science, managed the early stages of the project. He created some of the
book’s initial examples using the Visual Studio .NET Technology Preview Edi-
tion and mentored other interns learning Visual Basic .NET.



Preface LI

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especially appreciate the
extraordinary efforts of our Computer Science editor, Petra Recter and her boss—our
mentor in publishing—Marcia Horton, Editorial Director of Prentice-Hall’s Engineering
and Computer Science Division. Vince O’Brien did a marvelous job managing the produc-
tion of the book. Sarah Burrows handled editorial responsibilities on the book’s extensive
ancillary package.

The Visual Basic .NET Multimedia Cyber Classroom, Second Edition was developed
in parallel with Visual Basic .NET How to Program, Second Edition. We sincerely appre-
ciate the “new media” insight, savvy and technical expertise of our electronic-media edi-
tors, Mark Taub and Karen McLean. They and project manager Mike Ruel did a wonderful
job bringing the Visual Basic .NET Multimedia Cyber Classroom, Second Edition and The
Complete Visual Basic .NET Training Course, Second Edition to publication.

We owe special thanks to the creativity of Tamara Newnam (smart_art@earth-
link.net), who produced the art work for our programming-tip icons and for the cover.
She created the delightful creature who shares with you the book’s programming tips. Barbara
Deitel, Tem Nieto and Michelle Gopen contributed the bugs’ names for the front cover.

We wish to acknowledge the efforts of our reviewers and to thank Crissy Statuto of
Prentice Hall, who recruited the reviewers and managed the review process. Adhering to a
tight time schedule, these reviewers scrutinized the text and the programs, providing count-
less suggestions for improving the accuracy and completeness of the presentation. It is a
privilege to have the guidance of such talented and busy professionals.

Visual Basic .NET How to Program, Second Edition reviewers:
Lars Bergstrom (Microsoft)
Christopher Brumme (Microsoft)
Alan Carter (Microsoft)
Greg Lowney (Microsoft)
Cameron McColl (Microsoft)
Tania Means (Microsoft)
Dale Michalk (Microsoft)
Eric Olson (Microsoft)
Paul Vick (Microsoft)
Jeff Welton (Microsoft)
Joan Aliprand (Unicode Consortium)
Paul Bohman (Technology Coordinator, WebAIM)
Harlan Brewer (Utah State University)
Carl Burnham (Southpoint)
Clinton Chadwick (Valtech)
Mario Chavez-Rivas (Trane Corp.)
Ram Choppa (Baker Hughes)
Douglas Bass (University of St. Thomas)
Ken Cox (Sympatico)
Anthony Fadale (State of Kansas, Accessibility Committee)
J. Mel Harris (OnLineLiveTraining.com)
Terry Hull (CEO, Enterprise Component Technologies, Inc.)
Balaji Janamanchi (Texas Tech)



LII Preface

Amit Kalani (MobiCast, co-author of Inside ASP.NET and .NET Mobile Web 
             Developer's Guide)

Stan Kurkovsky (Columbus State University)
Stephen Longo (LaSalle University)
Rick McGowan (Unicode Consortium)
Michael Paciello (Founder, WebABLE)
Chris Panell (Heald College)
Kevin Parker (Idaho State College)
Bryan Plaster (Valtech)
Andre Pool (Florida Community College-Jacksonville)
T. J. Racoosin (rSolutions)
Nancy Reyes (Heald College)
Chris Ridpath (A-Prompt Project, University of Toronto)
Wally Roth (Taylor University)
Craig Shofding (CAS Training)
Bill Stutzman (Consultant)
Jutta Treviranus (A-Prompt Project, University of Toronto)
Tim Thomas (Xtreme Computing)
Mark Thomas (University of Cincinnati)
Bill Tinker (Aries Software)
Joel Weinstein (Northeastern University)

We also would like to thank our first edition reviewers:
Sean Alexander (Microsoft Corporation)
Dave Glowacki (Microsoft Corporation)
Phil Lee (Microsoft Corporation)
William Vaughn (Microsoft Corporation)
Scott Wiltamuth (Microsoft Corporation)
Mehdi Abedinejad (Softbank Marketing Services, Inc.)
David Bongiovanni (Bongiovanni Research & Technology, Inc.)
Rockford Lhotka

We would sincerely appreciate your comments, criticisms, corrections and suggestions
for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond promptly. 
Well, that’s it for now. Welcome to the exciting world of Visual Basic .NET program-

ming. We hope you enjoy this look at leading-edge computer applications. Good luck!

Dr. Harvey M. Deitel
Paul J. Deitel
Tem R. Nieto

About the Authors
Dr. Harvey M. Deitel, CEO and Chairman of Deitel & Associates, Inc., has 40 years expe-
rience in the computing field, including extensive industry and academic experience. Dr.



Preface LIII

Deitel earned B.S. and M.S. degrees from the Massachusetts Institute of Technology and a
Ph.D. from Boston University. He worked on the pioneering virtual-memory operating-sys-
tems projects at IBM and MIT that developed techniques now widely implemented in sys-
tems such as UNIX, Linux and Windows NT. He has 20 years of college teaching
experience, including earning tenure and serving as the Chairman of the Computer Science
Department at Boston College before founding Deitel & Associates, Inc., with his son, Paul
J. Deitel. He is the author or co-author of several dozen books and multimedia packages and
is writing many more. With translations published in Japanese, Russian, Spanish, Tradition-
al Chinese, Simplified Chinese, Korean, French, Polish, Italian and Portuguese, Dr. Deitel’s
texts have earned international recognition. Dr. Deitel has delivered professional seminars
to major corporations and to government organizations and various branches of the military.

Paul J. Deitel, Executive Vice President and Chief Technical Officer of Deitel &
Associates, Inc., is a graduate of the Massachusetts Institute of Technology’s Sloan School
of Management, where he studied Information Technology. Through Deitel & Associates,
Inc., he has delivered Java, C, C++, Internet and World Wide Web courses to industry cli-
ents including Compaq, Sun Microsystems, White Sands Missile Range, Rogue Wave
Software, Boeing, Dell, Stratus, Fidelity, Cambridge Technology Partners, Open Environ-
ment Corporation, One Wave, Hyperion Software, Lucent Technologies, Adra Systems,
Entergy, CableData Systems, NASA at the Kennedy Space Center, the National Severe
Storm Laboratory, IBM and many other organizations. He has lectured on C++ and Java
for the Boston Chapter of the Association for Computing Machinery and has taught satel-
lite-based Java courses through a cooperative venture of Deitel & Associates, Inc., Prentice
Hall and the Technology Education Network. He and his father, Dr. Harvey M. Deitel, are
the world’s best-selling Computer Science textbook authors.

Tem R. Nieto, Director of Product Development of Deitel & Associates, Inc., is a
graduate of the Massachusetts Institute of Technology, where he studied engineering and
computing. Through Deitel & Associates, Inc., he has delivered courses for industry clients
including Sun Microsystems, Compaq, EMC, Stratus, Fidelity, NASDAQ, Art Tech-
nology, Progress Software, Toys “R” Us, Operational Support Facility of the National
Oceanographic and Atmospheric Administration, Jet Propulsion Laboratory, Nynex,
Motorola, Federal Reserve Bank of Chicago, Banyan, Schlumberger, University of Notre
Dame, NASA, various military installations and many others. He has co-authored
numerous books and multimedia packages with the Deitels and has contributed to virtually
every Deitel & Associates, Inc., publication.

For a complete listing of Deitel & Associates, Inc., textbooks, Cyber Classrooms and
Complete Training Courses, see either the series page at the front of the book, the adverto-
rial pages at the back of the book or our Web sites:

www.deitel.com
www.prenhall.com/deitel
www.InformIT.com/deitel

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e-
business/e-commerce software technology, object technology and computer programming
languages education. The company provides courses on Internet and World Wide Web/



LIV Preface

programming, wireless Internet programming, object technology, and major programming
languages and platforms, such as Visual Basic .NET, C#, Java, advanced Java, C, C++,
XML, Perl, Python and more. The founders of Deitel & Associates, Inc., are Dr. Harvey M.
Deitel and Paul J. Deitel. The company’s clients include many of the world’s largest com-
puter companies, government agencies, branches of the military and business organiza-
tions. Through its 25-year publishing partnership with Prentice Hall, Deitel & Associates,
Inc., publishes leading-edge programming textbooks, professional books, interactive CD-
ROM-based multimedia Cyber Classrooms, Complete Training Courses, e-books, e-white-
papers, Web-based training courses and course management systems e-content. Deitel &
Associates, Inc., and the authors can be reached via e-mail at: 

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate
on-site curriculum, see the last few pages of this book or visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training
Courses and Web-based training courses can do so through bookstores, online booksellers
and through: 

www.deitel.com
www.prenhall.com/deitel
www.InformIT.com/deitel

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)
Deitel & Associates, Inc., is a member of the World Wide Web Consortium
(W3C). The W3C was founded in 1994 “to develop common protocols for
the evolution of the World Wide Web.” As a W3C member, Deitel & As-
sociates, Inc., holds a seat on the W3C Advisory Committee (the compa-

ny’s representative is our Chief Technology Officer, Paul Deitel). Advisory Committee
members help provide “strategic direction” to the W3C through meetings held around the
world. Member organizations also help develop standards recommendations for Web tech-
nologies (such as XHTML, XML and many others) through participation in W3C activities
and groups. Membership in the W3C is intended for companies and large organizations.
To obtain information on becoming a member of the W3C visit www.w3.org/
Consortium/Prospectus/Joining.



1
Introduction to 

Computers, Internet and 
Visual Basic .NET

Objectives
• To understand basic computer concepts.
• To learn about various programming languages.
• To appreciate the importance of object technology.
• To become familiar with the history of the Visual 

Basic .NET programming language.
• To learn about the evolution of the Internet and World 

Wide Web.
• To understand the Microsoft® .NET initiative.
• To preview the remaining chapters of the book.
Things are always at their best in their beginning.
Blaise Pascal

High thoughts must have high language.
Aristophanes

Our life is frittered away by detail…Simplify, simplify.
Henry David Thoreau

Before beginning, plan carefully….
Marcus Tullius Cicero

Look with favor upon a bold beginning.
Virgil

I think I’m beginning to learn something about it.
Auguste Renoir



2 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

1.1 Introduction
Welcome to Visual Basic .NET! In creating this book, we have worked hard to provide stu-
dents with the most accurate and complete information regarding the Visual Basic .NET
language and its applications. The book is designed to be appropriate for readers at all lev-
els, from practicing programmers to individuals with little or no programming experience.
We hope that working with this text will be an informative, entertaining and challenging
learning experience for you.

How can one book appeal to both novices and skilled programmers? The core of this
book emphasizes the achievement of program clarity through proven techniques of struc-
tured programming, object-based programming, object-oriented programming (OOP) and
event-driven programming. Nonprogrammers learn basic skills that underlie good pro-
gramming; experienced developers receive a rigorous explanation of the language and may
improve their programming styles. Perhaps most importantly, the book presents hundreds
of complete, working Visual Basic .NET programs and depicts their outputs. We call this

Outline

1.1 Introduction
1.2 What Is a Computer?
1.3 Computer Organization
1.4 Evolution of Operating Systems
1.5 Personal Computing, Distributed Computing and Client/Server 

Computing
1.6 Machine Languages, Assembly Languages and High-level 

Languages
1.7 Visual Basic .NET
1.8 C, C++, Java™ and C#
1.9 Other High-level Languages
1.10 Structured Programming
1.11 Key Software Trend: Object Technology
1.12 Hardware Trends
1.13 History of the Internet and World Wide Web
1.14 World Wide Web Consortium (W3C)
1.15 Extensible Markup Language (XML)
1.16 Introduction to Microsoft .NET
1.17 .NET Framework and the Common Language Runtime
1.18 Tour of the Book
1.19 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 3

the LIVE-CODE™ approach. All of the book’s examples are available on the CD-ROM that
accompanies this book and on our Web site, www.deitel.com.

Computer use is increasing in almost every field of endeavor. In an era of steadily
rising costs, computing costs have decreased dramatically because of rapid developments
in both hardware and software technology. Computers that filled large rooms and cost mil-
lions of dollars just two decades ago now can be inscribed on the surfaces of silicon chips
smaller than a fingernail, costing perhaps a few dollars each. Silicon is one of the most
abundant materials on earth—it is an ingredient in common sand. Silicon-chip technology
has made computing so economical that hundreds of millions of general-purpose com-
puters are in use worldwide, helping people in business, industry, government and their per-
sonal lives. Given the current rate of technological development, this number could easily
double over the next few years.

In beginning to study this text, you are starting on a challenging and rewarding educa-
tional path. As you proceed, if you would like to communicate with us, please send an e-
mail to deitel@deitel.com or browse our World Wide Web sites at
www.deitel.com, www.prenhall.com/deitel and www.InformIT.com/
deitel. We hope that you enjoy learning Visual Basic .NET through reading Visual
Basic .NET How to Program, Second Edition.

1.2 What Is a Computer?
A computer is a device capable of performing computations and making logical decisions
at speeds millions and even billions of times faster than those of human beings. For exam-
ple, many of today’s personal computers can perform hundreds of millions—even bil-
lions—of additions per second. A person operating a desk calculator might require decades
to complete the same number of calculations that a powerful personal computer can per-
form in one second. (Points to ponder: How would you know whether the person had added
the numbers correctly? How would you know whether the computer had added the numbers
correctly?) Today’s fastest supercomputers can perform hundreds of billions of additions per
second—about as many calculations as hundreds of thousands of people could perform in one
year! Trillion-instruction-per-second computers are already functioning in research laborato-
ries!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide computers through orderly sets of actions that are specified
by individuals known as computer programmers.

A computer is composed of various devices (such as the keyboard, screen, mouse,
disks, memory, CD-ROM and processing units) known as hardware. The programs that run
on a computer are referred to as software. Hardware costs have been declining dramatically
in recent years, to the point that personal computers have become a commodity. Con-
versely, software-development costs have been rising steadily, as programmers develop
ever more powerful and complex applications without being able to improve significantly
the technology of software development. In this book, you will learn proven software-
development methods that can reduce software-development costs—top-down stepwise
refinement, functionalization and object-oriented programming. Object-oriented program-
ming is widely believed to be the significant breakthrough that can greatly enhance pro-
grammer productivity.



4 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

1.3 Computer Organization
Virtually every computer, regardless of differences in physical appearance, can be envi-
sioned as being divided into six logical units, or sections:

1. Input unit. This “receiving” section of the computer obtains information (data and
computer programs) from various input devices. The input unit then places this in-
formation at the disposal of the other units to facilitate the processing of the infor-
mation. Today, most users enter information into computers via keyboards and
mouse devices. Other input devices include microphones (for speaking to the
computer), scanners (for scanning images) and digital cameras (for taking photo-
graphs and making videos).

2. Output unit. This “shipping” section of the computer takes information that the
computer has processed and places it on various output devices, making the infor-
mation available for use outside the computer. Computers can output information
in various ways, including displaying the output on screens, playing it on audio/
video devices, printing it on paper or using the output to control other devices.

3. Memory unit. This is the rapid-access, relatively low-capacity “warehouse” sec-
tion of the computer, which facilitates the temporary storage of data. The mem-
ory unit retains information that has been entered through the input unit,
enabling that information to be immediately available for processing. In addi-
tion, the unit retains processed information until that information can be trans-
mitted to output devices. Often, the memory unit is called either memory or
primary memory—random access memory (RAM) is an example of primary
memory. Primary memory is usually volatile, which means that it is erased when
the machine is powered off.

4. Arithmetic and logic unit (ALU). The ALU is the “manufacturing” section of the
computer. It is responsible for the performance of calculations such as addition,
subtraction, multiplication and division. It also contains decision mechanisms, al-
lowing the computer to perform such tasks as determining whether two items
stored in memory are equal.

5. Central processing unit (CPU). The CPU serves as the “administrative” section of
the computer. This is the computer’s coordinator, responsible for supervising the
operation of the other sections. The CPU alerts the input unit when information
should be read into the memory unit, instructs the ALU about when to use infor-
mation from the memory unit in calculations and tells the output unit when to send
information from the memory unit to certain output devices.

6. Secondary storage unit. This unit is the long-term, high-capacity “warehousing”
section of the computer. Secondary storage devices, such as hard drives and
disks, normally hold programs or data that other units are not actively using; the
computer then can retrieve this information when it is needed—hours, days,
months or even years later. Information in secondary storage takes much longer
to access than does information in primary memory. However, the price per unit
of secondary storage is much less than the price per unit of primary memory.
Secondary storage is usually nonvolatile—it retains information even when the
computer is off.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 5

1.4 Evolution of Operating Systems
Early computers were capable of performing only one job or task at a time. In this mode of
computer operation, often called single-user batch processing, the computer runs one pro-
gram at a time and processes data in groups called batches. Users of these early systems
typically submitted their jobs to a computer center on decks of punched cards. Often, hours
or even days elapsed before printouts were returned to the users’ desks.

To make computer use more convenient, software systems called operating systems
were developed. Early operating systems oversaw and managed computers’ transitions
between jobs. By minimizing the time it took for a computer operator to switch from one
job to another, the operating system increased the total amount of work, or throughput,
computers could process in a given time period.

As computers became more powerful, single-user batch processing became inefficient,
because computers spent a great deal of time waiting for slow input/output devices to com-
plete their tasks. Developers then looked to multiprogramming techniques, which enabled
many tasks to share the resources of the computer to achieve better utilization. Multipro-
gramming involves the “simultaneous” operation of many jobs on a computer that splits its
resources among those jobs. However, users of early multiprogramming operating systems
still submitted jobs on decks of punched cards and waited hours or days for results.

In the 1960s, several industry and university groups pioneered timesharing operating
systems. Timesharing is a special type of multiprogramming that allows users to access a
computer through terminals, or devices with keyboards and screens. Dozens or even hun-
dreds of people can use a timesharing computer system at once. It is important to note that
the computer does not actually run all the users’ requests simultaneously. Rather, it per-
forms a small portion of one user’s job and moves on to service the next user. However,
because the computer does this so quickly, it can provide service to each user several times
per second. This gives users’ programs the appearance of running simultaneously. Time-
sharing offers major advantages over previous computing systems in that users receive
prompt responses to requests, instead of waiting long periods to obtain results. 

The UNIX operating system, which is now widely used for advanced computing,
originated as an experimental timesharing operating system. Dennis Ritchie and Ken
Thompson developed UNIX at Bell Laboratories beginning in the late 1960s and devel-
oped C as the language in which they wrote it. They created UNIX as open-source soft-
ware, freely distributing the source code to other programmers who wanted to use,
modify and extend it. A large community of UNIX users quickly developed. The oper-
ating system grew as UNIX users contributed their own programs and tools. Through a
collaborative effort among numerous researchers and developers, UNIX became a pow-
erful and flexible operating system able to handle almost any type of task that a user
required. Many versions of UNIX have evolved, including today’s phenomenally popular
Linux operating system.

1.5 Personal Computing, Distributed Computing and Client/
Server Computing
In 1977, Apple Computer popularized the phenomenon of personal computing. Initially, it
was a hobbyist’s dream. However, the price of computers soon dropped so far that large
numbers of people could buy them for personal or business use. In 1981, IBM, the world’s



6 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

largest computer vendor, introduced the IBM Personal Computer. Personal computing rap-
idly became legitimate in business, industry and government organizations.

The computers first pioneered by Apple and IBM were “stand-alone” units—people
did their work on their own machines and transported disks back and forth to share infor-
mation. (This process was often called “sneakernet.”) Although early personal computers
were not powerful enough to timeshare several users, the machines could be linked together
into computer networks, either over telephone lines or via local area networks (LANs)
within an organization. These networks led to the phenomenon of distributed computing,
in which an organization’s computing is distributed over networks to the sites at which the
work of the organization is performed, instead of the computing being performed only at a
central computer installation. Personal computers were powerful enough to handle both the
computing requirements of individual users, and the basic tasks involved in the electronic
transfer of information between computers. N-tier applications split up an application over
numerous computers. For example, a three-tier application might have a user interface on
one computer, business-logic processing on a second and a database on a third; all three
interact as the application runs.

Today’s most advanced personal computers are as powerful as the million-dollar
machines of just two decades ago. High-powered desktop machines—called worksta-
tions—provide individual users with enormous capabilities. Information is easily shared
across computer networks, in which computers called servers store programs and data that
can be used by client computers distributed throughout the network. This type of configu-
ration gave rise to the term client/server computing. Today’s popular operating systems,
such as UNIX, Linux, Solaris, MacOS, Windows 2000 and Windows XP, provide the kinds
of capabilities discussed in this section.

1.6 Machine Languages, Assembly Languages and High-level 
Languages
Programmers write instructions in various programming languages, some of which are di-
rectly understandable by computers and others of which require intermediate translation
steps. Although hundreds of computer languages are in use today, the diverse offerings can
be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Any computer can understand only its own machine language directly. As the “nat-
ural language” of a particular computer, machine language is defined by the computer’s
hardware design. Machine languages generally consist of streams of numbers (ultimately
reduced to 1s and 0s) that instruct computers how to perform their most elementary oper-
ations. Machine languages are machine-dependent, which means that a particular
machine language can be used on only one type of computer. The following section of a
machine-language program, which adds overtime pay to base pay and stores the result in
gross pay, demonstrates the incomprehensibility of machine language to the human
reader.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 7

+1300042774
+1400593419
+1200274027

As the popularity of computers increased, machine-language programming proved to
be excessively slow, tedious and error prone. Instead of using the strings of numbers that
computers could directly understand, programmers began using English-like abbreviations
to represent the elementary operations of the computer. These abbreviations formed the
basis of assembly languages. Translator programs called assemblers convert assembly lan-
guage programs to machine language at computer speeds. The following section of an
assembly-language program also adds overtime pay to base pay and stores the result in
gross pay, but presents the steps more clearly to human readers than does its machine-lan-
guage equivalent:

LOAD   BASEPAY
ADD    OVERPAY
STORE  GROSSPAY

Although such code is clearer to humans, it is incomprehensible to computers until trans-
lated into machine language.

Although computer use increased rapidly with the advent of assembly languages, these
languages still required many instructions to accomplish even the simplest tasks. To speed
up the programming process, high-level languages, in which single statements accomplish
substantial tasks, were developed. Translation programs called compilers convert high-
level-language programs into machine language. High-level languages enable program-
mers to write instructions that look almost like everyday English and contain common
mathematical notations. A payroll program written in a high-level language might contain
a statement such as

grossPay = basePay + overTimePay

Obviously, programmers prefer high-level languages to either machine languages or as-
sembly languages. Visual Basic .NET is one of the most popular high-level programming
languages in the world.

The compilation of a high-level language program into machine language can require
a considerable amount of time. This problem was solved by the development of interpreter
programs that can execute high-level language programs directly, bypassing the compila-
tion step. Although programs already compiled execute faster than interpreted programs,
interpreters are popular in program-development environments. In these environments,
developers change programs frequently as they add new features and correct errors. Once
a program is fully developed, a compiled version can be produced so that the program runs
at maximum efficiency.

1.7 Visual Basic .NET
Visual Basic .NET evolved from BASIC (Beginner’s All-Purpose Symbolic Instruction
Code),   developed in the mid-1960s by Professors John Kemeny and Thomas Kurtz of
Dartmouth College as a language for writing simple programs. BASIC’s primary purpose
was to familiarize novices with programming techniques. 



8 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

The widespread use of BASIC on various types of computers (sometimes called hard-
ware platforms) had led to many enhancements to the language. When Bill Gates founded
Microsoft Corporation, he implemented BASIC on several early personal computers. With
the development of the Microsoft Windows graphical user interface (GUI) in the late 1980s
and the early 1990s, the natural evolution of BASIC was Visual Basic, introduced by
Microsoft in 1991.

Until Visual Basic appeared in 1991, developing Microsoft Windows-based applica-
tions was a difficult and cumbersome process. Although Visual Basic is derived from the
BASIC programming language, it is a distinctly different language that offers such pow-
erful features as graphical user interfaces, event handling, access to the Windows 32-bit
Application Programming Interface (Win32 API), object-oriented programming and
exception handling. Visual Basic .NET is an event-driven, visual programming language
in which programs are created using an Integrated Development Environment (IDE). With
the IDE, a programmer can write, run, test and debug Visual Basic programs conveniently,
thereby reducing the time it takes to produce a working program to a fraction of the time it
would have taken without using the IDE. The process of rapidly creating an application is
typically referred to as Rapid Application Development (RAD). Visual Basic is the world’s
most widely used RAD language.

The advancement of programming tools and consumer-electronic devices created many
challenges. Integrating software components from diverse languages proved difficult, and
installation problems were common because new versions of shared components were
incompatible with old software. Developers also discovered they needed Web-based applica-
tions that could be accessed and used via the Internet. As programmable devices, such as per-
sonal digital assistants (PDAs) and cell phones, grew in popularity in the late 1990s, the need
for these components to interact with others via the Internet rose dramatically. As a result of
the popularity of mobile electronic devices, software developers realized that their clients
were no longer restricted to desktop users. Developers recognized the need for software
accessible to anyone from almost any type of device.

To address these needs, Microsoft announced the introduction of the Microsoft .NET
(pronounced “dot-net”) strategy in 2000. The .NET platform is one over which Web-based
applications can be distributed to a variety of devices (such as cell phones) and to desktop
computers. The .NET platform offers a new programming model that allows programs cre-
ated in disparate programming languages to communicate with each other. 

Microsoft has designed a version of Visual Basic for .NET. Earlier versions of
Visual Basic did offer object-oriented capabilities, but Visual Basic .NET offers
enhanced object orientation, including a powerful library of components, allowing pro-
grammers to develop applications even more quickly. Visual Basic .NET also enables
enhanced language interoperability: Software components from different languages can
interact as never before. Developers can package even old software to work with new
Visual Basic .NET programs. Also, Visual Basic .NET applications can interact via the
Internet, using industry standards such as the Simple Object Access Protocol (SOAP) and
XML, which we discuss in Chapter 18, Extensible Markup Language (XML). Visual
Basic .NET is crucial to Microsoft’s .NET strategy, enabling existing Visual Basic devel-
opers to migrate to .NET easily. The advances embodied in .NET and Visual Basic .NET
will lead to a new programming style, in which applications are created from components
called Web Services available over the Internet.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 9

1.8 C, C++, Java™ and C#
As high-level languages develop, new offerings build on aspects of their predecessors. C++
evolved from C, which in turn evolved from two previous languages, BCPL and B. Martin
Richards developed BCPL in 1967 as a language for writing operating systems, software
and compilers. Ken Thompson modeled his language, B, after BCPL. In 1970, Thompson
used B to create early versions of the UNIX operating system. Both BCPL and B were
“typeless” languages, meaning that every data item occupied one “word” in memory. Using
these languages, programmers assumed responsibility for treating each data item as a whole
number or real number.

The C language, which Dennis Ritchie evolved from B at Bell Laboratories, was orig-
inally implemented in 1973. Although C employs many of BCPL and B’s important con-
cepts, it also offers data typing and other features. C first gained widespread recognition as
a development language of the UNIX operating system. However, C is now available for
most computers, and many of today’s major operating systems are written in C or C++. C
is a hardware-independent language, and, with careful design, it is possible to write C pro-
grams that are portable to most computers.

C++, an extension of C using elements from Simula 67 (a simulation programming
language) was developed by Bjarne Stroustrup in the early 1980s at Bell Laboratories. C++
provides a number of features that “spruce up” the C language, but, more importantly, it
provides capabilities for object-oriented programming (OOP).

At a time when demand for new and more powerful software is soaring, the ability to
build software quickly, correctly and economically remains an elusive goal. However, this
problem can be addressed in part through the use of objects, or reusable software compo-
nents that model items in the real world (see Section 1.11). Software developers are discov-
ering that a modular, object-oriented approach to design and implementation can make
software development groups much more productive than is possible using only previous
popular programming techniques, such as structured programming. Furthermore, object-
oriented programs are often easier to understand, correct and modify.

In addition to C++, many other object-oriented languages have been developed. These
include Smalltalk, which was created at Xerox's Palo Alto Research Center (PARC).
Smalltalk is a pure object-oriented language, which means that literally everything is an
object. C++ is a hybrid language—it is possible to program in a C-like style, an object-ori-
ented style or both. Although some perceive this range of options as a benefit, most pro-
grammers today believe that it is best to program in a purely object-oriented manner.

In the early 1990s, many individuals projected that intelligent consumer-electronic
devices would be the next major market in which microprocessors would have a profound
impact. Recognizing this, Sun Microsystems in 1991 funded an internal corporate research
project code-named Green. The project resulted in the development of a language based on
C and C++. Although the language’s creator, James Gosling, called it Oak (after an oak tree
outside his window at Sun), it was later discovered that a computer language called Oak
already existed. When a group of Sun employees visited a local coffee place, the name Java
was suggested, and it stuck.

But the Green project ran into some difficulties. The marketplace for intelligent con-
sumer-electronic devices was not developing as quickly as Sun had anticipated. Worse yet,
a major contract for which Sun competed was awarded to another company. The project
was, at this point, in danger of being canceled. By sheer good fortune, the World Wide Web



10 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

exploded in popularity in 1993, and Sun saw immediate potential for using Java to create
dynamic content (i.e., animated and interactive content) for Web pages. 

Sun formally announced Java at a conference in May 1995. Ordinarily, an event like
this would not generate much publicity. However, Java grabbed the immediate attention of
the business community because of the new, widespread interest in the World Wide Web.
Developers now use Java to create Web pages with dynamic content, to build large-scale
enterprise applications, to enhance the functionality of World Wide Web servers (the com-
puters that provide the content distributed to our Web browsers when we browse Web
sites), to provide applications for consumer devices (e.g., cell phones, pagers and PDAs)
and for many other purposes.

In 2000, Microsoft announced C# (pronounced “C-Sharp”) and its .NET (pronounced
“dot-net”) strategy. The .NET strategy incorporates the Internet with a new programming
model to create Web-based applications that users can access from various devices—
including desktop computers, laptop computers and wireless devices.

The C# programming language, developed at Microsoft by Anders Hejlsberg and Scott
Wiltamuth, was designed specifically for the .NET platform. It has roots in C, C++ and
Java, adapting the best features of each. Like Visual Basic .NET, C#1 is object-oriented and
contains a powerful class library of prebuilt components, enabling programmers to develop
applications quickly.

1.9 Other High-level Languages
Although hundreds of high-level languages have been developed, only a few have achieved
broad acceptance. This section overviews several languages that, like BASIC, are long-
standing and popular high-level languages. IBM Corporation developed Fortran (FORmula
TRANslator) between 1954 and 1957 to create scientific and engineering applications that
require complex mathematical computations. Fortran is still widely used.

COBOL (COmmon Business Oriented Language) was developed in 1959 by a group
of computer manufacturers in conjunction with government and industrial computer users.
COBOL is used primarily for commercial applications that require the precise and efficient
manipulation of large amounts of data. A considerable portion of today’s business software
is still programmed in COBOL. Approximately one million programmers are actively
writing in COBOL. 

Pascal was designed in the late 1960s by Professor Nicklaus Wirth and was intended
for academic use. We explore Pascal in the next section.

1.10 Structured Programming
During the 1960s, many large software-development efforts encountered severe difficul-
ties. Development typically ran behind schedule, costs greatly exceeded budgets and the
finished products were unreliable. People began to realize that software development was
a far more complex activity than they had imagined. Research activity, intended to address
these issues, resulted in the evolution of structured programming—a disciplined approach
to the creation of programs that are clear, demonstrably correct and easy to modify. 

1. The reader interested in learning C# may want to consider our book, C# How to Program.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 11

One of the more tangible results of this research was the development of the Pascal
programming language in 1971. Pascal, named after the seventeenth-century mathemati-
cian and philosopher Blaise Pascal, was designed for teaching structured programming in
academic environments and rapidly became the preferred introductory programming lan-
guage in most universities. Unfortunately, because the language lacked many features
needed to make it useful in commercial, industrial and government applications, it was not
widely accepted in these environments. By contrast, C, which also arose from research on
structured programming, did not have the limitations of Pascal, and programmers quickly
adopted it. 

The Ada programming language was developed under the sponsorship of the United
States Department of Defense (DOD) during the 1970s and early 1980s. Hundreds of pro-
gramming languages were being used to produce DOD’s massive command-and-control
software systems. DOD wanted a single language that would meet its needs. Pascal was
chosen as a base, but the final Ada language is quite different from Pascal. The language
was named after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Lovelace is
generally credited with writing the world’s first computer program, in the early 1800s (for
the Analytical Engine mechanical computing device designed by Charles Babbage). One
important capability of Ada is multitasking, which allows programmers to specify that
many activities are to occur in parallel. As we will see in Chapter 14, Visual Basic .NET
offers a similar capability, called multithreading.

1.11 Key Software Trend: Object Technology
One of the authors, HMD, remembers the great frustration felt in the 1960s by software-
development organizations, especially those developing large-scale projects. During the
summers of his undergraduate years, HMD had the privilege of working at a leading com-
puter vendor on the teams developing time-sharing, virtual-memory operating systems. It
was a great experience for a college student, but, in the summer of 1967, reality set in. The
company “decommitted” from producing as a commercial product the particular system
that hundreds of people had been working on for several years. It was difficult to get this
software right. Software is “complex stuff.”

As the benefits of structured programming (and the related disciplines of structured
systems analysis and design) were realized in the 1970s, improved software technology did
begin to appear. However, it was not until the technology of object-oriented programming
became widely used in the 1980s and 1990s that software developers finally felt they had
the necessary tools to improve the software-development process dramatically.

Actually, object technology dates back to at least the mid-1960s, but no broad-based
programming language incorporated the technology until C++. Although not strictly an
object-oriented language, C++ absorbed the capabilities of C and incorporated Simula’s
ability to create and manipulate objects. C++ was never intended for widespread use
beyond the research laboratories at AT&T, but grass-roots support rapidly developed for
the hybrid language. 

What are objects, and why are they special? Object technology is a packaging scheme
for creating meaningful software units. These units are large and focused on particular
applications areas. There are date objects, time objects, paycheck objects, invoice objects,
audio objects, video objects, file objects, record objects and so on. In fact, almost any noun



12 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

can be reasonably represented as a software object. Objects have properties (i.e., attributes,
such as color, size and weight) and perform actions (i.e., behaviors, such as moving,
sleeping or drawing). Classes are groups of related objects. For example, all cars belong to
the “car” class, even though individual cars vary in make, model, color and options pack-
ages. A class specifies the general format of its objects, and the properties and actions avail-
able to an object depend on its class.

We live in a world of objects. Just look around you—there are cars, planes, people, ani-
mals, buildings, traffic lights, elevators and so on. Before object-oriented languages
appeared, procedural programming languages (such as Fortran, Pascal, BASIC and C)
focused on actions (verbs) rather than things or objects (nouns). We live in a world of
objects, but earlier programming languages forced individuals to program primarily with
verbs. This paradigm shift made program writing a bit awkward. However, with the advent
of popular object-oriented languages, such as C++, C# and Visual Basic .NET, program-
mers can program in an object-oriented manner that reflects the way in which they perceive
the world. This process, which seems more natural than procedural programming, has
resulted in significant productivity gains.

One of the key problems with procedural programming is that the program units cre-
ated do not mirror real-world entities effectively and therefore are not particularly reusable.
Programmers often write and rewrite similar software for various projects. This wastes pre-
cious time and money as people repeatedly “reinvent the wheel.” With object technology,
properly designed software entities (called classes) can be reused on future projects. Using
libraries of reusable componentry, such as MFC (Microsoft Foundation Classes), can
greatly reduce the amount of effort required to implement certain kinds of systems (as com-
pared to the effort that would be required to reinvent these capabilities in new projects). 

Some organizations report that software reusability is not, in fact, the key benefit that
they garner from object-oriented programming. Rather, they indicate that object-oriented
programming tends to produce software that is more understandable because it is better
organized and has fewer maintenance requirements. As much as 80 percent of software
costs are not associated with the original efforts to develop the software, but instead are
related to the continued evolution and maintenance of that software throughout its lifetime.
Object orientation allows programmers to abstract the details of software and focus on the
“big picture.” Rather than worrying about minutiae, the programmer can focus on the
behaviors and interactions of objects. A roadmap that showed every tree, house and
driveway would be difficult, if not impossible, to read—when such details are removed and
only the essential information (roads) remains, the map becomes easier to understand. In
the same way, a program that is divided into objects is easy to understand, modify and
update because it hides much of the detail. It is clear that object-oriented programming will
be the key programming methodology for at least the next decade. 

Software Engineering Observation 1.1
Use a building-block approach to creating programs. By reusing existing pieces, program-
mers avoid reinventing the wheel. This is called software reuse, and it is central to object-
oriented programming. 1.1

[Note: We will include many of these Software Engineering Observations throughout the
text to explain concepts that affect and improve the overall architecture and quality of a
software system and, particularly, of large software systems. We will also highlight Good
Programming Practices (practices that can help you write programs that are clearer, more



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 13

understandable, more maintainable and easier to test and debug), Common Programming
Errors (problems to watch for to ensure that you do not make these same errors in your pro-
grams), Performance Tips (techniques that will help you write programs that run faster and
use less memory), Portability Tips (techniques that will help you write programs that can
run, with little or no modification, on a variety of computers), Testing and Debugging Tips
(techniques that will help you remove bugs from your programs and, more importantly,
write bug-free programs in the first place) and Look-and-Feel Observations (techniques
that will help you design the “look and feel” of your graphical user interfaces for appear-
ance and ease of use). Many of these techniques and practices are only guidelines; you will,
no doubt, develop your own preferred programming style.]

The advantage of creating your own code is that you will know exactly how it works.
The code will be yours to examine, modify and improve. The disadvantage is the time and
effort that goes into designing, developing and testing new code.

Performance Tip 1.1
Reusing proven code components instead of writing your own versions can improve program
performance, because these components normally are written to perform efficiently. 1.1

Software Engineering Observation 1.2
Extensive class libraries of reusable software components are available over the Internet and
the World Wide Web; many are offered free of charge. 1.2

1.12 Hardware Trends
Every year, people generally expect to pay at least a little more for most products and
services. The opposite has been the case in the computer and communications fields, es-
pecially with regard to the costs of hardware supporting these technologies. For many de-
cades, and continuing into the foreseeable future, hardware costs have fallen rapidly, if
not precipitously. Every year or two, the capacities of computers approximately double.2

This is especially true in relation to the amount of memory that computers have for pro-
grams, the amount of secondary storage (such as disk storage) they have to hold programs
and data over longer periods of time and their processor speeds—the speeds at which
computers execute their programs (i.e., do their work). The same growth has occurred in
the communications field, in which costs have plummeted as enormous demand for com-
munications bandwidth has attracted tremendous competition. We know of no other
fields in which technology moves so quickly and costs fall so rapidly. Such phenomenal
improvement in the computing and communications fields is truly fostering the so-called
“Information Revolution.”

When computer use exploded in the 1960s and 1970s, many people discussed the dra-
matic improvements in human productivity that computing and communications would
cause. However, these improvements did not materialize. Organizations were spending
vast sums of capital on computers and employing them effectively, but without realizing
the expected productivity gains. The invention of microprocessor chip technology and its
wide deployment in the late 1970s and 1980s laid the groundwork for the productivity
improvements that individuals and businesses have achieved in recent years.

2. This often is called Moore’s Law.



14 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

1.13 History of the Internet and World Wide Web
In the late 1960s, one of the authors (HMD) was a graduate student at MIT. His research at
MIT’s Project Mac (now the Laboratory for Computer Science—the home of the World Wide
Web Consortium) was funded by ARPA—the Advanced Research Projects Agency of the
Department of Defense. ARPA sponsored a conference at which several dozen ARPA-fund-
ed graduate students were brought together at the University of Illinois at Urbana-Champaign
to meet and share ideas. During this conference, ARPA rolled out the blueprints for network-
ing the main computer systems of approximately a dozen ARPA-funded universities and re-
search institutions. The computers were to be connected with communications lines operating
at a then-stunning 56 Kbps (1 Kbps is equal to 1,024 bits per second), at a time when most
people (of the few who had networking access) were connecting over telephone lines to com-
puters at a rate of 110 bits per second. HMD vividly recalls the excitement at that conference.
Researchers at Harvard talked about communicating with the Univac 1108 “supercomputer,”
which was located at the University of Utah, to handle calculations related to their computer
graphics research. Many other intriguing possibilities were discussed. Academic research
was about to take a giant leap forward. Shortly after this conference, ARPA proceeded to im-
plement what quickly became called the ARPAnet, the grandparent of today’s Internet.

Things worked out differently from the original plan. Although the ARPAnet did
enable researchers to network their computers, its chief benefit proved to be the capability
for quick and easy communication via what came to be known as electronic mail (e-mail).
This is true even on today’s Internet, with e-mail, instant messaging and file transfer facil-
itating communications among hundreds of millions of people worldwide.

The network was designed to operate without centralized control. This meant that, if a
portion of the network should fail, the remaining working portions would still be able to
route data packets from senders to receivers over alternative paths.

The protocol (i.e., set of rules) for communicating over the ARPAnet became known
as the Transmission Control Protocol (TCP). TCP ensured that messages were properly
routed from sender to receiver and that those messages arrived intact.

In parallel with the early evolution of the Internet, organizations worldwide were
implementing their own networks for both intra-organization (i.e., within the organization)
and inter-organization (i.e., between organizations) communication. A huge variety of net-
working hardware and software appeared. One challenge was to enable these diverse prod-
ucts to communicate with each other. ARPA accomplished this by developing the Internet
Protocol (IP), which created a true “network of networks,” the current architecture of the
Internet. The combined set of protocols is now commonly called TCP/IP.

Initially, use of the Internet was limited to universities and research institutions; later,
the military adopted the technology. Eventually, the government decided to allow access to
the Internet for commercial purposes. When this decision was made, there was resentment
among the research and military communities—it was felt that response times would
become poor as “the Net” became saturated with so many users. 

In fact, the opposite has occurred. Businesses rapidly realized that, by making effective
use of the Internet, they could refine their operations and offer new and better services to
their clients. Companies started spending vast amounts of money to develop and enhance
their Internet presence. This generated fierce competition among communications carriers
and hardware and software suppliers to meet the increased infrastructure demand. The
result is that bandwidth (i.e., the information-carrying capacity of communications lines)



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 15

on the Internet has increased tremendously, while hardware costs have plummeted. It is
widely believed that the Internet played a significant role in the economic growth that the
United States and many other industrialized nations experienced over the last decade. 

The World Wide Web allows computer users to locate and view multimedia-based doc-
uments (i.e., documents with text, graphics, animations, audios and/or videos) on almost
any subject. Even though the Internet was developed more than three decades ago, the
introduction of the World Wide Web (WWW) was a relatively recent event. In 1989, Tim
Berners-Lee of CERN (the European Organization for Nuclear Research) began to develop
a technology for sharing information via hyperlinked text documents. Basing the new lan-
guage on the well-established Standard Generalized Markup Language (SGML)—a stan-
dard for business data interchange—Berners-Lee called his invention the HyperText
Markup Language (HTML). He also wrote communication protocols to form the backbone
of his new hypertext information system, which he referred to as the World Wide Web.

The Internet and the World Wide Web will surely be listed among the most important
and profound creations of humankind. In the past, most computer applications ran on “stand-
alone” computers (computers that were not connected to one another). Today’s applications
can be written to communicate among the world’s hundreds of millions of computers (this is,
as we will see, the thrust of Microsoft’s .NET strategy). The Internet and World Wide Web
merge computing and communications technologies, expediting and simplifying our work.
They make information instantly and conveniently accessible to large numbers of people.
They enable individuals and small businesses to achieve worldwide exposure. They are pro-
foundly changing the way we do business and conduct our personal lives.

1.14 World Wide Web Consortium (W3C)
In October 1994, Tim Berners-Lee founded an organization, called the World Wide Web
Consortium (W3C), that is devoted to developing nonproprietary, interoperable technolo-
gies for the World Wide Web. One of the W3C’s primary goals is to make the Web univer-
sally accessible—regardless of disabilities, language or culture.

The W3C (www.w3.org) is also a standardization organization and is comprised of
three hosts—the Massachusetts Institute of Technology (MIT), France’s INRIA (Institut
National de Recherche en Informatique et Automatique) and Keio University of Japan—
and over 400 members, including Deitel & Associates, Inc. Members provide the primary
financing for the W3C and help provide the strategic direction of the Consortium.

Web technologies standardized by the W3C are called Recommendations. Current W3C
Recommendations include Extensible HyperText Markup Language (XHTML™), Cascading
Style Sheets (CSS™) and the Extensible Markup Language (XML). Recommendations are not
actual software products, but documents that specify the role, syntax and rules of a tech-
nology. Before becoming a W3C Recommendation, a document passes through three major
phases: Working Draft—which, as its name implies, specifies an evolving draft; Candidate
Recommendation—a stable version of the document that industry can begin to implement;
and Proposed Recommendation—a Candidate Recommendation that is considered mature
(i.e., has been implemented and tested over a period of time) and is ready to be considered for
W3C Recommendation status. For detailed information about the W3C Recommendation
track, see “6.2 The W3C Recommendation track” at 

www.w3.org/Consortium/Process/Process-19991111/
process.html#RecsCR



16 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

1.15 Extensible Markup Language (XML)
As the popularity of the Web exploded, HTML’s limitations became apparent. HTML’s
lack of extensibility (the ability to change or add features) frustrated developers, and its
ambiguous definition allowed erroneous HTML to proliferate. In response to these prob-
lems, the W3C added limited extensibility to HTML and created a new technology for
formatting HTML documents, called Cascading Style Sheets (CSS). These were, howev-
er, only temporary solutions—the need for a standardized, fully extensible and structur-
ally strict language was apparent. As a result, XML was developed by the W3C. XML
combines the power and extensibility of its parent language, Standard Generalized Mark-
up Language (SGML), with the simplicity that the Web community demands. At the
same time, the W3C began developing XML-based standards for style sheets and ad-
vanced hyperlinking. Extensible Stylesheet Language (XSL) incorporates elements of
both CSS and Document Style and Semantics Specification Language (DSSSL), which is
used to format SGML documents. Similarly, the Extensible Linking Language (XLink)
combines ideas from HyTime and the Text Encoding Initiative (TEI), to provide extensi-
ble linking of resources. 

Data independence, the separation of content from its presentation, is the essential
characteristic of XML. Because XML documents describes data, any application con-
ceivably can process XML documents. Recognizing this, software developers are inte-
grating XML into their applications to improve Web functionality and interoperability.
XML’s flexibility and power make it perfect for the middle tier of client/server systems,
which must interact with a wide variety of clients. Much of the processing that was once
limited to server computers now can be performed by client computers, because XML’s
semantic and structural information enables it to be manipulated by any application that
can process text. 

This reduces server loads and network traffic, resulting in a faster, more efficient
Web. XML is not limited to Web applications. Increasingly, XML is being employed in
databases—the structure of an XML document enables it to be integrated easily with
database applications. As applications become more Web enabled, it seems likely that
XML will become the universal technology for data representation. All applications
employing XML would be able to communicate, provided that they could understand
each others’ XML markup, or vocabulary.

Simple Object Access Protocol (SOAP) is a technology for the distribution of
objects (marked up as XML) over the Internet. Developed primarily by Microsoft and
DevelopMentor, SOAP provides a framework for expressing application semantics,
encoding that data and packaging it in modules. SOAP has three parts: The envelope,
which describes the content and intended recipient of a SOAP message; the SOAP
encoding rules, which are XML-based; and the SOAP Remote Procedure Call (RPC)
representation for commanding other computers to perform a task. Microsoft .NET (dis-
cussed in the next two sections) uses XML and SOAP to mark up and transfer data over
the Internet. XML and SOAP are at the core of .NET—they allow software components
to interoperate (i.e., communicate easily with one another). SOAP is supported by many
platforms, because of its foundations in XML and HTTP (HyperText Transfer Protocol—
the key communication protocol of the World Wide Web). We discuss XML in Chapter
18, Extensible Markup Language (XML) and SOAP in Chapter 21, ASP .NET and Web
Services.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 17

1.16 Introduction to Microsoft .NET
In June 2000, Microsoft announced its .NET initiative, a broad new vision for embracing
the Internet and the Web in the development, engineering and use of software. One key as-
pect of the .NET strategy is its independence from a specific language or platform. Rather
than forcing developers to use a single programming language, developers can create a
.NET application in any .NET-compatible language. Programmers can contribute to the
same software project, writing code in the .NET languages (such as Visual Basic .NET, Vi-
sual C++ .NET, C# and others) in which they are most competent. Part of the initiative in-
cludes Microsoft’s Active Server Pages (ASP) .NET technology, which allows
programmers to create applications for the Web.

The .NET architecture can exist on multiple platforms, further extending the porta-
bility of .NET programs. In addition, the .NET strategy involves a new program-develop-
ment process that could change the way programs are written and executed, leading to
increased productivity.

A key component of the .NET architecture is Web services, which are applications that
can be used over the Internet. Clients and other applications can use these Web services as
reusable building blocks. One example of a Web service is Dollar Rent a Car’s reservation
system.3 An airline partner wanted to enable customers to make rental-car reservations
from the airline’s Web site. To do so, the airline needed to access Dollar’s reservation
system. In response, Dollar created a Web service that allowed the airline to access Dollar’s
database and make reservations. Web services enable the two companies to communicate
over the Web, even though the airline uses UNIX systems and Dollar uses Microsoft Win-
dows. Dollar could have created a one-time solution for that particular airline, but the com-
pany would not have been able to reuse such a customized system. By creating a Web
service, Dollar can allow other airlines or hotels to use its reservation system without cre-
ating a custom program for each relationship.

The .NET strategy extends the concept of software reuse to the Internet, allowing pro-
grammers to concentrate on their specialties without having to implement every component
of every application. Instead, companies can buy Web services and devote their time and
energy to developing their products. The .NET strategy further extends the concept of soft-
ware reuse to the Internet by allowing programmers to concentrate on their specialties
without having to implement every component. Visual programming (discussed in Chapter
2) has become popular, because it enables programmers to create applications easily, using
such prepackaged components as buttons, textboxes and scrollbars. Similarly, program-
mers can create applications using Web services for databases, security, authentication,
data storage and language translation without having to know the details of those compo-
nents. The Web services programming model is discussed in Chapter 21.

The .NET strategy incorporates the idea of software reuse. When companies link their
products in this way, a new user experience emerges. For example, a single application could
manage bill payments, tax refunds, loans and investments, using Web services from various
companies. An online merchant could buy Web services for online credit-card payments, user
authentication, network security and inventory databases to create an e-commerce Web site.

3. Microsoft Corporation, “Dollar Rent A Car E-Commerce Case Study on Microsoft Business,” 1
July 2001 <www.microsoft.com/BUSINESS/casestudies/b2c/dollarrentac-
ar.asp>.



18 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

The keys to this interaction are XML and SOAP, which enable Web services to com-
municate. XML gives meaning to data, and SOAP is the protocol that allows Web services
to communicate easily with one another. XML and SOAP act as the “glue” that combines
various Web services to form applications.

Universal data access is another essential concept in the .NET strategy. If two copies
of a file exist (such as on a personal computer and a company computer), the less recent
version must constantly be updated—this is called file synchronization. If the separate ver-
sions of the file are different, they are unsynchronized, a situation that could lead to serious
errors. Under .NET, data could reside in one central location rather than on separate sys-
tems. Any Internet-connected device could access the data (under tight control, of course),
which would then be formatted appropriately for use or display on the accessing device.
Thus, the same document could be seen and edited on a desktop PC, a PDA, a cell phone
or other device. Users would not need to synchronize the information, because it would be
fully up-to-date in a central area. 

Microsoft’s HailStorm Web services facilitate such data organization.4 HailStorm
allows users to store data so that it is accessible from any HailStorm-compatible device
(such as a PDA, desktop computer or cell phone). HailStorm offers a suite of services, such
as an address book, e-mail, document storage, calendars and a digital wallet. Third-party
Web services also can interact with HailStorm—users can be notified when they win online
auctions or have their calendars updated if their planes arrive late. Information can be
accessed from anywhere and cannot become unsynchronized. Privacy concerns, however,
increase, because all of a user’s data resides in one location. Microsoft has addressed this
issue by giving users control over their data. Users must authorize access to their data and
specify the duration of that access.

Microsoft plans to create Internet-based client applications. For example, software could
be distributed over the Internet on a subscription basis, enabling immediate corrections,
updates and communication with other applications over the Internet. HailStorm provides
basic services at no charge and users can pay via subscription for more advanced features.

The .NET strategy is an immense undertaking. We discuss various aspects of .NET
throughout this book. Additional information is available on Microsoft’s Web site
(www.microsoft.com/net).

1.17 .NET Framework and the Common Language Runtime
The Microsoft .NET Framework is at the heart of the .NET strategy. This framework man-
ages and executes applications and Web services, contains a class library (called the
Framework class library or FCL), enforces security and provides many other programming
capabilities. The details of the .NET Framework are found in the Common Language Spec-
ification (CLS), which contains information about the storage of data types, objects and so
on. The CLS has been submitted for standardization to ECMA (the European Computer
Manufacturers Association), making it easier to create the .NET Framework for other plat-
forms. This is like publishing the blueprints of the framework—anyone can build it, follow-
ing the specifications. Currently, the .NET Framework exists only for the Windows
platform, although a version is under development for the FreeBSD operating system.5 The

4. Microsoft Corporation, “Building User-Centric Experiences: An Introduction to Microsoft Hail-
Storm,” 30 July 2001 <http://www.microsoft.com/net/hailstorm.asp>.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 19

FreeBSD project provides a freely available and open-source UNIX-like operating system
that is based on that UC Berkeley’s Berkeley System Distribution (BSD). 

The Common Language Runtime (CLR) is another central part of the .NET Frame-
work—it executes Visual Basic .NET programs. Programs are compiled into machine-spe-
cific instructions in two steps. First, the program is compiled into Microsoft Intermediate
Language (MSIL), which defines instructions for the CLR. Code converted into MSIL from
other languages and sources can be woven together by the CLR. Then, another compiler in
the CLR translates the MSIL into machine code (for a particular platform), creating a single
application.

Why bother having the extra step of converting from Visual Basic .NET to MSIL,
instead of compiling directly into machine language? The key reasons are portability
between operating systems, interoperability between languages and execution-manage-
ment features such as memory management and security.

If the .NET Framework exists (and is installed) for a platform, that platform can run
any .NET program. The ability of a program to run (without modification) across multiple
platforms is known as platform independence. Code written once can be used on another
machine without modification, saving both time and money. In addition, software can
target a wider audience—previously, companies had to decide whether converting their
programs to different platforms (sometimes called porting) was worth the cost. With .NET,
porting is no longer an issue.

The .NET Framework also provides a high level of language interoperability. Pro-
grams written in different languages are all compiled into MSIL—the different parts can be
combined to create a single, unified program. MSIL allows the .NET Framework to be lan-
guage independent, because .NET programs are not tied to a particular programming lan-
guage. Any language that can be compiled into MSIL is called a  .NET-compliant language.
Figure 1.1 lists many of the current languages that support the .NET platform.6

5. Microsoft Corporation, “The Microsoft Shared Source C# and CLI Specifications,” 30 July 2001
<http://www.microsoft.com/net/sharedsourcewp.asp>.

Programming Languages

APL Oberon

C# Oz

COBOL Pascal

Component Pascal Perl

Curriculum Python

Eiffel RPG

Fortran Scheme

Haskell Smalltalk

J# Standard ML

Fig. 1.1Fig. 1.1Fig. 1.1Fig. 1.1 .NET Languages (part 1 of 2).

6. Table information from Microsoft Web site, www.microsoft.com.



20 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

Language interoperability offers many benefits to software companies. Visual Basic
.NET, C# and Visual C++ .NET developers can work side-by-side on the same project
without having to learn another programming language—all their code compiles into MSIL
and links together to form one program. In addition, the .NET Framework can package old
and new components to work together. This allows companies to reuse the code that they
have spent years developing and integrate it with the new .NET code that they write. Inte-
gration is crucial, because companies cannot migrate easily to .NET unless they can stay
productive, using their existing developers and software.

Another benefit of the .NET Framework is the CLR’s execution-management features.
The CLR manages memory, security and other features, relieving the programmer of these
responsibilities. With languages like C++, programmers must take memory management
into their own hands. This leads to problems if programmers request memory and never
return it—programs could consume all available memory, which would prevent applica-
tions from running. By managing the program’s memory, the .NET Framework allows pro-
grammers to concentrate on program logic.

The .NET Framework also provides programmers with a huge library of classes. This
library, called the Framework Class Library (FCL), can be used by any .NET language.
The FCL contains a variety of reusable components, saving programmers the trouble of cre-
ating new components. This book explains how to develop .NET software with Visual
Basic .NET. Steve Ballmer, Microsoft’s CEO, stated in May 2001 that Microsoft was “bet-
ting the company” on .NET. Such a dramatic commitment surely indicates a bright future
for Visual Basic .NET and its community of developers.

1.18 Tour of the Book
In this section, we tour the chapters of Visual Basic .NET How to Program, Second Edition.
In addition to the topics presented in each chapter, several of the chapters contain an Inter-
net and World Wide Web Resources section that lists additional sources from which read-
ers can enhance their knowledge of Visual Basic .NET programming.

Chapter 1—Introduction to Computers, Internet and Visual Basic .NET
The first chapter familiarizes the reader with what computers are, how they work and how
they are programmed. We explain the evolution of programming languages, from their or-
igins in machine languages to the development of high-level, object-oriented languages.
We overview the history of the Internet, World Wide Web and various technologies (such
as HTTP, SOAP and XML) that have led to advances in how computers are used. We then
discuss the development of the Visual Basic .NET programming language and the Mi-
crosoft .NET initiative, including Web services. We explore the impact of .NET on soft-
ware development and conclude by touring the remainder of the book.

JScript Visual Basic .NET

Mercury Visual C++ .NET

Programming Languages (Cont.)

Fig. 1.1Fig. 1.1Fig. 1.1Fig. 1.1 .NET Languages (part 2 of 2).



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 21

Chapter 2—Introduction to the Visual Studio® .NET IDE
Chapter 2 introduces Microsoft Visual Studio .NET, an integrated development environment
(IDE) for creating Visual Basic .NET programs. Visual Studio .NET enables visual program-
ming, in which controls (such as buttons or text boxes) are “dragged” and “dropped” into
place, rather than added by typing code. Visual programming has led to greatly increased pro-
ductivity of software developers because it eliminates many of the tedious tasks that program-
mers face. For example, object properties (information such as height and color) can be
modified through Visual Studio .NET windows, allowing changes to be made quickly and
causing the results to appear immediately on the screen. Rather than having to guess how the
GUI will appear while writing a program, programmers view the GUI exactly as it will appear
when the finished program runs. Visual Studio .NET also contains advanced tools for debug-
ging, documenting and writing code. The chapter presents features of Visual Studio .NET, in-
cluding its key windows, toolbox and help features and overviews the process of running
programs. We provide an example of the capabilities of Visual Studio .NET by using it to cre-
ate a simple Windows application without typing a single line of code.

Chapter 3—Introduction to Visual Basic Programming
This chapter introduces readers to our LIVE-CODE™ approach. We try to present every con-
cept in the context of a complete working Visual Basic .NET program and follow each pro-
gram with one or more screenshots depicting the program’s execution. In our first example,
we print a line of text and carefully discuss each line of code. We then discuss fundamental
tasks, such as how a program inputs data from its users and how to write arithmetic expres-
sions. The chapter’s last example demonstrates how to print a variety of character strings
in a window called a message box.

Chapter 4—Control Structures: Part 1
This chapter formally introduces the principles of structured programming, a technique that
will help the reader develop clear, understandable, maintainable programs throughout the
text. The first part of this chapter presents program-development and problem-solving tech-
niques. The chapter demonstrates how to transform a written specification into a program
by using such techniques as pseudocode and top-down, stepwise refinement. We then
progress through the entire process, from developing a problem statement into a working
Visual Basic .NET program. The notion of algorithms is also discussed. We build on infor-
mation presented in the previous chapter to create interactive programs (i.e., programs that
receive inputs from, and display outputs to, the program users). The chapter then introduces
the use of control structures that affect the sequence in which statements are executed.
Proper use of control structures helps produce programs that are easily understood, de-
bugged and maintained. We discuss the three forms of program control—sequence, selec-
tion and repetition—focusing on the If/Then and While control structures. Flowcharts
(i.e., graphical representations of algorithms) appear throughout the chapter, reinforcing
and augmenting the explanations. 

Chapter 5—Control Structures: Part 2
Chapter 5 introduces additional control structures and the logical operators. It uses flow-
charts to illustrate the flow of control through each control structure, including the For/
Next, Do/Loop While and Select Case structures. We explain the Exit keyword
and the logical operators. Examples include calculating compound interest and printing the



22 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

distribution of grades on an exam (with some simple error checking). The chapter con-
cludes with a structured programming summary, including each of Visual Basic .NET’s
control structures. The techniques discussed in Chapters 4 and 5 constitute a large part of
what has been taught traditionally under the topic of structured programming.

Chapter 6—Procedures
A procedure allows the programmer to create a block of code that can be called from var-
ious points in a program. A program can be formed by aggregating groups of related pro-
cedures into units called classes and modules. Programs are divided into simple
components that interact in straightforward ways. We discuss how to create our own pro-
cedures that can take inputs, perform calculations and return outputs. We examine the .NET
library’s Math class, which contains methods (i.e., procedures in a class) for performing
complex calculations (e.g., trigonometric and logarithmic calculations). Recursive proce-
dures (procedures that call themselves) and procedure overloading, which allows multiple
procedures to have the same name, are introduced. We demonstrate overloading by creating
two Square procedures that take an integer (i.e., whole number) and a floating-point num-
ber (i.e., a number with a decimal point), respectively. To conclude the chapter, we create
a graphical simulation of the dice game “craps,” using the random-number generation tech-
niques presented in the chapter.

Chapter 7—Arrays
Chapter 7 discusses our first data structures, arrays. (Chapter 24 discusses the topic of data
structures in depth.) Data structures are crucial to storing, sorting, searching and manipu-
lating large amounts of information. Arrays are groups of related data items that allow the
programmer to access any element directly. Rather than creating 100 separate variables that
are all related in some way, the programmer instead can create an array of 100 elements and
access these elements by their location in the array. We discuss how to declare and allocate
arrays, and we build on the techniques of the previous chapter by passing arrays to proce-
dures. In addition, we discuss how to pass a variable number of arguments to procedures.
Chapters 4 and 5 provide essential background for the discussion of arrays, because repe-
tition structures are used to iterate through elements in the array. The combination of these
concepts helps the reader create highly-structured and well-organized programs. We then
demonstrate how to sort and search arrays. We discuss multidimensional and jagged arrays,
which can be used to store tables of data.

Chapter 8—Object-Based Programming
Chapter 8 serves as our introduction into the powerful concepts of objects and classes
(classes are programmer-defined types). As mentioned in Chapter 1, object technology has
led to considerable improvements in software development, allowing programmers to cre-
ate reusable components. In addition, objects allow programs to be organized in natural and
intuitive ways. In this chapter, we present the fundamentals of object-based programming,
such as encapsulation, data abstraction and abstract data types (ADTs). These techniques
hide the details of components so that the programmer can concentrate on the “big picture.”
To demonstrate these concepts, we create a time class, which displays the time in standard
and military formats. Other topics examined include abstraction, composition, reusability
and inheritance. We overview how to create reusable software components with assem-
blies, modules and Dynamic Link Library (DLL) files. We show how to create classes like



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 23

those in the Framework Class Library. Other Visual Basic .NET features discussed include
properties and the ReadOnly and Const keywords. This chapter lays the groundwork for
the next two chapters, which introduce object-oriented programming.

Chapter 9—Object-Oriented Programming: Inheritance
In this chapter, we discuss inheritance—a form of software reusability in which classes
(called derived classes) are created by absorbing attributes and methods of existing classes
(called base classes). The inherited class (i.e., the derived class) can contain additional at-
tributes and methods. We show how finding the commonality between classes of objects
can reduce the amount of work it takes to build large software systems. These proven tech-
niques help programmers create and maintain software systems. A detailed case study dem-
onstrates software reuse and good programming techniques by finding the commonality
among a three-level inheritance hierarchy: the point, circle and cylinder classes. We discuss
the software engineering benefits of object-oriented programming. We present important
object-oriented programming fundamentals, such as creating and extending customized
classes and separating a program into discrete components.

Chapter 10—Object-Oriented Programming: Polymorphism
Chapter 10 continues our formal introduction of object-oriented programming. We discuss
polymorphic programming and its advantages. Polymorphism permits classes to be treated
in a general manner, allowing the same method call to act differently depending on context
(e.g., “move” messages sent to a bird and a fish result in dramatically different types of ac-
tion—a bird flies and a fish swims). In addition to treating existing classes in a general man-
ner, polymorphism allows new classes to be added to a system easily. We identify
situations in which polymorphism is useful. A payroll system case study demonstrates
polymorphism—the system determines the wages for each employee differently to suit the
type of employee (bosses who are paid fixed salaries, hourly workers paid by the hour,
commission workers who receive a base salary plus commission and piece workers who are
paid per item produced). These programming techniques and those of the previous chapter
allow the programmer to create extensible and reusable software components.

Chapter 11—Exception Handling
Exception handling is one of the most important topics in Visual Basic .NET from the
standpoint of building mission-critical and business-critical applications. People can enter
incorrect data, data can be corrupted and clients can try to access records that do not exist
or are restricted. A simple division-by-zero error may cause a calculator program to crash,
but what if such an error occurs in the navigation system of a flying airplane? Programmers
must deal with these situations—in some cases, the results of program failure could be di-
sastrous. Programmers need to know how to recognize the errors (exceptions) that could
occur in software components and handle those exceptions effectively, allowing programs
to deal with problems and continue executing instead of “crashing.” This chapter overviews
the proper use of exception handling and various exception-handling techniques. We cover
the details of Visual Basic .NET exception handling, the termination model of exception
handling, throwing and catching exceptions, and the library class Exception. Program-
mers who construct software systems from reusable components built by other program-
mers must deal with the exceptions that those components may throw.



24 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

Chapter 12—Graphical User Interface Concepts: Part 1
Chapter 12 explains how to add graphical user interfaces (GUIs) to programs, providing a
professional look and feel. By using the techniques of rapid application development
(RAD), we can create a GUI from reusable components, rather than explicitly program-
ming every detail. The Visual Studio .NET IDE makes developing GUIs even easier by al-
lowing the programmer to position components in a window through so-called visual
programming. We discuss how to construct user interfaces with Windows Forms GUI com-
ponents such as labels, buttons, textboxes, scroll bars and picture boxes. We also introduce
events, which are messages sent by a program to signal to an object or a set of objects that
an action has occurred. Events are most commonly used to signal user interactions with
GUI components, but also can signal internal actions in a program. We overview event han-
dling and discuss how to handle events specific to controls, the keyboard and the mouse.
Tips are included throughout the chapter to help the programmer create visually appealing,
well-organized and consistent GUIs.

Chapter 13—Graphical User Interface Concepts: Part 2
Chapter 13 introduces more complex GUI components, including menus, link labels, pan-
els, list boxes, combo boxes and tab controls. In a challenging exercise, readers create an
application that displays a drive’s directory structure in a tree—similar to how Windows
Explorer does this. The Multiple Document Interface (MDI) is presented, which allows
multiple documents (i.e., forms) to be open simultaneously in a single GUI. We conclude
with a discussion of how to create custom controls by combining existing controls. The
techniques presented in this chapter allow readers to create sophisticated and well-orga-
nized GUIs, adding style and usability to their applications.

Chapter 14—Multithreading
We have come to expect much from our applications. We want to download files from the
Internet, listen to music, print documents and browse the Web—all at the same time! To do
this, we need a technique called multithreading, which allows applications to perform mul-
tiple activities concurrently. Visual Basic .NET includes built-in capabilities to enable mul-
tithreaded applications, while shielding programmers from complex details. Visual Basic
.NET is better equipped to deal with more sophisticated multimedia, network-based and
multiprocessor-based applications than other languages that do not have multithreading
features. This chapter overviews the built-in threading classes of Visual Basic .NET and
covers threads, thread life-cycles, time-slicing, scheduling and priorities. We analyze the
producer-consumer relationship, thread synchronization and circular buffers. This chapter
lays the foundation for creating the impressive multithreaded programs that clients de-
mand.

Chapter 15—Strings, Characters and Regular Expressions
In this chapter, we discuss the processing of words, sentences, characters and groups of
characters. In Visual Basic .NET, Strings (groups of characters) are objects. This is yet
another benefit of Visual Basic .NET’s emphasis on object-oriented programming.
String objects contain methods that can copy, create hash codes, search, extract sub-
Strings and concatenate Strings with one another. As an interesting example of
Strings, we create a card shuffling-and-dealing simulation. We discuss regular expres-
sions, a powerful tool for searching and manipulating text.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 25

Chapter 16—Graphics and Multimedia
In this chapter, we discuss GDI+ (an extension of the Graphics Device Interface—GDI),
the Windows service that provides the graphical features used by .NET. The extensive
graphical capabilities of GDI+ can make programs more visual and fun to create and use.
We discuss Visual Basic .NET’s treatment of graphics objects and color control, and we
discuss how to draw arcs, polygons and other shapes. We use various pens and brushes to
create color effects and include an example demonstrating gradient fills and textures. This
chapter introduces techniques for turning text-only applications into exciting, aesthetically
pleasing programs that even novice programmers can write with ease. The second half of
the chapter focuses on audio, video and speech technology. We discuss adding sound, video
and animated characters to programs (primarily using existing audio and video clips). You
will see how easy it is to incorporate multimedia into Visual Basic .NET applications. This
chapter introduces an exciting technology called Microsoft Agent for adding interactive ani-
mated characters to a program. Each character allows users to interact with the application,
using natural human communication techniques, such as speech. The agent characters accept
mouse and keyboard interaction, speak and hear (i.e., they support speech synthesis and
speech recognition). With these capabilities, your applications can speak to users and can
even respond to their voice commands!

Chapter 17—Files and Streams
Imagine a program that could not save data to a file. Once the program is closed, all the
work performed in the program is lost forever. For this reason, this chapter is one of the
most important for programmers who will be developing commercial applications. We ex-
plain how to input and output streams of data from and to files, respectively. We present
how programs read and write data from and to secondary storage devices (such as disks).
A detailed example demonstrates these concepts by allowing the user to read and write
bank account information to and from files. We introduce those classes and methods in Vi-
sual Basic .NET that help perform file input and output conveniently—they demonstrate
the power of object-oriented programming and reusable classes. We discuss benefits of se-
quential files, random-access files and buffering. This chapter is crucial for developing Vi-
sual Basic .NET file-processing applications and networking applications, which also use
the techniques in this chapter to send and receive data.

Chapter 18—Extensible Markup Language (XML)7

The Extensible Markup Language (XML) derives from SGML (Standardized General
Markup Language), which became an industry standard in 1986. Although SGML is em-
ployed in publishing applications worldwide, it has not been incorporated into mainstream
computing and information technology curricula because of its sheer size and complexity.
XML is an effort to make SGML-like technology available to a much broader community. It
was created by the World Wide Web Consortium (W3C) for describing data in a portable for-
mat, is one of most important technologies in industry today and is being integrated into al-
most every field. XML differs in concept from markup languages such as the HyperText
Markup Language (HTML). HTML is a markup language for describing how information is
rendered in a browser. XML is a language for creating markup languages for virtually any

7. The reader interested in a deeper treatment of XML may want to consider our book, XML How to
Program.



26 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

type of information. Document authors use XML to create entirely new markup languages to
describe specific types of data, including mathematical formulas, chemical molecular struc-
tures, music and recipes. Markup languages created with XML include WML (Wireless
Markup Language), XHTML (Extensible HyperText Markup Language, for Web content),
MathML (for mathematics), VoiceXML™ (for speech), SMIL™ (Synchronized Multimedia
Integration Language, for multimedia presentations), CML (Chemical Markup Language, for
chemistry) and XBRL (Extensible Business Reporting Language, for financial data ex-
change). Companies and individuals constantly are finding new and exciting uses for XML.
In this chapter, we present examples that illustrate the basics of marking up data with XML.
We demonstrate several XML-derived markup languages, such as XML Schema (for check-
ing an XML document’s grammar), XSLT (Extensible Stylesheet Language Transforma-
tions, for transforming an XML document’s data into an XHTML document) and
Microsoft’s BizTalk™ (for marking up business transactions). (For readers who are unfa-
miliar with XHTML, we provide Appendices J and K, which carefully introduce XHTML.)

Chapter 19—Database, SQL and ADO .NET
Access and storage of data are integral to creating powerful software applications. This
chapter discusses .NET support for database manipulation. Today's most popular database
systems are relational databases. In this chapter, we introduce the Structured Query Lan-
guage (SQL) for performing queries on relational databases. We introduce ADO .NET—
an extension of Microsoft's ActiveX Data Objects that enables .NET applications to access
and manipulate databases. ADO .NET allows data to be “exported” as XML, which enables
applications that use ADO .NET to communicate with a variety of programs that under-
stand XML. The reader will learn how to create database connections, using tools provided
in Visual Studio .NET, and will learn how to use the classes in the System.Data
namespace. 

Chapter 20—ASP .NET, Web Forms and Web Controls
Previous chapters demonstrated how to create applications that execute locally on the us-
er’s computer. In this chapter and the next, we discuss how to create Web-based applica-
tions using Active Server Pages (ASP) .NET. This is a crucial aspect of .NET and
Microsoft’s vision of how software should be deployed on the Internet. ASP .NET is an in-
tegral technology for creating dynamic Web content marked up as HTML. (For readers
who are unfamiliar with HTML, we provide Appendices H and I, which carefully introduce
HTML). Web Forms provide GUIs for ASP .NET pages and can contain Web controls,
such as labels, buttons and text boxes with which users interact. Like Windows Forms, Web
Forms are designed using visual programming. This chapter presents many interesting ex-
amples, which include an online guest book application and a multi-tier, database intensive
application that allows users to query a database for a list of publications by a specific au-
thor. Debugging Web Forms using the Trace property is also discussed.

Chapter 21—ASP .NET and Web Services
Chapter 21 continues our discussion of ASP .NET. In this chapter, we introduce Web ser-
vices, which are programs that “expose” services (i.e., methods) to clients. Using Web Ser-
vices, programmers can create methods that are accessible over the Internet. This
functionality allows applications residing on a local computer to invoke methods that reside
on other servers. Web services offer increased software reusability, making the Internet, in



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 27

essence, a programming library available to programmers worldwide. Web services use
XML and SOAP to mark up and send information, respectively. This chapter presents sev-
eral examples that include Web services for manipulating huge numbers (up to 100 digits),
simulating the card game of blackjack and implementing a simple airline reservation sys-
tem. One particularly interesting example is our temperature server, a Web service that
gathers weather information for dozens of cities in the United States.

Chapter 22—Networking: Streams-Based Sockets and Datagrams
Chapter 22 introduces the fundamental techniques of Visual Basic .NET-based network-
ing—streams and datagrams. We demonstrate how using sockets allows us to hide many
networking details—we can program as if we were reading from and writing to a file. One
example in this chapter demonstrates using streams-based sockets to communicate between
two Visual Basic .NET programs. In another example (an interactive tic-tac-toe game), a
server is created that exchanges packets of data with multiple clients. Several of these net-
working programs use multithreading (discussed in Chapter 14).

Chapter 23—Data Structures and Collections
This chapter discusses arranging data into aggregations—called collections—such as
linked lists, stacks, queues and trees. Each data structure has important properties that are
useful in a wide variety of applications, from sorting elements to keeping track of method
calls. We discuss how to build each of these data structures. The examples provide partic-
ularly valuable experiences in crafting useful classes. In addition, we cover prebuilt collec-
tion classes in the .NET Framework Class Library. These data structures have many useful
methods for sorting, inserting, and deleting items, plus methods to enable data structures to
resize themselves dynamically. When possible, Visual Basic .NET programmers should
search the Framework Class Library to reuse existing data structures, rather than imple-
menting these data structures themselves. This chapter reinforces much of the object tech-
nology discussed in Chapters 8, 9 and 10, including classes, inheritance and composition.

Chapter 24—Accessibility
The World Wide Web presents a challenge to individuals with disabilities. Multimedia-rich
Web sites are difficult for text readers and other programs to interpret; thus, users with hear-
ing and visual impairments have difficulty browsing such sites. To rectify this situation, the
World Wide Web Consortium (W3C) launched the Web Accessibility Initiative (WAI),
which provides guidelines for making Web sites accessible to people with disabilities. This
chapter provides a description of these guidelines, such as the use of the <headers> tag
to make tables more accessible to page readers, the alt attribute of the <img> tag to de-
scribe images, and XHTML and CSS to ensure that a page can be viewed on almost any
type of display or reader. We illustrate key accessibility features of Visual Studio .NET and
of Windows 2000. We also introduce VoiceXML and CallXML, two technologies for in-
creasing the accessibility of Web content. VoiceXML helps people with visual impair-
ments to access Web content via speech synthesis and speech recognition. CallXML allows
users with visual impairments to access Web-based content through a telephone. In the
chapter exercises, readers create their own voice mail applications, using CallXML.

Appendix A—Operator Precedence Chart
This appendix lists Visual Basic .NET operators and their precedence.



28 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

Appendix B—Number Systems
This appendix explains the binary, octal, decimal and hexadecimal number systems. It also
reviews the conversion of numbers among these bases and illustrates mathematical opera-
tions in each base.

Appendix C—Career Opportunities
This appendix provides career resources for Visual Basic .NET programmers.

Appendix D—Visual Studio .NET Debugger
This appendix introduces the Visual Studio .NET debugger for locating logic errors in pro-
grams. Key features of this appendix include setting breakpoints, stepping through pro-
grams line-by-line and “watching” variable values.

Appendix E—ASCII Character Set
This appendix contains a table of the 128 alphanumeric symbols and their corresponding
ASCII (American Standard Code for Information Interchange) numbers. 

Appendix F—Unicode®

This appendix introduces the Unicode Standard, an encoding scheme that assigns unique
numeric values to the characters of most of the world’s languages. We include a Windows
application that uses Unicode encoding to print welcome messages in several different lan-
guages.

Appendix G—COM Integration
Prior to .NET, COM (Component Object Model) was critical for specifying how different
Windows programming languages communicate at the binary level. For example, COM
components such as ActiveX controls and ActiveX DLLs often were written in Microsoft
Visual C++, but used in Visual Basic programs. The .NET platform does not directly sup-
port COM components, but Microsoft provides tools for the integration of COM compo-
nents with .NET applications. In this appendix, we explore some of these tools by
integrating an ActiveX control and an ActiveX DLL into Visual Basic .NET applications.

Appendices H and I—Introduction to HyperText Markup Language 4: 1 & 2 (on CD)
These appendices provide an introduction to HTML—the Hypertext Markup Language.
HTML is a markup language for describing the elements of an HTML document (Web
page) so that a browser, such as Microsoft’s Internet Explorer, can render (i.e., display) that
page. These appendices are included for our readers who do not know HTML or who would
like a review of HTML before studying Chapter 20, ASP .NET, Web Forms and Web Con-
trols. We do not present any Visual Basic .NET programming in these appendices. Some
key topics covered in Appendix H include: incorporating text and images in an HTML doc-
ument, linking to other HTML documents on the Web, incorporating special characters
(such as copyright and trademark symbols) into an HTML document and separating parts
of an HTML document with horizontal lines (called horizontal rules). In Appendix I, we
discuss more substantial HTML elements and features. We demonstrate how to present in-
formation in lists and tables. We discuss how to collect information from people browsing
a site. We explain how to use internal linking and image maps to make Web pages easier
to navigate. We also discuss how to use frames to display multiple documents in the brows-
er window.



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 29

Appendices J and K—Introduction to XHTML: Parts 1 & 2 (on CD)
In these appendices, we introduce the Extensible Hypertext Markup Language (XHTML).
XHTML is a W3C technology designed to replace HTML as the primary means of describ-
ing Web content. As an XML-based language, XHTML is more robust and extensible than
HTML. XHTML incorporates most of HTML 4’s elements and attributes—the focus of
these appendices. Appendices J and K are included for our readers who do not know XHT-
ML or who would like a review of XHTML before studying Chapter 18, Extensible Mark-
up Language (XML) and Chapter 24, Accessibility.

Appendix L—HTML/XHTML Special Characters (on CD)
This appendix provides many commonly used HTML/XHTML special characters, called
character entity references.

Appendix M—HTML/XHTML Colors (on CD)
This appendix lists commonly used HTML/XHTML color names and their corresponding
hexadecimal values. 

1.19 Internet and World Wide Web Resources
www.deitel.com
This site offers updates, corrections and additional resources for Deitel & Associates, Inc., publica-
tions. We suggest that readers visit our site regularly to obtain any new information.

www.prenhall.com/deitel
This is the Deitel & Associates, Inc. page on the Prentice Hall Web site, which contains information
about our products and publications, downloads, Deitel curriculum and author information.

www.w3.org
The World Wide Web Consortium (W3C) is an organization that develops technologies for the Inter-
net and World Wide Web. This Web page includes links to W3C technologies, news, mission state-
ments and frequently asked questions (FAQs).

www.softlord.com/comp
This site outlines the history of computers, from the early days of computing to the evolution of
present-day machines.

www.elsop.com/wrc/h_comput.htm
This site presents the history of computing. It features content about famous innovators, the evolution
of languages and the development of operating systems. 

www.w3.org/History.html
This site overviews the history of the Internet. After briefly covering developments from 1945–
1988, the site details technological advances on a year-by-year basis, from 1989 to the present day.

www.netvalley.com/intval.html
This site provides a short history of the Internet. In particular, it describes the history of the World
Wide Web. Illustrations and abundant links are provided for many of the topics discussed.

www.microsoft.com
This is Microsoft’s Web site. It contains extensive resources on topics including .NET, enterprise soft-
ware, Windows and Visual Basic .NET.

SUMMARY
[This chapter is primarily a summary of the rest of the book, so we have not provided a sum-
mary section. The remaining chapters include detailed summaries of their contents.]



30 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

TERMINOLOGY
action Internet
“administrative” section of the computer interpreter
Advanced Research Projects Agency (ARPA) intranet
algorithm IP (Internet Protocol)
Apple Computer Java programming language
arithmetic and logic unit (ALU) job
assembler keyboard
assembly language language independence
bandwidth language interoperability
batch live-code™ approach
batch processing logical decision
building-block approach logical unit
C programming language machine dependent
C# programming language machine language
C++ programming language maintenance of software
calculation “manufacturing” section of the computer
Cascading Style Sheets (CSS) memory
central processing unit (CPU) memory unit
clarity Microsoft .NET
class Microsoft Intermediate Language (MSIL)
class libraries module
Common Language Runtime (CLR) mouse
Common Language Specification (CLS) multiprogramming
compiler multitasking
component n-tier application
computation .NET Framework
computer .NET initiative
computer program .NET language
computer programmer object
data object-based programming
data independence object-oriented language
decision object-oriented programming (OOP)
disk operating system
distributed computing output device
ECMA (European Computer Manufacturer’s output unit

Association) Pascal programming language
e-mail (electronic mail) personal computer
Framework Class Library (FCL) platform independence
HailStorm Web service portability
hardware porting
hardware platform primary memory
high-level language processing unit
HTML (HyperText Markup Language) program
HTTP (HyperText Transfer Protocol) programmer
IBM (International Business Machines) property of an object
Information Revolution “receiving” section of the computer
input device reusable software component
input unit screen
integrated development environment (IDE) share the resources of a computer



Chapter 1 Introduction to Computers, Internet and Visual Basic .NET 31

SELF-REVIEW EXERCISES
1.1 Fill in the blanks in each of the following statements:

a) Computers can directly understand only their native  language, which is
composed only of 1s and 0s.

b) Computers process data under the control of sets of instructions called computer
.

c) SOAP is an acronym for .
d)  is a technology derived from SGML that is used to create mark up languag-

es.
e) The three types of languages discussed in the chapter are machine languages,

 and .
f) Programs that translate high-level language programs into machine language are called

.
g) Visual Studio .NET is a/an  (IDE) in which Visual Basic .NET programs are

developed.
h) C is widely known as the development language of the  operating system.
i) Microsoft’s  provides a large programming library for .NET languages.
j) The Department of Defense developed the Ada language with a capability called

, which allows programmers to specify activities that can proceed in parallel.
Visual Basic .NET offers a similar capability called multithreading.

k) Web services use  and  to mark up and send information over the
Internet, respectively.

1.2 State whether each of the following is true or false. If false, explain why.
a) Universal data access is an essential part of .NET.
b) W3C standards are called recommendations.
c) Visual Basic .NET is an object-oriented language.
d) The Common Language Runtime (CLR) requires that programmers manage their own

memory.
e) Visual Basic .NET is the only language available for programming .NET applications.
f) Procedural programming models the world better than object-oriented programming.
g) Computers can directly understand high-level languages.

“shipping” section of the computer UNIX
silicon chip universal data access
SOAP (Simple Object Access Protocol) virtual-memory operating system
software Visual Basic .NET programming language
software component visual programming
software reuse “warehouse” section of the computer
structured programming W3C (World Wide Web Consortium)
subscription-based software W3C Recommendation
task Web Form
TCP (Transmission Control Protocol) Web service
TCP/IP (Transmission Control Web site

 Protocol/Internet Protocol) Win32 API (Windows 32-bit Application
terminal Programming Interface)
throughput World Wide Web (WWW)
timesharing XML (Extensible Markup Language)
translator program



32 Introduction to Computers, Internet and Visual Basic .NET Chapter 1

h) MSIL is the common intermediate format to which all .NET programs compile, regard-
less of their original .NET language.

i) The .NET Framework is portable to non-Windows platforms.
j) Compiled programs run faster than their corresponding interpreted programs.
k) Throughput is the amount of work a computer can process in a given time period.

ANSWERS TO SELF-REVIEW EXERCISES
1.1 a) machine. b) programs. c) Simple Object Access Protocol. d) XML. e) assembly languages,
high-level languages. f) compilers. g) integrated development environment (IDE). h) UNIX. i)
Framework Class Library (FCL). j) multitasking. k) XML, SOAP.

1.2 a) True. b) True. c) True. d) False. The CLR handles memory management. e) False. Visual
Basic .NET is one of many .NET languages (others include C# and Visual C++). f) False. Object-
oriented programming is a more natural way to model the world than is procedural programming. g)
False. Computers can directly understand only their own machine languages. h) True. i) True. j) True.
k) True.

EXERCISES
1.3 Categorize each of the following items as either hardware or software:

a) CPU.
b) Compiler.
c) Input unit.
d) A word-processor program.
e) A Visual Basic .NET program.

1.4 Distinguish between the terms HTML, XML and XHTML.

1.5 Translator programs, such as assemblers and compilers, convert programs from one language
(referred to as the source language) to another language (referred to as the object language or target
language). Determine which of the following statements are true and which are false:

a) A compiler translates high-level language programs into object language.
b) An assembler translates source language programs into machine language programs.
c) A compiler converts source-language programs into object-language programs.
d) High-level languages are generally machine dependent.
e) A machine-language program requires translation before it can be run on a computer.
f) The Visual Basic .NET compiler translates a high-level language into SMIL.

1.6 What are the basic requirements of a .NET language? What is needed to run a .NET program
on a new type of computer (machine)?

1.7 Expand each of the following acronyms:
a) W3C.
b) XML.
c) SOAP.
d) TCP/IP.
e) OOP.
f) CLR.
g) CLS.
h) FCL.
i) MSIL.

1.8 What are the key benefits of the .NET Framework and the CLR? What are the drawbacks?



2
Introduction to the 

Visual Studio .NET IDE

Objectives
• To be introduced to the Visual Studio .NET Integrated 

Development Environment (IDE).
• To become familiar with the types of commands 

contained in the IDE’s menus and toolbars.
• To understand the use of various kinds of windows in 

the Visual Studio .NET IDE.
• To understand Visual Studio .NET’s help features.
• To be able to create, compile and execute a simple 

Visual Basic program.
Seeing is believing.
Proverb

Form ever follows function.
Louis Henri Sullivan

Intelligence… is the faculty of making artificial objects, 
especially tools to make tools.
Henri-Louis Bergson



34 Introduction to the Visual Studio .NET IDE Chapter 2

2.1 Introduction
Visual Studio .NET is Microsoft’s Integrated Development Environment (IDE) for creat-
ing, running and debugging programs (also called applications) written in a variety of .NET
programming languages. This IDE is a powerful and sophisticated tool for creating busi-
ness-critical and mission-critical applications. In this chapter, we provide an overview of
the Visual Studio .NET IDE and demonstrate how to create a simple Visual Basic program
by dragging and dropping predefined building blocks into place—this technique is called
visual programming.

2.2 Overview of the Visual Studio .NET IDE
When Visual Studio .NET begins execution, the Start Page1 displays (Fig. 2.1). The left-
hand side of the Start Page contains a list of helpful links, such as Get Started. Clicking
a link displays its contents. We refer to single-clicking with the left mouse button as selecting,
or clicking, whereas we refer to double-clicking with the left mouse button as double-clicking.

When clicked, Get Started loads a page that contains a table listing the names of
recent projects (such as ASimpleProgram in Fig. 2.1), along with the dates on which
these projects were last modified. A project is a group of related files, such as the Visual
Basic code and images that make up a program. When you load Visual Studio .NET for the
first time, the list of recent projects is empty. There are two buttons on the page—Open
Project and New Project, which are used to open an existing project (such as the ones in
the table of recent projects) and to create a new project, respectively. We discuss the pro-
cess of creating new projects momentarily.

Other links on the Start Page offer information and resources related to Visual Studio
.NET. Clicking What’s New displays a page that lists new features and updates for Visual
Studio .NET, including downloads for code samples and programming tools. Online
Community links to online resources for contacting other software developers through
newsgroups (organized message boards on the Internet) and Web sites. 

Outline
2.1 Introduction
2.2 Overview of the Visual Studio .NET IDE
2.3 Menu Bar and Toolbar
2.4 Visual Studio .NET IDE Windows

2.4.1 Solution Explorer

2.4.2 Toolbox

2.4.3 Properties Window
2.5 Using Help
2.6 Simple Program: Displaying Text and an Image
2.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Depending on your version of Visual Studio .NET, the Start Page may be different.



Chapter 2 Introduction to the Visual Studio .NET IDE 35

Headlines provides a page for browsing news, articles and how-to guides. To access
more extensive information, users can select Search Online and begin browsing through
the MSDN (Microsoft Developer Network) online library, which contains numerous articles,
downloads and tutorials on various technologies of interest to Visual Studio .NET developers.
When clicked, Downloads displays a page that provides programmers access to product
updates, code samples and reference materials. The XML Web Services page provides pro-
grammers with information about Web services, which are reusable pieces of software avail-
able on the Internet. We discuss this technology in Chapter 21, ASP.NET and Web Services.
The Web Hosting page allows programmers to post their software (such as Web services)
online for public use. The My Profile link loads a page where users can adjust and customize
various Visual Studio .NET settings, such as keyboard schemes and window layout prefer-
ences. The programmer also can customize the Visual Studio .NET IDE by selecting the
Tools menu’s Options... command and the Tools menu’s Customize... command.
[Note: From this point onward, we use the > character to indicate the selection of a menu com-
mand. For example, we use the notation Tools > Options... and Tools > Customize... to
indicate the selection of the Options... and Customize... commands, respectively.]

Fig. 2.1Fig. 2.1Fig. 2.1Fig. 2.1 Start Page in Visual Studio .NET.

Recent projectsStart Page links

Location barNavigation buttons

Hidden window Buttons



36 Introduction to the Visual Studio .NET IDE Chapter 2

Programmers can browse the Web from the IDE using Internet Explorer (also called
the internal Web browser in Visual Studio .NET). To request a Web page, type its address
into the location bar (Fig. 2.1) and press the Enter key. [Note: The computer must be con-
nected to the Internet.] Several other windows appear in the IDE besides the Start Page;
we discuss them in subsequent sections.

To create a new Visual Basic program, click the New Project button (Fig. 2.1), which
displays the New Project dialog (Fig. 2.2). Dialogs are windows that facilitate user-com-
puter communication.

The Visual Studio .NET IDE organizes programs into projects and solutions, which
contain one or more projects. Multiple-project solutions are used to create large-scale appli-
cations in which each project performs a single, well-defined task.

The Visual Studio .NET IDE provides project types for a variety of programming lan-
guages. This book focuses on Visual Basic, so we select the Visual Basic Projects
folder from the Project Types window (Fig. 2.2). We use some of the other project types
in later chapters. A Windows Application is a program that executes inside the Windows
OS (e.g., Windows 2000 or Windows XP). Windows applications include customized soft-
ware that programmers create, as well as software products like Microsoft Word, Internet
Explorer and Visual Studio .NET. 

By default, the Visual Studio .NET IDE assigns the name WindowsApplication1 to
the new project and solution (Fig. 2.2). The Visual Studio Projects folder in the My Doc-
uments folder is the default folder referenced when Visual Studio .NET is executed for the
first time. Programmers can change both the name of the project and the location where it is
created. After selecting a project’s name and location, click OK to display the IDE in design
view (Fig. 2.3), which contains all the features necessary to begin creating programs.

Fig. 2.2Fig. 2.2Fig. 2.2Fig. 2.2 New Project dialog.

Visual Basic Windows Application (selected)

Project nameProject location

Description 
of selected 
project



Chapter 2 Introduction to the Visual Studio .NET IDE 37

The gray rectangle (called a form) titled Form1 represents the Windows application that
the programmer is creating. Later in this chapter, we discuss how to customize this form by
adding controls (i.e., reusable components, such as buttons). Collectively, the form and con-
trols constitute the program’s Graphical User Interface (GUI), which is the visual part of the
program with which the user interacts. Users enter data (inputs) into the program by typing at
the keyboard, by clicking the mouse buttons and in a variety of other ways. Programs display
instructions and other information (outputs) for users to read in the GUI. For example, the
New Project dialog in Fig. 2.2 presents a GUI where the user clicks with the mouse button
to select a project type and then inputs a project name and location from the keyboard.

The name of each open document is listed on a tab. In our case, the documents are the
Start Page and Form1.vb [Design] (Fig. 2.3). To view a document, click its tab. Tabs
save space and facilitate easy access to multiple documents. The active tab (the tab of the
document currently displayed in the IDE) is displayed in bold text (e.g., Form1.vb
[Design]) and is positioned in front of all the other tabs.

2.3 Menu Bar and Toolbar
Commands for managing the IDE and for developing, maintaining and executing programs
are contained in the menus, which are located on the menu bar (Fig. 2.4). Menus contain
groups of related commands (also called menu items) that, when selected, cause the IDE to

Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3 Design view of Visual Studio .NET IDE.

Menu

Active tabForm (Windows application)

Tabs

Properties window

Solution ExplorerMenu bar



38 Introduction to the Visual Studio .NET IDE Chapter 2

perform specific actions (e.g., open a window, save a file, print a file and execute a pro-
gram). For example, new projects are created by selecting File > New > Project.... The
menus depicted in Fig. 2.4 are summarized in Fig. 2.5. In Chapter 13, Graphical User In-
terfaces: Part 2, we discuss how programmers can create and add their own menus and
menu items to their programs.

Rather than having to navigate the menus for certain commonly used commands, the pro-
grammer can access them from the toolbar (Fig. 2.6), which contains pictures, called icons,
that graphically represent commands. To execute a command via the toolbar, click its icon.
Some icons contain a down arrow that, when clicked, displays additional commands.

Fig. 2.4Fig. 2.4Fig. 2.4Fig. 2.4 Visual Studio .NET IDE menu bar.

Menu Description

File Contains commands for opening projects, closing projects, printing project data, etc.

Edit Contains commands such as cut, paste, find, undo, etc.

View Contains commands for displaying IDE windows and toolbars.

Project Contains commands for managing a project and its files.

Build Contains commands for compiling a program.

Debug Contains commands for debugging (i.e., identifying and correcting problems in a pro-
gram) and running a program.

Data Contains commands for interacting with databases (i.e., files that store data, which 
we discuss in Chapter 19, Databases, SQL and ADO .NET).

Format Contains commands for arranging a form’s controls.

Tools Contains commands for accessing additional IDE tools and options that enable 
customization of the IDE.

Windows Contains commands for arranging and displaying windows.

Help Contains commands for accessing the IDE’s help features.

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 Summary of Visual Studio .NET IDE menus.

Fig. 2.6Fig. 2.6Fig. 2.6Fig. 2.6 IDE Toolbar.

Toolbar icon (indicates a command to open a file)

Down arrow indicates additional commands

Toolbar



Chapter 2 Introduction to the Visual Studio .NET IDE 39

Positioning the mouse pointer over an icon highlights the icon and, after a few seconds,
displays a description called a tool tip (Fig. 2.7). Tool tips help novice programmers
become familiar with the IDE’s features.

2.4 Visual Studio .NET IDE Windows
The IDE provides windows for accessing project files and customizing controls. In this sec-
tion, we introduce several windows that are essential in the development of Visual Basic
applications. These windows can be accessed via the toolbar icons (Fig. 2.8) or by selecting
the name of the desired window in the View menu.

Visual Studio .NET provides a space-saving feature called auto-hide (Fig. 2.9). When
auto-hide is enabled, a toolbar appears along one of the edges of the IDE. This toolbar con-
tains one or more icons, each of which identifies a hidden window. Placing the mouse
pointer over one of these icons displays that window, but the window is hidden once the
mouse pointer is moved outside the window’s area. To “pin down” a window (i.e., to dis-
able auto-hide and keep the window open), click the pin icon. Notice that, when a window
is “pinned down,” the pin icon has a vertical orientation, whereas, when auto-hide is
enabled, the pin icon has a horizontal orientation (Fig. 2.9).

Fig. 2.7Fig. 2.7Fig. 2.7Fig. 2.7 Tool tip demonstration.

Fig. 2.8Fig. 2.8Fig. 2.8Fig. 2.8 Toolbar icons for three Visual Studio .NET IDE windows.

Tool tip displayed 
when the mouse 
pointer has rested 
on the icon for a 
few seconds

Solution Explorer Properties Toolbox



40 Introduction to the Visual Studio .NET IDE Chapter 2

2.4.1 Solution Explorer

The Solution Explorer window (Fig. 2.10) provides access to all the files in the solution.
When the Visual Studio .NET IDE is first loaded, the Solution Explorer is empty; there
are no files to display. Once a solution is open, the Solution Explorer displays that solu-
tion’s contents.

The solution’s startup project is the project that runs when the program executes and
appears in bold text in the Solution Explorer. For our single-project solution, the startup
project is the only project (WindowsApplication1). The Visual Basic file, which corre-
sponds to the form shown in Fig. 2.3, is named Form1.vb. (Visual Basic files use the .vb
filename extension, which is short for “Visual Basic.”) The other files and folders are dis-
cussed later in the book. 

[Note: We use fonts to distinguish between IDE features (such as menu names and
menu items) and other elements that appear in the IDE. Our convention is to emphasize IDE
features in a sans-serif bold helvetica font and to emphasize other elements, such as
file names (e.g., Form1.vb) and property names (discussed in Section 2.4.3), in a serif
bold courier font.]

The plus and minus boxes to the left of the project name and the References folder
expand and collapse the tree, respectively. Click a plus box to display items grouped under
the heading to the right of the plus box; click the minus box to collapse a tree already in its
expanded state. Other Visual Studio windows also use this plus-box/minus-box convention.

Fig. 2.9Fig. 2.9Fig. 2.9Fig. 2.9 Auto-hide feature demonstration.

Mouse pointer over icon label

Close button

Icons for hidden windows

Vertical orientation for pin icon 
(auto-hide disabled)

Title bar

Horizontal orientation for pin 
icon (auto-hide enabled)



Chapter 2 Introduction to the Visual Studio .NET IDE 41

The Solution Explorer window includes a toolbar that contains several icons. When
clicked, the show all files icon displays all the files in the solution. The number of icons
present in the toolbar is dependent on the type of file selected. We discuss additional toolbar
icons later in the book.

2.4.2 Toolbox

The Toolbox (Fig. 2.11) contains controls used to customize forms. Using visual pro-
gramming, programmers can “drag and drop” controls onto the form instead of building
them by writing code. Just as people do not need to know how to build an engine to drive
a car, programmers do not need to know how to build a control to use the control. The use
of preexisting controls enables developers to concentrate on the “big picture,” rather than
on the minute and complex details of every control. The wide variety of controls that are
contained in the Toolbox is a powerful feature of the Visual Studio .NET IDE. We will
use the Toolbox when we create our own program later in the chapter.

The Toolbox contains groups of related controls (e.g., Data, Components in
Fig. 2.11). When the name of a group is clicked, the list expands to display the various con-
trols contained in the group. Users can scroll through the individual items by using the
black scroll arrows to the right of the group name. When there are no more members to
reveal, the scroll arrow appears gray, meaning that it is disabled (i.e., it will not perform its
normal function if clicked). The first item in the group is not a control—it is the mouse
pointer. The mouse pointer is used to navigate the IDE and to manipulate a form and its
controls. In later chapters, we discuss many of the Toolbox’s controls.

2.4.3  Properties Window

The Properties window (Fig. 2.12) displays the properties for a form or control. Proper-
ties specify information such as size, color and position. Each form or control has its own
set of properties; a property’s description is displayed at the bottom of the Properties win-
dow whenever that property is selected. If the Properties window is not visible, selecting
View > Properties Window, displays the Properties window.

Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 Solution Explorer with an open solution.

Minus box
collapses tree
when clicked

Plus box
expands tree
when clicked

Show all files

Properties window

Startup project

Toolbar



42 Introduction to the Visual Studio .NET IDE Chapter 2

In Fig. 2.12, the form’s Properties window is shown. The left column of the Prop-
erties window lists the form’s properties; the right column displays the current value of
each property. Icons on the toolbar sort the properties either alphabetically (by clicking the
alphabetic icon) or categorically (by clicking the categorized icon). Users can scroll
through the list of properties by dragging the scrollbar’s scrollbox up or down. We show
how to set individual properties later in this chapter and throughout the book.

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 Toolbox window.

Controls

Group names
Scroll arrow
(disabled)

Group names Scroll arrow
(enabled)



Chapter 2 Introduction to the Visual Studio .NET IDE 43

The Properties window is crucial to visual programming; it allows programmers to
modify controls visually, without writing code. This capability provides a number of ben-
efits. First, programmers can see which properties are available for modification and, in
many cases, can learn the range of acceptable values for a given property. Second, the pro-
grammer does not have to remember or search the Visual Studio .NET documentation for
the possible settings of a particular property. Third, this window also displays a brief
description of the selected property, helping programmers understand the property’s pur-
pose. Fourth, a property can be set quickly using this window—usually, only a single click
is required, and no code needs to be written. All these features are designed to help pro-
grammers avoid repetitive tasks while ensuring that settings are correct and consistent
throughout the project.

At the top of the Properties window is the component selection drop-down list,
which allows programmers to select the form or control whose properties are displayed in
the Properties window. When a form or control in the list is selected, the properties of
that form or control appear in the Properties window.

Fig. 2.12Fig. 2.12Fig. 2.12Fig. 2.12 Properties window.

Properties

Description

Categorized icon

Alphabetic icon

Component 
selection 

Scrollbar

Scrollbox

Property values

Toolbar



44 Introduction to the Visual Studio .NET IDE Chapter 2

2.5 Using Help
The Visual Studio .NET IDE provides extensive help features. The Help menu contains a
variety of commands, which are summarized in Fig. 2.13. 

Dynamic help (Fig. 2.14) is an excellent way to get information about the IDE and its
features, as it provides a list of articles pertaining to the current content (i.e., the items
around the location of the mouse cursor). To open the Dynamic Help window (if it is not
already open), select Help > Dynamic Help. Then, when you click a word or component
(such as a form or a control), links to relevant help articles appear in the Dynamic Help
window. The window lists help topics, samples and “Getting Started” information. There
is also a toolbar that provides access to the Contents, Index and Search help features.

Command Description

Contents… Displays a categorized table of contents in which help articles are organized by 
topic.

Index… Displays an alphabetized list of topics through which the programmer can browse.

Search… Allows programmers to find help articles based on search keywords.

Fig. 2.13Fig. 2.13Fig. 2.13Fig. 2.13 Help menu commands.

Fig. 2.14Fig. 2.14Fig. 2.14Fig. 2.14 Dynamic Help window.

Selected item

Relevant help articles

Dynamic Help window

Toolbar

Search

Index

Contents

Toolbar



Chapter 2 Introduction to the Visual Studio .NET IDE 45

Visual Studio .NET also provides context-sensitive help, which is similar to dynamic
help, except that it immediately displays a relevant help article, rather than presenting a list
of articles. To use context-sensitive help, click an item and press F1. Help can appear either
internally or externally. When external help is selected, a relevant article immediately pops
up in a separate window outside the IDE. When internal help is selected, a help article
appears as a tabbed window inside the IDE. The help options can be set in the Start Page’s
My Profile section by selecting Internal Help (the default) or External Help.

2.6 Simple Program: Displaying Text and an Image
In this section, we create a program that displays the text “Welcome to Visual Basic!”
and an image of the Deitel & Associates bug mascot. The program consists of a single form
that uses a label control (i.e., a control that displays text which the user cannot modify) and a
picture box to display the image. Figure 2.15 shows the results of the program as it executes.
The program and the image are available on the CD-ROM that accompanies this book, as well
as on our Web site (www.deitel.com) under the Downloads/Resources link.

To create the program whose output is shown in Fig. 2.15, we did not write a single
line of program code. Instead, we use the techniques of visual programming. Visual Studio
.NET processes programmer actions (such as mouse clicking, dragging and dropping) to
generate program code. In the next chapter, we begin our discussion of how to write pro-
gram code. Throughout the book, we produce increasingly substantial and powerful pro-
grams. Visual Basic programs usually include a combination of code written by the
programmer and code generated by Visual Studio .NET. 

Visual programming is useful for building GUI-intensive programs that require a sig-
nificant amount of user interaction. Some programs are not designed to interact with users
and therefore do not have GUIs. Programmers must write the code for the latter type of pro-
gram directly.

Fig. 2.15Fig. 2.15Fig. 2.15Fig. 2.15 Simple program executing.



46 Introduction to the Visual Studio .NET IDE Chapter 2

To create, run and terminate this first program, perform the following steps:

1. Create the new project. If a project is already open, close it by selecting
File > Close Solution. A dialog asking whether to save the current solution
might appear. Click Yes to save any changes. To create a new Windows applica-
tion for our program, select File > New > Project... to display the New
Project dialog (Fig. 2.16). Click the Visual Basic Projects folder to display
a list of project types. From this list, select Windows Application. Name the
project ASimpleProgram, and select the directory in which the project will be
saved. To select a directory, click the Browse... button, which opens the
Project Location dialog (Fig. 2.17). Navigate through the directories, find one
in which to place the project and click OK to close the dialog. The selected folder
now appears in the Location text box. Click OK to close the New Project dia-
log. The IDE then loads the new single-project solution, which contains a form
named Form1.

2. Set the text in the form’s title bar. The text in the form’s title bar is determined by
the form’s Text property (Fig. 2.18). If the Properties window is not open,
click the properties icon in the toolbar or select View > Properties Window.
Click the form to display the form’s properties in the Properties window. Click
in the textbox to the right of the Text property’s box and type A Simple Pro-
gram, as in Fig. 2.18. Press the Enter key (Return key) when finished; the form’s
title bar is updated immediately.

Fig. 2.16Fig. 2.16Fig. 2.16Fig. 2.16 Creating a new Windows Application.

Project
name

Project
location

Click to change project location

Project types



Chapter 2 Introduction to the Visual Studio .NET IDE 47

3. Resize the form. Click and drag one of the form’s enabled sizing handles (the
small white squares that appear around the form shown in Fig. 2.19). The ap-
pearance of the mouse pointer changes (i.e., it becomes a pointer with one or
more arrows) when it is over an enabled sizing handle. The new pointer indi-
cates the direction(s) in which resizing is permitted. Disabled sizing handles ap-
pear in gray and cannot be used to resize the form. The grid on the background
of the form is used by programmers to align controls and is not present when the
program is running.

Fig. 2.17Fig. 2.17Fig. 2.17Fig. 2.17 Setting the project location in the Project Location dialog.

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 Setting the form’s Text property.

Selected
project

location

Click to set project location

Selected 
property

Property value

Name and type 
of object

Property 
description



48 Introduction to the Visual Studio .NET IDE Chapter 2

4. Change the form’s background color. The BackColor property specifies a
form’s or control’s background color. Clicking BackColor in the Properties
window causes a down-arrow button to appear next to the value of the property
(Fig. 2.20). When clicked, the down-arrow button displays a set of other options,
which varies depending on the property. In this case, the arrow displays tabs for
System (the default), Web and Custom. Click the Custom tab to display the
palette (a series of colors). Select the box that represents light blue. Once you se-
lect the color, the palette closes, and the form’s background color changes to light
blue (Fig. 2.21).

Fig. 2.19Fig. 2.19Fig. 2.19Fig. 2.19 Form with sizing handles.

Fig. 2.20Fig. 2.20Fig. 2.20Fig. 2.20 Changing the form’s BackColor property.

Disabled sizing handle

Enabled sizing 
handle

Grid

Title bar

Mouse pointer over 
a sizing handle

Down-arrow button

Current color

Custom palette

Light blue



Chapter 2 Introduction to the Visual Studio .NET IDE 49

5. Add a label control to the form. Click the Windows Forms button in the Tool-
box. Next, double-click the Label control in the Toolbox. This action causes a
label to appear in the upper-left corner of the form (Fig. 2.21). Although double-
clicking any Toolbox control places the control on the form, programmers also
can “drag” controls from the Toolbox to the form. Labels display text; our label
displays the text Label1 by default. Notice that our label’s background color is
the same as the form’s background color. When a control is added to the form, its
BackColor property is set to the form’s BackColor.

6. Customize the label’s appearance. Select the label by clicking it. Its properties
now appear in the Properties window. The label’s Text property determines
the text (if any) that the label displays. The form and label each have their own
Text property. Forms and controls can have the same types of properties (such
as BackColor, Text, etc.) without conflict. Set the label’s Text property to
Welcome to Visual Basic!. Resize the label (using the sizing handles) if the
text does not fit. Move the label to the top center of the form by dragging it or by
using the keyboard’s left and right arrow keys to adjust its position. Alternatively,
you can center the label control horizontally by selecting
Format > Center In Form > Horizontally. The form should appear as shown
in Fig. 2.22.   

Fig. 2.21Fig. 2.21Fig. 2.21Fig. 2.21 Adding a label to the form.

Label control

New
background

color



50 Introduction to the Visual Studio .NET IDE Chapter 2

7. Set the label’s font size and align its text. Clicking the value of the Font property
causes an ellipsis button (…) to appear next to the value, as shown in Fig. 2.23.
When the ellipsis button is clicked, a dialog that provides additional values—in
this case, the Font dialog (Fig. 2.24)—is displayed. Programmers can select the
font name (MS Sans Serif, Mistral, etc.), font style (Regular, Bold, etc.) and
font size (12, 14, etc.) in this dialog. The text in the Sample area displays the se-
lected font. Under the Size category, select 24 points and click OK. If the label’s
text does not fit on a single line, it wraps to the next line. Resize the label vertically
if it is not large enough to hold the text. Next, select the label’s TextAlign prop-
erty, which determines how the text is aligned within the label. A three-by-three
grid of buttons representing alignment choices is displayed (Fig. 2.25). The posi-
tion of each button corresponds to where the text appears in the label. Click the
top-center button in the three-by-three grid; this selection causes the text to appear
at the top-center position in the label.

Fig. 2.22Fig. 2.22Fig. 2.22Fig. 2.22 GUI after the form and label have been customized.

Fig. 2.23Fig. 2.23Fig. 2.23Fig. 2.23 Properties window displaying the label’s properties.

Label centered 
with updated 
Text property

Ellipsis button



Chapter 2 Introduction to the Visual Studio .NET IDE 51

8. Add a picture box to the form. The picture-box control displays images. The pro-
cess involved in this step is similar to that of Step 5, in which we added a label to
the form. Locate the picture box in the Toolbox and then double click it to add it
to the form. When the picture box appears, move it underneath the label, either by
dragging it or using the arrow keys (Fig. 2.26).

9. Insert an image. Click the picture box to display its properties in the Properties
window. Locate the Image property, which displays a preview of the image (if
one exists). No picture has been assigned (Fig. 2.27), so the value of the Image
property displays (none). Click the ellipsis button to display the Open dialog
(Fig. 2.28). Browse for an image to insert, select it with the mouse and press the
Enter key. Supported image formats include PNG (Portable Networks Graphic),
GIF (Graphic Interchange Format), JPEG (Joint Photographic Experts Group)
and BMP (Windows bitmap). The creation of a new image requires image-editing
software, such as Jasc® Paint Shop Pro™ (www.jasc.com), Adobe® Photo-
shop™ Elements (www.adobe.com) or Microsoft Paint (provided with Win-
dows). In our case, the picture is bug.png. Once the image is selected, the

Fig. 2.24Fig. 2.24Fig. 2.24Fig. 2.24 Font dialog for selecting fonts, styles and sizes.

Fig. 2.25Fig. 2.25Fig. 2.25Fig. 2.25 Centering the label’s text.

Current font

Font sample

Text alignment 
options

Top-center 
alignment option



52 Introduction to the Visual Studio .NET IDE Chapter 2

picture box displays the image, and the Image property displays a preview. To
size the image to the picture box, change the SizeMode property to Stretch-
Image, which scales the image to the size of the picture box. Resize the picture
box, making it larger (Fig. 2.29).

10. Save the project. Select File > Save All to save the entire solution. The solution
file contains the name(s) and location(s) of its project(s), and the project file con-
tains the names and locations of all the files in the project. 

Fig. 2.26Fig. 2.26Fig. 2.26Fig. 2.26 Inserting and aligning the picture box.

Fig. 2.27Fig. 2.27Fig. 2.27Fig. 2.27 Image property of the picture box.

Updated 
label

Picture box

Image property 
value (no image 
selected)

Box where 
image preview 
is displayed (no 
image 
displayed)



Chapter 2 Introduction to the Visual Studio .NET IDE 53

11. Run the project. Up to this point, we have been working in the IDE design mode
(i.e., the program being created is not executing). This mode is indicated by the
text Microsoft Visual Basic.NET [design] in the title bar. While in design
mode, programmers have access to all the environment windows (e.g., Toolbox,
Properties, etc.), menus and toolbars. In run mode, the program is executing,
and programmers can interact with only a few IDE features. Features that are not

Fig. 2.28Fig. 2.28Fig. 2.28Fig. 2.28 Selecting an image for the picture box.

Fig. 2.29Fig. 2.29Fig. 2.29Fig. 2.29 Picture box displaying an image.

Newly  inserted 
image



54 Introduction to the Visual Studio .NET IDE Chapter 2

available are disabled or grayed out. The text Form1.vb [Design] in the title bar
means that we are designing the form visually, rather than programmatically. If
we had been writing code, the title bar would have contained only the text
Form1.vb. Selecting Debug > Start Without Debugging executes the pro-
gram. Figure 2.30 shows the IDE in run mode. Note that many toolbar icons and
menus are disabled.

12. Terminate execution. To terminate the program, click the running application’s
close button (the x in the top-right corner). This action stops program execution
and returns the IDE to design mode.

Software Engineering Observation 2.1
Visual programming can be simpler and faster than writing code when developing GUI-
based applications. 2.1

Fig. 2.30Fig. 2.30Fig. 2.30Fig. 2.30 IDE in run mode, with the running application in the foreground.

Running applicationForm (with grid)

Designing form

Close button



Chapter 2 Introduction to the Visual Studio .NET IDE 55

Software Engineering Observation 2.2
Most programs require more than visual programming. For these programs, at least some,
and often all, code must be written by the programmer. Examples of such programs include
programs that use event handlers (used to respond to the user’s actions), as well as database,
security, networking, text-editing, graphics, multimedia and other types of applications. 2.2

In this chapter, we introduced key features of the Visual Studio .NET Integrated Devel-
opment Environment (IDE). We then used the technique of visual programming to create
a working Visual Basic .NET program without writing a single line of code! In the next
chapter, we discuss “nonvisual,” or “conventional,” programming—we create programs
that contain code. Visual Basic programming is a mixture of the two styles: Visual pro-
gramming allows us to develop GUIs easily and avoid tedious GUI programming; conven-
tional programming is employed to specify the behavior of our program.

2.7 Internet and World Wide Web Resources
www.msdn.microsoft.com/vstudio
This site is the home page for Microsoft Visual Studio .NET and provides a variety of information, in-
cluding news, documentation, downloads and other resources.

www.worldofdotnet.net
This site offers a wide variety of information on .NET. It contains articles, news and links to news-
groups and other resources.

www.vbi.org
This site contains articles, reviews of books and software, documentation, downloads, links and
searchable information on Visual Basic listed by subject.

SUMMARY
• Visual Studio .NET is Microsoft’s Integrated Development Environment (IDE) used by Visual

Basic and other languages to create, run and debug programs.

• When Visual Studio .NET is executed, the Start Page is displayed. This page contains helpful
links, such as recent projects, online newsgroups and downloads. 

• Programs in the Visual Studio .NET IDE are organized into projects and solutions. A project is a
group of related files that form a program, and a solution is a group of projects. 

• The Get Started page contains links to recent projects.

• The My Profile page allows programmers to customize the Visual Studio .NET IDE.

• In the Visual Studio .NET IDE, programmers can browse the Web using the internal Web browser.

• Dialogs are windows used to communicate with users.

• Windows applications are programs that execute inside the Windows OS; these include Microsoft
Word, Internet Explorer and Visual Studio .NET. They contain reusable, graphical components,
such as buttons and labels, with which the user interacts.

• The form and its controls constitute the graphical user interface (GUI) of the program and are what
users interact with when the program is run. Controls are the graphical components with which the
user interacts. Users enter data (inputs) into the program by entering information from the key-
board and by clicking mouse buttons. The program displays instructions and other information
(outputs) for users to read in the GUI.



56 Introduction to the Visual Studio .NET IDE Chapter 2

• The IDE’s title bar displays the name of the project, the programming language, the mode of the
IDE, the name of the file being viewed and the mode of the file being viewed.

• To view a tabbed document, click the tab displaying the document’s name.

• Menus contain groups of related commands that, when selected, cause the IDE to perform some
action. They are located on the menu bar.

• The toolbar contains icons that represent menu commands. To execute a command, click its cor-
responding icon. Click the down-arrow button beside an icon to display additional commands.

• Moving the mouse pointer over an icon highlights the icon and displays a description called a tool tip.

• The Solution Explorer window lists all the files in the solution.

• The solution’s startup project is the project that runs when the program is executed.

• The Toolbox contains controls for customizing forms.

• By using visual programming, programmers can place predefined controls onto the form instead
of writing the code themselves.

• Moving the mouse pointer over a hidden window’s icon opens that window. When the mouse
pointer leaves the area of the window, the window is hidden. This feature is known as auto-hide.
To “pin down” a window (i.e., to disable auto-hide), click the pin icon in the upper-right corner.

• The Properties window displays the properties for a form or control. Properties are information
about a form or control, such as size, color and position. The Properties window allows pro-
grammers to modify controls visually, without writing code.

• Each control has its own set of properties. The left column of the Properties window shows the
properties of the control, whereas the right column displays property values. This window’s tool-
bar contains options for organizing properties either alphabetically (when the alphabetic icon is
clicked) or categorically (when the categorized icon is clicked).

• The Help menu contains a variety of options: The Contents menu item displays a categorized
table of contents; the Index menu item displays an alphabetical index that the programmer can
browse; the Search feature allows programmers to find particular help articles, by entering search
keywords.

• Dynamic Help provides a list of articles based on the current content (i.e., the items around the
location of the mouse pointer).

• Context-sensitive help is similar to dynamic help, except that it immediately brings up a relevant help
article instead of a list of articles. To use context-sensitive help, click an item, and press the F1 key.

• Visual Basic programming usually involves a combination of writing a portion of the program
code and having the Visual Studio .NET IDE generate the remaining code.

• The text that appears at the top of the form (the title bar) is specified in the form’s Text property.

• To resize the form, click and drag one of the form’s enabled sizing handles (the small squares
around the form). Enabled sizing handles are white; disabled sizing handles are gray.

• The grid on the background of the form is used to align controls and is not displayed at run time.

• The BackColor property specifies a form’s or control’s background color. The form’s back-
ground color is the default background color for any controls added to the form.

• Double-clicking any Toolbox control icon places a control of that type on the form. Alternatively,
programmers can “drag and drop” controls from the Toolbox to the form.

• The label’s Text property determines the text (if any) that the label displays. The form and label
each have their own Text property.

• A property’s ellipsis button, when clicked, displays a dialog containing additional options.



Chapter 2 Introduction to the Visual Studio .NET IDE 57

• In the Font dialog, programmers can select the font for a form’s or label’s text.

• The TextAlign property determines how the text is aligned within the label’s boundaries.

• The picture-box control displays images. The Image property specifies the image that is displayed.

• Select File > Save All to save the entire solution.

• IDE design mode is indicated by the text Microsoft Visual Basic .NET [Design] in the title
bar. When in design mode, the program is not executing.

• While in run mode, the program is executing, and programmers can interact with only a few IDE
features.

• When designing a program visually, the name of the Visual Basic file appears in the title bar, fol-
lowed by [Design].

• Terminate execution by clicking the close button.

TERMINOLOGY
active tab external help
Alignment property F1 help key
Alphabetic icon File menu
Appearance category in the find

Properties window Font property
application font size
auto-hide font style
BackColor property Font window
background color form
Build menu Format menu
button form’s background color
Categorized icon form’s title bar
clicking GUI (graphical user interface)
close a project Help menu
close button icon
collapse a tree IDE (integrated development environment)
compile a program input
component selection internal help
context-sensitive help internal Web browser
control Internet Explorer
control a form’s layout label
customize a form menu
customize Visual Studio .NET menu item
Data menu menu bar in Visual Studio .NET
debug a program mouse pointer
Debug menu new project in Visual Studio .NET
design mode opening a project
dialog output
double-clicking palette
down arrow paste
dynamic help picture box
Dynamic Help window pin a window
Edit menu print a project
expand a tree project



58 Introduction to the Visual Studio .NET IDE Chapter 2

SELF-REVIEW EXERCISES
2.1 Fill in the blanks in each of the following statements:

a) The technique of  allows programmers to create GUIs without writing any
code.

b) A  is a group of one or more projects that collectively form a Visual Basic
program.

c) The  feature hides a window when the mouse pointer is moved outside the
window’s area.

d) A  appears when the mouse pointer hovers over an icon.
e) The  window allows programmers to browse solution files.
f) A plus box indicates that the tree in the Solution Explorer can .
g) The Properties window’s properties can be sorted  or .
h) A form’s  property specifies the text displayed in the form’s title bar.
i) The  allows programmers to add controls to the form in a visual manner.
j)  displays relevant help articles, based on the current context.
k) Property  specifies how text is aligned within a label’s boundaries.

2.2 State whether each of the following is true or false. If false, explain why.
a) The title bar displays the IDE’s mode.
b) The option for customizing the IDE on the Start Page is Get Started.
c) The x button toggles auto hide.
d) The toolbar icons represent various menu commands.
e) The toolbar contains icons that represent controls.
f) A form’s sizing handles are always enabled.
g) Both forms and labels have a title bar.
h) Control properties can be modified only by writing code.
i) Buttons typically perform actions when clicked.
j) A form’s grid is visible only in design mode.
k) Visual Basic files use the file extension .basic.
l) A form’s background color is set using the BackColor property.

ANSWERS TO SELF-REVIEW EXERCISES
2.1 a) visual programming. b) solution. c) auto-hide. d) tool tip. e) Solution Explorer. f) ex-
pand. g) alphabetically, categorically. h) Text. i) Toolbox. j) Dynamic Help. k) TextAlign.

Project menu Text property
Properties window title bar
property for a form or control tool tip
recent project toolbar
run mode toolbar icon
selecting Toolbox
single-clicking with left the mouse button Tools menu
sizing handle .vb file extension
solution View menu
Solution Explorer in Visual Studio .NET visual programming
Start Page Visual Studio .NET
startup project window layout
StretchImage property Windows application
tabbed window Windows menu



Chapter 2 Introduction to the Visual Studio .NET IDE 59

2.2 a) True. b) False. The programmer can customize the IDE by clicking the My Profile link
on the Start Page. c) False. The pin icon toggles auto-hide. The x button closes a window. d) True.
e) False. The Toolbox contains icons that represent controls. f) False. Some of a form’s sizing han-
dles are disabled. g) False. Forms have a title bar, but labels do not. h) False. Control properties can
be modified using the Properties window. i) True. j) True. k) False. Visual Basic files use the file
extension .vb. l) True.

EXERCISES
2.3 Fill in the blanks in each of the following statements:

a) When an ellipses button is clicked, a  is displayed.
b) To save every file in a solution, select .
c)  help immediately displays a relevant help article. It can be accessed using the

 key.
d) “GUI” is an acronym for .

2.4 State whether each of the following is true or false. If false, explain why.
a) A control can be added to a form by double-clicking its control icon in the Toolbox.
b) The form, label and picture box have identical properties.
c) If their machines are connected to the Internet, programmers can browse the Internet

from the Visual Studio .NET IDE.
d) Visual Basic programmers often create complex applications without writing any code.
e) Sizing handles are visible during execution.

2.5 Some features that appear throughout Visual Studio perform similar actions in different con-
texts. Explain and give examples of how the plus and minus boxes, ellipsis buttons, down-arrow buttons
and tool tips act in this manner. Why do you think the Visual Studio .NET IDE was designed this way?

2.6 Build the GUIs given in each part of this exercise. (You need not provide any functionality.)
Execute each program, and determine what happens when a control is clicked with the mouse. Drag
controls from the Toolbox onto the form and resize them as necessary.

a) This GUI consists of a MainMenu and a RichTextBox. After inserting the Main-
Menu, add items by clicking the Type Here section, typing a menu name and pressing
Enter. Resize the RichTextBox to fill the form.  

MainMenu

RichTextBox



60 Introduction to the Visual Studio .NET IDE Chapter 2

b) This GUI consists of two Labels (12-point font size, yellow background), a Month-
Calendar and a RichTextBox. The calendar is displayed when the MonthCalen-
dar is dragged onto the form. [Hint: Use the BackColor property to change the
background color of the labels.]  

2.7 Fill in the blanks in each of the following statements:
a) The  property specifies which image a picture box displays.
b) The  has an icon in the Toolbox, but is not a control.
c) The  menu contains commands for arranging and displaying windows.
d) Property  determines a form’s or control’s background color.

2.8 Briefly describe each of the following terms:
a) toolbar
b) menu bar
c) Toolbox
d) control
e) form
f) project
g) title bar
h) solution

Label

MonthCalendar

Label

RichTextBox



3
Introduction to Visual 
Basic Programming

Objectives
• To be able to write simple Visual Basic programs.
• To be able to use input and output statements.
• To become familiar with data types.
• To understand basic memory concepts.
• To be able to use arithmetic operators.
• To understand the precedence of arithmetic operators.
• To be able to write decision-making statements.
• To be able to use equality and relational operators.
• To be able to use dialogs to display messages.
Comment is free, but facts are sacred.
C. P. Scott

The creditor hath a better memory than the debtor.
James Howell

When faced with a decision, I always ask, “What would be 
the most fun?”
Peggy Walker

Equality, in a social sense, may be divided into that of 
condition and that of rights.
James Fenimor Cooper



62 Introduction to Visual Basic Programming Chapter 3

James Fenimore Cooper

3.1 Introduction
Visual Basic .NET enables a disciplined approach to computer-program design. In this
chapter, we introduce Visual Basic programming and present examples that illustrate sev-
eral important features of the language. To help readers better understand the examples in
this and other chapters, program code is analyzed one line at a time. In this chapter, we in-
troduce console applications—applications that contain only text output. There are several
types of Visual Basic projects; the console application is one of the simplest types. Text
output in a console application is displayed in a command window (also called a console
window). On Microsoft Windows 95/98, the command window is called the MS-DOS
prompt; on Microsoft Windows NT/2000/XP, the command window is called the command
prompt. With a sophisticated language like Visual Basic, programmers can create programs
that input and output information in a variety of ways, which we discuss throughout the
book. For instance, in Chapter 2, we created a simple graphical user interface (GUI) for a
Windows application, using visual programming techniques. Windows applications are
discussed in greater detail in Chapters 4 and 5, Control Structures: Part 1 and Control Struc-
tures: Part 2, respectively. These chapters provide a more detailed introduction to program
development in Visual Basic.

3.2 Simple Program: Printing a Line of Text
Visual Basic .NET uses some notations that might appear strange to nonprogrammers. To
explain these notations, we begin by considering a simple program (Fig. 3.1) that displays
a line of text. When this program is run, the output appears in a command window.

This program illustrates several important Visual Basic features. For the reader’s con-
venience, all program listings in this text include line numbers—these line numbers are not
part of Visual Basic programs. In addition, each program is followed by one or more win-
dows showing the program’s output.

Line 1 begins with a single-quote character (') which indicates that the remainder of
the line is a comment. Programmers insert comments in a program, or code listing, to
improve the readability of their code. Comments can be placed either on their own line (we
call these “full-line comments”) or at the end of a line of Visual Basic code (we call these

Outline

3.1 Introduction
3.2 Simple Program: Printing a Line of Text
3.3 Another Simple Program: Adding Integers
3.4 Memory Concepts
3.5 Arithmetic
3.6 Decision Making: Equality and Relational Operators
3.7 Using a Dialog to Display a Message
3.8 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



Chapter 3 Introduction to Visual Basic Programming 63

“end-of-line comments”). The Visual Basic compiler ignores comments, which means that
comments do not cause the computer to perform any actions when the program is run. The
comment in line 1 simply indicates the figure number and file name for this program. Line
2 provides a brief description of the program. By convention, every program in this book
begins in this manner—you can write anything you want in a comment. In this case, the file
is named Welcome1.vb. Recall that .vb is the file extension for Visual Basic files.

Good Programming Practice 3.1
Every program should begin with one or more comments describing the program’s purpose. 3.1

Good Programming Practice 3.2
Comments written at the end of a line should be preceded by one or more spaces to enhance
program readability. 3.2

Lines 4–10 define our first module (these lines collectively are called a module defini-
tion). Visual Basic console applications consist of pieces called modules, which are logical
groupings of procedures that simplify program organization. Procedures perform tasks and
can return information when the tasks are completed. Every console application in Visual
Basic consists of at least one module definition and one procedure. In Chapter 6, Proce-
dures, we discuss modules and procedures in detail.

The word Module is an example of a keyword (or reserved word). Keywords are
reserved for use by Visual Basic (a complete list of Visual Basic keywords is presented in
the next chapter). The name of the Module (i.e., modFirstWelcome) is known as an
identifier, which is a series of characters consisting of letters, digits, and underscores ( _ ).
Identifiers cannot begin with a digit and cannot contain spaces. Examples of valid identi-
fiers are value1, xy_coordinate, __total and cmdExit. The name 7Welcome
is not a valid identifier because it begins with a digit, and the name input field is not
a valid identifier because it contains a space.

Good Programming Practice 3.3
Begin each module identifier with mod to make modules easier to identify. 3.3

1 ' Fig. 3.1: Welcome1.vb
2 ' Simple Visual Basic program.
3
4 Module modFirstWelcome
5
6 Sub Main()
7       Console.WriteLine("Welcome to Visual Basic!")
8 End Sub ' Main
9

10 End Module ' modFirstWelcome

Welcome to Visual Basic!

Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1 Simple Visual Basic program .



64 Introduction to Visual Basic Programming Chapter 3

Visual Basic keywords and identifiers are not case sensitive. This means that upper-
case and lowercase letters are considered to be identical, which causes modfirstwel-
come and modFirstWelcome to be interpreted as the same identifier. Although
keywords appear to be case sensitive, they are not. Visual Studio applies the “proper” case
to each letter of a keyword, so, when module is typed, it is changed to Module when the
Enter key is pressed.

Lines 3 and 5 are blank lines. Often, blank lines and space characters are used
throughout a program to make the program easier to read. Collectively, blank lines, space
characters and tab characters are known as whitespace (space characters and tabs are
known specifically as whitespace characters). Several conventions for using whitespace
characters are discussed in this and subsequent chapters.

Good Programming Practice 3.4
Use blank lines, space characters and tab characters in a program to enhance program read-
ability. 3.4

Line 6 is present in all Visual Basic console applications. These applications begin
executing at Main, which is known as the entry point of the program. The parentheses that
appear after Main indicate that Main is a procedure.

Notice that lines 6–8 are indented relative to lines 4 and 10. This is one of the spacing
conventions mentioned earlier. Indentation improves program readability. We refer to each
spacing convention as a Good Programming Practice.

Keyword Sub (line 7) begins the body of the procedure definition (the code that will
be executed as part of our program). Keywords End Sub (line 8) close the procedure def-
inition’s body. Notice that the line of code (line 7) in the procedure body is indented several
additional spaces to the right relative to lines 6 and 8.

Good Programming Practice 3.5
Indent the entire body of each procedure definition one “level” of indentation. This empha-
sizes the structure of the procedure, improving the procedure definition’s readability. 3.5

Line 7 in Fig. 3.1 does the “real work” of the program, displaying the phrase Welcome
to Visual Basic! on the screen. Line 7 instructs the computer to perform an action—
namely, to print the series of characters contained between the double quotation marks.
Characters delimited in this manner are called strings, which also are called character
strings or string literals.

The entire line, including Console.WriteLine and its argument in the paren-
theses (the string), is called a statement. When this statement executes, it displays (or
prints) the message Welcome to Visual Basic! in the command window (Fig. 3.1).

Notice that Console.WriteLine contains two distinct identifiers (i.e., Console
and WriteLine) separated by the dot operator (.). The identifier to the right of the dot
operator is the method name, and the identifier to the left of the dot operator is the class
name to which the method belongs. Classes organize groups of related methods and data,
whereas methods perform tasks and can return information when the tasks are completed.
For instance, the Console class contains methods, such as WriteLine, that communi-
cate with users via the command window. We discuss classes and methods in detail in
Chapter 8, Object-Based Programming. Chapter 6 introduces methods.

When method WriteLine completes its task, it positions the output cursor (the loca-
tion where the next character will be displayed) at the beginning of the next line in the com-



Chapter 3 Introduction to Visual Basic Programming 65

mand window. This behavior produces a result similar to that of pressing the Enter key
when typing in a text editor window—the cursor is repositioned at the beginning of the next
line in the file. Program execution terminates when the program encounters the End Sub
in line 8.

Now that we have presented our first console application, we provide a step-by-step
explanation of how to create and run it using the features of the Visual Studio .NET IDE. 

1. Create the console application. Select File > New > Project... to display the
New Project dialog (Fig. 3.2). In the left pane, select Visual Basic Projects,
and, in the right pane, select Console Application. In the dialog’s Name field,
type Welcome1. The location in which project files will be created is specified
in the Location field. By default, projects are saved in the folder Visual Studio
Projects inside the My Documents folder (on the Windows desktop). Click
OK to create the project. The IDE now contains the open console application, as
shown in Fig. 3.3. Notice that the editor window contains four lines of code pro-
vided by the IDE. The coloring scheme used by the IDE is called syntax-color
highlighting and helps programmers visually differentiate programming elements.
Keywords appear in blue, whereas text is black. When present, comments are col-
ored green. In Step 4, we discuss how to use the editor window to write code.

2. Change the name of the program file. For programs in this book, we change the
name of the program file (i.e., Module1.vb) to a more descriptive name. To re-
name the file, click Module1.vb in the Solution Explorer window, this step
will display the program file’s properties in the Properties window (Fig. 3.4).
Change the File Name property to Welcome1.vb.

Fig. 3.2Fig. 3.2Fig. 3.2Fig. 3.2 Creating a Console Application with the New Project dialog.

Left pane Right pane

Project
name

File
location



66 Introduction to Visual Basic Programming Chapter 3

Testing and Debugging Tip 3.1
Syntax-color highlighting helps programmers avoid accidentally misusing keywords. 3.1

Fig. 3.3Fig. 3.3Fig. 3.3Fig. 3.3 IDE with an open console application.

Fig. 3.4Fig. 3.4Fig. 3.4Fig. 3.4 Renaming the program file in the Properties window.

Editor window 
(containing program code)

File Name
property

Solution Explorer

Properties window

Click Module1.vb to 
display its properties



Chapter 3 Introduction to Visual Basic Programming 67

3. Change the name of the module. Notice that changing the name of the program file
does not affect the module name in the program code. Module names must be
modified in the editor window. To do so, replace the identifier Module1 with
modFirstWelcome by deleting the old name and typing the new name after the
keyword Module.

4. Writing code. In the editor window, type the code contained in line 7 of Fig. 3.1 be-
tween Sub Main() and End Sub. After the programmer types the class name and
the dot operator (i.e., Console.), a window containing a scrollbar is displayed
(Fig. 3.5). This Visual Studio .NET IDE feature, called IntelliSense, lists a class’s
members, which include method names. As the programmer types characters, the
first member that matches all the characters typed is highlighted, and a tool tip con-
taining a description of that member is displayed. The programmer can either type
the complete member name (e.g., WriteLine), double-click the member name in
the list or press the Tab key to complete the name. Once the complete name is pro-
vided, the IntelliSense window closes. When the programmer types the open paren-
thesis character, (, after Console.WriteLine, two additional windows are
displayed (Fig. 3.6). These are the Parameter Info and Parameter List windows.
The Parameter Info window displays information about a method’s arguments. This
window indicates how many versions of the selected method are available and pro-
vides up and down arrows for scrolling through the different versions. For example,
there are 18 versions of the WriteLine method used in our example. The Param-
eter List window lists possible arguments for the method shown in the Parameter
Info window. These windows are part of the many features provided by the IDE to
aid program development. You will learn more about information displayed in these
windows over the next several chapters. In this case, because we know that we want
to use the version of WriteLine that takes a string argument, we can close these
windows by pressing the Escape key twice (i.e., once for each of the windows).

Testing and Debugging Tip 3.2
Visual Basic provides a large number of classes and methods. The Parameter Info and Pa-
rameter List windows help ensure that a method is being used correctly. 3.2

5. Run the program. We are now ready to compile and execute our program. To do
this, we simply follow steps similar to those provided in Chapter 2. To compile
the program, select Build > Build Solution. This creates a new file, named
Welcome1.exe, in the project’s directory that contains the Microsoft Interme-
diate Language (MSIL) code for our program. The .exe file extension denotes
that the file is executable (i.e., contains instructions that can be executed by anoth-
er program, such as the Common Language Runtime). To run this console appli-
cation (i.e., Welcome1.exe), select Debug > Start Without Debugging.1

1. Selecting Debug Start Without Debugging causes the command window to prompt the user
to press a key after the program terminates, allowing the user to observe the program’s output. In
contrast, if we run this program using Debug > Start, as we did for the Windows application in
Chapter 2, a command window opens, the program displays the message Welcome to Visual
Basic!, then the command window closes immediately.



68 Introduction to Visual Basic Programming Chapter 3

When the program runs, procedure Main is invoked, which is considered the entry
point to the program. Next, the statement on line 7 of Main displays Welcome to
Visual Basic!. Figure 3.7 shows the result of program execution.

When the programmer types a line of code and presses the Enter key, the Visual Studio
.NET IDE responds either by applying syntax-color highlighting or by generating a syntax
error (also called a compile-time error), which indicates a violation of the language syntax
(i.e., one or more statements are not written correctly). Syntax errors occur for various rea-
sons, such as when keywords are misspelled. When a syntax error occurs, the Visual Studio
.NET IDE underlines the error in blue, and provides a description of the error in the Task
List window (Fig. 3.8). If the Task List window is not visible in the IDE, select
View > Other Windows > Task List to display it. [Note: One syntax error can lead to
multiple entries in the Task List window.]
A

Fig. 3.5Fig. 3.5Fig. 3.5Fig. 3.5 IntelliSense feature of the Visual Studio .NET IDE.

Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6 Parameter Info and Parameter List windows.

Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7 Executing the program shown in Fig. 3.1.

Member list

Description of 
highlighted member

Partially-typed member

Highlighted member

Parameter List window

Parameter Info window

Down arrowUp arrow



Chapter 3 Introduction to Visual Basic Programming 69

The message Welcome to Visual Basic! can be displayed using multiple
method calls. The program in Fig. 3.9 uses two statements to produce the same output as
that of the program in Fig. 3.1.

Lines 7–8 of Fig. 3.9 display one line of text in the command window. The first state-
ment calls Console method Write to display a string. Unlike WriteLine, Write
does not position the output cursor at the beginning of the next line in the command window
after displaying its string. Instead, the next character displayed in the command window
appears immediately after the last character displayed with Write. Thus, when line 8 exe-
cutes, the first character displayed, “V,” appears immediately after the last character dis-
played with Write (i.e., the space character after the word "to" in line 7). Each Write
or WriteLine outputs its characters at the exact location where the previous Write’s or
WriteLine’s output ended.  

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 IDE indicating a syntax error.

1 ' Fig. 3.9: Welcome2.vb
2 ' Writing line of text with multiple statements.
3
4 Module modSecondWelcome
5
6 Sub Main()
7       Console.Write("Welcome to ")
8       Console.WriteLine("Visual Basic!")
9    End Sub ' Main

10
11 End Module ' modSecondWelcome

Welcome to Visual Basic!

Fig. 3.9Fig. 3.9Fig. 3.9Fig. 3.9 Using multiple statements to print a line of text.

Omitted parenthesis character
(syntax error)

Blue underline 
indicates a 
syntax error

Error description(s)

Task List window



70 Introduction to Visual Basic Programming Chapter 3

3.3 Another Simple Program: Adding Integers
Our next program (Fig. 3.10) inputs two integers (whole numbers) provided by a user, com-
putes the sum of these integers and displays the result. As the user inputs each integer and
presses the Enter key, the integer is read into the program and added to the total.

Good Programming Practice 3.6
Precede every full-line comment or group of full-line comments with a blank line. The blank
line makes the comments stand out and improves program readability. 3.6

Lines 9 and 12 are declarations, which begin with keyword Dim. The words first-
Number, secondNumber, number1, number2 and sumOfNumbers are the names
of variables, or locations in the computer’s memory where values can be stored for use by
a program. All variables must be declared before they can be used in a program. The dec-
laration in line 9 specifies that the variables firstNumber and secondNumber are
data of type String, which indicates that these variables store strings of characters. Line
12 declares that variables number1, number2 and sumOfNumbers are data of type
Integer, which means that these variables store integer values (i.e., whole numbers such
as 919, –11, 0 and 138624). Data types already defined in Visual Basic, such as String
and Integer, are known as built-in data types or primitive data types. Primitive data type
names are keywords. The 11 primitive data types are summarized in Chapter 6. 

1 ' Fig. 3.10: Addition.vb
2 ' Addition program.
3
4 Module modAddition
5
6 Sub Main()
7
8       ' variables for storing user input
9       Dim firstNumber, secondNumber As String

10
11       ' variables used in addition calculation
12       Dim number1, number2, sumOfNumbers As Integer
13
14       ' read first number from user
15       Console.Write("Please enter the first integer: ")
16       firstNumber = Console.ReadLine()
17
18       ' read second number from user
19       Console.Write("Please enter the second integer: ")
20       secondNumber = Console.ReadLine()
21
22   ' convert input values to Integers
23       number1 = firstNumber
24       number2 = secondNumber
25
26       sumOfNumbers = number1 + number2 ' add numbers
27
28       ' display results
29       Console.WriteLine("The sum is {0}", sumOfNumbers)

Fig. 3.10Fig. 3.10Fig. 3.10Fig. 3.10 Addition program that adds two numbers entered by the user (part 1 of 2).



Chapter 3 Introduction to Visual Basic Programming 71

A variable name can be any valid identifier. Variables of the same type can be declared
in separate statements or they can be declared in one statement with each variable in the
declaration separated by a comma. The latter format uses a comma-separated list of vari-
able names.

Good Programming Practice 3.7
Choosing meaningful variable names helps a program to be “self-documenting” (i.e., the
program can be understood by others without the use of manuals or excessive comments). 3.7

Good Programming Practice 3.8
By convention, variable-name identifiers begin with a lowercase letter. As with module
names, every word in the name after the first word should begin with a capital letter. For
example, identifier firstNumber has a capital N beginning its second word, Number. 3.8

Good Programming Practice 3.9
Some programmers prefer to declare each variable on a separate line. This format allows for
easy insertion of a comment next to each declaration. 3.9

Line 15 prompts the user to enter the first of two integers that will be added together.
Line 16 obtains the value entered by the user and assigns it to variable firstNumber.
The argument passed to Write (line 15) is called a prompt, because it directs the user to
take a specific action. The method ReadLine (line 16) causes the program to pause and
wait for user input. After entering the integer via the keyboard, the user presses the Enter
key to send the integer to the program.

Technically, the user can send any character to the program as input. For this program,
if the user types a non-integer value, such as “hello,” a run-time error (an error that has
its effect at execution time) occurs (Fig. 3.11). Chapter 11, Exception Handling, discusses
how to handle such an error to make programs more robust.

Once the user has entered a number and pressed Enter, this number is assigned to vari-
able firstNumber (line 16) with the assignment operator, =. The statement is read as,
“firstNumber gets the value returned by method ReadLine of the Console class.”
The assignment operator is called a binary operator, because it has two operands—
firstNumber and the value returned by Console.ReadLine. The entire statement is
called an assignment statement because it assigns a value to a variable.

Good Programming Practice 3.10
Place spaces on either side of a binary operator. The spaces make the operator stand out and
improve the readability of the statement. 3.10

30
31 End Sub ' Main
32
33 End Module ' modAddition

Please enter the first integer: 45
Please enter the second integer: 72
The sum is 117

Fig. 3.10Fig. 3.10Fig. 3.10Fig. 3.10 Addition program that adds two numbers entered by the user (part 2 of 2).



72 Introduction to Visual Basic Programming Chapter 3

Lines 19–20 prompt the user to enter a second integer and assign the input value to
secondNumber. User input from the command window is sent to a console application
as a String. For example, if the user types the characters 7 and 2 and then presses Enter,
the value returned by ReadLine is "72". To perform arithmetic operations using the
input values, the Strings first must be converted to Integers.

Lines 23–24 implicitly convert the two Strings typed by the user to Integer
values. Visual Basic performs data-type conversions whenever necessary. In this case, the
assignment of a String value to an Integer variable (i.e., number1) invokes the con-
version, because Integer variables can accept only Integer values. The value
obtained by converting the String value in line 23 is assigned to Integer variable
number1. In this program, any subsequent references to the value of number1 indicate
this Integer value. Likewise, the Integer value obtained by converting the String
in line 24 is assigned to variable number2. The value of number2 refers to this
Integer value in the ensuing discussion. The values stored in firstNumber and sec-
ondNumber remain Strings.

Alternatively, this implicit conversion, can be performed so as to eliminate the need
for the String variables. For example,

Dim number1 As Integer
number1 = Console.ReadLine()

does not use a String variable (i.e., firstNumber). In this case, Visual Basic knows
that Console.ReadLine returns a String, and the program performs the necessary
conversion. When the String is both read and converted in a single line of code, the
String variable (i.e., firstNumber) becomes unnecessary.

The assignment statement on line 26 calculates the sum of the Integer variables
number1 and number2 and assigns the result to variable sumOfNumbers, using the
assignment operator, =. The statement is read as, “sumOfNumbers gets the value of
number1 + number2.” Most calculations are performed in assignment statements.

After the calculation is completed, line 29 displays the result of the addition. The
comma-separated argument list given to WriteLine

"The sum is {0}.", sumOfNumbers

use {0} to indicate that we are printing out the contents of a variable. If we assume that
sumOfNumbers contains the value 117, the expression evaluates as follows: Visual Ba-

Fig. 3.11Fig. 3.11Fig. 3.11Fig. 3.11 Dialog displaying a run-time error.



Chapter 3 Introduction to Visual Basic Programming 73

sic encounters a number in curly braces, ({0}), known as a format. A format indicates that
the argument after the string (in this case, sumOfNumbers) will be evaluated and incor-
porated into the string, in place of the format. The resulting string is “The sum is 117.”
Additional formats ({1}, {2}, {3}, etc.) can be inserted into the string. Each additional
format requires a corresponding variable name or value. For example, if the arguments to
WriteLine are

"The values are {0}, {1} and {2}", number1, number2, 7

the value of number1 replaces {0} (because it is the first variable), the value of
number2 replaces {1} (because it is the second variable) and the value 7 replaces {2}
(because it is the third value). Assuming number1 is 45 and number2 is 72, the string
contains "The values are 45, 72 and 7".

Good Programming Practice 3.11
Place a space after each comma in a method’s argument list to make method calls more 
readable. 3.11

When reading or writing a program, some programmers find it difficult to match End
Sub statements with their procedure definitions. For this reason, programmers sometimes
include an end-of-line comment after End Sub, as we do in line 31. This practice is espe-
cially helpful when modules contain multiple procedures. Although, for now, our modules
contain only one procedure, we place the comment after End Sub as a good programming
practice. We discuss how to create procedures in Chapter 6, Procedures.

Good Programming Practice 3.12
Follow a procedure’s End Sub with a end-of-line comment. This comment should contain
the procedure name that the End Sub terminates. 3.12

3.4 Memory Concepts
Variable names, such as number1, number2 and sumOfNumbers, correspond to actual
locations in the computer's memory. Every variable has a name, type, size and value. In the
addition program in Fig. 3.10, when the statement (line 23)

number1 = firstNumber

executes, the String previously input by the user in the command window and stored in
firstNumber is converted to an Integer. This Integer is placed into a memory lo-
cation to which the name number1 has been assigned by the compiler. Suppose the user
enters the characters 45 and presses Enter. This input is returned by ReadLine as a
String and assigned to firstNumber. The program then converts the String "45"
to an Integer, and the computer places the Integer value 45 into location number1,
as shown in Fig. 3.12. 

Whenever a value is placed in a memory location, this value replaces the value previ-
ously stored in that location. The previous value is destroyed (lost).

Suppose that the user then enters the characters 72 and presses Enter. Line 20

secondNumber = Console.ReadLine()

converts secondNumber to an Integer, placing the Integer value 72 into location
number2, and memory appears as shown in Fig. 3.13.



74 Introduction to Visual Basic Programming Chapter 3

Once the program has obtained values for number1 and number2, it adds these
values and places their total into variable sumOfNumbers. The statement

sumOfNumbers = number1 + number2

performs the addition and replaces (i.e., destroys) sumOfNumbers’s previous value. Af-
ter sumOfNumbers is calculated, memory appears as shown in Fig. 3.14. Note that the
values of number1 and number2 appear exactly as they did before they were used in the
calculation of sumOfNumbers. Although these values were used when the computer per-
formed the calculation, they were not destroyed. This illustrates that, when a value is read
from a memory location, the process is nondestructive.

3.5 Arithmetic
Most programs perform arithmetic calculations. The arithmetic operators are summarized
in Fig. 3.15. Note the use of various special symbols not used in algebra. For example, the
asterisk (*) indicates multiplication, and the keyword Mod represents the modulus opera-
tor, which is discussed shortly. The majority of arithmetic operators in Fig. 3.15 are binary
operators, because each operates using two operands. For example, the expression sum +
value contains the binary operator + and the two operands sum and value. Visual Basic
also provides unary operators, i.e., operators that take only one operand. For example, una-
ry versions of plus (+) and minus (–) are provided, so that programmers can write expres-
sions such as +9 and –19.

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 Memory location showing name and value of variable number1.

Fig. 3.13Fig. 3.13Fig. 3.13Fig. 3.13 Memory locations after values for variables number1 and number2
have been input.

number1 45

45

72

number1

number2

Fig. 3.14Fig. 3.14Fig. 3.14Fig. 3.14 Memory locations after an addition operation.

45

72

number1

number2

117sumOfNumbers



Chapter 3 Introduction to Visual Basic Programming 75

Visual Basic has separate operators for integer division (the backslash, \) and floating-
point division (the forward slash, /). Integer division takes two Integer operands and
yields an Integer result; for example, the expression 7 \ 4 evaluates to 1, and the
expression 17 \ 5 evaluates to 3. Note that any fractional part in the Integer division
result simply is discarded (i.e., truncated)—no rounding occurs. When floating-point num-
bers are used with the integer division operator, the numbers are first rounded to the nearest
whole number, then divided. This means that, although 7.1 \ 4 evaluates to 1 as expected,
the statement 7.7 \ 4 evaluates to 2, because 7.7 is rounded to 8 before the division
occurs.

The modulus operator, Mod, yields the remainder after Integer division in Visual
Basic programs. The expression x Mod y yields the remainder after x is divided by y. Thus,
7 Mod 4 yields 3 and 17 Mod 5 yields 2. This operator is used most commonly with
Integer operands, but also can be used with other types. In later chapters, we consider
interesting applications of the modulus operator, such the determination of whether one
number is a multiple of another.

Arithmetic expressions in Visual Basic must be written in straight-line form so that
programs can be entered into a computer. Thus, expressions such as “a divided by b” must
be written as a / b so that all constants (such as 45 and 72 in the previous example), vari-
ables and operators appear in a straight line. The following algebraic notation generally is
not acceptable to compilers:

Parentheses are used in Visual Basic expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c, we write

a * ( b + c )

Visual Basic 
operation

Arithmetic 
operator

Algebraic 
expression

Visual Basic 
expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division (float) /
x / y  or  or x ÷ y

x / y

Division (integer) \ none v \ u

Modulus Mod r modulo s r Mod s

Exponentiation ^ q p q ^ p

Unary Negative - –e –e

Unary Positive + +g +g

Fig. 3.15Fig. 3.15Fig. 3.15Fig. 3.15 Arithmetic operators.

x
y
--

a
b
---



76 Introduction to Visual Basic Programming Chapter 3

Visual Basic applies the operators in arithmetic expressions in a precise sequence,
determined by the following rules of operator precedence, which are generally the same as
those followed in algebra:

1. Operators in expressions contained within a pair of parentheses are evaluated first.
Thus, parentheses can be used to force the order of evaluation to occur in any se-
quence desired by the programmer. Parentheses are at the highest level of prece-
dence. With nested (or embedded) parentheses, the operators contained in the
innermost pair of parentheses are applied first.

2. Exponentiation is applied next. If an expression contains several exponentiation
operations, operators are applied from left to right.

3. Unary positive and negative, + and -, are applied next. If an expression contains
several sign operations, operators are applied from left to right. Sign operations +
and - are said to have the same level of precedence.

4. Multiplication and floating-point division operations are applied next. If an ex-
pression contains several multiplication and floating-point division operations,
operators are applied from left to right. Multiplication and floating-point division
have the same level of precedence.

5. Integer division is applied next. If an expression contains several Integer
division operations, operators are applied from left to right.

6. Modulus operations are applied next. If an expression contains several modulus
operations, operators are applied from left to right.

7. Addition and subtraction operations are applied last. If an expression contains sev-
eral addition and subtraction operations, operators are applied from left to right.
Addition and subtraction have the same level of precedence.

The rules of operator precedence enable Visual Basic to apply operators in the correct
order. When we say operators are applied from “left to right,” we are referring to the asso-
ciativity of the operators. If there are multiple operators, each with the same precedence,
the order in which the operators are applied is determined by the operators’ associativity.
Figure 3.16 summarizes the rules of operator precedence. This table will be expanded as
we introduce additional Visual Basic operators in subsequent chapters. A complete oper-
ator-precedence chart is available in Appendix A.

Operator(s) Operation Order of evaluation (precedence)

( ) Parentheses Evaluated first. If the parentheses are nested, the 
expression in the innermost pair is evaluated first. If 
there are several pairs of parentheses “on the same 
level” (i.e., not nested), they are evaluated from left 
to right.

^ Exponentiation Evaluated second. If there are several such 
operators, they are evaluated from left to right.

Fig. 3.16Fig. 3.16Fig. 3.16Fig. 3.16 Precedence of arithmetic operators (part 1 of 2).



Chapter 3 Introduction to Visual Basic Programming 77

Notice, in the table, that we make note of nested parentheses. Not all expressions with
several pairs of parentheses contain nested parentheses. For example, although the expression

a * ( b + c ) + c * ( d + e )

contains multiple sets of parentheses, none of the parentheses are nested. Rather, these sets
are referred to as being “on the same level.”

Let us consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its Visual Basic equivalent. 

The following is an example of an arithmetic mean (average) of five terms:

Algebra: 

Visual Basic: m = ( a + b + c + d + e ) / 5

The parentheses are required, because floating-point division has higher precedence than
addition. The entire quantity ( a + b + c + d + e ) is to be divided by 5. If the parentheses
are omitted, erroneously, we obtain a + b + c + d + e / 5, which evaluates as

The following is the equation of a straight line:

Algebra: 

Visual Basic: y = m * x + b

No parentheses are required. The multiplication is applied first, because multiplication has
a higher precedence than addition. The assignment occurs last because it has a lower pre-
cedence than multiplication and addition.

+, – Sign operations Evaluated third. If there are several such operators, 
they are evaluated from left to right.

*, / Multiplication and 
Division 

Evaluated fourth. If there are several such operators, 
they are evaluated from left to right. 

\ Integer
division

Evaluated fifth. If there are several such operators, 
they are evaluated from left to right.

Mod Modulus Evaluated sixth. If there are several such operators, 
they are evaluated from left to right.

+, – Addition and
Subtraction

Evaluated last. If there are several such operators, 
they are evaluated from left to right.

Operator(s) Operation Order of evaluation (precedence)

Fig. 3.16Fig. 3.16Fig. 3.16Fig. 3.16 Precedence of arithmetic operators (part 2 of 2).

a b c d e+ + + +
5

---------------------------------------=

b c d e
5
---+ + + +

y mx b+=



78 Introduction to Visual Basic Programming Chapter 3

The following example contains modulus (Mod), multiplication, division, addition and
subtraction operations (we use % to represent the modulus in algebra):

Algebra: 

Visual Basic: z  =  p  *  r  Mod  q  +  w  /  x  -  y

The circled numbers under the statement indicate the order in which Visual Basic applies
the operators. The multiplication and division operators are evaluated first in left-to-right
order (i.e., they associate from left to right). The modulus operator is evaluated next. The
addition and subtraction operators are applied next, from left to right. The assignment op-
erator is evaluated last.

To develop a better understanding of the rules of operator precedence, consider how a
second-degree polynomial (y = ax2 + bx + c) is evaluated:

y  =  a  *  x  ^  2  +  b  *  x  +  c

The circled numbers under the statement indicate the order in which Visual Basic applies
the operators. In Visual Basic, x2 is represented as x ^ 2.

Now, suppose that a, b, c and x are initialized as follows: a = 2, b = 3, c = 7 and x
= 5. Figure 3.17 illustrates the order in which the operators are applied.

As in algebra, it is acceptable to place unnecessary parentheses in an expression to
make the expression easier to read—these parentheses are called redundant parentheses.
For example, the preceding assignment statement might be parenthesized as

 y = ( a * x ^ 2 ) + ( b * x ) + c

Good Programming Practice 3.13
The use of redundant parentheses in more complex arithmetic expressions can make the ex-
pressions easier to read. 3.13

3.6 Decision Making: Equality and Relational Operators
This section introduces Visual Basic’s If/Then structure, which allows a program to
make a decision based on the truth or falsity of some expression. The expression in an
If/Then structure is called the condition. If the condition is met (i.e., the condition is
true), the statement in the body of the If/Then structure executes. If the condition is not
met (i.e., the condition is false), the body statement is not executed. Conditions in If/
Then structures can be formed by using the equality operators and relational operators
(also called comparison operators), which are summarized in Fig. 3.18. The relational
and equality operators all have the same level of precedence and associate from left to
right.

z pr%q w/x y–+=

6 1 3 4 2 5

56 1 342



Chapter 3 Introduction to Visual Basic Programming 79

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 Order in which a second-degree polynomial is evaluated.

Standard algebraic
equality operator or
relational operator

Visual Basic 
equality
or relational
operator

Example 
of Visual 
Basic
condition

Meaning of 
Visual Basic condition

Equality operators

= = x = y x is equal to y

≠ <> x <> y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 Equality and relational operators.

y = 2 * 5 ^ 2 + 3 * 5 + 7

        5 ^ 2 is 25         (Exponentiation first)

y = 2 * 25 + 3 * 5 + 7

    2 * 25 is 50            (Leftmost multiplication)

y = 50 + 3 * 5 + 7

         3 * 5 is 15        (Multiplication before addition)

y = 50 + 15 + 7

    50 + 15 is 65           (Leftmost addition)

y = 65 + 7

    65 + 7 is 72            (Last addition)

y = 72                      (Last operation—place 72 into y)

Step 1.

Step 2.

Step 5.

Step 3.

Step 4.

Step 6.



80 Introduction to Visual Basic Programming Chapter 3

Common Programming Error 3.1
It is a syntax error to add spaces between the symbols in the operators <>, >= and<= (as in
< >, > =, < =). 3.1

Common Programming Error 3.2
Reversal of the operators <>, >= and <= (as in ><, =>, =<) is a syntax error. 3.2

The next example uses six If/Then statements to compare two numbers entered into
a program by the user. If the condition in any of these If/Then statements is true, the
output statement associated with that If/Then executes. The user inputs these values,
which are converted to Integers and stored in variables number1 and number2,
respectively. The comparisons are performed, and the results of the comparison are dis-
played in the command window. The program and outputs are shown in Fig. 3.19. 

1 ' Fig. 3.19: Comparison.vb
2 ' Using equality and relational operators.
3
4 Module modComparison
5
6 Sub Main()
7
8       ' declare Integer variables for user input
9       Dim number1, number2 As Integer

10
11       ' read first number from user
12       Console.Write("Please enter first integer: ")
13       number1 = Console.ReadLine()
14
15       ' read second number from user
16       Console.Write("Please enter second integer: ")
17       number2 = Console.ReadLine()
18
19       If number1 = number2 Then
20          Console.WriteLine("{0} = {1}", number1, number2)
21       End If
22
23       If number1 <> number2 Then
24          Console.WriteLine("{0} <> {1}", number1, number2)
25       End If
26
27       If number1 < number2 Then
28          Console.WriteLine("{0} < {1}", number1, number2)
29       End If
30
31       If number1 > number2 Then
32          Console.WriteLine("{0} > {1}", number1, number2)
33       End If
34
35       If number1 <= number2 Then
36          Console.WriteLine("{0} <= {1}", number1, number2)
37       End If

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 Performing comparisons with equality and relational operators (part 1 of 2).



Chapter 3 Introduction to Visual Basic Programming 81

Line 9 declares the variables that are used in procedure Main. In this line, two variables
of type Integer are declared. Remember that variables of the same type may be declared
either in one declaration or in multiple declarations. Also recall that, when more than one vari-
able is placed in a declaration, those variables must be separated by commas (,). The com-
ment that precedes the declaration indicates the purpose of the variables in the program.

Lines 13 and 17 both retrieve inputs from the user, convert the inputs to type Integer
and assign the values to the appropriate variables (i.e., number1 or number2) in one step.

The If/Then structure in lines 19–21 compares the values of the variables number1
and number2 for equality. If the values are equal, the program outputs the String gen-
erated by the arguments that are given to WriteLine in line 20.

If number1 contains the value 1000 and number2 contains the value 1000, the
expression evaluates as follows: number1 and number2 are converted to Strings,
which are placed in the string "{0} = {1}" in place of the {0} and {1} formats. At this
point, the String, namely "1000 = 1000", is sent to WriteLine to be printed. As the
program proceeds through the If/Then structures, additional Strings are output by
these Console.WriteLine statements. For example, when given the value 1000 for
number1 and number2, the If/Then conditions in lines 35 (<=) and 39 (>=) also are
true. Thus, the output displayed is

38
39       If number1 >= number2 Then
40          Console.WriteLine("{0} >= {1}", number1, number2)
41       End If
42
43    End Sub ' Main
44
45 End Module ' modComparison

Please enter first integer: 1000
Please enter second integer: 2000
1000 <> 2000
1000 < 2000
1000 <= 2000

Please enter first integer: 515
Please enter second integer: 49
515 <> 49
515 > 49
515 >= 49

Please enter first integer: 333
Please enter second integer: 333
333 = 333
333 <= 333
333 >= 333

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 Performing comparisons with equality and relational operators (part 2 of 2).



82 Introduction to Visual Basic Programming Chapter 3

1000 = 1000
1000 <= 1000
1000 >= 1000

Notice the indentation in the If/Then statements throughout the program. Such
indentation enhances program readability. 

Good Programming Practice 3.14
Indent the statement in the body of an If/Then structure to emphasize the body of the struc-
ture and to enhance program readability. 3.14

Common Programming Error 3.3
Omission of the Then keyword in an If/Then structure is a syntax error. 3.3

The table in Fig. 3.20 shows the precedence of the operators introduced in this chapter.
The operators are displayed from top to bottom in decreasing order of precedence. All oper-
ators in Visual Basic .NET associate from left to right.

Testing and Debugging Tip 3.3
When uncertain about the order of evaluation in a complex expression, use parentheses to
force the order, as you would do in an algebraic expression. Doing so can help avoid subtle
bugs. 3.3

3.7 Using a Dialog to Display a Message
Although the programs discussed thus far display output in the command window, most Vi-
sual Basic programs use dialogs to display output. Dialogs are windows that typically dis-
play messages to the user. Visual Basic provides class MessageBox for creating dialogs.
The program in Fig. 3.21 uses a dialog to display the square root of 2.

In this example, we present a program that contains a simple GUI (i.e., the dialog). The
.NET Framework Class Library (FCL) contains a rich collection of classes that can be used
to construct GUIs. FCL classes are grouped by functionality into namespaces. Line 4 is an
Imports statement that indicates we are using the features provided by the
System.Windows.Forms namespace. For example, System.Windows.Forms
contains windows-related classes (i.e., forms and dialogs). We discuss this namespace in
detail after we discuss the code in this example. 

Operators Type

() parentheses

^ exponentiation

*  / multiplicative

\ Integer division

Mod modulus

Fig. 3.20Fig. 3.20Fig. 3.20Fig. 3.20 Precedence and associativity of operators introduced in this chapter 
(part 1 of 2).



Chapter 3 Introduction to Visual Basic Programming 83

Line 11 calls the Sqrt method of the Math class to compute the square root of 2. The
value returned is a floating-point number, so we declare the variable root as type
Double. The Double data type stores floating-point numbers (i.e., numbers such as
2.3456 and –845.7840). Notice that we declare and initialize root on a single line.

Notice the use of spacing in lines 14–15 of Fig. 3.21. To improve readability, long state-
ments may be split over several lines using the line-continuation character, _ . Line 14 uses
the line-continuation character to indicate that line 15 is a continuation of the previous line.
A single statement can contain as many line-continuation characters as necessary. However,
at least one whitespace character must precede each line-continuation character.

+  - additive

=  <>  <  <= >  >= equality and relational

1 ' Fig. 3.21: SquareRoot.vb
2 ' Displaying the square root of 2 in dialog.
3
4 Imports System.Windows.Forms ' namespace containing MessageBox
5
6 Module modSquareRoot
7
8 Sub Main()
9

10       ' calculate square root of 2
11       Dim root As Double = Math.Sqrt(2)
12
13       ' display results in dialog
14       MessageBox.Show("The square root of 2 is " & root, _
15          "The Square Root of 2")
16
17 End Sub ' Main
18
19 End Module ' modSquareRoot

Fig. 3.21Fig. 3.21Fig. 3.21Fig. 3.21 Displaying text in a dialog.

Operators Type

Fig. 3.20Fig. 3.20Fig. 3.20Fig. 3.20 Precedence and associativity of operators introduced in this chapter 
(part 2 of 2).

Empty command 
window



84 Introduction to Visual Basic Programming Chapter 3

Common Programming Error 3.4
Splitting a statement over several lines without including the line-continuation character is
a syntax error. 3.4

Common Programming Error 3.5
Failure to precede the line-continuation character with at least one whitespace character is
a syntax error. 3.5

Common Programming Error 3.6
Placing anything, including comments, after a line-continuation character is a syntax error. 3.6

Common Programming Error 3.7
Splitting a statement in the middle of an identifier or string is a syntax error. 3.7

Good Programming Practice 3.15
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines with one level of indentation. 3.15

Lines 14–15 (Fig. 3.21) call method Show of class MessageBox. This method takes
two arguments. The first argument is the String that is displayed in the dialog. The
second argument is the String that is displayed in the dialog’s title bar.

In this case, the first argument to method Show is the expression

"The square root of 2 is " & root

which uses the string concatenation operator, &, to combine a String (the literal "The
square root of 2 is ") and the value of the variable root (the Double variable con-
taining the square root of 2). The string concatenation operator is a binary operator used to
combine two Strings. This operation results in a new, longer String. If an argument
given to the string concatenation operator is not of type String, the program creates a
String representation of the argument.

When executed, lines 14–15 display the dialog shown in Fig. 3.22. The dialog includes
an OK button that allows the user to dismiss (or close) the dialog by positioning the mouse
pointer (also called the mouse cursor) over the OK button and clicking the mouse. Once
the dialog has been dismissed, the program terminates.

Many classes provided by Visual Basic .NET (such as MessageBox) must be added
to the project before they can be used in a program. These compiled classes are located in
a file, called an assembly, that has a .dll (or dynamic link library) extension.

Information about the assembly that we need can be found in the Visual Studio .NET
documentation (also called the MSDN Documentation). The easiest way to locate this infor-
mation is by selecting Help > Index... to display the Index dialog (Fig. 3.23).

Type the class name in the Look for: box, and select the appropriate filter, which nar-
rows the search to a subset of the documentation. Visual Basic programmers should select
Visual Basic and Related. Next, click the MessageBox class link to display docu-
mentation for the MessageBox class (Fig. 3.24). The Requirements section of the doc-
umentation lists the assembly that contains the class. Class MessageBox is located in
assembly System.Windows.Forms.dll.



Chapter 3 Introduction to Visual Basic Programming 85

It is necessary to add a reference to this assembly (i.e., to place an assembly in the
Solution Explorer’s References folder) if we wish to use class MessageBox in our
program. Visual Studio provides a simple process by which to add a reference. Let us dis-
cuss the process of adding a reference to System.Windows.Forms.

Fig. 3.22Fig. 3.22Fig. 3.22Fig. 3.22 Dialog displayed by calling MessageBox.Show.

Fig. 3.23Fig. 3.23Fig. 3.23Fig. 3.23 Obtaining documentation for a class by using the Index dialog.

Fig. 3.24Fig. 3.24Fig. 3.24Fig. 3.24 Documentation for the MessageBox class.

OK button allows 
the user to dismiss 
the dialog.

Dialog sized to 
accommodate 
contents. Close box

Title bar

Mouse pointer

Search string

Link to MessageBox
class documentation

Filter

Requirements
section heading

MessageBox class 
documentation

Assembly containing 
class MessageBox



86 Introduction to Visual Basic Programming Chapter 3

Common Programming Error 3.8
Including a namespace with the Imports statement without adding a reference to the prop-
er assembly is a syntax error. 3.8

To add a reference to an existing project, select Project > Add Reference... to dis-
play the Add Reference dialog (Fig. 3.25). Locate and double click System.Win-
dows.Forms.dll to add this file to the References folder, and then click OK. Notice
that System.Windows.Forms is now listed in the References folder of the Solution
Explorer (Fig. 3.25).

Fig. 3.25Fig. 3.25Fig. 3.25Fig. 3.25 Adding a reference to an assembly in the Visual Studio .NET IDE.

Solution Explorer before 
reference is added

Solution Explorer after 
reference is added

References folder 
(expanded)

System.Windows.Forms
reference



Chapter 3 Introduction to Visual Basic Programming 87

Now that the assembly System.Windows.Forms.dll is referenced, we can use
the classes that are a part of the assembly. The namespace that includes class Mes-
sageBox, System.Windows.Forms, also is specified with the Imports statement
in line 4 of our code (Fig. 3.21). [Note: The Imports statement is not added to the pro-
gram by Visual Studio; programmers must add this line to their code.]

Common Programming Error 3.9
Forgetting to add an Imports statement for a referenced assembly is a syntax error. 3.9

We did not have to add references to any of our previous programs, because Visual
Studio .NET adds some references to assemblies when the project is created. The references
added depend on the project type that is selected in the New Project dialog. Some assem-
blies do not need to be referenced. Class Console, for instance, is located in the assembly
mscorlib.dll, but we did not need to reference this assembly explicitly to use it.

The System.Windows.Forms namespace contains many classes that help Visual
Basic programmers define graphical user interfaces (GUIs) for their applications. GUI
components (such as buttons) facilitate both data entry by the user and the formatting or
presenting of data outputs to the user. For example, Fig. 3.26 is an Internet Explorer
window with a menu bar containing various menus, such as File, Edit, and View. Below
the menu bar is a tool bar that consists of buttons. Each button, when clicked, executes a
task. Beneath the tool bar is a text box in which the user can type the location of a World
Wide Web site to visit. To the left of the text box is a label that indicates the purpose of the
text box. The menus, buttons, text boxes and labels are part of Internet Explorer’s GUI, they
enable users to interact with the Internet Explorer program. Visual Basic provides classes
for creating the GUI components shown here. Other classes that create GUI components
will be described in Chapters 12 and 13, Graphical User Interface Concepts: Part 1 and
Graphical User Interface Concepts: Part 2.

In this chapter, we have introduced important features of Visual Basic, including dis-
playing data on the screen, inputting data from the keyboard, performing calculations and
making decisions. Many similar techniques are demonstrated in the next chapter as we re-
introduce Visual Basic Windows applications (applications that provide a graphical user
interface). The next chapter also begins our discussion of structured programming and famil-
iarizes the reader further with indentation techniques. We study how to specify and vary the
order in which statements are executed—this order is called flow of control.

3.8 Internet and World Wide Web Resources
www.vb-world.net
VB-World provides a variety of information on Visual Basic, including offering users the opportunity
to query an expert in the .NET platform. This site also hosts an active discussion list.

www.devx.com/dotnet
This Web site contains information about the .NET platform, with topics ranging from Visual Basic
.NET to Active Server Pages .NET. The site includes links to articles, books and current news.

www.vbcity.com
The vbCity Web site lists numerous links to articles, books and tutorials on Visual Basic .NET. The
site allows programmers to submit code and have it rated by other developers. This site also polls vis-
itors on a variety of Visual Basic topics and provides access to archives, which include code listings
and news.



88 Introduction to Visual Basic Programming Chapter 3

www.cyber-matrix.com/vb.htm
This site links to Visual Basic tutorials, books, tips and tricks, controls, programming tools, maga-
zines, news groups and more.

searchvb.techtarget.com
This site offers a search engine designed specifically to discover Visual Basic Web sites.

www.aewnet.com/root/dotnet/vbnet
The site links to demos, articles, tutorials, and to other Visual Basic .NET sites in various languages
(e.g., German).

SUMMARY
• A console application is an application that primarily displays text output in a command window.

In Microsoft Windows 95/98, the command window is called the MS-DOS prompt. In Microsoft
Windows NT/2000/XP, the command window is called the command prompt.

• The single quote character, ', indicates that the remainder of a line is a comment.

• Programmers insert comments in a program to improve the readability of their code. Comments
are ignored by the Visual Basic compiler; they do not cause the computer to perform any actions
when the program is run.

• Visual Basic console applications consist of pieces called modules, which are logical groupings of
procedures that simplify program organization.

• Procedures perform tasks and can return information when the tasks are completed. Every console
application in Visual Basic consists of at least one module definition and one procedure.

• Keywords are words that are reserved for use by Visual Basic; programmers must choose other
names as identifiers.

• The name of a module is an example of an identifier. An identifier is a series of characters, con-
sisting of letters, digits and underscores ( _ ), that does not begin with a digit and does not con-
tain spaces.

Fig. 3.26Fig. 3.26Fig. 3.26Fig. 3.26 Internet Explorer window with GUI components.

Menu (e.g., Help)
Button
(displaying an icon)Label Menu barText box



Chapter 3 Introduction to Visual Basic Programming 89

• Visual Basic keywords and identifiers are case insensitive—uppercase and lowercase letters are
considered to be identical. Thus, modfirstwelcome and modFirstWelcome are the same
identifier. 

• Blank lines, tabs and space characters are often used throughout a program to make the program
easier to read. Collectively, blank lines, tabs and space characters are known as whitespace.

• Console applications begin executing at procedure Main, which is known as the entry point of the
program.

• Keyword Sub begins the body of a procedure definition. Keywords End Sub close the procedure
definition’s body.

• Characters delimited by double quotation marks are called strings, character strings or string literals.

• Methods perform tasks and return data when the tasks are completed. Groups of related methods
are organized into classes.

• The dot operator, ., denotes a member of a particular class. The identifier to the right of the dot
operator is the member name, and the identifier to the left of the dot operator indicates the name
of the class name to which the member belongs.

• The Console class contains methods, such as WriteLine, that communicate with users via the
command window.

• Syntax-color highlighting helps programmers visually differentiate programming elements. Key-
words appear in blue, whereas text is black. When present, comments are colored green.

• The IntelliSense feature lists a class’s members, which include method names.

• The Parameter Info window displays information about a method’s arguments. The Parameter List
window lists possible arguments for the method highlighted in the Parameter Info window. These
windows are part of the many features provided by the IDE to aid program development.

• The ReadLine method causes the program to pause and wait for user input. Once the user presses
the Enter key, the input is returned to the program, and execution resumes. 

• A syntax error (also called a compile error) is a violation of the language syntax. 

• Unlike WriteLine, Write does not position the output cursor at the beginning of the next line
in the command window after displaying its string.

• Declarations begin with keyword Dim and allow the programmer to specify the name, type, size
and value of a variable.

• Variables are locations in the computer’s memory where values can be stored for use by a pro-
gram. Every variable has a name, type, size and value.

• All variables must be declared before they can be used in a program.

• Data types already defined in Visual Basic, such as String and Integer, are known as built-
in data types or primitive data types.

• Primitive type names are keywords.

• Variables of type Integer store integer values (i.e., whole numbers such as 919, –11 and 0).

• A run-time error is an error that affects the program during execution (unlike a syntax error, which
affects the program when it is compiled).

• The assignment operator, =, assigns a value to a variable.

• Visual Basic performs an implicit conversion between data types whenever necessary. For exam-
ple, a String is converted to an Integer to perform an arithmetic operation.



90 Introduction to Visual Basic Programming Chapter 3

• A format, such as {0}, in a String indicates that the argument after the String will be eval-
uated and incorporated into the String in place of the format.

• Whenever a value is placed in a memory location, this value replaces the value previously stored
in that location. The previous value is destroyed.

• When a value is read from a memory location, the process is nondestructive, meaning the value is
not changed.

• Binary operators operate on two operands; unary operators operate on one operand.

• Visual Basic has separate operators for Integer division (the backslash, \) and floating-point
division (the forward slash, /). Integer division yields an Integer result. Any fractional part
in Integer division is discarded (i.e., truncated).

• The modulus operator, Mod, yields the remainder after Integer division.

• Arithmetic expressions in Visual Basic must be written in straight-line form to facilitate entering
programs into a computer.

• Parentheses are used in Visual Basic expressions in the same manner as in algebraic expressions.

• Visual Basic applies the operators in arithmetic expressions in a precise sequence, which is deter-
mined by the rules of operator precedence.

• If an expression contains multiple operators with the same precedence, the order in which the op-
erators are applied is determined by the associativity of the operators.

• As in algebra, it is acceptable to place unnecessary parentheses in an expression to make the ex-
pression easier to read.

• Visual Basic’s If/Then structure allows a program to make a decision based on the truth or falsity
of some condition. If the condition is met (i.e., the condition is true), the statement in the body of
the If/Then structure executes. If the condition is not met (i.e., the condition is false), the body
statement is not executed. 

• Conditions in If/Then structures can be formed by using the equality operators and relational op-
erators. (Equality operators and relational operators also are called comparison operators.)

• All relational and equality operators have the same level of precedence and associate from left
to right.

• Dialogs are windows that typically display messages to the user. Visual Basic provides class Mes-
sageBox for the creation of dialogs.

• The .NET Framework Class Library organizes groups of related classes into namespaces.

• The System.Windows.Forms namespace contains windows-related classes (i.e., forms and
dialogs) that help Visual Basic programmers define graphical user interfaces (GUIs) for their ap-
plications.

• GUI components facilitate data entry by the user and the formatting or presenting of data outputs
to the user.

• An Imports statement indicates that a program uses the features provided by a specific
namespace, such as System.Windows.Forms.

• To improve readability, long statements may be split over several lines with the line-continuation
character, _ . Although a single statement can contain as many line-continuation characters as
necessary, at least one whitespace character must precede each line-continuation character.

• Compiled classes, called assemblies, are located in a file with a .dll (or dynamic link library)
extension.



Chapter 3 Introduction to Visual Basic Programming 91

TERMINOLOGY
' comment declaration
" (double quotation) dialog
_ (underscore) line-continuation character Dim keyword
‚ (comma) display output
< (less-than operator) documentation
<= (less-than-or-equal-to operator) dot (.) operator
<> (inequality operator) embedded parentheses
= assignment operator empty string ("")
= equality operator End Sub keywords
> (greater-than operator) Enter (or Return) key
>= (greater-than-or-equal-to operator) entry point of a program
Add Reference dialog error handling
algebraic notation escape sequence
application exponentiation
argument falsity
arithmetic calculation flow of control
arithmetic operator format
assembly formatting strings
assignment statement GUI component
associativity of operators identifier
asterisk (*) indicating multiplication If/Then structure
average Imports keyword
binary operator indentation in If/Then structure
blank line indentation techniques
body of a procedure definition Index dialog
built-in data type innermost pair of parentheses
button inputting data from the keyboard
carriage return integer division
case sensitive keyword
character set left-to-right evaluation
character string location in the computer’s memory
class logic error
class name Main procedure
command prompt making decisions
command window MessageBox class
comma-separated list method
comment Mod (modulus operator)
comparison operator MS-DOS prompt
compiler name of a variable
compile-time error namespace 
concatenation of Strings nested parentheses
condition nondestructive
console application OK button on a dialog
Console class operand
console window operator precedence
Console.Write method output
Console.WriteLine method parentheses ()
data type parentheses “on the same level”
decision performing a calculation



92 Introduction to Visual Basic Programming Chapter 3

SELF-REVIEW EXERCISES
3.1 Fill in the blanks in each of the following statements:

a) Keyword  begins the body of a module, and keyword(s)  end(s)
the body of a module.

b)  begins a comment.
c) ,  and  collectively are known as whitespace.
d) Class  contains methods for displaying dialogs.
e)  are reserved for use by Visual Basic.
f) Visual Basic console applications begin execution at procedure .
g) Methods  and  display information in the command window.
h) Keyword  begins the procedure body and keyword(s)  end(s) the

procedure body.
i) A Visual Basic program uses a/an  statement to indicate that a namespace is

being used.
j) When a value is placed in a memory location, this value  the previous value

in that location. 
k) The indication that operators are applied from left to right refers to the  of the

operators. 
l) Visual Basic’s If/Then structure allows a program to make a decision based on the

 or  of a condition. 
m) Types such as Integer and String are often called  data types. 
n) A variable is a location in the computer’s  where a value can be stored for use

by a program. 

pop-up menu string formatting
precedence string literal
primitive data type string of characters
programmer-defined class String type
prompt structured programming
readability Sub keyword
ReadLine method syntax error
real number System namespace
redundant parentheses System.dll assembly
reserved word System.Windows.Forms assembly
reuse System.Windows.Forms namespace
robust Task List window
rounding Then keyword
run-time logic error truncate
self-documenting truth
single-line comment type of a variable
space character unary operator
spacing convention unnecessary parentheses
special character valid identifier
split a statement value of a variable
standard output variable
statement Visual Basic compiler
straight-line form whitespace character
string Windows application
String concatenation



Chapter 3 Introduction to Visual Basic Programming 93

o) The expression to the  of the assignment operator (=) is always evaluated first
before the assignment occurs. 

p) Arithmetic expressions in Visual Basic .NET must be written in  form to fa-
cilitate entering programs into the computer. 

3.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the ' on the screen when the program

executes.
b) All variables must be declared before they can be used in a Visual Basic .NET program.
c) Visual Basic considers the variables number and NuMbEr to be different.
d) The arithmetic operators *, /, + and - all have the same level of precedence.
e) A string of characters contained between double quotation marks is called a phrase or

phrase literal.
f) Visual Basic console applications begin executing in procedure Main.
g) Integer division yields an Integer result.

ANSWERS TO SELF-REVIEW EXERCISES 
3.1 a) Module, End Module. b) Single quotation mark, '. c) Blank lines, space characters,
tab characters. d) MessageBox. e) Keywords. f) Main. g) Write, WriteLine. h) Sub, End
Sub. i) Imports. j) replaces. k) associativity. l) truth, falsity. m) primitive (or built-in). n)
memory. o) right. p) straight-line.  

3.2 a) False. Comments do not cause any action to be performed when the program executes.
They are used to document programs and improve their readability. b) True.  c) False. Visual Basic
identifiers are not case sensitive, so these variables are identical. d) False. The operators * and / are
on the same level of precedence, and the operators + and - are on a lower level of precedence. e)
False. A string of characters is called a string or string literal. f) True. g) True.

EXERCISES
3.3 Write Visual Basic statements that accomplish each of the following tasks:

a) Display the message "Hello" using class MessageBox.
b) Assign the product of variables number and userData to variable result.
c) State that a program performs a sample payroll calculation (i.e., use text that helps to doc-

ument a program).

3.4 What displays in the dialog when each of the following statements is performed? Assume the
value of x is 2 and the value of y is 3.

a) MessageBox.Show("x", x)
b) MessageBox.Show((x + x), _

"(x + x)")
c) MessageBox.Show("x + y")
d) MessageBox.Show( _

   (x + y), (y + y))

3.5 Given z = 8e5 – n, which of the following are correct statements for this equation?
a) z = 8 * e ^ 5 - n 
b) z = ( 8 * e ) ^ 5 - n
c) z = 8 * ( e ^ 5 ) - n
d) z = 8 * e ^ ( 5 - n )
e) z = ( 8 * e ) ^ ( ( 5 ) - n ) 
f) z = 8 * e * e ^ 4 - n



94 Introduction to Visual Basic Programming Chapter 3

3.6 Indicate the order of evaluation of the operators in each of the following Visual Basic state-
ments, and show the value of x after each statement is performed.

a) x = 7 + 3 * 3 \ 2 - 1
b) x = 2 Mod 2 + 2 * 2 - 2 / 2
c) x = ( 3 * 9 * ( 3 + ( 9 * 3 / ( 3 ) ) ) )

3.7 Write a program that displays the numbers 1 to 4 on the same line, with each pair of adjacent
numbers separated by one space. Write the program using the following:

a) Use one Write statement.
b) Use four Write statements.

3.8 Write a program that asks the user to enter two numbers, obtains the two numbers from the
user and prints the sum, product, difference and quotient of the two numbers. Use the command win-
dow for input and output.

3.9 Write a program that inputs from the user the radius of a circle and prints the circle’s diam-
eter, circumference and area in the command window. Use the following formulas (r is the radius):

diameter = 2r, circumference = 2πr, area = πr2. Use 3.14159 for π.

3.10 Write a program that displays a box, an oval, an arrow and a diamond using asterisks (*) as
follows:

Use the command window for output.

3.11 What does the following code print?

Console.Write("*")
Console.Write("***")
Console.WriteLine("*****")
Console.Write("****")
Console.WriteLine("**")

3.12 What do the following statements print?

Console.WriteLine("  {0}", "  * ")
Console.WriteLine(" {0}", "  * *")
Console.WriteLine(" {0}*{1}", " * ", " *")
Console.WriteLine(" * *{0}* *", " ")
Console.WriteLine("{1}*{0} *", " * *", "* ")

3.13 Write a program that reads in two integers and determines and prints whether the first is a
multiple of the second. For example, if the user inputs 15 and 3, the first number is a multiple of the
second. If the user inputs 2 and 4, the first number is not a multiple of the second. Use the command
window for input and output. [Hint: Use the modulus operator.]

*********     ***        *         *
*       *    *   *      ***       * *
*       *   *     *    *****     *   *
*       *   *     *      *      *     *
*       *   *     *      *     *       *
*       *   *     *      *      *     *
*       *   *     *      *       *   *
*       *    *   *       *        * *
*********     ***        *         *



Chapter 3 Introduction to Visual Basic Programming 95

3.14 Write a program that inputs one number consisting of five digits from the user, separates the
number into its individual digits and prints the digits separated from one another by three spaces each.
For example, if the user types in the number 42339, the program should print 

Use the command window for input and output. [Hint: This exercise is possible with the tech-
niques discussed in this chapter. You will need to use both division and modulus operations to “pick
off” each digit.]

For the purpose of this exercise, assume that the user enters the correct number of digits. What
happens when you execute the program and type a number with more than five digits? What happens
when you execute the program and type a number with fewer than five digits? 

3.15 Using only the programming techniques discussed in this chapter, write a program that cal-
culates the squares and cubes of the numbers from 0 to 5 and prints the resulting values in table for-
mat as follows:

Use the command window for input and output. [Note: This program does not require any input from
the user.]

4   2   3   3   9

number  square  cube 
0       0       0
1       1       1
2       4       8
3       9       27
4       16      64
5       25      125



4
Control Structures: 

Part 1

Objectives
• To understand basic problem-solving techniques.
• To develop algorithms through the process of top-

down, stepwise refinement.
• To use the If/Then and If/Then/Else selection 

structures to choose among alternative actions.
• To use the While, Do While/Loop and Do
Until/Loop repetition structures to execute 
statements in a program repeatedly.

• To understand counter-controlled repetition and 
sentinel-controlled repetition.

• To use the assignment operators.
• To create basic Windows applications.
Let’s all move one place on.
Lewis Carroll

The wheel is come full circle.
William Shakespeare, King Lear

How many apples fell on Newton’s head before he took the 
hint?
Robert Frost, comment



Chapter 4 Control Structures: Part 1 97

Robert Frost, Comment

4.1 Introduction
Before writing a program to solve a problem, it is essential to have a thorough understand-
ing of the problem and a carefully planned approach. When writing a program, it is equally
important to recognize the types of building blocks that are available and to employ proven
program-construction principles. In this chapter and the next, we present the theory and
principles of structured programming. The techniques presented are applicable to most
high-level languages, including Visual Basic .NET. When we study object-based program-
ming in greater depth in Chapter 8, we will see that control structures are helpful in building
and manipulating objects. The control structures discussed in this chapter enable such ob-
jects to be built quickly and easily. In this chapter, we continue our study of console appli-
cations and our discussion of Windows applications that we began in Chapter 2.

4.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem, in terms of

1. the actions to be executed and

2. the order in which these actions are to be executed,

Outline

4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures

4.5 If/Then Selection Structure

4.6 If/Then/Else Selection Structure

4.7 While Repetition Structure

4.8 Do While/Loop Repetition Structure

4.9 Do Until/Loop Repetition Structure
4.10 Assignment Operators
4.11 Formulating Algorithms: Case Study 1 (Counter-Controlled 

Repetition)
4.12 Formulating Algorithms with Top-Down, Stepwise Refinement: Case 

Study 2 (Sentinel-Controlled Repetition)
4.13 Formulating Algorithms with Top-Down, Stepwise Refinement: Case 

Study 3 (Nested Control Structures)
4.14 Formulating Algorithms with Top-Down, Stepwise Refinement: Case 

Study 4 (Nested Repetition Structures)
4.15 Introduction to Windows Application Programming

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



98 Control Structures: Part 1 Chapter 4

is called an algorithm. The following example demonstrates the importance of correctly
specifying the order in which the actions are to be executed.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) get out of bed, (2) take off pajamas, (3) take a shower, (4)
get dressed, (5) eat breakfast and (6) carpool to work. This routine prepares the executive
for a productive day at the office.

However, suppose that the same steps are performed in a slightly different order: (1)
get out of bed, (2) take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6)
carpool to work. In this case, our junior executive shows up for work soaking wet. 

Indicating the appropriate sequence in which to execute actions is equally crucial in
computer programs. Program control refers to the task of ordering a program’s state-
ments correctly. In this chapter, we begin to investigate the program-control capabilities
of Visual Basic.

4.3 Pseudocode
Pseudocode is an informal language that helps programmers develop algorithms. The
pseudocode we present is particularly useful in the development of algorithms that will be
converted to structured portions of Visual Basic programs. Pseudocode is similar to every-
day English; it is convenient and user-friendly, but it is not an actual computer program-
ming language.

Pseudocode programs are not executed on computers. Rather, they help the programmer
“think out” a program before attempting to write it in a programming language, such as Visual
Basic. In this chapter, we provide several examples of pseudocode programs.

Software Engineering Observation 4.1
Pseudocode helps the programmer conceptualize a program during the program-design pro-
cess. The pseudocode program can be converted to Visual Basic at a later point. 4.1

The style of pseudocode that we present consists solely of characters, so that program-
mers can create, share and modify pseudocode programs using editor programs. A carefully
prepared pseudocode program can be converted easily by a programmer to a corresponding
Visual Basic program. Much of this conversion is as simple as replacing pseudocode state-
ments with their Visual Basic equivalents.

Pseudocode normally describes only executable statements—the actions that are per-
formed when the corresponding Visual Basic program is run. Declarations are not execut-
able statements. For example, the declaration

Dim number As Integer

informs the compiler of number’s type and instructs the compiler to reserve space in mem-
ory for this variable. The declaration does not cause any action, such as input, output or a cal-
culation, to occur when the program executes. Some programmers choose to list variables and
their purposes at the beginning of a pseudocode program.

4.4 Control Structures
Normally, statements in a program are executed one after another in the order in which they
are written. This is called sequential execution. However, various Visual Basic statements



Chapter 4 Control Structures: Part 1 99

enable the programmer to specify that the next statement to be executed might not be the
next one in sequence. A transfer of control occurs when an executed statement does not di-
rectly follow the previously executed statement in the written program.

During the 1960s, it became clear that the indiscriminate use of transfers of control was
causing difficulty for software development groups. The problem was the GoTo statement,
which allows the programmer to specify a transfer of control to one of a wide range of pos-
sible destinations in a program. The excessive use of GoTo statements caused programs to
become quite unstructured and hard to follow. Since that point in time, the notion of struc-
tured programming became almost synonymous with “GoTo elimination.”

The research of Bohm and Jacopini1 demonstrated that all programs containing GoTo
statements could be written without them. Programmers’ challenge during the era was to
shift their styles to “GoTo-less programming.” It was not until the 1970s that programmers
started taking structured programming seriously. The results have been impressive, as soft-
ware development groups have reported reduced development times, more frequent on-
time delivery of systems and more frequent within-budget completion of software projects.
The key to these successes is that structured programs are clearer, easier to debug and
modify and more likely to be bug-free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms of
only three control structures: Namely, the sequence structure, the selection structure and
the repetition structure. The sequence structure is built into Visual Basic. Unless directed
to act otherwise, the computer executes Visual Basic statements sequentially. The flow-
chart segment of Fig. 4.1 illustrates a typical sequence structure in which two calculations
are performed in order.

A flowchart is a graphical representation of an algorithm or of a portion of an algo-
rithm. Flowcharts are drawn using certain special-purpose symbols, such as rectangles, dia-
monds, ovals and small circles. These symbols are connected by arrows called flowlines,
which indicate the order in which the actions of the algorithm execute. The order of execu-
tion is known as the flow of control.

Like pseudocode, flowcharts often are useful for developing and representing algo-
rithms, although many programmers prefer pseudocode. Flowcharts show clearly how con-
trol structures operate; that is their instructive purpose in this text. The reader should
compare carefully the pseudocode and flowchart representations of each control structure.

Consider the flowchart segment for the sequence structure in Fig. 4.1. We use the
rectangle symbol, also called the action symbol, to indicate any type of action, including
a calculation or an input/output operation. The flowlines in the figure indicate the order
in which the actions are to be performed—first, grade is to be added to total, then 1
is to be added to counter. We can have as many actions as we want in a sequence struc-
ture. Anywhere in a sequence that a single action may be placed, several actions may also
be placed. 

When drawing a flowchart that represents a complete algorithm, an oval symbol con-
taining the word “Begin” (by convention) is the first symbol used; an oval symbol con-
taining the word “End” (by convention) indicates the termination of the algorithm. When
drawing only a portion of an algorithm, as in Fig. 4.1, the oval symbols are omitted in favor
of using small circle symbols, also called connector symbols.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.



100 Control Structures: Part 1 Chapter 4

Perhaps the most important flowcharting symbol is the diamond symbol, alternatively
referred to as the decision symbol, which indicates that a decision is to be made. We discuss
the diamond symbol in Section 4.5.

Visual Basic provides three types of selection structures, which we discuss in this
chapter and the next. The If/Then selection structure performs (selects) an action (or
sequence of actions) if a condition is true or skips the action (or sequence of actions) if the
condition is false. The If/Then/Else selection structure performs an action (or sequence
of actions) if a condition is true and performs a different action (or sequence of actions) if
the condition is false. The Select Case structure, discussed in Chapter 5, Control Struc-
tures: Part 2, performs one of many actions (or sequences of actions), depending on the
value of an expression.

The If/Then structure is called a single-selection structure because it selects or
ignores a single action (or a sequence of actions). The If/Then/Else structure is called a
double-selection structure because it selects between two different actions (or sequences of
actions). The Select Case structure is called a multiple-selection structure because it
selects among many different actions or sequences of actions.

Visual Basic provides seven types of repetition structures—While, Do While/
Loop, Do/Loop While, Do Until/Loop, Do/Loop Until, For/Next and For
Each/Next. (Repetition structures While, Do While/Loop and Do Until/Loop are
covered in this chapter; Do/Loop While, Do/Loop Until, and For/Next are covered
in Chapter 5, Control Structures: Part 2; and For Each/Next is covered in Chapter 7,
Arrays.) The words If, Then, Else, End, Select, Case, While, Do, Until, Loop,
For, Next and Each are all Visual Basic keywords (Fig. 4.2). We discuss many of Visual
Basic’s keywords and their respective purposes throughout this book. Visual Basic has a
much larger set of keywords than most other popular programming languages.

Visual Basic has 11 control structures—sequence, three types of selection and seven
types of repetition. Each program is formed by combining as many of each type of control
structure as is necessary. As with the sequence structure in Fig. 4.1, each control structure
is flowcharted with two small circle symbols—one at the entry point to the control structure
and one at the exit point.

Single-entry/single-exit control structures (i.e., control structures that each have one
entry point and one exit point) make it easy to build programs—the control structures are
attached to one another by connecting the exit point of one control structure to the entry
point of the next. This is similar to stacking building blocks, so, we call it control-structure

Fig. 4.1Fig. 4.1Fig. 4.1Fig. 4.1 Sequence structure flowchart.

add grade to total total = total + grade

add 1 to counter counter = counter + 1



Chapter 4 Control Structures: Part 1 101

stacking. There is only one other method of connecting control structures, and that is
through control-structure nesting, where one control structure can be placed inside another.
Thus, algorithms in Visual Basic programs are constructed from only 11 different types of
control structures combined in only two ways—the essence of simplicity.

Visual Basic Keywords

AddHandler AddressOf Alias And

AndAlso Ansi As Assembly

Auto Boolean ByRef Byte

ByVal Call Case Catch

CBool CByte CChar CDate

CDec CDbl Char CInt

Class CLng CObj Const

CShort CSng CStr CType

Date Decimal Declare Default

Delegate Dim DirectCast Do

Double Each Else ElseIf

End Enum Erase Error

Event Exit False Finally

For Friend Function Get

GetType GoTo Handles If

Implements Imports In Inherits

Integer Interface Is Lib

Like Long Loop Me

Mod Module MustInherit MustOverride

MyBase MyClass Namespace New

Next Not Nothing NotInheritable

NotOverridable Object On Option

Optional Or OrElse Overloads

Overridable Overrides ParamArray Preserve

Private Property Protected Public

RaiseEvent ReadOnly ReDim REM

RemoveHandler Resume Return Select

Set Shadows Shared Short

Single Static Step Stop

String Structure Sub SyncLock

Then Throw To True

Fig. 4.2Fig. 4.2Fig. 4.2Fig. 4.2 Keywords in Visual Basic (part 1 of 2).



102 Control Structures: Part 1 Chapter 4

4.5 If/Then Selection Structure
In a program, a selection structure chooses among alternative courses of action. For exam-
ple, suppose that the passing grade on an examination is 60 (out of 100). Then the
pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

determines whether the condition “student’s grade is greater than or equal to 60” is true or
false. If the condition is true, then “Passed” is printed, and the next pseudocode statement
in order is “performed” (remember that pseudocode is not a real programming language).
If the condition is false, the print statement is ignored, and the next pseudocode statement
in order is performed. 

The preceding pseudocode If statement may be written in Visual Basic as

If studentGrade >= 60 Then
   Console.WriteLine("Passed")
End If

Notice that the Visual Basic code corresponds closely to the pseudocode, demonstrating the
usefulness of pseudocode as a program-development tool. The statement in the body of the
If/Then structure outputs the string "Passed". Note also that the output statement in
this selection structure is indented. Such indentation is optional, but it is highly recom-
mended because it emphasizes the inherent organization of structured programs.

The Visual Basic compiler ignores white-space characters, such as spaces, tabs and
newlines used for indentation and vertical spacing, unless the whitespace characters are
contained in Strings. Some whitespace characters are required, however, such as the
newline at the end of a statement and the space between variable names and keywords. Pro-
grammers insert extra white-space characters to enhance program readability.

Good Programming Practice 4.1
Consistent application of indentation conventions throughout programs improves program
readability. We suggest a fixed-size tab of about 1/4 inch, or three spaces per indent. In Vi-
sual Studio, tab sizes can be set by selecting Tools > Options, navigating to
Text Editor > Basic > Tabs in the directory tree at left side of the Options dialog and
changing the numbers in the Tab size and Indent size text fields. 4.1

Try TypeOf Unicode Until

When While With WithEvents

WriteOnly Xor

The following are retained as keywords, although they are no longer supported in Visual 
Basic.NET

Let Variant Wend

Visual Basic Keywords

Fig. 4.2Fig. 4.2Fig. 4.2Fig. 4.2 Keywords in Visual Basic (part 2 of 2).



Chapter 4 Control Structures: Part 1 103

The preceding If/Then selection structure also could be written on a single line as

If studentGrade >= 60 Then Console.WriteLine("Passed")

In the multiple-line format, all statements in the body of the If/Then are executed if the
condition is true. In the single-line format, only the statement immediately after the Then
keyword is executed if the condition is true. Although writing the If/Then selection struc-
ture in the latter format saves space, we believe that the organization of the structure is
clearer when the multiple-line format is used.

Good Programming Practice 4.2
Although If/Then single-selection structures can be written on one line, using the multiple-
line format improves program readability and adaptability, as it is easier to insert statements
into the body of a structure that is not confined to a single line. 4.2

Common Programming Error 4.1
Writing the closing End If keywords after a single-line If/Then structure is a syntax 
error. 4.1

 Whereas syntax errors are caught by the compiler, logic errors, such as the error
caused when the wrong comparison operator is used in the condition of a selection struc-
ture, affect the program only at execution time. A fatal logic error causes a program to fail
and terminate prematurely. A nonfatal logic error does not terminate a program’s execu-
tion but causes the program to produce incorrect results.

The flowchart in Fig. 4.3 illustrates the single-selection If/Then structure. This flow-
chart contains the most important flowcharting symbol—the diamond (or decision)
symbol—which indicates that a decision is to be made. The decision symbol contains a
condition, that is either true or false. The decision symbol has two flowlines emerging from
it. One indicates the direction to be taken when the condition in the symbol is true; the other
indicates the direction to be taken when the condition is false. 

Note that the If/Then structure, is a single-entry/single-exit structure. The flowcharts
for the remaining control structures also contain (aside from small circle symbols and flow-
lines) only rectangle symbols, indicating actions to be performed, and diamond symbols,
indicating decisions to be made. Representing control structures in this way emphasizes the
action/decision model of programming.

Fig. 4.3Fig. 4.3Fig. 4.3Fig. 4.3 If/Then single-selection structure flowchart.

grade >= 60 Console.Write-Console.Write-Console.WriteLine("Passed")
true

false



104 Control Structures: Part 1 Chapter 4

To understand the process of structured programming better, we can envision 11 bins,
each containing a different type of the 11 possible control structures. The control structures
in each bin are empty, meaning that nothing is written in the rectangles or diamonds. The
programmer’s task is to assemble a program using as many control structures as the algo-
rithm demands, combining those control structures in only two possible ways (stacking or
nesting) and filling in the actions and decisions in a manner appropriate to the algorithm.

4.6 If/Then/Else Selection Structure
As we explained, the If/Then selection structure performs an indicated action (or se-
quence of actions) only when the condition evaluates to true; otherwise, the action (or se-
quence of actions) is skipped. The If/Then/Else selection structure allows the
programmer to specify that a different action (or sequence of actions) be performed when
the condition is true than when the condition is false. For example, the pseudocode state-
ment

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

prints “Passed” if the student’s grade is greater than or equal to 60, and prints “Failed” if
the student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.” 

The preceding pseudocode If/Else structure may be written in Visual Basic as

If studentGrade >= 60 Then
   Console.WriteLine("Passed")
Else
   Console.WriteLine("Failed")
End If

Note that the body of the Else clause is indented so that it lines up with the body of the
If clause.

Good Programming Practice 4.3
Indent both body statements of an If/Then/Else structure to improve readability. 4.3

A standard indentation convention should be applied consistently throughout your pro-
grams. It is difficult to read programs that do not use uniform spacing conventions.

The flowchart in Fig. 4.4 illustrates the flow of control in the If/Then/Else struc-
ture. Following the action/decision model of programming, the only symbols (besides
small circles and arrows) used in the flowchart are rectangles (for actions) and a diamond
(for a decision).

Nested If/Then/Else structures test for multiple conditions by placing If/Then/
Else structures inside other If/Then/Else structures. For example, the following
pseudocode statement will print “A” for exam grades greater than or equal to 90, “B” for
grades in the range 80–89, “C” for grades in the range 70–79, “D” for grades in the range
60–69 and “F” for all other grades.



Chapter 4 Control Structures: Part 1 105

If student’s grade is greater than or equal to 90
Print “A”

Else 
If student’s grade is greater than or equal to 80

Print “B”
Else 

If student’s grade is greater than or equal to 70 
Print “C”

Else 
If student’s grade is greater than or equal to 60 

Print “D”
Else

Print “F”

The pseudocode above may be written in Visual Basic as

If studentGrade >= 90 Then
   Console.WriteLine("A")
Else

If studentGrade >= 80 Then
      Console.WriteLine("B")

Else
      If studentGrade >= 70 Then
         Console.WriteLine("C")
      Else
         If studentGrade >= 60 Then
            Console.WriteLine("D")
         Else
            Console.WriteLine("F")
         End If
      End If
   End If
End If

If studentGrade is greater than or equal to 90, the first four conditions are true, but only
the Console.WriteLine statement in the body of the first test is executed. After that

Fig. 4.4Fig. 4.4Fig. 4.4Fig. 4.4 If/Then/Else double-selection structure flowchart.

grade >= 60

Console.WriteLine("Failed") Console.WriteLine("Passed")

truefalse



106 Control Structures: Part 1 Chapter 4

particular Console.WriteLine executes, the Else part of the “outer” If/Then/
Else statement is skipped. 

Good Programming Practice 4.4
If there are several levels of indentation, each level should be indented additionally by the
same amount of space. 4.4

Most Visual Basic programmers prefer to write the preceding If/Then/Else struc-
ture using the ElseIf keyword as

If grade >= 90 Then
   Console.WriteLine("A")
ElseIf grade >= 80 Then
   Console.WriteLine("B")
ElseIf grade >= 70 Then
   Console.WriteLine("C")
ElseIf grade >= 60 Then
   Console.WriteLine("D")
Else
   Console.WriteLine("F")
End If

Both forms are equivalent, but the latter form is popular because it avoids the deep
indentation of the code. Such deep indentation often leaves little room on a line, forcing
lines to be split and decreasing program readability. 

4.7 While Repetition Structure
A repetition structure allows the programmer to specify that an action should be repeated,
depending on the value of a condition. The pseudocode statements

While there are more items on my shopping list
Purchase next item

       Cross it off my list

describe the repetitive actions that occur during a shopping trip. The condition, “there are
more items on my shopping list” can be true or false. If it is true, then the actions, “Purchase
next item” and “Cross it off my list” are performed in sequence. These actions execute repeat-
edly while the condition remains true. The statement(s) contained in the While repetition
structure constitute the body of the While. Eventually, the condition becomes false (when the
last item on the shopping list has been purchased and crossed off the list). At this point, the
repetition terminates, and the first statement after the repetition structure executes.

As an example of a While structure, consider a program designed to find the first
power of two larger than 1000 (Fig. 4.5). In line 7, we take advantage of a Visual Basic fea-
ture that allows variable initialization to be incorporated into a declaration. When the
While structure is entered (line 11), product is 2. Variable product is repeatedly
multiplied by 2 (line 13), taking on the values 4, 8, 16, 32, 64, 128, 256, 512 and 1024,
successively. When product becomes 1024, the condition product <= 1000 in the
While structure becomes false. This terminates the repetition with 1024 as product’s
final value. Execution continues with the next statement after the keywords End While.
[Note: If a While structure’s condition is initially false, the body statement(s) are not per-
formed.]



Chapter 4 Control Structures: Part 1 107

The flowchart in Fig. 4.6 illustrates the flow of control of the While repetition struc-
ture shown in Fig. 4.5. Note that (besides small circles and arrows) the flowchart contains
only a rectangle symbol and a diamond symbol. 

The flowchart clearly shows the repetition. The flowline emerging from the rectangle
wraps back to the decision, creating a loop. The decision is tested each time the loop iterates
until the condition in the decision eventually becomes false. At this point, the While struc-
ture is exited, and control passes to the next statement in the program following the loop.

1 ' Fig. 4.5: While.vb
2 ' Demonstration of While structure.
3
4 Module modWhile
5
6 Sub Main()
7       Dim product As Integer = 2
8
9       ' structure multiplies and displays product

10       ' while product is less than or equal to 1000
11       While product <= 1000
12          Console.Write("{0}  ", product)
13          product = product * 2
14      End While
15
16       Console.WriteLine() ' write blank line
17
18       ' print result
19       Console.WriteLine("Smallest power of 2 " & _
20          "greater than 1000 is {0}", product)
21   End Sub ' Main
22
23 End Module ' modWhile

2  4  8  16  32  64  128  256  512
Smallest power of 2 greater than 1000 is 1024

Fig. 4.5Fig. 4.5Fig. 4.5Fig. 4.5 While repetition structure used to print powers of two.

Fig. 4.6Fig. 4.6Fig. 4.6Fig. 4.6 While repetition structure flowchart.

product <= 1000 product = product * 2
true

false



108 Control Structures: Part 1 Chapter 4

Common Programming Error 4.2
Failure to provide the body of a While structure with an action that eventually causes the
condition to become false is a logic error. Normally, such a repetition structure never termi-
nates, resulting in an error called an “infinite loop.” 4.2

4.8 Do While/Loop Repetition Structure
The Do While/Loop repetition structure behaves like the While repetition structure. As
an example of a Do While/Loop structure, consider another version of the program de-
signed to find the first power of two larger than 1000 (Fig. 4.7).

When the Do While/Loop structure is entered, the value of product is 2. The vari-
able product is repeatedly multiplied by 2, taking on the values 4, 8, 16, 32, 64, 128,
256, 512 and 1024, successively. When product becomes 1024, the condition in the
Do While/Loop structure, product <= 1000, becomes false. This terminates the rep-
etition, with the final value of product being 1024. Program execution continues with
the next statement after the Do While/Loop structure. The flowchart in Fig. 4.8 illustrates
the flow of control of the Do While/Loop repetition structure, which is identical to the
flow of control in the flowchart of the While repetition structure Fig. 4.6. 

Common Programming Error 4.3
Failure to provide the body of a Do While/Loop structure with an action that eventually
causes the condition in the Do While/Loop to become false creates an infinite loop. 4.3

1 ' Fig. 4.7: DoWhile.vb
2 ' Demonstration of the Do While/Loop structure.
3
4 Module modDoWhile
5
6  Sub Main()
7       Dim product As Integer = 2
8
9       ' structure multiplies and displays

10       ' product while product is less than or equal to 1000
11       Do While product <= 1000
12          Console.Write("{0}  ", product)
13          product = product * 2
14   Loop
15
16       Console.WriteLine() ' write blank line
17
18       ' print result
19       Console.WriteLine("Smallest power of 2 " & _
20          "greater than 1000 is {0}", product)
21  End Sub ' Main
22
23 End Module ' modDoWhile

2  4  8  16  32  64  128  256  512
Smallest power of 2 greater than 1000 is 1024

Fig. 4.7Fig. 4.7Fig. 4.7Fig. 4.7 Do While/Loop repetition structure demonstration.



Chapter 4 Control Structures: Part 1 109

4.9  Do Until/Loop Repetition Structure
Unlike the While and Do While/Loop repetition structures, the Do Until/Loop repe-
tition structure tests a condition for falsity for repetition to continue. Statements in the body
of a Do Until/Loop are executed repeatedly as long as the loop-continuation test evalu-
ates to false. As an example of a Do Until/Loop repetition structure, once again consider
a program (Fig. 4.9) designed to find the first power of two larger than 1000. 

Fig. 4.8Fig. 4.8Fig. 4.8Fig. 4.8 Do While/Loop repetition structure flowchart.

1 ' Fig. 4.9: DoUntil.vb
2 ' Demonstration of the Do Until/Loop structure.
3
4 Module modDoUntil
5
6  Sub Main()
7       Dim product As Integer = 2
8
9       ' find first power of 2 greater than 1000

10       Do Until product > 1000
11          Console.Write("{0}  ", product)
12          product = product * 2
13   Loop
14
15       Console.WriteLine() ' write blank line
16
17       ' print result
18       Console.WriteLine("Smallest power of 2 " & _
19          "greater than 1000 is {0}", product)
20 End Sub ' Main
21
22 End Module ' modDoUntil

2  4  8  16  32  64  128  256  512
Smallest power of 2 greater than 1000 is 1024

Fig. 4.9Fig. 4.9Fig. 4.9Fig. 4.9 Do Until/Loop repetition structure demonstration.

product <= 1000 product = product * 2
true

false



110 Control Structures: Part 1 Chapter 4

The flowchart in Fig. 4.10 illustrates the flow of control in the Do Until/Loop rep-
etition structure shown in Fig. 4.9.

Common Programming Error 4.4
Failure to provide the body of a Do Until/Loop structure with an action that eventually
causes the condition in the Do Until/Loop to become true creates an infinite loop. 4.4

4.10 Assignment Operators
Visual Basic .NET provides several assignment operators for abbreviating assignment
statements. For example, the statement

value = value + 3

can be abbreviated with the addition assignment operator += as

value += 3

The += operator adds the value of the right operand to the value of the left operand and
stores the result in the left operand’s variable. Any statement of the form

variable = variable operator expression

can be written in the form

variable operator= expression

where operator is one of the binary operators +, -, *, ^, &, / or \, and variable is an <lval-
ue (“left value”). An lvalue is a variable that can appear on the left side of an assignment
statement. Figure 4.11 includes the arithmetic assignment operators, sample expressions
using these operators and explanations.

Although the symbols =, +=, -=, *=, /=, \=, ^= and &= are operators, we do not
include them in operator-precedence tables. When an assignment statement is evaluated,
the expression to the right of the operator is always evaluated first, then assigned to the
lvalue on the left. Unlike Visual Basic’s other operators, the assignment operators can only
occur once in a statement. Figure 4.12 calculates a power of two using the exponentiation
assignment operator.

Fig. 4.10Fig. 4.10Fig. 4.10Fig. 4.10 Do Until/Loop repetition structure flowchart.

product > 1000 product = product * 2
false

true



Chapter 4 Control Structures: Part 1 111

Lines 14 and 18 have the same effect on the variable result. Both statements raise
result to the value of variable exponent. Notice that the results of these two calcula-
tions are identical. 

Assignment operator
Sample 
expression Explanation Assigns

Assume: c = 4, d = "He"

+= c += 7 c = c + 7 11 to c

-= c -= 3 c = c - 3 1 to c

*= c *= 4 c = c * 4 16 to c

/= c /= 2 c = c / 2 2 to c

\= c \= 3 c = c \ 3 1 to c

^= c ^= 2 c = c ^ 2 16 to c

&= d &= "llo" d = d & "llo" "Hello" to d

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 Assignment operators.

1 ' Fig. 4.12: Assignment.vb
2 ' Using an assignment operator to calculate a power of 2.
3
4 Module modAssignment
5
6 Sub Main()
7       Dim exponent As Integer ' power input by user
8       Dim result As Integer = 2 ' number to raise to a power
9

10       ' prompt user for exponent
11       Console.Write("Enter an integer exponent: ")
12       exponent = Console.ReadLine()
13
14       result ^= exponent ' same as result = result ^ exponent
15       Console.WriteLine("result ^= exponent: {0}", result)
16
17       result = 2 ' reset result to 2
18       result = result ^ exponent
19       Console.WriteLine("result = result ^ exponent: {0}", result)
20
21 End Sub ' Main
22
23 End Module ' modAssignment

Enter an integer exponent: 8
result ^= exponent: 256
result = result ^ exponent: 256

Fig. 4.12Fig. 4.12Fig. 4.12Fig. 4.12 Exponentiation using an assignment operator.



112 Control Structures: Part 1 Chapter 4

4.11 Formulating Algorithms: Case Study 1 (Counter-
Controlled Repetition)
To illustrate how algorithms are developed, we solve two variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range from 0 to 100) 
for this quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation and print the result.

Let us use pseudocode to list the actions to be executed and to specify the order of exe-
cution. We use counter-controlled repetition to input the grades one at a time. This tech-
nique uses a variable called a counter to specify the number of times that a set of statements
will execute. Counter-controlled repetition also is called definite repetition because the
number of repetitions is known before the loop begins executing. In this example, repetition
terminates when the counter exceeds 10. This section presents a pseudocode algorithm
(Fig. 4.13) and the corresponding program (Fig. 4.14). In Sections 4.12, 4.13 and 4.14, we
show how pseudocode algorithms are developed. 

Set total to zero
Set grade counter to one

While grade counter is less than or equal to 10
Input the next grade
Add the grade to the total
Add one to the grade counter

Set the class average to the total divided by 10
Print the class average

Fig. 4.13Fig. 4.13Fig. 4.13Fig. 4.13 Pseudocode algorithm that uses counter-controlled repetition to solve 
the class-average problem.

1 ' Fig. 4.14: Average1.vb
2 ' Using counter-controlled repetition.
3
4 Module modAverage
5
6 Sub Main()
7       Dim total As Integer         ' sum of grades
8       Dim gradeCounter As Integer ' number of grades input
9       Dim grade As Integer         ' grade input by user

10       Dim average As Double        ' class average
11

Fig. 4.14Fig. 4.14Fig. 4.14Fig. 4.14 Class-average program with counter-controlled repetition (part 1 of 2).



Chapter 4 Control Structures: Part 1 113

Note the references in the algorithm (Fig. 4.13) to a total and a counter. A total is a vari-
able used to calculate the sum of a series of values. A counter is a variable that counts—in this
case, the counter records the number of grades input by the user. It is important that variables
used as totals and counters have appropriate initial values before they are used. Counters usu-
ally are initialized to one. Totals generally are initialized to zero. If a numerical variable is not
initialized before its first use, Visual Basic initializes it to a default value of 0.

Good Programming Practice 4.5
Although Visual Basic initializes numerical variables to 0, it is a good practice to initialize
variables explicitly to avoid confusion and improve program readability. 4.5

12       ' initialization phase
13       total = 0                    ' set total to zero
14       gradeCounter = 1             ' prepare to loop
15
16       ' processing phase
17       While gradeCounter <= 10
18
19          ' prompt for input and read grade from user
20          Console.Write("Enter integer grade: ")
21          grade = Console.ReadLine()
22
23          total += grade    ' add grade to total 
24
25          gradeCounter += 1 ' add 1 to gradeCounter
26       End While
27
28       ' termination phase
29       average = total / 10
30
31       ' write blank line and display class average
32       Console.WriteLine()
33       Console.WriteLine("Class average is {0}", average)
34
35 End Sub ' Main
36
37 End Module ' modAverage

Enter integer grade: 89
Enter integer grade: 70
Enter integer grade: 73
Enter integer grade: 85
Enter integer grade: 64
Enter integer grade: 92
Enter integer grade: 55
Enter integer grade: 57
Enter integer grade: 93
Enter integer grade: 67

Class average is 74.5

Fig. 4.14Fig. 4.14Fig. 4.14Fig. 4.14 Class-average program with counter-controlled repetition (part 2 of 2).



114 Control Structures: Part 1 Chapter 4

Lines 7–10 declare variables total, gradeCounter, and grade to be of type
Integer and average to be of type Double. In this example, total accumulates the
sum of the grades entered, and gradeCounter counts the number of grades entered.
Variable grade stores the value entered (line 21).

Good Programming Practice 4.6
Always place a blank line between declarations and executable statements. This makes the
declarations stand out in a program and contributes to program readability. 4.6

Notice from the output that although each grade entered is an integer, the averaging
calculation is likely to produce a number with a decimal point (i.e., a floating-point
number). The type Integer cannot represent floating-point numbers, so this program
uses data type Double, which stores double-precision floating-point numbers. Visual
Basic also provides data type Single for storing single-precision floating-point numbers.
Data type Double requires more memory to store a floating-point value, but is more accu-
rate than type Single. Type Single is useful in applications that need to conserve
memory and do not require the accuracy provided by type Double.

Lines 13–14 initialize total to 0 and gradeCounter to 1. Line 17 indicates that
the While structure should iterate while the value of gradeCounter is less than or
equal to 10. Lines 20–21 correspond to the pseudocode statement “Input the next grade.”
The statement on line 20 displays the prompt Enter integer grade: in the command
window. The second statement (line 21) reads the value entered by the user, and stores that
value in the variable grade.

Next, the program updates the total with the new grade entered by the user—line
23 adds grade to the previous value of total and assigns the result to total—using
the += assignment operator. Variable gradeCounter is incremented (line 25) to indicate
that a grade has been processed. Line 25 adds 1 to gradeCounter, so the condition in
the While structure eventually becomes false, terminating the loop. Line 29 assigns the
results of the average calculation to variable average. Line 32 writes a blank line to
enhance the appearance of the output. Line 33 displays a message containing the string
"Class average is " followed by the value of variable average.

4.12 Formulating Algorithms with Top-Down, Stepwise 
Refinement: Case Study 2 (Sentinel-Controlled Repetition)
Let us generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that averages an arbitrary number of grades each time
the program is run.

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades are to be input. The program must pro-
cess an arbitrary number of grades. How can the program determine when to stop the input
of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user inputs all grades and then types the sentinel value to indicate that the last grade has
been entered. Sentinel-controlled repetition is called indefinite repetition because the
number of repetitions is not known before the loop begins its execution.



Chapter 4 Control Structures: Part 1 115

It is crucial to employ a sentinel value that cannot be confused with an acceptable input
value. Grades on a quiz are normally nonnegative integers, thus –1 is an acceptable sentinel
value for this problem. A run of the class-average program might process a stream of inputs
such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89. The sentinel value, –1, should not enter into
the averaging calculation.

Common Programming Error 4.5
Choosing a sentinel value that is also a legitimate data value could result in a logic error
that would cause a program to produce incorrect results. 4.5

When solving more complex problems, such as that contained in this example, the
pseudocode representation might not appear obvious. For this reason we approach the
class-average program with top-down, stepwise refinement, a technique for developing
well-structured algorithms. We begin with a pseudocode representation of the top:

Determine the class average for the quiz

The top is a single statement that conveys the overall function of the program. As such, the
top is a complete representation of a program. Unfortunately, the top rarely conveys a suffi-
cient amount of detail from which to write the Visual Basic algorithm. Therefore, we conduct
the refinement process. This involves dividing the top into a series of smaller tasks that are
listed in the order in which they must be performed resulting in the following first refinement:

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

Here, only the sequence structure has been used—the steps listed are to be executed in or-
der, one after the other.

Software Engineering Observation 4.2
Each refinement, including the top, is a complete specification of the algorithm; only the lev-
el of detail in each refinement varies. 4.2

To proceed to the next level of refinement (i.e., the second refinement), we commit to
specific variables. We need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade and a variable to hold the
calculated average. The pseudocode statement 

Initialize variables

can be refined as follows:

Initialize total to zero
Initialize counter to zero

Notice that only the variables total and counter are initialized before they are used; the vari-
ables average and grade (the program in Fig. 4.16 uses these variables for the calculated
average and the user input, respectively) need not be initialized because the assignment of
their values does not depend on their previous values, as is the case for total and counter.

The pseudocode statement

Input, sum and count the quiz grades



116 Control Structures: Part 1 Chapter 4

requires a repetition structure (i.e., a loop) that processes each grade. We do not know how
many grades are to be processed, thus we use sentinel-controlled repetition. The user enters
legitimate grades one at a time. After the last legitimate grade is typed, the user types the
sentinel value. The program tests for the sentinel value after each grade is input and termi-
nates the loop when the user enters the sentinel value. The second refinement of the preced-
ing pseudocode statement is then

Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade to the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

The pseudocode statement

Calculate and print the class average

may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

We test for the possibility of division by zero—a logic error that, if undetected, causes the
program to produce invalid output. The complete second refinement of the pseudocode al-
gorithm for the class-average problem is shown in Fig. 4.15.

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel 
Add this grade to the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

Fig. 4.15Fig. 4.15Fig. 4.15Fig. 4.15 Pseudocode algorithm that uses sentinel-controlled repetition to solve 
the class-average problem.



Chapter 4 Control Structures: Part 1 117

Testing and Debugging Tip 4.1
When performing division by an expression whose value could be zero, explicitly test for this
case and handle it appropriately in your program. Such handling could be as simple as print-
ing an error message. Sometimes more sophisticated processing is required. 4.1

Good Programming Practice 4.7
Include blank lines in pseudocode programs to improve readability. The blank lines separate
pseudocode control structures and the program’s phases. 4.7

Software Engineering Observation 4.3
Many algorithms can be divided logically into three phases: An initialization phase that ini-
tializes the program variables, a processing phase that inputs data values and adjusts pro-
gram variables accordingly and a termination phase that calculates and prints the results. 4.3

The pseudocode algorithm in Fig. 4.15 solves the general class-averaging problem
presented at the beginning of this section. This algorithm was developed after only two
levels of refinement—sometimes more levels of refinement are necessary.

Software Engineering Observation 4.4
The programmer terminates the top-down, stepwise refinement process when the pseudocode
algorithm is specified in sufficient detail for the pseudocode to be converted to a Visual Basic
program. The implementation of the Visual Basic program then occurs in a normal, straight-
forward manner. 4.4

The Visual Basic program for this pseudocode is shown in Fig. 4.16. In this example,
we examine how control structures can be “stacked on top of one another,” in sequence.
The While structure (lines 23–31) is followed immediately by an If/Then structure
(lines 34–42). Much of the code in this program is identical to the code in Fig. 4.14, so we
concentrate only on the new features.

1 ' Fig. 4.16: ClassAverage2.vb
2 ' Using sentinel-controlled repetition to 
3 ' display a class average.
4
5 Module modClassAverage
6
7 Sub Main()
8       Dim total As Integer         ' sum of grades
9       Dim gradeCounter As Integer ' number of grades input

10       Dim grade As Integer         ' grade input by user
11       Dim average As Double        ' average of all grades
12
13       ' initialization phase
14       total = 0                    ' clear total
15       gradeCounter = 0             ' prepare to loop
16
17       ' processing phase
18       ' prompt for input and read grade from user
19       Console.Write("Enter integer grade, -1 to quit: ")
20       grade = Console.ReadLine()

Fig. 4.16Fig. 4.16Fig. 4.16Fig. 4.16 Class-average program with sentinel-controlled repetition (part 1 of 2).



118 Control Structures: Part 1 Chapter 4

Line 11 declares variable average to be of type Double. This allows the result of
the class-average calculation to be stored as a floating-point number. Line 15 initializes
gradeCounter to 0 because no grades have been input yet—recall that this program
uses sentinel-controlled repetition. To keep an accurate record of the number of grades
entered, variable gradeCounter is incremented only when a valid grade value is input.

Notice the differences between sentinel-controlled repetition and the counter-con-
trolled repetition of Fig. 4.14. In counter-controlled repetition, we read a value from the
user during each iteration of the While structure. In sentinel-controlled repetition, we read
one value (line 20) before the program reaches the While structure. This value determines
whether the program’s flow of control should enter the body of the While structure. If the
While structure condition is false (i.e., the user has entered the sentinel value), the body
of the While structure does not execute (no grades were entered). If, on the other hand, the
condition is true, the body begins execution, and the value entered by the user is processed
(added to the total). After the value is processed, the next value is input by the user
before the end of the While structure’s body. When End While is reached at line 30, exe-
cution continues with the next test of the While structure condition. The new value entered

21
22       ' sentinel-controlled loop where -1 is the sentinel value
23       While grade <> -1
24          total += grade    ' add gradeValue to total
25          gradeCounter += 1 ' add 1 to grade
26
27          ' prompt for input and read grade from user 
28          Console.Write("Enter integer grade, -1 to quit: ")
29          grade = Console.ReadLine()
30       End While
31
32       ' termination phase
33       If gradeCounter <> 0 Then
34          average = total / gradeCounter
35
36          ' display class average
37          Console.WriteLine()
38          Console.WriteLine("Class average is {0:F}", average)
39       Else ' no grades were entered
40          Console.WriteLine("No grades were entered")
41       End If
42
43  End Sub ' Main
44
45 End Module ' modClassAverage

Enter integer grade, -1 to quit: 97
Enter integer grade, -1 to quit: 88
Enter integer grade, -1 to quit: 72
Enter integer grade, -1 to quit: -1

Class average is 85.67

Fig. 4.16Fig. 4.16Fig. 4.16Fig. 4.16 Class-average program with sentinel-controlled repetition (part 2 of 2).



Chapter 4 Control Structures: Part 1 119

by the user indicates whether the While structure’s body should execute again. Notice that
the next value always is input from the user immediately before the While structure con-
dition is evaluated (line 23). This allows the program to determine if the value is the sen-
tinel value before processing that value (i.e., adding it to the total). If the value is the
sentinel value, the While structure terminates, and the value is not added to the total.

Good Programming Practice 4.8
In a sentinel-controlled loop, the prompts requesting data entry should remind the user of the
sentinel value. 4.8

Common Programming Error 4.6
Using floating-point numbers in a manner that assumes that they are precisely represented real
numbers can lead to incorrect results. Computers represent real numbers only approximately. 4.6

Good Programming Practice 4.9
Do not compare floating-point values for equality or inequality. Rather, test that the absolute
value of the difference is less than a specified small value. 4.9

Despite the fact that floating-point numbers are not always “100 percent precise,” they
have numerous applications. For example, when we speak of a “normal” body temperature
of 98.6, we do not need to be precise to a large number of digits. When we view the tem-
perature on a thermometer and read it as 98.6, it may actually be 98.5999473210643.
Calling such a number simply 98.6 is appropriate for most applications.

Floating-point numbers also develop through division. When we divide 10 by 3, the
result is 3.3333333…, with the sequence of 3s repeating infinitely. The computer allocates
only a fixed amount of space to hold such a value, so the stored floating-point value can be
only an approximation.

In line 38 of Fig. 4.16, method WriteLine uses the format {0:F} to print the value
of average in the command window as a fixed-point number, (i.e., a number with a spec-
ified number of places after the decimal point). Visual Basic provides the standard number
formats for controlling the way numbers are printed as Strings. We discuss the various
standard number formats in Chapter 5, Control Structures Part 2.

4.13 Formulating Algorithms with Top-Down, Stepwise 
Refinement: Case Study 3 (Nested Control Structures)
Let us consider another complete problem. Again we formulate the algorithm using
pseudocode and top-down, stepwise refinement; we then write a corresponding Visual Ba-
sic program. We have seen in previous examples that control structures may be stacked on
top of one another (in sequence) just as a child stacks building blocks. In this case study,
we demonstrate the only other structured way that control structures can be combined,
namely through the nesting of one control structure inside another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, 10 of the students who completed this course took the licensing examina-
tion. The college wants to know how well its students did on the exam. You have been asked
to write a program to summarize the results. You have been given a list of the 10 students.
Next to each name is written a “P” if the student passed the exam and an “F” if the student
failed the exam.



120 Control Structures: Part 1 Chapter 4

Your program should analyze the results of the exam as follows:

1. Input each exam result (i.e., a “P” or an “F”). Display the message “Enter result”
each time the program requests another exam result.

2. Count the number of passes and failures.

3. Display a summary of the exam results, indicating the number of students who passed
and the number of students who failed the exam.

4. If more than 8 students passed the exam, print the message “Raise tuition.”

After reading the problem statement, we make the following observations about the problem:

1. The program must process exam results for 10 students, so a counter-controlled
loop is appropriate.

2. Each exam result is a String—either a “P” or an “F”. Each time the program
reads an exam result, the program must determine if the input is a “P” or an “F.”
We test for a “P” in our algorithm. If the input is not a “P,” we assume it is an “F.”
(An exercise at the end of the chapter considers the consequences of this assump-
tion. For instance, consider what happens in this program when the user enters a
lowercase “p.”)

3. Two counters store the exam results—one to count the number of students who
passed the exam and one to count the number of students who failed the exam.

4. After the program has processed all the exam results, it must determine if more
than eight students passed the exam.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide if tuition should be raised

Once again, it is important to emphasize that the top is a complete representation of the pro-
gram, but several refinements likely are needed before the pseudocode can be evolved into
a Visual Basic program. Our first refinement is

Initialize variables
Input the ten exam grades and count passes and failures
Print a summary of the exam results and decide if tuition should be raised

Even though we have a complete representation of the entire program, further refinement
is necessary. We must commit to specific variables. Counters are needed to record the pass-
es and failures. A counter controls the looping process and a variable stores the user input.
The pseudocode statement

Initialize variables

may be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

Only the counters for the number of passes, number of failures and number of students are
initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures



Chapter 4 Control Structures: Part 1 121

requires a loop that inputs the result of each exam. Here it is known in advance that there
are precisely ten exam results, so counter-controlled repetition is appropriate. Inside the
loop (i.e., nested within the loop) a double-selection structure determines whether each
exam result is a pass or a failure, and the structure increments the appropriate counter ac-
cordingly. The refinement of the preceding pseudocode statement is then

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

Notice the use of blank lines to set off the If/Else control structure to improve program read-
ability. The pseudocode statement

Print a summary of the exam results and decide if tuition should be raised

may be refined as follows:

Print the number of passes
Print the number of failures

If more than eight students passed 
Print “Raise tuition”

The complete second refinement appears in Fig. 4.17. Notice that blank lines also offset the
While structure (lines 13–25) for program readability.

The pseudocode now is refined sufficiently for conversion to Visual Basic. The pro-
gram and sample executions are shown in Fig. 4.18.

The While loop (lines 13–25) inputs and processes the 10 examination results. The
If/Then/Else structure on lines 18–22 is a nested control structure because it is enclosed
inside the While. The condition in line 18 tests if String variable result is equal to
"P". If so, passes is incremented by 1. Otherwise, failures is incremented by 1.
[Note: Strings are case sensitive—uppercase and lowercase letters are different. Only
"P" represents a passing grade. In the exercises, we ask the reader to enhance the program
by processing lowercase input such as "p".]

Note that line 29 contains an identifier, vbCrLf, that is not declared explicitly in
the program code. Identifier vbCrLf is one of several constants provided by Visual
Basic. Constants contain values that programmers cannot modify. In the case of
vbCrLf, the value represented is the combination of the carriage return and linefeed
characters, which cause subsequent output to print at the beginning of the next line. When
printed, the effect of this constant is similar to calling Console.WriteLine().

Although not demonstrated in this example, Visual Basic also provides the vbTab
constant, which represents a tab character. Several of the chapter exercises ask you to use
these constants. In Chapter 6, Procedures, we discuss how programmers can create their
own constants.



122 Control Structures: Part 1 Chapter 4

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
    Add one to passes

       Else
    Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed 
Print “Raise tuition”

Fig. 4.17Fig. 4.17Fig. 4.17Fig. 4.17 Pseudocode for examination-results problem.

1 ' Fig. 4.18: Analysis.vb
2 ' Using counter-controlled repetition to display exam results.
3
4 Module modAnalysis
5
6 Sub Main()
7       Dim passes As Integer = 0   ' number of passes
8       Dim failures As Integer = 0 ' number of failures
9       Dim student As Integer = 1 ' student counter

10       Dim result As String      ' one exam result
11
12       ' process 10 exam results; counter-controlled loop
13       While student <= 10
14          Console.Write("Enter result (P = pass, F = fail): ")
15          result = Console.ReadLine()
16
17          ' nested control structure
18          If result = "P" Then
19             passes += 1    ' increment number of passes
20          Else
21             failures += 1 ' increment number of failures
22          End If
23

Fig. 4.18Fig. 4.18Fig. 4.18Fig. 4.18 Nested control structures used to calculate examination results (part 1 of 2).



Chapter 4 Control Structures: Part 1 123

4.14 Formulating Algorithms with Top-Down, Stepwise 
Refinement: Case Study 4 (Nested Repetition Structures)
Let us present another complete example. Once again, we formulate the algorithm using
pseudocode and top-down, stepwise refinement, then write the corresponding program.

24          student += 1      ' increment student counter
25       End While
26
27       ' display exam results
28       Console.WriteLine("Passed: {0}{1}Failed: {2}", passes, _
29          vbCrLf, failures)
30
31       ' raise tuition if more than 8 students pass
32       If passes > 8 Then
33          Console.WriteLine("Raise Tuition")
34       End If
35
36 End Sub ' Main
37
38 End Module ' modAnalysis

Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): F
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Passed: 9
Failed: 1
Raise Tuition

Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): F
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): F
Enter result (P = pass, F = fail): F
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): P
Enter result (P = pass, F = fail): F
Enter result (P = pass, F = fail): P
Passed: 6
Failed: 4

Fig. 4.18Fig. 4.18Fig. 4.18Fig. 4.18 Nested control structures used to calculate examination results (part 2 of 2).



124 Control Structures: Part 1 Chapter 4

Again, we use stacked and nested control structures to solve the problem. In this case study,
we demonstrate nested repetition structures.

Consider the following problem statement:

Write a program that draws in the command window a filled square consisting 
solely of * characters. The side of the square (i.e., the number of * characters to be 
printed side by side) should be input by the user and should not exceed 20.

Your program should draw the square as follows:

1. Input the side of the square.

2. Validate that the side is less than or equal to 20. (Note: It is possible for the user
to input values less than 1. We explore in the chapter exercises how this can be
prevented.)

3. Use repetition to draw the square by printing only one * at a time.

After reading the problem statement, we make the following observations (in no par-
ticular order):

1. The program must draw n rows, each containing n * characters. Counter-con-
trolled repetition should be used.

2. A test must be employed to ensure that the value of n is less than or equal to 20.

3. Three variables should be used—one that represents the length of the side of the
square, one that represents the row in which each * appears and one that represents
the column in which each * appears.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Draw a square of * characters

Once again, it is important to emphasize that the top is a complete representation of the
program, but several refinements are likely to be needed before the pseudocode can be nat-
urally evolved into a program. Our first refinement is

Initialize variables
Prompt for the side of the square
Input the side of the square, making sure that it is less than or equal to 20
Draw the square

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. A variable is needed to store
the length of the side, a variable is needed to store the row where printing is occurring and a
variable is needed to store the column where printing is occurring. The pseudocode statement

Initialize variables

can be refined as follows:

Initialize row to one
Initialize side to the value input

The pseudocode statement

Input the side of the square, making sure that it is less than or equal to 20



Chapter 4 Control Structures: Part 1 125

requires that a value be obtained from the command window. The pseudocode statement 

Validate that the side is less than or equal to 20

can be refined as

If side is less than or equal to 20

which explicitly tests whether side is less than or equal to 20. If the condition (i.e., side is
less than or equal to 20) is true, the first statement in the body of the If is executed. If the
condition is false, the body of the If is not executed. These two control structures are said
to be nested—meaning that one is inside the body of the other.

The pseudocode statement

Draw the square

can be implemented by using nested loops to draw the square. In this example, it is known
in advance that there are precisely n rows of n * characters each, so counter-controlled rep-
etition is appropriate. One loop controls the row in which each * is printed. Inside this loop
(i.e., nested within this loop), a second loop prints each individual *. The refinement of the
preceding pseudocode statement is, then,

Set column to one

While column is less than or equal to side
Print *
Increment column by one

Print a line feed/carriage return
Increment row by one

After column is set to one, the inner loop executes to completion (i.e., until column
exceeds side). Each iteration of the inner loop prints a single *. A line feed/carriage
return is then printed to move the cursor to the beginning of the next line, to prepare to
print the next row of the square. Variable row is incremented by one. If the outer loop
condition allows the body of the loop to be executed, column is reset to one, because we
want the inner loop to execute again and print another row of * characters. If column is
not initialized to 1 before each iteration of the inner loop, the repetition condition of the
inner loop will fail for all but the first row of output. Variable row is incremented by one.
This process is repeated until the value of row exceeds side at which point the square of
*’s has been printed.

The complete second refinement appears in Fig. 4.19. Notice that blank lines are used
to separate the nested control structures for program readability. Also notice that we added
an Else clause that prints a message if the value input for side is too large.

Good Programming Practice 4.10
Too many levels of nesting can make a program difficult to understand. If possible, try to
avoid using more than three levels of nesting. 4.10

The pseudocode now is refined sufficiently for conversion to Visual Basic. The Visual
Basic program and sample executions are shown in Fig. 4.20.



126 Control Structures: Part 1 Chapter 4

Software Engineering Observation 4.5
The most difficult part of solving a problem on a computer is developing the algorithm for
the solution. Once a correct algorithm has been specified, the process of producing a work-
ing Visual Basic program from the algorithm is usually straightforward. 4.5

Initialize side to the value input
Initialize row to 1

If side is less than or equal to 20

While row is less than or equal to side
Set column to one

While column is less than or equal to side
Print *
Increment column by one

Print a line feed/carriage return
Increment row by one

Else
Print “Side is too large”

Fig. 4.19Fig. 4.19Fig. 4.19Fig. 4.19 Second refinement of the pseudocode.

1 ' Fig. 4.20: PrintSquare.vb
2 ' Program draws square of *.
3
4 Module modPrintSquare
5
6 Sub Main()
7       Dim side As Integer    ' square’s side
8       Dim row As Integer = 1 ' current row
9       Dim column As Integer  ' current column

10
11       ' obtain side from user 
12       Console.Write("Enter side length (must be 20 or less): ")
13       side = Console.ReadLine()
14
15       If side <= 20 Then ' if true, while is tested
16
17          ' this While is nested inside the If
18          While row <= side ' controls row
19             column = 1
20

Fig. 4.20Fig. 4.20Fig. 4.20Fig. 4.20 Nested repetition structures used to print a square of *s (part 1 of 2).



Chapter 4 Control Structures: Part 1 127

Software Engineering Observation 4.6
Many experienced programmers write programs without ever using program development
tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob-
lem on a computer and that writing pseudocode merely delays producing final outputs. Al-
though this might work for simple and familiar problems, it can lead to serious problems on
large, complex projects. 4.6

4.15 Introduction to Windows Application Programming
Today, users demand software with rich graphical user interfaces (GUIs) that allow them
to click buttons, select items from menus and much more. In this chapter and the previous
one, we created console applications. However, the vast majority of Visual Basic programs
used in industry are Windows applications with GUIs. For this reason, we have chosen to
introduce Windows applications early in the book, although doing so exposes some con-
cepts that cannot be explained fully until later chapters.

In Chapter 2, Introduction to the Visual Studio .NET IDE, we introduced the concept
of visual programming, which allows programmers to create GUIs without writing any pro-
gram code. In this section, we combine visual programming with the conventional pro-
gramming techniques introduced in this chapter and Chapter 3, Introduction to Visual Basic

21             ' this loop prints one row of * characters
22             ' and is nested inside While in line 18
23             While column <= side
24                Console.Write("* ") ' print * character
25                column += 1         ' increment column
26             End While
27
28             Console.WriteLine() ' position cursor on next line
29             row += 1            ' increment row
30          End While
31
32       Else ' condition (side <= 20) is false
33          Console.WriteLine("Side too large")
34       End If
35
36    End Sub ' Main
37
38 End Module ' modPrintSquare

Enter side length (must be 20 or less): 8
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *

Fig. 4.20Fig. 4.20Fig. 4.20Fig. 4.20 Nested repetition structures used to print a square of *s (part 2 of 2).



128 Control Structures: Part 1 Chapter 4

Programming. Through this combination, we can enhance considerably the Windows
application introduced in Chapter 2. 

Before proceeding, load the project ASimpleProgram from Chapter 2 into the IDE,
and change the (Name) properties of the form, label and picture box to FrmASim-
pleProgram, lblWelcome and picBug, respectively. The modification of these
names enables us to identify easily the form and its controls in the program code. [Note: In
this section, we changed the file name from Form1.vb to ASimpleProgram.vb to
enhance clarity.]

Good Programming Practice 4.11
The prefixes Frm, lbl and pic allow forms, labels and picture boxes to be identified easily
in program code. 4.11

With visual programming, the IDE generates the program code that creates the GUI.
This code contains instructions for creating the form and every control on it. Unlike a con-
sole application, a Windows application’s program code is not displayed initially in the
editor window. Once the program’s project (e.g., ASimpleProgram) is opened in the
IDE, the program code can be viewed by selecting View > Code. Figure 4.21 shows the
code editor displaying the program code.

Notice that no module is present. Instead, Windows applications use classes. We
already have seen examples of classes such as Console and MessageBox, which are
defined within the .NET Framework Class Library. Like modules, classes are logical
groupings of procedures and data that simplify program organization. Modules are dis-
cussed in detail in Chapter 6, Procedures. In-depth coverage of classes is provided in
Chapter 8, Object-Based Programming.

Every Windows application consists of at least one class that Inherits from class
Form (which represents a form) in the .NET Framework Class Library’s
System.Windows.Forms namespace. The keyword Class begins a class definition
and is followed immediately by the class name (FrmASimpleProgram). Recall that
the form’s name is set using the (Name) property. Keyword Inherits indicates that
the class FrmASimpleProgram inherits existing pieces from another class. 

The class from which FrmASimpleProgram inherits—here, System.Win-
dows.Forms.Form—appears to the right of the Inherits keyword. In this inherit-
ance relationship, Form is called the superclass or base class, and
FrmASimpleProgram is called the subclass or derived class. The use of inheritance
results in a FrmASimpleProgram class definition that has the attributes (data) and
behaviors (methods) of class Form. We discuss the significance of the keyword Public
in Chapter 8, Object-Based Programming.

A key benefit of inheriting from class Form is that someone else has previously
defined “what it means to be a form.” The Windows operating system expects every
window (e.g., form) to have certain capabilities (attributes and behaviors). However,
because class Form already provides those capabilities, programmers do not need to
“reinvent the wheel” by defining all those capabilities themselves. In fact, class Form
has over 400 methods! In our programs up to this point, we have used only one method
(i.e., Main), so you can imagine how much work went into creating class Form. The use
of Inherits to extend from class Form enables programmers to create forms quickly
and easily.



Chapter 4 Control Structures: Part 1 129

In the editor window (Fig. 4.21), notice the text Windows Form Designer gen-
erated code, which is colored gray and has a plus box next to it. The plus box indicates
that this section of code is collapsed. Although collapsed code is not visible, it is still part
of the program. Code collapsing allows programmers to hide code in the editor, so that they
can focus on key code segments. Notice that the entire class definition also can be collapsed
by clicking the minus box to the left of Public. In Fig. 4.21, the description to the right
of the plus box indicates that the collapsed code was created by the Windows Form
Designer (i.e., the part of the IDE that creates the code for the GUI). This collapsed code
contains the code created by the IDE for the form and its controls, as well as code that
enables the program to run. Click the plus box to view the code.

Upon initial inspection, the expanded code (Fig. 4.22) appears complex.This code is
created by the IDE and normally is not edited by the programmer. We feel it is important
for novice programmers to see the code that is generated by the IDE, even though much of
the code is not explained until later in the book. This type of code is present in every Win-
dows application. Allowing the IDE to create this code saves the programmer considerable
development time. If the IDE did not provide the code, the programmer would have to write
it, and this would require a considerable amount of time. The vast majority of the code
shown has not been introduced yet, so you are not expected to understand how it works.
However, certain programming constructs, such as comments and control structures,
should be familiar. Our explanation of this code enable us to discuss visual programming
in greater detail. As you continue to study Visual Basic, especially in Chapters 8–13, the
purpose of this code will become clearer.

When we created this application in Chapter 2, we used the Properties window to set
properties for the form, label and picture box. Once a property was set, the form or control
was updated immediately. Forms and controls contain a set of default properties, which are
displayed initially in the Properties window when a form or control is selected. These
default properties provide the initial characteristics of a form or control when it is created.
When a control, such as a label, is placed on the form, the IDE adds code to the class (e.g.,
FrmASimpleProgram) that creates the control and that sets some of the control’s prop-
erty values, such as the name of the control and its location on the form. Figure 4.23 shows
a portion of the code generated by the IDE for setting the label’s (i.e., lblWelcome’s)
properties. These include the label’s Font, Location, Name, Text and TextAlign
properties. Recall from Chapter 2 that we explicitly set values for the label’s Name, Text
and TextAlign properties. Other properties, such as Location are set only when the
label is placed on the form.

Fig. 4.21Fig. 4.21Fig. 4.21Fig. 4.21 IDE showing program code for Fig. 2.15.

Collapsed
code



130 Control Structures: Part 1 Chapter 4

Fig. 4.22Fig. 4.22Fig. 4.22Fig. 4.22 Windows Form Designer generated code when expanded.

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Code generated by the IDE for lblWelcome.

Expanded code

Click here for 
code view

Click here for 
design view

Property initializations 
for lblWelcome



Chapter 4 Control Structures: Part 1 131

The values assigned to the properties are based on the values in the Properties
window. We now demonstrate how the IDE updates the Windows Form Designer gener-
ated code created when a property value in the Properties window changes. During this
process, we must switch between code view and design view. To switch views, select the
corresponding tabs—ASimpleProgram.vb for code view and ASimpleProgram.vb
[Design] for design view. Alternatively, the programmer can select View > Code or
View > Designer. Perform the following steps:

1. Modify the file name. First, change the name of the file from Form1.vb to
ASimpleProgram.vb by clicking the file name in the Solution Explorer
and changing the File Name property. 

2. Modify the label control’s Text property using the Properties window. Recall
that properties can be changed in design view by clicking a form or control to se-
lect it, then modifying the appropriate property in the Properties window.
Change the Text property of the label to “Deitel and Associates”
(Fig. 4.24).

3. Examine the changes in the code view. Switch to code view and examine the code.
Notice that the label’s Text property is now assigned the text that we entered in
the Properties window (Fig. 4.25). When a property is changed in design mode,
the Windows Form Designer updates the appropriate line of code in the class to
reflect the new value.

4. Modifying a property value in code view. In the code view editor, locate the three
lines of comments indicating the initialization for lblWelcome, and change the
String assigned to Me.lblWelcome.Text from “Deitel and Associ-
ates” to “Visual Basic .NET” (Fig. 4.26). Now, switch to design mode. The
label now displays the updated text, and the Properties window for lblWel-
come displays the new Text value (Fig. 4.27). [Note: Property values should not
be set using the techniques presented in this step. Here, we modify the property
value in the IDE generated code only as a demonstration of the relationship be-
tween program code and the Windows Form Designer.]

Fig. 4.24Fig. 4.24Fig. 4.24Fig. 4.24 Properties window used to set a property value.

Text property



132 Control Structures: Part 1 Chapter 4

Fig. 4.25Fig. 4.25Fig. 4.25Fig. 4.25 Windows Form Designer generated code reflecting new property values.

Fig. 4.26Fig. 4.26Fig. 4.26Fig. 4.26 Changing a property in the code view editor.

Fig. 4.27Fig. 4.27Fig. 4.27Fig. 4.27 New Text property value reflected in design mode.

Text
property

Text property

Text property value



Chapter 4 Control Structures: Part 1 133

5. Change the label’s Text property at runtime. In the previous steps, we set prop-
erties at design time. Often, however, it is necessary to modify a property while a
program is running. For example, to display the result of a calculation, a label’s
text can be assigned a String containing the result. In console applications, such
code is located in Main. In Windows applications, we must create a method that
executes when the form is loaded into memory during program execution. Like
Main, this method is invoked when the program is run. Double-clicking the form
in design view adds a method named FrmASimpleProgram_Load to the class
(Fig. 4.28). Notice that FrmASimpleProgram_Load is not part of the Win-
dows Form Designer generated code. Add the statement lblWelcome.Text =
"Visual Basic" in the body of the method definition (Fig. 4.28). In Visual Ba-
sic, properties are accessed by placing the property name (i.e., Text) after the
class name (i.e., lblWelcome), separated by the dot operator. This syntax is
similar to that used when accessing class methods. Notice that the IntelliSense fea-
ture displays the Text property in the member list after the class name and dot
operator have been typed (Fig. 4.29). In Chapter 8, Object-Based Programming,
we discuss how programmers can create their own properties.

6. Examine the results of the FrmASimpleProgram_Load method. Notice that
the text in the label looks the same in Design mode as it did in Fig. 4.27. Note
also that the Property window still displays the value “Visual Basic .NET”
as the label’s Text property. The IDE-generated code has not changed either. Se-
lect Build > Build Solution then Debug > Start to run the program. Once the
form is displayed, the text in the label reflects the property assignment in
FrmASimpleProgram_Load (Fig. 4.30). 

Fig. 4.28Fig. 4.28Fig. 4.28Fig. 4.28 Adding program code to FrmASimpleProgram_Load.

FrmASimpleProgram_Load method

Intellisense 
window with 
Text property 
highlighted



134 Control Structures: Part 1 Chapter 4

7. Terminate program execution. Click the close button to terminate program execu-
tion. Once again, notice that both the label and the label’s Text property contain
the text Visual Basic .NET. The IDE generated code also contains the text
Visual Basic .NET, which is assigned to the label’s Text property.

In this chapter, we introduced program building blocks called control structures. We
also discussed aspects of Windows application programming. In Chapter 5, Control Struc-
tures: Part 2, we continue our discussion of control structures by presenting additional
selection and repetition structures. In addition, we also build upon the Windows application
concepts presented in this chapter by creating a richer Windows application.

Fig. 4.29Fig. 4.29Fig. 4.29Fig. 4.29 Method FrmASimpleProgram_Load containing program code.

Fig. 4.30Fig. 4.30Fig. 4.30Fig. 4.30 Changing a property value at runtime.

Close button



Chapter 4 Control Structures: Part 1 135

SUMMARY
• Any computing problem can be solved by executing a series of actions in a specific order. 

• An algorithm is a procedure for solving a problem in terms of the actions to be executed and the
order in which these actions are to be executed.

• Program control refers to the task of ordering a program’s statements correctly.

• Pseudocode is an informal language that helps programmers develop algorithms and helps the pro-
grammer “think out” a program before attempting to write it in a programming language.

• A carefully prepared pseudocode program can be converted easily by a programmer to a corre-
sponding Visual Basic program.

• Normally, statements in a program are executed one after another in the order in which they are
written. This is called sequential execution.

• Various Visual Basic statements enable the programmer to specify that the next statement to be
executed might not be the next one in sequence. This is called a transfer of control.

• Many programming complications in the 1960s were a result of the GoTo statement, which al-
lows the programmer to specify a transfer of control to one of a wide range of possible destina-
tions in a program. The notion of structured programming became almost synonymous with
“GoTo elimination.”

• Bohm and Jacopini’s work demonstrated that all programs could be written in terms of only three
control structures—the sequence structure, the selection structure and the repetition structure.

• The sequence structure is built into Visual Basic. Unless directed to act otherwise, the computer
executes Visual Basic statements one after the other in the order in which they are written.

• A flowchart is a graphical representation of an algorithm or of a portion of an algorithm. Flow-
charts are drawn using certain special-purpose symbols, such as rectangles, diamonds, ovals and
small circles. These symbols are connected by arrows called flowlines, which indicate the order in
which the actions of the algorithm execute.

• The If/Then single-selection structure selects or ignores a single action (or a single group of ac-
tions) based on the truth or falsity of a condition.

• The If/Then/Else double-selection structure selects between two different actions (or groups
of actions) based on the truth or falsity of a condition.

• A multiple-selection structure selects among many different actions or groups of actions.

• Programs are formed by combining as many of each type of Visual Basic’s 11 control structures
as is appropriate for the algorithm the program implements.

• Single-entry/single-exit control structures make it easy to build programs.

• In control-structure stacking, the control structures are attached to one another by connecting the
exit point of one control structure to the entry point of the next.

• In control-structure nesting, one control structure is placed inside another. 

• Algorithms in Visual Basic programs are constructed from only 11 different types of control struc-
tures combined in only two ways.

• In the action/decision model of programming, control structure flowcharts contain (besides small
circle symbols and flowlines) only rectangle symbols to indicate actions and diamond symbols to
indicate decisions.

• The decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the condition in the symbol is true; the other indicates the direction to be taken when the con-
dition is false.



136 Control Structures: Part 1 Chapter 4

• Syntax errors are caught by the compiler. Logic errors affect the program only at execution time.
Fatal logic errors cause a program to fail and terminate prematurely. Nonfatal logic errors do not
terminate a program’s execution but cause the program to produce incorrect results.

• Nested If/Then/Else structures test for multiple conditions by placing If/Then/Else struc-
tures inside other If/Then/Else structures. 

• The While and Do While/Loop repetition structures allow the programmer to specify that an
action is to be repeated while a specific condition remains true.

• Eventually, the condition in a While or Do While/Loop structure becomes false. At this point,
the repetition terminates, and the first statement after the repetition structure executes.

• Failure to provide in the body of a While or Do While/Loop structure an action that eventually
causes the condition to become false is a logic error. Normally, such a repetition structure never
terminates, resulting in an error called an “infinite loop.”

• Statements in the body of a Do Until/Loop are executed repeatedly as long as the loop-contin-
uation test evaluates to false. 

• Failure to provide the body of a Do Until/Loop structure with an action that eventually causes
the condition in the Do Until/Loop to become true creates an infinite loop.

• Visual Basic provides the assignment operators +=, -=, *=, /=, \=, ^= and &= for abbreviating
assignment statements.

• In counter-controlled repetition, a counter is used to repeat a set of statements a certain number of
times. Counter-controlled repetition is also called definite repetition because the number of repe-
titions is known before the loop begins executing.

• A total is a variable used to calculate the sum of a series of values.

• It is important that variables used as totals and counters have appropriate initial values before they
are used. Counters usually are initialized to one. Totals generally are initialized to zero.

• Data types Double and Single store floating-point numbers. Data type Double requires more
memory to store a floating-point value, but is more accurate and generally more efficient than type
Single.

• In sentinel-controlled repetition, the number of repetitions is not known before the loop begins its
execution. Sentinel-controlled repetition uses a sentinel value (also called a signal value, dummy
value or flag value) to terminate repetition.

• We approach programming problems with top-down, stepwise refinement, a technique essential
to the development of well-structured algorithms.

• The top is a single statement that conveys the overall function of the program. As such, the top is
a complete representation of a program.

• Through the process of refinement, we divide the top into a series of smaller tasks that are listed
in the order in which they must be performed. Each refinement, including the top, is a complete
specification of the algorithm; only the level of detail in each refinement varies.

• Many algorithms can be divided logically into three phases: An initialization phase that initializes
the program variables, a processing phase that inputs data values and adjusts program variables
accordingly, and a termination phase that calculates and prints the results.

• The programmer terminates the top-down, stepwise refinement process when the pseudocode al-
gorithm is specified in sufficient detail for the pseudocode to be converted to a Visual Basic pro-
gram. The implementation of the Visual Basic program then occurs in a normal, straightforward
manner.

• The constants vbCrLf and vbTab represent the carriage return/linefeed character and the tab
character, respectively.



Chapter 4 Control Structures: Part 1 137

• With visual programming, the IDE actually generates program code that creates the GUI. This
code contains instructions for creating the form and every control on it.

• Windows application code is contained in a class. Like modules, classes are logical groupings of
procedures and data that simplify program organization.

• Using keyword Inherits to extend from class Form enables programmers to create forms
quickly, without “reinventing the wheel.” Every Windows application consists of at least one class
that Inherits from class Form in the System.Windows.Forms namespace.

• The region of collapsed code labelled Windows Form Designer generated code contains
the code created by the IDE for the form and its controls, as well as code that enables the program
to run.

• Forms and controls contain a set of default properties, which are displayed initially in the Prop-
erties window when a form or control is selected. These default properties provide the initial
characteristics a form or control has when it is created.

• When a change is made in design mode, such as changing a property value, the Windows Form
Designer creates code that implements the change.

• Often it is necessary to modify a property while a program is running. In Windows applications,
such code is placed in a procedure that executes when the form is loaded, which can be created by
double-clicking the form in design view.

• In Visual Basic, properties are accessed by placing the property name (e.g., Text) after the class
name (e.g., lblWelcome), separated by the dot operator.

TERMINOLOGY
&= (string concatenation assignment operator) declaration 
*= (multiplication assignment operator) default property
+= (addition assignment operator) definite repetition 
/= (division assignment operator) diamond symbol 
= (assignment operator) division by zero 
-= (subtraction assignment operator) Do While/Loop repetition structure 
\= (Integer division assignment operator) Do Until/Loop repetition structure 
^= (exponentiation assignment operator) Double primitive data type 
action symbol double-selection structure
action/decision model of programming Else keyword 
algorithm ElseIf keyword
attribute end of data entry 
behavior entry point of control structure 
body of a While exit point of control structure 
building block expanded code 
collapsed code first refinement 
complete representation of a program flag value 
conditional expression floating-point division 
connector symbol floating-point number 
constant flow of control 
control structure flowchart 
control-structure nesting flowline 
control-structure stacking fractional result 
counter GoTo elimination 
counter-controlled repetition “GoTo-less programming” 
decision symbol graphical representation of an algorithm 



138 Control Structures: Part 1 Chapter 4

SELF-REVIEW EXERCISES
4.1 Answer each of the following questions.

a) All programs can be written in terms of three types of control structures: ,
 and .

b) The  selection structure executes one action (or sequence of actions) when a
condition is true and another action (or sequence of actions) when a condition is false.

c) Repetition of a set of instructions a specific number of times is called  repe-
tition.

d) When it is not known in advance how many times a set of statements will be repeated, a
 value can be used to terminate the repetition.

e) Specifying the order in which statements are to be executed in a computer program is
called program .

f)  is an artificial and informal language that helps programmers develop algo-
rithms.

g)  are reserved by Visual Basic to implement various features, such as the lan-
guage’s control structures. 

h) The  selection structure is called a multiple-selection structure because it se-
lects among many different actions (or sequence of actions). 

4.2 State whether each of the following is true or false. If false, explain why.
a) It is difficult to convert pseudocode into a Visual Basic program. 
b) Sequential execution refers to statements in a program that execute one after another. 

If/Then selection structure real number 
If/Then/Else selection structure rectangle symbol 
indefinite repetition refinement process 
infinite loop repetition control structure 
inheriting from unary operator 

System.Windows.Forms.Form class While repetition structure 
initialization at the beginning of each repetition whitespace character
initialization phase Windows Form Designer
initialize second refinement 
input/output operation selection control structure
Integer primitive data type sentinel-controlled repetition 
level of refinement sentinel value 
logic error sequence control structure 
loop sequential execution 
looping process signal value 
multiple-selection structure Single primitive data type
multiplicative operators: *, /, \ and Mod single-entry/single-exit control structure 
nested loop single-selection structure 
nonfatal logic error String data type 
oval symbol structured programming 
primitive (or built-in) data type syntax error 
procedure for solving a problem System.Windows.Forms.Form class 
processing phase termination phase 
program control top 
pseudocode top-down, stepwise refinement 
pseudocode algorithm transfer of control 
pseudocode statement



Chapter 4 Control Structures: Part 1 139

c) It is recommended that Visual Basic programmers use the GoTo statement for program
control.

d) The If/Then structure is called a single-selection structure. 
e) Structured programs are clear, easy to debug, modify and more likely than unstructured

programs to be bug-free in the first place. 
f) The sequence structure is not built into Visual Basic. 
g) Pseudocode closely resembles actual Visual Basic code. 
h) The While structure is terminated with keywords End While.

4.3 Write two different Visual Basic statements that each add 1 to Integer variable number.

4.4 Write a statement or a set of statements to accomplish each of the following:
a) Sum the odd Integers between 1 and 99 using a While structure. Assume that vari-

ables sum and count have been declared explicitly as Integers.
b) Sum the squares of even numbers between 1 and 15 using a Do While/Loop repetition

structure. Assume that the Integer variables sum and count have been declared and
initialized to 0 and 2, respectively.

c) Print the numbers from 20 to 1 in a MessageBox using a Do Until/Loop and In-
teger counter variable counterIndex. The MessageBox should display one num-
ber at a time. Assume that the variable counterIndex is initialized to 20.

d) Repeat Exercise 4.4 (c) using a Do While/Loop structure.

4.5 Write a Visual Basic statement to accomplish each of the following tasks:
a) Declare variables sum and number to be of type Integer.
b) Assign 1 to variable number.
c) Assign 0 to variable sum.
d) Total variables number and sum, and assign the result to variable sum.
e) Print "The sum is: " followed by the value of variable sum.

4.6 Combine the statements that you wrote in Exercise 4.5 into a program that calculates and
prints the sum of the Integers from 1 to 10. Use the While structure to loop through the cal-
culation and increment statements. The loop should terminate when the value of control variable
number becomes 11.

4.7 Identify and correct the error(s) in each of the following (you may need to add code):
a) Assume that value has been initialized to 50. The values from 0 to 50 should be

summed.

   While value >= 0
      sum += value
   End While

b) This segment should read an unspecified number of values from the user and sum them.
Assume that number and total are declared as Integers.

   total = 0

Do Until number = -1
      Console.Write("Enter a value ")
      number = Console.ReadLine()
               total += number
        Loop

   Console.WriteLine(total)



140 Control Structures: Part 1 Chapter 4

c) The following code should print the squares of 1 to 10 in a MessageBox.

Dim number As Integer = 1

Do While number < 10
      MessageBox.Show(number ^ 2)

While End
    

d) This segment should print the values from 888 to 1000. Assume value to be declared
as an Integer.

   value = 888

While value <= 1000
      value -= 1

End While

4.8 State whether each of the following are true or false. If the answer is false, explain why.
a) Pseudocode is a structured programming language.
b) The body of a Do While/Loop is executed only if the loop continuation test is false.
c) The body of a While is executed only if the loop continuation test is false.
d) The body of a Do Until/Loop is executed only if the loop continuation test is false.

ANSWERS TO SELF-REVIEW EXERCISES
4.1 a) sequence, selection, repetition. b) If/Then/Else. c) counter-controlled or
definite. d) sentinel, signal, flag or dummy. e) control. f) pseudocode. g) keywords. h)
Select Case.

4.2 a) False. Pseudocode should convert easily into Visual Basic code. b) True. c) False.
Some programmers argue that GoTo statements violate structured programming and cause consider-
able problems. d) True. e) True. f) False. The sequence structure is built into Visual Basic; lines
of code execute in the order in which they are written, unless explicitly directed to do otherwise. g)
True. h) True.

4.3 number = number + 1
number += 1

4.4
a) count = 1

sum = 0

While count <= 99
   sum += count
   count += 2
End While

b) Do While count <= 15
   sum += count ^ 2
   count += 2
Loop



Chapter 4 Control Structures: Part 1 141

c) Do Until counterIndex < 1
   MessageBox.Show(counterIndex)
   counterIndex -= 1
Loop

d) Do While counterIndex >= 1
   MessageBox.Show(counterIndex)
   counterIndex -= 1
Loop

4.5 a) Dim sum, number As Integer
b) number = 1
c) sum = 0
d) sum += number or sum = sum + number
e) Console.WriteLine("The sum is: " & sum) or

Console.WriteLine("The sum is: {0}", sum)

4.6

4.7 a) Error: Repetition condition may never become false, resulting in an infinite loop.
        While value >= 0
           sum += value
             value -= 1
         End While

b) Error: The sentinel value (-1) is added to total producing an incorrect sum.
total = 0
Console.Write("Enter a value")
number = Console.ReadLine()

Do Until number = -1
   total += number
   Console.WriteLine("Enter a value")
   number = Console.ReadLine()
Loop

Console.WriteLine(total)

1 ' Ex. 4.6: Calculate.vb
2 ' Calculates the sum of the integers from 1 to 10.
3
4 Module modCalculate
5
6 Sub Main()
7       Dim sum = 0, number As Integer = 1
8
9       While number <= 10

10          sum += number
11          number += 1
12       End While
13
14       Console.WriteLine("The sum is: " & sum)
15 End Sub ' Main
16
17 End Module ' modCalculate



142 Control Structures: Part 1 Chapter 4

c) Errors: The counter is never incremented, resulting in an infinite loop. The repetition con-
dition uses the wrong comparison operator. Keywords While End are used instead of
keyword Loop.
Dim number As Integer = 1

Do While number <= 10
MessageBox.Show(number ^ 2)
number += 1

Loop
d) Error: The values are never printed and are decremented instead of incremented.

value = 888

While value <= 1000
Console.WriteLine(value)

   value += 1
End While

4.8 a)   False. Pseudocode is not a programming language.
b) False. The loop condition must evaluate to true for the body to be executed.
c) False. The loop condition must evaluate to true for the body to be executed.
d) True.

EXERCISES
4.9 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. De-
velop a program that inputs the miles driven and gallons used (both as Doubles) for each tankful.
The program should calculate and display the miles per gallon obtained for each tankful and print the
combined miles per gallon obtained for all tankfuls. All average calculations should produce floating-
point results.

4.10 Develop a program that determines if a department store customer has exceeded the credit
limit on a charge account. For each customer, the following facts are available:

a) Account number 
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The program should input as Integers each of these facts, calculate the new balance (=
beginning balance + charges – credits), display the new balance and determine if the new balance
exceeds the customer's credit limit. For those customers whose credit limit is exceeded, the program
should display the message, “Credit limit exceeded.”

4.11 A palindrome is a number or a text phrase that reads the same backwards as forwards. For
example, each of the following five-digit Integers are palindromes: 12321, 55555, 45554 and
11611. Write an application that reads in a five-digit Integer and determines whether it is a palin-
drome. [Hint: Check if 1st digit equals 5th, 2nd digit equals 4th.]

4.12 A company wants to transmit data over the telephone, but they are concerned that their
phones may be tapped. All their data is transmitted as four-digit Integers. They have asked you to
write a program that encrypts their data so that it may be transmitted more securely. Your program
should read a four-digit Integer entered by the user and encrypt it as follows: Replace each digit



Chapter 4 Control Structures: Part 1 143

by (the sum of that digit plus 7) modulo 10. Then swap the first digit with the third, and swap the sec-
ond digit with the fourth. Print the encrypted Integer. Write a separate program that inputs an en-
crypted four-digit Integer and decrypts it to form the original number.

4.13 The factorial of a nonnegative Integer n is written n! (pronounced “n factorial”) and is de-
fined as follows:

n! = n · (n - 1) · (n - 2) · …· 1   (for values of n greater than or equal to 1)
and

n! = 1   (for n = 0).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120. 

a) Write an application that reads a nonnegative Integer from an input dialog and com-
putes and prints its factorial.

b) Write an application that estimates the value of the mathematical constant e by using the
formula

c) Write an application that computes the value of ex by using the formula: 

4.14 Modify the program in Fig. 4.18 to process the four Strings: "P", "p", "F" and "f". If
any other String input is encountered, a message should be displayed informing the user of invalid
input. Only increment the loop’s counter if one of the four previously mentioned Strings is input.

4.15 Modify the program in Fig. 4.20 to test if the value input for the side is less than 1. [Hint:
This requires that another If/Then structure be added to the code.] 

4.16 Write a program that uses looping to print the following table of values:

[Hint: Use vbTab to separate the columns of output.]

e 1 1
1!
----- 1

2!
----- 1

3!
----- …+ + + +=

e
x 1 x

1!
----- x2

2!
----- x3

3!
----- …+ + + +=

N       10*N    100*N   1000*N 

1       10      100     1000
2       20      200     2000
3       30      300     3000
4       40      400     4000
5       50      500     5000



5
Control Structures: 

Part 2

Objectives
• To be able to use the For/Next, Do/Loop While

and Do/Loop Until repetition structures to execute 
statements in a program repeatedly.

• To understand multiple selection using the Select
Case selection structure.

• To be able to use the Exit Do and Exit For
program control statements.

• To be able to use logical operators.
• To be able to form more complex conditions.
Who can control his fate?
William Shakespeare, Othello

The used key is always bright.
Benjamin Franklin

Man is a tool-making animal.
Benjamin Franklin

Intelligence... is the faculty of making artificial objects, 
especially tools to make tools.
Henri Bergson



Chapter 5 Control Structures: Part 2 145

Henri Bergson

5.1 Introduction
Before writing a program to solve a particular problem, it is essential to have a thorough
understanding of the problem and a carefully planned approach to solving it. It is equally
essential to understand the types of building blocks available and to employ proven pro-
gram-construction principles. In this chapter, we discuss these issues in conjunction with
our presentation of the theory and principles of structured programming. The techniques
we explore are applicable to most high-level languages, including Visual Basic. In Chap-
ter 8, Object-Based Programming, we show how the control structures we present in this
chapter are useful in the construction and manipulation of objects.

5.2 Essentials of Counter-Controlled Repetition
In the last chapter, we introduced the concept of counter-controlled repetition. In this sec-
tion, we formalize the elements needed in counter-controlled repetition, namely:

1. The name of a control variable (or loop counter) that is used to determine whether
the loop continues to iterate.

2. The initial value of the control variable.

3. The increment (or decrement) by which the control variable is modified during
each iteration of the loop, or each time the loop is performed).

4. The condition that tests for the final value of the control variable (i.e., whether
looping should continue).

The example in Fig. 5.1 uses the four elements of counter-controlled repetition to dis-
play the even digits from 2–10.

The declaration in line 8 names the control variable (counter), indicates that it is of
data type Integer, reserves space for it in memory and sets it to an initial value of 2. This

Outline

5.1 Introduction
5.2 Essentials of Counter-Controlled Repetition

5.3 For/Next Repetition Structure

5.4 Examples Using the For/Next Structure

5.5 Select Case Multiple-Selection Structure

5.6 Do/Loop While Repetition Structure

5.7 Do/Loop Until Repetition Structure

5.8 Using the Exit Keyword in a Repetition Structure
5.9 Logical Operators
5.10 Structured Programming Summary

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



146 Control Structures: Part 2 Chapter 5

declaration includes an initialization. The initialization portion of this statement is execut-
able, and, therefore, the statement itself also is executable.

Consider the While structure (lines 10–13). Line 11 displays the current value of
counter, and line 12 increments the control variable by 2 upon each iteration of the loop.
The loop-continuation condition in the While structure (line 10) tests whether the value
of the control variable is less than or equal to 10, meaning that 10 is the final value for
which the condition is true. The body of this While is performed even when the control
variable is 10. The loop terminates when the control variable exceeds 10 (i.e., when
counter becomes 12 because the loop is incrementing each time by 2).

5.3 For/Next Repetition Structure
The For/Next repetition structure handles the details of counter-controlled repetition. To
illustrate the power of For/Next, we now rewrite the program in Fig. 5.1. The result is
displayed in Fig. 5.2.

1 ' Fig. 5.1: WhileCounter.vb
2 ' Using the While structure to demonstrate counter-controlled 
3 ' repetition.
4
5 Module modWhileCounter
6
7   Sub Main()
8       Dim counter As Integer = 2 ' initialization
9

10       While counter <= 10 ' repetition condition
11          Console.Write(counter & " ")
12          counter += 2 ' increment counter
13       End While
14
15   End Sub ' Main
16
17 End Module ' modWhileCounter

2 4 6 8 10

Fig. 5.1Fig. 5.1Fig. 5.1Fig. 5.1 Counter-controlled repetition with the While structure.

1 ' Fig. 5.2: ForCounter.vb
2 ' Using the For/Next structure to demonstrate counter-controlled 
3 ' repetition.
4
5 Module modForCounter
6
7  Sub Main()
8       Dim counter As Integer
9

Fig. 5.2Fig. 5.2Fig. 5.2Fig. 5.2 Counter-controlled repetition with the For/Next structure (part 1 of 2).



Chapter 5 Control Structures: Part 2 147

Good Programming Practice 5.1
Place a blank line before and after each control structure to make it stand out in the program. 5.1

Good Programming Practice 5.2
Vertical spacing above and below control structures, as well as indentation of the bodies of
control structures, gives programs a two-dimensional appearance that enhances readability. 5.2

The Main procedure of the program operates as follows: When the For/Next struc-
ture (lines 12–14) begins its execution, the control variable counter is initialized to 2,
thus addressing the first two elements of counter-controlled repetition—control variable
name and initial value. Next, the implied loop-continuation condition counter <= 10 is
tested. The To keyword is required in the For/Next structure. The optional Step keyword
specifies the increment (i.e., the amount that is added to counter each time the For/
Next body is executed). The increment of a For/Next structure could be negative, in
which case it is a decrement, and the loop actually counts downwards. If Step and the
value following it are omitted, the increment defaults to 1. Programmers typically omit the
Step portion for increments of 1.

Because, the initial value of counter is 2, the implied condition is satisfied (i.e.,
True), and the counter’s value 2 is output in line 13. The required Next keyword
marks the end of the For/Next repetition structure. When the Next keyword is reached,
variable counter is incremented by the specified value of 2, and the loop begins again
with the loop-continuation test.

At this point, the control variable is equal to 4. This value does not exceed the final value,
so the program performs the body statement again. This process continues until the counter
value of 10 has been printed and the control variable counter is incremented to 12, causing
the loop-continuation test to fail and repetition to terminate. The program continues by per-
forming the first statement after the For/Next structure. (In this case, procedure Main ter-
minates, because the program reaches the End Sub statement on line 16.)

Testing and Debugging Tip 5.1
Use a For/Next loop for counter-controlled repetition. Off-by-one errors (which occur
when a loop is executed for one more or one less iteration than is necessary) tend to disap-
pear, because the terminating value is not ambiguous. 5.1

10       ' initialization, repetition condition and
11       ' incrementing are all included in For structure
12       For counter = 2 To 10 Step 2
13          Console.Write(counter & " ")
14       Next
15
16 End Sub ' Main
17
18 End Module ' modForCounter

2 4 6 8 10

Fig. 5.2Fig. 5.2Fig. 5.2Fig. 5.2 Counter-controlled repetition with the For/Next structure (part 2 of 2).



148 Control Structures: Part 2 Chapter 5

Figure 5.3 takes a closer look at the For/Next structure from Fig. 5.2. The first line
of the For/Next structure sometimes is called the For/Next header. Notice that the For/
Next header specifies each of the items needed to conduct counter-controlled repetition
with a control variable.

Common Programming Error 5.1
Counter-controlled loops should not be controlled with floating-point variables. Floating-
point values are represented only approximately in the computer’s memory, often resulting
in imprecise counter values and inaccurate tests for termination. 5.1

In many cases, the For/Next structure can be represented with another repetition
structure. For example, an equivalent While structure would be of the form

variable = start

While variable <= end
   statement
   variable += increment
End While

For example, lines 8–13 of Fig. 5.1 are equivalent to lines 8–14 of Fig. 5.2.
The starting value, ending value and increment portions of a For/Next structure can

contain arithmetic expressions. The expressions are evaluated once (when the For/Next
structure begins executing) and used as the starting value, ending value and increment of
the For/Next header. For example, assume that value1 = 2 and value2 = 10. The
header

For j = value1 To 4 * value1 * value2 Step value2 \ value1

is equivalent to the header

For j = 2 To 80 Step 5

If the loop-continuation condition is initially false (e.g., if the starting value is greater
than the ending value and the increment is positive), the For/Next’s body is not per-
formed. Instead, execution proceeds with the statement after the For/Next structure.

The control variable frequently is printed or used in calculations in the For/Next
body, but it does not have to be. It is common to use the control variable exclusively to con-
trol repetition and never mention it in the For/Next body.

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 For/Next header components.

Initial value
of control 
variable

Increment of 
control variable

Control 
variable name

Final value 
of control 
variable

For
keyword

To
keyword

Step
keyword

For counter = 2 To 10 Step 2



Chapter 5 Control Structures: Part 2 149

Testing and Debugging Tip 5.2
Although the value of the control variable can be changed in the body of a For/Next loop,
avoid doing so, because this practice can lead to subtle errors. 5.2

Common Programming Error 5.2
In nested For/Next loops, the use of the same control-variable name in more than one loop
is a syntax error. 5.2

The flowchart for the For/Next structure is similar to that of the While structure.
For example, the flowchart of the For/Next structure

For counter = 1 To 10
   Console.WriteLine(counter * 10)
Next

is shown in Fig. 5.4. This flowchart clarifies that the initialization occurs only once and that
incrementing occurs after each execution of the body statement. Note that, besides small
circles and flowlines, the flowchart contains only rectangle symbols and a diamond sym-
bol. The rectangle symbols and diamond symbol are filled with actions and decisions that
are appropriate to the algorithm the programmer is implementing.

5.4 Examples Using the For/Next Structure
The following examples demonstrate different ways of varying the control variable in a
For/Next structure. In each case, we write the appropriate For/Next header.

a) Vary the control variable from 1 to 100 in increments of 1.

For i = 1 To 100 or For i = 1 To 100 Step 1

b) Vary the control variable from 100 to 1 in increments of -1 (decrements of 1).

For i = 100 To 1 Step -1

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 For/Next repetition structure flowchart.

counter += 1
(implicit)

Establish initial value
of control variable.

Determine if final
value of control

variable has
been reached.

counter <= 10
(implicit)

Console.WriteLine( 
counter * 10)

counter = 1

Body of loop 
(this can be multiple 

statements)

Increment
the control 
variable.

true

false



150 Control Structures: Part 2 Chapter 5

c) Vary the control variable from 7 to 77 in increments of 7.

For i = 7 To 77 Step 7

d) Vary the control variable from 20 to 2 in increments of -2 (decrements of 2).

For i = 20 To 2 Step -2

e) Vary the control variable over the sequence of the following values: 2, 5, 8, 11,
14, 17, 20.

For i = 2 To 20 Step 3

f) Vary the control variable over the sequence of the following values: 99, 88, 77,
66, 55, 44, 33, 22, 11, 0.

For i = 99 To 0 Step -11

The next two examples demonstrate simple applications of the For/Next repetition
structure. The program in Fig. 5.5 uses the For/Next structure to sum the even integers
from 2 to 100. Remember that the use of the MessageBox class requires the addition of
a reference to System.Windows.Forms.dll, as explained in Section 3.7.

1 ' Fig. 5.5: Sum.vb
2 ' Using For/Next structure to demonstrate summation.
3
4 Imports System.Windows.Forms
5
6 Module modSum
7
8  Sub Main()
9       Dim sum = 0, number As Integer

10
11       ' add even numbers from 2 to 100
12       For number = 2 To 100 Step 2
13          sum += number
14       Next
15
16       MessageBox.Show("The sum is " & sum, _
17          "Sum even integers from 2 to 100", _
18          MessageBoxButtons.OK, MessageBoxIcon.Information)
19
20  End Sub ' Main
21
22 End Module ' modSum

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 For/Next structure used for summation.

MessageBoxButton.OK

Title bar textMessageBoxIcon.Information

Message text



Chapter 5 Control Structures: Part 2 151

The version of method MessageBox.Show called in Fig. 5.5 (lines 16–18) is dif-
ferent from the version discussed in earlier examples in that it takes four arguments instead
of two. The dialog shown at the bottom of Fig. 5.5 is labelled to emphasize the four argu-
ments. The first two arguments are Strings displayed in the dialog and the dialog’s title
bar, respectively. The third and fourth arguments are constants representing buttons and
icons. The third argument indicates which button(s) to display, and the fourth argument
indicates an icon that appears to the left of the message. The MSDN documentation pro-
vided with Visual Studio includes the complete listing of MessageBoxButtons and
MessageBoxIcon constants. Message dialog icons are described in Fig. 5.6; message
dialog buttons are described in Fig. 5.7, including how to display multiple buttons. 

MessageBoxIcon Constants Icon Description

MessageBoxIcon.Exclamation Icon containing an exclamation point. 
Typically used to caution the user 
against potential problems.

MessageBoxIcon.Information Icon containing the letter “i.” Typically 
used to display information about the 
state of the application.

MessageBoxIcon.Question Icon containing a question mark. Typi-
cally used to ask the user a question.

MessageBoxIcon.Error Icon containing an × in a red circle. 
Typically used to alert the user of errors 
or critical situations.

Fig. 5.6Fig. 5.6Fig. 5.6Fig. 5.6 Message dialog icon constants.

MessageBoxButton constants Description

MessageBoxButtons.OK OK button. Allows the user to acknowledge 
a message. Included by default.

MessageBoxButtons.OKCancel OK and Cancel buttons. Allow the user to 
either continue or cancel an operation.

MessageBoxButtons.YesNo Yes and No buttons. Allow the user to 
respond to a question.

MessageBoxButtons.YesNoCancel Yes, No and Cancel buttons. Allow the 
user to respond to a question or cancel an 
operation.

MessageBoxButtons.RetryCancel Retry and Cancel buttons. Typically used 
to allow the user to either retry or cancel an 
operation that has failed.

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 Message dialog button constants (part 1 of 2).



152 Control Structures: Part 2 Chapter 5

The next example computes compound interest using the For/Next structure. Con-
sider the following problem statement: 

A person invests $1000.00 in a savings account that yields 5% interest. Assuming that all
interest is left on deposit, calculate and print the amount of money in the account at the end
of each year over a period of 10 years. To determine these amounts, use the following for-
mula:

a = p (1 + r) n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., .05 stands for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the 10
years that the money remains on deposit. The solution is shown in Fig. 5.8.

Line 9 declares two Decimal variables. Type Decimal is used for monetary calcu-
lations. Line 10 declares rate as type Double and lines 14–15 initialize principal to
1000.00 and rate to 0.05, (i.e., 5%).

MessageBoxButtons.AbortRetryIgnore Abort, Retry and Ignore buttons. When 
one of a series of operations has failed, these 
buttons allow the user to abort the entire 
sequence, retry the failed operation or ignore 
the failed operation and continue.

MessageBoxButton constants Description

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 Message dialog button constants (part 2 of 2).

1 ' Fig. 5.8: Interest.vb
2 ' Calculating compound interest.
3
4 Imports System.Windows.Forms
5
6 Module modInterest
7
8  Sub Main()
9       Dim amount, principal As Decimal ' dollar amounts

10       Dim rate As Double               ' interest rate
11       Dim year As Integer              ' year counter
12       Dim output As String             ' amount after each year
13
14       principal = 1000.00
15       rate = 0.05
16
17       output = "Year" & vbTab & "Amount on deposit" & vbCrLf
18

Fig. 5.8Fig. 5.8Fig. 5.8Fig. 5.8 For/Next structure used to calculate compound interest (part 1 of 2).



Chapter 5 Control Structures: Part 2 153

The For/Next structure executes its body 10 times, varying control variable year
from 1 to 10 in increments of 1. Line 21 performs the calculation from the problem state-
ment

a = p (1 + r) n

where a is amount, p is principal, r is rate and n is year.
Lines 22–23 append additional text to the end of String output. The text includes

the current year value, a tab character (vbTab) to position to the second column, the
result of the method call String.Format("{0:C}", amount) and, finally, a newline
character (vbCrLf) to start the next output on the next line. The first argument passed to
Format is the format string. We have seen Strings containing {0}, {1} and so on,
where the digit within the braces indicates the argument being displayed. In Chapter 4, we
used a more complicated format string to print a floating-point number with two digits after
the decimal. In these more complicated format strings, such as "{0:C}", the first digit (0)
serves the same purpose. The information specified after the colon (:) is called the format-
ting code. The C (for “currency”) formatting code indicates that its corresponding argument
(amount) should be displayed in monetary format. Figure 5.9 shows several formatting
codes; a complete list can be found in the MSDN documentation “Standard Numeric
Format Strings.” All formatting codes are case insensitive. Note that format codes D and X
can be used only with integer values.

19       ' calculate amount after each year
20       For year = 1 To 10
21          amount = principal * (1 + rate) ^ year
22          output &= year & vbTab & _
23             String.Format("{0:C}", amount) & vbCrLf
24   Next
25
26       ' display output
27       MessageBox.Show(output, "Compound Interest", _
28          MessageBoxButtons.OK, MessageBoxIcon.Information)
29
30  End Sub ' Main
31
32 End Module ' modInterest

Fig. 5.8Fig. 5.8Fig. 5.8Fig. 5.8 For/Next structure used to calculate compound interest (part 2 of 2).



154 Control Structures: Part 2 Chapter 5

Variables amount and principal are of type Decimal. We do this because we
are dealing with fractional parts of dollars and need a type that allows precise calculations
with monetary amounts—Single and Double do not. Using floating-point data types,
such as Single or Double, to represent dollar amounts (assuming that dollar amounts
are displayed with two digits to the right of the decimal point) can cause errors. For
example, two Double dollar amounts stored in the machine could be 14.234 (normally
rounded to 14.23) and 18.673 (normally rounded to 18.67). When these amounts are added
together, they produce the internal sum 32.907, which normally rounds to 32.91. Thus, the
printout could appear as

  14.23
+ 18.67
———————
  32.91

but a person adding the individual numbers as printed would expect the sum 32.90. There-
fore, it is inappropriate to use Single or Double for dollar amounts.

Good Programming Practice 5.3
Do not use variables of type Single or Double to perform precise monetary calculations.
The imprecision of floating-point numbers can cause errors that result in incorrect monetary
values. Use the data type Decimal for monetary calculations. 5.3

Variable rate is of type Double because it is used in the calculation 1.0 + rate,
which appears as the right operand of the exponentiation operator. In fact, this calculation
produces the same result each time through the loop, so performing the calculation in the
body of the For/Next loop is wasteful.

Format Code Description

C Currency. Precedes the number with $, separates every three digits with 
commas and sets the number of decimal places to two.

E Scientific notation. Displays one digit to the left of the decimal and six dig-
its to the right of the decimal, followed by the character E and a three-digit 
integer representing the exponent of a power of 10. For example, 956.2 is 
formatted as 9.562000E+002.

F Fixed point. Sets the number of decimal places to two.

G General. Visual Basic chooses either E or F for you, depending on which 
representation generates a shorter string.

D Decimal integer. Displays an integer as a whole number in standard base-10 
format.

N Number. Separates every three digits with a comma and sets the number of 
decimal places to two.

X Hexadecimal integer. Displays the integer in hexadecimal (base-16) 
notation. We discuss hexadecimal notation in Appendix B.

Fig. 5.9Fig. 5.9Fig. 5.9Fig. 5.9 Formatting codes for Strings.



Chapter 5 Control Structures: Part 2 155

Performance Tip 5.1
Avoid placing inside a loop the calculation of an expression whose value does not change
each time through the loop. Such an expression should be evaluated only once and prior to
the loop. 5.1

5.5 Select Case Multiple-Selection Structure
In the last chapter, we discussed the If/Then single-selection structure and the If/Then/
Else double-selection structure. Occasionally, an algorithm contains a series of decisions
in which the algorithm tests a variable or expression separately for each value that the vari-
able or expression might assume. The algorithm then takes different actions based on those
values. Visual Basic provides the Select Case multiple-selection structure to handle
such decision making. The program in Fig. 5.10 uses a Select Case to count the number
of different letter grades on an exam. Assume the exam is graded as follows: 90 and above
is an A, 80–89 is a B, 70–79 is a C, 60–69 is a D and 0–59 is an F. This “generous” instruc-
tor gives a minimum grade of 10 for students who were present for the exam. Students not
present for the exam receive a 0.

Line 7 in Fig. 5.10 declares variable grade as type Integer. This variable stores
each grade that is input. Lines 8–12 declare variables that store the total number grades of
each type. Lines 18–57 use a While loop for sentinel-controlled repetition.

Line 20

Select Case grade

begins the Select Case structure. The expression following the keywords Select
Case is called the controlling expression. The controlling expression (i.e., the value of
grade) is compared sequentially with each Case. If a matching Case is found, the code
in the Case executes, then program control proceeds to the first statement after the Se-
lect Case structure (line 55).
   Common Programming Error 5.3

Duplicate Case statements are logic errors. At run time, the first matching Case is executed. 5.3

1 ' Fig. 5.10: SelectTest.vb
2 ' Using the Select Case structure.
3
4 Module modEnterGrades
5
6 Sub Main()
7       Dim grade As Integer = 0 ' one grade
8       Dim aCount As Integer = 0 ' number of As
9       Dim bCount As Integer = 0 ' number of Bs

10       Dim cCount As Integer = 0 ' number of Cs
11       Dim dCount As Integer = 0 ' number of Ds
12       Dim fCount As Integer = 0 ' number of Fs
13
14       Console.Write("Enter a grade, -1 to quit: ")
15       grade = Console.ReadLine()

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 Select Case structure used to count grades (part 1 of 3).



156 Control Structures: Part 2 Chapter 5

16
17   ' input and process grades
18       While grade <> -1
19
20          Select Case grade    ' check which grade was input
21
22             Case 100          ' student scored 100
23                Console.WriteLine("Perfect Score!" & vbCrLf & _
24                   "Letter grade: A" & vbCrLf)
25                aCount += 1
26
27             Case 90 To 99   ' student scored 90-99
28                Console.WriteLine("Letter Grade: A" & vbCrLf)
29                aCount += 1
30
31             Case 80 To 89  ' student scored 80-89
32                Console.WriteLine("Letter Grade: B" & vbCrLf)
33                bCount += 1
34
35             Case 70 To 79  ' student scored 70-79
36                Console.WriteLine("Letter Grade: C" & vbCrLf)
37                cCount += 1
38
39             Case 60 To 69     ' student scored 60-69
40                Console.WriteLine("Letter Grade: D" & vbCrLf)
41                dCount += 1
42
43             ' student scored 0 or 10-59 (10 points for attendance)
44             Case 0, 10 To 59
45                Console.WriteLine("Letter Grade: F" & vbCrLf)
46                fCount += 1
47
48             Case Else
49
50                ' alert user that invalid grade was entered
51                Console.WriteLine("Invalid Input. " & _
52                   "Please enter a valid grade." & vbCrLf)
53          End Select
54
55          Console.Write("Enter a grade, -1 to quit: ")
56          grade = Console.ReadLine()
57       End While
58
59       ' display count of each letter grade
60       Console.WriteLine(vbCrLf & _
61          "Totals for each letter grade are: " & vbCrLf & _
62          "A: " & aCount & vbCrLf & "B: " & bCount _
63          & vbCrLf & "C: " & cCount & vbCrLf & "D: " & _
64          dCount & vbCrLf & "F: " & fCount)
65
66 End Sub ' Main
67
68 End Module ' modEnterGrades

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 Select Case structure used to count grades (part 2 of 3).



Chapter 5 Control Structures: Part 2 157

The first Case statement (line 22) determines if the value of grade is exactly equal to
100. The next Case statement (line 27) determines if grade is between 90 and 99 inclu-
sive. Keyword To specifies the range. Lines 31–44 use this keyword to present a series of
similar Cases.
   Common Programming Error 5.4

If the value on the left side of the To keyword in a Case statement is larger than the value
on the right side, the Case is ignored during program execution, potentially causing a logic
error. 5.4

When multiple values are tested in a Case statement, they are separated by commas
(line 44). Either 0 or any value in the range 10 to 59, inclusive matches this Case. Line
48 contains the optional Case Else, which is executed when input does not match any of
the previous Cases. Case Else commonly is used to check for invalid input. When
employed, the Case Else must be the last Case.

The required End Select keywords terminate the Select Case structure. Note
that the body of the Select Case structure is indented to emphasize structure and
improve program readability.

Enter a grade, -1 to quit: 84
Letter Grade: B

Enter a grade, -1 to quit: 100
Perfect Score!
Letter grade: A

Enter a grade, -1 to quit: 3000
Invalid Input. Please enter a valid grade.

Enter a grade, -1 to quit: 95
Letter Grade: A

Enter a grade, -1 to quit: 78
Letter Grade: C

Enter a grade, -1 to quit: 64
Letter Grade: D

Enter a grade, -1 to quit: 10
Letter Grade: F

Enter a grade, -1 to quit: -1

Totals for each letter grade are:
A: 2
B: 1
C: 1
D: 1
F: 1

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 Select Case structure used to count grades (part 3 of 3).



158 Control Structures: Part 2 Chapter 5

   Common Programming Error 5.5
When using the optional Case Else statement in a Select Case structure, failure to
place the Case Else as the last Case is a syntax error. 5.5

Testing and Debugging Tip 5.3
Provide a CaseElse in SelectCase structures. Cases not handled in a SelectCase
structure are ignored unless a Case Else is provided. The inclusion of a Case Else state-
ment facilitates the processing of exceptional conditions. In some situations, no Case Else
processing is needed. 5.3

Case statements also can use relational operators to determine whether the controlling
expression satisfies a condition. For example

Case Is < 0

uses keyword Is along with the relational operator, <, to test for values less than 0.
Figure 5.11 flowcharts the Select Case structure.

Fig. 5.11Fig. 5.11Fig. 5.11Fig. 5.11 Select Case multiple-selection structure flowchart.

Case a Case a action(s)

.

.

.

Case b action(s)

Case z

Case Else action(s)

Case b

Case z action(s)

true

true

true

false

false

false



Chapter 5 Control Structures: Part 2 159

Again, note that (besides small circles and flowlines) the flowchart contains only rect-
angle and diamond symbols. Imagine, as we did in the previous chapter, that the pro-
grammer has access to a deep bin of empty structures. This time, the bin contains Select
Case structures, and the programmer can stack and nest as many as are necessary with
other control structures to form a structured implementation of an algorithm’s flow of con-
trol. The programmer fills the rectangles and diamonds with actions and decisions appro-
priate to the algorithm. Although nested control structures are common, it is rare to find
nested Select Case structures in a program.

In Chapter 10, Object-Oriented Programming: Part 2, we present a more elegant
method of implementing multiple selection logic. We use a technique called polymorphism
to create programs that are often clearer, more manageable, and easier to extend than pro-
grams that use Select Case logic.

5.6 Do/Loop While Repetition Structure
The Do/Loop While repetition structure is similar to the While structure and Do
While/Loop structure. In the While and Do While/Loop structures, the loop-continu-
ation condition is tested at the beginning of the loop, before the body of the loop is per-
formed. The Do/Loop While structure tests the loop-continuation condition after the loop
body is performed. Therefore, in a Do/Loop While structure, the loop body is always ex-
ecuted at least once. When a Do/Loop While structure terminates, execution continues
with the statement after the Loop While clause. The program in Fig. 5.12 uses a Do/Loop
While structure to output the values 1–5.

Testing and Debugging Tip 5.4
Infinite loops occur when the loop-continuation condition in a While, Do While/Loop or
Do/Loop While structure never becomes false. 5.4

1 ' Fig. 5.12: DoWhile.vb
2 ' Demonstrating the Do/Loop While repetition structure.
3
4 Module modDoWhile
5
6   Sub Main()
7       Dim counter As Integer = 1
8
9       ' print values 1 to 5

10       Do 
11          Console.Write(counter & " ")
12          counter += 1
13       Loop While counter <= 5
14
15  End Sub ' Main
16
17 End Module ' modDoWhile

1 2 3 4 5

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 Do/Loop While repetition structure.



160 Control Structures: Part 2 Chapter 5

Lines 10–13 demonstrate the Do/Loop While structure. The first time that the structure
is encountered, lines 11–12 are executed, displaying the value of counter (at this point, 1)
then incrementing counter by 1. Then, the condition in line 13 is evaluated. Variable
counter is 2, which is less than or equal to 5; because the condition is met, the Do/Loop
While structure executes again. The fifth time that the structure executes, line 11 outputs the
value 5, and, in line 12, counter is incremented to 6. At this point, the condition on line 13
evaluates to false, and the program exits the Do/Loop While structure.

The Do/Loop While flowchart (Fig. 5.13) illustrates the fact that the loop-continua-
tion condition is not evaluated until the structure body is executed at least once. The flow-
chart contains only a rectangle and a diamond. Imagine, once again, that the programmer
has access to a bin of empty Do/Loop While structures—as many as the programmer
might need to stack and nest with other control structures to form a structured implemen-
tation of an algorithm. The programmer fills the rectangles and diamonds with actions and
decisions appropriate to the algorithm.

5.7 Do/Loop Until Repetition Structure
The Do/Loop Until structure is similar to the Do Until/Loop structure, except that the
loop-continuation condition is tested after the loop body is performed; therefore, the loop
body executes at least once. When a Do/Loop Until terminates, execution continues with
the statement after the Loop Until clause. Figure 5.14 uses a Do/Loop Until structure
to print the numbers from 1–5. 

Fig. 5.13Fig. 5.13Fig. 5.13Fig. 5.13 Do/Loop While repetition structure flowchart.

1 ' Fig. 5.14: LoopUntil.vb
2 ' Using Do/Loop Until repetition structure.
3
4 Module modLoopUntil
5
6 Sub Main()
7       Dim counter As Integer = 1

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 Do/Loop Until repetition structure (part 1 of 2).

condition

action(s)

true

false



Chapter 5 Control Structures: Part 2 161

The Do/Loop Until structure is flowcharted in Fig. 5.15. This flowchart makes it
clear that the loop-continuation condition is not evaluated until after the body is executed
at least once. Again, note that (besides small circles and flowlines) the flowchart contains
only a rectangle symbol and a diamond symbol.

Imagine, again, that the programmer has access to a deep bin of empty Do/Loop
Until structures—as many as the programmer might need to stack and nest with other
control structures to form a structured implementation of an algorithm’s flow of control.
And again, the rectangles and diamonds are then filled with actions and decisions appro-
priate to the algorithm.
   Common Programming Error 5.6

Including an incorrect relational operator or an incorrect final value for a loop counter in
the condition of any repetition structure can cause off-by-one errors. 5.6

Testing and Debugging Tip 5.5
Infinite loops occur when the loop-continuation condition in a Do Until/Loop or Do/
Loop Until structure never becomes true. 5.5

8
9       ' print values 1 to 5

10       Do
11          Console.Write(counter & " ")
12          counter += 1
13       Loop Until counter > 5
14
15 End Sub ' Main
16
17 End Module ' modLoopUntil

1 2 3 4 5

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 Do/Loop Until repetition structure (part 2 of 2).

Fig. 5.15Fig. 5.15Fig. 5.15Fig. 5.15 Do/Loop Until repetition structure flowchart.

condition

action(s)

true

false



162 Control Structures: Part 2 Chapter 5

Testing and Debugging Tip 5.6
In a counter-controlled loop, make sure the control variable is incremented (or decremented)
appropriately in the body of the loop. 5.6

Testing and Debugging Tip 5.7
In a sentinel-controlled loop, make sure the sentinel value is eventually input. 5.7

Testing and Debugging Tip 5.8
Including a final value in the condition of a repetition structure (and choosing the appropri-
ate relational operator) can reduce the risk of off-by-one errors. For example, in a While
loop used to print the values 1–10, the loop-continuation condition should be counter <=
10, rather than counter < 10 (which is an off-by-one error) or counter < 11 (which is
nevertheless correct). 5.8

5.8 Using the Exit Keyword in a Repetition Structure
The Exit Do, Exit While and Exit For statements alter the flow of control by caus-
ing immediate exit from a repetition structure. The Exit Do statement can be executed in
a Do While/Loop, Do/Loop While, Do Until/Loop or Do/Loop Until structure,
to cause the program to exit immediately from that repetition structure. Similarly, the Exit
For and Exit While statements cause immediate exit from For/Next and While
loops, respectively. Execution continues with the first statement that follows the repetition
structure.

Figure 5.16 demonstrates the Exit For, Exit Do and Exit While statements in
various repetition structures.

1 ' Fig. 5.16: ExitTest.vb
2 ' Using the Exit keyword in repetition structures.
3
4 Imports System.Windows.Forms
5
6 Module modExitTest
7
8 Sub Main()
9       Dim output As String

10       Dim counter As Integer
11
12       For counter = 1 To 10
13
14          ' skip remaining code in loop only if counter = 3
15          If counter = 3 Then
16             Exit For
17          End If
18
19       Next
20
21       output = "counter = " & counter & _
22          " after exiting For/Next structure" & vbCrLf

Fig. 5.16Fig. 5.16Fig. 5.16Fig. 5.16 Exit keyword in repetition structures (part 1 of 2).



Chapter 5 Control Structures: Part 2 163

The header of the For/Next structure (line 12) indicates that the body of the loop
should execute ten times. During each execution, the If/Then structure (lines 15–17)
checks if the control variable, counter, is equal to 3. If so, the Exit For statement (line
16) executes. Thus, as the body of the For/Next structure executes for the third time (i.e,
counter is 3), the Exit For statement terminates execution of the loop. Program con-
trol then proceeds to the assignment statement (lines 21–22) which appends the current
value of counter to String variable output.

The header of the Do Until/Loop structure (line 24) indicates that the loop should
continue executing until counter is greater than 10. (Note that counter is 3 when the
Do Until/Loop structure begins executing.) When counter has the values 3 and 4, the

23
24       Do Until counter > 10
25
26          ' skip remaining code in loop only if counter = 5
27          If counter = 5 Then
28             Exit Do
29          End If
30
31          counter += 1
32       Loop
33
34       output &= "counter = " & counter & _
35          " after exiting Do Until/Loop structure" & vbCrLf
36
37       While counter <= 10
38
39          ' skip remaining code in loop only if counter = 7
40          If counter = 7 Then
41             Exit While
42          End If
43
44          counter += 1
45       End While
46
47       output &= "counter = " & counter & _
48          " after exiting While structure"
49
50       MessageBox.Show(output, "Exit Test", _
51          MessageBoxButtons.OK, MessageBoxIcon.Information)
52    End Sub ' Main
53
54 End Module ' modExitTest

Fig. 5.16Fig. 5.16Fig. 5.16Fig. 5.16 Exit keyword in repetition structures (part 2 of 2).



164 Control Structures: Part 2 Chapter 5

body of the If/Then structure (lines 27–29) does not execute, and counter is incre-
mented (line 31). However, when counter is 5, the Exit Do statement (line 28) exe-
cutes, terminating the loop. The assignment statement (lines 34–35) appends the value of
counter to output. Note that the program does not increment counter (line 31) after
the Exit Do statement executes.

The While structure (lines 37–45) behaves similarly to the Do While/Loop. In this
case, the value of counter is 5 when the loop begins executing. When counter is 7,
the Exit While statement (line 41) executes, terminating execution of the While struc-
ture. Lines 47–48 append the final value of counter to String variable output, which
is displayed in a message dialog (lines 50–51).

Software Engineering Observation 5.1
Some programmers feel that Exit Do, Exit While and Exit For violate the principles
of structured programming. The effects of these statements can be achieved by structured
programming techniques that we discuss soon. 5.1

Software Engineering Observation 5.2
Debates abound regarding the relative importance of quality software engineering and pro-
gram performance. Often, one of these goals is accomplished at the expense of the other. For
all but the most performance-intensive situations, apply the following guidelines: First, make
your code simple and correct; then make it fast and small, but only if necessary. 5.2

5.9 Logical Operators
So far, we have studied only simple conditions, such as count <= 10, total > 1000
and number <> sentinelValue. Each selection and repetition structure evaluated
only one condition with one of the operators >, <, >=, <=, = and <>. To make a decision
that relied on the evaluation of multiple conditions, we performed these tests in separate
statements or in nested If/Then or If/Then/Else structures.

To handle multiple conditions more efficiently, Visual Basic provides logical opera-
tors that can be used to form complex conditions by combining simple ones. The logical
operators are AndAlso, And, OrElse, Or, Xor and Not. We consider examples that use
each of these operators.

Suppose we wish to ensure that two conditions are both true in a program before a certain
path of execution is chosen. In such case, we can use the logical AndAlso operator as fol-
lows:

If gender = "F" AndAlso age >= 65 Then
   seniorFemales += 1
End If

This If/Then statement contains two simple conditions. The condition gender = "F"
determines whether a person is female and the condition age >= 65 determines whether a
person is a senior citizen. The two simple conditions are evaluated first, because the prece-
dences of = and >= are both higher than the precedence of AndAlso. The If/Then state-
ment then considers the combined condition

gender = "F" AndAlso age >= 65



Chapter 5 Control Structures: Part 2 165

This condition evaluates to true if and only if both of the simple conditions are true. When this
combined condition is true, the count of seniorFemales is incremented by 1. However,
if either or both of the simple conditions are false, the program skips the increment and pro-
ceeds to the statement following the If/Then structure. The readability of the preceding
combined condition can be improved by adding redundant (i.e., unnecessary) parentheses:

(gender = "F") AndAlso (age >= 65)

Figure 5.17 illustrates the effect of using the AndAlso operator with two expressions.
The table lists all four possible combinations of true and false values for expression1 and
expression2. Such tables often are called truth tables. Visual Basic evaluates to true or false
expressions that include relational operators, equality operators and logical operators.

Now let us consider the OrElse operator. Suppose we wish to ensure that either or
both of two conditions are true before we choose a certain path of execution. We use the
OrElse operator in the following program segment:

If (semesterAverage >= 90 OrElse finalExam >= 90) Then
   Console.WriteLine("Student grade is A")
End If

This statement also contains two simple conditions. The condition semesterAverage
>= 90 is evaluated to determine whether the student deserves an “A” in the course because
of an outstanding performance throughout the semester. The condition finalExam >=
90 is evaluated to determine if the student deserves an “A” in the course because of an out-
standing performance on the final exam. The If/Then statement then considers the com-
bined condition

(semesterAverage >= 90 OrElse finalExam >= 90)

and awards the student an “A” if either or both of the conditions are true. Note that the text
“Student grade is A” is always printed, unless both of the conditions are false.
Figure 5.18 provides a truth table for the OrElse operator.   

The AndAlso operator has a higher precedence than the OrElse operator. An
expression containing AndAlso or OrElse operators is evaluated only until truth or fal-
sity is known. For example, evaluation of the expression

(gender = "F" AndAlso age >= 65)

expression1 expression2 expression1 AndAlso expression2

False False False

False True False

True False False

True True True

Fig. 5.17Fig. 5.17Fig. 5.17Fig. 5.17 Truth table for the AndAlso operator.



166 Control Structures: Part 2 Chapter 5

stops immediately if gender is not equal to "F" (i.e., the entire expression is false); the
evaluation of the second expression is irrelevant because the first condition is false. Eval-
uation of the second condition occurs if and only if gender is equal to "F" (i.e., the entire
expression could still be true if the condition age >= 65 is true). This performance feature
for the evaluation of AndAlso and OrElse expressions is called short-circuit evaluation.

Performance Tip 5.2
In expressions using operator AndAlso, if the separate conditions are independent of one
another, place the condition most likely to be false as the leftmost condition. In expressions
using operator OrElse, make the condition most likely to be true the leftmost condition.
Each of these suggestions can reduce a program’s execution time. 5.2

The logical AND operator without short-circuit evaluation (And) and the logical
inclusive OR operator without short-circuit evaluation (Or) are similar to the AndAlso
and OrElse operators, with one exception—the And and Or logical operators always
evaluate both of their operands. No short-circuit evaluation occurs when And and Or are
employed. For example, the expression

(gender = "F" And age >= 65)

evaluates age >= 65, even if gender is not equal to "F".
Normally, there is no compelling reason to use the And and Or operators instead of

AndAlso and OrElse. However, some programmers make use of them when the right
operand of a condition produces a side effect (such as a modification of a variable’s value) or
if the right operand includes a required method call, as in the following program segment:

Console.WriteLine("How old are you?")
If (gender = "F" And Console.ReadLine() >= 65) Then
   Console.WriteLine("You are a female senior citizen.")
End If

Here, the And operator guarantees that the condition Console.ReadLine() >= 65 is
evaluated, so ReadLine is called regardless of whether the overall expression is true or
false. It would be better to write this code as two separate statements—the first would store
the result of Console.ReadLine() in a variable, then the second would use that vari-
able with the AndAlso operator in the condition.

Testing and Debugging Tip 5.9
Avoid expressions with side effects in conditions; these side effects often cause subtle errors. 5.9

expression1 expression2 expression1 OrElse expression2

False False False

False True True

True False True

True True True

Fig. 5.18Fig. 5.18Fig. 5.18Fig. 5.18 Truth table for the OrElse operator.



Chapter 5 Control Structures: Part 2 167

A condition containing the logical exclusive OR (Xor) operator is true if and only if
one of its operands results in a true value and the other results in a false value. If both oper-
ands are true or both are false, the entire condition is false. Figure 5.19 presents a truth table
for the logical exclusive OR operator (Xor). This operator always evaluates both of its
operands (i.e., there is no short-circuit evaluation).

Visual Basic’s Not (logical negation) operator enables a programmer to “reverse” the
meaning of a condition. Unlike the logical operators AndAlso, And, OrElse, Or and
Xor, that each combine two conditions (i.e., these are all binary operators), the logical
negation operator is a unary operator, requiring only one operand. The logical negation
operator is placed before a condition to choose a path of execution if the original condition
(without the logical negation operator) is false. The logical negation operator is demon-
strated by the following program segment:

If Not (grade = sentinelValue) Then
   Console.WriteLine("The next grade is " & grade)
End If

The parentheses around the condition grade = sentinelValue are necessary,
because the logical negation operator (Not) has a higher precedence than the equality oper-
ator. Figure 5.20 provides a truth table for the logical negation operator.

In most cases, the programmer can avoid using logical negation by expressing the con-
dition differently with relational or equality operators. For example, the preceding state-
ment can be written as follows:

If grade <> sentinelValue Then
   Console.WriteLine("The next grade is " & grade)
End If

This flexibility aids programmers in expressing conditions more naturally.      

expression1 expression2 expression1 Xor expression2

False False False

False True True

True False True

True True False

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 Truth table for the logical exclusive OR (Xor) operator.

expression Not expression

False True

True False

Fig. 5.20Fig. 5.20Fig. 5.20Fig. 5.20 Truth table for operator Not (logical NOT).



168 Control Structures: Part 2 Chapter 5

The Windows application in Fig. 5.21 demonstrates the use of the logical operators by
displaying their truth tables in six labels.

1 ' Fig. 5.21: LogicalOperator.vb
2 ' Using logical operators.
3
4 Public Class FrmLogicalOperator
5  Inherits System.Windows.Forms.Form
6
7   ' Visual Studio .NET generated code
8
9  Private Sub FrmLogicalOperator_Load( _

10       ByVal sender As System.Object, _
11       ByVal e As System.EventArgs) Handles MyBase.Load
12
13       lblAndAlso.Text = "AndAlso" & vbCrLf & vbCrLf & _
14          "False AndAlso False: " & (False AndAlso False) & _
15          vbCrLf & "False AndAlso True: " & _
16        (False AndAlso True) & vbCrLf & _
17          "True AndAlso False: " & (True AndAlso False) & _
18          vbCrLf & "True AndAlso True: " & (True AndAlso True)
19
20       lblOrElse.Text = "OrElse" & vbCrLf & vbCrLf & _
21          "False OrElse False: " & (False OrElse False) & _
22          vbCrLf & "False OrElse True: " & (False OrElse True) & _
23          vbCrLf & "True OrElse False: " & (True OrElse False) & _
24          vbCrLf & "True OrElse True: " & (True OrElse True)
25
26       lblAnd.Text = "And" & vbCrLf & vbCrLf & _
27          "False And False: " & (False And False) & vbCrLf & _
28          "False And True: " & (False And True) & vbCrLf & _
29          "True And False: " & (True And False) & vbCrLf & _
30          "True And True: " & (True And True)
31
32       lblOr.Text = "Or" & vbCrLf & _
33          vbCrLf & "False Or False: " & (False Or False) & _
34          vbCrLf & "False Or True: " & (False Or True) & _
35          vbCrLf & "True Or False: " & (True Or False) & _
36        vbCrLf & "True Or True: " & (True Or True)
37
38       lblXor.Text = "Xor" & vbCrLf & _
39          vbCrLf & "False Xor False: " & (False Xor False) & _
40          vbCrLf & "False Xor True: " & (False Xor True) & _
41          vbCrLf & "True Xor False: " & (True Xor False) & _
42          vbCrLf & "True Xor True: " & (True Xor True)
43        
44       lblNot.Text = "Not" & vbCrLf & vbCrLf & _
45          "Not False: " & (Not False) & vbCrLf & "Not True: " & _
46          (Not True)
47
48   End Sub ' FrmLogicalOperator_Load
49
50 End Class ' FrmLogicalOperator

Fig. 5.21Fig. 5.21Fig. 5.21Fig. 5.21 Logical operator truth tables (part 1 of 2).



Chapter 5 Control Structures: Part 2 169

Line 4 begins class FrmLogicalOperator. Recall from our discussion in Chapter
4 that Visual Studio creates the initial code for a Windows application. Programmers then
enhance this code to create their own applications. Because the code created by Visual
Studio uses many concepts that have not been presented yet, we replace the Visual Studio
generated code with the comment in line 7. In Chapter 12, we carefully explain the Visual
Studio generated code line-by-line. Line 9 begins the definition of procedure
FrmLogicalOperator_Load. An empty procedure definition for a Windows applica-
tion can be obtained by double-clicking the form in the Design view. Procedures created
this way are executed when the program loads. In this case, the procedure creates Strings
representing the truth tables of the logical operators and displays them on six labels using
the Text property. Lines 13–18 demonstrate operator AndAlso; lines 20–24 demonstrate
operator OrElse. The remainder of procedure FrmLogicalOperator_Load demon-
strates the And, Or, Xor and Not operators. We use keywords True and False in the
program to specify values of the Boolean data type. Notice that when a Boolean value
is concatenated to a String, Visual Basic concatenates the string "False" or "True"
on the basis of the Boolean’s value.

The chart in Fig. 5.22 displays the precedence of the Visual Basic operators introduced
so far. The operators are shown from top to bottom in decreasing order of precedence.

Operators Type

() parentheses

^ exponentiation

+ - unary plus and minus

* / multiplicative

\ integer division

Mod modulus

Fig. 5.22Fig. 5.22Fig. 5.22Fig. 5.22 Precedence and associativity of the operators discussed so far
 (part 1 of 2).

Fig. 5.21Fig. 5.21Fig. 5.21Fig. 5.21 Logical operator truth tables (part 2 of 2).



170 Control Structures: Part 2 Chapter 5

5.10 Structured Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We have learned that structured programming
produces programs that are easier to understand, test, debug, modify and prove correct in a
mathematical sense than unstructured programs. Visual Basic’s control structures are sum-
marized in Fig. 5.23 and Fig. 5.24. 

+ - additive

& concatenation

< <= > >= = <> relational and equality

Not logical NOT

And AndAlso logical AND

Or OrElse logical inclusive OR

Xor logical exclusive OR

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 Visual Basic’s single-entry/single-exit sequence and selection structures.

Operators Type

Fig. 5.22Fig. 5.22Fig. 5.22Fig. 5.22 Precedence and associativity of the operators discussed so far
 (part 2 of 2).

SequenceSequenceSequenceSequence

If/Then structure
(single selection)

If/Then/Else structure
(double selection)

Select Case structure
(multiple selection)

.

.

.

SelectionSelectionSelectionSelection

.

.

.

F T

F

T

F

T

F

T

F

T



Chapter 5 Control Structures: Part 2 171

Small circles in the figures indicate the single entry point and the single exit point of
each structure. Connecting individual flowchart symbols arbitrarily can lead to unstruc-
tured programs. Therefore, the programming profession has chosen to employ only a lim-
ited set of control structures and to build structured programs by combining control
structures in only two simple ways. 

Fig. 5.24Fig. 5.24Fig. 5.24Fig. 5.24 Visual Basic’s single-entry/single-exit repetition structures.

Do/Loop Until structure

While structure For/Next structure

Do/Loop While structure

RepetitionRepetitionRepetitionRepetition

Do While/Loop structure Do Until/Loop structure

For Each/Next structure (introduced in Chapter 7)

F

T

F

T

F

TF

T

F

T F

T

F

T



172 Control Structures: Part 2 Chapter 5

For the sake of simplicity, only single-entry/single-exit control structures are used—
there is only one way to enter and only one way to exit each control structure. To connect
control structures in sequence to form structured programs, the exit point of one control
structure is connected to the entry point of the next control structure (i.e., the control struc-
tures simply are placed one after another in a program). We call this process control struc-
ture stacking. The rules for the formation of structured programs also allow control
structures to be nested, i.e., placed one inside the other. Figure 5.25 contains the rules for
the formation of properly structured programs. The rules assume that the rectangle flow-
chart symbol can indicate any action, including input/output.

Applying the rules of Fig. 5.25 always results in a structured flowchart with a neat,
building-block appearance. For example, repeatedly applying rule 2 to the simplest flow-
chart (Fig. 5.26) results in a structured flowchart that contains many rectangles in sequence
(Fig. 5.27). Notice that rule 2 generates a stack of control structures; therefore, we call rule
2 the stacking rule.

Rule 3 is the nesting rule. Repeatedly applying rule 3 to the simplest flowchart results
in a flowchart with neatly nested control structures. For example, in Fig. 5.28, the rectangle
in the simplest flowchart (in the top-left portion of the figure) is first replaced with a
double-selection (If/Then/Else) structure. Then, rule 3 is applied again to both rectan-
gles in the double-selection structure, replacing each of these rectangles with a double-
selection structure. The dashed boxes around each of the double-selection structures repre-
sent the rectangles that were replaced with these structures.

Good Programming Practice 5.4
Excessive levels of nesting can make a program difficult to understand. As a general rule, try
to avoid using more than three levels of nesting. 5.4

Rule 4 generates larger, more involved and deeply-nested structures. The flowcharts
that emerge from applying the rules in Fig. 5.25 constitute the set of all possible structured
flowcharts and the set of all possible structured programs.The structured approach has the
advantage of using only eleven simple single-entry/single-exit pieces and allowing us to
combine them in only two simple ways. Figure 5.29 depicts the kinds of correctly stacked
building blocks that emerge from applying rule 2 and the kinds of correctly nested building
blocks that emerge from applying rule 3. The figure also shows the kind of overlapped
building blocks that cannot appear in structured flowcharts.  

Rules for Forming Structured Programs

1) Begin with the “simplest flowchart” (Fig. 5.26).

2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

3) Any rectangle (action) can be replaced by any control structure (sequence, If/Then, If/
Then/Else, Select Case, While, Do/Loop While, Do While/Loop, Do Until/
Loop, Do/Loop Until, For/Next or the For Each/Next structure introduced in 
Chapter 7, Arrays).

4) Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 5.25Fig. 5.25Fig. 5.25Fig. 5.25 Structured programming rules.



Chapter 5 Control Structures: Part 2 173

If the rules in Fig. 5.25 are followed, an unstructured flowchart (such as that in
Fig. 5.30) cannot be created. If you are uncertain about whether a particular flowchart is
structured, apply the rules in Fig. 5.25 in reverse to try to reduce the flowchart to the sim-
plest flowchart. If the flowchart can be reduced to the simplest flowchart, the original flow-
chart is structured; otherwise, it is not.

Structured programming promotes simplicity. Bohm and Jacopini have demonstrated
that only three forms of control are necessary:

• sequence

• selection

• repetition

Sequence is trivial. Selection is implemented in one of three ways:

• If/Then structure (single selection)

• If/Then/Else structure (double selection)

• Select Case structure (multiple selection)

It can be proven straightforwardly that the If/Then structure is sufficient to provide any
form of selection. Everything done with the If/Then/Else structure and the Select
Case structure can be implemented by combining multiple If/Then structures (although
perhaps not as elegantly).

Fig. 5.26Fig. 5.26Fig. 5.26Fig. 5.26 Simplest flowchart.

Fig. 5.27Fig. 5.27Fig. 5.27Fig. 5.27 Repeatedly applying rule 2 of Fig. 5.25 to the simplest flowchart.

.

.

.

Rule 2 Rule 2 Rule 2



174 Control Structures: Part 2 Chapter 5

Repetition is implemented in one of seven ways:

• While structure

• Do While/Loop structure

• Do/Loop While structure

• Do Until/Loop structure

• Do/Loop Until structure

• For/Next structure

• For Each/Next structure (introduced in Chapter 7)

It can be proven straightforwardly that the While structure is sufficient to provide any
form of repetition. Everything that can be done with the Do While/Loop, Do/Loop
While, Do Until/Loop, Do/Loop Until, For/Next and For Each/Next structures
can be done with the While structure (although perhaps not as elegantly).

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 Applying rule 3 of Fig. 5.25 to the simplest flowchart.

Rule 3

Rule 3 Rule 3



Chapter 5 Control Structures: Part 2 175

The combination of these results illustrates that any form of control ever needed in a
Visual Basic program can be expressed in terms of:

• sequence

• If/Then structure (selection)

• While structure (repetition)

These control structures can be combined in only two ways—stacking and nesting. Indeed,
structured programming promotes simplicity. 

In this chapter, we discussed the composition of programs from control structures that
contain actions and decisions. In Chapter 6, Procedures, we introduce another program
structuring unit called the procedure. We show how to construct large programs by com-
bining procedures that are composed of control structures. We also discuss the ways in
which procedures promote software reusability. In Chapter 8, Object-Based Programming,
we offer a detailed introduction to another Visual Basic program structuring unit, called the
class. We then create objects from classes (that are composed of procedures) and proceed
with our treatment of object-oriented programming—the key focus of this book.

Fig. 5.29Fig. 5.29Fig. 5.29Fig. 5.29 Stacked, nested and overlapped building blocks.

Fig. 5.30Fig. 5.30Fig. 5.30Fig. 5.30 Unstructured flowchart.

Overlapping building blocks
(Illegal in structured programs)

Nested building blocksStacked building blocks



176 Control Structures: Part 2 Chapter 5

SUMMARY
• Counter-controlled repetition requires the name of a control variable (or loop counter), the initial

value of the control variable, the increment (or decrement) by which the control variable is modi-
fied during each iteration of the loop and the condition that tests for the final value of the control
variable (i.e., whether looping should continue).

• Declarations that include initialization are executable statements.

• The For/Next repetition structure handles the details of counter-controlled repetition. The re-
quired To keyword specifies the initial value and the final value of the control variable. The op-
tional Step keyword specifies the increment.

• Counting loops should not be controlled with floating-point variables. Floating-point values are
represented only approximately in the computer’s memory, often resulting in imprecise counter
values and inaccurate tests for termination.

• When supplying four arguments to method MessageBox.Show, the first two arguments are
strings displayed in the dialog and the dialog’s title bar. The third and fourth arguments are con-
stants representing buttons and icons, respectively.

• Method String.Format inserts values into a String using Visual Basic’s format codes.

• Visual Basic provides the Decimal data type, which is designed specifically for monetary calcu-
lations. It is inappropriate to use Single or Double for dollar amounts.

• Visual Basic provides the Select Case multiple-selection structure to test a variable or expres-
sion separately for each value that the variable or expression might assume. The Select Case
structure consists of a series of Case labels and an optional Case Else. Each Case contains
statements to be executed if that Case is selected.

• Each Case in a Select Case structure can test for a specific value, a range of values (using
keyword To) or a condition (using keyword Is and a relational operator). The comma can be used
to specify a list of values, ranges and conditions that satisfy a Case statement.

• The Do/Loop While and Do/Loop Until structures test the loop-continuation condition after
the loop body is performed; therefore, the loop body is always executed at least once.

• The Exit Do, Exit While and Exit For statements alter the flow of control by causing im-
mediate exit from a repetition structure.

• The logical operators are AndAlso (logical AND with short-circuit evaluation), And (logical
AND without short-circuit evaluation), OrElse (logical inclusive OR with short-circuit evalua-
tion), Or (logical inclusive OR without short-circuit evaluation), Xor (logical exclusive OR) and
Not (logical NOT, also called logical negation).

• The AndAlso operator can be used to ensure that two conditions are both true.

• The OrElse operator can be used to ensure that at least one of two conditions is true.

• The And and Or operators are similar to the AndAlso and OrElse operators, except that they
always evaluate both of their operands.

• A condition containing the logical exclusive OR (Xor) operator is true if and only if exactly one
of its operands is true.

• A condition that begins with the logical NOT (Not) operator is true if and only if the condition to
the right of the logical NOT operator is false.

• In flowcharts, small circles indicate the single entry point and exit point of each structure.

• Connecting individual flowchart symbols arbitrarily can lead to unstructured programs. Therefore,
the programming profession has chosen to employ only a limited set of control structures and to
build structured programs by combining control structures in only two simple ways.



Chapter 5 Control Structures: Part 2 177

• To connect control structures in sequence to form structured programs, the exit point of one control
structure is connected to the entry point of the next control structure (i.e., the control structures sim-
ply are placed one after another in a program). We call this process “control structure stacking.”

• The rules for forming structured programs also allow control structures to be nested.

• Structured programming promotes simplicity. 

• Bohm and Jacopini have demonstrated that only three forms of control are necessary—sequence,
selection and repetition.

• Selection is implemented with one of three structures—If/Then, If/Then/Else and
Select Case.

• Repetition is implemented with one of seven structures—While, Do While/Loop, Do/Loop
While, Do Until/Loop, Do/Loop Until, For/Next, and For Each/Next (introduced in
Chapter 7, Arrays).

• The If/Then structure is sufficient to provide any form of selection.

• The While structure is sufficient to provide any form of repetition.

• Control structures can be combined in only two ways—stacking and nesting.

TERMINOLOGY
AbortRetryIgnore constant iteration of a loop
body of a loop levels of nesting
Boolean values logical AND with short-circuit 
buttons for a message dialog evaluation (AndAlso)
Case keyword logical AND without short-circuit
Case Else statement valuation (And)
control structure logical exclusive OR (Xor)
control-structure nesting logical inclusive OR with short-circuit 
control-structure stacking evaluation (OrElse)
controlling expression logical inclusive OR without short-circuit 
counter-controlled repetition evaluation (Or)
Decimal data type logical NOT (Not)
decrement of loop logical operator
diamond symbol loop body
Do/Loop Until structure loop counter
Do/Loop While structure loop-continuation condition
double-selection structure message dialog button
End Select statement message dialog icon
entry point of a control structure MessageBoxButtons.
Exit Do statement AbortRetryIgnore constant
Exit For statement MessageBoxButtons.OK constant
Exit While statement MessageBoxButtons.OKCancel constant
For Each/Next structure MessageBoxButtons.RetryCancel
For/Next structure constant
For/Next header MessageBoxButtons.YesNo constant
hexadecimal (base16) number system MessageBoxButtons.YesNoCancel
icon for a message dialog constant
If/Then structure MessageBoxButtons class
If/Then/Else structure MessageBoxIcon class
increment of control variable MessageBoxIcon.Error constant
Is keyword MessageBoxIcon.Exclamation constant



178 Control Structures: Part 2 Chapter 5

SELF-REVIEW EXERCISES
5.1 State whether each of the following is true or false. If false, explain why.

a) The Case Else is required in the Select Case selection structure.
b) The expression x > y AndAlso a < b is true if either x > y is true or a < b is true.
c) An expression containing the OrElse operator is true if either or both of its operands is

true.
d) The expression x <= y And y > 4 is true if x is less than or equal to y and y is greater

than 4.
e) Logical operator Or performs short-circuit evaluation.
f) A While structure with the header

        While (x > 10 AndAlso x < 100)

iterates while 10 < x < 100.
g) The Exit Do, Exit For and Exit While statements, when executed in a repetition

structure, cause immediate exit from the repetition structure.
h) History has shown that good software engineering always allows programmers to

achieve the highest levels of performance.
i) The OrElse operator has a higher precedence than the AndAlso operator. 

5.2 Fill in the blanks in each of the following statements:
a) Keyword  is optional in a For/Next header when the control variable’s in-

crement is one.
b) Monetary values should be stored in variables of type .
c) A Case that handles all values larger than a specified value must precede the > operator

with the  keyword.
d) In a For/Next structure, incrementing occurs  the body of the structure is

performed. 
e) Placing expressions whose values do not change inside  structures can lead

to poor performance. 
f) The four types of MessageBox icons are exclamation, information, error and

.
g) The expression following the keywords Select Case is called the .

5.3 Write a Visual Basic statement or a set of Visual Basic statements to accomplish each of the
following:

MessageBoxIcon.Information constant sequence
MessageBoxIcon.Question constant short-circuit evaluation
multiple-selection structure Show method of class MessageBox
nested building block simplest flowchart
nested control structure single selection
nesting single-entry/single-exit sequence, selection and 
nesting rule repetition structures
Next keyword stacking rule
overlapped building block Step keyword in a For/Next structure
program construction principle String formatting code
rectangle symbol structured programming
repetition To keyword in a For/Next structure
Select Case structure unary operator
selection unstructured flowchart



Chapter 5 Control Structures: Part 2 179

a) Sum the odd integers between 1 and 99 using a For/Next structure. Assume that the
integer variables sum and count have been declared. 

b) Write a statement that exits a While loop.
c) Print the integers from 1 to 20, using a Do/Loop While loop and the counter variable x.

Assume that the variable x has been declared, but not initialized. Print only five integers
per line. [Hint: Use the calculation x Mod 5. When the value of this is 0, print a newline
character; otherwise, print a tab character. Call Console.WriteLine to output the
newline character and call Console.Write(vbTab) to output the tab character.]

d) Repeat part c, using a For/Next structure.

ANSWERS TO SELF-REVIEW EXERCISES
5.1 a) False. The Case Else is optional. b) False. Both of the relational expressions must be
true for the entire expression to be true. c) True. d) True. 4. e) False. Logical operator Or always eval-
uates both of its operands. f) True. g) True. h) False. There is often a trade-off between good software
engineering and high performance. i) False. The AndAlso operator has higher precedence than the
OrElse operator. 

5.2 a) Step. b) Decimal. c) Is. d) after. e) repetition. f) question mark. g) controlling expres-
sion.

5.3 a) sum = 0

For count = 1 To 99 Step 2
      sum += count
Next

b) Exit While
c) x = 1

Do
   Console.Write(x)

If x Mod 5 = 0 Then
      Console.WriteLine()

Else
      Console.Write(vbTab)

End If

   x += 1
Loop While x <= 20

or

x = 1

Do

If x Mod 5 = 0 Then
      Console.WriteLine(x)

Else
      Console.Write(x & vbTab)

End If



180 Control Structures: Part 2 Chapter 5

x += 1
Loop While x <= 20

d) For x = 1 To 20
   Console.Write(x)

If x Mod 5 = 0 Then
      Console.WriteLine()

Else
      Console.Write(vbTab)

End If

Next

or

For x = 1 To 20

If x Mod 5 = 0 Then
      Console.WriteLine(x)

Else
      Console.Write(x & vbTab)

End If

Next

EXERCISES
5.4 The factorial method is used frequently in probability problems. The factorial of a positive
integer n (written n! and pronounced “n factorial”) is equal to the product of the positive integers from
1 to n. Even for relatively small values of n, the factorial method yields extremely large numbers. For
instance, when n is 13, n! is 6227020800—a number too large to be represented with data type In-
teger (a 32-bit integer value). To calculate the factorials of large values of n, data type Long (a 64-
bit integer value) must be used. Write a program that evaluates the factorials of the integers from 1 to
20 using data type Long. Display the results in a two column output table. [Hint: create a Windows
application, use Labels as the columns and the vbCrLf constant to line up the rows.] The first col-
umn should display the n values (1–20). The second column should display n!.

5.5 Write two programs that each print a table of the binary, octal, and hexadecimal equivalents
of the decimal numbers in the range 1–256. If you are not familiar with these number systems, read
Appendix B, Number Systems, first. 

a) For the first program, print the results to the console without using any String formats.
b) For the second program, print the results to the console using both the decimal and hexa-

decimal String formats (there are no formats for binary and octal in Visual Basic).

5.6 (Pythagorean Triples) Some right triangles have sides that are all integers. A set of three in-
teger values for the sides of a right triangle is called a Pythagorean triple. These three sides must sat-
isfy the relationship that the sum of the squares of the two sides is equal to the square of the
hypotenuse. Write a program to find all Pythagorean triples for side1, side2 and hypotenuse,
none larger than 30. Use a triple-nested For/Next loop that tries all possibilities. This is an example
of “brute force” computing. You will learn in more advanced computer science courses that there are
some problems for which there is no known algorithmic approach other than using sheer brute force.



Chapter 5 Control Structures: Part 2 181

5.7 Write a program that displays the following patterns separately, one below the other. Use
For/Next loops to generate the patterns. All asterisks (*) should be printed by a single statement of
the form Console.Write("*") (this causes the asterisks to print side by side). A statement of
the form Console.WriteLine() can be used to position to the next line and a statement of the
form Console.WriteLine(" ") can be used to display spaces for the last two patterns. There
should be no other output statements in the program. [Hint: The last two patterns require that each
line begin with an appropriate number of blanks.] Maximize your use of repetition (with nested For/
Next structures) and minimize the number of output statements.

5.8 Modify Exercise 5.7 to combine your code from the four separate triangles of asterisks into
a single program that prints all four patterns side by side, making clever use of nested For/Next
loops. 

5.9 Write a program that prints the following diamond shape. You may use output statements that
print a single asterisk (*), a single space or a single newline character. Maximize your use of repeti-
tion (with nested For/Next structures) and minimize the number of output statements.

5.10 Modify the program you wrote in Exercise 5.9 to read an odd number in the range from 1 to
19 to specify the number of rows in the diamond. Your program should then display a diamond of the
appropriate size. Use a Do/Loop Until to validate user input.

    (A)        (B)        (C)        (D)

*          ********** **********          *
**         *********   *********         **
***        ********     ********        ***
****       *******       *******       ****
*****      ******         ******      *****
******     *****           *****     ******
*******    ****             ****    *******
********   ***               ***   ********
*********  **                 **  *********
********** *                   * **********

*
***

*****
*******
*********
*******
*****
***
*



6
Procedures

Objectives
• To construct programs modularly from pieces called 

procedures.
• To introduce the common Math methods available in 

the Framework Class Library.
• To create new procedures.
• To understand the mechanisms used to pass 

information between procedures.
• To introduce simulation techniques that employ 

random-number generation.
• To understand how the visibility of identifiers is 

limited to specific regions of programs.
• To understand how to write and use recursive 

procedures (procedures that call themselves).
Form ever follows function.
Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
Virgil

O! call back yesterday, bid time return.
William Shakespeare, Richard II

Call me Ishmael.
Herman Melville, Moby Dick

When you call me that, smile.
Owen Wister



Chapter 6 Procedures 183

6.1 Introduction
Most computer programs that solve real-world problems are much larger than the programs
presented in the first few chapters of this text. Experience has shown that the best way to
develop and maintain a large program is to construct it from small, manageable pieces. This
technique is known as divide and conquer. In this chapter, we describe many key features
of the Visual Basic language that facilitate the design, implementation, operation and main-
tenance of large programs.

6.2 Modules, Classes and Procedures
Visual Basic programs consist of many pieces, including modules and classes. The program-
mer combines new modules and classes with “prepackaged” classes available in the .NET
Framework Class Library (FCL). These modules and classes are composed of smaller pieces
called procedures. When procedures are contained in a class, we refer to them as methods.

The FCL provides a rich collection of classes and methods for performing common
mathematical calculations, string manipulations, character manipulations, input/output

Outline

6.1 Introduction
6.2 Modules, Classes and Procedures

6.3 Sub Procedures

6.4 Function Procedures
6.5 Methods
6.6 Argument Promotion
6.7 Option Strict and Data-Type Conversions
6.8 Value Types and Reference Types
6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference
6.10 Duration of Identifiers
6.11 Scope Rules
6.12 Random-Number Generation
6.13 Example: Game of Chance
6.14 Recursion
6.15 Example Using Recursion: Fibonacci Series
6.16 Recursion vs. Iteration
6.17 Procedure Overloading and Optional Arguments

6.17.1 Procedure Overloading
6.17.2 Optional Arguments

6.18 Modules

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



184 Procedures Chapter 6

operations, error checking and many other useful operations. This framework makes the
programmer’s job easier, because the methods provide many of the capabilities program-
mers need. In earlier chapters, we introduced some FCL classes, such as Console, which
provides methods for inputting and outputting data.

Software Engineering Observation 6.1
Familiarize yourself with the rich collection of classes and methods in the Framework Class
Library. 6.1

Software Engineering Observation 6.2
When possible, use .NET Framework classes and methods instead of writing new classes and
methods. This reduces program development time and avoids introducing new errors. 6.2

Performance Tip 6.1
.NET Framework Class Library methods are written to perform efficiently. 6.1

Although the FCL provides methods that perform many common tasks, it cannot pro-
vide every conceivable feature that a programmer could want, so Visual Basic allows pro-
grammers to create their own programmer-defined procedures to meet the unique
requirements of a particular problem. Three types of procedures exist: Sub procedures,
Function procedures and event procedures. Throughout this chapter, the term “proce-
dure” refers to both Sub procedures and Function procedures unless otherwise noted.

Programmers write procedures to define specific tasks that a program may use many
times during its execution. Although the same programmer-defined procedure can be exe-
cuted at multiple points in a program, the actual statements that define the procedure are
written only once.

A procedure is invoked (i.e., made to perform its designated task) by a procedure call.
The procedure call specifies the procedure name and provides information (as arguments)
that the callee (i.e, the procedure being called) requires to do its job. When the procedure
completes its task, it returns control to the caller (i.e., the calling procedure). In some cases,
the procedure also returns a result to the caller. A common analogy for this is the hierar-
chical form of management. A boss (the caller) asks a worker (the callee) to perform a task
and return (i.e., report on) the results when the task is done. The boss does not need to know
how the worker performs the designated task. For example, the worker might call other
workers—the boss would be unaware of this. Soon, we show how this hiding of implemen-
tation details promotes good software engineering. Figure 6.1 depicts a Boss procedure
communicating with worker procedures Worker1, Worker2 and Worker3 in a hierar-
chical manner. Note that Worker1 acts as a “boss” procedure to Worker4 and Worker5
in this particular example.

There are several motivations for the division of code into procedures. First, the divide-
and-conquer approach makes program development more manageable. Another motivation
is software reusability—the ability to use existing procedures as building blocks for new
programs. When proper naming and definition conventions are applied, programs can be
created from standardized pieces that accomplish specific tasks, to minimize the need for
customized code. A third motivation involves avoiding the repetition of code in a program.
When code is packaged as a procedure, the code can be executed from several locations in
a program simply by calling, or invoking, the procedure.



Chapter 6 Procedures 185

Good Programming Practice 6.1
Use modularity to increase the clarity and organization of a program. This not only helps oth-
ers understand the program, but also aids in program development, testing and debugging. 6.1

Software Engineering Observation 6.3
To promote reusability, the capabilities of each procedure should be limited to the perfor-
mance of a single, well-defined task, and the name of the procedure should express that task
effectively. 6.3

Software Engineering Observation 6.4
If you cannot choose a concise name that expresses the task performed by a procedure, the
procedure could be attempting to perform too many diverse tasks. It is usually best to divide
such a procedure into several smaller procedures. 6.4

6.3 Sub Procedures
The programs presented earlier in the book each contained at least one procedure definition
(e.g., Main) that called FCL methods (such as Console.WriteLine) to accomplish
the program’s tasks. We now consider how to write customized procedures.

Consider the console application in Fig. 6.2, which uses a Sub procedure (invoked
from the application’s Main procedure) to print a worker’s payment information. 

Fig. 6.1Fig. 6.1Fig. 6.1Fig. 6.1 Hierarchical boss-procedure/worker-procedure relationship.

Boss

Worker3Worker2Worker1

Worker4 Worker5

1 ' Fig. 6.2: Payment.vb
2 ' Sub procedure that prints payment information.
3
4 Module modPayment
5
6 Sub Main()
7
8       ' call Sub procedure PrintPay 4 times
9       PrintPay(40, 10.5)

10       PrintPay(38, 21.75)

Fig. 6.2Fig. 6.2Fig. 6.2Fig. 6.2 Sub procedure for printing payment information (part 1 of 2).



186 Procedures Chapter 6

The program contains two procedure definitions. Lines 6–14 define Sub procedure
Main, which executes when the console application is loaded. Lines 17–21 define Sub
procedure PrintPay, which executes when it is invoked, or called, from another proce-
dure, in this case Main.

Main makes four calls (lines 9–12) to Sub procedure PrintPay, causing
PrintPay to execute four times. Although the procedure arguments in this example are
constants, arguments can also be variables or expressions. For example, the statement

PrintPay(employeeOneExtraHours, employeeOneWage * 1.5)

could be used to display payment information for an employee who is being paid time-and-
a-half for working overtime.

When Main calls PrintPay, the program makes a copy of the value of each argu-
ment (e.g., 40 and 10.5 on line 9), and program control transfers to the first line of pro-
cedure PrintPay. Procedure PrintPay receives the copied values and stores them in
the parameter variables hours and wage. Then, PrintPay calculates hours * wage
and displays the result, using the currency format (line 20). When the End Sub statement
on line 21 is encountered, control is returned to the calling procedure, Main.

The first line of procedure PrintPay (line 17) shows (inside the parentheses) that
PrintPay declares a Double variable hours and a Decimal variable wage. These
parameters hold the values passed to PrintPay within the definition of this procedure.
Notice that the entire procedure definition of PrintPay appears within the body of
module modPayment. All procedures must be defined inside a module or a class.

The format of a procedure definition is

Sub procedure-name(parameter-list)
declarations and statements

End Sub

11       PrintPay(20, 13)
12       PrintPay(50, 14)
13
14    End Sub ' Main
15
16 ' print dollar amount earned in command window
17 Sub PrintPay(ByVal hours As Double, ByVal wage As Decimal)
18
19       ' pay = hours * wage
20       Console.WriteLine("The payment is {0:C}", hours * wage)
21 End Sub ' PrintPay
22
23 End Module ' modPayment

The payment is $420.00
The payment is $826.50
The payment is $260.00
The payment is $700.00

Fig. 6.2Fig. 6.2Fig. 6.2Fig. 6.2 Sub procedure for printing payment information (part 2 of 2).



Chapter 6 Procedures 187

Good Programming Practice 6.2
Place a blank line between procedure definitions to separate the procedures and enhance
program readability. 6.2

Common Programming Error 6.1
Defining a procedure outside of a class or module definition is a syntax error. 6.1

The first line is sometimes known as the procedure header. The procedure-name, which
directly follows the Sub keyword in the procedure header, can be any valid identifier and
is used to call this Sub procedure within the program.

The parameter-list is a comma-separated list in which the Sub procedure declares
each parameter variable’s type and name. There must be one argument in the procedure call
for each parameter in the procedure header (we will see an exception to this rule in
Section 6.17). The arguments also must be compatible with the parameter’s type (i.e.,
Visual Basic must be able to assign the value of the argument to the parameter). For
example, a parameter of type Double could receive the value of 7.35, 22 or –.03546, but
not "hello", because a Double value cannot contain a String. In Section 6.6 we dis-
cuss this issue in detail. If a procedure does not receive any values, the parameter list is
empty (i.e., the procedure name is followed by an empty set of parentheses).

Notice that the parameter declarations in the procedure header for PrintPay (line
17) look similar to variable declarations, but use keyword ByVal instead of Dim. ByVal
specifies that the calling program should pass a copy of the value of the argument in the
procedure call to the parameter, which can be used in the Sub procedure body. Section 6.9
discusses argument passing in detail.

Common Programming Error 6.2
Declaring a variable in the procedure’s body with the same name as a parameter variable
in the procedure header is a syntax error. 6.2

Testing and Debugging Tip 6.1
Although it is allowable, an argument passed to a procedure should not have the same name
as the corresponding parameter in the procedure definition. This distinction prevents ambi-
guity that could lead to logic errors. 6.1

The declarations and statements in the procedure definition form the procedure body.
The procedure body contains Visual Basic code that performs actions, generally by manip-
ulating or interacting with the parameters. The procedure body must be terminated with
keywords End Sub, which define the end of the procedure. The procedure body is also
referred to as a block. A block is a sequence of statements and declarations grouped
together as the body of some structure and terminated with an End, Next, Else or Loop
statement, depending on the type of structure. Variables can be declared in any block, and
blocks can be nested.

Common Programming Error 6.3
Defining a procedure inside another procedure is a syntax error—procedures cannot be
nested. 6.3

Control returns to the caller when execution reaches the End Sub statement (i.e., the
end of the procedure body). Alternatively, keywords Return and Exit Sub can be used



188 Procedures Chapter 6

anywhere in a procedure to return control to the point at which a Sub procedure was
invoked. We discuss Return and Exit Sub in detail, momentarily.

Good Programming Practice 6.3
The selection of meaningful procedure names and parameter names makes programs more
readable and reduces the need for excessive comments. 6.3

Software Engineering Observation 6.5
Procedure names tend to be verbs because procedures typically perform operations on data.
By convention, programmer-defined procedure names begin with an uppercase first letter.
For example, a procedure that sends an e-mail message might be named SendMail. 6.5

Software Engineering Observation 6.6
A procedure that requires a large number of parameters might be performing too many tasks.
Consider dividing the procedure into smaller procedures that perform separate tasks. As a
“rule of thumb,” the procedure header should fit on one line (if possible). 6.6

Software Engineering Observation 6.7
As a “rule of thumb,” a procedure should be limited to one printed page. Better yet, a pro-
cedure should be no longer than half a printed page. Regardless of how long a procedure is,
it should perform one task well. 6.7

Testing and Debugging Tip 6.2
Small procedures are easier to test, debug and understand than large procedures. 6.2

Performance Tip 6.2
When a programmer divides a procedure into several procedures that communicate with one
another, this communication takes time and sometimes leads to poor execution performance. 6.2

Software Engineering Observation 6.8
The procedure header and procedure calls all must agree with regard to the number, type
and order of parameters. We discuss exceptions to this in Section 6.17. 6.8

6.4 Function Procedures
Function procedures are similar to Sub procedures, with one important difference:
Function procedures return a value (i.e., send a value) to the caller, whereas Sub pro-
cedures do not. The console application in Fig. 6.3 uses Function procedure Square to
calculate the squares of the Integers from 1–10.    

1 ' Fig. 6.3: SquareInteger.vb
2 ' Function procedure to square a number.
3
4 Module modSquareInteger
5
6 Sub Main()
7       Dim i As Integer ' counter
8

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 Function procedure for squaring an integer (part 1 of 2).



Chapter 6 Procedures 189

The For structure (lines 12–14) displays the results of squaring the Integers from 1–
10. Each iteration of the loop calculates the square of control variable i and displays it in the
command window.

Function procedure Square is invoked (line 13) with the expression Square(i).
When program control reaches this expression, the program calls Function Square (lines
20–22). At this point, the program makes a copy of the value of i (the argument), and pro-
gram control transfers to the first line of Function Square. Square receives the copy
of i’s value and stores it in the parameter y. Line 21 is a Return statement, which termi-
nates execution of the procedure and returns the result of y ^ 2 to the calling program. The
result is returned to the point on line 13 where Square was invoked. Line 13 displays the
value of i and the value returned by Square in the command window. This process is
repeated 10 times.

The format of a Function procedure definition is

Function procedure-name(parameter-list) As return-type
declarations and statements

End Function

The procedure-name, parameter-list, and the declarations and statements in a Function
procedure definition behave like the corresponding elements in a Sub procedure definition.

9       Console.WriteLine("Number" & vbTab & "Square" & vbCrLf)
10
11       ' square numbers from 1 to 10
12       For i = 1 To 10
13          Console.WriteLine(i & vbTab & Square(i))
14       Next
15
16    End Sub ' Main
17
18    ' Function Square is executed
19    ' only when the function is explicitly called.
20 Function Square(ByVal y As Integer) As Integer
21       Return y ^ 2
22   End Function ' Square
23
24 End Module ' modSquareInteger

Number  Square

1       1
2       4
3       9
4       16
5       25
6       36
7       49
8       64
9       81
10      100

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 Function procedure for squaring an integer (part 2 of 2).



190 Procedures Chapter 6

In the Function header, the return-type indicates the data type of the result returned from
the Function to its caller. The statement

Return expression

can occur anywhere in a Function procedure body and returns the value of expression
to the caller. If necessary, Visual Basic attempts to convert the expression to the Func-
tion procedure’s return-type. Functions Return exactly one value. When a Re-
turn statement is executed, control returns immediately to the point at which that
procedure was invoked.

Common Programming Error 6.4
If the expression in a Return statement cannot be converted to the Function procedure’s
return-type, a runtime error is generated. 6.4

Common Programming Error 6.5
Failure to return a value from a Function procedure (e.g., by forgetting to provide a Re-
turn statement) causes the procedure to return the default value for the return-type, often
producing incorrect output. 6.5

6.5 Methods
A method is any procedure that is contained within a class. We have already presented sev-
eral FCL methods (i.e., methods contained in classes that are part of the FCL). Program-
mers also can define custom methods in programmer-defined classes, such as a class used
to define a Windows application. The Windows application in Fig. 6.4 uses two methods
to calculate the largest of three Doubles.

1 ' Fig. 6.4: Maximum.vb
2 ' Program finds the maximum of three numbers input.
3
4 Public Class FrmMaximum
5 Inherits System.Windows.Forms.Form
6
7 ' prompts for three inputs
8 Friend WithEvents lblOne As System.Windows.Forms.Label
9 Friend WithEvents lblTwo As System.Windows.Forms.Label

10 Friend WithEvents lblThree As System.Windows.Forms.Label
11
12    ' displays result
13 Friend WithEvents lblMaximum As System.Windows.Forms.Label
14
15    ' read three numbers
16 Friend WithEvents txtFirst As System.Windows.Forms.TextBox
17 Friend WithEvents txtSecond As System.Windows.Forms.TextBox
18 Friend WithEvents txtThird As System.Windows.Forms.TextBox
19
20    ' reads inputs and calculate results
21 Friend WithEvents cmdMaximum As System.Windows.Forms.Button
22

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Method that determines the largest of three numbers (part 1 of 2).



Chapter 6 Procedures 191

Until now, many of our applications have facilitated user interaction via either the
command window (in which the user can type an input value into the program) or a mes-
sage dialog (which displays a message to the user and allows the user to click OK to dismiss
the dialog). In Chapter 4, Control Structures: Part 1, we introduced Windows applications
by creating a program that displays information in a label on a form.

Although the command window and message dialogs are valid ways to receive input
from a user and display output, they are limited in their capabilities—the command
window can obtain only one line of input at a time from the user, and a message dialog
can display only one message. It is common to receive multiple inputs at the same time
(such as the three values in this example), or to display many pieces of data at once. To
introduce more sophisticated user interface programming, the program in Fig. 6.4 uses
GUI event handling (i.e., the ability to respond to a state change in the GUI, such as when
the user clicks a button).

23    ' Visual Studio .NET generated code
24
25    ' obtain values in each text box, call procedure Maximum
26 Private Sub cmdMaximum_Click(ByVal sender As System.Object, _
27       ByVal e As System.EventArgs) Handles cmdMaximum.Click
28
29       Dim value1, value2, value3 As Double
30
31       value1 = txtFirst.Text
32       value2 = txtSecond.Text
33       value3 = txtThird.Text
34
35       lblMaximum.Text = Maximum(value1, value2, value3)
36 End Sub ' cmdMaximum_Click
37
38    ' find maximum of three parameter values
39 Function Maximum(ByVal valueOne As Double, _
40       ByVal valueTwo As Double, ByVal valueThree As Double)
41
42       Return Math.Max(Math.Max(valueOne, valueTwo), valueThree)
43 End Function ' Maximum
44
45 End Class ' FrmMaximum

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Method that determines the largest of three numbers (part 2 of 2).



192 Procedures Chapter 6

Class FrmMaximum uses a GUI consisting of three TextBoxes (txtFirst, txt-
Second and txtThird) for user input, a Button (cmdMaximum) to invoke the calcu-
lation and four Labels, including lblMaximum, which displays the results. We create
these components visually, using the Toolbox, and change their properties in the Prop-
erties window. Lines 7–21 are declarations indicating the name of each component.
Although these lines of code are actually part of the Visual Studio .NET generated code,
we display them to indicate the objects that are part of the form (as always, the complete
code for this program is on the CD-ROM that accompanies this book and at
www.deitel.com).

Line 5 indicates that class FrmMaximum Inherits from System.Win-
dows.Forms.Form. Remember that all forms inherit from class System.Win-
dows.Forms.Form. A class can inherit attributes and behaviors (data and methods)
from another class if that class is specified to the right of the Inherits keyword. We dis-
cuss inheritance in detail in Chapter 9, Object-Oriented Programming: Inheritance.

FrmMaximum contains two programmer-defined methods. Method Maximum (lines
39–43) takes three Double parameters and returns the value of the largest parameter. Note
that this method definition looks just like the definition of a Function procedure in a
module. The program also includes method cmdMaximum_Click (lines 26–36). When
the user double-clicks a component, such as a Button, in Design mode, the IDE gener-
ates a method that Handles an event (i.e., an event handler). An event represents a user
action, such as clicking a Button or altering a value. An event handler is a method that is
executed (called) when a certain event is raised (occurs). In this case, method
cmdMaximum_Click handles the event in which Button cmdMaximum is clicked.
Programmers write code to perform certain tasks when such events occur. By employing
both events and objects, programmers can create applications that enable more sophisti-
cated user interactions than those we have seen previously. Event-handler names created
by the IDE begin with the object’s name, followed by an underscore and the name of the
event. We explain how to create our own event handlers, which can be given any name, in
Chapter 12, Graphical User Interface Concepts: Part 1.

When the user clicks cmdMaximum, procedure cmdMaximum_Click (lines 26–36)
executes. Lines 31–33 retrieve the values in the three TextBoxes, using the Text prop-
erty. The values are converted implicitly to type Double and stored in variables value1,
value2 and value3.

Line 35 calls method Maximum (lines 39–43) with the arguments value1, value2
and value3. The values of these arguments are then stored in parameters valueOne,
valueTwo and valueThree in method Maximum. Maximum returns the result of the
expression on line 42, which makes two calls to method Max of the Math class. Method
Max returns the largest of its two Double arguments, meaning the computation in line 42
first compares valueOne and valueTwo, then compares the value returned by the first
method call to valueThree. Calls to methods, such as Math.Max, that are defined in a
class in the FCL must include the class name and the dot (.) operator (also called the
member access operator). However, calls to methods defined in the class that contains the
method call need only specify the method name. 

When control returns to method cmdMaximum_Click, line 35 assigns the value
returned by method Maximum to lblMaximum’s Text property, causing it to be dis-
played for the user.



Chapter 6 Procedures 193

The reader may notice that typing the opening parenthesis after a method or procedure
name causes Visual Studio to display a window containing the procedure’s argument
names and types. This is the Parameter Info feature (Fig. 6.5) of the IDE. Parameter Info
greatly simplifies coding by identifying accessible procedures and their arguments. The
Parameter Info feature displays information for programmer-defined procedures and all
methods contained in the FCL. 

Good Programming Practice 6.4
Selecting descriptive parameter names makes the information provided by the Parameter Info
feature more meaningful. 6.4

Visual Basic also provides the IntelliSense feature, which displays all the members in
a class. For instance, when the programmer types the dot (.) operator (also called the
member access operator) after the class name, Math, in Fig. 6.6, IntelliSense provides a
list of all the available methods in class Math. The Math class contains numerous methods
that allow the programmer to perform a variety of common mathematical calculations.

Fig. 6.5Fig. 6.5Fig. 6.5Fig. 6.5 Parameter Info feature of the Visual Studio .NET IDE.

Fig. 6.6Fig. 6.6Fig. 6.6Fig. 6.6 IntelliSense feature of the Visual Studio .NET IDE.

Parameter Info window



194 Procedures Chapter 6

As an example of the variety of FCL methods, some Math class methods are summa-
rized in Fig. 6.7. Throughout the table, the variables x and y are of type Double; however,
many of the methods also provide versions that take values of other data types as argu-
ments. In addition, the Math class also defines two mathematical constants: Math.PI and
Math.E. The constant Math.PI (3.14159265358979323846) of class Math is the
ratio of a circle’s circumference to its diameter (i.e., twice the radius). The constant
Math.E (2.7182818284590452354) is the base value for natural logarithms (calcu-
lated with the Math.Log method).    

Common Programming Error 6.6
Failure to invoke a Math class method by preceding the method name with the class name
Math and a dot operator (.) is a syntax error.  6.6

Method Description Example

Abs(x) returns the absolute value of x Abs(23.7) is 23.7
Abs(0) is 0
Abs(-23.7) is 23.7

Ceiling(x) rounds x to the smallest integer 
not less than x

Ceiling(9.2) is 10.0
Ceiling(-9.8) is -9.0

Cos(x) returns the trigonometric cosine 
of x (x in radians)

Cos(0.0) is 1.0

Exp(x) returns the exponential ex Exp(1.0) is approximately 
2.71828182845905
Exp(2.0) is approximately 
7.38905609893065

Floor(x) rounds x to the largest integer 
not greater than x

Floor(9.2) is 9.0
Floor(-9.8) is -10.0

Log(x) returns the natural logarithm of 
x (base e)

Log(2.7182818284590451)
is approximately 1.0
Log(7.3890560989306504)
is approximately 2.0

Max(x, y) returns the larger value of x and
y (also has versions for
Single, Integer and Long
values)

Max(2.3, 12.7) is 12.7
Max(-2.3, -12.7) is -2.3

Min(x, y) returns the smaller value of x
and y (also has versions for 
Single, Integer and Long
values)

Min(2.3, 12.7) is 2.3
Min(-2.3, -12.7) is -12.7

Pow(x, y) calculates x raised to power y

(xy)

Pow(2.0, 7.0) is 128.0
Pow(9.0, .5) is 3.0

Sin(x) returns the trigonometric sine of 
x (x in radians)

Sin(0.0) is 0.0

Fig. 6.7Fig. 6.7Fig. 6.7Fig. 6.7 Math class methods (part 1 of 2).



Chapter 6 Procedures 195

Software Engineering Observation 6.9
It is not necessary to add an assembly reference to use the Math class methods in a program,
because class Math is located in namespace System, which is implicitly added to all con-
sole applications.      6.9

6.6 Argument Promotion
An important feature of procedure definitions is the coercion of arguments (i.e., the forcing
of arguments to the appropriate data type so that they can be passed to a procedure). Visual
Basic supports both widening and narrowing conversions. Widening conversion occurs
when a type is converted to another type (usually one that can hold more data) without los-
ing data, whereas a narrowing conversion occurs when there is potential for data loss dur-
ing the conversion (usually to a type that holds a smaller amount of data). Figure 6.8 lists
the widening conversions supported by Visual Basic.

For example, the Math class method Sqrt can be called with an Integer argument,
even though the method is defined in the Math class to receive a Double argument. The
statement

Console.Write(Math.Sqrt(4))

correctly evaluates Math.Sqrt(4) and prints the value 2. Visual Basic promotes (i.e.,
converts) the Integer value 4 to the Double value 4.0 before the value is passed to
Math.Sqrt. In this case, the argument value does not correspond precisely to the param-
eter type in the method definition, so an implicit widening conversion changes the value to
the proper type before the method is called. Visual Basic also performs narrowing conver-
sions on arguments passed to procedures. For example, if String variable number con-
tains the value "4", the method call Math.Sqrt(number) correctly evaluates to 2.
However, some implicit narrowing conversions can fail, resulting in runtime errors and
logic errors. For example, if number contains the value "hello", passing it as an argu-
ment to method Math.Sqrt causes a runtime error. In the next section, we discuss some
measures the programmer can take to help avoid such issues.

Common Programming Error 6.7
When performing a narrowing conversion (e.g., Double to Integer), conversion of a
primitive-data-type value to another primitive data type might change the value. Also, the
conversion of any integral value to a floating-point value and back to an integral value could
introduce rounding errors into the result. 6.7

Sqrt(x) returns the square root of x Sqrt(9.0) is 3.0
Sqrt(2.0) is 1.4142135623731

Tan(x) returns the trigonometric
tangent of x (x in radians)

Tan(0.0) is 0.0

Method Description Example

Fig. 6.7Fig. 6.7Fig. 6.7Fig. 6.7 Math class methods (part 2 of 2).



196 Procedures Chapter 6

Argument promotion applies not only to primitive data-type values passed as arguments
to methods, but also to expressions containing values of two or more data types. Such expres-
sions are referred to as mixed-type expressions. In a mixed-type expression, each value is pro-
moted to the “highest” data type in the expression (i.e., widening conversions are made until
the values are of the same type). For example, if singleNumber is of type Single and
integerNumber is of type Integer, when Visual Basic evaluates the expression

singleNumber + integerNumber

the value of integerNumber is converted to type Single, then added to single-
Number, producing a Single result. Although the values’ original data types are main-
tained, a temporary version of each value is created for use in the expression, and the data
types of the temporary versions are modified appropriately.

6.7 Option Strict and Data-Type Conversions
Visual Basic provides several options for controlling the way the compiler handles data
types. These options can help programmers eliminate such errors as those caused by nar-
rowing conversions, making code more reliable and secure. The first option is Option
Explicit, which is set to On by default, meaning it was enabled in the Visual Basic pro-
grams created in Chapters 2–5. Option Explicit forces the programmer to declare ex-
plicitly all variables before they are used in a program. Forcing explicit declarations
eliminates spelling errors and other subtle errors that may occur if Option Explicit is
turned off. For example, when Option Explicit is set to Off, the compiler interprets
misspelled variable names as new variable declarations, which create subtle errors that can
be difficult to debug.

A second option, which is by default set to Off, is Option Strict. Visual Basic pro-
vides Option Strict as a means to increase program clarity and reduce debugging time.

Type Conversion Types

Boolean Object

Byte Short, Integer, Long, Decimal, Single, Double or Object

Char String or Object

Date Object

Decimal Single, Double or Object

Double Object

Integer Long, Decimal, Single, Double or Object

Long Decimal, Single, Double or Object

Object none

Short Integer, Long, Decimal, Single, Double or Object

Single Double or Object

String Object

Fig. 6.8Fig. 6.8Fig. 6.8Fig. 6.8 Widening conversions.



Chapter 6 Procedures 197

When set to On, Option Strict causes the compiler to check all conversions and
requires the programmer to perform an explicit conversion for all narrowing conversions
that could cause data loss (e.g., conversion from Double to Integer) or program termi-
nation (e.g., conversion of a String, such as "hello", to type Integer).

The methods in class Convert change data types explicitly. The name of each con-
version method is the word To, followed by the name of the data type to which the method
converts its argument. For instance, to store a String input by the user in variable
number of type Integer (represented in Visual Basic .NET as type Int32, a 32-bit
integer) with Option Strict set to On, we use the statement

number = Convert.ToInt32(Console.ReadLine())

When Option Strict is set to Off, Visual Basic performs such type conversions
implicitly, meaning the programmer might not realize that a narrowing conversion is being
performed. If the data being converted is incompatible with the new data type, a runtime
error occurs. Option Strict draws the programmer’s attention to narrowing conver-
sions so that they can be eliminated or handled properly. In Chapter 11, Exception Han-
dling, we discuss how to handle the errors caused by failed narrowing conversions.

Software Engineering Observation 6.10
Performing explicit conversions allows programs to execute more efficiently by eliminating the
need to determine the data type of the value being changed before the conversion executes. 6.10

From this point forward, all code examples have Option Strict set to On.
Option Strict can be activated through the IDE by right-clicking the project name in
the Solution Explorer. From the resulting menu, select Properties to open the Prop-
erty Pages dialog Fig. 6.9. From the directory tree on the left side of the dialog, select
Build from the Common Properties list. In the middle of the dialog is a drop-down box
labeled Option Strict:. By default, the option is set to Off. Choose On from the drop-
down box and press Apply.

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Property Pages dialog with Option Strict set to On.



198 Procedures Chapter 6

Setting Option Strict to On in the Property Pages applies the change globally,
to the entire project. The programmer also can enable Option Strict within an indi-
vidual code file by typing Option Strict On at the start of the file above any declara-
tions or Imports statements.

6.8 Value Types and Reference Types
In the next section, we discuss passing arguments to procedures by value and by reference.
To understand this, we first need to make a distinction between data types in Visual Basic.
All Visual Basic data types can be categorized as either value types or reference types. A
variable of a value type contains data of that type. Normally, value types are used for a sin-
gle piece of data, such as an Integer or a Double value. By contrast, a variable of a
reference type (sometimes called a reference) contains a location in memory where data is
stored. The location in memory can contain many individual pieces of data. Collectively,
reference types are known as objects and are discussed in detail in Chapters 8, 9 and 10,
Object-Based Programming, Object-Oriented Programming: Inheritance, and Object-Ori-
ented Programming: Polymorphism.

Both value types and reference types include built-in types and types that the pro-
grammer can create. The built-in value types include the integral types (Byte, Short,
Integer and Long), the floating-point types (Single and Double) and types
Boolean, Date, Decimal and Char. The built-in reference types include Object and
String (although type String often behaves more like a value type, as we discuss in
the next section). The value types that can be constructed by the programmer include
Structures and Enumerations. The reference types that can be created by the pro-
grammer include classes, interfaces and delegates. Programmer-defined types are dis-
cussed in greater detail in Chapter 8, Object-Based Programming, Chapter 9, Object-
Oriented Programming: Inheritance and Chapter 15, Strings, Characters and Regular
Expressions.

The table in Fig. 6.10 lists the primitive data types, which form the building blocks for
more complicated types, such as classes. If Option Explicit is set to On, all variables
must have a type before they can be used in a program. This requirement is referred to as
strong typing.

Type
Size 
in bits Values Standard

Boolean 16 True or False

Char 16 One Unicode character (Unicode character set)

Byte 8 0 to 255

Date 64 1 January 0001 to 31 December 9999
0:00:00 to 23:59:59

Decimal 128 1.0E-28 to 7.9E+28

Short 16 –32,768 to 32,767

Fig. 6.10Fig. 6.10Fig. 6.10Fig. 6.10 Visual Basic primitive data types (part 1 of 2).



Chapter 6 Procedures 199

Each value type in the table is accompanied by its size in bits (there are 8 bits to a byte)
and its range of values. To promote portability, Microsoft chose to use internationally rec-
ognized standards for both character formats (Unicode) and floating-point numbers (IEEE
754). We discuss the Unicode character formats in Appendix F, Unicode.

Values typed directly in program code are called literals. Each literal corresponds to
one of the primitive data types. We already have seen literals for commonly-used types,
such as String, Integer and Double. However, some of Visual Basic’s data types use
special notations for creating literals. For instance, to create a literal of type Char, follow
a single-character String with the type character c. The statement

Dim character As Char = "Z"c

declares Char variable character and initializes it to the "Z" character.
Similarly, literals of specific integral data types can be created by following an integer

with the type character S (for Short), I (for Integer) or L (for Long). To create
floating-point literals, follow a floating-point number with type character F (for Single)
or R (for Double). Type character D can be used to create Decimal literals.

Visual Basic also allows programmers to type floating-point literals in scientific nota-
tion, by following a floating-point number by the character E and a positive or negative
exponent of 10. For example, 1.909E-5 corresponds to the value 0.00001909. This
notation is useful for specifying floating-point values that are too large or too small to be
written in fixed-point notation.

Figure 6.11 displays Visual Basic’s type characters and examples of literals for each
data type. All literals must be within the range for the literal’s type, as specified in Fig. 6.10.

Integer 32 –2,147,483,648 to 
2,147,483,647

Long 64 –9,223,372,036,854,775,808 
to 9,223,372,036,854,775,807

Single 32 ±1.5E-45 to ±3.4E+38 (IEEE 754 floating point)

Double 64 ±5.0E–324 to ±1.7E+308 (IEEE 754 floating point)

Object 32 Data of any type

String 0 to ~2000000000 Unicode characters (Unicode character set)

Type
Size 
in bits Values Standard

Fig. 6.10Fig. 6.10Fig. 6.10Fig. 6.10 Visual Basic primitive data types (part 2 of 2).

Type Type character Example

Char c "u"c

Single F 9.802E+31F

Fig. 6.11Fig. 6.11Fig. 6.11Fig. 6.11 Literals with type characters (part 1 of 2).



200 Procedures Chapter 6

6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference
Arguments are passed in one of two ways: Pass-by-value and pass-by-reference (also
called call-by-value and call-by-reference). When an argument is passed by value, the pro-
gram makes a copy of the argument’s value and passes that copy to the called procedure.
With pass-by-value, changes to the called procedure’s copy do not affect the original vari-
able’s value. In contrast, when an argument is passed by reference, the caller gives the
called procedure the ability to access and modify the caller’s original data directly.
Figure 6.12 demonstrates passing value-type arguments by value and by reference.1

The program passes three value-type variables, number1, number2 and number3, in
different ways to procedures SquareByValue (lines 39–45) and SquareByReference
(lines 48–54). Keyword ByVal in the procedure header of SquareByValue (line 39) indi-
cates that value-type arguments should be passed by value. When number1 is passed to
SquareByValue (line 13), a copy of the value stored in number1 (i.e., 2) is passed to the
procedure. Therefore, the value of number1 in the calling procedure, Main, is not modified
when parameter number is squared in procedure SquareByValue (line 42).

Procedure SquareByReference uses keyword ByRef (line 48) to receive its
value-type parameter by reference. When Main calls SquareByReference (line 23),
a reference to the value stored in number2 is passed, which gives SquareByRefer-
ence direct access to the value stored in the original variable. Thus, the value stored in
number2 after SquareByReference finishes executing is the same as the final value
of parameter number.

When arguments are enclosed in parentheses, (), a copy of the value of the argument
is passed to the procedure, even if the procedure header includes keyword ByRef. Thus,
the value of number3 does not change after it is passed to SquareByReference (line
33) via parentheses. 

Passing value-type arguments with keyword ByRef is useful when procedures need
to alter argument values directly. However, passing by reference can weaken security,
because the called procedure can modify the caller’s data.     

Reference-type variables passed with keyword ByVal are effectively passed by refer-
ence, as the value that is copied is the reference for the object. Although Visual Basic
allows programmers to use keyword ByRef with reference-type parameters, it is usually

Double R 6.04E-187R

Decimal D 128309.76D

Short S 3420S

Integer I -867I

Long L 19235827493259374L

1. In Chapter 7 we discuss passing reference-type arguments by value and by reference.

Type Type character Example

Fig. 6.11Fig. 6.11Fig. 6.11Fig. 6.11 Literals with type characters (part 2 of 2).



Chapter 6 Procedures 201

not necessary to do so except with type String. Although they technically are reference
types, String arguments cannot be modified directly when passed with keyword ByVal,
due to some subtle details of the String data type, which we discuss in Chapter 15,
Strings, Characters and Regular Expressions.  

1 ' Fig. 6.12: ByRefTest.vb
2 ' Demonstrates passing by reference.
3
4 Module modByRefTest
5
6    ' squares three values ByVal and ByRef, displays results
7 Sub Main()
8       Dim number1 As Integer = 2
9

10       Console.WriteLine("Passing a value-type argument by value:")
11       Console.WriteLine("Before calling SquareByValue, " & _
12          "number1 is {0}", number1)
13       SquareByValue(number1)  ' passes number1 by value
14       Console.WriteLine("After returning from SquareByValue, " & _
15          "number1 is {0}" & vbCrLf, number1)
16
17       Dim number2 As Integer = 2
18
19       Console.WriteLine("Passing a value-type argument" & _
20          " by reference:")
21       Console.WriteLine("Before calling SquareByReference, " & _
22          "number2 is {0}", number2)
23       SquareByReference(number2) ' passes number2 by reference
24       Console.WriteLine("After returning from " & _
25          "SquareByReference, number2 is {0}" & vbCrLf, number2)
26
27       Dim number3 As Integer = 2
28
29       Console.WriteLine("Passing a value-type argument" & _
30          " by reference, but in parentheses:")
31       Console.WriteLine("Before calling SquareByReference " & _
32          "using parentheses, number3 is {0}", number3)
33       SquareByReference((number3)) ' passes number3 by value
34       Console.WriteLine("After returning from " & _
35          "SquareByReference, number3 is {0}", number3)
36
37  End Sub ' Main
38
39  ' squares number by value (note ByVal keyword)
40 Sub SquareByValue(ByVal number As Integer)
41       Console.WriteLine("After entering SquareByValue, " & _
42          "number is {0}", number)
43       number *= number
44       Console.WriteLine("Before exiting SquareByValue, " & _
45          "number is {0}", number)
46  End Sub ' SquareByValue
47

Fig. 6.12Fig. 6.12Fig. 6.12Fig. 6.12 ByVal and ByRef used to pass value-type arguments (part 1 of 2).



202 Procedures Chapter 6

Testing and Debugging Tip 6.3
When passing arguments by value, changes to the called procedure’s copy do not affect the
original variable’s value. This prevents possible side effects that could hinder the develop-
ment of correct and reliable software systems. Always pass value-type arguments by value
unless you explicitly intend for the called procedure to modify the caller’s data. 6.3

Software Engineering Observation 6.11
Although keywords ByVal and ByRef may be used to pass reference-type variables by val-
ue or by reference, the called procedure can manipulate the caller’s reference-type variable
directly in both cases. Therefore, it is rarely appropriate to use ByRef with reference-type
variables. We discuss this subtle issue in detail in Chapter 7, Arrays. 6.11

6.10 Duration of Identifiers
Throughout the earlier chapters of this book, we have used identifiers for various purposes,
including as variable names and as the names of user-defined procedures, modules and
classes. Every identifier has certain attributes, including duration and scope.

An identifier’s duration (also called its lifetime) is the period during which the identi-
fier exists in memory. Some identifiers exist briefly, some are created and destroyed repeat-
edly, yet others are maintained through the entire execution of a program.

48  ' squares number by reference (note ByRef keyword)
49 Sub SquareByReference(ByRef number As Integer)
50       Console.WriteLine("After entering SquareByReference" & _
51          ", number is {0}", number)
52       number *= number
53       Console.WriteLine("Before exiting SquareByReference" & _
54          ", number is {0}", number)
55 End Sub ' SquareByReference
56
57 End Module ' modByRefTest

Passing a value-type argument by value:
Before calling SquareByValue, number1 is 2
After entering SquareByValue, number is 2
Before exiting SquareByValue, number is 4
After returning from SquareByValue, number1 is 2

Passing a value-type argument by reference:
Before calling SquareByReference, number2 is 2
After entering SquareByReference, number is 2
Before exiting SquareByReference, number is 4
After returning from SquareByReference, number2 is 4

Passing a value-type argument by reference, but in parentheses:
Before calling SquareByReference using parentheses, number3 is 2
After entering SquareByReference, number is 2
Before exiting SquareByReference, number is 4
After returning from SquareByReference, number3 is 2

Fig. 6.12Fig. 6.12Fig. 6.12Fig. 6.12 ByVal and ByRef used to pass value-type arguments (part 2 of 2).



Chapter 6 Procedures 203

Software Engineering Observation 6.12
When returning information from a Function procedure via a Return statement, value-
type variables always are returned by value (i.e., a copy is returned), whereas reference-type
variables always are returned by reference (i.e., a reference to an object is returned). 6.12

The scope of an identifier is the portion of a program in which the variable’s identifier
can be referenced. Some identifiers can be referenced throughout a program; others can be
referenced only from limited portions of a program (such as within a single procedure). This
section discusses the duration of identifiers. Section 6.11 discusses the scope of identifiers.

Identifiers that represent local variables in a procedure (i.e., parameters and variables
declared in the procedure body) have automatic duration. Automatic-duration variables are
created when program control enters the procedure in which they are declared, exist while
the procedure is active and are destroyed when the procedure is exited.2 For the remainder
of the text, we refer to variables of automatic duration simply as automatic variables, or
local variables.

Variables declared inside a module or class, but outside any procedure definition, exist
as long as their containing class or module is loaded in memory. Variables declared in a
module exist throughout a program’s execution. By default, a variable declared in a class,
such as a Form class for a Windows application, is an instance variable. In the case of a
Form, this means that the variable is created when the Form loads and exists until the
Form is closed. We discuss instance variables in detail in Chapter 8, Object-Based Pro-
gramming.

Software Engineering Observation 6.13
Automatic duration is an example of the principle of least privilege. This principle states that
each component of a system should have only the rights and privileges it needs to accomplish
its designated task. This helps prevent accidental and/or malicious errors from occurring in
systems. Why have variables stored in memory and accessible when they are not needed? 6.13

6.11 Scope Rules
The scope (sometimes called declaration space) of a variable, reference or procedure iden-
tifier is the portion of the program in which the identifier can be accessed. The possible
scopes for an identifier are class scope, module scope, namespace scope and block scope.

Members of a class have class scope, which means that they are visible in what is
known as the declaration space of a class. Class scope begins at the class identifier after
keyword Class and terminates at the End Class statement. This scope enables a method
of that class to invoke directly all members defined in that class and to access members
inherited into that class.3 In a sense, members of a class are global to the methods of the
class in which they are defined. This means that the methods can modify instance variables
of the class (i.e., variables declared in the class definition, but outside any method defini-
tion) directly and invoke other methods of the class.

2. Variables in a procedure can also be declared using keyword Static, in which case the variable
is created and initialized during the first execution of the procedure then maintains its value be-
tween subsequent calls to the procedure.

3. In Chapter 8, Object-Based Programming, we see that Shared members are an exception to this
rule. 



204 Procedures Chapter 6

In Visual Basic .NET, identifiers declared inside a block, such as the body of a procedure
definition or the body of an If/Then selection structure, have block scope (local-variable
declaration space). Block scope begins at the identifier’s declaration and ends at the block’s
End statement (or equivalent, e.g., Next). Local variables of a procedure have block scope.
Procedure parameters also have block scope, because they are considered local variables of
the procedure. Any block can contain variable declarations. When blocks are nested in a body
of a procedure, an error is generated if an identifier declared in an outer block has the same
name as an identifier declared in an inner block. However, if a local variable in a called pro-
cedure shares its name with a variable with class scope, such as an instance variable, the class-
scope variable is “hidden” until the called procedure terminates execution.

Variables declared in a module have module scope, which is similar to class scope.
Variables declared in a module are accessible to all procedures defined in the module.
Module scope and class scope are sometimes referred to collectively as module scope. Like
class-scope variables, module-scope variables are hidden when they have the same identi-
fier as a local variable.

By default, procedures defined in a module have namespace scope, which generally
means that they may be accessed throughout a project. Namespace scope is useful in
projects that contain multiple pieces (i.e., modules and classes). If a project contains a
module and a class, methods in the class can access the procedures of the module. Although
variables declared in a module have module scope, they can be given namespace scope by
replacing keyword Dim with keyword Public in the declaration. We discuss how to add
modules to projects in Section 6.18.

Good Programming Practice 6.5
Avoid local-variable names that hide class-variable or module-variable names. 6.5

The program in Fig. 6.13 demonstrates scoping issues with instance variables and local
variables. Instance variable value is declared and initialized to 1 in line 12. As explained
previously, this variable is hidden in any procedure that declares a variable named value.
The FrmScoping_Load method declares a local variable value (line 19) and initializes
it to 5. This variable is displayed on lblOutput (note the declaration on line 7, which is
actually part of the Visual Studio .NET generated code) to illustrate that the instance vari-
able value is hidden in FrmScoping_Load.

1 ' Fig. 6.13: Scoping.vb
2 ' Demonstrates scope rules and instance variables.
3
4 Public Class FrmScoping
5 Inherits System.Windows.Forms.Form
6
7 Friend WithEvents lblOutput As System.Windows.Forms.Label
8
9    ' Visual Studio .NET generated code

10
11 ' instance variable can be used anywhere in class
12 Dim value As Integer = 1
13

Fig. 6.13Fig. 6.13Fig. 6.13Fig. 6.13 Scoping rules in a class (part 1 of 2).



Chapter 6 Procedures 205

14 ' demonstrates class scope and block scope
15 Private Sub FrmScoping_Load(ByVal sender As System.Object, _
16       ByVal e As System.EventArgs) Handles MyBase.Load
17
18       ' variable local to FrmScoping_Load hides instance variable
19       Dim value As Integer = 5
20
21       lblOutput.Text = "local variable value in" & _
22          " FrmScoping_Load is " & value
23
24       MethodA() ' MethodA has automatic local value
25       MethodB() ' MethodB uses instance variable value
26       MethodA() ' MethodA creates new automatic local value
27       MethodB() ' instance variable value retains its value
28
29       lblOutput.Text &= vbCrLf & vbCrLf & "local variable " & _
30          "value in FrmScoping_Load is " & value
31 End Sub ' FrmScoping_Load
32
33  ' automatic local variable value hides instance variable
34 Sub MethodA()
35       Dim value As Integer = 25 ' initialized after each call
36
37       lblOutput.Text &= vbCrLf & vbCrLf & "local variable " & _
38          "value in MethodA is " & value & " after entering MethodA"
39       value += 1
40       lblOutput.Text &= vbCrLf & "local variable " & _
41          "value in MethodA is " & value & " before exiting MethodA"
42 End Sub ' MethodA
43
44 ' uses instance variable value
45 Sub MethodB()
46       lblOutput.Text &= vbCrLf & vbCrLf & "instance variable" & _
47          " value is " & value & " after entering MethodB"
48       value *= 10
49       lblOutput.Text &= vbCrLf & "instance variable " & _
50          "value is " & value & " before exiting MethodB"
51 End Sub ' MethodB
52
53 End Class ' FrmScoping

Fig. 6.13Fig. 6.13Fig. 6.13Fig. 6.13 Scoping rules in a class (part 2 of 2).



206 Procedures Chapter 6

The program defines two other methods—MethodA and MethodB—which take no
arguments and return nothing. Each method is called twice from FrmScoping_Load.
MethodA defines local variable value (line 35) and initializes it to 25. When MethodA is
called, the variable is displayed in the label lblOutput, incremented and displayed again
before exiting the method. Automatic variable value is destroyed when MethodA termi-
nates. Thus, each time this method is called, value must be recreated and reinitialized to 25.

MethodB does not declare any variables. Therefore, when this procedure refers to vari-
able value, the instance variable value (line 12) is used. When MethodB is called, the
instance variable is displayed, multiplied by 10 and displayed again before exiting the
method. The next time method MethodB is called, the instance variable retains its modified
value, 10 and line 48 causes value (line 12) to become 100. Finally, the program again dis-
plays the local variable value in method FrmScoping_Load to show that none of the
method calls modified this variable value—both methods refer to variables in other scopes.

6.12 Random-Number Generation
We now take a brief and hopefully entertaining diversion into a popular programming ap-
plication—simulation and game playing. In this section and the next, we develop a struc-
tured game-playing program that includes multiple methods. The program employs many
of the control structures that we have studied to this point, in addition to introducing several
new concepts.

There is something in the air of a gambling casino that invigorates a wide variety of
people, ranging from the high rollers at the plush mahogany-and-felt craps tables to the
quarter-poppers at the one-armed bandits. Many of these individuals are drawn by the ele-
ment of chance—the possibility that luck will convert a pocketful of money into a mountain
of wealth. The element of chance can be introduced into computer applications through
class Random (located in namespace System). 

Consider the following statements:

Dim randomObject As Random = New Random()
Dim randomNumber As Integer = randomObject.Next()

The first statement declares randomObject as a reference to an object of type Random.
The value of randomObject is initialized using keyword New, which creates a new in-
stance of class Random (i.e., a Random object). In Visual Basic, keyword New creates an
object of a specified type and returns the object’s location in memory.

The second statement declares Integer variable randomNumber and assigns it the
value returned by calling Random method Next. We access method Next by following
the reference name, randomObject, by the dot (.) operator and the method name.
Method Next generates a positive Integer value between zero and the constant
Int32.MaxValue (2,147,483,647). If Next produces values at random, every value in
this range has an equal chance (or probability) of being chosen when Next is called. The
values returned by Next are actually pseudo-random numbers, or a sequence of values
produced by a complex mathematical calculation. This mathematical calculation requires a
seed value, which, if different each time the program is run, causes the series of mathemat-
ical calculations to be different as well (so that the numbers generated are indeed random).
When we create a Random object, the current time of day becomes the seed value for the
calculation. Alternatively, we can pass a seed value as an argument in the parentheses after



Chapter 6 Procedures 207

New Random. Passing in the same seed twice results in the same series of random num-
bers. Using the current time of day as the seed value is effective, because the time is likely
to change for each Random object we create.

The generation of random numbers often is necessary in a program. However, the
range of values produced by Next (i.e., values between 0–2,147,483,647) often is different
from that needed in a particular application. For example, a program that simulates coin-
tossing might require only 0 for “heads” and 1 for “tails.” A program that simulates the
rolling of a six-sided die would require random Integers from 1–6. Similarly, a program
that randomly predicts the next type of spaceship (out of four possibilities) that flies across
the horizon in a video game might require random Integers from 1–4.

By passing an argument to method Next as follows

value = 1 + randomObject.Next(6)

we can produce integers in the range 1–6. When a single argument is passed to Next, the
values returned by Next will be in the range from 0 to (but not including) the value of that
argument. This is called scaling. The number 6 is the scaling factor. We shift the range of
numbers produced by adding 1 to our previous result, so that the return values are between
1 and 6, rather than 0 and 5. The values produced by Next are always in the range

x ≤ x + randomObject.Next(y) < y

Visual Basic simplifies this process by allowing the programmer to pass two argu-
ments to Next. For example, the above statement also could be written as

value = randomObject.Next(1, 7)

Note that we must use 7 as the second argument to method Next to produce integers
in the range from 1–6. The first argument indicates the minimum value in our desired range,
whereas the second is equal to 1 + the maximum value desired. Thus, the values produced
by this version of Next will always be in the range

x ≤ randomObject.Next(x, y) < y

In this case, x is the shifting value, and y-x is the scaling factor. Figure 6.14 demonstrates
the use of class Random and method Next by simulating 20 rolls of a six-sided die and
showing the value of each roll in a MessageBox. Note that all the values are in the range
from 1–6, inclusive.   

The program in Fig. 6.15 uses class Random to simulate rolling four six-sided dice. We
then use some of the functionality from this program in another example (Fig. 6.16) to dem-
onstrate that the numbers generated by Next occur with approximately equal likelihood.

In Fig. 6.15, we use event-handling method cmdRoll_Click, which executes when-
ever the user clicks cmdRoll, resulting in method DisplayDie being called four times,
once for each Label on the Form. Calling DisplayDie (lines 35–44) causes four dice to
appear as if they are being rolled each time cmdRoll is clicked. Note that, when this pro-
gram runs, the dice images do not appear until the user clicks cmdRoll for the first time.

Method DisplayDie specifies the correct image for the face value calculated by
method Next (line 38). Notice that we declare randomObject as an instance variable of
FrmRollDice (line 21). This allows the same Random object to be used each time Dis-



208 Procedures Chapter 6

playDie executes. We use the Image property (line 41) to display an image on a label. We
set the property’s value with an assignment statement (lines 41–43). Notice that we specify
the image to display through procedure FromFile in class Image (contained in the
System.Drawing namespace). Method Directory.GetCurrentDirectory
(contained in the System.IO namespace) returns the location of the folder in which the cur-
rent project is located, including bin, the directory containing the compiled project files. The
die images must be placed in this folder for the solutions in Fig. 6.15 and Fig. 6.16 to operate
properly. The graphics used in this example and several other examples in this chapter were
created with Adobe® Photoshop™ Elements and are located in the project directory available
on the CD-ROM that accompanies this book and at www.deitel.com.

Notice that we must include an Imports directive (line 4) to use classes in
System.IO, but not to use classes in System.Drawing. By default, Windows appli-
cations import several namespaces, including Microsoft.VisualBasic, System,
System.Drawing, System.Windows.Forms and System.Collections. The
se namespaces are imported for the entire project, eliminating the need for Imports direc-
tives in individual project files. Other namespaces can be imported into a project via the
Property Pages dialog (opened by selecting Project > Properties from the menu bar)
in the Imports listing under Common Properties. Some of the namespaces imported
by default are not used in this example. For instance, we do not yet use namespace
System.Collections, which allows programmers to create collections of objects (see
Chapter 24, Data Structures and Collections). 

The Windows application in Fig. 6.16 rolls 12 dice to show that the numbers generated
by class Random occur with approximately equal frequencies. The program displays the
cumulative frequencies of each face in a TextBox.

1 ' Fig. 6.14: RandomInteger.vb
2 ' Generating random integers.
3
4 Imports System.Windows.Forms
5
6 Module modRandomInteger
7
8 Sub Main()
9       Dim randomObject As Random = New Random()

10       Dim randomNumber As Integer
11       Dim output As String = ""
12       Dim i As Integer
13
14       For i = 1 To 20
15          randomNumber = randomObject.Next(1, 7)
16          output &= randomNumber & " "
17
18          If i Mod 5 = 0 Then ' is i a multiple of 5?
19             output &= vbCrLf
20          End If
21
22       Next

Fig. 6.14Fig. 6.14Fig. 6.14Fig. 6.14 Random integers created by calling method Next of class Random
 (part 1 of 2).



Chapter 6 Procedures 209

23
24       MessageBox.Show(output, "20 Random Numbers from 1 to 6", _
25          MessageBoxButtons.OK, MessageBoxIcon.Information)
26    End Sub ' Main
27
28 End Module ' modRandomInteger

1 ' Fig. 6.15: RollDice.vb
2 ' Rolling four dice.
3
4 Imports System.IO
5
6 Public Class FrmRollDice
7 Inherits System.Windows.Forms.Form
8
9    ' button for rolling dice

10 Friend WithEvents cmdRoll As System.Windows.Forms.Button
11
12    ' labels to display die images
13 Friend WithEvents lblDie1 As System.Windows.Forms.Label
14 Friend WithEvents lblDie2 As System.Windows.Forms.Label
15 Friend WithEvents lblDie3 As System.Windows.Forms.Label
16 Friend WithEvents lblDie4 As System.Windows.Forms.Label
17
18    ' Visual Studio .NET generated code
19
20    ' declare Random object reference
21 Dim randomNumber As Random = New Random()
22
23 ' display results of four rolls
24    Private Sub cmdRoll_Click(ByVal sender As System.Object, _
25       ByVal e As System.EventArgs) Handles cmdRoll.Click
26
27       ' method randomly assigns a face to each die
28       DisplayDie(lblDie1)
29       DisplayDie(lblDie2)
30       DisplayDie(lblDie3)
31       DisplayDie(lblDie4)
32 End Sub ' cmdRoll_Click
33

Fig. 6.15Fig. 6.15Fig. 6.15Fig. 6.15 Demonstrates 4 die rolls (part 1 of 2).

Fig. 6.14Fig. 6.14Fig. 6.14Fig. 6.14 Random integers created by calling method Next of class Random
 (part 2 of 2).



210 Procedures Chapter 6

Figure 6.16 contains two screenshots: One on the left that shows the program when the
program initially executes and one on the right that shows the program after the user has
clicked Roll over 200 times. If the values produced by method Next are indeed random,
the frequencies of the face values (1–6) should be approximately the same (as the left
screenshot illustrates).

To show that the die rolls occur with approximately equal likelihood, the program in
Fig. 6.16 has been modified to keep some simple statistics. We declare counters for each of
the possible rolls in line 31. Notice that the counters are instance variables, i.e., variables
with class scope. Lines 60–76 display the frequency of each roll as percentages using the
"P" format code.

As the program output demonstrates, we have utilized function Next to simulate the
rolling of a six-sided die. Over the course of many die rolls, each of the possible faces from
1–6 appears with equal likelihood, or approximately one-sixth of the time. Note that no
Case Else is provided in the Select structure (lines 91–111), because we know that the
values generated are in the range 1–6. In Chapter 7, Arrays, we explain how to replace the
entire Select structure in this program with a single-line statement.

Run the program several times and observe the results. Notice that a different sequence
of random numbers is obtained each time the program is executed, causing the resulting fre-
quencies to vary.

34    ' get a random die image
35 Sub DisplayDie(ByVal dieLabel As Label)
36
37       ' generate random integer in range 1 to 6
38       Dim face As Integer = randomNumber.Next(1, 7)
39
40       ' load corresponding image
41       dieLabel.Image = Image.FromFile( _
42          Directory.GetCurrentDirectory & "\Images\die" & _
43          face & ".png")
44 End Sub ' DisplayDie
45
46 End Class ' FrmRollDice

Fig. 6.15Fig. 6.15Fig. 6.15Fig. 6.15 Demonstrates 4 die rolls (part 2 of 2).



Chapter 6 Procedures 211

1 ' Fig. 6.16: RollTwelveDice.vb
2 ' Rolling 12 dice with frequency chart.
3
4 Imports System.IO
5
6 Public Class FrmRollTwelveDice
7 Inherits System.Windows.Forms.Form
8
9    ' labels to display die images

10 Friend WithEvents lblDie1 As System.Windows.Forms.Label
11 Friend WithEvents lblDie2 As System.Windows.Forms.Label
12 Friend WithEvents lblDie3 As System.Windows.Forms.Label
13 Friend WithEvents lblDie4 As System.Windows.Forms.Label
14 Friend WithEvents lblDie5 As System.Windows.Forms.Label
15 Friend WithEvents lblDie6 As System.Windows.Forms.Label
16 Friend WithEvents lblDie7 As System.Windows.Forms.Label
17 Friend WithEvents lblDie8 As System.Windows.Forms.Label
18 Friend WithEvents lblDie9 As System.Windows.Forms.Label
19 Friend WithEvents lblDie10 As System.Windows.Forms.Label
20 Friend WithEvents lblDie11 As System.Windows.Forms.Label
21 Friend WithEvents lblDie12 As System.Windows.Forms.Label
22
23    ' displays roll frequencies
24 Friend WithEvents displayTextBox As _
25       System.Windows.Forms.TextBox
26
27    ' Visual Studio .NET generated code
28
29    ' declarations
30 Dim randomObject As Random = New Random()
31 Dim ones, twos, threes, fours, fives, sixes As Integer
32
33    Private Sub cmdRoll_Click _
34       (ByVal sender As System.Object, _
35       ByVal e As System.EventArgs) Handles cmdRoll.Click
36
37       ' assign random faces to 12 dice using DisplayDie
38       DisplayDie(lblDie1)
39       DisplayDie(lblDie2)
40       DisplayDie(lblDie3)
41       DisplayDie(lblDie4)
42       DisplayDie(lblDie5)
43       DisplayDie(lblDie6)
44       DisplayDie(lblDie7)
45       DisplayDie(lblDie8)
46       DisplayDie(lblDie9)
47       DisplayDie(lblDie10)
48       DisplayDie(lblDie11)
49       DisplayDie(lblDie12)
50
51       Dim total As Integer = ones + twos + threes + fours + _
52          fives + sixes
53

Fig. 6.16Fig. 6.16Fig. 6.16Fig. 6.16 Random class used to simulate rolling 12 six-sided dice (part 1 of 3).



212 Procedures Chapter 6

54       Dim output As String
55
56       ' display frequencies of faces
57       output = "Face" & vbTab & vbTab & _
58          "Frequency" & vbTab & "Percent"
59
60       output &= vbCrLf & "1" & vbTab & vbTab & ones & _
61          vbTab & vbTab & String.Format("{0:P}", ones / total)
62
63       output &= vbCrLf & "2" & vbTab & vbTab & twos & vbTab & _
64          vbTab & String.Format("{0:P}", twos / total)
65
66       output &= vbCrLf & "3" & vbTab & vbTab & threes & vbTab & _
67          vbTab & String.Format("{0:P}", threes / total)
68
69       output &= vbCrLf & "4" & vbTab & vbTab & fours & vbTab & _
70          vbTab & String.Format("{0:P}", fours / total)
71
72       output &= vbCrLf & "5" & vbTab & vbTab & fives & vbTab & _
73          vbTab & String.Format("{0:P}", fives / total)
74
75       output &= vbCrLf & "6" & vbTab & vbTab & sixes & vbTab & _
76          vbTab & String.Format("{0:P}", sixes / total) & vbCrLf
77          
78       displayTextBox.Text = output
79 End Sub ' cmdRoll_Click
80
81 ' display a single die image
82 Sub DisplayDie(ByVal dieLabel As Label)
83
84       Dim face As Integer = randomObject.Next(1, 7)
85
86       dieLabel.Image = _
87          Image.FromFile(Directory.GetCurrentDirectory & _
88          "\Images\die" & face & ".png")
89
90       ' maintain count of die faces
91       Select Case face
92
93          Case 1
94             ones += 1
95
96          Case 2
97             twos += 1
98
99          Case 3
100             threes += 1
101
102          Case 4
103             fours += 1
104
105          Case 5
106             fives += 1

Fig. 6.16Fig. 6.16Fig. 6.16Fig. 6.16 Random class used to simulate rolling 12 six-sided dice (part 2 of 3).



Chapter 6 Procedures 213

6.13 Example: Game of Chance
One of the most popular games of chance is a dice game known as “craps,” played in casi-
nos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. Each face contains 1, 2, 3, 4, 5 or 6 spots.
After the dice have come to rest, the sum of the spots on the two upward faces is calculated.
If the sum is 7 or 11 on the first throw, the player wins. If the sum is 2, 3 or 12 on the first
throw (called “craps”), the player loses (i.e., the “house” wins). If the sum is 4, 5, 6, 8, 9 or
10 on the first throw, that sum becomes the player’s “point.” To win, players must continue
rolling the dice until they “make their point” (i.e., roll their point value). The player loses by
rolling a 7 before making the point.

The application in Fig. 6.17 simulates the game of craps.

107
108          Case 6
109             sixes += 1
110
111       End Select
112
113 End Sub ' DisplayDie
114
End Class ' FrmRollTwelveDice

Fig. 6.16Fig. 6.16Fig. 6.16Fig. 6.16 Random class used to simulate rolling 12 six-sided dice (part 3 of 3).



214 Procedures Chapter 6

Notice that the player must roll two dice on the first and all subsequent rolls. When
executing the application, click the Play button to play the game. The form displays the
results of each roll. The screen captures depict the execution of two games.

Lines 9–21 indicate that this program uses classes PictureBox, Label, Button
and GroupBox from namespace System.Windows.Forms. Although the Windows
Form Designer uses the full name for these classes (e.g., System.Win-
dows.Forms.PictureBox), we show only the class names for simplicity. Class names
are sufficient in this case, because System.Windows.Forms is imported by default for
Windows applications.

This program introduces several new GUI components. The first, called a GroupBox,
displays the user’s point. A GroupBox is a container used to group related components.
Within the GroupBox pointDiceGroup, we add two PictureBoxes, which are
components that display images. Components are added to a GroupBox by dragging and
dropping a component onto the GroupBox.

Before introducing any method definitions, the program includes several declarations,
including our first Enumeration on lines 26–32 and our first Constant identifiers on lines
35–36. Constant identifiers and Enumerations enhance program readability by providing
descriptive identifiers for numbers or Strings that have special meaning. Constant
identifiers and Enumerations help programmers ensure that values are consistent
throughout a program. Keyword Const creates a single constant identifier; Enumerations
are used to define groups of related constants. In this case, we create Constant identifiers
for the file names that are used throughout the program and create an Enumeration of
descriptive names for the various dice combinations in Craps (i.e., SNAKE_EYES, TREY,
CRAPS, YO_LEVEN and BOX_CARS). Constant identifiers must be assigned constant
values and cannot be modified after they are declared.  

1 ' Fig 6.17: CrapsGame.vb
2 ' Playing a craps game.
3
4 Imports System.IO
5
6 Public Class FrmCrapsGame
7 Inherits System.Windows.Forms.Form
8
9 Friend WithEvents cmdRoll As Button ' rolls dice

10 Friend WithEvents cmdPlay As Button ' starts new game
11
12    ' dice displayed after each roll
13 Friend WithEvents picDie1 As PictureBox
14 Friend WithEvents picDie2 As PictureBox
15
16    ' pointDiceGroup groups dice representing player's point
17 Friend WithEvents pointDiceGroup As GroupBox
18 Friend WithEvents picPointDie1 As PictureBox
19 Friend WithEvents picPointDie2 As PictureBox
20
21 Friend WithEvents lblStatus As Label
22

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 Craps game using class Random (part 1 of 4).



Chapter 6 Procedures 215

23    ' Visual Studio .NET generated code
24
25    ' die-roll constants
26 Enum DiceNames
27       SNAKE_EYES = 2
28       TREY = 3
29       CRAPS = 7
30       YO_LEVEN = 11
31       BOX_CARS = 12
32  End Enum
33
34    ' file-name and directory constants
35 Const FILE_PREFIX As String = "/images/die"
36 Const FILE_SUFFIX As String = ".png"
37
38 Dim myPoint As Integer
39 Dim myDie1 As Integer
40 Dim myDie2 As Integer
41 Dim randomObject As Random = New Random()
42
43    ' begins new game and determines point
44   Private Sub cmdPlay_Click(ByVal sender As System.Object, _
45       ByVal e As System.EventArgs) Handles cmdPlay.Click
46
47       ' initialize variables for new game
48       myPoint = 0
49       pointDiceGroup.Text = "Point"
50       lblStatus.Text = ""
51
52       ' remove point-die images
53       picPointDie1.Image = Nothing
54       picPointDie2.Image = Nothing
55
56       Dim sum As Integer = RollDice()
57
58     ' check die roll
59       Select Case sum
60
61          Case DiceNames.CRAPS, DiceNames.YO_LEVEN
62
63             ' disable roll button
64             cmdRoll.Enabled = False
65             lblStatus.Text = "You Win!!!"
66
67          Case DiceNames.SNAKE_EYES, _
68             DiceNames.TREY, DiceNames.BOX_CARS
69
70             cmdRoll.Enabled = False
71             lblStatus.Text = "Sorry. You Lose."
72
73      Case Else
74             myPoint = sum
75             pointDiceGroup.Text = "Point is " & sum

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 Craps game using class Random (part 2 of 4).



216 Procedures Chapter 6

76             lblStatus.Text = "Roll Again!"
77             DisplayDie(picPointDie1, myDie1)
78             DisplayDie(picPointDie2, myDie2)
79             cmdPlay.Enabled = False
80             cmdRoll.Enabled = True
81
82    End Select
83
84    End Sub ' cmdPlay_Click
85
86 ' determines outcome of next roll
87 Private Sub cmdRoll_Click(ByVal sender As System.Object, _
88       ByVal e As System.EventArgs) Handles cmdRoll.Click
89
90       Dim sum As Integer = RollDice()
91
92       ' check outcome of roll
93       If sum = myPoint Then
94          lblStatus.Text = "You Win!!!"
95          cmdRoll.Enabled = False
96          cmdPlay.Enabled = True
97       ElseIf sum = DiceNames.CRAPS Then
98          lblStatus.Text = "Sorry. You Lose."
99          cmdRoll.Enabled = False
100          cmdPlay.Enabled = True
101   End If
102
103    End Sub ' cmdRoll_Click
104
105    ' display die image
106 Sub DisplayDie(ByVal picDie As PictureBox, _
107       ByVal face As Integer)
108
109       ' assign die image to picture box
110       picDie.Image = _
111          Image.FromFile(Directory.GetCurrentDirectory & _
112          FILE_PREFIX & face & FILE_SUFFIX)
113    End Sub ' DisplayDie
114
115    ' generate random die rolls
116 Function RollDice() As Integer
117       Dim die1, die2 As Integer
118
119       ' determine random integer
120       die1 = randomObject.Next(1, 7)
121       die2 = randomObject.Next(1, 7)
122
123       ' display rolls
124       DisplayDie(picDie1, die1)
125       DisplayDie(picDie2, die2)
126

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 Craps game using class Random (part 3 of 4).



Chapter 6 Procedures 217

After the constant-identifier declarations and the declarations for several instance vari-
ables (lines 38–41), method cmdPlay_Click is defined (lines 44–84). Method
cmdPlay_Click is the event handler for the event cmdPlay.Click (created by
double-clicking cmdPlay in Design mode). In this example, the method’s task is to pro-
cess a user’s interaction with Button cmdPlay (which displays the text Play on the user
interface).

When the user clicks the Play button, method cmdPlay_Click sets up a new game
by initializing several values (lines 48–50). Setting the Image property of
picPointDie1 and picPointDie2 to Nothing (lines 53–54) causes the Pic-
tureBoxes to appear blank. Keyword Nothing can be used with reference-type vari-
ables to specify that no object is associated with the variable.

Method cmdPlay_Click executes the game’s opening roll by calling RollDice
(line 56). Internally, RollDice (lines 116–132) generates two random numbers and calls
method DisplayDie (lines 106–113), which loads an appropriate die image on the Pic-
tureBox passed to it.

127   ' set values
128       myDie1 = die1
129       myDie2 = die2
130
131       Return die1 + die2
132   End Function ' RollDice
133
134 End Class ' FrmCrapsGame

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 Craps game using class Random (part 4 of 4).

GroupBox PictureBoxes (displaying images)



218 Procedures Chapter 6

When RollDice returns, the Select structure (lines 59–82) analyzes the roll
returned by RollDice to determine how play should continue (i.e., by terminating the
game with a win or loss, or by enabling subsequent rolls). Depending on the value of the
roll, the buttons cmdRoll and cmdPlay become either enabled or disabled. Disabling a
Button causes no action to be performed when the Button is clicked. Buttons can be
enabled and disabled by setting the Enabled property to True or False.

If Button cmdRoll is enabled, clicking it invokes method cmdRoll_Click
(lines 87–103), which executes an additional roll of the dice. Method cmdRoll_Click
then analyzes the roll, letting users know whether they won or lost.

6.14 Recursion
In most of the programs we have discussed so far, procedures have called one another in a
disciplined, hierarchical manner. However, in some instances, it is useful to enable proce-
dures to call themselves. A recursive procedure is a procedure that calls itself either direct-
ly or indirectly (i.e., through another procedure). Recursion is an important topic that is
discussed at length in upper-level computer science courses. In this section and the next,
we present simple examples of recursion.

Prior to examining actual programs containing recursive procedures, we first consider
recursion conceptually. Recursive problem-solving approaches have a number of elements
in common. A recursive procedure is called to solve a problem. The procedure actually
knows how to solve only the simplest case(s), or base case(s). If the procedure is called
with a base case, the procedure returns a result. If the procedure is called with a more com-
plex problem, the procedure divides the problem into two conceptual pieces; a piece that
the procedure knows how to perform (base case), and a piece that the procedure does not
know how to perform. To make recursion feasible, the latter piece must resemble the orig-
inal problem, but be a slightly simpler or smaller version of it. The procedure invokes
(calls) a fresh copy of itself to work on the smaller problem—this is referred to as a recur-
sive call, or a recursion step. The recursion step also normally includes the keyword
Return, because its result will be combined with the portion of the problem that the pro-
cedure knew how to solve. Such a combination will form a result that will be passed back
to the original caller.

The recursion step executes while the original call to the procedure is still “open” (i.e.,
has not finished executing). The recursion step can result in many more recursive calls, as
the procedure divides each new subproblem into two conceptual pieces. As the procedure
continues to call itself with slightly simpler versions of the original problem, the sequence
of smaller and smaller problems must converge on the base case, so that the recursion can
eventually terminate. At that point, the procedure recognizes the base case and returns a
result to the previous copy of the procedure. A sequence of returns ensues up the line until
the original procedure call returns the final result to the caller. As an example of these con-
cepts, let us write a recursive program that performs a popular mathematical calculation. 

The factorial of a nonnegative integer n, written n! (and read “n factorial”), is the product

n · ( n - 1 ) · ( n - 2 ) · … · 1

with 1! equal to 1, and 0! defined as 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1, which
is equal to 120.



Chapter 6 Procedures 219

The factorial of an integer number greater than or equal to 0 can be calculated itera-
tively (nonrecursively) using a For repetition structure, as follows:

Dim counter, factorial As Integer = 1

For counter = number To 1 Step -1
   factorial *= counter
Next

We arrive at a recursive definition of the factorial procedure with the following rela-
tionship:

n! = n · ( n - 1 )!

For example, 5! is clearly equal to 5 · 4!, as is shown by the following:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · ( 4 · 3 · 2 · 1 )
5! = 5 · ( 4! )

A recursive evaluation of 5! would proceed as in Fig. 6.18. Figure 6.18a shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 6.18b depicts the values that are returned from each recursive call to its
caller until the final value is calculated and returned.

The program of Fig. 6.19 recursively calculates and prints factorials. (The choice of
the data type Long will be explained soon). The recursive method Factorial (lines 33–
41) first tests (line 35) to determine whether its terminating condition is true (i.e., number
is less than or equal to 1). If number is less than or equal to 1, Factorial returns 1, no
further recursion is necessary, and the method returns. If number is greater than 1, line 38
expresses the problem as the product of number and a recursive call to Factorial, eval-
uating the factorial of number - 1. Note that Factorial(number - 1) is a slightly
simpler problem than the original calculation, Factorial(number).

Fig. 6.18Fig. 6.18Fig. 6.18Fig. 6.18 Recursive evaluation of 5!.

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

(a) Procession of recursive calls (b) Values returned from each recursive call

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned



220 Procedures Chapter 6

Function Factorial (line 33) receives a parameter of type Long and returns a
result of type Long. As is seen in the output window of Fig. 6.19, factorial values escalate
quickly. We choose data type Long to enable the program to calculate factorials greater than
12!. Unfortunately, the values produced by the Factorial method increase at such a rate
that the range of even the Long type is quickly exceeded. This points to a weakness in most
programming languages: They are not easily extended to handle the unique requirements of
various applications, such as the evaluation of large factorials. As we will see in our treatment
of object-oriented programming beginning in Chapter 8, Visual Basic is an extensible lan-
guage—programmers with unique requirements can extend the language with new data types
(called classes). For example, a programmer could create a HugeInteger class that would
enable a program to calculate the factorials of arbitrarily large numbers.  

1 ' Fig. 6.19: Factorial.vb
2 ' Calculating factorials using recursion.
3
4 Public Class FrmFactorial
5 Inherits System.Windows.Forms.Form
6
7 Friend WithEvents lblEnter As Label     ' prompts for Integer
8 Friend WithEvents lblFactorial As Label ' indicates output
9

10 Friend WithEvents txtInput As TextBox   ' reads an Integer
11 Friend WithEvents txtDisplay As TextBox ' displays output
12
13 Friend WithEvents cmdCalculate As Button ' generates output
14
15    ' Visual Studio .NET generated code
16
17 Private Sub cmdCalculate_Click(ByVal sender As System.Object, _
18       ByVal e As System.EventArgs) Handles cmdCalculate.Click
19
20       Dim value As Integer = Convert.ToInt32(txtInput.Text)
21       Dim i As Integer
22       Dim output As String
23
24       txtDisplay.Text = ""
25
26       For i = 0 To value
27          txtDisplay.Text &= i & "! = " & Factorial(i) & vbCrLf
28       Next
29
30 End Sub ' cmdCalculate_Click
31
32    ' recursively generates factorial of number
33 Function Factorial(ByVal number As Long) As Long
34
35       If number <= 1 Then ' base case
36          Return 1
37       Else
38          Return number * Factorial(number - 1)
39       End If

Fig. 6.19Fig. 6.19Fig. 6.19Fig. 6.19 Recursive factorial program (part 1 of 2).



Chapter 6 Procedures 221

Common Programming Error 6.8
Forgetting to return a value from a recursive procedure can result in logic errors. 6.8

Common Programming Error 6.9
Omitting the base case or writing the recursive step so that it does not converge on the base
case will cause infinite recursion, eventually exhausting memory. This is analogous to the
problem of an infinite loop in an iterative (nonrecursive) solution. 6.9

6.15 Example Using Recursion: Fibonacci Series
The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and defines each subsequent Fibonacci number as the sum of the pre-
vious two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges on a constant value near 1.618. This number
occurs repeatedly in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings so that their ratios of length to width are equal to the golden
mean. Similarly, postcards often are designed with a golden-mean width-to-height ratio.

40
41 End Function ' Factorial
42
43 End Class ' FrmFactorial

Fig. 6.19Fig. 6.19Fig. 6.19Fig. 6.19 Recursive factorial program (part 2 of 2).



222 Procedures Chapter 6

The Fibonacci series can be defined recursively as follows:

fibonacci( 0 ) = 0
fibonacci( 1 ) = 1
fibonacci( n ) = fibonacci( n – 1 ) + fibonacci( n – 2 )

Note that there are two base cases for the Fibonacci calculation—fibonacci(0) is defined to
be 0, and fibonacci(1) is defined to be 1. The application in Fig. 6.20 recursively calculates
the ith Fibonacci number via method Fibonacci. The user enters an integer in the text
box, indicating the ith Fibonacci number to calculate, then clicks cmdCalculate. Meth-
od cmdCalculate_Click executes in response to the user clicking Calculate and
calls recursive method Fibonacci to calculate the specified Fibonacci number. Notice
that Fibonacci numbers, like the factorial values discussed in the previous section, tend to
become large quickly. Therefore, we use data type Long as the parameter type and the re-
turn type in method Fibonacci. In Fig. 6.20, the screen captures display the results of
several Fibonacci-number calculations performed by the application. 

The event handling in this example is similar to that of the Maximum application in
Fig. 6.4. In this example, the user enters a value in a text box and clicks Calculate
Fibonacci, causing method cmdCalculate_Click to execute.

The call to Fibonacci (line 23) from cmdCalculate_Click is not a recursive
call, but all subsequent calls to Fibonacci (line 33) are recursive. Each time that
Fibonacci is invoked, it immediately tests for the base case, which occurs when
number is equal to 0 or 1 (line 30). If this condition is true, number is returned, because
fibonacci(0) is 0 and fibonacci(1) is 1. Interestingly, if number is greater than 1, the recur-
sion step generates two recursive calls, each representing a slightly simpler problem than is
presented by the original call to Fibonacci. Figure 6.21 illustrates how method
Fibonacci would evaluate Fibonacci(3).    

1 ' Fig. 6.20: Fibonacci.vb
2 ' Demonstrating Fibonacci sequence recursively.
3
4 Public Class FrmFibonacci
5 Inherits System.Windows.Forms.Form
6
7    Friend WithEvents lblPrompt As Label ' prompts for input
8    Friend WithEvents lblResult As Label ' displays result
9

10    Friend WithEvents cmdCalculate As Button ' calculates result
11
12   Friend WithEvents txtInputBox As TextBox ' reads an Integer
13
14    ' Visual Studio .NET generated code
15
16    ' displays Fibonacci number in txtInputBox
17    Private Sub cmdCalculate_Click(ByVal sender As System.Object, _
18       ByVal e As System.EventArgs) Handles cmdCalculate.Click
19
20       ' read input
21       Dim number As Integer = Convert.ToInt32(txtInputBox.Text)
22

Fig. 6.20Fig. 6.20Fig. 6.20Fig. 6.20 Recursively generating Fibonacci numbers (part 1 of 3).



Chapter 6 Procedures 223

23       lblResult.Text = "Fibonacci Value is " & Fibonacci(number)
24 End Sub ' cmdCalculate_Click
25
26 ' calculate Fibonacci value recusively 
27 Function Fibonacci(ByVal number As Integer) As Long
28
29       ' check for base cases
30       If number = 1 OrElse number = 0 Then
31          Return number
32       Else
33          Return Fibonacci(number - 1) + Fibonacci(number - 2)
34       End If
35
36 End Function ' Fibonacci
37
38 End Class ' FrmFibonacci

Fig. 6.20Fig. 6.20Fig. 6.20Fig. 6.20 Recursively generating Fibonacci numbers (part 2 of 3).



224 Procedures Chapter 6

A word of caution about using a recursive program to generate Fibonacci numbers: Each
invocation of the Fibonacci method that does not match one of the base cases (i.e., 0 or 1)
results in two additional recursive calls to the Fibonacci method. This quickly results in
an exponential “explosion” of calls. For example, the calculation of the Fibonacci value of 20
using the program in Fig. 6.20 requires 21,891 calls to the Fibonacci method; the calcula-
tion of the Fibonacci value of 30 requires 2,692,537 calls to the Fibonacci method.

As the programmer evaluates larger Fibonacci numbers, each consecutive Fibonacci
that the program is asked to calculate results in a substantial increase in the number of calls
to the Fibonacci method and hence in calculation time. For example, the Fibonacci
value 31 requires 4,356,617 calls, whereas the Fibonacci value of 32 requires 7,049,155
calls. As you can see, the number of calls to Fibonacci increases quickly—1,664,080 addi-
tional calls between the Fibonacci values of 30 and 31, and 2,692,538 additional calls
between the Fibonacci values of 31 and 32. This difference in number of calls made
between the Fibonacci values of 31 and 32 is more than 1.5 times the difference between
30 and 31. Problems of this nature humble even the world’s most powerful computers! In
the field called complexity theory, computer scientists determine how hard algorithms must
work to do their jobs. Complexity issues usually are discussed in detail in the upper-level
computer science courses called “Algorithms.”

Fig. 6.21Fig. 6.21Fig. 6.21Fig. 6.21 Recursive calls to method Fibonacci.

Fig. 6.20Fig. 6.20Fig. 6.20Fig. 6.20 Recursively generating Fibonacci numbers (part 3 of 3).

Fibonacci( 3 )

return

return

+

+ return 1

return 1 return 0

Fibonacci( 2 ) Fibonacci( 1 )

Fibonacci( 1 ) Fibonacci( 0 )



Chapter 6 Procedures 225

Performance Tip 6.3
Avoid Fibonacci-style recursive programs, which result in an exponential “explosion” of calls. 6.3

6.16 Recursion vs. Iteration
In the previous sections, we studied two methods that can be implemented either recursive-
ly or iteratively. In this section, we compare the two approaches and discuss the reasons
why the programmer might choose one approach over the other.

Iteration and recursion are based on control structures—iteration uses a repetition
structure (such as For, While or Do/Loop Until), whereas recursion uses a selection
structure (such as If/Then, If/Then/Else or Select). Although both processes
involve repetition, iteration involves an explicit repetition structure, and recursion achieves
repetition through repeated procedure calls. The termination tests employed by the two pro-
cedures are also different. Iteration with counter-controlled repetition continues to modify
a counter until the counter’s value satisfies the loop-continuation condition. By contrast,
recursion produces simpler versions of the original problem until a base case is reached and
execution stops. However, both iteration and recursion can execute infinitely: An infinite
loop occurs in an iterative structure if the loop-continuation test is never satisfied; infinite
recursion occurs if the recursion step does not reduce the problem so that it eventually con-
verges on the base case.

Recursion has many disadvantages. It repeatedly invokes the mechanism, and conse-
quently the overhead, of procedure calls, consuming both processor time and memory
space. Each recursive call causes another copy of the procedure’s variables to be created;
when many layers of recursion are necessary, this can consume considerable amounts of
memory. Iteration normally occurs within a procedure, which enables the program to avoid
the overhead of repeated procedure calls and extra memory assignment. Why, then, would
a programmer choose recursion?

Software Engineering Observation 6.14
Any problem that can be solved recursively also can be solved iteratively (nonrecursively).
A recursive approach normally is chosen over an iterative approach when the recursive ap-
proach more naturally mirrors the problem and results in a program that is easier to under-
stand and debug. Recursive solutions also are employed when iterative solutions are not
apparent. 6.14

Performance Tip 6.4
Avoid using recursion in performance situations. Recursive calls take time and consume ad-
ditional memory. 6.4

Common Programming Error 6.10
Accidentally having a nonrecursive procedure call itself through another procedure can
cause infinite recursion. 6.10

Most programming textbooks introduce recursion much later than we have done in this
book. However, we feel that recursion is a rich and complex topic; thus, we introduce it
early and include additional examples throughout the remainder of the text.



226 Procedures Chapter 6

6.17 Procedure Overloading and Optional Arguments
Visual Basic provides several ways of allowing procedures to have variable sets of param-
eters. Overloading allows the programmer to create multiple procedures with the same
name, but differing numbers and types of arguments. This allows the programmer to reduce
the complexity of the program and create a more flexible application. Procedures also can
receive optional arguments. Defining an argument as optional allows the calling procedure
to decide what arguments to pass. Optional arguments normally specify a default value that
is assigned to the parameter if the optional argument is not passed. Overloaded procedures
are generally more flexible than procedures with optional arguments. For instance, the pro-
grammer can specify varying return types for overloaded procedures. However, optional
arguments present a simple way of specifying default values.

6.17.1 Procedure Overloading
By overloading, a programmer can define several procedures with the same name, as long
as these procedures have different sets of parameters (number of parameters, types of pa-
rameters or order of the parameters). When an overloaded procedure is called, the compiler
selects the proper procedure by examining the number, types and order of the call’s argu-
ments. Often, procedure overloading is used to create several procedures with the same
name that perform similar tasks on different data types.

Good Programming Practice 6.6
The overloading of procedures that perform closely related tasks can make programs more
readable and understandable. 6.6

The program in Fig. 6.22 uses overloaded method Square to calculate the square of
both an Integer and a Double.

1 ' Fig. 6.22: Overload.vb
2 ' Using overloaded methods.
3
4 Public Class FrmOverload
5 Inherits System.Windows.Forms.Form
6
7 Friend WithEvents outputLabel As Label
8
9    ' Visual Studio .NET generated code

10
11 Private Sub FrmOverload_Load(ByVal sender As System.Object, _
12       ByVal e As System.EventArgs) Handles MyBase.Load
13
14       outputLabel.Text = "The square of Integer 7 is " & _
15          square(7) & vbCrLf & "The square of Double " & _
16          "7.5 is " & square(7.5)
17 End Sub ' FrmOverload_Load
18
19 Function Square(ByVal value As Integer) As Integer
20       Return Convert.ToInt32(value ^ 2)
21    End Function ' Square

Fig. 6.22Fig. 6.22Fig. 6.22Fig. 6.22 Overloaded methods (part 1 of 2).



Chapter 6 Procedures 227

Overloaded procedures are distinguished by their signatures, which are a combination
of the procedure’s name and parameter types. If the compiler looked only at procedure
names during compilation, the code in Fig. 6.22 would be ambiguous—the compiler would
not know how to differentiate between the two Square methods. The compiler uses a log-
ical process known as overload resolution to determine which procedure should be called.
This process first searches for all procedures that could be used on the basis of the number
and type of arguments that are present. Although it might seem that only one procedure
would match, it is important to remember that Visual Basic promotes variables with
implicit conversions when they are passed as arguments. Once all matching procedures are
found, the compiler then selects the closest match. This match is based on a “best-fit” algo-
rithm, which analyzes the implicit conversions that will take place.

Let us look at an example. In Fig. 6.22, the compiler might use the logical name
“Square of Integer” for the Square method that specifies an Integer parameter
(line 19) and “Square of Double” for the Square method that specifies a Double
parameter (line 23). If a method ExampleSub’s definition begins as

Function ExampleSub(ByVal a As Integer, ByVal b As Double) _
As Integer

the compiler might use the logical name “ExampleSub of Integer and Double.” Sim-
ilarly, if the parameters are specified as

Function ExampleSub(ByVal a As Double, ByVal b As Integer) _
As Integer

the compiler might use the logical name “ExampleSub of Double and Integer.” The
order of the parameters is important to the compiler; it considers the preceding two Exam-
pleSub methods to be distinct.

So far, the logical method names used by the compiler have not mentioned the
methods’ return types. This is because procedure calls cannot be distinguished by return
type. The program in Fig. 6.23 illustrates the syntax error that is generated when two pro-
cedures have the same signature and different return types. Overloaded procedures with
different parameter lists can have different return types. Overloaded procedures need not
have the same number of parameters.

22
23 Function Square(ByVal value As Double) As Double
24       Return value ^ 2
25    End Function ' Square
26
27 End Class ' FrmOverload

Fig. 6.22Fig. 6.22Fig. 6.22Fig. 6.22 Overloaded methods (part 2 of 2).



228 Procedures Chapter 6

Common Programming Error 6.11
The creation of overloaded procedures with identical parameter lists and different return
types produces a syntax error. 6.11

The output window displayed in Fig. 6.23 is the Task List of Visual Studio. By
default, the Task List displays at the bottom of the IDE when a compiler error is generated.

6.17.2 Optional Arguments
Visual Basic allows programmers to create procedures that take one or more optional argu-
ments. When a parameter is declared as optional, the caller has the option of passing that
particular argument. Optional arguments are specified in the procedure header with key-
word Optional. For example, the procedure header

1 ' Fig. 6.23: Overload2.vb
2 ' Using overloaded procedures with identical signatures and
3 ' different return types.
4
5 Public Class FrmOverload2
6 Inherits System.Windows.Forms.Form
7
8 Friend WithEvents outputLabel As Label
9

10    ' Visual Studio .NET generated code
11
12 Private Sub FrmOverload2_Load(ByVal sender As System.Object, _
13       ByVal e As System.EventArgs) Handles MyBase.Load
14
15       outputLabel.Text = "The square of Integer 7 is " & _
16          square(7) & vbCrLf & "The square of Double " & _
17          "7.5 is " & square(7.5)
18 End Sub ' FrmOverload2_Load
19
20 Function Square(ByVal value As Double) As Integer
21       Return Convert.ToInt32(value ^ 2)
22    End Function ' Square
23
24 Function Square(ByVal value As Double) As Double
25       Return value ^ 2
26    End Function ' Square
27
28 End Class ' FrmOverload2

Fig. 6.23Fig. 6.23Fig. 6.23Fig. 6.23 Syntax error generated from overloaded procedures with identical 
parameter lists and different return types.



Chapter 6 Procedures 229

Sub ExampleProcedure(ByVal value1 As Boolean, Optional _
ByVal value2 As Long = 0)

specifies the last parameter as Optional. Any call to ExampleProcedure must pass
at least one argument, or else a syntax error is generated. If the caller chooses, a second ar-
gument can be passed to ExampleProcedure. This is demonstrated by the following
calls to ExampleProcedure:

ExampleProcedure()
ExampleProcedure(True)
ExampleProcedure(False, 10)

The first call to ExampleProcedure generates a syntax error, because a minimum of
one argument is required. The second call to ExampleProcedure is valid because one
argument is being passed. The Optional argument, value2, is not specified in the pro-
cedure call. The last call to ExampleProcedure also is valid: False is passed as the
one required argument, and 10 is passed as the Optional argument.

In the call that passes only one argument (True) to ExampleProcedure, value2
defaults to 0, which is the value specified in the procedure header. Optional arguments
must specify a default value, using the equals sign followed by the value. For example, the
header for ExampleProcedure sets 0 as the default value for value2. Default values
can be used only with parameters declared as Optional.

Common Programming Error 6.12
Not specifying a default value for an Optional parameter is a syntax error. 6.12

Common Programming Error 6.13
Declaring a non-Optional parameter to the right of an Optional parameter is a syntax
error. 6.13

The example in Fig. 6.24 demonstrates the use of optional arguments. The program
calculates the result of raising a base to an exponent, both of which are specified by the user.
If the user does not specify an exponent, the Optional argument is omitted, and the
default value, 2, is used. 

Line 27 determines whether txtPower contains a value. If true, the values in the
TextBoxes are converted to Integers and passed to Power. Otherwise, txtBase’s
value is converted to an Integer and passed as the first of two arguments to Power in
line 31. The second argument, which has a value of 2, is provided by the Visual Basic com-
piler and is not visible to the programmer in the call. 

Method Power (lines 38–49) specifies that its second argument is Optional. When
omitted, the second argument defaults to the value 2.   

1 ' Fig 6.24 Power.vb
2 ' Calculates the power of a value, defaults to square.
3
4 Public Class FrmPower
5 Inherits System.Windows.Forms.Form
6

Fig. 6.24Fig. 6.24Fig. 6.24Fig. 6.24 Optional argument demonstration with method Power (part 1 of 2).



230 Procedures Chapter 6

7 Friend WithEvents txtBase As TextBox  ' reads base
8 Friend WithEvents txtPower As TextBox ' reads power
9

10 Friend WithEvents inputGroup As GroupBox
11
12 Friend WithEvents lblBase As Label   ' prompts for base
13 Friend WithEvents lblPower As Label  ' prompts for power
14 Friend WithEvents lblOutput As Label ' displays output
15
16 Friend WithEvents cmdCalculate As Button ' generates output
17
18    ' Visual Studio .NET generated code
19
20    ' reads input and displays result
21 Private Sub cmdCalculate_Click(ByVal sender As System.Object, _
22       ByVal e As System.EventArgs) Handles cmdCalculate.Click
23
24       Dim value As Integer
25
26       ' call version of Power depending on power input
27       If Not txtPower.Text = "" Then
28          value = Power(Convert.ToInt32(txtBase.Text), _
29             Convert.ToInt32(txtPower.Text))
30       Else
31          value = Power(Convert.ToInt32(txtBase.Text))
32       End If
33
34       lblOutput.Text = Convert.ToString(value)
35 End Sub ' cmdCalculate_Click
36
37  ' use iteration to calculate power
38 Function Power(ByVal base As Integer, _
39       Optional ByVal exponent As Integer = 2) As Integer
40
41       Dim total As Integer = 1
42       Dim i As Integer
43
44       For i = 1 To exponent
45          total *= base
46       Next
47
48       Return total
49 End Function ' Power
50
51 End Class ' FrmPower

Fig. 6.24Fig. 6.24Fig. 6.24Fig. 6.24 Optional argument demonstration with method Power (part 2 of 2).



Chapter 6 Procedures 231

6.18 Modules
Programmers use modules to group related procedures so that they can be reused in other
projects. Modules are similar in many ways to classes; they allow programmers to build re-
usable components without a full knowledge of object-oriented programming. Using mod-
ules in a project requires knowledge of scoping rules, because some procedures and variables
in a module are accessible from other parts of a project. In general, modules should be self-
contained, meaning that the procedures in the module should not require access to variables
and procedures outside the module, except when such values are passed as arguments.

Figure 6.25 presents modDice, which groups several dice-related procedures into a
module for reuse in other programs that use dice. Function RollDie (lines 11–13) simulates
a single die roll and returns the result. Function RollAndSum (lines 17–28) uses a For
structure (lines 22–24) to call RollDie the number of times indicated by diceNumber and
totals the results. Function GetDieImage (lines 30–37) returns a die Image that corre-
sponds to parameter dieValue. Optional parameter baseImageName represents the
prefix of the image name to be used. If the argument is omitted, the default prefix "die" is
used. [Note: New modules are added to a project by selecting Project > Add Module.]  

FrmDiceModuleTest in Fig. 6.26 demonstrates using the modDice procedures to
respond to button clicks. Procedure cmdRollDie1_Click (lines 23–27) rolls a die and
obtains the default image. We call procedures contained in modDice by following the
module name with the dot (.) operator and the procedure name. Using the functionality
provided by modDice, the body of this procedure requires only one statement (line 26).
Thus, we easily can create a similar Button, cmdRollDie2. In this case, procedure
cmdRollDie2_Click (lines 29–34) uses the Optional argument to prefix the image
name and select a different image. Procedure cmdRollTen_Click (lines 36–40) sets the
Text property of lblSum to the result of 10 rolls. 

1 ' Fig. 6.25: DiceModule.vb
2 ' A collection of common dice procedures.
3
4 Imports System.IO
5
6 Module modDice
7
8 Dim randomObject As Random = New Random()
9

10    ' rolls single die
11 Function RollDie() As Integer
12       Return randomObject.Next(1, 7)
13 End Function ' RollDie
14
15    ' die summation procedure
16 Function RollAndSum(ByVal diceNumber As Integer) _
17       As Integer
18
19       Dim i As Integer 
20       Dim sum As Integer = 0
21

Fig. 6.25Fig. 6.25Fig. 6.25Fig. 6.25 Module used to define a group of related procedures (part 1 of 2).



232 Procedures Chapter 6

For the program in Fig. 6.26, we add DiceModule.vb to the project to provide access
to the procedures defined in modDice. To include a module in a project, select
File > Add Existing Item…. In the dialog that is displayed, select the module file name
and click Open. By default, a copy the file is added to the project directory unless you specify
to open the module file as a linked file. Once a module has been added to a project, the pro-
cedures contained in the module have namespace scope. By default, procedures with
namespace scope are accessible to all other parts of a project, such as methods in classes and
procedures in other modules. Although it is not necessary, the programmer may place the file
containing the module’s code in the same directory as the other files for the project.      

22       For i = 1 To diceNumber
23          sum += RollDie()
24       Next
25
26       Return sum
27 End Function ' RollAndSum
28
29    ' returns die image
30 Function GetDieImage(ByVal dieValue As Integer, _
31       Optional ByVal baseImageName As String = "die") _
32       As System.Drawing.Image
33
34       Return Image.FromFile( _
35          Directory.GetCurrentDirectory & _
36          "\Images\" & baseImageName & dieValue & ".png")
37 End Function ' GetDieImage
38
39 End Module ' modDice

1 ' Fig. 6.26: DiceModuleTest.vb
2 ' Demonstrates modDiceModule procedures
3
4 Imports System.Drawing
5
6 Public Class FrmDiceModuleTest
7 Inherits System.Windows.Forms.Form
8
9    Friend WithEvents lblSum As Label ' displays 10-roll sum

10
11 Friend WithEvents diceGroup As GroupBox
12
13 ' dice images
14 Friend WithEvents picDie1 As PictureBox
15 Friend WithEvents picDie2 As PictureBox
16
17 Friend WithEvents cmdRollDie1 As Button ' rolls blue die
18 Friend WithEvents cmdRollTen As Button  ' simulates 10 rolls
19 Friend WithEvents cmdRollDie2 As Button ' rolls red die

Fig. 6.26Fig. 6.26Fig. 6.26Fig. 6.26 Testing the modDice procedures (part 1 of 2).

Fig. 6.25Fig. 6.25Fig. 6.25Fig. 6.25 Module used to define a group of related procedures (part 2 of 2).



Chapter 6 Procedures 233

SUMMARY
• Experience has shown that the best way to develop and maintain a large program is to construct it

from small, manageable pieces. This technique is known as divide and conquer.

• Visual Basic programs consist of many pieces, including modules and classes.

• Modules and classes are composed of smaller pieces called procedures. When procedures are con-
tained in a class, we refer to them as methods.

• Visual Basic provides many classes and methods in the .NET Framework Class Library (FCL).
This rich collection of features allows programmers to develop robust applications quickly.

• Three types of procedures exist: Sub procedures, Function procedures and event procedures.

• Procedures promote software reusability—the ability to use existing procedures as building blocks
for new programs.

• The first statement of a procedure definition is the procedure header.

20
21    ' Visual Studio .NET generated code
22
23 Private Sub cmdRollDie1_Click(ByVal sender As System.Object, _
24       ByVal e As System.EventArgs) Handles cmdRollDie1.Click
25
26       picDie1.Image = modDice.GetDieImage(modDice.RollDie())
27 End Sub ' cmdRollDie1_Click
28
29 Private Sub cmdRollDie2_Click(ByVal sender As System.Object, _
30       ByVal e As System.EventArgs) Handles cmdRollDie2.Click
31
32       picDie2.Image = modDice.GetDieImage(modDice.RollDie(), _
33          "redDie")
34 End Sub ' cmdRollDie2_Click
35
36 Private Sub cmdRollTen_Click(ByVal sender As System.Object, _
37       ByVal e As System.EventArgs) Handles cmdRollTen.Click
38
39       lblSum.Text = Convert.ToString(modDice.RollAndSum(10))
40 End Sub ' cmdRollTen_Click
41
42 End Class ' FrmDiceModuleTest

Fig. 6.26Fig. 6.26Fig. 6.26Fig. 6.26 Testing the modDice procedures (part 2 of 2).



234 Procedures Chapter 6

• The declarations and statements in the procedure definition form the procedure body.

• The procedure header and procedure call must agree with regard to the number, type and order of
arguments.

• The characteristics of Function procedures are similar to those of Sub procedures. However,
Function procedures return a value (i.e., send back a value) to the caller.

• In a Function header, the return type indicates the data type of the result returned from the
Function to its caller.

• Keyword Return, followed by an expression, returns a value from a Function procedure.

• If a Function procedure body does not specify a Return statement, program control returns to
the point at which a procedure was invoked when the End Function keywords are encountered.

• An event represents a user action, such as the clicking of a button or the alteration of a value.

• Calls to methods, such as Math.Max, that are defined in a separate class must include the class
name and the dot (.) operator (also called the member access operator). However, calls to methods
defined in the class that contains the method call need only specify the method name.

• The Parameter Info feature of the IDE identifies accessible procedures and their arguments. Pa-
rameter Info greatly simplifies coding. The Parameter Info feature provides information not only
about programmer-defined procedures, but about all methods contained in the FCL.

• The IntelliSense feature displays all the members in a class.

• Widening conversion occurs when a type is converted to another type (usually one that can hold
more data) without losing data.

• Narrowing conversion occurs when there is potential for data loss during a conversion (usually to
a type that holds a smaller amount of data). Some narrowing conversions can fail, resulting in run-
time errors and logic errors.

• Visual Basic supports both widening and narrowing conversions.

• Option Explicit, which is set to On by default, forces the programmer to declare all variables
explicitly before they are used in a program. Forcing explicit declarations eliminates spelling er-
rors and other subtle errors that may occur if Option Explicit is turned Off.

• Option Strict, which is set to Off by default, increases program clarity and reduces debug-
ging time. When set to On, Option Strict requires the programmer to perform all narrowing
conversions explicitly.

• The methods in class Convert changes data types explicitly. The name of each conversion meth-
od is the word To, followed by the name of the data type to which the method converts its argu-
ment.

• All data types can be categorized as either value types or reference types. A variable of a value
type contains data of that type. A variable of a reference type contains the location in memory
where the data is stored.

• Both value and reference types include built-in types and types that programmers can create.

• Values typed directly in program code are called literals. Each literal corresponds to one of the
primitive data types. Some of Visual Basic’s data types use special notations, such as type charac-
ters, for creating literals.

• Arguments are passed in one of two ways: Pass-by-value and pass-by-reference (also called call-
by-value and call-by-reference).

• When an argument is passed by value, the program makes a copy of the argument’s value and pass-
es that copy to the called procedure. Changes to the called procedure’s copy do not affect the orig-
inal variable’s value.



Chapter 6 Procedures 235

• When an argument is passed by reference, the caller gives the procedure the ability to access and
modify the caller’s original data directly. Pass-by-reference can improve performance, because it
eliminates the need to copy large data items, such as large objects; however, pass-by-reference can
weaken security, because the called procedure can modify the caller’s data.

• By default, the code editor includes keyword ByVal in parameter declarations to indicate that the
parameter is passed by value. In the case of value-type variables, this means that the value stored
in the variable is copied and passed to the procedure, preventing the procedure from accessing the
original value in the variable.

• Value-type arguments enclosed in parentheses, (), are passed by value even if the procedure
header declares the parameter with keyword ByRef.

• An identifier’s duration (also called its lifetime) is the period during which the identifier exists in
memory. 

• Identifiers that represent local variables in a procedure (i.e., parameters and variables declared in
the procedure body) have automatic duration. Automatic-duration variables are created when pro-
gram control enters the procedure in which they are declared, exist while the procedure is active
and are destroyed when the procedure is exited.

• Variables declared with keyword Static inside a procedure definition have static duration,
meaning they have the same duration as the Class or Module that contains the procedure.

• The scope (sometimes called declaration space) of a variable, reference or procedure identifier is
the portion of the program in which the identifier can be accessed. The possible scopes for an iden-
tifier are class scope, module scope, namespace scope and block scope.

• In Visual Basic .NET, identifiers declared inside a block, such as the body of a procedure defini-
tion or the body of an If selection structure, have block scope. Block scope begins at the identi-
fier’s declaration and ends at the block’s End statement.

• Procedures in a module have namespace scope, which means that they may be accessed through-
out a project.

• It is possible to create variables with namespace scope by replacing keyword Dim with keyword
Public in the declaration of a variable in a module.

• Constant identifiers and Enumerations enhance program readability by providing descriptive
identifiers for numbers or Strings that have special meaning.

• A recursive procedure is a procedure that calls itself, either indirectly (i.e., through another proce-
dure) or directly.

• Any problem that can be solved recursively also can be solved iteratively (nonrecursively).

• The element of chance can be introduced into computer applications through class Random (lo-
cated in namespace System). Method Next returns a random number.

• Overloading allows the programmer to define several procedures with the same name, as long as
these procedures have different sets of parameters (number of parameters, types of the parameters
and order of the parameters). This allows the programmer to reduce the complexity of the program
and create a more flexible application.

• Overloaded procedures are distinguished by their signatures, which are a combination of the pro-
cedure’s name and parameter types. The compiler uses a logical process known as overload reso-
lution to determine which procedure should be called.

• Procedure calls cannot be distinguished by return type. A syntax error is generated when two pro-
cedures have the same signature and different return types. However, overloaded procedures with
different signatures can have different return types.



236 Procedures Chapter 6

• Programmers use modules to group related procedures so that they can be reused in other projects.
Modules are similar in many ways to classes; they allow programmers to build reusable compo-
nents without a full knowledge of object-oriented programming. 

• Once a module has been added to a project, the procedures contained in the module have
namespace scope. By default, procedures with namespace scope are accessible to all other parts of
a project, such as methods in classes and procedures in other modules.

• Visual Basic allows programmers to create procedures that take one or more optional arguments.
When a parameter is declared as optional, the caller has the option of passing that particular argu-
ment. Optional arguments are specified in the procedure header with keyword Optional.

TERMINOLOGY
. (dot operator) infinite recursion
argument to a procedure call inheritance
automatic duration instance variables of a class
automatic initialization of a variable interface
base case invoke
block scope iteration
Button class lifetime of an identifier
ByRef keyword local variable
ByVal keyword Math class method
call-by-reference method
call-by-value method body
calling procedure method call
class method overloading
class scope mixed-type expression
Click event Module
coercion of arguments modularizing a program with procedures
comma-separated list of arguments named constant
complexity theory narrowing conversion
Const keyword nested block
constant identifier nested control structure
control structures in iteration Next method
control structures in recursion optional argument
convergence Optional keyword
declaration overloaded procedure
default argument parameter list
divide-and-conquer approach parentheses
duration of an identifier pass-by-reference
Enum keyword pass-by-value
enumeration precedence
event handling principle of least privilege
exhausting memory procedure
exponential “explosion” of calls procedure body
Factorial method procedure call
Fibonacci series, defined recursively procedure overloading
Function procedure programmer-defined procedure
golden ratio promotions for primitive data types
hierarchical structure Public keyword
infinite loop Random class



Chapter 6 Procedures 237

SELF-REVIEW EXERCISES
6.1 Fill in the blanks in each of the following statements:

a) Procedures in Visual Basic can be defined in  and .
b) A procedure is invoked with a .
c) A variable known only within the procedure in which it is defined is called a .
d) The  statement in a called Function procedure can be used to pass the val-

ue of an expression back to the calling procedure.
e) A procedure defined with keyword  does not return a value.
f) The  of an identifier is the portion of the program in which the identifier can

be used.
g) The three ways to return control from a called Sub procedure to a caller are ,

 and .
h) The  method in class Random produces random numbers.
i) Variables declared in a block or in a procedure’s parameter list are of  dura-

tion.
j) A procedure that calls itself either directly or indirectly is a  procedure.
k) A recursive procedure typically has two components: One that provides a means for the

recursion to terminate by testing for a  case, and one that expresses the prob-
lem as a recursive call for a problem slightly simpler than the original call.

l) In Visual Basic, it is possible to have various procedures with the same name that operate
on different types or numbers of arguments. This is called procedure .

m) Local variables declared at the beginning of a procedure have  scope, as do
procedure parameters, which are considered local variables of the procedure.

n) Iteration uses a  structure. 
o) Recursion uses a  structure.
p) Recursion achieves repetition through repeated  calls. 
q) It is possible to define procedures with the same , but different parameter

lists.
r) Recursion terminates when the  is reached.
s) The  is a comma-separated list containing the declarations of the parameters

received by the called procedure.
t) The  is the data type of the result returned from a called Function proce-

dure.
u) An  is a signal that is sent when some action takes place, such as a button be-

ing clicked.

6.2 State whether each of the following is true or false. If false, explain why.
a) Math method Abs rounds its parameter to the smallest integer. 

recursive evaluation signature
recursive method simulation
reference type software reusability
Return keyword Static duration
return-value type Sub procedure
scaling factor termination test
scientific notation type character
scope of an identifier user-interface event
sequence of random numbers value type
shifting value widening conversion
side effect



238 Procedures Chapter 6

b) Math method Exp is the exponential method that calculates ex.
c) A recursive procedure is one that calls itself.
d) Conversion from type Single to type Double requires a widening conversion. 
e) Variable type Char cannot be converted to type Integer.
f) When a procedure recursively calls itself, it is known as the base case. 
g) Forgetting to return a value from a recursive procedure when one is needed results in a

logic error.
h) Infinite recursion occurs when a procedure converges on the base case.
i) Visual Basic supports Optional arguments.
j) Any problem that can be solved recursively also can be solved iteratively. 

6.3 For the program in Fig. 6.27, state the scope (either class scope or block scope) of each of the
following elements:

a) The variable i.
b) The variable base.
c) The method Cube.
d) The method FrmCubeTest_Load.
e) The variable output.

6.4 Write an application that tests whether the examples of the Math class method calls shown
in Fig. 6.7 actually produce the indicated results.

6.5 Give the procedure header for each of the following:
a) Procedure Hypotenuse, which takes two double-precision, floating-point arguments,

side1 and side2, and returns a double-precision, floating-point result.
b) Procedure Smallest, which takes three integers, x, y and z, and returns an integer.
c) Procedure Instructions, which does not take any arguments and does not return a

value.
d) Procedure IntegerToSingle, which takes an integer argument, number, and re-

turns a floating-point result.

6.6 Find the error in each of the following program segments and explain how the error can be
corrected:

1 ' Fig. 6.27: CubeTest.vb
2 ' Printing the cubes of 1-10.
3
4 Public Class FrmCubeTest
5 Inherits System.Windows.Forms.Form
6
7 Friend WithEvents lblOutput As Label
8
9 ' Visual Studio .NET generated code

10
11 Dim i As Integer
12
13  Private Sub FrmCubeTest_Load(ByVal sender As System.Object, _
14       ByVal e As System.EventArgs) Handles MyBase.Load
15
16       Dim output As String = ""
17

Fig. 6.27Fig. 6.27Fig. 6.27Fig. 6.27 Printing the results of cubing 10 numbers (part 1 of 2).



Chapter 6 Procedures 239

a) Sub General1()
   Console.WriteLine("Inside procedure General1")

Sub General2()
      Console.WriteLine("Inside procedure General2")

End Sub ' General2

End Sub ' General1
b) Function Sum(ByVal x As Integer, ByVal y As Integer) _

As Integer

Dim result As Integer

   result = x + y
End Function ' Sum

c) Sub Printer1(ByVal value As Single)
Dim value As Single

   Console.WriteLine(value)
End Sub ' Printer1

d) Sub Product()
Dim a As Integer = 6
Dim b As Integer = 5
Dim result As Integer = a * b

   Console.WriteLine("Result is " & result)

   Return result
End Sub ' Product

e) Function Sum(ByVal value As Integer) As Integer

If value = 0 Then
      Return 0

Else
      value += Sum(value - 1)

End If

End Function ' Sum

18       For i = 1 To 10
19          output &= Cube(i) & vbCrLf
20       Next
21
22       lblOutput.Text = output
23  End Sub ' FrmCubeTest_Load
24
25  Function Cube(ByVal base As Integer) As Integer
26       Return Convert.ToInt32(base ^ 3)
27  End Function ' Cube
28
29 End Class ' FrmCubeTest

Fig. 6.27Fig. 6.27Fig. 6.27Fig. 6.27 Printing the results of cubing 10 numbers (part 2 of 2).



240 Procedures Chapter 6

ANSWERS TO SELF-REVIEW EXERCISES
6.1 a) classes, modules. b) procedure call. c) local variable. d) Return. e) Sub. f) scope.
g) Return, Exit Sub, encountering the End Sub statement. h) Next. i) automatic. j) recursive.
k) base. l) overloading. m) block. n) repetition. o) selection. p) procedure. q) name. r) base case. s)
parameter list. t) return-value type. u) event.

6.2 a) False. Math method Abs returns the absolute value of a number. b) True. c) True. d) True.
e) False. Type Char can be converted to type Integer with a narrowing conversion. f) False. A
procedure’s recursively calling itself is known as the recursive call or recursion step. g) True. h) False.
Infinite recursion occurs when a recursive procedure does not converge on the base case. i) True.
j) True.

6.3 a) Class scope. b) Block scope. c) Class scope. d) Class scope. e) Block scope.

6.4 The following code demonstrates the use of some Math library method calls:

1 ' Ex. 6.4: MathTest.vb
2 ' Testing the Math class methods
3
4 Module modMathTest
5
6 Sub Main()
7       Console.WriteLine("Math.Abs(23.7) = " & _
8          Convert.ToString(Math.Abs(23.7)))
9       Console.WriteLine("Math.Abs(0.0) = " & _

10          Convert.ToString(Math.Abs(0)))
11       Console.WriteLine("Math.Abs(-23.7) = " & _
12          Convert.ToString(Math.Abs(-23.7)))
13       Console.WriteLine("Math.Ceiling(9.2) = " & _
14          Convert.ToString(Math.Ceiling(9.2)))
15       Console.WriteLine("Math.Ceiling(-9.8) = " & _
16          Convert.ToString(Math.Ceiling(-9.8)))
17       Console.WriteLine("Math.Cos(0.0) = " & _
18          Convert.ToString(Math.Cos(0)))
19       Console.WriteLine("Math.Exp(1.0) = " & _
20          Convert.ToString(Math.Exp(1)))
21       Console.WriteLine("Math.Exp(2.0) = " & _
22          Convert.ToString(Math.Exp(2)))
23       Console.WriteLine("Math.Floor(9.2) = " & _
24          Convert.ToString(Math.Floor(9.2)))
25       Console.WriteLine("Math.Floor(-9.8) = " & _
26          Convert.ToString(Math.Floor(-9.8)))
27       Console.WriteLine("Math.Log(2.718282) = " & _
28          Convert.ToString(Math.Log(2.718282)))
29       Console.WriteLine("Math.Log(7.389056) = " & _
30          Convert.ToString(Math.Log(7.389056)))
31       Console.WriteLine("Math.Max(2.3, 12.7) = " & _
32          Convert.ToString(Math.Max(2.3, 12.7)))
33       Console.WriteLine("Math.Max(-2.3, -12.7) = " & _
34          Convert.ToString(Math.Max(-2.3, -12.7)))
35       Console.WriteLine("Math.Min(2.3, 12.7) = " & _
36          Convert.ToString(Math.Min(2.3, 12.7)))
37       Console.WriteLine("Math.Min(-2.3, -12.7) = " & _
38          Convert.ToString(Math.Min(-2.3, -12.7)))



Chapter 6 Procedures 241

6.5 a) Function Hypotenuse(ByVal side1 As Double, _
           ByVal side2 As Double) As Double

b) Function Smallest(ByVal x As Integer, _
ByVal y As Integer, ByVal z As Integer) As Integer

c) Sub Instructions()
d) Function IntegerToSingle(ByVal number As Integer) As Single

6.6 a) Error: Procedure General2 is defined in procedure General1.
Correction: Move the definition of General2 out of the definition of General1.

b) Error: The procedure is supposed to return an Integer, but does not.
Correction: Delete the statement result = x + y and place the following statement in
the method:

39       Console.WriteLine("Math.Pow(2, 7) = " & _
40          Convert.ToString(Math.Pow(2, 7)))
41       Console.WriteLine("Math.Pow(9, .5) = " & _
42          Convert.ToString(Math.Pow(9, 0.5)))
43       Console.WriteLine("Math.Sin(0.0) = " & _
44          Convert.ToString(Math.Sin(0)))
45       Console.WriteLine("Math.Sqrt(9.0) = " & _
46          Convert.ToString(Math.Sqrt(9)))
47       Console.WriteLine("Math.Sqrt(2.0) = " & _
48          Convert.ToString(Math.Sqrt(2)))
49       Console.WriteLine("Math.Tan(0.0) = " & _
50          Convert.ToString(Math.Tan(0)))
51
52  End Sub ' Main
53
54 End Module ' modMathTest

Math.Abs(23.7) = 23.7
Math.Abs(0.0) = 0
Math.Abs(-23.7) = 23.7
Math.Ceiling(9.2) = 10
Math.Ceiling(-9.8) = -9
Math.Cos(0.0) = 1
Math.Exp(1.0) = 2.71828182845905
Math.Exp(2.0) = 7.38905609893065
Math.Floor(9.2) = 9
Math.Floor(-9.8) = -10
Math.Log(2.718282) = 1.00000006310639
Math.Log(7.389056) = 1.99999998661119
Math.Max(2.3, 12.7) = 12.7
Math.Max(-2.3, -12.7) = -2.3
Math.Min(2.3, 12.7) = 2.3
Math.Min(-2.3, -12.7) = -12.7
Math.Pow(2, 7) = 128
Math.Pow(9, .5) = 3
Math.Sin(0.0) = 0
Math.Sqrt(9.0) = 3
Math.Sqrt(2.0) = 1.4142135623731
Math.Tan(0.0) = 0



242 Procedures Chapter 6

Return x + y
or add the following statement at the end of the method body:

Return result
c) Error: Parameter value is redefined in the procedure definition.

Correction: Delete the declaration Dim value As Single.
d) Error: The procedure returns a value, but is defined as a Sub procedure.

Correction: Change the procedure to a Function procedure with return type Inte-
ger.

e) Error: The result of value += Sum(value - 1) is not returned by this recursive meth-
od, resulting in a logic error.
Correction: Rewrite the statement in the Else clause as

Return value + sum(value - 1)

EXERCISES
6.7 What is the value of x after each of the following statements is performed?

a) x = Math.Abs(7.5)
b) x = Math.Floor(7.5)
c) x = Math.Abs(0.0)
d) x = Math.Ceiling(0.0)
e) x = Math.Abs(-6.4)
f) x = Math.Ceiling(-6.4)
g) x = Math.Ceiling(-Math.Abs(-8 + Math.Floor(-5.5)))

6.8 A parking garage charges a $2.00 minimum fee to park for up to three hours. The garage
charges an additional $0.50 per hour for each hour or part thereof in excess of three hours. The max-
imum charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24
hours at a time. Write a program that calculates and displays the parking charges for each customer
who parked a car in this garage yesterday. You should enter in a TextBox the hours parked for each
customer. The program should display the charge for the current customer. The program should use
the method CalculateCharges to determine the charge for each customer. Use the techniques
described in the chapter to read the Double value from a TextBox.

6.9 Write a method IntegerPower(base, exponent) that returns the value of 

baseexponent

For example, IntegerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive integer
and that base is an integer. Method IntegerPower should use a For/Next loop or While loop to
control the calculation. Do not use any Math library methods or the exponentiation operator, ^. Incor-
porate this method into a Windows application that reads integer values from TextBoxes for base
and exponent from the user and performs the calculation by calling method IntegerPower.

6.10 Define a method Hypotenuse that calculates the length of the hypotenuse of a right trian-
gle when the other two sides are given. The method should take two arguments of type Double and
return the hypotenuse as a Double. Incorporate this method into a Windows application that reads
integer values for side1 and side2 from TextBoxes and performs the calculation with the Hy-
potenuse method. Determine the length of the hypotenuse for each of the following triangles: 



Chapter 6 Procedures 243

6.11 Write a method SquareOfAsterisks that displays a solid square of asterisks whose side
is specified in integer parameter side. For example, if side is 4, the method displays

****
****
****
****

Incorporate this method into a Windows application that reads an integer value for side from the
user and performs the drawing with the SquareOfAsterisks method. This method should
gather data from Textboxes and should print to a Label.

6.12 Modify the method created in Exercise 6.11 to form the square out of whatever character is
contained in parameter fillCharacter. Thus, if side is 5 and fillCharacter is “#”, this
method should print

#####
#####
#####
#####
#####

6.13 Write a Windows application that simulates coin tossing. Let the program toss the coin each
time the user presses the Toss button. Count the number of times each side of the coin appears. Dis-
play the results. The program should call a separate method Flip, which takes no arguments and re-
turns False for tails and True for heads. [Note: If the program simulates the coin
tossing realistically, each side of the coin should appear approximately half the time.]

6.14 Computers are playing an increasing role in education. Write a program that will help an el-
ementary school student learn multiplication. Use the Next method from an object of type Random
to produce two positive one-digit integers. It should display a question, such as

How much is 6 times 7?

The student should then type the answer into a TextBox. Your program should check the student’s
answer. If it is correct, display "Very good!" in a Label, then ask another multiplication ques-
tion. If the answer is incorrect, display "No. Please try again." in the same Label, then let
the student try the same question again until the student finally gets it right. A separate method
should be used to generate each new question. This method should be called once when the program
begins execution and then each time the user answers a question correctly. 

6.15 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic prob-
lems; the Towers of Hanoi (Fig. 6.28) is one of the most famous. Legend has it that, in a temple in
the Far East, priests are attempting to move a stack of disks from one peg to another. The initial stack
had 64 disks threaded onto one peg and arranged from bottom to top by decreasing size. The priests
are attempting to move the stack from this peg to a second peg, under the constraints that exactly one
disk is moved at a time and that at no time may a larger disk be placed above a smaller disk. A third
peg is available for temporarily holding disks. Supposedly, the world will end when the priests com-
plete their task, so there is little incentive for us to facilitate their efforts.

Triangle Side 1 Side 2

1 3.0  4.0

2 5.0 12.0

3 8.0 15.0



244 Procedures Chapter 6

Let us assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that prints the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional techniques, we would find ourselves
hopelessly knotted up in managing the disks. However, if we approach the problem with recursion in
mind, it becomes tractable. Moving n disks can be viewed in terms of moving only n – 1 disks (and
hence, the recursion) as follows:

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This is
accomplished by moving the disk without the need for a temporary holding area. 

Write a program to solve the Towers of Hanoi problem. Allow the user to enter the number of
disks in a TextBox. Use a recursive Tower method with four parameters:

a) The number of disks to be moved
b) The peg on which these disks are threaded initially
c) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area

Your program should display in a TextBox with scrolling functionality the precise instruc-
tions for moving the disks from the starting peg to the destination peg. For example, to move a stack
of three disks from peg 1 to peg 3, your program should print the following series of moves:

1 → 3 (This means move one disk from peg 1 to peg 3.)

1 → 2

3 → 2

1 → 3

2 → 1

2 → 3

1 → 3

Fig. 6.28Fig. 6.28Fig. 6.28Fig. 6.28 Towers of Hanoi for the case with four disks.



7
Arrays

Objectives
• To introduce the array data structure.
• To understand how arrays store, sort and search lists 

and tables of values.
• To understand how to declare an array, initialize an 

array and refer to individual elements of an array.
• To be able to pass arrays to methods.
• To understand basic sorting techniques.
• To be able to declare and manipulate 

multi-dimensional arrays.
With sobs and tears he sorted out
Those of the largest size …
Lewis Carroll

Attempt the end, and never stand to doubt;
Nothing’s so hard, but search will find it out.
Robert Herrick

Now go, write it before them in a table,
and note it in a book.
Isaiah 30:8

‘Tis in my memory lock’d,
And you yourself shall keep the key of it.
William Shakespeare



246 Arrays Chapter 7

William ShakespeareWilliam Shakespeare

7.1 Introduction
This chapter introduces basic concepts and features of data structures. Arrays are data struc-
tures consisting of data items of the same type. Arrays are “static” entities, in that they re-
main the same size once they are created, although an array reference may be reassigned to
a new array of a different size. We begin by discussing constructing and accessing arrays;
we build on this knowledge to conduct more complex manipulations of arrays, including
powerful searching and sorting techniques. We then demonstrate the creation of more so-
phisticated arrays that have multiple dimensions. Chapter 24, Data Structures and Collec-
tions, introduces dynamic data structures, such as lists, queues, stacks and trees, which can
grow and shrink as programs execute. This later chapter also presents Visual Basic’s pre-
defined data structures that enable the programmer to use existing data structures for lists,
queues, stacks and trees, rather than “reinventing the wheel.”

7.2 Arrays
An array is a group of contiguous memory locations that have the same name and the same
type. Array names follow the same conventions that apply to other variable names, as was
discussed in Chapter 3, Introduction to Visual Basic Programming. To refer to a particular

Outline

7.1 Introduction
7.2 Arrays
7.3 Declaring and Allocating Arrays
7.4 Examples Using Arrays

7.4.1 Allocating an Array
7.4.2 Initializing the Values in an Array
7.4.3 Summing the Elements of an Array
7.4.4 Using Arrays to Analyze Survey Results
7.4.5 Using Histograms to Display Array Data Graphically

7.5 Passing Arrays to Procedures

7.6 Passing Arrays: ByVal vs. ByRef
7.7 Sorting Arrays
7.8 Searching Arrays: Linear Search and Binary Search

7.8.1 Searching an Array with Linear Search
7.8.2 Searching a Sorted Array with Binary Search

7.9 Multidimensional Rectangular and Jagged Arrays
7.10 Variable-Length Parameter Lists

7.11 For Each/Next Repetition Structure

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises• 
Special Section: Recursion Exercises



Chapter 7 Arrays 247

location or element in an array, we specify the name of the array and the position number
of the element to which we refer. Position numbers are values that indicate specific loca-
tions within arrays.

Figure 7.1 depicts an integer array named numberArray. This array contains 12 ele-
ments, any one of which can be referred to by giving the name of the array followed by the
position number of the element in parentheses (). The first element in every array is the
zeroth element. Thus, the first element of array numberArray is referred to as number-
Array(0), the second element of array numberArray is referred to as number-
Array(1), the seventh element of array numberArray is referred to as
numberArray(6) and so on. The ith element of array numberArray is referred to as
numberArray(i - 1).

The position number in parentheses more formally is called an index (or a subscript).
An index must be an integer or an integer expression. If a program uses an expression as an
index, the expression is evaluated first to determine the index. For example, if variable
value1 is equal to 5, and variable value2 is equal to 6, then the statement

numberArray(value1 + value2) += 2

adds 2 to array element numberArray(11). Note that an indexed array name (i.e., the
array name followed by an index enclosed in parentheses) is an lvalue—it can be used on
the left side of an assignment statement to place a new value into an array element.

Fig. 7.1Fig. 7.1Fig. 7.1Fig. 7.1 Array consisting of 12 elements.

Name of array (note
that all elements of this

array have the same
name, numberArray)

Position number (index or
subscript) of the element

within array numberArray

numberArray(0)

numberArray(1)

numberArray(2)

numberArray(3)

numberArray(4)

numberArray(5)

numberArray(6)

numberArray(7)

numberArray(8)

numberArray(9)

numberArray(10)

numberArray(11)

-45

6

0

72

1543

-89

0

62

-3

1

6453

78



248 Arrays Chapter 7

Let us examine array numberArray in Fig. 7.1 more closely. The name of the array
is numberArray. The 12 elements of the array are referred to as numberArray(0)
through numberArray(11). The value of numberArray(0) is -45, the value of
numberArray(1) is 6, the value of numberArray(2) is 0, the value of number-
Array(7) is 62 and the value of numberArray(11) is 78. Values stored in arrays can
be employed in various calculations and applications. For example, to determine the sum
of the values contained in the first three elements of array numberArray and then store
the result in variable sum, we would write                                                                                    

sum = numberArray(0) + numberArray(1) + numberArray(2)

To divide the value of the seventh element of array numberArray by 2 and assign the
result to the variable result, we would write

result = numberArray(6) \ 2

Common Programming Error 7.1
It is important to note the difference between the “seventh element of the array” and “array
element seven.” Array indices begin at 0, which means that the “seventh element of the ar-
ray” has the index 6, whereas “array element seven” has the index 7 and is actually the
eighth element of the array. This confusion is a common source of “off-by-one” errors. 7.1

Every array in Visual Basic “knows” its own length. The length of the array (i.e., 12
in this case) is determined by the following expression:

numberArray.Length

All arrays have access to the methods and properties of class System.Array, including
the Length property. For instance, method GetUpperBound returns the index of the
last element in the array. Method GetUpperBound takes one argument indicating a di-
mension of the array. We discuss arrays with multiple dimensions in Section 7.9. For one-
dimensional arrays, such as numberArray, the argument passed to GetUpperBound
is 0. For example, expression

numberArray.GetUpperBound(0)

returns 11. Notice that the value returned by method GetUpperBound is one less than
the value of the array’s Length property. Classes, objects and class methods are discussed
in detail in Chapter 8, Object-Based Programming.

7.3 Declaring and Allocating Arrays
Arrays occupy space in memory. The amount of memory required by an array depends on
the length of the array and the size of the data type of the elements in the array. The decla-
ration of an array creates a variable that can store a reference to an array but does not create
the array in memory. To declare an array, the programmer provides the array’s name and
data type. The following statement declares the array in Fig. 7.1:

Dim numberArray As Integer()



Chapter 7 Arrays 249

The parentheses that follow the data type indicate that numberArray is an array.
Arrays can be declared to contain any data type. In an array of primitive data types, every
element of the array contains one value of the declared data type. For example, every ele-
ment of an Integer array contains an Integer value.

Before the array can be used, the programmer must specify the size of the array and
allocate memory for the array, using keyword New. Recall from Chapter 6 that keyword
New creates an object. Arrays are represented as objects in Visual Basic, so they too, must
be allocated using keyword New. The value stored in the array variable is actually a refer-
ence to the location in the computer’s memory where the array object is created. All non-
primitive-type variables are reference variables (normally called references). To allocate
memory for the array numberArray after it has been declared, the statement

numberArray = New Integer(11) {}

is used. In our example, the number 11 defines the upper bound for the array. Array bounds
determine what indices can be used to access an element in the array. Here, the array
bounds are 0 (which is implicit in the preceding statement) and 11, meaning that an index
outside these bounds cannot be used to access elements in the array. Notice that the actual
size of the array is one larger than the upper bound specified in the allocation.

The required braces ({ and }) are called an initializer list and specify the initial values
of the elements in the array. When the initializer list is empty, the elements in the array are
initialized to the default value for the data type of the elements of the array. The default
value is 0 for numeric primitive data-type variables, False for Boolean variables and
Nothing for references. Keyword Nothing denotes an empty reference (i.e., a value
indicating that a reference variable has not been assigned an address in the computer’s
memory). The initializer list also can contain a comma-separated list specifying the initial
values of the elements in the array. For instance,

Dim numbers As Integer()
numbers = New Integer() {1, 2, 3, 6}

declares and allocates an array containing four Integer values. Visual Basic can deter-
mine the array bounds from the number of elements in the initializer list. Thus, it is not nec-
essary to specify the size of the array when a non-empty initializer list is present.

The allocation of an array can be combined into the declaration, as in the statement

Dim numberArray As Integer() = New Integer(11) {}

Separating the declaration and allocation statements is useful, however, when the size of an
array depends on user input or on values calculated at runtime.

Programmers can declare arrays via several alternative methods, which we discuss
throughout this chapter. For example, several arrays can be declared with a single state-
ment; the following statement declares two array variables of type Double():

Dim array1, array2 As Double()

7.4 Examples Using Arrays
This section presents several examples that demonstrate the declaration, allocation and ini-
tialization of arrays, as well as various manipulations of array elements. For simplicity, the



250 Arrays Chapter 7

examples in this section use arrays that contain elements of type Integer. Please remem-
ber that a program can declare an array to have elements of any data type.

7.4.1 Allocating an Array

The program of Fig. 7.2 uses keyword New to allocate an array of 10 Integer elements,
which are initially zero (the default value in an array of type Integer). The program dis-
plays the array elements in tabular format in a dialog.

1 ' Fig. 7.2: CreateArray.vb
2 ' Declaring and allocating an array.
3
4 Imports System.Windows.Forms
5
6 Module modCreateArray
7
8 Sub Main()
9       Dim output As String

10       Dim i As Integer
11
12       Dim array As Integer()    ' declare array variable
13       array = New Integer(9) {} ' allocate memory for array
14
15       output &= "Subscript " & vbTab & "Value" & vbCrLf
16
17     ' display values in array
18       For i = 0 To array.GetUpperBound(0)
19          output &= i & vbTab & array(i) & vbCrLf
20       Next
21
22       output &= vbCrLf & "The array contains " & _
23          array.Length & " elements."
24
25       MessageBox.Show(output, "Array of Integer Values", _
26          MessageBoxButtons.OK, MessageBoxIcon.Information)
27  End Sub ' Main
28
29 End Module ' modCreateArray

Fig. 7.2Fig. 7.2Fig. 7.2Fig. 7.2 Creating an array.



Chapter 7 Arrays 251

Line 12 declares array—a variable capable of storing a reference to an array of
Integer elements. Line 13 allocates an array of 10 elements using New and assigns it to
array. The program builds its output in String output. Line 15 appends to output
the headings for the columns displayed by the program. The columns represent the index
for each array element and the value of each array element, respectively.

Lines 18–20 use a For structure to append the index number (represented by i) and
value of each array element (array(i)) to output. Note the use of zero-based counting
(remember, indices start at 0), so that the loop accesses every array element. Also notice,
in the header of the For structure, the expression array.GetUpperBound(0), used
to retrieve the upper bound of the array. The Length property (lines 22–23) returns the
number of elements in the array.

7.4.2 Initializing the Values in an Array

The program of Fig. 7.3 creates two integer arrays of 10 elements each and sets the values
of the elements, using an initializer list and a For structure. The arrays are displayed in tab-
ular format in a message dialog.     

Line 12 uses one statement to declare array1 and array2 as variables that are
capable of referring to arrays of integers. Lines 16–17 allocate the 10 elements of array1
with New and initialize the values in the array, using an initializer list. Line 20 allocates
array2, whose size is determined by the expression array1.GetUpperBound(0),
meaning array1 and array2, in this particular program, have the same upper bound. 

1 ' Fig. 7.3: InitArray.vb
2 ' Initializing arrays.
3
4 Imports System.Windows.Forms
5
6 Module modInitArray
7
8 Sub Main()
9       Dim output As String

10       Dim i As Integer
11
12       Dim array1, array2 As Integer() ' declare two arrays
13
14       ' initializer list specifies number of elements
15       ' and value of each element
16       array1 = New Integer() {32, 27, 64, 18, 95, _
17          14, 90, 70, 60, 37}
18
19       ' allocate array2 based on length of array1
20       array2 = New Integer(array1.GetUpperBound(0)) {}
21
22       ' set values in array2 by a calculation
23       For i = 0 To array2.GetUpperBound(0)
24          array2(i) = 2 + 2 * i
25       Next
26

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Initializing array elements two different ways (part 1 of 2).



252 Arrays Chapter 7

The For structure in lines 23–25 initializes each element in array2. The elements in
array2 are initialized (line 24) to the even integers 2, 4, 6, …, 20. These numbers are
generated by multiplying each successive value of the loop counter by 2 and adding 2 to
the product. The For structure in lines 31–34 uses the values in the arrays to build String
output, which is displayed in a MessageBox (lines 36–37).

7.4.3 Summing the Elements of an Array
Often, the elements of an array represent a series of values that are employed in a calculation.
For example, if the elements of an array represent a group of students’ exam grades, the in-
structor might wish to total the elements of the array, then calculate the class average for the
exam. The program in Fig. 7.4 sums the values contained in a 10-element integer array. 

27       output &= "Subscript " & vbTab & "Array1" & vbTab & _
28          "Array2" & vbCrLf
29
30       ' display values for both arrays
31       For i = 0 To array1.GetUpperBound(0)
32          output &= i & vbTab & array1(i) & vbTab & array2(i) & _
33             vbCrLf
34       Next
35
36       MessageBox.Show(output, "Array of Integer Values", _
37          MessageBoxButtons.OK, MessageBoxIcon.Information)
38 End Sub ' Main
39
40 End Module ' modInitArray

1 ' Fig. 7.4: SumArray.vb
2 ' Computing sum of elements in array.
3
4 Imports System.Windows.Forms
5
6 Module modSumArray
7

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Computing the sum of the elements in an array (part 1 of 2).

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Initializing array elements two different ways (part 2 of 2).



Chapter 7 Arrays 253

Lines 9–10 declare, allocate and initialize the 10-element array array. Line 16, in the
body of the For structure, performs the addition. Alternatively, the values supplied as ini-
tializers for array could have been read into the program. For example, the user could
enter the values through a TextBox, or the values could be read from a file on disk. Addi-
tional information about reading values into a program can be found in Chapter 17, Files
and Streams.

7.4.4 Using Arrays to Analyze Survey Results
Our next example uses arrays to summarize data collected in a survey. Consider the follow-
ing problem statement:

Forty students were asked to rate on a scale of 1 to 10 the quality of the food in the student
cafeteria, with 1 being “awful” and 10 being “excellent”. Place the 40 responses in an inte-
ger array and determine the frequency of each rating.

This exercise represents a typical array-processing application (Fig. 7.5). We wish to
summarize the number of responses of each type (i.e., 1–10). Array responses (lines
14–16) is a 40-element integer array containing the students’ responses to the survey. Using
an 11-element array frequency, we can count the number of occurrences of each
response. We ignore the first element, frequency(0), because it is more logical to have
a survey response of 1 result in frequency(1) being incremented rather than incre-
menting frequency(0). We can use each response directly as an index on the fre-
quency array. Each element of the array is used as a counter for one of the possible types

8 Sub Main()
9       Dim array As Integer() = New Integer() _

10          {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
11
12       Dim total As Integer = 0, i As Integer = 0
13
14       ' sum array element values
15       For i = 0 To array.GetUpperBound(0)
16          total += array(i)
17       Next
18
19       MessageBox.Show("Total of array elements: " & total, _
20          "Sum the elements of an Array", MessageBoxButtons.OK, _
21          MessageBoxIcon.Information)
22 End Sub ' Main
23
24 End Module ' modSumArray

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Computing the sum of the elements in an array (part 2 of 2).



254 Arrays Chapter 7

of survey responses—frequency(1) counts the number of students who rated the food
as 1, frequency(7) counts the number of students who rated the food 7 and so on. 

1 ' Fig. 7.5: StudentPoll.vb
2 ' Using arrays to display poll results.
3
4 Imports System.Windows.Forms
5
6 Module modStudentPoll
7
8 Sub Main()
9       Dim answer, rating As Integer

10       Dim output As String
11
12       ' student response array (typically input at run time)
13       Dim responses As Integer()
14       responses = New Integer() {1, 2, 6, 4, 8, 5, 9, 7, _
15          8, 10, 1, 6, 3, 8, 6, 10, 3, 8, 2, 7, 6, 5, 7, 6, _
16          8, 6, 7, 5, 6, 6, 5, 6, 7, 5, 6, 4, 8, 6, 8, 10}
17
18       ' response frequency array (indices 0 through 10)
19       Dim frequency As Integer() = New Integer(10) {}
20
21       ' count frequencies
22       For answer = 0 To responses.GetUpperBound(0)
23          frequency(responses(answer)) += 1
24       Next
25
26       output &= "Rating " & vbTab & "Frequency " & vbCrLf
27
28       For rating = 1 To frequency.GetUpperBound(0)
29          output &= rating & vbTab & frequency(rating) & vbCrLf
30       Next
31
32       MessageBox.Show(output, "Student Poll Program", _
33          MessageBoxButtons.OK, MessageBoxIcon.Information)
34 End Sub ' Main
35
36 End Module ' modStudentPoll

Fig. 7.5Fig. 7.5Fig. 7.5Fig. 7.5 Simple student-poll analysis program.



Chapter 7 Arrays 255

Good Programming Practice 7.1
Strive for program clarity. Sometimes, it is worthwhile to forgo the most efficient use of mem-
ory or processor time if the trade-off results in a clearer program. 7.1

Performance Tip 7.1
Sometimes, performance considerations outweigh clarity considerations. 7.1

The For structure (lines 22–24) reads the responses from the array responses one
at a time and increments one of the 10 counters in the frequency array (fre-
quency(1) to frequency(10)). The key statement in the loop appears in line 23. This
statement increments the appropriate frequency counter as determined by the value of
responses(answer).

Let us consider several iterations of the For structure. When counter answer is 0,
responses(answer) is the value of responses(0) (i.e., 1—see line 14). There-
fore, frequency(responses(answer)) actually is interpreted as fre-
quency(1), meaning the first counter in array frequency is incremented by one. In
evaluating the expression frequency(responses(answer)), Visual Basic starts
with the value in the innermost set of parentheses (answer, currently 0). The value of
answer is plugged into the expression, and Visual Basic evaluates the next set of paren-
theses (responses(answer)). That value is used as the index for the frequency
array to determine which counter to increment (in this case, the 1 counter).

When answer is 1, responses(answer) is the value of responses(1) (i.e.,
2—see line 14). As a result, frequency(responses(answer)) actually is inter-
preted as frequency(2), causing array element 2 (the third element of the array) to be
incremented.

When answer is 2, responses(answer) is the value of responses(2) (i.e.,
6—see line 14), so frequency(responses(answer)) is interpreted as fre-
quency(6), causing array element 6 (the seventh element of the array) to be incremented
and so on. Note that, regardless of the number of responses processed in the survey, only
an 11-element array (in which we ignore element zero) is required to summarize the results,
because all the response values are between 1 and 10, and the index values for an 11-ele-
ment array are 0–10. Note that, in the output in Fig. 7.5, the numbers in the frequency
column correctly add to 40 (the elements of the frequency array were initialized to zero
when the array was allocated with New).

If the data contained out-of-range values, such as 13, the program would attempt to add
1 to frequency(13). This is outside the bounds of the array. In other languages like C
and C++ programming languages, such a reference would be allowed by the compiler and
at execution time. The program would “walk” past the end of the array to where it thought
element number 13 was located and would add 1 to whatever happened to be stored at that
memory location. This could modify another variable in the program, possibly causing
incorrect results or even premature program termination. Visual Basic provides mecha-
nisms that prevent accessing elements outside the bounds of arrays.

Common Programming Error 7.2
Referencing an element outside the array bounds is a runtime error. 7.2



256 Arrays Chapter 7

Testing and Debugging Tip 7.1
When a program is executed, array element indices are checked for validity (i.e., all indices
must be greater than or equal to 0 and less than the length of the array). If an attempt is made
to use an invalid index to access an element, Visual Basic generates an IndexOutOfRan-
geException exception. Exceptions are discussed in greater detail in Chapter 11, Excep-
tion Handling. 7.1

Testing and Debugging Tip 7.2
When looping through an array, the array index should remain between 0 and the upper
bound of the array (i.e., the value returned by method GetUpperBound). The initial and
final values used in the repetition structure should prevent accessing elements outside this
range. 7.2

Testing and Debugging Tip 7.3
Programs should confirm the validity of all input values to prevent erroneous information
from affecting calculations. 7.3

7.4.5 Using Histograms to Display Array Data Graphically

Many programs present data to users in a visual or graphical format. For example, numeric
values are often displayed as bars in a bar chart, in which longer bars represent larger nu-
meric values. Figure 7.6 displays numeric data graphically by creating a histogram that de-
picts each numeric value as a bar of asterisks (*).

1 ' Fig. 7.6: Histogram.vb
2 ' Using data to create histograms.
3
4 Imports System.Windows.Forms
5
6 Module modHistogram
7
8 Sub Main()
9       Dim output As String    ' output string

10       Dim i, j As Integer     ' counters
11
12     ' create data array
13       Dim array1 As Integer() = New Integer() _
14          {19, 3, 15, 7, 11, 9, 13, 5, 17, 1}
15
16       output &= "Element " & vbTab & "Value " & vbTab & _
17          "Histogram"
18
19       For i = 0 To array1.GetUpperBound(0)
20          output &= vbCrLf & i & vbTab & array1(i) & vbTab
21
22          For j = 1 To array1(i)
23             output &= "*" ' add one asterisk
24          Next
25
26       Next

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Program that prints histograms (part 1 of 2).



Chapter 7 Arrays 257

The program reads numbers from an array and graphs the information in the form of a
bar chart, or histogram. Each number is printed, and a bar consisting of a corresponding
number of asterisks is displayed beside the number. The nested For loops (lines 19–26)
append the bars to the String that is displayed in the MessageBox. Note the end value
(array1(i)) of the inner For structure on line 22. Each time the inner For structure is
reached (line 22), it counts from 1 to array1(i), using a value in array1 to determine
the final value of the control variable j—the number of asterisks to display.

Sometimes programs use a series of counter variables to summarize data, such as the
results of a survey. In Chapter 6, Procedures, we used a series of counters in our die-rolling
program to track the number of occurrences of each side on a six-sided die as the program
rolled the die 12 times. We indicated that there is a more elegant way of doing what we did
in Fig. 6.11 for writing the dice-rolling program. An array version of this application is
shown in Fig. 7.7.

27
28       MessageBox.show(output, "Histogram Printing Program", _
29          MessageBoxButtons.OK, MessageBoxIcon.Information)
30    End Sub ' Main
31
32 End Module ' modHistogram

1 ' Fig. 7.7: RollDie.vb
2 ' Rolling 12 dice with frequency chart.
3
4 ' Note: Directory.GetCurrentDirectory returns the directory of
5 ' the folder where the current project is plus
6 ' "bin/". This is where the images must be placed
7 ' for the example to work properly.
8
9 Imports System.IO

10 Imports System.Windows.Forms
11
12 Public Class FrmRollDie
13 Inherits System.Windows.Forms.Form
14

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 Using arrays to eliminate a Select Case structure (part 1 of 4).

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Program that prints histograms (part 2 of 2).



258 Arrays Chapter 7

15 Dim randomNumber As Random = New Random()
16 Dim frequency As Integer() = New Integer(6) {}
17
18 ' labels
19 Friend WithEvents lblDie1 As Label
20 Friend WithEvents lblDie2 As Label
21 Friend WithEvents lblDie3 As Label
22 Friend WithEvents lblDie4 As Label
23 Friend WithEvents lblDie5 As Label
24 Friend WithEvents lblDie6 As Label
25 Friend WithEvents lblDie7 As Label
26 Friend WithEvents lblDie8 As Label
27 Friend WithEvents lblDie9 As Label
28 Friend WithEvents lblDie11 As Label
29 Friend WithEvents lblDie10 As Label
30 Friend WithEvents lblDie12 As Label
31
32   ' text box
33 Friend WithEvents txtDisplay As TextBox
34                                    
35    ' button
36 Friend WithEvents cmdRoll As Button
37
38    ' Visual Studio .NET generated code
39
40    ' event handler for cmdRoll button
41 Private Sub cmdRoll_Click(ByVal sender As System.Object, _
42       ByVal e As System.EventArgs) Handles cmdRoll.Click
43
44       ' pass labels to a method that 
45       ' randomly assigns a face to each die
46       DisplayDie(lblDie1)
47       DisplayDie(lblDie2)
48       DisplayDie(lblDie3)
49       DisplayDie(lblDie4)
50       DisplayDie(lblDie5)
51       DisplayDie(lblDie6)
52       DisplayDie(lblDie7)
53       DisplayDie(lblDie8)
54       DisplayDie(lblDie9)
55       DisplayDie(lblDie10)
56       DisplayDie(lblDie11)
57       DisplayDie(lblDie12)
58
59       Dim total As Double = 0
60       Dim i As Integer
61
62       For i = 1 To frequency.GetUpperBound(0)
63          total += frequency(i)
64       Next
65
66       txtDisplay.Text = "Face" & vbTab & vbTab & "Frequency" & _
67          vbTab & vbTab & "Percent" & vbCrLf

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 Using arrays to eliminate a Select Case structure (part 2 of 4).



Chapter 7 Arrays 259

68
69       ' output frequency values
70       For i = 1 To frequency.GetUpperBound(0)
71          txtDisplay.Text &= i & vbTab & vbTab & frequency(i) & _
72             vbTab & vbTab & vbTab & String.Format("{0:N}", _
73             frequency(i) / total * 100) & "%" & vbCrLf
74       Next
75
76 End Sub ' cmdRoll_Click
77
78    ' simulate roll, display proper 
79    ' image and increment frequency
80 Sub DisplayDie(ByVal lblDie As Label)
81       Dim face As Integer = 1 + randomNumber.Next(6)
82
83       lblDie.Image = _
84          Image.FromFile(Directory.GetCurrentDirectory & _
85          "\Images\die" & face & ".png")
86
87       frequency(face) += 1
88 End Sub ' DisplayDie
89
90 End Class ' FrmRollDie

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 Using arrays to eliminate a Select Case structure (part 3 of 4).



260 Arrays Chapter 7

Lines 91–111 of Fig. 6.16 are replaced by line 87, which uses face’s value as the
index for array frequency to determine which element should be incremented during
each iteration of the loop. The random number calculation on line 81 produces numbers
from 1–6 (the values for a six-sided die); thus, the frequency array must have seven ele-
ments to allow the index values 1–6. In this program, we ignore element 0 of array fre-
quency. Lines 66–74 replace lines 57–78 from Fig. 6.16. We can loop through array
frequency; therefore, we do not have to enumerate each line of text to display in the
Label, as we did in Fig. 6.16.

7.5 Passing Arrays to Procedures
To pass an array argument to a procedure, specify the name of the array without using pa-
rentheses. For example, if array hourlyTemperatures has been declared as

Dim hourlyTemperatures As Integer() = New Integer(24) {}

the procedure call

DayData(hourlyTemperatures)

passes array hourlyTemperatures to procedure DayData.

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 Using arrays to eliminate a Select Case structure (part 4 of 4).



Chapter 7 Arrays 261

Every array object “knows” its own upper bound (i.e., the value returned by the method
GetUpperBound), so, when we pass an array object to a procedure, we do not need to
pass the upper bound of the array as a separate argument.

For a procedure to receive an array through a procedure call, the procedure’s parameter
list must specify that an array will be received. For example, the procedure header for Day-
Data might be written as

Sub DayData(ByVal temperatureData As Integer())

indicating that DayData expects to receive an Integer array in parameter tempera-
tureData. In Visual Basic, arrays always are passed by reference, yet it is normally inap-
propriate to use keyword ByRef in the procedure definition header. We discuss this subtle
(and somewhat complex) issue in more detail in Section 7.6.

Although entire arrays are always passed by reference, individual array elements can be
passed in the same manner as simple variables of that type. For instance, array element values
of primitive data types, such as Integer, can be passed by value or by reference, depending
on the procedure definition. To pass an array element to a procedure, use the indexed name
of the array element as an argument in the call to the procedure. The program in Fig. 7.8 dem-
onstrates the difference between passing an entire array and passing an array element. 

1 ' Fig. 7.8: PassArray.vb
2 ' Passing arrays and individual array elements to procedures.
3
4 Imports System.Windows.Forms
5
6 Module modPassArray
7 Dim output As String
8
9 Sub Main()

10       Dim array1 As Integer() = New Integer() {1, 2, 3, 4, 5}
11       Dim i As Integer
12
13       output = "EFFECTS OF PASSING ENTIRE ARRAY " & _
14          "BY REFERENCE:" & vbCrLf & vbCrLf & _
15          "The values of the original array are:" & vbCrLf
16
17       ' display original elements of array1
18       For i = 0 To array1.GetUpperBound(0)
19          output &= "  " & array1(i)
20       Next
21
22       ModifyArray(array1) ' array is passed by reference
23
24       output &= vbCrLf & _
25          "The values of the modified array are:" & vbCrLf
26
27       ' display modified elements of array1
28       For i = 0 To array1.GetUpperBound(0)
29          output &= "  " & array1(i)
30       Next

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 Passing arrays and individual array elements to procedures (part 1 of 3).



262 Arrays Chapter 7

31
32       output &= vbCrLf & vbCrLf & _
33          "EFFECTS OF PASSING ARRAY ELEMENT " & _
34          "BY VALUE:" & vbCrLf & vbCrLf & "array1(3) " & _
35          "before ModifyElementByVal: " & array1(3)
36
37       ' array element passed by value
38       ModifyElementByVal(array1(3))
39
40       output &= vbCrLf & "array1(3) after " & _
41          "ModifyElementByVal: " & array1(3)
42
43       output &= vbCrLf & vbCrLf & "EFFECTS OF PASSING " & _
44           "ARRAY ELEMENT BY REFERENCE: " & vbCrLf & vbCrLf & _
45           "array1(3) before ModifyElementByRef: " & array1(3)
46
47       ' array element passed by reference
48       ModifyElementByRef(array1(3))
49
50       output &= vbCrLf & "array1(3) after " & _
51          "ModifyElementByRef: " & array1(3)
52
53       MessageBox.Show(output, "Passing Arrays", _
54          MessageBoxButtons.OK, MessageBoxIcon.Information)
55 End Sub ' Main
56
57  ' procedure modifies array it receives (note ByVal)
58 Sub ModifyArray(ByVal arrayParameter As Integer())
59       Dim j As Integer
60
61       For j = 0 To arrayParameter.GetUpperBound(0)
62          arrayParameter(j) *= 2
63       Next
64
65 End Sub ' ModifyArray
66
67    ' procedure modifies integer passed to it
68    ' original is not be modified (note ByVal)
69 Sub ModifyElementByVal(ByVal element As Integer)
70
71       output &= vbCrLf & "Value received in " & _
72          "ModifyElementByVal: " & element
73       element *= 2
74       output &= vbCrLf & "Value calculated in " & _
75          "ModifyElementByVal: " & element
76 End Sub ' ModifyElementByVal
77
78    ' procedure modifies integer passed to it
79    ' original is be modified (note ByRef)
80 Sub ModifyElementByRef(ByRef element As Integer)
81
82       output &= vbCrLf & "Value received in " & _
83          "ModifyElementByRef: " & element

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 Passing arrays and individual array elements to procedures (part 2 of 3).



Chapter 7 Arrays 263

The For/Next structure on lines 18–20 appends the five elements of integer array
array1 (line 10) to String output. Line 22 passes array1 to procedure Modif-
yArray (line 58), which then multiplies each element by 2 (line 62). To illustrate that
array1’s elements were modified in the called procedure (i.e., as enabled by passing by
reference), the For/Next structure in lines 28–30 appends the five elements of array1
to output. As the screen capture indicates, the elements of array1 are indeed modified
by ModifyArray.

To show the value of array1(3) before the call to ModifyElementByVal, lines
32–35 append the value of array1(3) to String output. Line 38 invokes procedure
ModifyElementByVal and passes array1(3). When array1(3) is passed by
value, the Integer value in the fourth position of array array1 (now an 8) is copied
and is passed to procedure ModifyElementByVal, where it becomes the value of argu-
ment element. Procedure ModifyElementByVal then multiplies element by 2
(line 73). The parameter of ModifyElementByVal is a local variable that is destroyed
when the procedure terminates. Thus, when control is returned to Main, the unmodified
value of array1(3) is appended to the string variable output (lines 40–41).

Lines 43–51 demonstrate the effects of procedure ModifyElementByRef (lines
80–87). This procedure performs the same calculation as ModifyElementByVal, mul-
tiplying element by 2. In this case, array1(3) is passed by reference, meaning the
value of array1(3) appended to output (lines 50–51) is the same as the value calcu-
lated in the procedure.

Common Programming Error 7.3
In the passing of an array to a procedure, including an empty pair of parentheses after the
array name is a syntax error. 7.3

84       element *= 2
85       output &= vbCrLf & "Value calculated in " & _
86          "ModifyElementByRef: " & element
87 End Sub ' ModifyElementByRef
88
89 End Module ' modPassArray

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 Passing arrays and individual array elements to procedures (part 3 of 3).



264 Arrays Chapter 7

7.6 Passing Arrays: ByVal vs. ByRef
In Visual Basic .NET, a variable that “stores” an object, such as an array, does not actually
store the object itself. Instead, such a variable stores a reference to the object (i.e., the loca-
tion in the computer’s memory where the object is already stored). The distinction between
reference variables and primitive data type variables raises some subtle issues that pro-
grammers must understand to create secure, stable programs.

When used to declare a value-type parameter, keyword ByVal causes the value of the
argument to be copied to a local variable in the procedure. Changes to the local variable are
reflected in the local copy of that variable, but not in the original variable in the calling pro-
gram. However, if the argument passed using keyword ByVal is of a reference type, the
value copied is also a reference to the original object in the computer’s memory. Thus, ref-
erence types (like arrays and other objects) passed via keyword ByVal are actually passed
by reference, meaning changes to the objects in called procedures affect the original objects
in the callers.

Performance Tip 7.2
Passing arrays and other objects by reference makes sense for performance reasons. If ar-
rays were passed by value, a copy of each element would be passed. For large, frequently
passed arrays, this would waste time and would consume considerable storage for the copies
of the arrays—both of these problems cause poor performance. 7.2

Visual Basic also allows procedures to pass references with keyword ByRef. This is
a subtle capability, which, if misused, can lead to problems. For instance, when a reference-
type object like an array is passed with ByRef, the called procedure actually gains control
over the passed reference itself, allowing the called procedure to replace the original refer-
ence in the caller with a different object or even with Nothing. Such behavior can lead to
unpredictable effects, which can be disastrous in mission-critical applications. The pro-
gram in Fig. 7.9 demonstrates the subtle difference between passing a reference ByVal vs.
passing a reference ByRef.

Lines 11–12 declare two integer array variables, firstArray and firstArray-
Copy (we make the copy so we can determine whether reference firstArray gets over-
written). Line 15 allocates an array containing Integer values 1, 2 and 3 and stores the
array reference in variable firstArray. The assignment statement on line 16 copies refer-
ence firstArray to variable firstArrayCopy, causing these variables to reference the
same array object. The For/Next structure in lines 24–26 prints the contents of firs-
tArray before it is passed to procedure FirstDouble on line 29 so we can verify that this
array is passed by reference (i.e., the called method indeed changes the array’s contents).

The For/Next structure in procedure FirstDouble (lines 94–96) multiplies the
values of all the elements in the array by 2. Line 99 allocates a new array containing the
values 11, 12 and 13; the reference for this array then is assigned to parameter array (in
an attempt to overwrite reference firstArray in Main—this, of course, will not
happen, because the reference was passed ByVal). After procedure FirstDouble exe-
cutes, the For/Next structure on lines 35–37 prints the contents of firstArray, dem-
onstrating that the values of the elements have been changed by the procedure (and
confirming that in Visual Basic, .NET arrays are always passed by reference). The If
structure on lines 40–46 uses the Is operator to compare references firstArray (which
we just attempted to overwrite) and firstArrayCopy. Visual Basic provides operator



Chapter 7 Arrays 265

Is for comparing references to determine whether they are referencing the same object.
The expression on line 40 is true if the operands to binary operator Is indeed reference the
same object. In this case, the object represented is the array allocated in line 15—not the
array allocated in procedure FirstDouble (line 99).   

1 ' Fig. 7.9: ArrayReferenceTest.vb
2 ' Testing the effects of passing array references using 
3 ' ByVal and ByRef.
4
5 Module modArrayReferenceTest
6
7 Sub Main()
8       Dim i As Integer
9

10       ' declare array references
11       Dim firstArray As Integer()
12       Dim firstArrayCopy As Integer()
13
14       ' allocate firstArray and copy its reference
15       firstArray = New Integer() {1, 2, 3}
16       firstArrayCopy = firstArray
17
18       Console.WriteLine("Test passing array reference " & _
19          "using ByVal.")
20       Console.Write("Contents of firstArray before " & _
21          "calling FirstDouble: ")
22
23       ' print contents of firstArray
24       For i = 0 To firstArray.GetUpperBound(0)
25          Console.Write(firstArray(i) & " ")
26       Next
27
28       ' pass firstArray using ByVal
29       FirstDouble(firstArray)
30
31       Console.Write(vbCrLf & "Contents of firstArray after " & _
32          "calling FirstDouble: ")
33
34       ' print contents of firstArray
35       For i = 0 To firstArray.GetUpperBound(0)
36          Console.Write(firstArray(i) & " ")
37       Next
38
39       ' test whether reference was changed by FirstDouble
40       If firstArray Is firstArrayCopy Then
41          Console.WriteLine(vbCrLf & "The references are " & _
42             "equal.")
43       Else
44          Console.WriteLine(vbCrLf & "The references are " & _
45             "not equal.")
46       End If
47

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 Passing an array reference with ByVal and ByRef (part 1 of 3).



266 Arrays Chapter 7

48       ' declare array references
49       Dim secondArray As Integer()
50       Dim secondArrayCopy As Integer()
51
52       ' allocate secondArray and copy its reference
53       secondArray = New Integer() {1, 2, 3}
54       secondArrayCopy = secondArray
55
56       Console.WriteLine(vbCrLf & "Test passing array " & _
57          "reference using ByRef.")
58       Console.Write("Contents of secondArray before " & _
59          "calling SecondDouble: ")
60
61       ' print contents of secondArray before procedure call
62       For i = 0 To secondArray.GetUpperBound(0)
63          Console.Write(secondArray(i) & " ")
64       Next
65
66   ' pass secondArray using ByRef
67       SecondDouble(secondArray)
68
69       Console.Write(vbCrLf & "Contents of secondArray " & _
70          "after calling SecondDouble: ")
71
72       ' print contents of secondArray after procedure call
73       For i = 0 To secondArray.GetUpperBound(0)
74          Console.Write(secondArray(i) & " ")
75       Next
76
77       ' test whether the reference was changed by SecondDouble
78       If secondArray Is secondArrayCopy Then
79          Console.WriteLine(vbCrLf & "The references are " & _
80             "equal.")
81       Else
82          Console.WriteLine(vbCrLf & "The references are " & _
83             "not equal.")
84       End If
85
86 End Sub ' Main
87
88    ' procedure modifies elements of array and assigns 
89    ' new reference (note ByVal)
90 Sub FirstDouble(ByVal array As Integer())
91       Dim i As Integer
92
93       ' double each element value
94       For i = 0 To array.GetUpperBound(0)
95          array(i) *= 2
96       Next
97
98       ' create new reference and assign it to array
99       array = New Integer() {11, 12, 13}
100 End Sub ' FirstDouble

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 Passing an array reference with ByVal and ByRef (part 2 of 3).



Chapter 7 Arrays 267

Lines 48–84 in procedure Main perform similar tests, using array variables second-
Array and secondArrayCopy and procedure SecondDouble (lines 104–114). Pro-
cedure SecondDouble performs the same operations as FirstDouble, but receives its
array argument with ByRef. In this case, the reference stored in secondArray after the
procedure call is a reference to the array allocated on line 113 of SecondDouble, dem-
onstrating that a reference passed with ByRef can be modified by the called procedure so
that the reference actually points to a different object, in this case an array allocated in pro-
cedure SecondDouble. The If structure in lines 78–84 demonstrates that second-
Array and secondArrayCopy no longer represent the same array.

Software Engineering Observation 7.1
Using ByVal to receive a reference-type object parameter does not cause the object to pass
by value—the object still passes by reference. Rather, ByVal causes the object’s reference
to pass by value. This prevents a called procedure from overwriting a reference in the caller.
In the vast majority of cases, protecting the caller’s reference from modification is the de-
sired behavior. If you encounter a situation where you truly want the called procedure to
modify the caller’s reference, pass the reference-type object ByRef—but, again, such situ-
ations are rare. 7.1

Software Engineering Observation 7.2
In Visual Basic .NET, reference-type objects (including arrays) always pass by reference. So,
a called procedure receiving a reference to an object in a caller can change the caller’s object. 7.2

101
102    ' procedure modifies elements of array and assigns
103    ' new reference (note ByRef)
104 Sub SecondDouble(ByRef array As Integer())
105       Dim i As Integer
106
107       ' double contents of array
108       For i = 0 To array.GetUpperBound(0)
109          array(i) *= 2
110       Next
111
112       ' create new reference and assign it to array
113       array = New Integer() {11, 12, 13}
114 End Sub ' SecondDouble
115
116 End Module ' modPassArray

Test passing array reference using ByVal.
Contents of firstArray before calling FirstDouble: 1 2 3
Contents of firstArray after calling FirstDouble: 2 4 6
The references are equal.

Test passing array reference using ByRef.
Contents of secondArray before calling SecondDouble: 1 2 3
Contents of secondArray after calling SecondDouble: 11 12 13
The references are not equal.

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 Passing an array reference with ByVal and ByRef (part 3 of 3).



268 Arrays Chapter 7

7.7 Sorting Arrays
Sorting data (i.e., arranging the data into some particular order, such as ascending or de-
scending order) is one of the most popular computing applications. For example, a bank
sorts all checks by account number, so that it can prepare individual bank statements at the
end of each month. Telephone companies sort their lists of accounts by last name and, with-
in last-name listings, by first name, to make it easy to find phone numbers. Virtually every
organization must sort some data and, often, massive amounts of it. Sorting is an intriguing
problem that has attracted some of the most intense research efforts in the computer-science
field. This section discusses one of the simplest sorting schemes. In the exercises at the end
of this chapter, we investigate a more sophisticated sorting algorithm.

Performance Tip 7.3
Sometimes, the simplest algorithms perform poorly. Their virtue is that they are easy to write,
test and debug. Complex algorithms may be needed for a program to achieve maximum per-
formance. 7.3

The module shown in Fig. 7.10 contains procedures for sorting the values of an integer
array into ascending order. The technique we use is called the bubble sort, or the sinking
sort, because in an ascending sort smaller values gradually “bubble” their way to the top of
the array (i.e., toward the first element) like air bubbles rising in water, while larger values
sink to the bottom (i.e., toward the end) of the array. The technique uses nested loops to
make several passes through the array. Each pass compares successive pairs of elements. If
a pair is in increasing order (or the values are equal), the bubble sort leaves the values as
they are. If a pair is in decreasing order, the bubble sort swaps their values in the array. 

1 ' Fig. 7.10: BubbleSort.vb
2 ' Procedures for sorting an integer array.
3
4 Module modBubbleSort
5
6    ' sort array using bubble sort algorithm
7 Sub BubbleSort(ByVal sortArray As Integer())
8       Dim pass, i As Integer
9

10       For pass = 1 To sortArray.GetUpperBound(0)
11
12          For i = 0 To sortArray.GetUpperBound(0) - 1
13
14             If sortArray(i) > sortArray(i + 1) Then
15                Swap(sortArray, i)
16             End If
17
18          Next
19
20       Next
21
22 End Sub ' BubbleSort
23

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 BubbleSort procedure in modBubbleSort (part 1 of 2).



Chapter 7 Arrays 269

The module contains procedures BubbleSort and Swap. Procedure BubbleSort
(lines 7–22) sorts the elements of its parameter, sortArray. Procedure BubbleSort
calls procedure Swap (lines 25–33) as necessary to transpose two of the array elements.
The Windows application in Fig. 7.11 demonstrates procedure BubbleSort (Fig. 7.10)
by sorting an array of 10 randomly-generated elements (which may contain duplicates).

24 ' swap two array elements
25 Sub Swap(ByVal swapArray As Integer(), _
26       ByVal first As Integer)
27
28       Dim hold As Integer
29
30       hold = swapArray(first)
31       swapArray(first) = swapArray(first + 1)
32       swapArray(first + 1) = hold
33 End Sub ' Swap
34
35 End Module ' modBubbleSort

1 ' Fig. 7.11: BubbleSortTest.vb
2 ' Program creates random numbers and sorts them.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmBubbleSort
7 Inherits System.Windows.Forms.Form
8
9   ' buttons

10 Friend WithEvents cmdCreate As Button
11 Friend WithEvents cmdSort As Button
12
13   ' labels
14 Friend WithEvents lblOriginal As Label
15 Friend WithEvents lblSorted As Label
16
17   ' textboxes
18 Friend WithEvents txtOriginal As TextBox
19 Friend WithEvents txtSorted As TextBox
20
21    ' Visual Studio .NET generated code
22
23    Dim array As Integer() = New Integer(9) {}
24
25    ' creates random generated numbers
26 Private Sub cmdCreate_Click(ByVal sender As System.Object, _
27       ByVal e As System.EventArgs) Handles cmdCreate.Click
28

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Sorting an array with bubble sort (part 1 of 3).

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 BubbleSort procedure in modBubbleSort (part 2 of 2).



270 Arrays Chapter 7

29       Dim output As String
30       Dim randomNumber As Random = New Random()
31       Dim i As Integer
32
33       txtSorted.Text = ""
34
35       ' create 10 random numbers and append to output
36       For i = 0 To array.GetUpperBound(0)
37          array(i) = randomNumber.Next(100)
38          output &= array(i) & vbCrLf
39       Next
40
41       txtOriginal.Text = output ' display numbers 
42       cmdSort.Enabled = True    ' enables cmdSort button 
43 End Sub ' cmdCreate_Click
44
45 ' sorts randomly generated numbers
46 Private Sub cmdSort_Click(ByVal sender As System.Object, _
47       ByVal e As System.EventArgs) Handles cmdSort.Click
48
49       Dim output As String
50       Dim i As Integer
51
52       ' sort array
53       modBubbleSort.BubbleSort(array)
54
55       ' creates string with sorted numbers
56       For i = 0 To array.GetUpperBound(0)
57          output &= array(i) & vbCrLf
58       Next
59
60       txtSorted.Text = output ' display numbers
61       cmdSort.Enabled = False
62 End Sub ' cmdSort_Click
63
64 End Class ' FrmBubbleSort

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Sorting an array with bubble sort (part 2 of 3).



Chapter 7 Arrays 271

The program contains methods cmdCreate_Click and cmdSort_Click.
Method cmdCreate_Click (lines 26–43) assigns 10 random values to the elements of
array and displays the contents of the array in txtOriginal. Method
cmdSort_Click (lines 46–62) sorts array by calling procedure BubbleSort from
modBubbleSort.

Procedure BubbleSort receives the array as parameter sortArray. The nested
For/Next structures in lines 10–20 of Fig. 7.10 performs the sort. The outer loop controls
the number of passes of the array. The inner loop (lines 12–18) controls the comparisons
and swapping (if necessary) of the elements during each pass.

Procedure BubbleSort first compares sortArray(0) to sortArray(1), then
sortArray(1) to sortArray(2), and so on until it completes the pass by comparing
sortArray(8) to sortArray(9). Although there are 10 elements, the comparison
loop performs only nine comparisons (because the comparisons each involve a pair of num-
bers).

The comparisons performed in a bubble sort could cause a large value to move down
the array (sink) many positions on a single pass. However, a small value cannot move up
(bubble) more than one position per pass. On the first pass, the largest value is guaranteed
to sink to the bottom element of the array, sortArray(9). On the second pass, the
second-largest value is guaranteed to sink to sortArray(8). On the ninth pass, the ninth
largest value sinks to sortArray(1), leaving the smallest value in sortArray(0).
Thus, only nine passes are required to sort a 10-element array (and, in general, only n-1
passes are needed to sort an n-element array).

If a comparison reveals that the two elements are in descending order, BubbleSort
calls procedure Swap to exchange the two elements, placing them in ascending order in the
array. Procedure Swap receives the array (which it calls swapArray) and the index of the
first element of the array to transpose (with the subsequent element). The exchange is per-
formed by three assignments

hold = swapArray(first)
swapArray(first) = swapArray(first + 1)
swapArray(first + 1) = hold

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Sorting an array with bubble sort (part 3 of 3).



272 Arrays Chapter 7

where the extra variable hold temporarily stores one of the two values being swapped. The
swap cannot be performed with only the two assignments

swapArray(first) = swapArray(first + 1)
swapArray(first + 1) = swapArray(first)

If swapArray(first) is 7 and swapArray(first + 1) is 5, after the first assign-
ment both array elements contains 5, and the value 7 is lost—hence, the need for the extra
variable hold.

The advantage of the bubble sort is that it is easy to program. However, the bubble sort
runs slowly, as becomes apparent when sorting large arrays. In the exercises, we develop
efficient versions of the bubble sort and investigate a more efficient and more complex sort,
quicksort. More advanced courses (often titled “Data Structures” or “Algorithms” or
“Computational Complexity”) investigate sorting and searching in greater depth.

7.8 Searching Arrays: Linear Search and Binary Search
Often, programmers work with large amounts of data stored in arrays. It might be necessary
in this case to determine whether an array contains a value that matches a certain key value.
The process of locating a particular element value in an array is called searching. In this sec-
tion, we discuss two searching techniques—the simple linear search technique and the more
efficient (but more complex) binary search technique. Exercises 7.8 and 7.9 at the end of this
chapter ask you to implement recursive versions of the linear and binary searches.

7.8.1 Searching an Array with Linear Search

Module modLinearSearch in Fig. 7.12 contains a procedure for performing a linear
search. Procedure LinearSearch (lines 7–22) uses a For/Next structure containing an
If structure (lines 15–17) to compare each element of an array with a search key. If the
search key is found, the procedure returns the index value for the element, indicating the
position of the search key in the array. If the search key is not found, the procedure returns
–1. (The value –1 is a good choice because it is not a valid index number.) If the elements
of the array being searched are unordered, it is just as likely that the value will be found in
the first element as in the last, so the procedure will have to compare the search key with
half the elements of the array, on average. 

1 ' Fig. 7.12: LinearSearch.vb
2 ' Linear search of an array.
3
4 Module modLinearSearch
5
6    ' iterates through array 
7 Function LinearSearch(ByVal key As Integer, _
8       ByVal numbers As Integer()) As Integer
9

10       Dim n As Integer
11

Fig. 7.12Fig. 7.12Fig. 7.12Fig. 7.12 Procedures for performing a linear search (part 1 of 2).



Chapter 7 Arrays 273

The program in Fig. 7.13 uses module modLinearSearch to search a 20-element
array filled with random values created when the user clicks cmdCreate. The user then
types a search key in a TextBox (named txtInput) and clicks cmdSearch to start
the search.   

12       ' structure iterates linearly through array
13       For n = 0 To numbers.GetUpperBound(0)
14
15          If numbers(n) = key Then
16             Return n
17          End If
18
19       Next
20
21       Return -1
22    End Function ' LinearSearch
23
24 End Module ' modLinearSearch

1 ' Fig. 7.13: LinearSearchTest.vb
2 ' Linear search of an array.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmLinearSearchTest
7 Inherits System.Windows.Forms.Form
8
9  ' buttons

10 Friend WithEvents cmdSearch As Button
11 Friend WithEvents cmdCreate As Button
12
13  ' text boxes
14 Friend WithEvents txtInput As TextBox
15 Friend WithEvents txtData As TextBox
16
17   ' labels
18 Friend WithEvents lblEnter As Label
19 Friend WithEvents lblResult As Label
20
21    ' Visual Studio .NET generated code
22
23 Dim array1 As Integer() = New Integer(19) {}
24
25 ' creates random data 
26 Private Sub cmdCreate_Click(ByVal sender As System.Object, _
27       ByVal e As System.EventArgs) Handles cmdCreate.Click
28
29       Dim output As String
30       Dim randomNumber As Random = New Random()
31       Dim i As Integer

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Linear search of an array (part 1 of 3).

Fig. 7.12Fig. 7.12Fig. 7.12Fig. 7.12 Procedures for performing a linear search (part 2 of 2).



274 Arrays Chapter 7

32

33       output = "Index" & vbTab & "Value" & vbCrLf
34
35       ' creates string containing 11 random numbers
36       For i = 0 To array1.GetUpperBound(0)
37          array1(i) = randomNumber.Next(1000)
38          output &= i & vbTab & array1(i) & vbCrLf
39       Next
40
41       txtData.Text = output    ' displays numbers 
42       txtInput.Text = ""       ' clear search key text box
43       cmdSearch.Enabled = True ' enable search button
44 End Sub ' cmdCreate_Click
45
46    ' searches key of element 
47 Private Sub cmdSearch_Click(ByVal sender As System.Object, _
48       ByVal e As System.EventArgs) Handles cmdSearch.Click
49
50       ' if search key text box is empty, display 
51       ' message and exit procedure
52       If txtInput.Text = "" Then
53          MessageBox.Show("You must enter a search key.")
54          Exit Sub
55       End If
56
57       Dim searchKey As Integer = Convert.ToInt32(txtInput.Text)
58       Dim element As Integer = LinearSearch(searchKey, array1)
59
60       If element <> -1 Then
61          lblResult.Text = "Found Value in index " & element
62       Else
63          lblResult.Text = "Value Not Found"
64       End If
65
66 End Sub ' cmdSearch_Click
67
68 End Class ' FrmLinearSearch

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Linear search of an array (part 2 of 3).



Chapter 7 Arrays 275

7.8.2 Searching a Sorted Array with Binary Search

The linear search method works well for small or unsorted arrays. However, for large ar-
rays, linear searching is inefficient. If the array is sorted, the high-speed binary search tech-
nique can be used.

After each comparison, the binary search algorithm eliminates from consideration half
the elements in the array that is being searched. The algorithm locates the middle array ele-
ment and compares it with the search key. If they are equal, the search key has been found,
and the index of that element is returned. Otherwise, the problem is reduced to searching
half of the array. If the search key is less than the middle array element, the second half of
the array is eliminated from consideration, and searching continues with only the first half
of the array; otherwise, the second half of the array is searched. If the search key is not the
middle element in the specified subarray (a piece of the original array), the algorithm is
repeated in one quarter of the original array. The search continues until the search key is
equal to the middle element of a subarray, or until the subarray consists of one element that
is not equal to the search key (i.e., the search key is not found).

In a worst-case scenario, searching a sorted array of 1024 elements via binary search
requires only 10 comparisons. Repeatedly dividing 1024 by 2 (after each comparison, we
eliminate from consideration half the array) yields the successive values 512, 256, 128, 64,
32, 16, 8, 4, 2 and 1. The number 1024 (210)  is divided by 2 only ten times to get the value
1, and division by 2 is equivalent to one comparison in the binary search algorithm. A
sorted array of 1,048,576 (220) elements takes a maximum of 20 comparisons to find the
key! Similarly, a key can be found in a sorted array of one billion elements in a maximum
of 30 comparisons! This is a tremendous increase in performance over the linear search,
which required comparing the search key with an average of half the elements in the array.
For a one-billion-element array, the difference is between an average of 500 million com-
parisons and a maximum of 30 comparisons! The maximum number of comparisons
needed to complete a binary search of any sorted array is indicated by the exponent of the
first power of 2 that is greater than or equal to the number of elements in the array.

Figure 7.14 presents the iterative version of method BinarySearch (lines 60–86).
The method receives two arguments—integer array array1 (the array to search), and
integer searchKey (the search key). The array is passed to BinarySearch, even

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Linear search of an array (part 3 of 3).



276 Arrays Chapter 7

though the array is an instance variable of the class. Once again, this is done because an
array normally is passed to a procedure of another class for searching.

1 ' Fig. 7.14: BinarySearchTest.vb
2 ' Demonstrating binary search of an array.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmBinarySearch
7 Inherits System.Windows.Forms.Form
8
9  ' labels

10 Friend WithEvents lblEnterKey As Label
11 Friend WithEvents lblResult As Label
12 Friend WithEvents lblResultOutput As Label
13 Friend WithEvents lblDisplay As Label
14 Friend WithEvents lblIndex As Label
15 Friend WithEvents lblIndexes As Label
16
17 ' button
18 Friend WithEvents cmdFindKey As Button
19
20  ' text box
21 Friend WithEvents txtInput As TextBox
22
23    ' Visual Studio .NET generated code
24
25 Dim array1 As Integer() = New Integer(14) {}
26
27 ' FrmBinarySearch initializes array1 to ascending values
28    ' 0, 2, 4, 6, ..., 28 when first loaded
29 Private Sub FrmBinarySearch_Load(ByVal sender As System.Object, _
30       ByVal e As System.EventArgs) Handles MyBase.Load
31
32       Dim i As Integer
33
34       For i = 0 To array1.GetUpperBound(0)
35          array1(i) = 2 * i
36       Next
37
38    End Sub ' FrmBinarySearch_Load
39
40    ' event handler for cmdFindKey button
41 Private Sub cmdFindKey_Click(ByVal sender As System.Object, _
42       ByVal e As System.EventArgs) Handles cmdFindKey.Click
43
44       Dim searchKey As Integer = Convert.ToInt32(txtInput.Text)
45
46       lblDisplay.Text = ""
47
48       ' perform binary search
49       Dim element As Integer = BinarySearch(array1, searchKey)
50

Fig. 7.14Fig. 7.14Fig. 7.14Fig. 7.14 Binary search of a sorted array (part 1 of 3).



Chapter 7 Arrays 277

51       If element <> -1 Then
52          lblResultOutput.Text = "Found value in element " & element
53       Else
54          lblResultOutput.Text = "Value not found"
55       End If
56
57    End Sub ' cmdFindKey_Click
58
59 ' performs binary search
60 Function BinarySearch(ByVal array As Integer(), _
61       ByVal key As Integer) As Integer
62
63       Dim low As Integer = 0                 ' low index
64       Dim high As Integer = array.GetUpperBound(0) ' high index 
65       Dim middle As Integer             ' middle index
66
67       While low <= high
68          middle = (low + high) \ 2
69
70          ' the following line displays part
71          ' of the array being manipulated during
72          ' each iteration of loop
73          BuildOutput(low, middle, high)
74
75          If key = array(middle) Then     ' match
76             Return middle
77          ElseIf key < array(middle) Then ' search low end
78             high = middle - 1            ' of array
79          Else
80             low = middle + 1
81          End If
82
83       End While
84
85       Return -1 ' search key not found
86    End Function ' BinarySearch
87
88 Sub BuildOutput(ByVal low As Integer, _
89       ByVal middle As Integer, ByVal high As Integer)
90
91       Dim i As Integer
92
93       For i = 0 To array1.GetUpperBound(0)
94
95          If i < low OrElse i > high Then
96             lblDisplay.Text &= "    "
97          ElseIf i = middle Then  ' mark middle element in output
98             lblDisplay.Text &= String.Format("{0:D2}", _
99                array1(i)) & "* "
100          Else
101             lblDisplay.Text &= String.Format("{0:D2}", _
102                array1(i)) & "  "
103          End If

Fig. 7.14Fig. 7.14Fig. 7.14Fig. 7.14 Binary search of a sorted array (part 2 of 3).



278 Arrays Chapter 7

104
105       Next i
106
107       lblDisplay.Text &= vbCrLf
108    End Sub ' BuildOutput
109
110 End Class ' FrmBinarySearch

Fig. 7.14Fig. 7.14Fig. 7.14Fig. 7.14 Binary search of a sorted array (part 3 of 3).



Chapter 7 Arrays 279

Line 68 calculates the middle element of the array being searched by determining the
number of elements in the array and then dividing this value by 2. Recall that using the \
operator causes the remainder to be discarded. What happens, then, when there is an even
number of elements in the array? In this case there is no “middle” element, and the middle
of our array is actually between the two middle elements. When this occurs, the calculation
on line 68 returns the smaller of the two middle values.

The If/Else structure on lines 75–81 compares the middle element of the array to key.
If key matches the middle element of a subarray (line 75), middle (the index of the cur-
rent element) is returned, indicating that the value was found and the search is complete.

If key does not match the middle element of a subarray, the low index or high
index (both declared in the method) is adjusted so that a smaller subarray can be searched.
If key is less than the middle element (line 77), the high index is set to middle - 1, and
the search is continued on the elements from low to middle - 1. If key is greater than
the middle element (line 79), the low index is set to middle + 1, and the search is con-
tinued on the elements from middle + 1 to high.

The program uses a 15-element array. The first power of 2 greater than or equal to the
number of array elements is 16 (24), so at most four comparisons are required to find the
key. To illustrate this concept, method BinarySearch calls method BuildOutput
(line 88) to output each subarray during the binary search process. The middle element in
each subarray is marked with an asterisk (*) to indicate the element with which the key is
compared. The format string "{0:D2}" on lines 98 and 101 causes the values to be for-
matted as integers with at least two digits. Each search in this example results in a max-
imum of four lines of output—one per comparison.

7.9 Multidimensional Rectangular and Jagged Arrays
So far, we have studied one-dimensional (or single-subscripted) arrays—i.e., those that
contain one row of values. In this section, we introduce multidimensional (often called mul-
tiple-subscripted) arrays, which require two or more indices to identify particular elements.
We concentrate on two-dimensional (often called double-subscripted) arrays, or arrays that
contain multiple rows of values. There are two types of multidimensional arrays—rectan-
gular and jagged. Rectangular arrays with two indices often represent tables of values con-
sisting of information arranged in rows and columns. Each row is the same size, and each
column is the same size (hence, the term “rectangular”). To identify a particular table ele-
ment, we must specify the two indices—by convention, the first identifies the element’s
row, the second the element’s column. Figure 7.15 illustrates a two-dimensional rectangu-
lar array, a, containing three rows and four columns. A rectangular two-dimensional array
with m rows and n columns is called an m-by-n array; the array in Fig. 7.15 is referred to
as a 3-by-4 array.

Every element in array a is identified in Fig. 7.15 by an element name of the form
a(i, j), where a is the name of the array and i and j are the indices that uniquely iden-
tify the row and column of each element in array a. Notice that, because array indices are
determined through zero-based counting, the names of the elements in the first row have a
first index of 0; the names of the elements in the fourth column have a second index of 3.

Multidimensional arrays are initialized in declarations using the same process and nota-
tions employed for one-dimensional arrays. For example, a two-dimensional rectangular
array numbers with two rows and two columns could be declared and initialized with



280 Arrays Chapter 7

Dim numbers As Integer(,) = New Integer(1,1) {}

numbers(0, 0) = 1
numbers(0, 1) = 2
numbers(1, 0) = 3
numbers(1, 1) = 4

Alternatively, the initialization can be written on one line, as shown below:

Dim numbers As Integer(,) = New Integer(,) {{1, 2}, {3, 4}}

The values are grouped by row in braces, with 1 and 2 initializing numbers(0,0) and
numbers(0,1), and 3 and 4 initializing numbers(1,0) and numbers(1,1). The
compiler determines the number of rows by counting the number of subinitializer lists (rep-
resented by sets of braces) in the main initializer list. Then, the compiler determines the
number of columns in each row by counting the number of initializer values in the subini-
tializer list for that row. In rectangular arrays, each row has the same number of values.

Jagged arrays are maintained as arrays of arrays. Unlike rectangular arrays, rows in
jagged arrays can be of different lengths. The statements

Dim array2 As Integer()()    ' declare jagged array

array2 = New Integer(1)() {} ' allocate two rows

' allocate columns for row 0
array2(0) = New Integer() {1, 2}

' allocate columns for 1
array2(1) = New Integer() {3, 4, 5}

create Integer array array2 with row 0 (which is an array itself) containing two ele-
ments (1 and 2), and row 1 containing three elements (3, 4 and 5). Notice that the array
name, followed by a single index (e.g., array2(0)), behaves exactly like a normal one-
dimensional array variable. A one-dimensional array can be created and assigned to that
value.

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Two-dimensional array with three rows and four columns.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Column index (or subscript)

Row index (or subscript)

Array name

a(1, 0) a(1, 1) a(1, 2) a(1, 3)

a(0, 0) a(0, 1) a(0, 2) a(0, 3)

a(2, 0) a(2, 1) a(2, 2) a(2, 3)



Chapter 7 Arrays 281

The program in Fig. 7.16 demonstrates the initialization of a rectangular array
(array1) and a jagged array (array2) in declarations and the use of nested For/Next
loops to traverse the arrays (i.e., to manipulate every array element). 

The program declares two arrays in method Main. The allocation of array1 (line 14)
provides six initializers in two sublists. The first sublist initializes the first row (row 0) of the
array to the values 1,2 and 3; the second sublist initializes the second row (row 1) of the array
to the values 4, 5 and 6. The declaration and allocation of array2 (line 17) create a jagged
array of 3 arrays (specified by the 2 in the first set of parentheses after keyword Integer).
Lines 18–20 initialize each subarray so that the first subarray contains the values 1 and 2, the
second contains the value 3 and the last contains the values 4, 5 and 6.

The nested For/Next structures in lines 24–31 append the elements of array1 to
string output. The nested For/Next structures traverse the arrays in two dimensions.
The outer For/Next structure traverses the rows; the inner For/Next structure traverses
the columns within a row. Each For/Next structure calls method GetUpperBound to
obtain the upper bound of the dimension it traverses. Notice that the dimensions are zero-
based, meaning the rows are dimension 0 and the columns are dimension 1.

1 ' Fig. 7.16: MultidimensionalArrays.vb
2 ' Initializing multi-dimensional arrays.
3
4 Imports System.Windows.Forms
5
6 Module modMultidimensionalArrays
7
8 Sub Main()
9       Dim output As String

10      Dim i, j As Integer
11
12       ' create rectangular two-dimensional array
13       Dim array1 As Integer(,)
14       array1 = New Integer(,) {{1, 2, 3}, {4, 5, 6}}
15
16       ' create jagged two-dimensional array
17       Dim array2 As Integer()() = New Integer(2)() {}
18
19       array2(0) = New Integer() {1, 2}
20       array2(1) = New Integer() {3}
21       array2(2) = New Integer() {4, 5, 6}
22
23       output = "Values in array1 by row are " & vbCrLf
24      
25       For i = 0 To array1.GetUpperBound(0)
26
27          For j = 0 To array1.GetUpperBound(1)
28             output &= array1(i, j) & "  "
29          Next
30
31          output &= vbCrLf
32       Next
33

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Initializing multidimensional arrays (part 1 of 2).



282 Arrays Chapter 7

The nested For/Next structures in lines 36–43 behave similarly for array2. How-
ever, in a jagged two-dimensional array, the second dimension is actually the first dimen-
sion of a separate array. In the example, the inner For/Next structure determines the
number of columns in each row of the array by passing argument 0 to method GetUpper-
Bound, called on the array returned by accessing a single row of the jagged array. Arrays
of dimensions higher than two can be traversed using one nested For/Next structure for
each dimension.

Many common array manipulations use For/Next repetition structures. Imagine a
jagged array jaggedArray, which contains 3 rows, or arrays. The following For/Next
structure sets all the elements in the third row of array jaggedArray to zero:

For column = 0 To jaggedArray(2).GetUpperBound(0)
   jaggedArray(2)(column) = 0
Next

We specified the third row; therefore, we know that the first index is always 2 (0 is the first
row and 1 is the second row). The For/Next loop varies only the second index (i.e., the
column index). Notice the use of jaggedArray(2).GetUpperBound(0) as the end
value of the For/Next structure. In this expression, we call the GetUpperBound meth-
od on the array contained in the third row of jaggedArray. This statement demonstrates
that each row of jaggedArray is itself an array, and therefore methods called on this val-

34       output &= vbCrLf & "Values in array2 by row are " & _
35          vbCrLf
36
37       For i = 0 To array2.GetUpperBound(0)
38
39          For j = 0 To array2(i).GetUpperBound(0)
40             output &= array2(i)(j) & "  "
41          Next
42
43          output &= vbCrLf
44       Next
45
46       MessageBox.Show(output, _
47          "Initializing Multi-Dimensional Arrays", _
48          MessageBoxButtons.OK, MessageBoxIcon.Information)
49    End Sub ' Main
50
51 End Module ' modMultidimensionalArrays

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Initializing multidimensional arrays (part 2 of 2).



Chapter 7 Arrays 283

ue behave as they would for a typical array. The preceding For/Next structure is equiva-
lent to the assignment statements

jaggedArray(2)(0) = 0
jaggedArray(2)(1) = 0
jaggedArray(2)(2) = 0
jaggedArray(2)(3) = 0

The following nested For/Next structure determines the total of all the elements in array
jaggedArray. We use method GetUpperBound in the headers of the For/Next
structures to determine the number of rows in jaggedArray and the number of columns
in each row.

Dim total, row, column As Integer

For row = 0 To jaggedArray.GetUpperBound(0)

For column = 0 To jaggedArray(row).GetUpperBound(0)
      total += jaggedArray(row)(column)

Next

Next

The nested For/Next structure totals the elements of the array one row at a time. The outer
For/Next structure begins by setting the row index to 0, so the elements of the first row
can be totaled by the inner For/Next structure. The outer For/Next structure then incre-
ments row to 1, so the second row can be totaled. The outer For/Next structure incre-
ments row to 2, so the third row can be totaled. The result can be displayed when the outer
For/Next structure terminates.

The program in Fig. 7.17 performs several other array manipulations on a 3-by-4 array
grades. Each row of the array represents a student, and each column represents a grade
on one of the four exams that the student took during the semester. The array manipulations
are performed by four procedures: Procedure Minimum (line 44) determines the lowest
grade of any student for the semester. Procedure Maximum (line 66) determines the highest
grade of any student for the semester. Procedure Average (line 89) determines a partic-
ular student’s semester average. Procedure BuildString (line 103) appends the two-
dimensional array to string output in tabular format.   

1 ' Fig 7.17: JaggedArray.vb
2 ' Jagged two-dimensional array example.
3
4 Imports System.Windows.Forms
5
6 Module modJaggedArray
7 Dim lastStudent, lastExam As Integer
8 Dim output As String
9

10 Sub Main()
11       Dim i As Integer

Fig. 7.17Fig. 7.17Fig. 7.17Fig. 7.17 Using jagged two-dimensional arrays (part 1 of 4).



284 Arrays Chapter 7

12
13    ' jagged array with 3 rows of exam scores
14       Dim gradeArray As Integer()() = New Integer(2)() {}
15
16       ' allocate each row with 4 student grades
17       gradeArray(0) = New Integer() {77, 68, 86, 73}
18       gradeArray(1) = New Integer() {98, 87, 89, 81}
19       gradeArray(2) = New Integer() {70, 90, 86, 81}
20
21       ' upper bounds for array manipulations
22       lastStudent = gradeArray.GetUpperBound(0)
23       lastExam = gradeArray(0).GetUpperBound(0)
24
25       output = "Students      \      Exams" & vbCrLf
26
27       ' build output string
28       BuildString(gradeArray)
29       output &= vbCrLf & vbCrLf & "Lowest grade: " & _
30          Minimum(gradeArray) & vbCrLf & "Highest grade: " & _
31          Maximum(gradeArray) & vbCrLf
32
33       ' calculate each student's average
34       For i = 0 To lastStudent
35          output &= vbCrLf & "Average for student " & _
36             i & " is " & Average(gradeArray(i))
37       Next
38
39       MessageBox.Show(output, "Jagged two-dimensional array", _
40          MessageBoxButtons.OK, MessageBoxIcon.Information)
41 End Sub ' Main
42
43  ' find minimum grade
44 Function Minimum(ByVal grades As Integer()()) _
45       As Integer
46
47       Dim lowGrade As Integer = 100
48       Dim i, j As Integer
49
50       For i = 0 To lastStudent
51
52          For j = 0 To lastExam
53
54             If grades(i)(j) < lowGrade Then
55                lowGrade = grades(i)(j)
56             End If
57
58          Next
59
60       Next
61
62       Return lowGrade
63 End Function ' Minimum
64

Fig. 7.17Fig. 7.17Fig. 7.17Fig. 7.17 Using jagged two-dimensional arrays (part 2 of 4).



Chapter 7 Arrays 285

65    ' find the maximum grade
66 Function Maximum(ByVal grades As Integer()()) _
67       As Integer
68
69       Dim highGrade As Integer = 0
70       Dim i, j As Integer
71
72       For i = 0 To lastStudent
73
74          For j = 0 To lastExam
75
76             If grades(i)(j) > highGrade Then
77                highGrade = grades(i)(j)
78             End If
79
80          Next
81
82       Next
83
84       Return highGrade
85 End Function ' Maximum
86
87    ' determine the average grade for student
88    ' (or set of grades)
89 Function Average(ByVal setOfGrades As Integer()) _
90       As Double
91
92       Dim i As Integer, total As Integer = 0
93
94       ' find sum of student's grades
95       For i = 0 To lastExam
96          total += setOfGrades(i)
97       Next
98
99       Return total / setOfGrades.Length
100  End Function ' Average
101
102 ' creates String displaying array
103 Sub BuildString(ByVal grades As Integer()())
104       Dim i, j As Integer
105
106       ' align column heads
107       output &= "         "
108
109       For i = 0 To lastExam
110          output &= "(" & i & ")  "
111       Next
112
113       For i = 0 To lastStudent
114          output &= vbCrLf & " (" & i & ")  "
115

Fig. 7.17Fig. 7.17Fig. 7.17Fig. 7.17 Using jagged two-dimensional arrays (part 3 of 4).



286 Arrays Chapter 7

Procedures Minimum, Maximum and BuildString use array grades and the
variables lastStudent (upper bound for rows in the array) and lastExam (upper
bound for columns in the array). Each procedure uses nested For/Next structures to
iterate through array grades. Consider the nested For/Next structures in procedure
Minimum (lines 50–60). The outer For/Next structure sets i (i.e., the row index) to 0 so
the elements of the first row can be compared with variable lowGrade in the inner For/
Next structure (line 54). The inner For/Next structure loops through the four grades of
a particular row and compares each grade with lowGrade. If a grade is less than low-
Grade, then lowGrade is assigned that grade. The outer For/Next structure then incre-
ments the row index by 1. The elements of the second row are compared with variable
lowGrade. The outer For/Next structure then increments the row index to 2. The ele-
ments of the third row are compared with variable lowGrade. When execution of the
nested structures is complete (line 62), lowGrade contains the smallest grade in the two-
dimensional array. Procedure Maximum behaves similarly to procedure Minimum.

Procedure Average takes one argument—a one-dimensional array of test results for
a particular student. Average is called (line 36) with argument gradeArray(i), which
is row i of the jagged two-dimensional array grades. For example, the argument
grades(1) represents the four grades for student 1 (i.e., a one-dimensional array of
grades). Remember that a jagged two-dimensional array is an array with elements that are
one-dimensional arrays. Procedure Average calculates the sum of the array elements,
divides the total by the number of test results (obtained using the Length property) and
then returns the floating-point result as a Double value (line 89).

116          For j = 0 To lastExam
117             output &= grades(i)(j) & "   "
118          Next
119
120       Next
121
122    End Sub ' BuildString
123
124 End Module ' modJaggedArray

Fig. 7.17Fig. 7.17Fig. 7.17Fig. 7.17 Using jagged two-dimensional arrays (part 4 of 4).



Chapter 7 Arrays 287

7.10 Variable-Length Parameter Lists
It is possible to create procedures that receive a variable number of arguments, using key-
word ParamArray. The program in Fig. 7.18 calls programmer-defined procedure
AnyNumberArguments three times, passing a different number of values each time.
The values passed into procedure AnyNumberArguments are stored in one-dimensional
Integer array array1, which is declared using ParamArray.

Common Programming Error 7.4
Attempting to declare a parameter variable to the right of the ParamArray array variable
is a syntax error. 7.4

Common Programming Error 7.5
Attempting to use ParamArray with a multidimensional array is a syntax error.  7.5

1 ' Fig. 7.18: ParamArrayTest.vb
2 ' Using ParamArray to create variable-length parameter lists.
3
4 Module modParamArrayTest
5
6 Sub Main()
7       AnyNumberArguments()
8       AnyNumberArguments(2, 3)
9       AnyNumberArguments(7, 8, 9, 10, 11, 12)

10
11    End Sub ' Main
12
13    ' receives any number of arguments in array
14 Sub AnyNumberArguments(ByVal ParamArray array1 _
15       As Integer())
16
17       Dim i, total As Integer
18       total = 0
19
20       If array1.Length = 0 Then
21          Console.WriteLine("Procedure AnyNumberArguments" & _
22             " received 0 arguments.")
23     Else
24          Console.Write("The total of ")
25
26          For i = 0 To array1.GetUpperBound(0)
27             Console.Write(array1(i) & " ")
28             total += array1(i)
29          Next
30
31          Console.WriteLine("is {0}.", total)
32       End If
33
34    End Sub ' AnyNumberArguments
35
36 End Module ' modParamArrayTest

Fig. 7.18Fig. 7.18Fig. 7.18Fig. 7.18 Creating variable-length parameter lists (part 1 of 2).



288 Arrays Chapter 7

Common Programming Error 7.6
Using ByRef with ParamArray is a syntax error. 7.6

We call procedure AnyNumberArguments in lines 7–9, passing a different number
of arguments each time. This procedure is defined on lines 14–34 and applies keyword
ParamArray to array1 in line 14. The If structure on lines 20–32 determines whether
the number of arguments passed to the procedure is zero. If not, lines 24–31 display
array1’s elements and their sum. All arguments passed to the ParamArray array must
be of the same type as the array, otherwise a syntax error occurs. Though we used an
Integer array in this example, any type of array can be used.

In the last chapter, we discussed procedure overloading. Often, programmers prefer to
use procedure overloading rather than writing procedures with variable-length parameter
lists.

Good Programming Practice 7.2
To increase a program’s readability and performance, the programmer should use proce-
dure overloading in favor of procedures with variable-length parameter lists. 7.2

7.11 For Each/Next Repetition Structure
Visual Basic provides the For Each/Next repetition structure for iterating through the
values in a data structure, such as an array. When used with one-dimensional arrays, For
Each/Next behaves like a For/Next structure that iterates through the range of indices
from 0 to the value returned by GetUpperBound(0). Instead of a counter, For Each/
Next uses a variable to represent the value of each element. The program in Fig. 7.19 uses
the For Each/Next structure to determine the minimum value in a two-dimensional array
of grades.

Procedure AnyNumberArguments received 0 arguments.
The total of 2 3 is 5.
The total of 7 8 9 10 11 12 is 57.

Fig. 7.18Fig. 7.18Fig. 7.18Fig. 7.18 Creating variable-length parameter lists (part 2 of 2).

1 ' Fig. 7.19: ForEach.vb
2 ' Program uses For Each/Next to find a minimum grade.
3
4 Module modForEach
5
6 Sub Main()
7       Dim gradeArray As Integer(,) = New Integer(,) _
8          {{77, 68, 86, 73}, {98, 87, 89, 81}, {70, 90, 86, 81}}
9

10       Dim grade As Integer
11       Dim lowGrade As Integer = 100
12

Fig. 7.19Fig. 7.19Fig. 7.19Fig. 7.19 Using For Each/Next with an array (part 1 of 2).



Chapter 7 Arrays 289

The program behaves similarly to procedure Minimum of Fig. 7.17, but consolidates
the nested For structures into one For Each structure. The header of the For Each rep-
etition structure (line 13) specifies a variable, grade, and an array, gradeArray. The
For Each/Next structure iterates through all the elements in gradeArray, sequentially
assigning each value to variable grade. The values are compared to variable lowGrade
(line 15), which stores the lowest grade in the array.

For rectangular arrays, the repetition of the For Each/Next structure begins with the
element whose indices are all zero, then iterates through all possible combinations of
indices, incrementing the rightmost index first. When the rightmost index reaches its upper
bound, it is reset to zero, and the index to the left of it is incremented by 1. In this case,
grade takes the values as they are ordered in the initializer list in line 8. When all the
grades have been processed, lowGrade is displayed.

Although many array calculations are handled best with a counter, For Each is useful
when the indices of the elements are not important. For Each/Next particularly is useful
for looping through arrays of objects, as we discuss in Chapter 10, Object-Oriented Pro-
gramming: Polymorphism

In this chapter, we showed how to program with arrays. We mentioned that Visual
Basic .NET arrays are objects. In Chapter 8, Object-Based Programming, we show how to
create classes, which are essentially the “blueprints” from which objects are instantiated
(i.e., created).

SUMMARY
• An array is a group of contiguous memory locations that have the same name and are of the same

type.

• The first element in every array is the zeroth element (i.e., element 0).

• The position number in parentheses more formally is called the index (or the subscript). An index
must be an integer or an integer expression.

• All arrays have access to the methods and properties of class System.Array, including the
GetUpperBound method and the Length property.

• To reference the ith element of an array, use i - 1 as the index.

13       For Each grade In gradeArray
14
15          If grade < lowGrade Then
16             lowGrade = grade
17          End If
18
19       Next
20
21       Console.WriteLine("The minimum grade is: {0}", lowGrade)
22 End Sub ' Main
23
24 End Module ' modForEach

The minimum grade is: 68

Fig. 7.19Fig. 7.19Fig. 7.19Fig. 7.19 Using For Each/Next with an array (part 2 of 2).



290 Arrays Chapter 7

• The declaration of an array creates a variable that can store a reference to an array but does not
create the array in memory.

• Arrays can be declared to contain elements of any data type.

• Arrays are represented as objects in Visual Basic, so they must also be allocated with keyword
New. The value stored in the array variable is a reference to the location in the computer’s memory
where the array object is created.

• Array bounds determine what indices can be used to access an element in the array. 

• The initializer list enclosed in braces ({ and }) specifies the initial values of the elements in the
array. The initializer list can contain a comma-separated list specifying the initial values of the el-
ements in the array. If the initializer list is empty, the elements in the array are initialized to the
default value for the data type of the array.

• Keyword Nothing denotes an empty reference (i.e., a value indicating that a reference variable
has not been assigned an address in the computer’s memory).

• Unlike languages such as C and C++, Visual Basic provides mechanisms to prevent the accessing
of elements that are outside the bounds of an array.

• If a program attempts to use an invalid index (i.e., an index outside the bounds of an array), Visual
Basic generates an exception.

• To pass an array argument to a procedure, specify the name of the array and do not include paren-
theses.

• Although entire arrays are passed by reference, individual array elements of primitive data types
can be passed by value.

• To pass an array element to a procedure, use the indexed name of the array element as an argument
in the procedure call.

• The sorting of data (i.e., the arranging of data into some particular order, such as ascending or de-
scending order) is one of the most important computing applications.

• A bubble sort makes several passes through the array. Each pass compares successive pairs of el-
ements. On an ascending bubble sort, if a pair is in increasing order (or the values are equal), the
bubble sort leaves the values as they are; if a pair is in decreasing order, the bubble sort swaps their
values in the array.

• The advantage of the bubble sort is that it is easy to program. However, the bubble sort runs slow-
ly, as becomes apparent during the sorting of large arrays.

• The linear search algorithm compares each element of an array against a search key. If the ele-
ments of the array being searched are not in any particular order, it is just as likely that the value
will be found in the first element as in the last. Thus, the procedure compares the search key with
half the elements of the array, on average. Linear search works well for small arrays and is accept-
able even for large unsorted arrays.

• For sorted arrays, the binary search algorithm eliminates from consideration half the elements in
the array after each comparison. The algorithm locates the middle array element and compares it
with the search key. If they are equal, the search key has been found, and the index of that element
is returned. Otherwise, the problem is reduced to searching half of the array. If the search key is
less than the middle array element, the first half of the array is searched; otherwise, the second half
of the array is searched.

• In a worst-case scenario, searching an array of 1024 elements via binary search requires only 10
comparisons. The maximum number of comparisons needed to complete a binary search of any
sorted array is indicated by the exponent of the first power of two that is greater than or equal to
the number of elements in the array.



Chapter 7 Arrays 291

• There are two types of multidimensional arrays—rectangular and jagged.

• Rectangular arrays with two indices often are used to represent tables of values consisting of in-
formation arranged in rows and columns. Each row is the same size, and each column is the same
size (leading to the term “rectangular”).

• A two-dimensional array with m rows and n columns is called an m-by-n array.

• Multidimensional arrays are initialized in declarations using the same process and notations em-
ployed for one-dimensional arrays.

• When a multidimensional array is allocated via an initializer list, the compiler determines the num-
ber of rows by counting the number of subinitializer lists (represented by sets of braces) in the
main initializer list. Then, the compiler determines the number of columns in each row by counting
the number of initializer values in the subinitializer list for that row.

• Jagged arrays are maintained as arrays of arrays. Unlike rectangular arrays, rows in jagged arrays
can be of different lengths (so jagged arrays cannot be referred to as m-by-n arrays).

• Keyword ParamArray in a procedure definition header indicates that the procedure receives a
variable number of arguments. 

• Visual Basic provides the For Each/Next repetition structure for iterating through the values in
a data structure, such as an array. 

TERMINOLOGY
array allocated with New iterative binary search
array as an object jagged array
array bounds key value (in searching)
array declaration Length property
array elements passed by value linear search
array initialized to zeros lvalue (“left value”)
array of arrays m-by-n array
bar chart multidimensional array
binary search nested For structure
braces ({ and }) New keyword
bubble sort Nothing keyword
column “off-by-one” error
computational complexity one-dimensional array
declaration and initialization of array outer For structure
dice-rolling program outer set of parentheses
element ParamArray keyword
exception for invalid array indexing pass of a bubble sort
For Each/Next structure passing an array
GetUpperBound method passing an array element
histogram position number
ignoring array element zero program termination
index rectangular array
IndexOutOfRange exception search key
initializer list searching
initializing two-dimensional arrays in declarationssinking sort
inner For structure size of an array
inner loop sorting
innermost set of parentheses sorting a large array
iteration of a For loop subarray



292 Arrays Chapter 7

SELF-REVIEW EXERCISES
7.1 Fill in the blanks in each of the following statements:

a) Lists and tables of values can be stored in .
b) The elements of an array are related by the fact that they have the same  and

.
c) The number that refers to a particular element of an array is called its .
d) The process of placing the elements of an array in order is called  the array.
e) Determining whether an array contains a certain value is called  the array.
f) Arrays that use two or more indices are referred to as  arrays.
g) Keyword  in a procedure definition header indicates that the procedure re-

ceives a variable number of arguments.
h)  arrays are maintained as arrays of arrays.
i) All arrays have access to the methods and properties of class .
j) When an invalid array reference is made, a/an  exception is thrown.

7.2 State whether each of the following is true or false. If false, explain why.
a) An array can store many different types of values.
b) An array index normally should be of data type Double.
c) Method GetUpperBounds returns the highest numbered index in an array.
d) The maximum number of comparisons needed for the binary search of any sorted array

is the exponent of the first power of two greater than or equal to the number of elements
in the array.

e) There are two types of multidimensional arrays—square and jagged.
f) After each comparison, the binary search algorithm eliminates from consideration one

third of the elements in the portion of the array being searched.
g) To determine the number of elements in an array, we can use the NumberOfElements

property.
h) The linear search works well for unsorted arrays.
i) In an m-by-n array, the m stands for the number of columns and the n stands for the num-

ber of rows.

ANSWERS TO SELF-REVIEW EXERCISES
7.1 a) arrays. b) name, type. c) index, subscript or position number. d) sorting. e) searching.
f) multidimensional. g) ParamArray. h) Jagged. i) System.Array. j) IndexOutOfRange-
Exception.

7.2 a) False. An array can store only values of the same type. b) False. An array index must be
an integer or an integer expression. c) True. d) True. e) False. The two different types are called rect-
angular and jagged. f) False. After each comparison, the binary search algorithm eliminates from con-
sideration half the elements in the portion of the array being searched. g) False. To determine the
number of elements in an array, we can use the Length property. h) True. i) False. In an m-by-n ar-
ray, the m stands for the number of rows and the n stands for the number of columns.

subinitializer list TextBox
subscript two-dimensional array
swapping elements in an array variable number of arguments
System.Array class “walk” past end of an array
table zero-based counting
table element zeroth element
tabular format



Chapter 7 Arrays 293

EXERCISES
7.3 Write statements to accomplish each of the following tasks:

a) Display the value of the seventh element of array numbers.
b) Initialize each of the five elements of one-dimensional Integer array values to 8.
c) Total the 100 elements of floating-point array results.
d) Copy 11-element array source into the first portion of 34-element array source-

Copy.
e) Determine the smallest and largest values contained in 99-element floating-point array

data.

7.4 Use a one-dimensional array to solve the following problem: A company pays its salespeople
on a commission basis. The salespeople receive $200 per week, plus 9% of their gross sales for that
week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9% of
$5000, or a total of $650. Write a program (using an array of counters) that determines how many of
the salespeople earned salaries in each of the following ranges (assume that each salesperson’s salary
is truncated to an integer amount):

a) $200–$299
b) $300–$399
c) $400–$499
d) $500–$599
e) $600–$699
f) $700–$799
g) $800–$899
h) $900–$999
i) $1000 and over

7.5 Use a one-dimensional array to solve the following problem: Read in 20 numbers, each of
which is between 10 and 100, inclusive. As each number is read, print it only if it is not a duplicate
of a number already read. Provide for the “worst case” (in which all 20 numbers are different). Use
the smallest possible array to solve this problem.

7.6 The bubble sort presented in Fig. 7.10 is inefficient for large arrays. Make the following sim-
ple modifications to improve the performance of the bubble sort:

a) After the first pass, the largest number is guaranteed to be in the highest-numbered ele-
ment of the array; after the second pass, the two highest numbers are “in place”; and so
on. Instead of making nine comparisons on every pass, modify the bubble sort to make
eight comparisons on the second pass, seven on the third pass and so on.

b) The data in the array already may be in the proper order or in near-proper order, so why
make nine passes if fewer will suffice? Modify the sort to check at the end of each pass
on whether any swaps have been made. If none have been made, the data must already
be in the proper order, so the program should terminate. If a swap has been made, at least
one more pass is needed.

SPECIAL SECTION: RECURSION EXERCISES
7.7 (Palindromes) A palindrome is a String that is spelled the same forward and backward.
Some examples of palindromes are: “radar,” “able was i ere i saw elba” and, if blanks are ignored, “a
man a plan a canal panama.” Write a recursive procedure TestPalindrome that returns True if
the String stored in the array is a palindrome, but False otherwise. The procedure should ignore
spaces and punctuation in the String. [Hint: A String can be converted to a Char array using
method ToCharArray. For instance, the statement



294 Arrays Chapter 7

myArray = myString.ToCharArray()

stores the contents of string variable myString in a one-dimensional Char array myArray.]

7.8 (Linear Search) Modify Fig. 7.12 to use recursive LinearSearch procedure. This proce-
dure should receive an integer array, a search key, the starting index and the ending index as argu-
ments. If the search key is found, return the array index; otherwise, return –1.

7.9 (Binary Search) Modify the program in Fig. 7.14 to use a recursive BinarySearch proce-
dure. This procedure should receive an integer array, a search key, the starting index and the ending
index as arguments. If the search key is found, return the array index; otherwise, return –1.

7.10 (Quicksort) In this chapter, we introduced the bubble sort. We now present the recursive sort-
ing technique called Quicksort. The basic algorithm for a one-dimensional array of values is as fol-
lows:

a) Partitioning Step: Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less than
the element, and all values to the right of the element in the array are greater than the el-
ement). We now have one element in its proper location and two unsorted subarrays.

b) Recursive Step: Perform step 1 on each unsorted subarray. 

Each time step 1 is performed on a subarray, another element is placed in its final location of the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, it
must be sorted; therefore, that element is in its final location.

The basic algorithm seems simple, but how do we determine the final position of the first ele-
ment of each subarray? Consider the following set of values (the element in bold is the partitioning
element—it will be placed in its final location in the sorted array):

37 2   6   4   89 8 10   12   68   45

a) Starting from the rightmost element of the array, compare each element to 37 until an el-
ement less than 37 is found, then swap 37 and that element. The first element less than
37 is 12, so 37 and 12 are swapped. The new array is

12 2   6   4   89 8 10   37   68   45

Element 12 is italicized to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare each

element to 37 until an element greater than 37 is found, then swap 37 and that element.
The first element greater than 37 is 89, so 37 and 89 are swapped. The new array is

12 2   6   4   37 8 10   89   68   45

c) Starting from the right, but beginning with the element before 89, compare each element
to 37 until an element less than 37 is found, then swap 37 and that element. The first el-
ement less than 37 is 10, so 37 and 10 are swapped. The new array is

12 2   6   4   10 8 37   89   68   45

d) Starting from the left, but beginning with the element after 10, compare each element to
37 until an element greater than 37 is found, then swap 37 and that element. There are no
more elements greater than 37, so when we compare 37 to itself, we know that 37 has
been placed in its final location of the sorted array.

Once the partition has been applied to the above array, there are two unsorted subarrays. The subar-
ray with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37



Chapter 7 Arrays 295

contains 89, 68 and 45. The sort continues with both subarrays being partitioned in the same manner
as the original array.

Using the preceding discussion, write recursive procedure QuickSort to sort a one-dimen-
sional Integer array. The procedure should receive as arguments an Integer array, a starting
index and an ending index. Procedure Partition should be called by QuickSort to perform the
partitioning step.

7.11 (Maze Traversal) The following grid of #s and dots (.) is a two-dimensional array represen-
tation of a maze. 

# # # # # # # # # # # #
# . . . # . . . . . . #
. . # . # . # # # # . #
# # # . # . . . . # . #
# . . . . # # # . # . .
# # # # . # . # . # . #
# . . # . # . # . # . #
# # . # . # . # . # . #
# . . . . . . . . # . #
# # # # # # . # # # . #
# . . . . . . # . . . #
# # # # # # # # # # # #

The #s represent the walls of the maze, and the dots represent squares in the possible paths through
the maze. Moves can be made only to a location in the array that contains a dot. 

There is a simple algorithm for walking through a maze that guarantees finding the exit (assuming
there is an exit). If there is not an exit, you will arrive at the starting location again. Place your right
hand on the wall to your right and begin walking forward. Never remove your hand from the wall. If
the maze turns to the right, you follow the wall to the right. As long as you do not remove your hand
from the wall, eventually you will arrive at the exit of the maze. There may be a shorter path than the
one you have taken, but you are guaranteed to get out of the maze if you follow the algorithm. 

Write recursive procedure MazeTraverse to walk through the maze. The procedure should
receive as arguments a 12-by-12 Char array representing the maze and the starting location of the
maze. As MazeTraverse attempts to locate the exit from the maze, it should place the character X
in each square in the path. The procedure should display the maze after each move so, the user can
watch as the maze is solved.



8
Object-Based
Programming

Objectives
• To understand encapsulation and data hiding.
• To understand the concepts of data abstraction and 

abstract data types (ADTs).
• To be able to create, use and destroy objects.
• To be able to control access to object instance 

variables and methods.
• To be able to use properties to keep objects in 

consistent states.
• To understand the use of the Me reference.
• To understand namespaces and assemblies.
• To be able to use the Class View and Object 

Browser.
My object all sublime
I shall achieve in time.
W. S. Gilbert

Is it a world to hide virtues in?
William Shakespeare, Twelfth Night

Your public servants serve you right.
Adlai Stevenson

Classes struggle, some classes triumph, others are 
eliminated.
Mao Zedong

This above all: to thine own self be true.
William Shakespeare, Hamlet



Chapter 8 Object-Based Programming 297

8.1 Introduction
In this chapter, we investigate object orientation in Visual Basic. Some readers might ask,
why did we defer this topic until now? There are several reasons. First, the objects we build
in this chapter are composed partially of structured program pieces; to explain the organi-
zation of objects, we needed to establish a basis in structured programming with control
structures. We also wanted to study methods in detail before introducing object orientation.
Finally, we wanted to familiarize readers with arrays, which are Visual Basic objects.

In our discussions of object-oriented programs in Chapters 1–7, we introduced many
basic concepts (i.e., “object think”) and terminology (i.e., “object speak”) that relate to
Visual Basic object-oriented programming. We also discussed our program-development
methodology: We analyzed many typical problems that required a program to be built and
determined what classes from the .NET Framework Library were needed to implement
each program. We then selected appropriate instance variables and methods for each pro-
gram, as well as specifying the manner in which an object of our class collaborated with
objects from the .NET Framework classes to accomplish the program’s overall goals.

Let us briefly review some key concepts and terminology of object orientation. Object
orientation uses classes to encapsulate instance variables (data) and methods (behaviors).
Objects have the ability to hide their implementation from other objects (this principle is
called information hiding). Although some objects can communicate with one another
across well-defined interfaces, objects are unaware of how other objects are implemented.

Outline

8.1 Introduction
8.2 Implementing a Time Abstract Data Type with a Class
8.3 Class Scope
8.4 Controlling Access to Members
8.5 Initializing Class Objects: Constructors
8.6 Using Overloaded Constructors
8.7 Properties
8.8 Composition: Objects as Instance Variables of Other Classes

8.9 Using the Me Reference
8.10 Garbage Collection

8.11 Shared Class Members

8.12 Const and ReadOnly Members
8.13 Data Abstraction and Information Hiding
8.14 Software Reusability
8.15 Namespaces and Assemblies
8.16 Class View and Object Browser

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



298 Object-Based Programming Chapter 8

Normally, implementation details are hidden within the objects themselves. Surely, it is
possible to drive a car effectively without knowing the details of how engines, transmis-
sions and exhaust systems operate. Later, we will see why information hiding is so crucial
to good software engineering.

In C and other procedural programming languages, programming tends to be action
oriented. Visual Basic programming, however, is object oriented. In C, the unit of pro-
gramming is the function (called procedures in Visual Basic). In Visual Basic, the unit of
programming is the class (although programs often are written with modules as well).
Objects eventually are instantiated (i.e., created) from these classes, whereas procedures
are encapsulated within the “boundaries” of classes as methods.

C programmers concentrate on writing functions. They group actions that perform
some task into a function and then group functions to form a program. Data is certainly
important in C, but it exists primarily to support the actions that functions perform. The
verbs in a system-requirements document help a C programmer determine the set of func-
tions that will work together to implement the system. 

Visual Basic programmers concentrate on creating their own user-defined types called
classes. We also refer to classes as programmer-defined types. Each class contains both
data and a set of methods that manipulate the data. The data components, or data members,
of a class are called instance variables, or member variables. Just as we call an instance of
a built-in type—such as Integer—a variable, we call an instance of a user-defined type
(i.e., a class) an object. In Visual Basic, attention is focused on classes, rather than methods.
The nouns in a system-requirements document help the Visual Basic programmer deter-
mine an initial set of classes with which to begin the design process. These classes then are
used to instantiate objects that work together to implement the system.

This chapter explains how to create and use classes and objects, a subject known as
object-based programming (OBP). Chapters 9 and 10 introduce inheritance and polymor-
phism—two key technologies that enable object-oriented programming (OOP). Although
we do not discuss inheritance in detail until Chapter 9, it is part of several Visual Basic class
definitions. An example of inheritance was demonstrated when we derived a class from
System.Windows.Forms.Form in Chapter 4.

Software Engineering Observation 8.1
All Visual Basic objects are passed by reference. Visual Basic classes are reference types. 8.1

8.2 Implementing a Time Abstract Data Type with a Class
Classes in Visual Basic facilitate the creation of special data types, called abstract data
types (ADT), which hide their implementation from clients. A problem in procedural pro-
gramming languages, is that client code often is implementation-dependent; client code has
to be written so that it uses specific data members and must be rewritten if the code with
which it interfaces changes. ADTs eliminate this problem by providing implementation-in-
dependent interfaces to their clients. The creator of a class can change the implementation
of that class without having to change the clients of that class.

Software Engineering Observation 8.2
It is important to write programs that are understandable and easy to maintain. Change is
the rule rather than the exception. Programmers should anticipate that their code will be
modified. As we will see, classes facilitate program modifiability. 8.2



Chapter 8 Object-Based Programming 299

Before discussing classes in detail, we review how to add classes to a project in Visual
Studio. By now, you are familiar with adding a module to a project. The process of adding
a class to a project is almost identical to that of adding a module to a project. To add a class
to a project, select Project > Add Class. Enter the class name in the Name text field and
click the Open button. Note that the class name (ending with the .vb file extension)
appears in the Solution Explorer below the project name.

The following application consists of class CTime (Fig. 8.1) and module modTime-
Test (Fig. 8.2). Class CTime contains the information needed to represent a specific time;
module modTimeTest contains method Main, which uses an instance of class CTime to
run the application.

In Fig. 8.1, lines 4–5 begin the CTime class definition, indicating that class CTime
inherits from class Object (of namespace System). Visual Basic programmers use
inheritance to create classes from existing classes. The Inherits keyword (line 5) fol-
lowed by class name Object indicates that class CTime inherits existing pieces of class
Object. If the programmer does not include line 5, the Visual Basic compiler includes it
implicitly. Because this is the first chapter that exposes classes, we include these declara-
tions for the classes in this chapter; however, we remove them in Chapter 9. A complete
understanding of inheritance is not necessary to the understanding of the concepts and pro-
grams in this chapter. We explore inheritance in detail in Chapter 9.  

1 ' Fig. 8.1: CTime.vb
2 ' Represents time in 24-hour format.
3
4 Class CTime
5 Inherits Object
6
7    ' declare Integer instance values for hour, minute and second
8 Private mHour As Integer ' 0 - 23
9 Private mMinute As Integer ' 0 - 59

10 Private mSecond As Integer ' 0 - 59
11
12    ' Method New is the CTime constructor method, which initializes
13    ' instance variables to zero
14 Public Sub New()
15       SetTime(0, 0, 0)
16 End Sub ' New
17
18    ' set new time value using universal time; 
19    ' perform validity checks on data;
20    ' set invalid values to zero
21 Public Sub SetTime(ByVal hourValue As Integer, _
22       ByVal minuteValue As Integer, ByVal secondValue As Integer)
23
24       ' check if hour is between 0 and 23, then set hour
25       If (hourValue >= 0 AndAlso hourValue < 24) Then
26          mHour = hourValue
27       Else
28          mHour = 0
29       End If

Fig. 8.1 Abstract data type representing time in 24-hour format (part 1 of 2).



300 Object-Based Programming Chapter 8

Lines 4 and 75 delineate the body of the CTime class definition with keywords Class
and End Class. Any information that we place in this body is contained within the class.
For example, class CTime contains three Integer instance variables—mHour, mMi-
nute and mSecond (lines 8–10)—that represent the time in universal-time format (24-

30
31       ' check if minute is between 0 and 59, then set minute
32       If (minuteValue >= 0 AndAlso minuteValue < 60) Then
33          mMinute = minuteValue
34       Else
35          mMinute = 0
36       End If
37
38       ' check if second is between 0 and 59, then set second
39       If (secondValue >= 0 AndAlso secondValue < 60) Then
40          mSecond = secondValue
41       Else
42          mSecond = 0
43       End If
44
45 End Sub ' SetTime
46
47    ' convert String to universal-time format
48 Public Function ToUniversalString() As String
49       Return String.Format("{0}:{1:D2}:{2:D2}", _
50          mHour, mMinute, mSecond)
51 End Function ' ToUniversalString
52
53    ' convert to String in standard-time format
54 Public Function ToStandardString() As String
55       Dim suffix As String = " PM"
56       Dim format As String = "{0}:{1:D2}:{2:D2}"
57       Dim standardHour As Integer
58
59       ' determine whether time is AM or PM
60       If mHour < 12 Then
61          suffix = " AM"
62       End If
63
64       ' convert from universal-time format to standard-time format
65       If (mHour = 12 OrElse mHour = 0) Then
66          standardHour = 12
67       Else
68          standardHour = mHour Mod 12
69       End If
70
71       Return String.Format(format, standardHour, mMinute, _
72          mSecond) & suffix
73 End Function ' ToStandardString
74
75 End Class ' CTime

Fig. 8.1 Abstract data type representing time in 24-hour format (part 2 of 2).



Chapter 8 Object-Based Programming 301

hour clock format). Note that our member-naming preference is to prefix an ‘m’ to each
instance variable.1

Good Programming Practice 8.1
Begin class names using a capital “C” to distinguish those names as class names. 8.1

Keywords Public and Private are member access modifiers. Instance variables or
methods with member access modifier Public are accessible wherever the program has
a reference to a CTime object. The declaration of instance variables or methods with
member access modifier Private makes them accessible only to methods of that class.
Member access modifiers can appear in any order in a class definition.

Good Programming Practice 8.2
For clarity, every instance variable or method definition should be preceded by a member
access modifier. 8.2

Good Programming Practice 8.3
Group members in a class definition according to their member access modifiers to enhance
clarity and readability. 8.3

Lines 8–10 declare each of the three Integer instance variables—mHour, mMi-
nute and mSecond—with member access modifier Private, indicating that these
instance variables of the class are accessible only to members of the class. When an object
of the class encapsulates such instance variables, only methods of that object’s class can
access the variables. Normally, instance variables are declared Private, whereas
methods are declared Public. However, it is possible to have Private methods and
Public instance variables, as we will see later. Often, Private methods are called
utility methods, or helper methods, because they can be called only by other methods of that
class, and their purpose is to support the operation of those methods. The creation of
Public data members in a class is an uncommon and dangerous programming practice.
The provision of such access to a class’s data members is unsafe; foreign code could set
these members to invalid values, producing potentially disastrous results.

Software Engineering Observation 8.3
Make a class member Private if there is no reason for it to be accessed outside of the class
definition. 8.3

Access methods can read or display data. Another common use for access methods is
to test the truth of conditions—such methods often are called predicate methods. For
example, we could design predicate method IsEmpty for a container class—a class
capable of holding many objects, such as a linked list, a stack or a queue (these data struc-
tures are discussed in detail in Chapter 23, Data Structures and Collections). This method
would return True if the container is empty and False otherwise. A program might test
IsEmpty before attempting to read another item from the container object. Similarly, a
program might call another predicate method (e.g., IsFull) before attempting to insert
another item into a container object.

1. For a list of Microsoft recommended naming conventions visit msdn.microsoft.com/li-
brary/default.asp?url=/library/en-us/vbcon98/html/vbconobject-
namingconventions.asp.



302 Object-Based Programming Chapter 8

Class CTime contains the following Public methods—New (lines 14–16), Set-
Time (lines 21–45), ToUniversalString (lines 48–51) and ToStandardString
(lines 54–73). These are the Public methods (also called the Public services, or
Public interfaces) of the class. Clients, such as module modTimeTest (discussed
momentarily), use these methods to manipulate the data stored in the class objects or to
cause the class to perform some service.

New is a constructor method. (As we will see, a class can have many constructors—
all share the same name (New), but each must have unique parameters.) A constructor is a
special method that initializes an object’s instance variables. The instantiation of an object
of a class calls that class’s constructor method. This constructor method (lines 14–16) then
calls method SetTime (discussed shortly) with mHour, mMinute and mSecond values
specified as 0. Constructors can take arguments but cannot return values. An important dif-
ference between constructors and other methods is that constructors cannot specify a return
data type—for this reason, Visual Basic constructors are implemented as Sub procedures
(because Sub procedures cannot return values). Generally, constructors are Public
methods of a class.

Common Programming Error 8.1
Attempting to declare a constructor as a Function and/or attempting to Return a value
from a constructor is a syntax error. 8.1

Method SetTime (lines 21–45) is a Public method that uses three Integer argu-
ments to set the time. A conditional expression tests each argument to determine whether
the value is in a specified range. For example, the mHour value must be greater than or
equal to 0 and less than 24, because universal-time format represents hours as integers from
0 to 23. Similarly, both minute and second values must fall between 0 and 59. Any values
outside these ranges are invalid values and default to zero, at least ensuring that a CTime
object always contains valid data. This is also known as keeping the object in a consistent
state. When users supply invalid data to SetTime, the program might want to indicate that
the entered time setting was invalid.

Good Programming Practice 8.4
Always define a class so that its instance variables maintain a consistent state. 8.4

Method ToUniversalString (lines 48–51) takes no arguments and returns a
String in universal-time format, consisting of six digits—two for the hour, two for the
minute and two for the second. For example, if the time were 1:30:07 PM, method ToUni-
versalString would return the String "13:30:07". String method Format
helps to configure the universal time. Line 49 passes to the method the format control string
"{0}:{1:D2}:{2:D2}", which indicates that argument 0 (the first argument after the
format String argument) should take the default format; and that arguments 1 and 2 (the
last two arguments after the format String argument) should take the format D2 (base 10
decimal number format using two digits) for display purposes—thus, 8 would be converted
to 08. The two colons that separate the curly braces } and { represent the colons that sep-
arate the hour from the minute and the minute from the second, respectively.

Method ToStandardString (lines 54–73) takes no arguments and returns a
String in standard-time format, consisting of the mHour, mMinute and mSecond
values separated by colons and followed by an AM or PM indicator (e.g., 1:27:06 PM).



Chapter 8 Object-Based Programming 303

Like method ToUniversalString, method ToStandardString calls method
Format of class String to guarantee that the mMinute and mSecond values each
appear as two digits. Lines 60–69 determine the proper formatting for the hour.

After defining the class, we can use it as a type in declarations such as 

Dim sunset As CTime   ' reference to object of type CTime

The class name (CTime) is a type. A class can yield many objects, just as a primitive data
type (e.g., Integer) can yield many variables. Programmers can create class types as
needed; this is one reason why Visual Basic is known as an extensible language.

Module modTimeTest (Fig. 8.2) uses an instance of class CTime. Method Main
(lines 8–33) declares and initializes instance time of class CTime (line 9). When the
object is instantiated, keyword New allocates the memory in which the CTime object will
be stored, then calls the CTime constructor (method New in lines 14–16 of Fig. 8.1) to ini-
tialize the instance variables of the CTime object. As mentioned before, this constructor
invokes method SetTime of class CTime to initialize each Private instance variable
explicitly to 0. Method New then returns a reference to the newly created object; this ref-
erence is assigned to time.

Note that the TimeTest.vb file does not use keyword Imports to import the
namespace that contains class CTime. If a class is in the same namespace and .vb file as
the class that uses it, the Imports statement is not required. Every class in Visual Basic
is part of a namespace. If a programmer does not specify a namespace for a class, the class
is placed in the default namespace, which includes the compiled classes in the current
directory (in Visual Studio, this is a project’s directory). We must import classes from the
.NET Framework, because their namespaces and source files are located in a different
source file than those compiled with each program we write.  

Line 10 declares a String reference output that will store the String con-
taining the results, which later will be displayed in a MessageBox. Lines 12–15 assign
the time to output in universal-time format (by invoking method ToUniversal-
String of CTime) and standard-time format (by invoking method ToStandard-
String of CTime).

1 ' Fig. 8.2: TimeTest.vb
2 ' Demonstrating class CTime.
3
4 Imports System.Windows.Forms
5
6 Module modTimeTest
7
8 Sub Main()
9       Dim time As New CTime() ' call CTime constructor

10       Dim output As String
11
12       output = "The initial universal times is: " & _
13          time.ToUniversalString() & vbCrLf & _
14          "The initial standard time is: " & _
15          time.ToStandardString()
16

Fig. 8.2 Using an abstract data type (part 1 of 2).



304 Object-Based Programming Chapter 8

Software Engineering Observation 8.4
When keyword New creates an object of a class, that class’s method New (constructor meth-
od) is called to initialize the instance variables of that object. 8.4

Line 17 sets the time of the CTime object by passing valid time arguments to CTime’s
method SetTime. Lines 19–23 concatenate the time to output in both universal and
standard formats to confirm that the time was set correctly.

To illustrate that method SetTime validates the values passed to it, line 25 passes
invalid time arguments to method SetTime. Lines 27–30 concatenates the time to
output in both formats, and line 32 displays a MessageBox with the results of our pro-
gram. Notice in the last two lines of the output window that the time is set to midnight,
which is the default value of a CTime object.

CTime is our first example of a nonapplication class, which is a class that does not
define a Main method and therefore not executable. A module (modTimeTest), though
technically not a class, acts like an application class in the sense that it defines a Main
method, which is the starting point (referred to as the entry point) for an executable program
in Visual Basic. Class CTime does not define Main and thus cannot be used as a starting
point in this program.

17       time.SetTime(13, 27, 6) ' set time with valid settings
18
19       output &= vbCrLf & vbCrLf & _
20          "Universal time after setTime is: " & _
21          time.ToUniversalString() & vbCrLf & _
22          "Standard time after setTime is: " & _
23          time.ToStandardString()
24
25       time.SetTime(99, 99, 99) ' set time with invalid settings
26
27       output &= vbCrLf & vbCrLf & _
28          "After attempting invalid settings: " & vbCrLf & _
29          "Universal time: " & time.ToUniversalString() & _
30          vbCrLf & "Standard time: " & time.ToStandardString()
31
32       MessageBox.Show(output, "Testing Class CTime")
33 End Sub ' Main
34
35 End Module ' modTimeTest

Fig. 8.2 Using an abstract data type (part 2 of 2).



Chapter 8 Object-Based Programming 305

Note that the program declares instance variables mHour, mMinute and mSecond
as Private. Instance variables declared Private are not accessible outside the class in
which they are defined. The class’s clients are not concerned with the actual data represen-
tation of that class. For example, the class could represent the time internally as the number
of seconds that have elapsed since the previous midnight. Suppose this representation
changes. Clients still are able to use the same Public methods and obtain the same results
(Return values) without becoming aware of the change in internal representation. In this
sense, the implementation of a class is said to be hidden from its clients.

Software Engineering Observation 8.5
Information hiding promotes program modifiability and simplifies the client’s perception of
a class. 8.5

Software Engineering Observation 8.6
Clients of a class can (and should) use the class without knowing the internal details of how
the class is implemented. If the class implementation is changed (to improve performance,
for example), provided that the class’s interface remains constant, the class clients’ source
code need not change. This makes it much easier to modify systems. 8.6

In this program, the CTime constructor initializes the instance variables to 0 (i.e., the
universal time equivalent of 12 AM) to ensure that the object is created in a consistent state
(i.e., all instance variable values are valid). The instance variables of a CTime object
cannot store invalid values, because the constructor (which calls SetTime) is called when
the CTime object is created. Method SetTime scrutinizes subsequent attempts by a client
to modify the instance variables.

Normally, instance variables are initialized in a class’s constructor, but they also can
be initialized when they are declared in the class body. If a programmer does not initialize
instance variables explicitly, the compiler initializes them. When this occurs, the compiler
sets primitive numeric variables to 0, Booleans to False and references to Nothing).

Methods ToUniversalString and ToStandardString take no arguments
because, by default, these methods manipulate the instance variables of the particular
CTime object for which they are invoked. This makes method calls more concise than
conventional function calls in procedural programming. It also reduces the likelihood of
passing the wrong arguments, the wrong types of arguments or the wrong number of
arguments.

Software Engineering Observation 8.7
The use of an object-oriented programming approach often simplifies method calls by re-
ducing the number of parameters that must be passed. This benefit of object-oriented
programming derives from the fact that encapsulation of instance variables and methods
within an object gives the object’s methods the right to access its instance variables. 8.7

Classes simplify programming, because the client (or user of the class object) need be
concerned only with the Public operations encapsulated in the object. Usually, such
operations are designed to be client-oriented, rather than implementation-oriented. Clients are
neither aware of, nor involved in, a class’s implementation. Interfaces change less frequently
than do implementations. When an implementation changes, implementation-dependent code
must change accordingly. By hiding the implementation, we eliminate the possibility that
other program parts will become dependent on the class-implementation details.



306 Object-Based Programming Chapter 8

Often, programmers do not have to create classes “from scratch.” Rather, they can derive
classes from other classes that provide behaviors required by the new classes. Classes also can
include references to objects of other classes as members. Such software reuse can greatly
enhance programmer productivity. Chapter 9 discusses inheritance—the process by which
new classes are derived from existing classes. Section 8.8 discusses composition (aggrega-
tion), in which classes include as members references to objects of other classes.

8.3 Class Scope
In Section 6.11, we discussed method scope; now, we discuss class scope. A class’s in-
stance variables and methods belong to that class’s scope. Within a class’s scope, class
members are accessible to all of that class’s methods and can be referenced by name. Out-
side a class’s scope, class members cannot be referenced directly by name. Those class
members that are visible (such as Public members) can be accessed only through a “han-
dle” (i.e., members can be referenced via the format objectReferenceName.memberName).

If a variable is defined in a method, only that method can access the variable (i.e., the
variable is a local variable of that method). Such variables are said to have block scope. If
a method defines a variable that has the same name as a variable with class scope (i.e., an
instance variable), the method-scope variable hides the class-scope variable in that
method’s scope. A hidden instance variable can be accessed in a method by preceding its
name with the keyword Me and the dot operator, as in Me.mHour. We discuss keyword
Me later in this chapter.

8.4 Controlling Access to Members 
The member access modifiers Public and Private control access to a class’s instance
variables and methods. (In Chapter 9, we introduce the additional access modifiers Pro-
tected and Friend.)

As we stated previously, Public methods serve primarily to present to the class’s cli-
ents a view of the services that the class provides (i.e., the Public interface of the class).
We have mentioned the merits of writing methods that perform only one task. If a method
must execute other tasks to calculate its final result, these tasks should be performed by a
utility method. A client does not need to call these utility methods, nor does it need to be
concerned with how the class uses its utility methods. For these reasons, utility methods are
declared as Private members of a class.

Common Programming Error 8.2
Attempting to access a Private class member from outside that class is a syntax error. 8.2

The application of Fig. 8.3 demonstrates that Private class members are not acces-
sible outside the class. Line 9 attempts to access Private instance variable mHour of
CTime object time. The compiler generates an error stating that the Private member
mHour is not accessible. [Note: This program assumes that the CTime class from Fig. 8.1
is used.]

Good Programming Practice 8.5
We prefer to list instance variables of a class first, so that, when reading the code, programmers
see the name and type of each instance variable before it is used in the methods of the class. 8.5



Chapter 8 Object-Based Programming 307

Good Programming Practice 8.6
Even though Private and Public members can be repeated and intermixed, list all the
Private members of a class first in one group, then list all the Public members in an-
other group. 8.6

Software Engineering Observation 8.8
Declare all instance variables of a class as Private. When necessary, provide Public
methods to set and get the values of Private instance variables. This architecture hides the
class’s implementation from its clients, reduces bugs and improves program modifiability. 8.8

Access to Private data should be controlled carefully by a class’s methods. To allow
clients to read the values of Private data, the class can provide a property definition,
which enables users to access this Private data safely. Properties, which we discuss in
detail in Section 8.7, contain accessors, or portions of code that handle the details of mod-
ifying and returning data. A property definition can contain a Get accessor, a Set
accessor or both. A Get accessor enables a client to read a Private data value, whereas
a Set accessor enables the client to modify that value. Such modification would seem to
violate the notion of Private data. However, a Set accessor can provide data-validation
capabilities (such as range checking) to ensure that the value is set properly. A Set
accessor also can translate between the format of the data used in the interface and the
format used in the implementation. A Get accessor need not expose the data in “raw”
format; rather, the Get accessor can edit the data and limit the client’s view of that data.

Testing and Debugging Tip 8.1
Declaring the instance variables of a class as Private and the methods of the class as
Public facilitates debugging, because problems with data manipulations are localized to
the class’s methods. 8.8

1 ' Fig. 8.3: RestrictedAccess.vb
2 ' Demonstrate error from attempt to access Private class member.
3
4 Module modRestrictedAccess
5
6 Sub Main()
7       Dim time As New CTime()
8
9       time.mHour = 7 ' error

10 End Sub ' Main
11
12 End Module ' modRestrictedAccess

Fig. 8.3 Attempting to access restricted class members results in a syntax error.



308 Object-Based Programming Chapter 8

8.5 Initializing Class Objects: Constructors
A constructor method initializes its class’s members. The programmer writes code for the
constructor, which is invoked each time an object of that class is instantiated. Instance vari-
ables can be initialized implicitly to their default values (0 for primitive numeric types,
False for Booleans and Nothing for references). Visual Basic initializes variables to
their default values when they are declared at runtime. Variables can be initialized when de-
clared in either the class body or constructor. Regardless of whether an instance variable is
initialized in a constructor, that variable is initialized (either to its default value or to the value
assigned in its declaration) by the runtime before any constructors are called. Classes can con-
tain overloaded constructors to provide multiple ways to initialize objects of that class.

Performance Tip 8.1
Because instance variables are always initialized to default values by the runtime, avoid ini-
tializing instance variables to their default values in the constructor. 8.1

It is important to note that, although references do not need to be initialized immediately
by invoking a constructor, an uninitialized reference cannot be used until it refers to an actual
object. If a class does not define any constructors, the compiler provides a default constructor.

Software Engineering Observation 8.9
When appropriate, provide a constructor to ensure that every object is initialized with mean-
ingful values. 8.6

When creating an object of a class, the programmer can provide initializers in paren-
theses to the right of the class name. These initializers are the arguments to the class’s con-
structor. In general, declarations take the form

Dim objectReference As New ClassName( arguments )

where objectReference is a reference of the appropriate data type, New indicates that an ob-
ject is being created, ClassName indicates the type of the new object and arguments spec-
ifies the values used by the class’s constructor to initialize the object. A constructor that
takes arguments often is called a parameterized constructor. The next example (Fig. 8.4)
demonstrates the use of initializers. 

If a class does not have any defined constructors, the compiler provides a default con-
structor. This constructor contains no code (i.e., the constructor is empty) and takes no
arguments. Programmers also can provide a default constructor, as we demonstrated in
class CTime (Fig. 8.1), and as we will see in the next example.

Common Programming Error 8.3
If constructors are provided for a class, but none of the Public constructors is a default
constructor, and an attempt is made to call a default constructor to initialize an object of the
class, a syntax error occurs. A constructor can be called with no arguments only if there are
no constructors for the class (the default constructor is called) or if the class includes a de-
fault constructor. 8.3

8.6 Using Overloaded Constructors
Like methods, constructors of a class can be overloaded. This means that several construc-
tors in a class can have the exact same method name (i.e., New). To overload a constructor
of a class, provide a separate method definition with the same name for each version of the



Chapter 8 Object-Based Programming 309

method. Remember that overloaded constructors must have different numbers and/or types
and/or orders of parameters.

Common Programming Error 8.4
Attempting to overload a constructor of a class with another method that has the exact same
signature (method name and number, types and order of parameters) is a syntax error. 8.4

The CTime constructor in Fig. 8.1 initialized mHour, mMinute and mSecond to 0
(i.e., 12 midnight in universal time) with a call to the class’s SetTime method. Class
CTime2 (Fig. 8.4) overloads the constructor method to provide a variety of ways to ini-
tialize CTime2 objects. Each constructor calls method SetTime of the CTime2 object,
which ensures that the object begins in a consistent state by setting out-of-range values to
zero. The Visual Basic runtime invokes the appropriate constructor by matching the
number, types and order of the arguments specified in the constructor call with the number,
types and order of the parameters specified in each constructor method definition.

Because most of the code in class CTime2 is identical to that in class CTime, this sec-
tion concentrates only on the overloaded constructors. Line 14 defines the default con-
structor. Line 20 defines a CTime2 constructor that receives a single Integer argument,
representing the mHour. Line 26 defines a CTime2 constructor that receives two
Integer arguments, representing the mHour and mMinute. Line 33 defines a CTime2
constructor that receives three Integer arguments representing the mHour, mMinute
and mSecond. Line 40 defines a CTime2 constructor that receives a reference to another
CTime2 object. When this last constructor is employed, the values from the CTime2 argu-
ment are used to initialize the mHour, mMinute and mSecond values. Even though class
CTime2 declares these values as Private (lines 8–10), the CTime2 object can access
these values directly using the expressions timeValue.mHour, timeValue.mMi-
nute and timeValue.mSecond.

No constructor specifies a return type; doing so is a syntax error. Also, notice that each
constructor receives a different number or different types of arguments. Even though only
two of the constructors receive values for the mHour, mMinute and mSecond, each con-
structor calls SetTime with values for mHour, mMinute and mSecond and substitutes
zeros for the missing values to satisfy SetTime’s requirement of three arguments. 

Software Engineering Observation 8.10
When one object of a class has a reference to another object of the same class, the first object
can access all the second object’s data and methods (including those that are Private). 8.10

1 ' Fig. 8.4: CTime2.vb
2 ' Represents time and contains overloaded constructors.
3
4 Class CTime2
5 Inherits Object
6
7    ' declare Integers for hour, minute and second
8 Private mHour As Integer   ' 0 - 23
9 Private mMinute As Integer ' 0 - 59

10 Private mSecond As Integer ' 0 - 59
11

Fig. 8.4 Overloading constructors (part 1 of 3).



310 Object-Based Programming Chapter 8

12    ' constructor initializes each variable to zero and
13    ' ensures that each CTime2 object starts in consistent state
14 Public Sub New()
15       SetTime()
16 End Sub ' New
17
18    ' CTime2 constructor: hour supplied;
19    ' minute and second default to 0
20 Public Sub New(ByVal hourValue As Integer)
21       SetTime(hourValue)
22 End Sub ' New
23
24    ' CTime2 constructor: hour and minute supplied; 
25    ' second defaulted to 0
26 Public Sub New(ByVal hourValue As Integer, _
27       ByVal minuteValue As Integer)
28
29       SetTime(hourValue, minuteValue)
30 End Sub ' New
31
32    ' CTime2 constructor: hour, minute and second supplied
33 Public Sub New(ByVal hourValue As Integer, _
34       ByVal minuteValue As Integer, ByVal secondValue As Integer)
35
36       SetTime(hourValue, minuteValue, secondValue)
37 End Sub ' New
38
39    ' CTime2 constructor: another CTime2 object supplied
40 Public Sub New(ByVal timeValue As CTime2)
41       SetTime(timeValue.mHour, timeValue.mMinute, timeValue.mSecond)
42 End Sub ' New
43
44    ' set new time value using universal time;
45    ' perform validity checks on data;
46    ' set invalid values to zero
47 Public Sub SetTime(Optional ByVal hourValue As Integer = 0, _
48       Optional ByVal minuteValue As Integer = 0, _
49       Optional ByVal secondValue As Integer = 0)
50
51       ' perform validity checks on hour, then set hour
52       If (hourValue >= 0 AndAlso hourValue < 24) Then
53          mHour = hourValue
54       Else
55          mHour = 0
56       End If
57
58       ' perform validity checks on minute, then set minute
59       If (minuteValue >= 0 AndAlso minuteValue < 60) Then
60          mMinute = minuteValue
61       Else
62          mMinute = 0
63       End If
64

Fig. 8.4 Overloading constructors (part 2 of 3).



Chapter 8 Object-Based Programming 311

Common Programming Error 8.5
A constructor can call other class methods that use instance variables not yet initialized. Us-
ing instance variables before they have been initialized can lead to logic errors. 8.5

Figure 8.5 (modTimeTest2) demonstrates the use of overloaded constructors
(Fig. 8.4). Lines 11–16 create six CTime2 objects that invoke various constructors of the
class. Line 11 specifies that it invokes the default constructor by placing an empty set of
parentheses after the class name. Lines 12–16 of the program demonstrate the passing of
arguments to the CTime2 constructors. To invoke the appropriate constructor, pass the
proper number, types and order of arguments (specified by the constructor’s definition) to that
constructor. For example, line 13 invokes the constructor that is defined in lines 26–30 of

65       ' perform validity checks on second, then set second
66       If (secondValue >= 0 AndAlso secondValue < 60) Then
67          mSecond = secondValue
68       Else
69          mSecond = 0
70       End If
71
72 End Sub ' SetTime
73
74    ' convert String to universal-time format
75 Public Function ToUniversalString() As String
76       Return String.Format("{0}:{1:D2}:{2:D2}", _
77          mHour, mMinute, mSecond)
78 End Function ' ToUniversalString
79
80    ' convert to String in standard-time format
81 Public Function ToStandardString() As String
82       Dim suffix As String = " PM"
83       Dim format As String = "{0}:{1:D2}:{2:D2}"
84       Dim standardHour As Integer
85
86       ' determine whether time is AM or PM
87       If mHour < 12 Then
88          suffix = " AM"
89       End If
90
91       ' convert from universal-time format to standard-time format
92       If (mHour = 12 OrElse mHour = 0) Then
93          standardHour = 12
94       Else
95          standardHour = mHour Mod 12
96       End If
97
98       Return String.Format(format, standardHour, mMinute, _
99          mSecond) & suffix
100 End Function ' ToStandardString
101
102 End Class ' CTime2

Fig. 8.4 Overloading constructors (part 3 of 3).



312 Object-Based Programming Chapter 8

Fig. 8.4. Lines 21–55 invoke methods ToUniversalString and ToStandardString
for each CTime2 object to demonstrate how the constructors initialize the objects.  

1 ' Fig. 8.5: TimeTest2.vb
2 ' Demonstrates overloading constructors.
3
4 Imports System.Windows.Forms
5
6 Module modTimeTest2
7
8 Sub Main()
9

10       ' use overloaded constructors
11       Dim time1 As New CTime2()
12       Dim time2 As New CTime2(2)
13       Dim time3 As New CTime2(21, 34)
14       Dim time4 As New CTime2(12, 25, 42)
15       Dim time5 As New CTime2(27, 74, 99)
16       Dim time6 As New CTime2(time4) ' use time4 as initial value
17
18       Const SPACING As Integer = 13 ' spacing between output text
19
20       ' invoke time1 methods
21       Dim output As String = "Constructed with: " & vbCrLf & _
22          " time1: all arguments defaulted" & vbCrLf & _
23          Space(SPACING) & time1.ToUniversalString() & _
24          vbCrLf & Space(SPACING) & time1.ToStandardString()
25
26       ' invoke time2 methods
27       output &= vbCrLf & _
28          " time2: hour specified; minute and second defaulted" & _
29          vbCrLf & Space(SPACING) & _
30          time2.ToUniversalString() & vbCrLf & Space(SPACING) & _
31          time2.ToStandardString()
32
33       ' invoke time3 methods
34       output &= vbCrLf & _
35          " time3: hour and minute specified; second defaulted" & _
36          vbCrLf & Space(SPACING) & time3.ToUniversalString() & _
37          vbCrLf & Space(SPACING) & time3.ToStandardString()
38
39       ' invoke time4 methods
40       output &= vbCrLf & _
41          " time4: hour, minute and second specified" & _
42          vbCrLf & Space(SPACING) & time4.ToUniversalString() & _
43          vbCrLf & Space(SPACING) & time4.ToStandardString()
44
45       ' invoke time5 methods
46       output &= vbCrLf & _
47          " time5: hour, minute and second specified" & _
48          vbCrLf & Space(SPACING) & time5.ToUniversalString() & _
49          vbCrLf & Space(SPACING) & time5.ToStandardString()
50

Fig. 8.5 Overloaded-constructor demonstration (part 1 of 2).



Chapter 8 Object-Based Programming 313

Each CTime2 constructor can be written to include a copy of the appropriate statements
from method SetTime. This might be slightly more efficient, because it eliminates the extra
call to SetTime. However, consider what would happen if the programmer changes the rep-
resentation of the time from three Integer values (requiring 12 bytes of memory) to a
single Integer value representing the total number of seconds that have elapsed in the day
(requiring 4 bytes of memory). Placing identical code in the CTime2 constructors and
method SetTime makes such a change in the class definition more difficult. If the imple-
mentation of method SetTime changes, the implementation of the CTime2 constructors
would need to change accordingly. If the CTime2 constructors call SetTime directly, any
changes to the implementation of SetTime must be made only once, thus reducing the like-
lihood of a programming error when altering the implementation.

Software Engineering Observation 8.11
If a method of a class provides functionality required by a constructor (or other method) of
the class, call that method from the constructor (or other method). This simplifies the main-
tenance of the code and reduces the likelihood of introducing an error in the code. 8.11

51       ' invoke time6 methods
52       output &= vbCrLf & _
53          " time6: Time2 object time4 specified" & vbCrLf & _
54          Space(SPACING) & time6.ToUniversalString() & _
55          vbCrLf & Space(SPACING) & time6.ToStandardString()
56
57       MessageBox.Show(output, _
58          "Demonstrating Overloaded Constructor")
59 End Sub ' Main
60
61 End Module ' modTimeTest2

Fig. 8.5 Overloaded-constructor demonstration (part 2 of 2).



314 Object-Based Programming Chapter 8

8.7 Properties
Methods of a class can manipulate that class’s Private instance variables. A typical ma-
nipulation might be the adjustment of a customer’s bank balance—a Private instance
variable of a class CBankAccount—a ComputeInterest method.

Classes often provide Public properties to allow clients to set (i.e., assign values to)
or set (i.e., obtain the values of) Private instance variables. In Fig. 8.6, we show how to
create three properties—Hour, Minute and Second. Hour accesses variable mHour,
Minute accesses variable mMinute and Second accesses variable mSecond. Each
property contains a Get accessor (to retrieve the field value) and a Set accessor (to
modify the field value).

Although providing Set and Get accessors appears to be the same as making the
instance variables Public, this is not the case. This is another one of Visual Basic’s sub-
tleties that makes the language so attractive from a software-engineering standpoint. If an
instance variable is Public, the instance variable can be read or written by any method in
the program. If an instance variable is Private, a Public get method seems to allow
other methods to read the data at will. However, the get method can control the formatting
and display of the data. A Public set method can scrutinize attempts to modify the
instance variable’s value, thus ensuring that the new value is appropriate for that data
member. For example, an attempt to set the day of the month to 37 would be rejected, and
an attempt to set a person’s weight to a negative value would be rejected. Therefore,
although set and get methods provide access to Private data, the implementation of these
methods can restrict access to that data.

The declaration of instance variables as Private does not guarantee data integrity.
Programmers must provide validity checking—Visual Basic provides only the framework
with which programmers can design better programs. 

Testing and Debugging Tip 8.2
Methods that set the values of Private data should verify that the intended new values are
proper; if they are not, the Set methods should place the Private instance variables into
an appropriate consistent state. 8.2

A class’s Set accessors cannot return values indicating a failed attempt to assign
invalid data to objects of the class. Such return values could be useful to a class’s clients
for handling errors. In this case, clients could take appropriate actions if the objects occupy
invalid states. Chapter 11 presents exception handling—a mechanism that can be used to
notify a class’s clients of failed attempts to set objects of that class to consistent states.

Figure 8.6 enhances our CTime class (now called CTime3) to include properties for
the mHour, mMinute and mSecond Private instance variables. The Set accessors of
these properties strictly control the setting of the instance variables to valid values. An
attempt to set any instance variable to an incorrect value causes the instance variable to be
set to zero (thus leaving the instance variable in a consistent state). Each Get accessor
returns the appropriate instance variable’s value.  

1 ' Fig. 8.6: CTime3.vb
2 ' Represents time in 24-hour format and contains properties.
3

Fig. 8.6 Properties in a class (part 1 of 4).



Chapter 8 Object-Based Programming 315

4 Class CTime3
5 Inherits Object
6
7    ' declare Integers for hour, minute and second
8 Private mHour As Integer
9 Private mMinute As Integer

10 Private mSecond As Integer
11
12    ' CTime3 constructor: initialize each instance variable to zero
13    ' and ensure that each CTime3 object starts in consistent state
14 Public Sub New()
15       SetTime(0, 0, 0)
16 End Sub ' New
17
18    ' CTime3 constructor: 
19    ' hour supplied, minute and second defaulted to 0
20 Public Sub New(ByVal hourValue As Integer)
21       SetTime(hourValue, 0, 0)
22 End Sub ' New
23
24    ' CTime3 constructor: 
25    ' hour and minute supplied; second defaulted to 0
26 Public Sub New(ByVal hourValue As Integer, _
27       ByVal minuteValue As Integer)
28
29       SetTime(hourValue, minuteValue, 0)
30 End Sub ' New
31
32    ' CTime3 constructor: hour, minute and second supplied
33 Public Sub New(ByVal hourValue As Integer, _
34       ByVal minuteValue As Integer, ByVal secondValue As Integer)
35
36       SetTime(hourValue, minuteValue, secondValue)
37 End Sub ' New
38
39    ' CTime3 constructor: another CTime3 object supplied
40 Public Sub New(ByVal timeValue As CTime3)
41       SetTime(timeValue.mHour, timeValue.mMinute, _
42          timeValue.mSecond)
43 End Sub ' New
44
45    ' set new time value using universal time;
46    ' uses properties to perform validity checks on data
47 Public Sub SetTime(ByVal hourValue As Integer, _
48       ByVal minuteValue As Integer, ByVal secondValue As Integer)
49
50       Hour = hourValue     ' looks
51       Minute = minuteValue ' dangerous
52       Second = secondValue ' but it is correct
53 End Sub ' SetTime
54

Fig. 8.6 Properties in a class (part 2 of 4).



316 Object-Based Programming Chapter 8

55    ' property Hour
56 Public Property Hour() As Integer
57
58       ' return mHour value
59       Get
60          Return mHour
61       End Get
62
63       ' set mHour value
64       Set(ByVal value As Integer)
65
66          If (value >= 0 AndAlso value < 24) Then
67             mHour = value
68          Else
69             mHour = 0
70          End If
71
72       End Set
73
74    End Property ' Hour
75
76    ' property Minute
77 Public Property Minute() As Integer
78
79       ' return mMinute value
80       Get
81          Return mMinute
82       End Get
83
84       ' set mMinute value
85       Set(ByVal value As Integer)
86
87          If (value >= 0 AndAlso value < 60) Then
88             mMinute = value
89          Else
90             mMinute = 0
91          End If
92
93       End Set
94
95 End Property ' Minute
96
97    ' property Second
98 Public Property Second() As Integer
99
100       ' return mSecond value
101       Get
102          Return mSecond
103       End Get
104

Fig. 8.6 Properties in a class (part 3 of 4).



Chapter 8 Object-Based Programming 317

Lines 56–74, 77–95 and 98–116 define the properties Hour, Minute and Second
of class CTime3, respectively. Each property begins with a declaration line, which
includes an access modifier (Public), the property’s name (Hour, Minute or Second)
and the property’s type (Integer).

The body of the property contains Get and Set accessors, which are declared using
the keywords Get and Set. The Get accessor method declarations are on lines 59–61, 80–
82 and 101–103. These Get methods return the mHour, mMinute and mSecond instance
variable values that objects request. The Set accessors are declared on lines 64–72, 85–93

105       ' set mSecond value
106       Set(ByVal value As Integer)
107
108          If (value >= 0 AndAlso value < 60) Then
109             mSecond = value
110          Else
111             mSecond = 0
112          End If
113
114       End Set
115
116    End Property ' Second
117
118    ' convert String to universal-time format
119 Public Function ToUniversalString() As String
120       Return String.Format("{0}:{1:D2}:{2:D2}", _
121          mHour, mMinute, mSecond)
122 End Function ' ToUniversalString
123
124    ' convert to String in standard-time format
125 Public Function ToStandardString() As String
126       Dim suffix As String = " PM"
127       Dim format As String = "{0}:{1:D2}:{2:D2}"
128       Dim standardHour As Integer
129
130       ' determine whether time is AM or PM
131       If mHour < 12 Then
132          suffix = " AM"
133       End If
134
135       ' convert from universal-time format to standard-time format
136       If (mHour = 12 OrElse mHour = 0) Then
137          standardHour = 12
138       Else
139          standardHour = mHour Mod 12
140       End If
141
142       Return String.Format(format, standardHour, mMinute, _
143          mSecond) & suffix
144 End Function ' ToStandardString
145
146 End Class ' CTime3

Fig. 8.6 Properties in a class (part 4 of 4).



318 Object-Based Programming Chapter 8

and 106–114. The body of each Set accessor performs the same conditional statement that
was previously in method SetTime for setting the mHour, mMinute or mSecond.

Method SetTime (lines 47–53) now uses properties Hour, Minute and Second to
ensure that instance variables mHour, mMinute and mSecond have valid values. After
we define a property, we can use it in the same way that we use a variable. We assign values
to properties using the = (assignment) operator. When this assignment occurs, the code in
the definition of the Set accessor for that property is executed. Referencing the property
(for instance, using it in a mathematical calculation) executes the code within the definition
of the Get accessor for that property.

When we employ Set and Get accessor methods in class CTime3, we minimize the
changes that we must make to the class definition, in the event that we alter the data repre-
sentation from mHour, mMinute and mSecond to another representation (such as total
elapsed seconds in the day). We must provide only new Set and Get accessor bodies.
Using this technique, programmers can change the implementation of a class without
affecting the clients of that class (as long as all the Public methods of the class are called
in the same way).

Software Engineering Observation 8.12
Accessing Private data through Set and Get accessors not only protects the instance
variables from receiving invalid values, but also hides the internal representation of the in-
stance variables from that class’s clients. Thus, if representation of the data changes (typi-
cally, to reduce the amount of required storage or to improve performance), only the
properties implementations need to change—the clients’ implementations need not change
as long as the service provided by the properties is preserved. 8.12

Figure 8.7 (class FrmTimeTest3), which represents the GUI for class CTime3 (line
30 represents the condensed region of code generated by the Visual Studio’s Windows
Form Designer), declares and instantiates an object of class CTime3 (line 28). The GUI
contains three text fields in which the user can input values for the CTime3 object’s
mHour, mMinute and mSecond variables, respectively. Lines 68–92 declare three
methods that use the Hour, Minute and Second properties of the CTime3 object to alter
their corresponding values. The GUI also contains a button that enables the user to incre-
ment the mSecond value by 1 without having to use the text box. Using properties, method
cmdAddSecond_Click (lines 43–65) determines and sets the new time. For example,
23:59:59 becomes 00:00:00 when the user presses the button. 

1 ' Fig. 8.7: TimeTest3.vb
2 ' Demonstrates Properties.
3
4 Imports System.Windows.Forms
5
6 Class FrmTimeTest3
7 Inherits Form
8
9    ' Label and TextBox for hour

10 Friend WithEvents lblSetHour As Label
11 Friend WithEvents txtSetHour As TextBox
12

Fig. 8.7 Graphical user interface for class CTime3 (part 1 of 3).



Chapter 8 Object-Based Programming 319

13    ' Label and TextBox for minute
14 Friend WithEvents lblSetMinute As Label
15 Friend WithEvents txtSetMinute As TextBox
16
17    ' Label and TextBox for second
18 Friend WithEvents lblSetSecond As Label
19 Friend WithEvents txtSetSecond As TextBox
20
21    ' Labels for outputting time
22 Friend WithEvents lblOutput1 As Label
23 Friend WithEvents lblOutput2 As Label
24
25    ' Button for adding one second to time
26 Friend WithEvents cmdAddSecond As Button
27
28 Dim time As New CTime3()
29
30    ' Visual Studio .NET generated code
31
32    ' update time display
33 Private Sub UpdateDisplay()
34       lblOutput1.Text = "Hour: " & time.Hour & "; Minute: " & _
35          time.Minute & "; Second: " & time.Second
36
37       lblOutput2.Text = "Standard time is: " & _
38          time.ToStandardString & "; Universal Time is: " _
39          & time.ToUniversalString()
40 End Sub ' UpdateDisplay
41
42    ' invoked when user presses Add Second button
43 Protected Sub cmdAddSecond_Click( _
44       ByVal sender As System.Object, _
45       ByVal e As System.EventArgs) Handles cmdAddSecond.Click
46
47       ' add one second
48       time.Second = (time.Second + 1) Mod 60
49       txtSetSecond.Text = time.Second
50
51       ' add one minute if 60 seconds have passed
52       If time.Second = 0 Then
53          time.Minute = (time.Minute + 1) Mod 60
54          txtSetMinute.Text = time.Minute
55
56          ' add one hour if 60 minutes have passed
57          If time.Minute = 0 Then
58             time.Hour = (time.Hour + 1) Mod 24
59             txtSetHour.Text = time.Hour
60          End If
61
62       End If
63
64       UpdateDisplay()
65 End Sub ' cmdAddSecond_Click

Fig. 8.7 Graphical user interface for class CTime3 (part 2 of 3).



320 Object-Based Programming Chapter 8

66
67    ' handle event when txtSetHour's text changes
68 Protected Sub txtSetHour_TextChanged(ByVal sender As _
69       System.Object, ByVal e As System.EventArgs) _
70       Handles txtSetHour.TextChanged
71
72       time.Hour = Convert.ToInt32(txtSetHour.Text)
73       UpdateDisplay()
74 End Sub ' txtSetHour_TextChanged
75
76    ' handle event when txtSetMinute's text changes
77 Protected Sub txtSetMinute_TextChanged(ByVal sender As _
78       System.Object, ByVal e As System.EventArgs) _
79       Handles txtSetMinute.TextChanged
80
81       time.Minute = Convert.ToInt32(txtSetMinute.Text)
82       UpdateDisplay()
83 End Sub ' txtSetMinute_TextChanged
84
85    ' handle event when txtSetSecond's text changes
86 Protected Sub txtSetSecond_TextChanged(ByVal sender _
87       As System.Object, ByVal e As System.EventArgs) _
88       Handles txtSetSecond.TextChanged
89
90       time.Second = Convert.ToInt32(txtSetSecond.Text)
91       UpdateDisplay()
92 End Sub ' txtSetSecond_TextChanged
93
94 End Class ' FrmTimeTest3

Fig. 8.7 Graphical user interface for class CTime3 (part 3 of 3).



Chapter 8 Object-Based Programming 321

Not all properties need to have Get and Set accessors. A property with only a Get
accessor is called a read-only property and must be declared using keyword ReadOnly.
By contrast, a property with only a Set accessor is called a write-only property and must
be declared using keyword WriteOnly. Generally, WriteOnly properties are seldom
used. In Section 8.11, we use ReadOnly properties to prevent our programs from
changing the values of instance variables.

8.8 Composition: Objects as Instance Variables of Other 
Classes
In many situations, referencing existing objects is more convenient than rewriting the ob-
jects’ code for new classes in new projects. Suppose we were to implement an CAlarm-
Clock class object that needs to know when to sound its alarm. It would be easier to
reference an existing CTime object (like those from the previous examples in this chapter)
than it would be to write a new CTime object. The use of references to objects of preexist-
ing classes as members of new objects is called composition.

Software Engineering Observation 8.13
One form of software reuse is composition, in which a class has as members references to
objects of other classes. 8.13

The application of Fig. 8.8, Fig. 8.9 and Fig. 8.10 demonstrates composition. Class
CDay (Fig. 8.8) encapsulates information relating to a specific date. Lines 9–11 declare
Integers mMonth, mDay and mYear. Lines 15–35 define the constructor, which
receives values for mMonth, mDay and mYear as arguments, then assigns these values to
the class variables after ensuring that the variables are in a consistent state.  

1 ' Fig. 8.8: CDay.vb
2 ' Encapsulates month, day and year.
3
4 Imports System.Windows.Forms
5
6 Class CDay
7    Inherits Object
8
9 Private mMonth As Integer ' 1-12

10 Private mDay As Integer ' 1-31 based on month
11 Private mYear As Integer ' any year
12
13    ' constructor confirms proper value for month, then calls
14    ' method CheckDay to confirm proper value for day
15 Public Sub New(ByVal monthValue As Integer, _
16       ByVal dayValue As Integer, ByVal yearValue As Integer)
17
18       ' ensure month value is valid
19       If (monthValue > 0 AndAlso monthValue <= 12) Then
20          mMonth = monthValue
21       Else
22          mMonth = 1

Fig. 8.8 CDay class encapsulates day, month and year information (part 1 of 2).



322 Object-Based Programming Chapter 8

23
24          ' inform user of error
25          Dim errorMessage As String = _
26             "Month invalid. Set to month 1."
27
28          MessageBox.Show(errorMessage, "", _
29             MessageBoxButtons.OK, MessageBoxIcon.Error)
30       End If
31
32       mYear = yearValue
33       mDay = CheckDay(dayValue) ' validate day
34
35 End Sub ' New
36
37    ' confirm proper day value based on month and year
38 Private Function CheckDay(ByVal testDayValue As Integer) _
39       As Integer
40
41       Dim daysPerMonth() As Integer = _
42          {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
43
44       If (testDayValue > 0 AndAlso _
45          testDayValue <= daysPerMonth(mMonth)) Then
46
47          Return testDayValue
48       End If
49
50       ' check for leap year in February
51       If (mMonth = 2 AndAlso testDayValue = 29 AndAlso _
52          mYear Mod 400 = 0 OrElse mYear Mod 4 = 0 AndAlso _
53          mYear Mod 100 <> 0) Then
54
55          Return testDayValue
56       Else
57
58          ' inform user of error
59          Dim errorMessage As String = _
60             "day " & testDayValue & "invalid. Set to day 1. "
61
62          MessageBox.Show(errorMessage, "", _
63             MessageBoxButtons.OK, MessageBoxIcon.Error)
64
65          Return 1 ' leave object in consistent state
66       End If
67
68 End Function ' CheckDay
69
70    ' create string containing month/day/year format
71 Public Function ToStandardString() As String
72       Return mMonth & "/" & mDay & "/" & mYear
73    End Function ' ToStandardString
74
75 End Class ' CDay

Fig. 8.8 CDay class encapsulates day, month and year information (part 2 of 2).



Chapter 8 Object-Based Programming 323

 Class CEmployee (Fig. 8.9) holds information relating to an employee’s birthday
and hire date (lines 7–10) using instance variables mFirstName, mLastName,
mBirthDate and mHireDate. Members mBirthDate and mHireDate are refer-
ences to CDay objects, each of which contains instance variables mMonth, mDay and
mYear. In this example, class CEmployee is composed of two references of class CDay.
The CEmployee constructor (lines 13–32) takes eight arguments (firstNameValue,
lastNameValue, birthMonthValue, birthDayValue, birthYearValue,
hireMonthValue, hireDayValue and hireYearValue). Lines 26–27 pass argu-
ments birthMonthValue, birthDayValue and birthYearValue to the CDay
constructor to create the mBirthDate object. Similarly, lines 30–31 pass arguments
hireMonthValue, hireDayValue and hireYearValue to the CDay constructor
to create the mHireDate object.

Module modCompositionTest (Fig. 8.10) runs the application with method
Main. Lines 9–10 instantiate a CEmployee object ("Bob Jones" with birthday 7/
24/1949 and hire date 3/12/1988), and lines 12–13 display the information to the
user in a MessageBox.

1 ' Fig. 8.9: CEmployee.vb
2 ' Represent employee name, birthday and hire date.
3
4 Class CEmployee
5 Inherits Object
6
7 Private mFirstName As String
8 Private mLastName As String
9 Private mBirthDate As CDay ' member object reference

10 Private mHireDate As CDay ' member object reference
11
12    ' CEmployee constructor
13 Public Sub New(ByVal firstNameValue As String, _
14       ByVal lastNameValue As String, _
15       ByVal birthMonthValue As Integer, _
16       ByVal birthDayValue As Integer, _
17       ByVal birthYearValue As Integer, _
18       ByVal hireMonthValue As Integer, _
19       ByVal hireDayValue As Integer, _
20       ByVal hireYearValue As Integer)
21
22       mFirstName = firstNameValue
23       mLastName = lastNameValue
24
25       ' create CDay instance for employee birthday
26       mBirthDate = New CDay(birthMonthValue, birthDayValue, _
27          birthYearValue)
28
29       ' create CDay instance for employee hire date
30       mHireDate = New CDay(hireMonthValue, hireDayValue, _
31          hireYearValue)
32 End Sub ' New

Fig. 8.9 CEmployee class encapsulates employee name, birthday and hire date 
(part 1 of 2).



324 Object-Based Programming Chapter 8

8.9 Using the Me Reference
Every object can access a reference to itself via the Me reference. The Me reference is used
implicitly refer to instance variables, properties and methods of an object. We begin with
an example of using reference Me explicitly and implicitly to display the Private data of
an object.

Class CTime4 (Fig. 8.11) defines three Private instance variables—mHour, mMi-
nute and mSecond (line 5). The constructor (lines 8–14) receives three Integer argu-
ments to initialize a CTime4 object. Note that for this example, we have made the
constructor’s parameter names (lines 8–9) identical to the class’s instance variable names
(line 5). A method’s local variable that has the same name as a class’s instance variable hides
the instance variable in that method’s scope. However, the method can use reference Me to
refer to these instance variables explicitly. Lines 11–13 of Fig. 8.11 demonstrate this feature.

33
34    ' return employee information as standard-format String
35 Public Function ToStandardString() As String
36       Return mLastName & ", " & mFirstName & " Hired: " _
37          & mHireDate.ToStandardString() & " Birthday: " & _
38          mBirthDate.ToStandardString()
39 End Function ' ToStandardString
40
41 End Class ' CEmployee

1 ' Fig. 8.10: CompositionTest.vb
2 ' Demonstrate an object with member object reference.
3
4 Imports System.Windows.Forms
5
6 Module modCompositionTest
7
8 Sub Main()
9       Dim employee As New CEmployee( _

10          "Bob", "Jones", 7, 24, 1949, 3, 12, 1988)
11
12       MessageBox.Show(employee.ToStandardString(), _
13          "Testing Class Employee")
14 End Sub ' Main
15
16 End Module ' modCompositionTest

Fig. 8.10 Composition demonstration.

Fig. 8.9 CEmployee class encapsulates employee name, birthday and hire date 
(part 2 of 2).



Chapter 8 Object-Based Programming 325

Method BuildString (lines 17–20) returns a String created by a statement that
uses the Me reference explicitly and implicitly. Line 18 uses the Me reference explicitly to
call method ToUniversalString, whereas line 19 uses the Me reference implicitly to
call method ToUniversalString. Note that both lines perform the same task (i.e., gen-
erate identical output). Because of this, programmers usually do not use the Me reference
explicitly to reference methods.

Common Programming Error 8.6
For a method in which a parameter has the same name as an instance variable, use reference
Me to access the instance variable explicitly; otherwise, the method parameter is referenced. 8.6

Testing and Debugging Tip 8.3
Avoidance of method-parameter names that conflict with instance variable names helps pre-
vent certain subtle, hard-to-trace bugs. 8.3

Good Programming Practice 8.7
The explicit use of the Me reference can increase program clarity where Me is optional. 8.7

Module modMeTest (Fig. 8.12) runs the application that demonstrates the use of the
Me reference. Line 9 instantiates an instance of class CTime4. Lines 11–12 invoke method
BuildString, then display the results to the user in a MessageBox.

1 ' Fig. 8.11: CTime4.vb
2 ' Encapsulate time using Me reference.
3
4 Class CTime4
5 Private mHour, mMinute, mSecond As Integer
6
7    ' CTime4 constructor
8 Public Sub New(ByVal mHour As Integer, _
9       ByVal mMinute As Integer, ByVal mSecond As Integer)

10
11       Me.mHour = mHour
12       Me.mMinute = mMinute
13       Me.mSecond = mSecond
14 End Sub ' New
15
16    ' create String using Me and implicit references
17 Public Function BuildString() As String
18       Return "Me.ToUniversalString(): " & Me.ToUniversalString() _
19          & vbCrLf & "ToUniversalString(): " & ToUniversalString()
20 End Function ' BuildString
21
22    ' convert to String in standard-time format
23 Public Function ToUniversalString() As String
24       Return String.Format("{0:D2}:{1:D2}:{2:D2}", _
25          mHour, mMinute, mSecond)
26 End Function ' ToUniversalString
27
28 End Class ' CTime4

Fig. 8.11 Class using Me reference.



326 Object-Based Programming Chapter 8

8.10 Garbage Collection
In previous examples, we have seen how a constructor method initializes data in an object
of a class after the object is created. Keyword New allocates memory for the object, then
calls that object’s constructor. The constructor might acquire other system resources, such
as network connections and database connections. Objects must have a disciplined way to
return memory and release resources when the program no longer uses those objects. Fail-
ure to release such resources causes resource leaks.

Unlike C and C++, in which programmers must manage memory explicitly, Visual
Basic performs memory management internally. The .NET Framework performs garbage
collection of memory to return memory that is no longer needed back to the system. When
the garbage collector executes, it locates objects for which the application has no refer-
ences. Such objects can be collected at that time or in a subsequent execution of the garbage
collector. Therefore, the memory leaks that are common in such languages as C and C++,
where memory is not reclaimed automatically, are rare in Visual Basic.

Dependence on Visual Basic’s automatic garbage collection, however, might not be the
best way to manage resources. Certain resources, such as network connections, database con-
nections and file streams, are better handled explicitly by the programmer. One technique
employed to handle these resources (in conjunction with the garbage collector) is to define a
finalizer method that returns resources to the system. The garbage collector calls an object’s
finalizer method to perform termination housekeeping on that object just before the garbage
collector reclaims the object’s memory (this process is called finalization).

Class Object defines method Finalize, which is the finalizer method for all
Visual Basic objects. Because all Visual Basic classes inherit from class Object, they

1 ' Fig. 8.12: MeTest.vb
2 ' Demonstrates Me reference.
3
4 Imports System.Windows.Forms
5
6 Module modMeTest
7
8 Sub Main()
9       Dim time As New CTime4(12, 30, 19)

10
11       MessageBox.Show(time.BuildString(), _
12          "Demonstrating the 'Me' Reference")
13 End Sub ' Main
14
15 End Module ' modMeTest

Fig. 8.12 Me reference demonstration.



Chapter 8 Object-Based Programming 327

inherit method Finalize and can override it to free resources specific to those classes.
The overridden method is called before garbage collection occurs—however, we cannot
determine exactly when this method is called, because we cannot determine exactly when
garbage collection occurs. We discuss method Finalize in greater detail in Chapter 9,
when we discuss inheritance.

8.11 Shared Class Members
Each object of a class has its own copy of all the instance variables of the class. However,
in certain cases, all class objects should share only one copy of a particular variable. A
Shared class variable is such a variable; a program contains only one copy of this variable
in memory, no matter how many objects of the variable’s class have been instantiated. A
Shared class variable represents class-wide information—all class objects share the same
piece of data. The declaration of a Shared member begins with the keyword Shared.

In Visual Basic, programmers can define what is known as a shared constructor, which
is used only to initialize Shared class members. Shared constructors are optional and
must be declared with the Shared keyword. Normally, Shared constructors are used
when it is necessary to initialize a Shared class variable before any objects of that class
are instantiated. Shared constructors are called before any Shared class members are
used and before any class objects are instantiated.

We now employ a video-game example to explain the need for Shared class-wide data.
Suppose we have a video game in which CMartians attack with other space creatures. Each
CMartian tends to be brave and willing to attack other space creatures when the CMar-
tian is aware that there are at least four other CMartians present. If there are fewer than
a total of five CMartians present, each CMartian becomes cowardly. For this reason,
each CMartian must know the martianCount. We could endow class CMartian with
martianCount as instance data. If we were to do this, then every CMartian would have
a separate copy of the instance data, and, every time we create a CMartian, we would have
to update the instance variable martianCount in every CMartian. The redundant copies
waste space, and the updating of those copies is time-consuming. Instead, we declare mar-
tianCount to be Shared so that martianCount is class-wide data. Each CMartian
can see the martianCount as if it were instance data of that CMartian, but Visual Basic
maintains only one copy of the Shared martianCount to save space. We also save time,
in that the CMartian constructor increments only the Shared martianCount. Because
there is only one copy, we do not have to increment separate copies of martianCount for
each CMartian object.

Performance Tip 8.2
When a single copy of the data will suffice, use Shared class variables to save storage. 8.2

Although Shared class variables might seem like global variables in C and C++
(variables that can be referenced directly by name in any C function or C++ class or method
in a program), they are not the same thing. Shared class variables have class scope. A
class’s Public Shared members can be accessed through the class name using the dot
operator (e.g., className.sharedMemberName). A class’s Private Shared class
members can be accessed only through methods of the class. Shared class members are
available as soon as the class is loaded into memory at execution time; like other variables



328 Object-Based Programming Chapter 8

with class scope, they exist for the duration of program execution, even when no objects of
that class exist. To access a Private Shared class member when no objects of the class
exist, programmers must provide a Public Shared method or property.

A Shared method cannot access non-Shared class members. Unlike non-Shared
methods, a Shared method has no Me reference, because Shared class variables and
Shared class methods exist independently of any class objects and even when there are
no objects of that class.

Common Programming Error 8.7
Using the Me reference in a Shared method or Shared property is a syntax error. 8.7

Class CEmployee2 (Fig. 8.13) demonstrates the use of a Private Shared class
variable and a Public Shared Property. The Shared class variable mCount is ini-
tialized to zero by default (line 11). Class variable mCount maintains a count of the
number of objects of class CEmployee2 that have been instantiated and currently reside
in memory, including those objects that have already been marked for garbage collection
but have not yet been reclaimed by the garbage collector.

When objects of class CEmployee2 exist, Shared member mCount can be used in
any method of a CEmployee2 object—in this example, the constructor (lines 14–24) incre-
ments mCount (line 20) and method Finalize (lines 27–32) decrements mCount (line
28). (Note that method Finalize is declared using keywords Protected and Over-
rides—method Finalize’s header must contain these keywords, and we will explain
them in detail in Chapter 9.) If no objects of class CEmployee2 exist, member mCount can
be referenced through a call to Property Count (lines 53–59). Because this Property
is Shared, we do not have to instantiate a CEmployee2 object to call the Get method
inside the Property. Also, by declaring property Count as ReadOnly, we prevent clients
from changing mCount’s value directly, thus ensuring that clients can change mCount’s
value only via the class CEmployee2 constructors and finalizer. 

Module modSharedTest (Fig. 8.14) runs the application that demonstrates the use
of Shared members (Fig. 8.13). Lines 11–12 use the ReadOnly Shared Property
Count of class CEmployee2 to obtain the current mCount value. Lines 14–18 then
instantiate two CEmployee2 objects, which increment the mCount value by two. Lines
26–29 display the names of the employees. Lines 32–33 set these objects’ references to
Nothing, so that references employee1 and employee2 no longer refer to the
CEmployee2 objects. This “marks” the objects for garbage collection, because there are
no more references to these objects in the program. 

1 ' Fig. 8.13: CEmployee2.vb
2 ' Class CEmployee2 uses Shared variable.
3
4 Class CEmployee2
5 Inherits Object
6
7 Private mFirstName As String
8 Private mLastName As String
9

Fig. 8.13 CEmployee2 class objects share Shared variable (part 1 of 2).



Chapter 8 Object-Based Programming 329

10    ' number of objects in memory
11 Private Shared mCount As Integer
12
13    ' CEmployee2 constructor
14 Public Sub New(ByVal firstNameValue As String, _
15       ByVal lastNameValue As String)
16
17       mFirstName = firstNameValue
18       mLastName = lastNameValue
19
20       mCount += 1 ' increment shared count of employees
21       Console.WriteLine _
22          ("Employee object constructor: " & mFirstName & _
23          " " & mLastName)
24 End Sub ' New
25
26    ' finalizer method decrements Shared count of employees
27 Protected Overrides Sub Finalize()
28       mCount -= 1 ' decrement mCount, resulting in one fewer object
29       Console.WriteLine _
30          ("Employee object finalizer: " & mFirstName & _
31          " " & mLastName & "; count = " & mCount)
32    End Sub ' Finalize
33
34    ' return first name
35 Public ReadOnly Property FirstName() As String
36
37       Get
38          Return mFirstName
39       End Get
40
41 End Property ' FirstName
42
43    ' return last name
44 Public ReadOnly Property LastName() As String
45
46       Get
47          Return mLastName
48       End Get
49
50    End Property ' LastName
51
52    ' property Count
53 Public ReadOnly Shared Property Count() As Integer
54
55       Get
56          Return mCount
57       End Get
58
59    End Property ' Count
60
61 End Class ' CEmployee2

Fig. 8.13 CEmployee2 class objects share Shared variable (part 2 of 2).



330 Object-Based Programming Chapter 8

Performance Tip 8.3
Invocation of the garbage collector incurs a performance penalty because of such factors as
the complex algorithm that determines which objects should be collected. 8.3

Common Programming Error 8.8
A call to an instance method or an attempt to access an instance variable from a Shared
method is a syntax error. 8.8

Normally, the garbage collector is not invoked directly by the user. Either the garbage
collector reclaims the memory for objects when it deems garbage collection is appropriate,
or the operating system recovers the unneeded memory when the program terminates. Line
35 uses Public Shared method Collect from class GC of namespace System to
request that the garbage collector execute. Before the garbage collector releases the
memory occupied by the two CEmployee2 objects, it invokes method Finalize for
each CEmployee2 object, which decrements the mCount value by two. 

The last two lines of the console output (green window) show that the CEmployee2
object for Bob Jones was finalized before the CEmployee2 object for Susan Baker.
However, the output of this program on your system could differ. The garbage collector is
not guaranteed to collect objects in a specific order. 

1 ' Fig. 8.14: SharedTest.vb
2 ' Demonstrates Shared members.
3
4 Imports System.Windows.Forms
5
6 Module modSharedTest
7
8 Sub Main()
9       Dim output As String

10
11       Console.WriteLine("Employees before instantiation: " & _
12          CEmployee2.Count)
13
14       Dim employee1 As CEmployee2 = _
15          New CEmployee2("Susan", "Baker")
16
17       Dim employee2 As CEmployee2 = _
18          New CEmployee2("Bob", "Jones")
19
20       ' output of employee2 after instantiation
21       Console.WriteLine(vbCrLf & _
22          "Employees after instantiation: " & vbCrLf & _
23          "via Employee.Count: " & CEmployee2.Count)
24
25       ' display name of first and second employee
26       Console.WriteLine(vbCrLf & "Employees 1: " & _
27          employee1.FirstName & " " & employee1.LastName & _
28          vbCrLf & "Employee 2: " & employee2.FirstName & " " & _
29          employee2.LastName)
30

Fig. 8.14 Shared class member demonstration (part 1 of 2).



Chapter 8 Object-Based Programming 331

Good Programming Practice 8.8
Although .vb files import namespace System, we prefer to invoke method GC.Collect
by preceding GC with namespace System and a dot (.) operator to indicate explicitly that
class GC belongs to namespace System. This helps make programs more readable. 8.8

8.12 Const and ReadOnly Members
Visual Basic allows programmers to create constants, or members whose values cannot
change during program execution. To create a constant data member of a class, declare that
member using either the Const or ReadOnly keyword. A data member declared as
Const must be initialized in its declaration; a data member declared as ReadOnly can be
initialized either in its declaration or in the class constructor. Neither a Const nor a Rea-
dOnly value can be modified once initialized.

Testing and Debugging Tip 8.4
If a variable’s value should never change, making it a constant prevents it from changing.
This helps eliminate errors that might occur if the value of the variable were to change. 8.4

Common Programming Error 8.9
Declaring a class data member as Const but failing to initialize it in that declaration is a
syntax error. 8.9

Common Programming Error 8.10
Assigning a value to a Const data member during runtime is a syntax error. 8.10

Members that are declared as Const must be assigned values at compile time. There-
fore, Const members can be initialized only to other constant values, such as integers,
string literals, characters and other Const members. Constant members with values that

31       ' mark employee1 and employee2 for garbage collection
32       employee1 = Nothing
33       employee2 = Nothing
34
35       System.GC.Collect() ' request garbage collection
36 End Sub ' Main
37
38 End Module ' modShared

Employees before instantiation: 0
Employee object constructor: Susan Baker
Employee object constructor: Bob Jones

Employees after instantiation:
via Employee.Count: 2

Employees 1: Susan Baker
Employee 2: Bob Jones
Employee object finalizer: Bob Jones; count = 1
Employee object finalizer: Susan Baker; count = 0

Fig. 8.14 Shared class member demonstration (part 2 of 2).



332 Object-Based Programming Chapter 8

cannot be determined at compile time must be declared with the keyword ReadOnly. We
mentioned previously that a ReadOnly member can be assigned a value only once, either
when it is declared or within that class’s constructor. When we choose to define such a
member within a constructor, a Shared constructor must be used to initialize Shared
ReadOnly members, and a separate non-Shared (instance) constructor is used to ini-
tialize non-Shared ReadOnly members.

Common Programming Error 8.11
Declaring a class data member as ReadOnly and attempting to use it before it is initialized
is a logic error. 8.11

Common Programming Error 8.12
A Shared ReadOnly data member cannot be defined in a constructor for that class, and
an instance ReadOnly data member cannot be defined in a Shared constructor for that
class. Attempting to define a ReadOnly data member in an inappropriate constructor is a
syntax error. 8.12

Common Programming Error 8.13
The declaration of a Const member as Shared is a syntax error, because a Const mem-
ber is Shared implicitly. 8.13

Class CCircleConstants (Fig. 8.15) demonstrates the use of constants. Line 7
creates constant PI using keyword Const and assigns the Double value 3.14159, an
approximation of π. We could have used pre-defined Const PI of class Math
(Math.PI) as the value, but we wanted to demonstrate how to create a Const data
member explicitly. The compiler must be able to determine a Const’s value for that value
to be assigned to the Const data member. The value 3.14159 is acceptable (line 7), but
the expression: 

Convert.ToDouble( "3.14159" )

would generate a syntax error if used in place of that value. Although this expression uses
a constant value (String literal "3.14159") as an argument, a syntax error occurs, be-
cause the compiler cannot evaluate the executable statement Convert.ToDouble. This
restriction is lifted with ReadOnly members, which are assigned values at runtime. Note
that line 14 (at runtime) assigns the value of constructor parameter radiusValue to
ReadOnly member mRadius. Also, we could have used an executable statement, such
as Convert.ToDouble, to assign a value to this ReadOnly member. 

1 ' Fig. 8.15: CCircleConstants.vb
2 ' Encapsulate constants PI and radius.
3
4 Class CCircleConstants
5
6    ' PI is constant data member
7 Public Const PI As Double = 3.14159
8
9    ' radius is uninitialized constant

10 Public ReadOnly RADIUS As Integer

Fig. 8.15 Constants used in class CCircleConstants (part 1 of 2).



Chapter 8 Object-Based Programming 333

Module modConstAndReadOnly (Fig. 8.16) illustrates the use of Const and
ReadOnly values. Lines 9–11 use class Random to generate a random Integer
between 1–20 that corresponds to a circle’s radius. Line 11 passes this value to the CCir-
cleConstant constructor to instantiate a CCircleConstant object. Line 13 then
accesses the ReadOnly variable mRadius through a reference to its class instance. Lines
15–17 compute the circle’s circumference and assign the value to String output. This
calculation employs the Const member PI, which we access in line 17 through its
Shared class reference. Lines 19–20 output the radius and circumference values to a
MessageBox.

11
12    ' constructor of class CCircleConstants
13 Public Sub New(ByVal radiusValue As Integer)
14       RADIUS = radiusValue
15 End Sub ' New
16
17 End Class ' CCircleConstants

1 ' Fig. 8.16: ConstAndReadOnly.vb
2 ' Demonstrates Const and ReadOnly members.
3
4 Imports System.Windows.Forms
5
6 Module modConstAndReadOnly
7
8 Sub Main()
9       Dim random As Random = New Random()

10       Dim circle As CCircleConstants = _
11          New CCircleConstants(random.Next(1, 20))
12
13       Dim radius As String = Convert.ToString(circle.RADIUS)
14
15       Dim output As String = "Radius = " & radius & vbCrLf _
16          & "Circumference = " + String.Format("{0:N3}", _
17          circle.RADIUS * 2 * CCircleConstants.PI)
18
19       MessageBox.Show(output, "Circumference", _
20          MessageBoxButtons.OK, MessageBoxIcon.Information)
21 End Sub ' Main
22
23 End Module ' modConstAndReadOnly

Fig. 8.16 Const and ReadOnly class member demonstration.

Fig. 8.15 Constants used in class CCircleConstants (part 2 of 2).



334 Object-Based Programming Chapter 8

8.13 Data Abstraction and Information Hiding
As we pointed out at the beginning of this chapter, classes normally hide the details of their
implementation from their clients. This is called information hiding. As an example of in-
formation hiding, let us consider a data structure called a stack.

Students can think of a stack as analogous to a pile of dishes. When a dish is placed on
the pile, it is always placed at the top (referred to as pushing the dish onto the stack). Sim-
ilarly, when a dish is removed from the pile, it is always removed from the top (referred to
as popping the dish off the stack). Stacks are known as last-in, first-out (LIFO) data struc-
tures—the last item pushed (inserted) on the stack is the first item popped (removed) from
the stack.

Stacks can be implemented with arrays and with other methods, such as linked lists (we
discuss linked lists in Chapter 23, Data Structures). A client of a stack class need not be
concerned with the stack’s implementation. The client knows only that when data items are
placed in the stack, these items will be retrieved in last-in, first-out order. The client cares
about what functionality a stack offers, but not about how that functionality is implemented.
This concept is referred to as data abstraction. Although programmers might know the
details of a class’s implementation, they should not write code that depends on these details.
This enables a particular class (such as one that implements a stack and its operations, push
and pop) to be replaced with another version without affecting the rest of the system. As
long as the Public services of the class do not change (i.e., every method or property still
has the same name, return type and parameter list in the new class definition), the rest of
the system is not affected.

Most programming languages emphasize actions. In these languages, data exists to
support the actions that programs must take. Data is “less interesting” than actions. Data is
“crude.” Only a few built-in data types exist, and it is difficult for programmers to create
their own data types. Visual Basic and the object-oriented style of programming elevates
the importance of data. The primary activities of object-oriented programming in Visual
Basic is the creation of data types (i.e., classes) and the expression of the interactions
among objects of those data types. To create languages that emphasize data, the program-
ming-languages community needed to formalize some notions about data. The formaliza-
tion we consider here is the notion of abstract data types (ADTs). ADTs receive as much
attention today as structured programming did decades earlier. ADTs, however, do not
replace structured programming. Rather, they provide an additional formalization to
improve the program-development process.

Consider built-in type Integer, which people would associate an Integer with an
integer in mathematics. Unlike mathematical integers, computer Integers are fixed in
size. For example, Integer on a 32-bit machine is limited approximately to the range ±2
billion. If the result of a calculation falls outside this range, an error occurs, and the com-
puter responds in some machine-dependent manner. It might for example, “quietly” pro-
duce an incorrect result. Mathematical integers do not have this problem. Therefore, the
notion of a computer Integer is only an approximation of the notion of a real-world
integer. The same is true of Double and other built-in types.

We have taken the notion of Integer for granted until this point, but we now con-
sider a new perspective. Types like Integer, Double, Char and others are all examples
of abstract data types. Representations of real-world notions to some satisfactory level of
precision within a computer system.



Chapter 8 Object-Based Programming 335

An ADT actually captures two notions: A data representation and the operations that
can be performed on that data. For example, in Visual Basic, an Integer contains an
integer value (data) and provides addition, subtraction, multiplication, division and mod-
ulus operations; however, division by zero is undefined. In Visual Basic, programmers use
classes to implement abstract data types.

Software Engineering Observation 8.14
Programmers can create types through the use of the class mechanism. These new types can
be designed so that they are as convenient to use as the built-in types. This marks Visual Ba-
sic as an extensible language. Although the language is easy to extend via new types, the pro-
grammer cannot alter the base language itself. 8.14

Another abstract data type we discuss is a queue, which is similar to a “waiting line.”
Computer systems use many queues internally. We write programs that simulate queues
and their behavior. A queue offers well-understood behavior to its clients: Clients place
items in a queue one at a time via an enqueue operation, then get those items back one at a
time via a dequeue operation. A queue returns items in first-in, first-out (FIFO) order,
which means that the first item inserted in a queue is the first item removed. Conceptually,
a queue can become infinitely long, whereas real queues are finite.

The queue hides an internal data representation that keeps track of the items currently
waiting in line, and it offers a set of operations to its clients (enqueue and dequeue). The cli-
ents are not concerned about the implementation of the queue—clients depend on the queue
to operate “as advertised.” When a client enqueues an item, the queue should accept that item
and place it in some kind of internal FIFO data structure. Similarly, when the client wants the
next item from the front of the queue, the queue should remove the item from its internal rep-
resentation and deliver the item in FIFO order (i.e., the item that has been in the queue the
longest should be the next one returned by the next dequeue operation).

The queue ADT guarantees the integrity of its internal data structure. Clients cannot
manipulate this data structure directly—only the queue ADT has access to its internal data.
Clients are able to perform only allowable operations on the data representation; the ADT
rejects operations that its public service does not provide.

8.14 Software Reusability
Visual Basic programmers concentrate on both crafting new classes and reusing existing
classes. Many class libraries exist, and developers worldwide are creating others. Software
is constructed from existing, well-defined, carefully tested, well-documented, portable,
widely available components. Software reusability speeds the development of powerful,
high-quality software. Rapid application development (RAD) is of great interest today in
the software industry. 

To realize the full potential of software reusability, we need to improve cataloging
and licensing schemes, protection mechanisms that ensure master copies of classes are
not corrupted, description schemes that system designers use to determine whether
existing classes meet their needs and browsing mechanisms that determine whether
classes are available and how closely these classes meet software developer require-
ments. These efforts will be worthwhile, because the value of convenient and effective
software reuse is enormous.



336 Object-Based Programming Chapter 8

Consider the earlier application examples of this chapter. Many of them contained a
definition for some variation of a CTime class and a modTimeTest module. These def-
initions often contained repeated code. Programmers should not have to rewrite code. With
the CTime/modTimeTest case, each application could have been engineered to import
the functionality, thus decreasing programming overhead. We show in Section 8.15 how to
import functionality.

8.15 Namespaces and Assemblies
As we have seen in almost every example in the text, classes from preexisting libraries,
such as the .NET Framework, must be imported into a Visual Basic program by including
a reference to those libraries (a process we demonstrated in Chapter 3). Remember that
each class in the Framework Class Library belongs to a specific namespace. This preexist-
ing code provides a mechanism that facilitates software reuse.

As we discussed in Section 8.14, when appropriate, programmers should concentrate
on making the software components they create reusable. However, doing so often results
in naming collisions, which occur when the same name is used for two classes in the same
namespace, for two methods in the same class, etc.

Common Programming Error 8.14
Attempting to compile code that contains naming collisions generates a syntax error. 8.14

Namespaces help minimize this problem by providing a convention for unique class
names. No two classes in a given namespace can have the same name, but different
namespaces can contain classes with the same name. With millions of people writing
Visual Basic programs, the names that one programmer chooses for classes will likely con-
flict with the names that other programmers choose for their classes.

Figure 8.17, which provides the code for class CEmployee3, demonstrates the cre-
ation of a reusable class library. Notice that this class is identical to class CEmployee2
(Fig. 8.13), except we have declared class CEmployee3 as a Public class. When other
projects make use of a class library, only Public classes are accessible—thus, if we did
not declare CEmployee3 as Public, other projects could not use it. We demonstrate
momentarily how to package class CEmployee3 into EmployeeLibrary.dll—the
dynamic link library that we create for reuse with other systems. As we mentioned in
Chapter 3, a dynamic link library contains related classes that projects can use.  

1 ' Fig. 8.17: CEmployee3.vb
2 ' Class CEmployee3 uses Shared variable.
3
4 Public Class CEmployee3
5 Inherits Object
6
7 Private mFirstName As String
8 Private mLastName As String
9

10    ' number of objects in memory
11 Private Shared mCount As Integer

Fig. 8.17 CEmployee3 class to store in class library (part 1 of 2).



Chapter 8 Object-Based Programming 337

12
13    ' CEmployee3 constructor
14 Public Sub New(ByVal firstNameValue As String, _
15       ByVal lastNameValue As String)
16
17       mFirstName = firstNameValue
18       mLastName = lastNameValue
19
20       mCount += 1 ' increment shared count of employees
21       Console.WriteLine _
22          ("Employee object constructor: " & mFirstName & _
23          " " & mLastName)
24 End Sub ' New
25
26    ' finalizer method decrements Shared count of employees
27 Protected Overrides Sub Finalize()
28       mCount -= 1 ' decrement mCount, resulting in one fewer object
29       Console.WriteLine _
30          ("Employee object finalizer: " & mFirstName & _
31          " " & mLastName & "; count = " & mCount)
32    End Sub ' Finalize
33
34    ' return first name
35 Public ReadOnly Property FirstName() As String
36
37       Get
38          Return mFirstName
39       End Get
40
41 End Property ' FirstName
42
43    ' return last name
44 Public ReadOnly Property LastName() As String
45
46       Get
47          Return mLastName
48       End Get
49
50    End Property ' LastName
51
52    ' property Count
53 Public ReadOnly Shared Property Count() As Integer
54
55       Get
56          Return mCount
57       End Get
58
59    End Property ' Count
60
61 End Class ' CEmployee3

Fig. 8.17 CEmployee3 class to store in class library (part 2 of 2).



338 Object-Based Programming Chapter 8

We now describe how to create a class library that includes class CEmployee3:

1. Create a class library project. Select File > New > Project... to display the New
Project dialog. Select Visual Basic Projects from the Project Types: pane,
then select Class Library from the Templates: pane. Name the project Em-
ployeeLibrary, and choose a directory in which you would like the project to be
located (you many choose any directory you wish). A class library is created, as
shown in Fig. 8.18. There are two important points to note about the class library’s
code. The first is that there is no Main method. This indicates that a class library
is not an executable program. Class libraries are software components that are
loaded and used (and reused) by executable programs. It is not designed as a
stand-alone application—rather, it is designed to be used by running programs.
The second key point is that Class1 is a Public class, so that it is accessible
to other projects (Fig. 8.18).

2. In the Solution Explorer, rename Class1.vb to CEmployee3.vb (right-
click Class1.vb and select Rename). Replace the following code generated
by the development environment:

Public Class Class1

End Class

with the entire code listing from class CEmployee3 (Fig. 8.17).

Fig. 8.18 Simple Class Library project.



Chapter 8 Object-Based Programming 339

3. Select Build > Build Solution to compile the code. Remember that this code is
not executable. If the programmer attempts to execute the class library by selecting
Debug > Start Without Debugging, Visual Studio displays an error message.

When the class library is compiled successfully, an assembly is created. This assembly
is located in the project’s bin directory, and by default is named EmployeeLi-
brary.dll. The assembly file contains class CEmployee3, which other modules,
classes and systems can use. Assembly files, which have file extensions .dll and .exe,
are at the core of Visual Basic application development. The Windows operating system
uses executable files (.exe) to run applications and library files (.dll, or dynamic link
library) to create code libraries.

Portability Tip 8.1
Focus on creating unique namespace names to avoid naming collisions. This is especially
helpful when using someone else’s code (or when someone else uses your code). 8.8

Module modAssemblyTest (Fig. 8.19) demonstrates the use of the assembly file in a
running application. The module employs class CEmployee3 in EmployeeLi-
brary.dll to create and mark two CEmployee3 for garbage collection. A reference to
the assembly is created by selecting Project > Add Reference. Using the Browse button,
select EmployeeLibrary.dll (located in the bin directory of our EmployeeLi-
brary project), then click OK to add the resource to the project. Once the reference has been
added, we use keyword Imports followed by the namespace’s name (EmployeeLi-
brary) to inform the compiler that we are using classes from this namespace (line 4). 

1 ' Fig. 8.19: AssemblyTest.vb
2 ' Demonstrates assembly files and namespaces.
3
4 Imports EmployeeLibrary ' contains class CEmployee3
5
6 Module modAssemblyTest
7
8 Public Sub Main()
9       Dim output As String

10
11       Console.WriteLine("Employees before instantiation: " & _
12          CEmployee3.Count)
13
14       Dim employee1 As CEmployee3 = _
15          New CEmployee3("Susan", "Baker")
16
17       Dim employee2 As CEmployee3 = _
18          New CEmployee3("Bob", "Jones")
19
20       ' output of employee after instantiation
21       Console.WriteLine(vbCrLf & "Employees after instantiation:" _
22          & vbCrLf & "via Employee.Count: " & CEmployee3.Count)
23

Fig. 8.19 Module modAssemblyTest references EmployeeLibrary.dll
(part 1 of 2).



340 Object-Based Programming Chapter 8

8.16 Class View and Object Browser
Now that we have introduced key concepts of object-based programming, we present two
features that Visual Studio provides to facilitate the design of object-oriented applica-
tions—Class View and Object Browser.

The Class View displays a project’s class members. To access this feature, select
View > Class View. Figure 8.20 depicts the Class View for the TimeTest project of
Fig. 8.1 and Fig. 8.2 (class CTime and module modTimeTest). Class View follows a
hierarchical structure, with the project name (TimeTest) as the root. Beneath the root is a
series of nodes (e.g., classes, variables, methods, etc.). If a node contains a plus box (+) next
to it, that node is collapsed. By contrast, if a node contains a minus box (-) next to it, that node
has been expanded (and can be collapsed). In Fig. 8.20, project TimeTest contains class
CTime and module modTimeTest as children. Class CTime contains a constructor,
methods SetTime, ToStandardString and ToUniversalString (indicated by
purple boxes) and variables mHour, mMinute and mSecond (indicated by blue boxes). The
lock icons, placed to the left of the blue-box icons, indicate that the variables are Private.
Module modTimeTest contains method Main. Note that class CTime contains the Bases
and Interfaces node, which contains class Object. This is because class CTime inherits
from class System.Object (which we discuss in Chapter 9).

24       ' display name of first and second employee
25       Console.WriteLine(vbCrLf & "Employees 1: " & _
26          employee1.FirstName & " " & employee1.LastName & _
27          vbCrLf & "Employee 2: " & employee2.FirstName & " " & _
28          employee2.LastName)
29
30       ' mark employee1 and employee2 for garbage collection
31       employee1 = Nothing
32       employee2 = Nothing
33
34       System.GC.Collect() ' request garbage collection
35 End Sub ' Main
36
37 End Module ' modAssemblyTest

Employees before instantiation: 0
Employee object constructor: Susan Baker
Employee object constructor: Bob Jones

Employees after instantiation:
via Employee.Count: 2

Employees 1: Susan Baker
Employee 2: Bob Jones
Employee object finalizer: Bob Jones; count = 1
Employee object finalizer: Susan Baker; count = 0

Fig. 8.19 Module modAssemblyTest references EmployeeLibrary.dll
(part 2 of 2).



Chapter 8 Object-Based Programming 341

The second feature that Visual Studio provides is the Object Browser, which lists
the Framework Class Library (FCL) classes available in Visual Basic. Developers use the
Object Browser to learn about the functionality provided by a specific object. To open
the Object Browser, right click any Visual Basic class or method in the code editor and
select Go To Definition (Fig. 8.21). Figure 8.22 shows the Object Browser when the
user selects keyword Object in the code editor. Note that the Object Browser lists all
non-Private members provided by class Object in the Members of Object
window—this window offers developers “instant access” to information regarding the ser-
vices of various objects. Note also that the Object Browser lists in the Objects window
all objects that Visual Basic provides.  

SUMMARY
• Every class in Visual Basic is a derived class of Object.

• Keywords Public and Private are member access modifiers.

• Instance variables, properties and methods that are declared with member access modifier Pub-
lic are accessible wherever the program has a reference to an object of that class.

• Instance variables, properties and methods that are declared with member access modifier Pri-
vate are accessible only to members of the class, such as other variables and methods.

• Every instance variable, property or method definition should be preceded by a member access
modifier.

• Private methods often are called utility methods, or helper methods, because they can be called
only by other methods of that class and are used to support the operation of those methods. 

• The creation of Public data in a class is an uncommon and dangerous programming practice.

Fig. 8.20 Class View of Fig. 8.1 and Fig. 8.2.

Purple box indicates
a method

Blue box preceded by a
lock indicates a Private

instance variable



342 Object-Based Programming Chapter 8

• Access methods can read or display data. Another common use for access methods is to test the
truth of conditions—such methods often are called predicate methods.  

• A constructor is a special method that initializes the instance variables of a class object. A class’s
constructor method is called when an object of that class is instantiated.

• It is common to have several constructors for a class; this is accomplished through method over-
loading. Normally, constructors are Public methods of a class.

• Every class in Visual Basic, including the classes from the .NET Framework, is part of a
namespace.

• If the programmer does not specify the namespace for a class, the class is placed in the default
namespace, which includes the compiled classes in the current directory.

• Instance variables can be initialized by the class’s constructor, or they can be assigned values by
the Set accessor of a property.

• Instance variables that are not explicitly initialized by the programmer are initialized by the com-
piler (primitive numeric variables are set to 0, Booleans are set to False and references are set
to Nothing).

• Classes simplify programming, because the client (or user of the class object) need only be con-
cerned with the Public operations encapsulated in the object.

• A class’s instance variables, properties and methods belong to that class’s scope. Within a class’s
scope, class members are accessible to all of that class’s methods and can be referenced simply by
name. Outside a class’s scope, class members cannot be referenced directly by name.

Fig. 8.21 Invoking the Object Browser from the development environment.



Chapter 8 Object-Based Programming 343

• If a method defines a variable that has the same name as a variable with class scope (i.e., an in-
stance variable), the class-scope variable is hidden by the method-scope variable in that method
scope.

• To allow clients to read the value of Private data, the class can provide a property definition,
which enables the user to access this Private data in a safe way.

• A property definition contains accessors, or sections of code that handle the details of modifying
and returning data.

• A property definition can contain a Set accessor, Get accessor or both. A Get accessor enables
the client to read the field’s value, and the Set accessor enables the client to modify the value.

• When an object is created, its members can be initialized by a constructor of that object’s class.

• If no constructors are defined for a class, a default constructor is provided. This constructor con-
tains no code (i.e., the constructor is empty) and takes no parameters.

• Methods, properties and constructors of a class can be overloaded. To overload a method of a
class, simply provide a separate method definition with the same name for each version of the
method. Remember that overloaded methods/properties/constructors must have different parame-
ter lists.

• Set and Get accessors can provide access to Private data while ensuring that the data does
not store invalid values.

• One form of software reuse is composition, in which a class contains member references to objects
of other classes.

Fig. 8.22 Object Browser when user selects Object from development 
environment.



344 Object-Based Programming Chapter 8

• The Me reference is implicitly used to refer to both the instance variables, properties and methods
of an object.

• The .NET Framework performs “garbage collection,” which returns memory to the system.

• When an object is no longer used in the program (i.e., there are no references to the object), the
object is marked for garbage collection. The memory for such an object then is reclaimed when
the garbage collector executes.

• Every class contains a finalizer that typically returns resources to the system. The finalizer for an
object is guaranteed to be called to perform termination housekeeping on the object just before the
garbage collector reclaims the memory for the object (called finalization).

• In certain cases, all objects of a class should share only one copy of a particular variable. Program-
mers use Shared class variables for this and other reasons.

• A Shared class variable represents class-wide information—all objects of the class share the
same piece of data.

• The declaration of a Shared member begins with the keyword Shared.

• Although Shared class variables might seem like global variables, Shared class variables have
class scope.

• Public Shared class members can be accessed through a reference to any object of that class
or via the class name and the dot operator (e.g., className.sharedMemberName).

• Private Shared class members can be accessed only through methods of the class.

• A Shared method cannot access non-Shared class members.

• Visual Basic allows programmers to create members whose values cannot change during program
execution. These members are called constants.

• To create a constant member of a class, the programmer must declare that member using either the
Const or ReadOnly keyword.

• Members declared Const must be initialized in the declaration; those declared with ReadOnly
can be initialized in the constructor, but must be initialized before they are used.

• Neither Const nor ReadOnly values can be modified once they are initialized.

• Classes normally hide their implementation details from their clients. This is called information
hiding.

• Visual Basic and the object-oriented style of programming elevate the importance of data. The pri-
mary activities of object-oriented programming in Visual Basic are the creation of data types (i.e.,
classes) and the expression of the interactions among objects of those data types.

• Visual Basic programmers concentrate on crafting new classes and reusing existing classes.

• Software reusability speeds the development of powerful, high-quality software. Rapid applica-
tion development (RAD) is of great interest today.

• Each class in the .NET Framework belongs to a specific namespace (or library) that contains a
group of related classes. Namespaces provide a mechanism for software reuse.

• It is likely that the names programmers create for classes will conflict with names that other pro-
grammers create. Namespaces help resolve this issue.

• Assembly files are either .dll (library code) or .exe (executables) files.

• The Imports statement informs the compiler what assembly files a .vb file references.

• Classes, by default, are placed in the .exe assembly file of an application unless they are com-
piled as .dll assembly files and imported into a program.



Chapter 8 Object-Based Programming 345

• If two code files are in the same assembly file, they are compiled together and can be optimized
by the compiler. Assemblies, having already been compiled separately, are only linked together
and are not optimized as such.

• Class View displays the variables, properties and methods for all classes in a project

• The Object Browser lists all classes in the Visual Basic library. Developers use the Object
Browser to learn about the functionality provided by a specific object.

TERMINOLOGY
abstract data type (ADT) derived class
access method .dll extension
action dot (.) operator 
action-oriented dynamic link library 
aggregation encapsulate 
assembly enqueue operation
assigning class objects .exe extension
base class explicit use of Me reference 
behavior (method) extensible language 
block scope finalizer 
body of a class definition first-in, first-out (FIFO) order 
built-in data type first-in, first-out data structure 
case sensitivity format control string 
class garbage collection 
class definition garbage collector 
class library GC namespace of System
class scope Get accessor of Property
classes to implement abstract data types GUI event handling 
class-scope variable hidden by method-scope  handle 

variable helper method 
Class View hide an instance variable 
“class-wide” information hide an internal data representation 
client hide implementation detail 
client of a class hiding implementation 
Collect method of System.GC implementation 
compile a class implementation detail 
composition implementation of a class hidden from its clients 
conditional expression implementation-dependent code 
consistent state information hiding 
constructor inheritance 
create a code library initial set of classes 
create classes from existing class definitions initialize implicitly to default values 
create a namespace initialize instance variables 
create a reusable class initialized by the compiler 
create a data type initializer
data abstraction initializing class objects 
data integrity insert an item into a container object 
data member instance of a built-in type 
data representation of an abstract data type instance of a user-defined type 
data structure instance variable 
dequeue operation instance variables of a class 



346 Object-Based Programming Chapter 8

SELF-REVIEW EXERCISES
8.1 Fill in the blanks in each of the following:

a) Class members are accessed via the  operator in conjunction with a reference
to an object of the class.

b) Members of a class specified as  are accessible only to methods and proper-
ties of the class.

c) A  is a method for initializing the instance variables of a class when the object
of that class is created.

d) A  accessor assigns values to instance variables of a class.
e) Methods of a class normally are made  and instance variables of a class nor-

mally are made .

instantiate (or create) objects Private Shared member
interactions among objects procedural programming language 
interface process 
internal data representation program development process 
last-in-first-out (LIFO) data structure programmer-defined type 
library Public keyword 
LIFO Public method 
linked list Public operations encapsulated in an object 
local variable of a method Public service 
mark an object for garbage collection Public Shared member 
member access modifier pushing into a stack 
memory leak queue 
Me reference rapid application development (RAD) 
method overloading reclaim memory 
namespace reference to a new object 
New (constructor) resource leak 
New keyword reusable software component 
new type service of a class 
non-Public method Set accessor of a property 
object (or instance) signature 
Object class software reuse 
Object Browser stack 
object orientation standard time format 
object passed by reference Shared class variable 
“object speak” Shared class variables have class scope 
“object think” Shared class variables save storage 
object-based programming (OBP) Shared keyword 
object-oriented Shared method cannot access non-Shared
object-oriented programming (OOP) class member 
operations of an abstract data type structured programming 
overloaded constructor termination housekeeping 
overloaded method universal-time format 
overloading user-defined type 
parameterized constructor utility method 
polymorphism validity checking 
popping off a stack variable 
predicate method waiting line
Private keyword 



Chapter 8 Object-Based Programming 347

f) A  accessor retrieves instance-variable values.
g) Keyword  introduces a class definition.
h) Members and properties of a class specified as  are accessible anywhere that

an object of the class is in scope.
i) The  keyword allocates memory dynamically for an object of a specified type

and returns a  to that type.
j) A  variable represents class-wide information.
k) The keyword  specifies that an object or variable is not modifiable after it is

initialized at runtime.
l) A method declared Shared cannot access  class members.

8.2 State whether each of the following is true or false. If false explain why.
a) All objects are passed by reference.
b) Constructors can have return values.
c) Properties must define Get and Set accessors.
d) The Me reference of an object is a reference to itself.
e) Calling finalizers on objects in a specific order guarantees that those objects are finalized

in that order.
f) A Shared member can be referenced when no object of that type exists.
g) A Shared member can be referenced through an instance of the class.
h) ReadOnly variables must be initialized either in a declaration or in the class constructor.
i) Identifier names for classes, methods and properties used in one namespace cannot be re-

peated in another namespace.
j) DLL assembly files do not contain method Main.

ANSWERS TO SELF-REVIEW EXERCISES
8.1 a) dot (.).  b) Private. c) constructor. d) Set. e) Public, Private. f) Get.   g) Class.
h) Public. i) New, reference. j) Shared. k) ReadOnly. l) non-Shared.

8.2 a) True. b) False. Constructors are not permitted to return values. c) False. Programmers can
opt not to define either one of these accessors to restrict a property’s access. d) True. e) False. The
garbage collector does not guarantee that resources are reclaimed in a specific order. f) True. g) True.
h) True.  i) False. Different namespaces can have classes, methods and properties with the same
names. j) True.

EXERCISES
8.3 Create a class named CComplex for performing arithmetic with complex numbers. Write a
program to test your class. 

Complex numbers have the form

realPart + imaginaryPart * i

where i is 

Use floating-point variables to represent the Private data of the class. Provide a constructor
method that enables an object of this class to be initialized when it is declared. Also, provide a
default constructor. The class should contain the following:

-1



348 Object-Based Programming Chapter 8

a) Addition of two CComplex numbers: The real parts are added together and the imagi-
nary parts are added together.

b) Subtraction of two CComplex numbers: The real part of the right operand is subtracted
from the real part of the left operand and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Printing of CComplex numbers in the form (a, b), where a is the real part and b is
the imaginary part.

8.4 Modify the CDay class of Fig. 8.8 to perform error checking on the initializer values for in-
stance variables mMonth, mDay and mYear. Also, provide a method NextDay to increment the day
by one. The CDay object should always remain in a consistent state. Write a program that tests the
NextDay method in a loop that prints the date during each iteration of the loop to illustrate that the
NextDay method works correctly. Be sure to test the following cases:

a) Incrementing into the next month.
b) Incrementing into the next year.

8.5 Create a class CTicTacToe that enables you to write a complete Windows application to
play the game of Tic-Tac-Toe. The class contains as Private data a 3-by-3 Integer array. The
constructor should initialize the empty board to all zeros. Allow two human players. Wherever the
first player moves, display an X in the specified Label; place an O in a Label wherever the second
player moves. Each move must be to an empty Label. Players move by clicking one of nine La-
bels. After each move determine if the game has been won, or if the game is a draw via a GameSta-
tus method. [Hint: use an enumeration constant to return the following statuses: WIN, DRAW,
CONTINUE.] If you feel ambitious, modify your program so that the computer is the opponent. Also,
allow players to specify whether they want to go first or second. If you feel exceptionally ambitious,
develop a program that plays three-dimensional Tic-Tac-Toe on a 4-by-4-by-4 board [Note: This is a
challenging project that could take many weeks of effort!]

8.6 Create a CDateFormat class with the following capabilities:
a) Output the date in multiple formats such as 

MM/DD/YYYY
June 14, 2001
DDD YYYY

b) Use overloaded constructors to create CDateFormat objects initialized with dates of
the formats in part a).

8.7 Create class CSavingsAccount. Use a Shared class variable to store the mAnnualIn-
terestRate for all account holders. Each object of the class contains a Private instance variable
mSavingsBalance indicating the amount the saver currently has on deposit. Provide method
CalculateMonthlyInterest to calculate the monthly interest by multiplying the mSav-
ingsBalance by mAnnualInterestRate divided by 12; this interest should be added to
mSavingsBalance. Provide a Shared method ModifyInterestRate that sets the mAnnu-
alInterestRate to a new value. Write a program to test class CSavingsAccount. Instantiate
two CSavingsAccount objects, saver1 and saver2, with balances of $2000.00 and $3000.00,
respectively. Set CAnnualInterestRate to 4%, then calculate the monthly interest and print the
new balances for each of the savers. Then set the mAnnualInterestRate to 5% and calculate the
next month’s interest and print the new balances for each of the savers.

8.8 Write a console application that implements a CSquare shape. Class CSquare should con-
tain an property Side for accessing Private data. Provide two constructors: one that takes no ar-
guments and another that takes a Side length as a value.



9
Object-Oriented
Programming:

Inheritance

Objectives
• To understand inheritance and software reusability.
• To understand the concepts of base classes and 

derived classes.
• To understand member access modifiers 
Protected and Friend.

• To be able to use the MyBase reference to access 
base-class members

• To understand the use of constructors and finalizers in 
base classes and derived classes.

• To present a case study that demonstrates the 
mechanics of inheritance.

Say not you know another entirely, till you have divided an 
inheritance with him.
Johann Kasper Lavater

This method is to define as the number of a class the class of 
all classes similar to the given class.
Bertrand Russell

Good as it is to inherit a library, it is better to collect one.

Augustine Birrell



350 Object-Oriented Programming: Inheritance Chapter 9

Augustine BirrellAugustine Birrell

9.1 Introduction
In this chapter, we being our discussion of object-oriented programming (OOP) by intro-
ducing one of its main features—inheritance. Inheritance is a form of software reusability
in which classes are created by absorbing an existing class’s data and behaviors and embel-
lishing them with new capabilities. Software reusability saves time during program devel-
opment. It also encourages the reuse of proven and debugged high-quality software, which
increases the likelihood that a system will be implemented effectively.

When creating a class, instead of writing completely new instance variables and
methods, the programmer can designate that the new class should inherit the class vari-
ables, properties and methods of another class. The previously defined class is called the
base class, and the new class is referred to as the derived class. (Other programming lan-
guages, such as Java, refer to the base class as the superclass, and the derived class as the
subclass.) Once created, each derived class can become the base class for future derived
classes. A derived class, to which unique class variables, properties and methods normally
are added, is often larger than its base class. Therefore, a derived class is more specific than
its base class and represents a more specialized group of objects. Typically, the derived
class contains the behaviors of its base class and additional behaviors. The direct base class
is the base class from which the derived class explicitly inherits. An indirect base class is
inherited from two or more levels up the class hierarchy. In the case of single inheritance,
a class is derived from one base class. Visual Basic does not support multiple inheritance
(which occurs when a class is derived from more than one direct base classes), as does C++.
(We explain in Chapter 10 how Visual Basic can use interfaces to realize many of the ben-
efits of multiple inheritance while avoiding the associated problems.)

Every object of a derived class is also an object of that derived class’s base class. How-
ever, base-class objects are not objects of their derived classes. For example, all cars are
vehicles, but not all vehicles are cars. As we continue our study of object-oriented program-
ming in Chapters 9 and 10, we take advantage of this relationship to perform some inter-
esting manipulations.

Experience in building software systems indicates that significant amounts of code
deal with closely related special cases. When programmers preoccupied with special cases,
the details can obscure the “big picture.” With object-oriented programming, programmers

Outline

9.1 Introduction
9.2 Base Classes and Derived Classes

9.3 Protected and Friend Members
9.4 Relationship between Base Classes and Derived Classes
9.5 Case Study: Three-Level Inheritance Hierarchy
9.6 Constructors and Finalizers in Derived Classes
9.7 Software Engineering with Inheritance

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



Chapter 9 Object-Oriented Programming: Inheritance 351

focus on the commonalities among objects in the system, rather than on the special cases.
This process is called abstraction.

We distinguish between the “is-a” relationship and the “has-a” relationship. “Is-a”
represents inheritance. In an “is-a” relationship, an object of a derived class also can be
treated as an object of its base class. For example, a car is a vehicle. By contrast, “has-a”
stands for composition (composition is discussed in Chapter 8). In a “has-a” relationship, a
class object contains one or more object references as members. For example, a car has a
steering wheel.

Derived class methods might require access to their base-class instance variables,
properties and methods. A derived class can access the non-Private members of its base
class. Base-class members that should not be accessible to properties or methods of a class
derived from that base class via inheritance are declared Private in the base class. A
derived class can effect state changes in Private base-class members, but only through
non-Private methods and properties provided in the base class and inherited into the
derived class.

Software Engineering Observation 9.1
Properties and methods of a derived class cannot directly access Private members of their
base class. 9.1

Software Engineering Observation 9.2
Hiding Private members helps test, debug and correctly modify systems. If a derived class
could access its base class’s Private members, classes that inherit from that derived class
could access that data as well. This would propagate access to what should be Private
data, and the benefits of information hiding would be lost. 9.2

One problem with inheritance is that a derived class can inherit properties and methods
it does not need or should not have. It is the class designer’s responsibility to ensure that
the capabilities provided by a class are appropriate for future derived classes. Even when a
base-class property or method is appropriate for a derived class, that derived class often
requires the property or method to perform its task in a manner specific to the derived class.
In such cases, the base-class property or method can be overridden (redefined) in the
derived class with an appropriate implementation.

New classes can inherit from abundant class libraries. Although organizations often
develop their own class libraries, they also can take advantage of other libraries available
worldwide. Someday, the vast majority of new software likely will be constructed from
standardized reusable components, as most hardware is constructed today. This will facil-
itate the development of more powerful and abundant software.

9.2 Base Classes and Derived Classes
Often, an object of one class “is an” object of another class, as well. For example, a rectan-
gle is a quadrilateral (as are squares, parallelograms and trapezoids). Thus, class CRect-
angle can be said to inherit from class CQuadrilateral. In this context, class
CQuadrilateral is a base class, and class CRectangle is a derived class. A rectangle
is a specific type of quadrilateral, but it is incorrect to claim that a quadrilateral is a rectan-
gle—the quadrilateral could be a parallelogram or some other type of CQuadrilateral.
Figure 9.1 lists several simple examples of base classes and derived classes.



352 Object-Oriented Programming: Inheritance Chapter 9

Every derived-class object “is an” object of its base class, and one base class can have
many derived classes; therefore, the set of objects represented by a base class typically is
larger than the set of objects represented by any of its derived classes. For example, the base
class CVehicle represents all vehicles, including cars, trucks, boats, bicycles and so on.
By contrast, derived-class CCar represents only a small subset of all CVehicles.

Inheritance relationships form tree-like hierarchical structures. A class exists in a hier-
archical relationship with its derived classes. Although classes can exist independently,
once they are employed in inheritance arrangements, they become affiliated with other
classes. A class becomes either a base class, supplying data and behaviors to other classes,
or a derived class, inheriting its data and behaviors from other classes.

Let us develop a simple inheritance hierarchy. A university community has thousands
of members. These members consist of employees, students and alumni. Employees are
either faculty members or staff members. Faculty members are either administrators (such
as deans and department chairpersons) or teachers. This organizational structure yields the
inheritance hierarchy, depicted in Fig. 9.2. Note that the inheritance hierarchy could con-
tain many other classes. For example, students can be graduate or undergraduate students.
Undergraduate students can be freshmen, sophomores, juniors and seniors. Each arrow in
the hierarchy represents an “is-a” relationship. For example, as we follow the arrows in this
class hierarchy, we can state, “a CEmployee is a CCommunityMember” or “a CTe-
acher is a CFaculty member.” CCommunityMember is the direct base class of
CEmployee, CStudent and CAlumnus. In addition, CCommunityMember is an
indirect base class of all the other classes in the hierarchy diagram.

Starting from the bottom of the diagram, the reader can follow the arrows and apply
the is-a relationship to the topmost base class. For example, a CAdministrator is a
CFaculty member, is a CEmployee and is a CCommunityMember. In Visual Basic,
a CAdministrator also is an Object, because all classes in Visual Basic have
Object as either a direct or indirect base class. Thus, all classes in Visual Basic are con-

Base class Derived classes

CStudent CGraduateStudent
CUndergraduateStudent

CShape CCircle
CTriangle
CRectangle

CLoan CCarLoan
CHomeImprovementLoan
CMortgageLoan

CEmployee CFacultyMember
CStaffMember

CAccount CCheckingAccount
CSavingsAccount

Fig. 9.1 Inheritance examples.



Chapter 9 Object-Oriented Programming: Inheritance 353

nected via a hierarchical relationship in which they share the eight methods defined by class
Object. We discuss some of these methods inherited from Object throughout the text.

Another inheritance hierarchy is the CShape hierarchy of Fig. 9.3. To specify that
class CTwoDimensionalShape is derived from (or inherits from) class CShape, class
CTwoDimensionalShape could be defined in Visual Basic as follows:

Class CTwoDimensionalShape
Inherits CShape

In Chapter 8, we briefly discussed has-a relationships, in which classes have as mem-
bers references to objects of other classes. Such relationships create classes by composition
of existing classes. For example, given the classes CEmployee, CBirthDate and
CTelephoneNumber, it is improper to say that a CEmployee is a CBirthDate or
that a CEmployee is a CTelephoneNumber. However, it is appropriate to say that a
CEmployee has a CBirthDate and that a CEmployee has a CTelephoneNumber.

With inheritance, Private members of a base class are not accessible directly from
that class’s derived classes, but these Private base-class members are still inherited. All
other base-class members retain their original member access when they become members
of the derived class (e.g., Public members of the base class become Public members
of the derived class, and, as we will soon see, Protected members of the base class
become Protected members of the derived class). Through these inherited base-class
members, the derived class can manipulate Private members of the base class (if these
inherited members provide such functionality in the base class).

It is possible to treat base-class objects and derived-class objects similarly; their com-
monalities are expressed in the member variables, properties and methods of the base class.
Objects of all classes derived from a common base class can be treated as objects of that base
class. In Chapter 10, we consider many examples that take advantage of this relationship.

Software Engineering Observation 9.3
Constructors never are inherited—they are specific to the class in which they are defined. 9.3

Fig. 9.2 Inheritance hierarchy for university CCommunityMembers.

CEmployee CStudent

CFaculty CStaff

CAdministrator CTeacher

CAlumnus

CCommunityMember



354 Object-Oriented Programming: Inheritance Chapter 9

9.3 Protected and Friend Members
Chapter 8 discussed Public and Private member access modifiers. A base class’s
Public members are accessible anywhere that the program has a reference to an object of
that base class or one of its derived classes. A base class’s Private members are acces-
sible only within the body of that base class. In this section, we introduce two additional
member access modifiers, Protected and Friend.

Protected access offers an intermediate level of protection between Public and
Private access. A base class’s Protected members can be accessed only in that base
class or in any classes derived from that class.

Another intermediate level of access is known as Friend access. A base class’s
Friend members can be accessed only by objects declared in the same assembly. Note that
a Friend member is accessible in any part of the assembly in which that Friend member
is declared—not only in classes derived from the base class that defines the member.

Derived-class methods normally can refer to Public, Protected and Friend
members of the base class simply by using the member names. When a derived-class
method overrides a base-class member, the base-class member can be accessed from the
derived class by preceding the base-class member name with keyword MyBase, followed
by the dot operator (.). We discuss keyword MyBase in Section 9.4.

9.4 Relationship between Base Classes and Derived Classes
In this section, we use a point-circle hierarchy to discuss the relationship between a base
class and a derived class. The point-circle relationship may seem slightly unnatural when
we discuss it in the context of a circle “is a” point; however, this mechanical example teach-
es structural inheritance, which focuses primarily on how a base class and a derived class
relate to one another. In Chapter 10, we present more “natural” inheritance examples.

We divide our discussion of the point-circle relationship into several parts. First, we
create class CPoint, which directly inherits from class System.Object and contains
as Private data an x-y coordinate pair. Then, we create class CCircle, which also
directly inherits from class System.Object and contains as Private data an x-y coor-
dinate pair (representing the location of the center of the circle) and a radius. We do not use
inheritance to create class CCircle; rather, we construct the class by writing every line of
code the class requires. Next, we create a separate CCircle2 class, which directly inherits

Fig. 9.3 Portion of a CShape class hierarchy.

CTwoDimensionalShape

CCircle CSquare

CShape

CThreeDimensionalShape

CTriangle CSphere CCube CCylinder



Chapter 9 Object-Oriented Programming: Inheritance 355

from class CPoint (i.e., class CCircle2 “is a” CPoint but also contains a radius) and
attempts to use the CPoint Private members—this results in compilation errors,
because the derived class does not have access to the base-class’s Private data. We then
show how by declaring CPoint’s data as Protected, a separate CCircle3 class that
also inherits from class CPoint can access that data. Both the inherited and non-inherited
CCircle classes contain identical functionality, but we show how the inherited
CCircle3 class is easier to create and manage. After discussing the merits of using Pro-
tected data, we set the CPoint data back to Private, then show how a separate
CCircle4 class (which also inherits from class CPoint) can use CPoint methods to
manipulate CPoint’s Private data.

 Let us first examine the CPoint (Fig. 9.4) class definition. The Public services of
class CPoint include two CPoint constructors (lines 11–25), properties X and Y (lines
28–51) and method ToString (lines 54–56). The instance variables mX and mY of
CPoint are specified as Private (line 8), so objects of other classes cannot access mX
and mY directly. Technically, even if CPoint’s variables mX and mY were made Public,
CPoint can never maintain an inconsistent state, because the x-y coordinate plane in infi-
nite in both directions, so mX and mY can hold any Integer value. However, declaring
this data as Private, while providing non-Private properties to manipulate and per-
form validation checking on this data, enforces good software engineering.

We mentioned in Section 9.2 that class constructors are never inherited. Therefore,
Class CPoint does not inherit class Object’s constructor. However, class CPoint’s
constructors (lines 11–25) call class Object’s constructor implicitly. In fact, the first task
undertaken by any derived-class constructor is to call its direct base class’s constructor,
either implicitly or explicitly. (The syntax for calling a base-class constructor is discussed
later in this section.) If the code does not include an explicit call to the base-class con-
structor, an implicit call is made to the base class’s default (no-argument) constructor. The
comments in lines 13 and 22 indicate where the calls to the base-class Object’s default
constructor occur.  

1 ' Fig. 9.4: Point.vb
2 ' CPoint class represents an x-y coordinate pair.
3
4 Public Class CPoint
5    ' implicitly Inherits Object
6
7  ' point coordinate
8  Private mX, mY As Integer
9

10  ' default constructor
11   Public Sub New()
12
13   ' implicit call to Object constructor occurs here
14       X = 0
15       Y = 0
16  End Sub ' New
17

Fig. 9.4 CPoint class represents an x-y coordinate pair (part 1 of 2).



356 Object-Oriented Programming: Inheritance Chapter 9

Note that method ToString (lines 54–56) contains the keyword Overrides in its
declaration. Every class in Visual Basic (such as class CPoint) inherits either directly or
indirectly from class System.Object, which is the root of the class hierarchy. As we
mentioned previously, this means that every class inherits the eight methods defined by
class Object. One of these methods is ToString, which returns a String containing
the object’s type preceded by its namespace—this method obtains an object’s String rep-
resentation and sometimes is called implicitly by the program (such as when an object is
concatenated to a String). Method ToString of class CPoint overrides the original
ToString from class Object—when invoked, method ToString of class CPoint

18    ' constructor
19    Public Sub New(ByVal xValue As Integer, _
20       ByVal yValue As Integer)
21
22       ' implicit call to Object constructor occurs here
23       X = xValue
24       Y = yValue
25  End Sub ' New
26
27    ' property X
28   Public Property X() As Integer
29
30       Get
31          Return mX
32       End Get
33
34       Set(ByVal xValue As Integer)
35          mX = xValue ' no need for validation
36       End Set
37
38    End Property ' X
39
40 ' property Y 
41 Public Property Y() As Integer
42
43      Get
44          Return mY
45       End Get
46
47       Set(ByVal yValue As Integer)
48          mY = yValue ' no need for validation
49       End Set
50
51    End Property ' Y
52
53  ' return String representation of CPoint
54    Public Overrides Function ToString() As String
55       Return "[" & mX & ", " & mY & "]"
56   End Function ' ToString
57
58 End Class ' CPoint

Fig. 9.4 CPoint class represents an x-y coordinate pair (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 357

returns a String containing an ordered pair of the values mX and mY (line 55), instead of
returning a String containing the object’s class and namespace.

Software Engineering Observation 9.4
The Visual Basic compiler sets the base class of a derived class to Object when the pro-
gram does not specify a base class explicitly. 9.4

In Visual Basic, a base-class method must be declared Overridable if that method
is to be overridden in a derived class. Method ToString of class Object is declared
Overridable, which enables derived class CPoint to override this method. To view
the method header for ToString, select Help > Index..., and enter
Object.ToString method in the search textbox. The page displayed contains a
description of method ToString, which includes the following header:

Overridable Public Function ToString() As String

Keyword Overridable allows programmers to specify those methods that a derived class
can override—a method that has not been declared Overridable cannot be overridden.
We use this later in this section to enable certain methods in our base classes to be overridden.

Common Programming Error 9.1
A derived class attempting to override (using keyword Overrides) a method that has not
been declared Overridable is a syntax error. 9.1

Module modPointTest (Fig. 9.5) tests class CPoint. Line 12 instantiates an object
of class CPoint and assigns 72 as the x-coordinate value and 115 as the y-coordinate value.
Lines 15–16 use properties X and Y to retrieve these values, then append the values to
String output. Lines 18–19 change the values of properties X and Y, and lines 22–23 call
CPoint’s ToString method to obtain the CPoint’s String representation.  

1 ' Fig. 9.5: PointTest.vb
2 ' Testing class CPoint.
3
4 Imports System.Windows.Forms
5
6 Module modPointTest
7
8 Sub Main()
9       Dim point As CPoint

10       Dim output As String
11
12       point = New CPoint(72, 115) ' instantiate CPoint object
13
14       ' display point coordinates via X and Y properties
15       output = "X coordinate is " & point.X & _
16          vbCrLf & "Y coordinate is " & point.Y
17
18       point.X = 10 ' set x-coordinate via X property
19       point.Y = 10 ' set y-coordinate via Y property
20

Fig. 9.5 modPointTest demonstrates class CPoint functionality (part 1 of 2).



358 Object-Oriented Programming: Inheritance Chapter 9

We now discuss the second part of our introduction to inheritance by creating and
testing class CCircle (Fig. 9.6), which directly inherits from class System.Object
and represents an x-y coordinate pair (representing the center of the circle) and a radius.
Lines 7–8 declare the instance variables mX, mY and mRadius as Private data. The
Public services of class CCircle include two CCircle constructors (lines 11–27),
properties X, Y and Radius (lines 30–70), methods Diameter (lines 73–75), Circum-
ference (lines 78–80), Area (lines 83–85) and ToString (lines 88–91). These prop-
erties and methods encapsulate all necessary features (i.e., the “analytic geometry”) of a
circle; in the next section, we show how this encapsulation enables us to reuse and extend
this class.  

21       ' display new point value
22       output &= vbCrLf & vbCrLf & _
23          "The new location of point is " & point.ToString()
24
25       MessageBox.Show(output, "Demonstrating Class Point")
26 End Sub ' Main
27
28 End Module ' modPointTest

1 ' Fig. 9.6: Circle.vb
2 ' CCircle class contains x-y coordinate pair and radius.
3
4 Public Class CCircle
5
6    ' coordinate of center of CCircle
7 Private mX, mY As Integer
8 Private mRadius As Double ' CCircle's radius
9

10    ' default constructor
11 Public Sub New()
12
13       ' implicit call to Object constructor occurs here
14       X = 0
15       Y = 0
16       Radius = 0
17 End Sub ' New
18

Fig. 9.6 CCircle class contains an x-y coordinate and a radius (part 1 of 3).

Fig. 9.5 modPointTest demonstrates class CPoint functionality (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 359

19    ' constructor
20 Public Sub New(ByVal xValue As Integer, _
21       ByVal yValue As Integer, ByVal radiusValue As Double)
22
23       ' implicit call to Object constructor occurs here
24       X = xValue
25       Y = yValue
26       Radius = radiusValue
27 End Sub ' New
28
29    ' property X
30 Public Property X() As Integer
31
32       Get
33          Return mX
34       End Get
35
36       Set(ByVal xValue As Integer)
37          mX = xValue ' no need for validation
38       End Set
39
40 End Property ' X
41
42    ' property Y 
43 Public Property Y() As Integer
44
45       Get
46          Return mY
47       End Get
48
49       Set(ByVal yValue As Integer)
50          mY = yValue ' no need for validation
51       End Set
52
53 End Property ' Y
54
55    ' property Radius
56 Public Property Radius() As Double
57
58       Get
59          Return mRadius
60       End Get
61
62       Set(ByVal radiusValue As Double)
63
64          If radiusValue > 0
65             mRadius = radiusValue
66          End If
67
68       End Set
69
70 End Property ' Radius
71

Fig. 9.6 CCircle class contains an x-y coordinate and a radius (part 2 of 3).



360 Object-Oriented Programming: Inheritance Chapter 9

Module modCircleTest (Fig. 9.7) tests class CCircle. Line 12 instantiates an
object of class CCircle, assigning 37 as the x-coordinate value, 43 as the y-coordinate
value and 2.5 as the radius value. Lines 15–17 use properties X, Y and Radius to retrieve
these values, then concatenate the values to String output. Lines 20–22 use
CCircle’s X, Y and Radius properties to change the x-y coordinate pair value and radius
value, respectively. Property Radius ensures that member variable mRadius cannot be
assigned a negative value. Line 27 calls CCircle’s ToString method to obtain the
CCircle’s String representation, and lines 31–38 call CCircle’s Diameter, Cir-
cumference and Area methods. 

After writing all the code for class CCircle (Fig. 9.6), note that a major portion of
the code in this class is similar, if not identical, to much of the code in class CPoint. For
example, the declaration in CCircle of Private variables mX and mY and properties X
and Y are identical to those of class CPoint. In addition, the class CCircle constructors
and method ToString are almost identical to those of class CPoint, except that they
also supply mRadius information. In fact, the only other additions to class CCircle are
Private member variable mRadius, property Radius and methods Diameter,
Circumference and Area.

72    ' calculate CCircle diameter
73 Public Function Diameter() As Double
74       Return mRadius * 2
75 End Function ' Diameter
76
77    ' calculate CCircle circumference
78 Public Function Circumference() As Double
79       Return Math.PI * Diameter()
80 End Function ' Circumference
81
82    ' calculate CCircle area
83 Public Function Area() As Double
84       Return Math.PI * mRadius ^ 2
85 End Function ' Area
86
87    ' return String representation of CCircle 
88 Public Overrides Function ToString() As String
89       Return "Center = " & "[" & mX & ", " & mY & "]" & _
90          "; Radius = " & mRadius
91 End Function ' ToString
92
93 End Class ' CCircle

1 ' Fig. 9.7: CircleTest.vb
2 ' Testing class CCircle.
3
4 Imports System.Windows.Forms
5

Fig. 9.7 modCircleTest demonstrates class CCircle functionality
 (part 1 of 2).

Fig. 9.6 CCircle class contains an x-y coordinate and a radius (part 3 of 3).



Chapter 9 Object-Oriented Programming: Inheritance 361

6 Module modCircleTest
7
8 Sub Main()
9       Dim circle As CCircle

10       Dim output As String
11
12       circle = New CCircle(37, 43, 2.5) ' instantiate CCircle
13
14       ' get CCircle's initial x-y coordinates and radius
15       output = "X coordinate is " & circle.X & vbCrLf & _
16          "Y coordinate is " & circle.Y & vbCrLf & "Radius is " & _
17          circle.Radius
18
19       ' set CCircle's x-y coordinates and radius to new values
20       circle.X = 2
21       circle.Y = 2
22       circle.Radius = 4.25
23
24       ' display CCircle's String representation
25       output &= vbCrLf & vbCrLf & _
26          "The new location and radius of circle are " & _
27          vbCrLf & circle.ToString() & vbCrLf
28
29       ' display CCircle's diameter
30       output &= "Diameter is " & _
31          String.Format("{0:F}", circle.Diameter()) & vbCrLf
32
33       ' display CCircle's circumference
34       output &= "Circumference is " & _
35          String.Format("{0:F}", circle.Circumference()) & vbCrLf
36
37       ' display CCircle's area
38       output &= "Area is " & String.Format("{0:F}", circle.Area())
39
40       MessageBox.Show(output, "Demonstrating Class CCircle")
41 End Sub ' Main
42
43 End Module ' modCircleTest

Fig. 9.7 modCircleTest demonstrates class CCircle functionality
 (part 2 of 2).



362 Object-Oriented Programming: Inheritance Chapter 9

It appears that we literally copied code from class CPoint, pasted this code in the
code from class CCircle, then modified class CCircle to include a radius. This “copy-
and-paste” approach is often error-prone and time-consuming. Worse yet, it can result in
many physical copies of the code existing throughout a system, creating a code-mainte-
nance “nightmare.”

In the next examples, we use a more elegant approach emphasizing the benefits of
using inheritance. Now, we create and test a class CCircle2 (Fig. 9.8) that inherits vari-
ables mX and mY and properties X and Y from class CPoint (Fig. 9.4). This class
CCircle2 “is a” CPoint, but also contains mRadius (line 7). The Inherits key-
word in the class declaration (line 5) indicates inheritance. As a derived class, CCircle2
inherits all the members of class CPoint, except for the constructors. Thus, the Public
services to CCircle2 include the two CCircle2 constructors; the Public methods
inherited from class CPoint; property Radius; and the CCircle2 methods Diam-
eter, Circumference, Area and ToString. We declare method Area as Over-
ridable, so that derived class (such as class CCylinder, as we will see in Section 9.5)
can override this method to provide a specific implementation. 

1 ' Fig. 9.8: Circle2.vb
2 ' CCircle2 class that inherits from class CPoint.
3
4 Public Class CCircle2
5  Inherits CPoint ' CCircle2 Inherits from class CPoint
6
7  Private mRadius As Double ' CCircle2's radius
8
9  ' default constructor

10   Public Sub New()
11
12       ' implicit call to CPoint constructor occurs here
13       Radius = 0
14 End Sub ' New
15
16   ' constructor
17  Public Sub New(ByVal xValue As Integer, _
18       ByVal yValue As Integer, ByVal radiusValue As Double)
19
20       ' implicit call to CPoint constructor occurs here
21       mX = xValue
22       mY = yValue
23       Radius = radiusValue
24  End Sub ' New
25
26 ' property Radius
27  Public Property Radius() As Double
28
29   Get
30          Return mRadius
31       End Get
32

Fig. 9.8 CCircle2 class that inherits from class CPoint (part 1 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 363

Lines 12 and 20 in the CCircle2 constructors (lines 10–24) invoke the default
CPoint2 constructor implicitly to initialize the base-class portion (variables mX and mY,
inherited from class CPoint) of a CCircle2 object to 0. However, because the param-
eterized constructor (lines 17–24) should set the x-y coordinate to a specific value, lines 21–
22 attempt to assign argument values to mX and mY directly. Even though lines 21–22
attempt to set mX and mY values explicitly, line 20 first calls the CPoint default con-
structor to initialize these variables to their default values. The compiler generates a syntax
error for lines 21–22 (and line 60, where CCircle2’s method ToString attempts to use

33       Set(ByVal radiusValue As Double)
34
35          If radiusValue > 0
36             mRadius = radiusValue
37          End If
38
39       End Set
40
41    End Property ' Radius
42
43    ' calculate CCircle2 diameter
44 Public Function Diameter() As Double
45       Return mRadius * 2
46 End Function ' Diameter
47
48    ' calculate CCircle2 circumference
49 Public Function Circumference() As Double
50       Return Math.PI * Diameter()
51 End Function ' Circumference
52
53    ' calculate CCircle2 area
54 Public Function Area() As Double
55       Return Math.PI * mRadius ^ 2
56 End Function ' Area
57
58  ' return String representation of CCircle2
59    Public Overrides Function ToString() As String
60       Return "Center = " & "[" & mX & ", " & mY & "]" & _ 
61          "; Radius = " & mRadius
62   End Function ' ToString
63
64 End Class ' CCircle2

Fig. 9.8 CCircle2 class that inherits from class CPoint (part 2 of 2).



364 Object-Oriented Programming: Inheritance Chapter 9

the values of mX and mY directly), because the derived class CCircle2 is not allowed to
access the base class CPoint’s Private members mX and mY. Visual Basic rigidly
enforces restriction on accessing Private data members, so that even derived classes
(i.e,. which are closely related to their base class) cannot access base-class Private data.

To enable class CCircle2 to access CPoint member variables mX and mY directly,
we declare those variables as Protected. As we discussed in Section 9.3, a base class’s
Protected members can be accessed only in that base class or in any classes derived
from that class. Class CPoint2 (Fig. 9.9) modifies class CPoint (Fig. 9.4) to declare
variables mX and mY as Protected (line 8) instead of Private.

1 ' Fig. 9.9: Point2.vb
2 ' CPoint2 class contains an x-y coordinate pair as Protected data.
3
4 Public Class CPoint2
5    ' implicitly Inherits Object
6
7  ' point coordinate
8  Protected mX, mY As Integer
9

10  ' default constructor
11   Public Sub New()
12
13   ' implicit call to Object constructor occurs here
14       X = 0
15       Y = 0
16  End Sub ' New
17
18    ' constructor
19    Public Sub New(ByVal xValue As Integer, _
20       ByVal yValue As Integer)
21
22       ' implicit call to Object constructor occurs here
23       X = xValue
24       Y = yValue
25  End Sub ' New
26
27    ' property X
28   Public Property X() As Integer
29
30       Get
31          Return mX
32       End Get
33
34       Set(ByVal xValue As Integer)
35          mX = xValue ' no need for validation
36       End Set
37
38    End Property ' X
39

Fig. 9.9 CPoint2 class represents an x-y coordinate pair as Protected data 
(part 1 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 365

Class CCircle3 (Fig. 9.10) modifies class CCircle2 (Fig. 9.4) to inherit from
class CPoint2 rather than inherit from class CPoint. Because class CCircle3 is a
class derived from class CPoint2, class CCircle3 can access class CPoint2’s Pro-
tected member variables mX and mY directly, and the compiler does not generate errors
when compiling Fig. 9.10.

Module modCircleTest3 (Fig. 9.11) performs identical tests on class CCircle3
as module modCircleTest (Fig. 9.7) performed on class CCircle (Fig. 9.6). Note that
the outputs of the two programs are identical. We created class CCircle without using
inheritance and created class CCircle3 using inheritance; however, both classes provide
the same functionality. However, observe that the code listing for class CCircle3, which
is 64 lines, is considerably shorter than the code listing for class CCircle, which is 93
lines, because class CCircle3 absorbs part of its functionality from CPoint2, whereas
class CCircle does not. 

In the previous example, we declared the base class instance variables as Pro-
tected, so that a derived class could modify their values directly. The use of Pro-
tected variables allows for a slight increase in performance, because we avoid incurring
the overhead of a method call to a property’s Set or Get accessor. However, in most
Visual Basic application, in which user interaction comprises a large part of the execution
time, the optimization offered through the use of Protected variables is negligible. 

40 ' property Y 
41 Public Property Y() As Integer
42
43      Get
44          Return mY
45       End Get
46
47       Set(ByVal yValue As Integer)
48          mY = yValue ' no need for validation
49       End Set
50
51    End Property ' Y
52
53  ' return String representation of CPoint2
54    Public Overrides Function ToString() As String
55       Return "[" & mX & ", " & mY & "]"
56   End Function ' ToString
57
58 End Class ' CPoint2

1 ' Fig. 9.10: Circle3.vb
2 ' CCircle3 class that inherits from class CPoint2.
3
4 Public Class CCircle3
5  Inherits CPoint2 ' CCircle3 Inherits from class CPoint2

Fig. 9.10 CCircle3 class that inherits from class CPoint2 (part 1 of 3).

Fig. 9.9 CPoint2 class represents an x-y coordinate pair as Protected data 
(part 2 of 2).



366 Object-Oriented Programming: Inheritance Chapter 9

6
7  Private mRadius As Double ' CCircle3's radius
8
9  ' default constructor

10   Public Sub New()
11
12       ' implicit call to CPoint constructor occurs here
13       Radius = 0
14 End Sub ' New
15
16   ' constructor
17  Public Sub New(ByVal xValue As Integer, _
18       ByVal yValue As Integer, ByVal radiusValue As Double)
19
20       ' implicit call to CPoint2 constructor occurs here
21       mX = xValue
22       mY = yValue
23       Radius = radiusValue
24  End Sub ' New
25
26 ' property Radius
27  Public Property Radius() As Double
28
29   Get
30          Return mRadius
31       End Get
32
33       Set(ByVal radiusValue As Double)
34
35          If radiusValue > 0
36             mRadius = radiusValue
37          End If
38
39       End Set
40
41    End Property ' Radius
42
43    ' calculate CCircle3 diameter
44 Public Function Diameter() As Double
45       Return mRadius * 2
46 End Function ' Diameter
47
48    ' calculate CCircle3 circumference
49 Public Function Circumference() As Double
50       Return Math.PI * Diameter()
51 End Function ' Circumference
52
53    ' calculate CCircle3 area
54 Public Overridable Function Area() As Double
55       Return Math.PI * mRadius ^ 2
56 End Function ' Area
57

Fig. 9.10 CCircle3 class that inherits from class CPoint2 (part 2 of 3).



Chapter 9 Object-Oriented Programming: Inheritance 367

Unfortunately, the inclusion of Protected instance variables often yields two major
problems. First, the derived-class object does not have to use a property to set the value of
the base-class’s Protected data. Therefore, a derived-class object can assign an illegal
value to the Protected data, thus leaving that object in an inconsistent state. For
example, if we declare CCircle3’s variable mRadius as Protected, a derived-class
object (e.g., CCylinder), can assign a negative value to mRadius. The second problem
to using Protected data is that derived class methods are more likely to be written to
depend on base-class implementation. In practice, derived classes should depend only on
the base-class services (i.e., non-Private methods and properties) and not depend on
base-class implementation. With Protected data in the base class, if the base-class
implementation changes, we may need to modify all derived classes of that base class. For
example, if we change the names of variables mX and mY to mXCoordinate and mYCo-
ordinate, we must do so for all occurrences in which a derived class references these
variables directly. If this happens, the base class is considered fragile, or brittle. The base
class should be able to change its implementation freely, while providing the same services
to derived classes. (Of course, if the base class changes its services, we must reimplement
our derived classes, but good object-oriented design attempts to prevent this.)  

Software Engineering Observation 9.5
The most appropriate time to use Protected access modifier is when a base class should
provide a service only to its derived classes (i.e., should not provide the service to other cli-
ents). In this case, declare the base-class property or method as Protected. 9.5

58  ' return String representation of CCircle3
59    Public Overrides Function ToString() As String
60       Return "Center = " & "[" & mX & ", " & mY & "]" & _ 
61          "; Radius = " & mRadius
62   End Function ' ToString
63
64 End Class ' CCircle3

Fig. 9.10 CCircle3 class that inherits from class CPoint2 (part 3 of 3).

1 ' Fig. 9.11: CircleTest3.vb
2 ' Testing class CCircle3.
3
4 Imports System.Windows.Forms
5
6 Module modCircleTest3
7
8 Sub Main()
9       Dim circle As CCircle3

10       Dim output As String
11
12       circle = New CCircle3(37, 43, 2.5) ' instantiate CCircle3
13

Fig. 9.11 modCircleTest3 demonstrates class CCircle3 functionality
 (part 1 of 2).



368 Object-Oriented Programming: Inheritance Chapter 9

Software Engineering Observation 9.6
Declaring base-class instance variables Private (as opposed to declaring them Pro-
tected) helps programmers change base-class implementation without having to change
derived-class implementation. 9.6

14       ' get CCircle3's initial x-y coordinates and radius
15       output = "X coordinate is " & circle.X & vbCrLf & _
16          "Y coordinate is " & circle.Y & vbCrLf & "Radius is " & _
17          circle.Radius
18
19       ' set CCircle3's x-y coordinates and radius to new values
20       circle.X = 2
21       circle.Y = 2
22       circle.Radius = 4.25
23
24       ' display CCircle3's String representation
25       output &= vbCrLf & vbCrLf & _
26          "The new location and radius of circle are " & _
27          vbCrLf & circle.ToString() & vbCrLf
28
29       ' display CCircle3's diameter
30       output &= "Diameter is " & _
31          String.Format("{0:F}", circle.Diameter()) & vbCrLf
32
33       ' display CCircle3's circumference
34       output &= "Circumference is " & _
35          String.Format("{0:F}", circle.Circumference()) & vbCrLf
36
37       ' display CCircle3's area
38       output &= "Area is " & String.Format("{0:F}", circle.Area())
39
40       MessageBox.Show(output, "Demonstrating Class CCircle3")
41 End Sub ' Main
42
43 End Module ' modCircleTest3

Fig. 9.11 modCircleTest3 demonstrates class CCircle3 functionality
 (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 369

Testing and Debugging Tip 9.1
When possible, avoid including Protected data in a base class. Rather, include non-
Private properties and methods that access Private data, ensuring that the object
maintains a consistent state. 9.1

We reexamine our point-circle hierarchy example once more; this time, attempting to
use the best software engineering technique. We use CPoint (Fig. 9.4), which declares
variables mX and mY as Private, and we show how derived class CCircle4 (Fig. 9.12)
can invoke base-class methods and properties to manipulate these variables. 

1 ' Fig. 9.12: Circle4.vb
2 ' CCircle4 class that inherits from class CPoint.
3
4 Public Class CCircle4
5  Inherits CPoint ' CCircle4 Inherits from class CPoint
6
7  Private mRadius As Double
8
9  ' default constructor

10   Public Sub New()
11
12       ' implicit call to CPoint constructor occurs here
13       Radius = 0
14 End Sub ' New
15
16   ' constructor
17  Public Sub New(ByVal xValue As Integer, _
18       ByVal yValue As Integer, ByVal radiusValue As Double)
19
20       ' use MyBase reference to CPoint constructor explicitly
21     MyBase.New(xValue, yValue)
22       Radius = radiusValue
23  End Sub ' New
24
25 ' property Radius
26  Public Property Radius() As Double
27
28   Get
29          Return mRadius
30       End Get
31
32       Set(ByVal radiusValue As Double)
33
34          If radiusValue > 0
35             mRadius = radiusValue
36          End If
37
38       End Set
39
40    End Property ' Radius

Fig. 9.12 CCircle4 class that inherits from class CPoint, which does not provide 
Protected data (part 1 of 2).



370 Object-Oriented Programming: Inheritance Chapter 9

For the purpose of this example, to demonstrate both explicit and implicit calls to base-
class constructors, we include a second constructor that calls the base-class constructor
explicitly. Lines 17–23 declare the CCircle4 constructor that invokes the second
CPoint constructor explicitly using the base-class constructor-call syntax (i.e., reference
MyBase followed by a set of parentheses containing the arguments to the base-class con-
structor). In this case, xValue and yValue are passed to initialize the base-class mem-
bers mX and mY. The insertion of the MyBase reference followed by the dot operator
accesses the base-class version of that method—in this constructor, MyBase.New invokes
the CPoint constructor explicitly (line 21). By making this explicit call, we can initialize
mX and mY to specific values, rather than to 0. When calling the base-class constructor
explicitly, the call to the base-class constructor must be the first statement in the derived-
class-constructor definition.

Common Programming Error 9.2
It is a syntax error if a derived class uses MyBase to call its base-class constructor, and the
arguments do not match exactly the parameters specified in one of the base-class constructor
definitions. 9.2

Class CCircle4’s ToString method (line 58–63) overrides class CPoint’s
ToString method (lines 54–56 of Fig. 9.4). As we discussed earlier, overriding this
method is possible, because method ToString of class System.Object (class
CPoint’s base class) is declared Overridable. Method ToString of class
CCircle4 displays the Private instance variables mX and mY of class CPoint by

41
42    ' calculate CCircle diameter
43 Public Function Diameter() As Double
44       Return mRadius * 2
45 End Function ' Diameter
46
47    ' calculate CCircle4 circumference
48 Public Function Circumference() As Double
49       Return Math.PI * Diameter()
50 End Function ' Circumference
51
52    ' calculate CCircle4 area
53 Public Overridable Function Area() As Double
54       Return Math.PI * mRadius ^ 2
55 End Function ' Area
56
57  ' return String representation of CCircle4
58    Public Overrides Function ToString() As String
59
60       ' use MyBase reference to return CPoint String representation
61   Return "Center= " & MyBase.ToString() & _
62          "; Radius = " & mRadius
63   End Function ' ToString
64
65 End Class ' CCircle4

Fig. 9.12 CCircle4 class that inherits from class CPoint, which does not provide 
Protected data (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 371

calling the base class’s ToString method (in this case, CPoint’s ToString method).
The call is made in line 61 via the expression MyBase.ToString and causes the values
of mX and mY to become part of the CCircle4’s String representation. Using this
approach is a good software engineering practice: Recall that Software Engineering Obser-
vation 8.11 stated that, if an object’s method performs the actions needed by another object,
call that method rather than duplicating its code body. Duplicate code creates code-main-
tenance problems. By having CCircle4’s ToString method use the formatting pro-
vided by CPoint’s ToString method, we prevent the need to duplicate code. Also,
CPoint’s ToString method performs part of the task of CCircle4’s ToString
method, so we call CPoint’s ToString method from class CCircle4 with the expres-
sion MyBase.ToString.

Software Engineering Observation 9.7
A redefinition in a derived class of a base-class method that uses a different signature than
that of the base-class method is method overloading rather than method overriding. 9.7

Software Engineering Observation 9.8
Although method ToString could be overridden to perform several actions that do not
pertain to returning a String, the general understanding in the Visual Basic .NET com-
munity is that method ToString should be overridden to obtain an object’s String rep-
resentation. 9.8

Good Programming Practice 9.1
Each class should override method ToString, so that it returns useful information about
objects of that class. 9.1

Module modCircleTest4 (Fig. 9.13) performs identical manipulations on class
CCircle4 as did modules modCircleTest (Fig. 9.7) and modCircleTest3
(Fig. 9.11). Note that the outputs of all three modules are identical. Therefore, although
each “circle” class appears to behave identically, class CCircle4 is the most properly
engineered. Using inheritance, we have constructed a class that has a strong commitment
to Private data, in which a change in CPoint’s implementation does not affect class
CCircle4.

1 ' Fig. 9.13: CircleTest4.vb
2 ' Testing class CCircle4.
3
4 Imports System.Windows.Forms
5
6 Module modCircleTest4
7
8 Sub Main()
9       Dim circle As CCircle4

10       Dim output As String
11
12       circle = New CCircle4(37, 43, 2.5) ' instantiate CCircle4
13

Fig. 9.13 modCircleTest4 demonstrates class CCircle4 functionality
 (part 1 of 2).



372 Object-Oriented Programming: Inheritance Chapter 9

9.5 Case Study: Three-Level Inheritance Hierarchy
Let us consider a substantial inheritance example, in which we study a point-circle-cylinder
hierarchy. In Section 9.4, we developed classes CPoint (Fig. 9.4) and CCircle4
(Fig. 9.12). Now, we present an example in which we derive class CCylinder from class
CCircle4.

14       ' get CCircle4's initial x-y coordinates and radius
15       output = "X coordinate is " & circle.X & vbCrLf & _
16          "Y coordinate is " & circle.Y & vbCrLf & "Radius is " & _
17          circle.Radius
18
19       ' set CCircle4's x-y coordinates and radius to new values
20       circle.X = 2
21       circle.Y = 2
22       circle.Radius = 4.25
23
24       ' display CCircle4's String representation
25       output &= vbCrLf & vbCrLf & _
26          "The new location and radius of circle are " & _
27          vbCrLf & circle.ToString() & vbCrLf
28
29       ' display CCircle4's diameter
30       output &= "Diameter is " & _
31          String.Format("{0:F}", circle.Diameter()) & vbCrLf
32
33       ' display CCircle4's circumference
34       output &= "Circumference is " & _
35          String.Format("{0:F}", circle.Circumference()) & vbCrLf
36
37       ' display CCircle4's area
38       output &= "Area is " & String.Format("{0:F}", circle.Area())
39
40       MessageBox.Show(output, "Demonstrating Class CCircle4")
41 End Sub ' Main
42
43 End Module ' modCircleTest4

Fig. 9.13 modCircleTest4 demonstrates class CCircle4 functionality
 (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 373

The first class that we use in our case study is class CPoint (Fig. 9.4). We declared
CPoint’s instance variables as Private. Class CPoint also contains properties X and
Y for accessing mX and mY and method ToString (which CPoint overrides from class
Object) for obtaining a String representation of the x-y coordinate pair.

We also created class CCircle4 (Fig. 9.12), which inherits from class CPoint.
Class CCircle4 contains the CPoint functionality, in addition to providing property
Radius, which ensures that the mRadius member variable cannot hold a negative value,
and methods Diameter, Circumference, Area and ToString. Recall that method
Area was declared Overridable (line 53). As we discussed in Section 9.4, this key-
word enables derived classes to override a base-class method. Derived classes of class
CCircle4 (such as class CCylinder, which we introduce momentarily) can override
these methods and provide specific implementations. A circle has an area that is calculated
by the equation

πr2

in which r represents the circle’s radius. However, a cylinder has a surface area that is cal-
culated by a different equation:

(2πr2) + (2πrh)

in which r represents the cylinder’s radius and h represents the cylinder’s height. Therefore,
class CCylinder must override method Area to include this calculation, so we declared
class CCircle4’s method Area as Overridable.

Figure 9.14 presents class CCylinder, which inherits from class CCircle4 (line
5). Class CCylinder’s Public services include the inherited CCircle4 methods
Diameter, Circumference, Area and ToString; the inherited CCircle4 prop-
erty Radius; the indirectly inherited CPoint properties X and Y; the CCylinder con-
structor, property Height and method Volume. Method Area (lines 43–45) overrides
method Area of class CCircle4. Note that, if class CCylinder were to attempt to
override CCircle4’s methods Diameter and Circumference, syntax errors would
occur, because class CCircle4 did not declare these methods Overridable. Method
ToString (lines 53–55) overrides method ToString of class CCircle4 to obtain a
String representation for the cylinder. Class CCylinder also includes method
Volume (lines 48–50) to calculate the cylinder’s volume. Because we do not declare
method Volume as Overridable, no derived class of class CCylinder can override
this method.   

1 ' Fig. 9.14: Cylinder.vb
2 ' CCylinder class inherits from class CCircle4.
3
4 Public Class CCylinder
5  Inherits CCircle4
6
7  Protected mHeight As Double

Fig. 9.14 CCylinder class inherits from class CCircle4 and Overrides
method Area (part 1 of 2).



374 Object-Oriented Programming: Inheritance Chapter 9

8
9   ' default constructor

10   Public Sub New()
11       Height = 0
12    End Sub ' New
13
14  ' four-argument constructor
15   Public Sub New(ByVal xValue As Integer, _ 
16       ByVal yValue As Integer, ByVal radiusValue As Double, _
17       ByVal heightValue As Double)
18
19     ' explicit call to CCircle4 constructor
20       MyBase.New(xValue, yValue, radiusValue)
21       Height = heightValue ' set CCylinder height
22  End Sub ' New
23
24    ' property Height
25  Public Property Height() As Double
26
27       Get
28          Return mHeight
29       End Get
30
31       ' set CCylinder height if argument value is positive
32   Set(ByVal heightValue As Double)
33
34          If heightValue >= 0 Then
35             mHeight = heightValue
36          End If
37
38       End Set
39
40    End Property ' Height
41
42  ' override method Area to calculate CCylinder area
43  Public Overrides Function Area() As Double
44       Return 2 * MyBase.Area + MyBase.Circumference * mHeight
45   End Function ' Area
46
47  ' calculate CCylinder volume
48   Public Function Volume() As Double
49    Return MyBase.Area * mHeight
50    End Function ' Volume
51
52  ' convert CCylinder to String
53    Public Overrides Function ToString() As String
54     Return MyBase.ToString() & "; Height = " & mHeight
55    End Function ' ToString
56
57 End Class ' CCylinder

Fig. 9.14 CCylinder class inherits from class CCircle4 and Overrides
method Area (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 375

Figure 9.15 is a modCylinderTest application that tests the CCylinder class.
Line 11 instantiates an object of class CCylinder. Lines 15–17 use properties X, Y,
Radius and Height to obtain information about the CCylinder object, because mod-
CylinderTest cannot reference the Private data of class CCylinder directly.
Lines 20–23 use properties X, Y, Height and Radius to reset the CCylinder’s x-y
coordinates (we assume the cylinder’s x-y coordinates specify its position on the x-y plane),
height and radius. Class CCylinder can use class CPoint’s X and Y properties, because
class CCylinder inherits them indirectly from class CPoint—Class CCylinder
inherits properties X and Y directly from class CCircle4, which inherited them directly
from class CPoint. Line 28 invokes method ToString to obtain the String represen-
tation of the CCylinder object. Lines 32–36 invoke methods Diameter and Circum-
ference of the CCylinder object—because class CCylinder inherits these methods
from class CCircle4 but cannot override them, these methods, as listed in CCircle4,
are invoked. Lines 40–44 invoke methods Area and Volume.

Using the point-circle-cylinder example, we have shown the use and benefits of inher-
itance. We were able to develop classes CCircle4 and CCylinder using inheritance
much faster than if we had developed these classes by duplicating code. Inheritance avoids
duplicating code and therefore helps avoid code-maintenance problems.  

1 ' Fig. 9.15: CylinderTest.vb
2 ' Tests class CCylinder.
3
4 Imports System.Windows.Forms
5
6 Module modCylinderTest
7
8  Sub Main()
9

10       ' instantiate object of class CCylinder
11       Dim cylinder As New CCylinder(12, 23, 2.5, 5.7)
12       Dim output As String
13
14       ' properties get initial x-y coordinate, radius and height
15       output = "X coordinate is " & cylinder.X & vbCrLf & _
16  "Y coordinate is " & cylinder.Y & vbCrLf & "Radius is " & _
17          cylinder.Radius & vbCrLf & "Height is " & cylinder.Height
18
19       ' properties set new x-y coordinate, radius and height
20       cylinder.X = 2
21       cylinder.Y = 2
22       cylinder.Height = 10
23       cylinder.Radius = 4.25
24
25       ' get new x-y coordinate and radius
26       output &= vbCrLf & vbCrLf & "The new location, radius " & _
27          "and height of cylinder are" & vbCrLf & "Center = [" & _
28          cylinder.ToString() & vbCrLf & vbCrLf
29

Fig. 9.15 Testing class CCylinder (part 1 of 2).



376 Object-Oriented Programming: Inheritance Chapter 9

9.6 Constructors and Finalizers in Derived Classes
As we explained in the previous section, instantiating a derived-class object begins a
chain of constructor calls in which the derived-class constructor, before performing its
own tasks, invokes the base-class constructor either explicitly or implicitly. Similarly, if
the base-class was derived from another class, the base-class constructor must invoke the
constructor of the next class up in the hierarchy, and so on. The last constructor called in
the chain is class Object’s constructor whose body actually finishes executing first—
the original derived class’s body finishes executing last. Each base-class constructor ini-
tializes the base-class instance variables that the derived-class object inherits. For exam-
ple, consider the CPoint/CCircle4 hierarchy from Fig. 9.4 and Fig. 9.12. When a
program creates a CCircle4 object, one of the CCircle4 constructors is called. That

30       ' display CCylinder's diameter
31       output &= "Diameter is " & _
32          String.Format("{0:F}", cylinder.Diameter()) & vbCrLf
33
34       ' display CCylinder's circumference
35       output &= "Circumference is " & _
36          String.Format("{0:F}", cylinder.Circumference()) & vbCrLf
37
38       ' display CCylinder's area
39       output &= "Area is " & _
40          String.Format("{0:F}", cylinder.Area()) & vbCrLf
41
42       ' display CCylinder's volume
43       output &= "Volume is " & _
44          String.Format("{0:F}", cylinder.Volume())
45
46       MessageBox.Show(output, "Demonstrating Class CCylinder")
47  End Sub ' Main
48
49 End Module ' modCylinderTest

Fig. 9.15 Testing class CCylinder (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 377

constructor calls class CPoint’s constructor, which in turn calls class Object’s con-
structor. When class Object’s constructor completes execution, it returns control to
class CPoint’s constructor, which initializes the x-y coordinates of CCircle4. When
class CPoint’s constructor completes execution, it returns control to class
CCircle4’s constructor, which initializes the CCircle4’s radius. 

Software Engineering Observation 9.9
When a program creates a derived-class object, the derived-class constructor calls the base-
class constructor, the base-class constructor executes, then the remainder of the derived-
class constructor’s body executes. 9.9

When the garbage collector removes an object from memory, the garbage collector
calls that object’s finalizer method. This begins a chain of finalizer calls in which the
derived-class finalizer and the finalizers of the direct and indirect base classes execute in
the reverse order of the constructors. Executing the finalizer method should free all
resources acquired by the object before the garbage collector reclaims the memory for
that object. When the garbage collector calls an object’s finalizer, the finalizer performs
its task. Then, the programmer can use keyword MyBase to invoke the finalizer of the
base class.

We discussed in Chapter 8 that class Object defines Protected Overridable
method Finalize, which is the finalizer for a Visual Basic object. Because all Visual
Basic classes inherit from class Object (either directly or indirectly), these classes inherit
method Finalize and can override it to free resources specific to those objects. Although
we cannot determine exactly when a Finalize call occurs (because we cannot determine
exactly when garbage collection occurs), we still are able to specify code to execute before
the garbage collector removes an object from memory.

Our next example revisits the point-circle hierarchy by defining versions of class
CPoint3 (Fig. 9.16) and class CCircle5 (Fig. 9.17) that contain constructors and final-
izers, each of which prints a message when it runs.  

Class CPoint3 (Fig. 9.16) contains the features as shown in Fig. 9.4, and we modi-
fied the two constructors (lines 10–16 and 19–26) to output a line of text when they are
called and added method Finalize (lines 29–32) that also outputs a line of text when it
is called. Each output statement (lines 15, 25 and 30) adds reference Me to the output string.
This implicitly invokes the class’s ToString method to obtain the String representa-
tion of CPoint3’s coordinates.  

Because constructors are not inherited, lines 12 and 22 make implicit calls to the
Object constructor. However, method Finalize is inherited and overridden from class
Object, so line 31 uses reference MyBase to call the Object base-class method
Finalize explicitly. If we omitted line 31, the Object’s Finalize method would not
get called. 

Class CCircle5 (Fig. 9.17) contains the features in Fig. 9.8, and we modified the two
constructors (lines 10–15 and 18–25) to output a line of text when they are called. We also
added method Finalize (lines 28–31) that also outputs a line of text when it is called. Note
again that line 30 uses MyBase to invoke CPoint3’s Finalize method explicitly—this
method is not called if we omit this line. Each output statement (lines 14, 24 and 29) adds ref-
erence Me to the output string. This implicitly invokes the CCircle5’s ToString method
to obtain the String representation of CCircle5’s coordinates and radius.



378 Object-Oriented Programming: Inheritance Chapter 9

1 ' Fig. 9.16: Point3.vb
2 ' CPoint3 class represents an x-y coordinate pair.
3
4 Public Class CPoint3
5
6  ' point coordinate
7  Private mX, mY As Integer
8
9  ' default constructor

10   Public Sub New()
11
12   ' implicit call to Object constructor occurs here
13       X = 0
14       Y = 0
15       Console.Writeline("CPoint3 constructor: {0}", Me)
16  End Sub ' New
17
18    ' constructor
19    Public Sub New(ByVal xValue As Integer, _
20       ByVal yValue As Integer)
21
22       ' implicit call to Object constructor occurs here
23       X = xValue
24       Y = yValue
25       Console.Writeline("CPoint3 constructor: {0}", Me)
26  End Sub ' New
27
28  ' finalizer overrides version in class Object
29  Protected Overrides Sub Finalize()
30       Console.Writeline("CPoint3 Finalizer: {0}", Me)
31       MyBase.Finalize() ' call Object finalizer
32    End Sub ' Finalize
33
34    ' property X
35   Public Property X() As Integer
36
37       Get
38          Return mX
39       End Get
40
41       Set(ByVal xValue As Integer)
42          mX = xValue ' no need for validation
43       End Set
44
45    End Property ' X
46
47 ' property Y 
48 Public Property Y() As Integer
49
50      Get
51          Return mY
52       End Get
53

Fig. 9.16 CPoint3 base class contains constructors and finalizer (part 1 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 379

Module modConstructorAndFinalizer (Fig. 9.18) demonstrates the order in
which constructors and finalizers are called for objects of classes that are part of an inher-
itance class hierarchy. Method Main (lines 7–17) begins by instantiating an object of class
CCircle5, then assigns it to reference circle1 (line 10). This invokes the CCircle5
constructor, which invokes the CPoint3 constructor immediately. Then, the CPoint3
constructor invokes the Object constructor. When the Object constructor (which does
not print anything) returns control to the CPoint3 constructor, the CPoint3 constructor
initializes the x-y coordinates, then outputs a String indicating that the CPoint3 con-
structor was called. The output statement also calls method ToString implicitly (using
reference Me) to obtain the String representation of the object being constructed. Then,
control returns to the CCircle5 constructor, which initializes the radius and outputs the
CCircle5’s x-y coordinates and radius by calling method ToString implicitly.  

Notice that the first two lines of the output from this program contain values for the x-
y coordinate and the radius of the CCircle5. When constructing a CCircle5 object, the
Me reference used in the body of both the CCircle5 and CPoint3 constructors refers to
the CCircle5 object being constructed. When a program invokes method ToString on
an object, the version of ToString that executes is always the version defined in that
object’s class. Because reference Me refers to the current CCircle5 object being con-
structed, CCircle5’s ToString method executes even when ToString is invoked
from the body of class CPoint3’s constructor. [Note: This would not be the case if the
CPoint3 constructor were called to initialize a new CPoint3 object.] When the
CPoint3 constructor invokes method ToString for the CCircle5 being constructed,
the program displays 0 for the mRadius value, because the CCircle5 constructor’s
body has not yet initialized the mRadius. Remember that 0 is the default value of a
Double variable. The second line of output shows the proper mRadius value (4.5),
because that line is output after the mRadius is initialized.   

54       Set(ByVal yValue As Integer)
55          mY = yValue ' no need for validation
56       End Set
57
58    End Property ' Y
59
60  ' return String representation of CPoint3
61    Public Overrides Function ToString() As String
62       Return "[" & mX & ", " & mY & "]"
63   End Function ' ToString
64
65 End Class ' CPoint3

1 ' Fig. 9.17: Circle5.vb
2 ' CCircle5 class that inherits from class CPoint3.
3

Fig. 9.17 CCircle5 class inherits from class CPoint3 and overrides a finalizer 
method (part 1 of 3).

Fig. 9.16 CPoint3 base class contains constructors and finalizer (part 2 of 2).



380 Object-Oriented Programming: Inheritance Chapter 9

4 Public Class CCircle5
5  Inherits CPoint3 ' CCircle5 Inherits from class CPoint3
6
7  Private mRadius As Double
8
9  ' default constructor

10   Public Sub New()
11
12       ' implicit call to CPoint3 constructor occurs here
13       Radius = 0
14       Console.WriteLine("CCircle5 constructor: {0}", Me)
15 End Sub ' New
16
17   ' constructor
18  Public Sub New(ByVal xValue As Integer, _
19       ByVal yValue As Integer, ByVal radiusValue As Double)
20
21       ' use MyBase reference to CPoint3 constructor explicitly
22     MyBase.New(xValue, yValue)
23       Radius = radiusValue
24       Console.WriteLine("CCircle5 constructor: {0}", Me)
25  End Sub ' New
26
27  ' finalizer overrides version in class CPoint3
28  Protected Overrides Sub Finalize()
29       Console.Writeline("CCircle5 Finalizer: {0}", Me)
30       MyBase.Finalize() ' call CPoint3 finalizer
31    End Sub ' Finalize
32
33 ' property Radius
34  Public Property Radius() As Double
35
36   Get
37          Return mRadius
38       End Get
39
40       Set(ByVal radiusValue As Double)
41
42          If radiusValue > 0
43             mRadius = radiusValue
44          End If
45
46       End Set
47
48    End Property ' Radius
49
50    ' calculate CCircle5 diameter
51 Public Function Diameter() As Double
52       Return mRadius * 2
53 End Function ' Diameter
54

Fig. 9.17 CCircle5 class inherits from class CPoint3 and overrides a finalizer 
method (part 2 of 3).



Chapter 9 Object-Oriented Programming: Inheritance 381

Line 11 instantiates an object of class CCircle5, then assigns it to reference
circle2. Again, this begins the chain of constructor calls in which the CCircle5 con-
structor, the CCircle5 constructor and the Object constructor are called. In the output,
notice that the body of the CPoint3 constructor executes before the body of the
CCircle5 constructor. This demonstrates that objects are constructed “inside out” (i.e.,
the base-class constructor is called first).

Lines 13–14 set references circle1 and circle2 to Nothing. This removes the
only references to the two CCircle5 objects in the program. Thus, the garbage collector
can release the memory that these objects occupy. Remember that we cannot guarantee
when the garbage collector executes, nor can we guarantee that it collects all available
objects when it does execute. To demonstrate the finalizer calls for the two CCircle5
objects, line 16 invokes class GC’s method Collect to request the garbage collector to
run. Notice that each CCircle5 object’s finalizer outputs information before calling class
CPoint3’s Finalize method. Objects are finalized “outside in” (i.e., the derived-class
finalizer completes its tasks before calling the base-class finalizer).  

55    ' calculate CCircle5 circumference
56 Public Function Circumference() As Double
57       Return Math.PI * Diameter()
58 End Function ' Circumference
59
60    ' calculate CCircle5 area
61 Public Overridable Function Area() As Double
62       Return Math.PI * mRadius ^ 2
63 End Function ' Area
64
65  ' return String representation of CCircle5
66    Public Overrides Function ToString() As String
67
68       ' use MyBase reference to return CPoint3 String
69   Return "Center = " & MyBase.ToString() & _
70          "; Radius = " & mRadius
71   End Function ' ToString
72
73 End Class ' CCircle5

1 ' Fig. 9.18: ConstructorAndFinalizer.vb
2 ' Display order in which base-class and derived-class constructors
3 ' and finalizers are called.
4
5 Module modConstructorAndFinalizer
6
7  Sub Main()
8       Dim circle1, circle2 As CCircle5
9

Fig. 9.18 Demonstrating order in which constructors and finalizers are called
 (part 1 of 2).

Fig. 9.17 CCircle5 class inherits from class CPoint3 and overrides a finalizer 
method (part 3 of 3).



382 Object-Oriented Programming: Inheritance Chapter 9

Software Engineering Observation 9.10
The last statement in a Finalize method of a derived class should invoke the base class’s
Finalize method (via keyword MyBase) to free any base-class resources. 9.10

Common Programming Error 9.3
When a base-class method is overridden in a derived class, the derived-class version often
calls the base-class version to do additional work. Failure to use the MyBase reference
when referencing the base class’s method causes infinite recursion, because the derived-
class method would then call itself. 9.3

Common Programming Error 9.4
The use of “chained” MyBase references to refer to a member (a method, property or vari-
able) several levels up the hierarchy (as in MyBase.MyBase.mX) is a syntax error. 9.4

9.7 Software Engineering with Inheritance
In this section, we discuss the use of inheritance to customize existing software. When we
use inheritance to create a class from an existing one, the new class inherits the member
variables, properties and methods of the existing class. Once the class is created, we can
customize it to meet our needs both by including additional member variables, properties
and methods, and by overriding base-class members.

Sometimes, it is difficult for students to appreciate the scope of problems faced by
designers who work on large-scale software projects in industry. People experienced with
such projects invariably say that practicing software reuse improves the software-develop-
ment process. Object-oriented programming facilitates the reuse of software, thus short-
ening development times.

10       circle1 = New CCircle5(72, 29, 4.5) ' instantiate objects
11       circle2 = New CCircle5(5, 5, 10)
12
13       circle1 = Nothing ' mark objects for garbage collection
14       circle2 = Nothing
15
16       System.GC.Collect() ' request garbage collector to execute
17    End Sub ' Main 
18
19 End Module ' modConstructorAndFinalizer

CPoint3 constructor: Center = [72, 29]; Radius = 0
CCircle5 constructor: Center = [72, 29]; Radius = 4.5
CPoint3 constructor: Center = [5, 5]; Radius = 0
CCircle5 constructor: Center = [5, 5]; Radius = 10
CCircle5 Finalizer: Center = [5, 5]; Radius = 10
CPoint3 Finalizer: Center = [5, 5]; Radius = 10
CCircle5 Finalizer: Center = [72, 29]; Radius = 4.5
CPoint3 Finalizer: Center = [72, 29]; Radius = 4.5

Fig. 9.18 Demonstrating order in which constructors and finalizers are called
 (part 2 of 2).



Chapter 9 Object-Oriented Programming: Inheritance 383

Visual Basic encourages software reuse by providing substantial class libraries,
which deliver the maximum benefits of software reuse through inheritance. As interest
in Visual Basic grows (it is already the world’s most widely used programming lan-
guage), interest in Visual Basic .NET class libraries also increases. There is a worldwide
commitment to the continued evolution of Visual Basic .NET class libraries for a wide
variety of applications.

Software Engineering Observation 9.11
At the design stage in an object-oriented system, the designer often determines that certain
classes are closely related. The designer should “factor out” common attributes and behav-
iors and place these in a base class. Then, use inheritance to form derived classes, endowing
them with capabilities beyond those inherited from the base class. 9.11

Software Engineering Observation 9.12
The creation of a derived class does not affect its base class' source code. Inheritance pre-
serves the integrity of a base class. 9.12

Software Engineering Observation 9.13
Just as designers of non-object-oriented systems should avoid proliferation of functions, de-
signers of object-oriented systems should avoid proliferation of classes. Proliferation of
classes creates management problems and can hinder software reusability, because it be-
comes difficult for a client to locate the most appropriate class of a huge class library. The
alternative is to create fewer classes, in which each provides more substantial functionality,
but such classes might provide too much functionality. 9.13

Performance Tip 9.1
If classes produced through inheritance are larger than they need to be (i.e., contain too
much functionality), memory and processing resources might be wasted. Inherit from the
class whose functionality is “closest” to what is needed. 9.1

Reading derived-class definitions can be confusing, because inherited members are not
shown physically in the derived class, but nevertheless are present in the derived classes. A
similar problem exists when documenting derived class members.

In this chapter, we introduced inheritance—the ability to create classes by absorbing
an existing class’s data members and behaviors and embellishing these with new capabili-
ties. In Chapter 10, we build upon our discussion of inheritance by introducing polymor-
phism—an object-oriented technique that enables us to write programs that handle, in a
more general manner, a wide variety of classes related by inheritance. After studying
Chapter 10, you will be familiar with encapsulation, inheritance and polymorphism—the
most crucial aspects of object-oriented programming.

SUMMARY
• Software reusability reduces program-development time. 

• The direct base class of a derived class is the base class from which the derived class inherits (via
keyword Inherits). An indirect base class of a derived class is two or more levels up the class
hierarchy from that derived class.

• With single inheritance, a class is derived from one base class. Visual Basic does not support mul-
tiple inheritance (i.e., deriving a class from more than one direct base class). 



384 Object-Oriented Programming: Inheritance Chapter 9

• Because a derived class can include its own class variables, properties and methods, a derived class
is often larger than its base class. 

• A derived class is more specific than its base class and represents a smaller group of objects. 

• Every object of a derived class is also an object of that class’s base class. However, base-class ob-
jects are not objects of that class’s derived classes.

• Derived-class methods and properties can access Protected base-class members directly.

• An “is-a” relationship represents inheritance. In an “is-a” relationship, an object of a derived class
also can be treated as an object of its base class. 

• A “has-a” relationship represents composition. In a “has-a” relationship, a class object has refer-
ences to one or more objects of other classes as members.

• A derived class cannot access Private members of its base class directly. 

• A derived class can access the Public, Protected and Friend members of its base class if
the derived class is in the same assembly as the base class. 

• When a base-class member is inappropriate for a derived class, that member can be overridden (re-
defined) in the derived class with an appropriate implementation.

• Inheritance relationships form tree-like hierarchical structures. A class exists in a hierarchical re-
lationship with its derived classes.

• It is possible to treat base-class objects and derived-class objects similarly; the commonality
shared between the object types is expressed in the member variables, properties and methods of
the base class.

• A base class’s Public members are accessible anywhere that the program has a reference to an
object of that base class or to an object of one of that base class’s derived classes. 

• A base class’s Private members are accessible only within the definition of that base class.

• A base class’s Protected members have an intermediate level of protection between Public
and Private access. A base class’s Protected members can be accessed only in that base
class or in any classes derived from that base class. 

• A base class’s Friend members can be accessed only by objects in the same assembly. 

• Unfortunately, the inclusion of Protected instance variables often yields two major problems.
First, the derived-class object does not have to use a property to set the value of the base-class’s
Protected data. Second, derived class methods are more likely to be written to depend on base-
class implementation.

• Visual Basic rigidly enforces restriction on accessing Private data members, so that even de-
rived classes (i.e,. which are closely related to their base class) cannot access base-class Private
data.

• When a derived-class method overrides a base-class method, the base-class method can be access-
ed from the derived class by preceding the base-class method name with the MyBase reference,
followed by the dot operator (.).

• A derived class can redefine a base-class method using the same signature; this is called overriding
that base-class method.

• When the method is mentioned by name in the derived class, the derived-class version is called. 

• When an object of a derived class is instantiated, the base class’s constructor is called immediately
(either explicitly or implicitly) to do any necessary initialization of the base-class instance vari-
ables in the derived-class object (before the derived classes instance variable are initialized).

• Declaring data variables as Private, while providing non-Private properties to manipulate
and perform validation checking on this data, enforces good software engineering.



Chapter 9 Object-Oriented Programming: Inheritance 385

• If an object’s method/property performs the actions needed by another object, call that method/
property rather than duplicating its code body. Duplicated code creates code-maintenance prob-
lems

• An explicit call to a base-class constructor (via the MyBase reference) can be provided in the de-
rived-class constructor. Otherwise, the derived-class constructor calls the base-class default con-
structor (or no-argument constructor) implicitly.

• Base-class constructors are not inherited by derived classes. 

TERMINOLOGY

SELF-REVIEW EXERCISES
9.1 Fill in the blanks in each of the following statements:

a)  is a form of software reusability in which new classes absorb the data and
behaviors of existing classes and embellish these classes with new capabilities. 

b) A base class’s  members can be accessed only in the base-class definition or
in derived-class definitions.

c) In a(n) relationship, an object of a derived class also can be treated as an ob-
ject of its base class.

d) In a(n) relationship, a class object has one or more references to objects of
other classes as members.

abstraction instance variable (of an object)
base class “is-a” relationship 
base-class constructor member-access operator 
base-class default constructor member variable (of a class)
base-class finalizer multiple inheritance 
base-class object MyBase reference 
base-class reference Object class
behavior object of a base class 
class library object of a derived class 
composition object-oriented programming (OOP) 
constructor overloaded constructor 
data abstraction overloading 
default constructor Overridable keyword
derived class Overrides keyword
derived-class constructor overriding 
derived-class reference overriding a base-class method 
direct base class overriding a method
dot (.) operator Private base-class member 
Friend access modifier Protected access 
Friend member access Protected base-class member 
garbage collector Protected variable 
“has-a” relationship Protected member of a base class 
hierarchy diagram Protected member of a derived class 
indirect base class Public member of a derived class 
information hiding reusable component 
inheritance single inheritance 
Inherits keyword software reusability 
inheritance hierarchy software reuse 
inherited instance variable 



386 Object-Oriented Programming: Inheritance Chapter 9

e) A class exists in a(n)  relationship with its derived classes.
f) A base class’s  members are accessible anywhere that the program has a ref-

erence to that base class or to one of its derived classes.
g) A base class’s Protected access members have a level of protection between those of

Public and  access.
h) A base class’s  members can be accessed only in the same assembly.
i) When an object of a derived class is instantiated, the base class’s  is called

implicitly or explicitly to do any necessary initialization of the base-class instance vari-
ables in the derived-class object.

j) Derived-class constructors can call base-class constructors via the reference.

9.2 State whether each of the following is true or false. If false, explain why.
a) It is possible to treat base-class objects and derived-class objects similarly.
b) Base-class constructors are not inherited by derived classes. 
c) The derived-class finalizer method should invoke the base-class finalizer method (as its

last action) to release any resources acquired by the base-class portion of the object.
d) A “has-a” relationship is implemented via inheritance.
e) All methods, by default, can be overridden.
f) Method ToString of class System.Object is declared as Overridable.
g) When a derived class redefines a base-class method using the same signature, the derived

class is said to overload that base-class method.
h) A Car class has an “is a” relationship with its SteeringWheel and Brakes objects. 
i) Inheritance encourages the reuse of proven high-quality software.
j) A module can reference a base-class object’s Protected members directly.

ANSWERS TO SELF-REVIEW EXERCISES
9.1 a) Inheritance. b) Protected. c) “is a.” d) “has a.” e) hierarchical. f) Public.
g) Private. h) Friend. i) constructor. j) MyBase.

9.2 a) True. b) True. c) True.  d) False. A “has-a” relationship is implemented via composition.
An “is-a” relationship is implemented via inheritance. e) False. Overridable methods must be de-
clared as Overridable explicitly. f) True. g) False. When a derived class redefines a base-class
method using the same signature, the derived class overrides that base-class method. h) False. This is
an example of a “has a” relationship. i) True. j) False. A module cannot access Protected members
directly, and must use the class’s Public methods and properties to access the data. 

EXERCISES
9.3 Many programs written with inheritance could be written with composition instead, and vice
versa. Rewrite classes CPoint, CCircle4 and CCylinder to use composition, rather than inher-
itance. After you do this, assess the relative merits of the two approaches for both the CPoint,
CCircle4, CCylinder problem, as well as for object-oriented programs in general.

9.4 Some programmers prefer not to use Protected access because it breaks the encapsulation
of the base class. Discuss the relative merits of using Protected access vs. insisting on using Pri-
vate access in base classes.

9.5 Rewrite the case study in Section 9.5 as a CPoint, CSquare, CCube program. Do this two
ways—once via inheritance and once via composition. 

9.6 Write an inheritance hierarchy for class CQuadrilateral, CTrapezoid, CParal-
lelogram, CRectangle and CSquare. Use CQuadrilateral as the base class of the hierar-
chy. Make the hierarchy as deep (i.e., as many levels) as possible. The Private data of



Chapter 9 Object-Oriented Programming: Inheritance 387

CQuadrilateral should be the x-y coordinate pairs for the four endpoints of the CQuadrilat-
eral. Write a program that instantiates objects of each of these classes; also print to the screen that
each object was instantiated.

9.7 Modify classes CPoint, CCircle4 and CCylinder to contain overridden finalizer
methods. Then, modify the program of Fig. 9.18 to demonstrate the order in which constructors and
finalizers are invoked in this hierarchy.

9.8 Write down all the shapes you can think of—both two-dimensional and three-dimensional—
and form those shapes into a shape hierarchy. Your hierarchy should have base class CShape from
which class CTwoDimensionalShape and class CThreeDimensionalShape are derived.
Once you have developed the hierarchy, define each of the classes in the hierarchy. We will use this
hierarchy in the exercises of Chapter 10 to process all shapes as objects of base-class CShape. (This
is a technique called polymorphism.)



10
Object-Oriented
Programming:
Polymorphism

Objectives
• To understand the concept of polymorphism.
• To understand how polymorphism makes systems 

extensible and maintainable.
• To understand the distinction between abstract classes 

and concrete classes.
• To learn how to create abstract classes, interfaces and 

delegates.
One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.
John Ronald Reuel Tolkien, The Fellowship of the Ring

General propositions do not decide concrete cases.
Oliver Wendell Holmes

A philosopher of imposing stature doesn’t think in a vacuum. 
Even his most abstract ideas are, to some extent, conditioned 
by what is or is not known in the time when he lives.



Chapter 10 Object-Oriented Programming: Polymorphism 389

Alfred North WhiteheadAlfred North Whitehead

10.1 Introduction
The previous chapter’s object-oriented programming (OOP) discussion focussed on one of its
key component technologies, inheritance. In this chapter, we continue our study of OOP poly-
morphism. Both inheritance and polymorphism are crucial technologies in the development
of complex software. Polymorphism enables us to write programs that handle a wide variety
of related classes and facilitates adding new classes and capabilities to a system.

Using polymorphism, it is possible to design and implement systems that are easily
extensible. Programs can process objects of all classes in a class hierarchy generically as
objects of a common base class. Furthermore, a new class can be added with little or no
modification to the generic part of the program, as long as those new classes are part of the
inheritance hierarchy that the program generically processes. The only parts of a program
that must be altered to accommodate new classes are those program components that
require direct knowledge of the new classes that the programmer adds to the hierarchy. In
this chapter, we demonstrate two substantial class hierarchies and manipulate objects from
those hierarchies polymorphically.

10.2 Derived-Class-Object to Base-Class-Object Conversion
Section 9.4 created a point-circle class hierarchy, in which class CCircle inherited from
class CPoint. The programs that manipulated objects of these classes always used
CPoint references to refer to CPoint objects and CCircle references to refer to
CCircle objects. In this section, we discuss the relationship between classes in a hierar-
chy that enables a program to assign derived-class objects to base-class references—a fun-
damental part of programs that process objects polymorphically. This section also
discusses explicit casting between types in a class hierarchy.

An object of a derived class can be treated as an object of its base class. This enables
various interesting manipulations. For example, a program can create an array of base-class
references that refer to objects of many derived-class types. This is allowed despite the fact

Outline

10.1 Introduction
10.2 Derived-Class-Object to Base-Class-Object Conversion
10.3 Type Fields and Select Case Statements
10.4 Polymorphism Examples
10.5 Abstract Classes and Methods
10.6 Case Study: Inheriting Interface and Implementation
10.7 NotInheritable Classes and NotOverridable Methods
10.8 Case Study: Payroll System Using Polymorphism
10.9 Case Study: Creating and Using Interfaces
10.10 Delegates

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



390 Object-Oriented Programming: Polymorphism Chapter 10

that the derived-class objects are of different data types. However, the reverse is not true—
a base-class object is not an object of any of its derived classes. For example, a CPoint is
not a CCircle based on the hierarchy defined in Chapter 9. If a base-class reference refers
to a derived-class object, it is possible to convert the base-class reference to the object’s
actual data type and manipulate the object as that type.

Common Programming Error 10.1
Treating a base-class object as a derived-class object can cause errors. 10.1

The example in Fig. 10.1–Fig. 10.3 demonstrates assigning derived-class objects to
base-class references and casting base-class references to derived-class references. Class
CPoint (Fig. 10.1), which we discussed in Chapter 9, represents an x-y coordinate pair.
Class CCircle (Fig. 10.2), which we also discussed in Chapter 9, represents a circle and
inherits from class CPoint. Each CCircle object “is a” CPoint and also has a radius
(represented via variable mRadius). We declare method Area as Overridable, so that
a derived class (such as class CCylinder) can calculate its area. Class CTest (Fig. 10.3)
demonstrates the assignment and cast operations. 

1 ' Fig. 10.1: Point.vb
2 ' CPoint class represents an x-y coordinate pair.
3
4 Public Class CPoint
5
6  ' point coordinate
7  Private mX, mY As Integer
8
9  ' default constructor

10   Public Sub New()
11
12   ' implicit call to Object constructor occurs here
13       X = 0
14       Y = 0
15  End Sub ' New
16
17    ' constructor
18    Public Sub New(ByVal xValue As Integer, _
19       ByVal yValue As Integer)
20
21       ' implicit call to Object constructor occurs here
22       X = xValue
23       Y = yValue
24  End Sub ' New
25
26    ' property X
27   Public Property X() As Integer
28
29       Get
30          Return mX
31       End Get
32

Fig. 10.1 CPoint class represents an x-y coordinate pair (part 1 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 391

33       Set(ByVal xValue As Integer)
34          mX = xValue ' no need for validation
35       End Set
36
37    End Property ' X
38
39 ' property Y 
40 Public Property Y() As Integer
41
42      Get
43          Return mY
44       End Get
45
46       Set(ByVal yValue As Integer)
47          mY = yValue ' no need for validation
48       End Set
49
50    End Property ' Y
51
52  ' return String representation of CPoint
53    Public Overrides Function ToString() As String
54       Return "[" & mX & ", " & mY & "]"
55   End Function ' ToString
56
57 End Class ' CPoint

1 ' Fig. 10.2: Circle.vb
2 ' CCircle class that inherits from class CPoint.
3
4 Public Class CCircle
5  Inherits CPoint ' CCircle Inherits from class CPoint
6
7  Private mRadius As Double
8
9  ' default constructor

10   Public Sub New()
11
12       ' implicit call to CPoint constructor occurs here
13       Radius = 0
14 End Sub ' New
15
16   ' constructor
17  Public Sub New(ByVal xValue As Integer, _
18       ByVal yValue As Integer, ByVal radiusValue As Double)
19
20       ' use MyBase reference to CPoint constructor explicitly
21     MyBase.New(xValue, yValue)
22       Radius = radiusValue
23  End Sub ' New
24

Fig. 10.2 CCircle class that inherits from class CPoint (part 1 of 2).

Fig. 10.1 CPoint class represents an x-y coordinate pair (part 2 of 2).



392 Object-Oriented Programming: Polymorphism Chapter 10

Class CTest (Fig. 10.3) demonstrates assigning derived-class references to base-class
references and casting base-class references to derived-class references. Lines 11–12
declare two CPoint references (point1 and point2) and two CCircle references
(circle1 and circle2). Lines 14–15 assign to point1 a new CPoint object and
assign to circle1 a new CCircle object. Lines 17–18 invoke each object’s ToString
method, then append the String representations to String output to show the values
used to initialize each object. Because point1 is a CPoint object, method ToString

25 ' property Radius
26  Public Property Radius() As Double
27
28   Get
29          Return mRadius
30       End Get
31
32       Set(ByVal radiusValue As Double)
33
34          If radiusValue >= 0 ' mRadius must be nonnegative
35             mRadius = radiusValue
36          End If
37
38       End Set
39
40    End Property ' Radius
41
42    ' calculate CCircle diameter
43 Public Function Diameter() As Double
44       Return mRadius * 2
45 End Function ' Diameter
46
47    ' calculate CCircle circumference
48 Public Function Circumference() As Double
49       Return Math.PI * Diameter()
50 End Function ' Circumference
51
52    ' calculate CCircle area
53 Public Overridable Function Area() As Double
54       Return Math.PI * mRadius ^ 2
55 End Function ' Area
56
57  ' return String representation of CCircle
58    Public Overrides Function ToString() As String
59
60       ' use MyBase reference to return CCircle String representation
61   Return "Center= " & MyBase.ToString() & _
62          "; Radius = " & mRadius
63   End Function ' ToString
64
65 End Class ' CCircle

Fig. 10.2 CCircle class that inherits from class CPoint (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 393

of point1 prints the object as a CPoint. Similarly, because circle1 is a CCircle
object, method ToString of circle1 prints the object as a CCircle.

1 ' Fig. 10.3: Test.vb
2 ' Demonstrating inheritance and polymorphism.
3
4 Imports System.Windows.Forms
5
6 Class CTest
7
8    ' demonstrate "is a" relationship
9    Shared Sub Main()

10       Dim output As String
11       Dim point1, point2 As CPoint
12     Dim circle1, circle2 As CCircle
13
14       point1 = New CPoint(30, 50)
15       circle1 = New CCircle(120, 89, 2.7)
16
17       output = "CPoint point1: " & point1.ToString() & _
18          vbCrLf & "CCircle circle1: " & circle1.ToString()
19
20       ' use is-a relationship to assign CCircle to CPoint reference
21       point2 = circle1
22
23       output &= vbCrLf & vbCrLf & _
24          "CCircle circle1 (via point2): " & point2.ToString()
25
26       ' downcast (cast base-class reference to derived-class 
27       ' data type) point2 to circle2
28       circle2 = CType(point2, CCircle) ' allowed only via cast
29
30       output &= vbCrLf & vbCrLf & _
31          "CCircle circle1 (via circle2): " & circle2.ToString()
32
33       output &= vbCrLf & "Area of circle1 (via circle2): " & _
34          String.Format("{0:F}", circle2.Area())
35
36       ' assign CPoint object to CCircle reference
37   If (TypeOf point1 Is CCircle) Then
38          circle2 = CType(point1, CCircle)
39          output &= vbCrLf & vbCrLf & "cast successful"
40       Else
41          output &= vbCrLf & vbCrLf & _
42             "point1 does not refer to a CCircle"
43   End If
44
45       MessageBox.Show(output, _
46      "Demonstrating the 'is a' relationship")
47    End Sub ' Main
48
49 End Class ' CTest

Fig. 10.3 Assigning derived-class references to base-class references (part 1 of 2).



394 Object-Oriented Programming: Polymorphism Chapter 10

Line 21 assigns circle1 (a reference to a derived-class object) to point2 (a base-
class reference). In Visual Basic, it is acceptable to assign a derived-class reference to a
base-class reference, because of the inheritance “is-a” relationship. A CCircle is a
CPoint (in a structural sense, at least), because class CCircle inherits from class
CPoint. However, assigning a base-class reference to a derived-class reference is poten-
tially dangerous, as we will discuss.

Lines 23–24 invoke point2.ToString and append the result to output. When
Visual Basic encounters an Overridable method invocation (such as method
ToString), Visual Basic determines which version of the method to call based on the
type of the object on which the method is called, not based on the type of the reference that
refers to the object. In this case, point2 refers to a CCircle object, so Visual Basic calls
CCircle method ToString (line 24), rather than calling CPoint method ToString
(as one might expect off the point2 reference, which was declared as a CPoint). The
decision of which method to call is an example of polymorphism, a concept that we discuss
in detail throughout this chapter. Note that, if point2 referenced a CPoint object rather
than a CCircle object, Visual Basic would invoke CPoint’s ToString method.

Previous chapters used methods such as Convert.ToInt32 and Con-
vert.ToDouble to convert between various built-in Visual Basic types. Now, we con-
vert between object references of user-defined types. We use method CType to perform
this conversion, which is known as a cast. If the cast is valid, our program can treat a base-
class reference as a derived-class reference. If the cast is invalid, Visual Basic throws an
InvalidCastException, which indicates that the cast operation is not allowed.
Exceptions are discussed in detail in Chapter 11, Exception Handling.

Common Programming Error 10.2
Assigning a base-class object (or a base-class reference) to a derived-class reference (with-
out a cast) is a syntax error. 10.2

Software Engineering Observation 10.1
If a derived-class object has been assigned to a reference of one of its direct or indirect base
classes, it is acceptable to cast that base-class reference back to a reference of the derived-
class type. In fact, this must be done to send that object messages that do not appear in the
base class. [Note: We sometimes use the term “messages” to represent invoking methods and
properties on an object.] 10.1

Fig. 10.3 Assigning derived-class references to base-class references (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 395

Line 28 casts point2, which currently refers to a CCircle (circle1), to a
CCircle and assigns the result to circle2. As we discuss momentarily, this cast would
be dangerous if point2 were referencing a CPoint. Lines 30–31 invoke method
ToString of the CCircle object to which circle2 now refers (note that the fourth
line of the output demonstrates that CCircle’s ToString method is called). Lines 33–
34 calculate circle2’s Area and format it with method String.Format. The format
"{0:F}" (line 34) specifies the formatting for this number. By default, the number
appears with two digits to the right of the decimal point.

Line 38 uses method CType to cast point1 to a CCircle. This is a dangerous oper-
ation, because point refers to a CPoint object and a CPoint object is not a CCircle.
Objects can be cast only to their own type or to their base-class types. If this statement were
to execute, Visual Basic would determine that point1 references a CPoint object, rec-
ognize the cast to CCircle as dangerous and indicate an improper cast with an
InvalidCastException message. However, we prevent this statement from exe-
cuting by including the If/Else structure (lines 37–43). The condition at line 37 uses
operator TypeOf to determine whether the object to which point1 refers “is a”
CCircle. Operator TypeOf determines the type of the object to which TypeOf’s
operand refers. We then compare that type to CCircle. In our example, point1 does not
refer to a CCircle, so the condition fails, and lines 41–42 append to output a String
indicating the result. Note that the Is comparison will be True if the two operands are the
same type or if the left operand is a derived-class of the right operand.

Common Programming Error 10.3
Attempting to cast a base-class reference to a derived-class type causes an Invalid-
CastException if the reference refers to a base-class object rather than a derived-class
object. 10.3

If we remove the If test and execute the program, Visual Basic displays a Mes-
sageBox containing the message:

An unhandled exception of type 'System.InvalidCastException' 
occurred in

followed by the name and path of the executing program. We discuss how to deal with this
situation in Chapter 11.

Despite the fact that a derived-class object also “is a” base-class object, the derived-
class and base-class objects are different. As we have discussed previously, derived-class
objects can be treated as if they were base-class objects. This is a logical relationship,
because the derived class contains members that correspond to all members in the base
class. The derived class can have additional members as well. For this reason, assigning
base-class objects to derived-class references is not allowed without an explicit cast (when
Option Strict is On). Such an assignment would leave the additional derived-class mem-
bers undefined. 

There are four ways to mix base-class references and derived-class references with
base-class objects and derived-class objects:

1. Referring to a base-class object with a base-class reference is straightforward.

2. Referring to a derived-class object with a derived-class reference is straightfor-
ward.



396 Object-Oriented Programming: Polymorphism Chapter 10

3. Referring to a derived-class object with a base-class reference is safe, because the
derived-class object is an object of its base class. However, this reference can refer
only to base-class members. If this code refers to derived-class-only members
through the base-class reference, the compiler reports an error.

4. Referring to a base-class object with a derived-class reference generates a compil-
er error (when Option Strict is On). To avoid this error, the derived-class refer-
ence first must be cast to a base-class reference. In this cast, the derived-class
reference must reference a derived-class object, or Visual Basic generates an In-
validCastException.

Common Programming Error 10.4
After assigning a derived-class object to a base-class reference, attempting to reference de-
rived-class-only members with the base-class reference is a syntax error. 10.4

Common Programming Error 10.5
Treating a base-class object as a derived-class object can cause errors. 10.5

Though it is convenient to treat derived-class objects as base-class objects by manipu-
lating derived-class objects with base-class references, doing so can cause significant prob-
lems. For example, in a payroll system we need to be able to walk through an array of
employees and calculate the weekly pay for each person. Intuition suggests that using base-
class references would enable the program to call only the base-class payroll calculation
routine (if there is such a routine in the base class). We need a way to invoke the proper
payroll calculation routine for each object, whether it is a base-class object or a derived-
class object, and to do this simply by using the base-class reference. We learn how to create
classes that include this behavior as we introduce polymorphism throughout this chapter.

10.3 Type Fields and Select Case Statements
One way to determine the type of an object that is incorporated in a larger program is to use
a Select Case statement. This allows us to distinguish among object types, then invoke
an appropriate action for a particular object. For example, in a hierarchy of shapes in which
each shape object has an mShapeType instance variable, a Select Case structure could
employ the object’s mShapeType to determine which Print method to call.

However, using Select-Case logic exposes programs to a variety of potential prob-
lems. For example, the programmer might forget to include a type test when one is war-
ranted or the programmer might forget to test all possible cases in a Select Case. When
modifying a Select-Case-based system by adding new types, the programmer might
forget to insert the new cases in all relevant Select-Case statements. Every addition or
deletion of a class requires the modification of every Select-Case statement in the
system; tracking these statements down can be time-consuming and error-prone.

Software Engineering Observation 10.2
Polymorphic programming can eliminate the need for unnecessary Select-Case logic. By
using Visual Basic’s polymorphism mechanism to perform the equivalent logic, program-
mers can avoid the kinds of errors typically associated with Select-Case logic. 10.0



Chapter 10 Object-Oriented Programming: Polymorphism 397

Testing and Debugging Tip 10.1
An interesting consequence of using polymorphism is that programs take on a simplified ap-
pearance. They contain less branching logic and more simple, sequential code. This simpli-
fication facilitates testing, debugging and program maintenance. 10.1

10.4 Polymorphism Examples
In this section, we discuss several examples of polymorphism. If class CRectangle is de-
rived from class CQuadrilateral, then a CRectangle object is a more specific ver-
sion of a CQuadrilateral object. Any operation (such as calculating the perimeter or
the area) that can be performed on an object of class CQuadrilateral also can be per-
formed on an object of class CRectangle. Such operations also can be performed on oth-
er kinds of CQuadrilaterals, such as CSquares, CParallelograms and
CTrapezoids. When a program invokes a derived-class method through a base-class
(i.e., CQuadrilateral) reference, Visual Basic polymorphically chooses the correct
overridden method in the derived class from which the object was instantiated. We will
soon investigate this behavior in LIVE-CODE™ examples.

Suppose that we design a video game that manipulates objects of many different types,
including objects of classes CMartian, CVenutian, CPlutonian, CSpaceShip
and CLaserBeam. Also imagine that each of these classes inherits from the common base
class called CSpaceObject, which contains a method called DrawYourself. Each
derived class implements this method. A Visual Basic screen-manager program would
maintain a container (such as a CSpaceObject array) of references to objects of the var-
ious classes. To refresh the screen, the screen manager periodically sends each object the
same message—namely, DrawYourself. However, each object responds in a unique
way. For example, a CMartian object draws itself in red with the appropriate number of
antennae. A CSpaceShip object draws itself as a bright, silver flying saucer. A CLas-
erBeam object draws itself as a bright red beam across the screen. Thus the same message
sent to a variety of objects would have “many forms” of results—hence the term polymor-
phism.

A polymorphic screen manager makes it especially easy to add new types of objects to
a system with minimal modifications to the system’s code. Suppose we want to add class
CMercurians to our video game. To do so, we must build a class CMercurian that
inherits from CSpaceObject, but provides its own definition of the DrawYourself
method. Then, when objects of class CMercurian appear in the container, the pro-
grammer does not need to alter the screen manager. The screen manager invokes method
DrawYourself on every object in the container, regardless of the object’s type, so the
new CMercurian objects simply “plug right in.” Thus, without modifying the system
(other than to build and include the classes themselves), programmers can use polymor-
phism to include additional types of classes that were not envisioned when the system was
created.

With polymorphism, one method call can cause different actions to occur, depending
on the type of the object receiving the call. This gives the programmer tremendous expres-
sive capability. In the next several sections, we provide LIVE-CODE™ examples that dem-
onstrate polymorphism.



398 Object-Oriented Programming: Polymorphism Chapter 10

Software Engineering Observation 10.3
With polymorphism, the programmer can deal in generalities and let the execution-time en-
vironment concern itself with the specifics. The programmer can command a wide variety of
objects to behave in manners appropriate to those objects, even if the programmer does not
know the objects’ types. 10.3

Software Engineering Observation 10.4
Polymorphism promotes extensibility. Software used to invoke polymorphic behavior is writ-
ten to be independent of the types of the objects to which messages (i.e., method calls) are
sent. Thus, programmers can include into a system additional types of objects that respond
to existing messages and can do this without modifying the base system. 10.4

10.5 Abstract Classes and Methods
When we think of a class as a type, we assume that programs will create objects of that type.
However, there are cases in which it is useful to define classes for which the programmer nev-
er intends to instantiate any objects. Such classes are called abstract classes. Because such
classes are normally used as base classes in inheritance situations, so we normally refer to
them as abstract base classes. These classes cannot be used to instantiate objects. Abstract
classes are incomplete. Derived classes must define the “missing pieces.” Abstract classes
normally contain one or more abstract methods or abstract properties, which are methods
and properties that do not provide an implementation. Derived classes must override inherited
abstract methods and properties to enable objects of those derived classes to be instantiated.

The purpose of an abstract class is to provide an appropriate base class from which other
classes may inherit (we will see examples shortly). Classes from which objects can be instan-
tiated are called concrete classes. Such classes provide implementations of every method and
property they define. We could have an abstract base class CTwoDimensionalObject
and derive concrete classes, such as CSquare, CCircle, CTriangle. We could also
have an abstract base class CThreeDimensionalObject and derive such concrete
classes as CCube, CSphere and CCylinder. Abstract base classes are too generic to
define real objects; we need to be more specific before we can think of instantiating objects.
For example, if someone tells you to “draw the shape,” what shape would you draw? Concrete
classes provide the specifics that make it reasonable to instantiate objects.

A class is made abstract by declaring it with keyword MustInherit. A hierarchy
does not need to contain any MustInherit classes, but as we will see, many good object-
oriented systems have class hierarchies headed by MustInherit base classes. In some
cases, MustInherit classes constitute the top few levels of the hierarchy. A good
example of this is the shape hierarchy in Fig. 9.3. The hierarchy begins with Must-
Inherit (abstract) base-class CShape. On the next level of the hierarchy, we have two
more MustInherit base classes, namely CTwoDimensionalShape and CThreeD-
imensionalShape. The next level of the hierarchy would start defining concrete
classes for two-dimensional shapes such as CCircle and CSquare and such three-
dimensional shapes such as CSphere and CCube.

Software Engineering Observation 10.5
A MustInherit class defines a common set of Public methods for the various members
of a class hierarchy. A MustInherit class typically contains one or more abstract meth-
ods or properties that derived classes will override. All classes in the hierarchy can use this
common set of Public methods. 10.5



Chapter 10 Object-Oriented Programming: Polymorphism 399

MustInherit classes must specify their abstract methods or properties. Visual
Basic provides keyword MustOverride to declare a method or property as abstract.
MustOverride methods and properties do not provide implementations—attempting to
do so is a syntax error. Every derived class must override all base-class MustOverride
methods and properties (using keyword Overrides) and provide concrete implementa-
tions of those methods or properties. Any class with a MustOverride method in it must
be declared MustInherit. The difference between a MustOverride method and an
Overridable method is that an Overridable method has an implementation and
provides the derived class with the option of overriding the method; by contrast, a Must-
Override method does not provide an implementation and forces the derived class to
override the method (for that derived class to be concrete).

Common Programming Error 10.6
It is a syntax error to define a MustOverride method in a class that has not been declared
as MustInherit. 10.6

Common Programming Error 10.7
Attempting to instantiate an object of a MustInherit class is an error. 10.7

Common Programming Error 10.8
Failure to override a MustOverride method in a derived class is a syntax error, unless
the derived class also is a MustInherit class. 10.8

Software Engineering Observation 10.6
An abstract class can have instance data and nonabstract methods (including constructors),
which are subject to the normal rules of inheritance by derived classes. 10.6

Although we cannot instantiate objects of MustInherit base classes, we can use
MustInherit base classes to declare references; these references can refer to instances
of any concrete classes derived from the MustInherit class. Programs can use such ref-
erences to manipulate instances of the derived classes polymorphically.

Let us consider another application of polymorphism. A screen manager needs to dis-
play a variety of objects, including new types of objects that the programmer will add to the
system after writing the screen manager. The system might need to display various shapes,
such as CCircle, CTriangle or CRectangle, which are derived from MustIn-
herit class CShape. The screen manager uses base-class references of type CShape to
manage the objects that are displayed. To draw any object (regardless of the level at which
that object’s class appears in the inheritance hierarchy), the screen manager uses a base-
class reference to the object to invoke the object’s Draw method. Method Draw is a
MustOverride method in base-class CShape; therefore each derived class must over-
ride method Draw. Each CShape object in the inheritance hierarchy knows how to draw
itself. The screen manager does not have to worry about the type of each object or whether
the screen manager has ever encountered objects of that type. 

Polymorphism is particularly effective for implementing layered software systems. In
operating systems, for example, each type of physical device could operate quite differently
from the others. Even so, commands to read or write data from and to devices can have a
certain uniformity. The write message sent to a device-driver object needs to be interpreted
specifically in the context of that device driver and how that device driver manipulates



400 Object-Oriented Programming: Polymorphism Chapter 10

devices of a specific type. However, the write call itself is really no different from the write
to any other device in the system—simply place some number of bytes from memory onto
that device. An object-oriented operating system might use a MustInherit base class to
provide an interface appropriate for all device drivers. Then, through inheritance from that
MustInherit base class, derived classes are formed that all operate similarly. The capa-
bilities (i.e., the Public interface) offered by the device drivers are provided as Must-
Override methods in the MustInherit base class. The implementations of these
MustOverride methods are provided in the derived classes that correspond to the spe-
cific types of device drivers.

It is common in object-oriented programming to define an iterator class that can walk
through all the objects in a container (such as an array). For example, a program can print
a list of objects in a linked list by creating an iterator object, then using the iterator to obtain
the next element of the list each time the iterator is called. Iterators often are used in poly-
morphic programming to traverse an array or a linked list of objects from various levels of
a hierarchy. The references in such a list are all base-class references. (See Chapter 23, Data
Structures, to learn more about linked lists.) A list of objects of base class CTwoDimen-
sionalShape could contain objects from classes CSquare, CCircle, CTriangle
and so on. Using polymorphism to send a Draw message to each object in the list would
draw each object correctly on the screen.

10.6 Case Study: Inheriting Interface and Implementation
Our next example (Fig. 10.4–Fig. 10.8) reexamines the CPoint, CCircle, CCylinder
hierarchy that we explored in Chapter 9. In this example, the hierarchy begins with Must-
Inherit base class CShape (Fig. 10.4). This hierarchy mechanically demonstrates the
power of polymorphism. In the exercises, we explore a more substantial shape hierarchy.

1 ' Fig. 10.4: Shape.vb
2 ' Demonstrate a shape hierarchy using MustInherit class.
3
4 Imports System.Windows.Forms
5
6 Public MustInherit Class CShape
7
8    ' return shape area
9 Public Overridable Function Area() As Double

10       Return 0
11 End Function ' Area
12
13    ' return shape volume
14 Public Overridable Function Volume() As Double
15       Return 0
16 End Function ' Volume
17
18    ' overridable method that should return shape name
19 Public MustOverride ReadOnly Property Name() As String
20
21 End Class ' CShape

Fig. 10.4 Abstract CShape base class.



Chapter 10 Object-Oriented Programming: Polymorphism 401

Class CShape defines two concrete methods and one abstract property. Because all
shapes have an area and a volume, we include methods Area (lines 9–11) and Volume
(lines 14–16), which return the shape’s area and volume, respectively. The volume of two-
dimensional shapes is always zero, whereas three-dimensional shapes have a positive, non-
zero volume. In class CShape, methods Area and Volume return zero, by default. Pro-
grammers can override these methods in derived classes when those classes should have a
different area calculation [e.g., classes CCircle2 (Fig. 10.6) and CCylinder2
(Fig. 10.7)] and/or a different volume calculation (e.g., CCylinder2). Property Name
(line 19) is declared as MustOverride, so derived classes must override this property to
become concrete classes.

Class CPoint2 (Fig. 10.5) inherits from MustInherit class CShape and over-
rides the MustOverride property Name, which makes CPoint2 a concrete class. A
point’s area and volume are zero, so class CPoint2 does not override base-class methods
Area and Volume. Lines 59–65 implement property Name. If we did not provide this
implementation, class CPoint2 would be an abstract class that would require MustIn-
herit in the first line of the class definition.

1 ' Fig. 10.5: Point2.vb
2 ' CPoint2 class represents an x-y coordinate pair.
3
4 Public Class CPoint2
5  Inherits CShape ' CPoint2 inherits from MustInherit class CShape
6
7  ' point coordinate
8  Private mX, mY As Integer
9

10  ' default constructor
11   Public Sub New()
12
13   ' implicit call to Object constructor occurs here
14       X = 0
15       Y = 0
16  End Sub ' New
17
18    ' constructor
19    Public Sub New(ByVal xValue As Integer, _
20       ByVal yValue As Integer)
21
22       ' implicit call to Object constructor occurs here
23       X = xValue
24       Y = yValue
25  End Sub ' New
26
27    ' property X
28   Public Property X() As Integer
29
30       Get
31          Return mX
32       End Get

Fig. 10.5 CPoint2 class inherits from MustInherit class CShape (part 1 of 2).



402 Object-Oriented Programming: Polymorphism Chapter 10

Figure 10.6 defines class CCircle2 that inherits from class CPoint2. Class
CCircle2 contains member variable mRadius and provides property Radius (lines
26–40) to access the mRadius. Note that we do not declare property Radius as Over-
ridable, so classes derived from this class cannot override this property. A circle has a
volume of zero, so we do not override base-class method Volume. Rather, CCircle2
inherits this method from class CPoint2, which inherited the method from CShape.
However, a circle does have an area, so CCircle2 overrides CShape’s method Area
(lines 53–55). Property Name (lines 66–72) of class CCircle2 overrides property Name
of class CPoint2. If this class did not override property Name, the class would inherit the
CPoint2 version of property Name. In that case, CCircle2’s Name property would
erroneously return “CPoint2.”

33
34       Set(ByVal xValue As Integer)
35          mX = xValue ' no need for validation
36       End Set
37
38    End Property ' X
39
40 ' property Y 
41 Public Property Y() As Integer
42
43      Get
44          Return mY
45       End Get
46
47       Set(ByVal yValue As Integer)
48          mY = yValue ' no need for validation
49       End Set
50
51    End Property ' Y
52
53  ' return String representation of CPoint2
54    Public Overrides Function ToString() As String
55       Return "[" & mX & ", " & mY & "]"
56   End Function ' ToString
57
58    ' implement MustOverride property of class CShape
59 Public Overrides ReadOnly Property Name() As String
60
61       Get
62          Return "CPoint2"
63       End Get
64
65    End Property ' Name
66
67 End Class ' CPoint2

Fig. 10.5 CPoint2 class inherits from MustInherit class CShape (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 403

1 ' Fig. 10.6: Circle2.vb
2 ' CCircle2 class inherits from CPoint2 and overrides key members.
3
4 Public Class CCircle2
5  Inherits CPoint2 ' CCircle2 Inherits from class CPoint2
6
7  Private mRadius As Double
8
9  ' default constructor

10   Public Sub New()
11
12       ' implicit call to CPoint2 constructor occurs here
13       Radius = 0
14 End Sub ' New
15
16   ' constructor
17  Public Sub New(ByVal xValue As Integer, _
18       ByVal yValue As Integer, ByVal radiusValue As Double)
19
20       ' use MyBase reference to CPoint2 constructor explicitly
21     MyBase.New(xValue, yValue)
22       Radius = radiusValue
23  End Sub ' New
24
25 ' property Radius
26  Public Property Radius() As Double
27
28   Get
29          Return mRadius
30       End Get
31
32       Set(ByVal radiusValue As Double)
33
34          If radiusValue >= 0 ' mRadius must be nonnegative
35             mRadius = radiusValue
36          End If
37
38       End Set
39
40    End Property ' Radius
41
42    ' calculate CCircle2 diameter
43 Public Function Diameter() As Double
44       Return mRadius * 2
45 End Function ' Diameter
46
47    ' calculate CCircle2 circumference
48 Public Function Circumference() As Double
49       Return Math.PI * Diameter()
50 End Function ' Circumference
51

Fig. 10.6 CCircle2 class that inherits from class CPoint2 (part 1 of 2).



404 Object-Oriented Programming: Polymorphism Chapter 10

Figure 10.7 defines class CCylinder2 that inherits from class CCircle2. Class
CCylinder2 contains member variable mHeight and property Height (lines 27–42) to
access the mHeight. Note that we do not declare property Height as Overridable, so
classes derived from class CCylinder2 cannot override this property. A cylinder has dif-
ferent area and volume calculations than a circle, so this class overrides method Area (lines
45–47) to calculate the cylinder’s surface area (i.e., 2πr2 + 2πrh) and defines method
Volume (lines 50–52). Property Name (lines 60–66) overrides property Name of class
CCircle2. If this class did not override property Name, the class would inherit property
Name of class CCircle2, and this property would erroneously return “CCircle2.”

52    ' calculate CCircle2 area
53 Public Overrides Function Area() As Double
54       Return Math.PI * mRadius ^ 2
55 End Function ' Area
56
57  ' return String representation of CCircle2
58    Public Overrides Function ToString() As String
59
60       ' use MyBase to return CCircle2 String representation
61   Return "Center = " & MyBase.ToString() & _
62          "; Radius = " & mRadius
63   End Function ' ToString
64
65    ' override property Name from class CPoint2
66 Public Overrides ReadOnly Property Name() As String
67
68       Get
69          Return "CCircle2"
70       End Get
71
72    End Property ' Name
73
74 End Class ' CCircle2

1 ' Fig. 10.7: Cylinder2.vb
2 ' CCylinder2 inherits from CCircle2 and overrides key members.
3
4 Public Class CCylinder2
5  Inherits CCircle2 ' CCylinder2 inherits from class CCircle2
6
7  Protected mHeight As Double
8
9   ' default constructor

10   Public Sub New()
11
12       ' implicit call to CCircle2 constructor occurs here
13       Height = 0
14    End Sub ' New
15

Fig. 10.7 CCylinder2 class inherits from class CCircle2 (part 1 of 2).

Fig. 10.6 CCircle2 class that inherits from class CPoint2 (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 405

16  ' four-argument constructor
17   Public Sub New(ByVal xValue As Integer, _ 
18       ByVal yValue As Integer, ByVal radiusValue As Double, _
19       ByVal heightValue As Double)
20
21     ' explicit call to CCircle2 constructor
22       MyBase.New(xValue, yValue, radiusValue)
23       Height = heightValue ' set CCylinder2 height
24  End Sub ' New
25
26    ' property Height
27  Public Property Height() As Double
28
29       Get
30          Return mHeight
31       End Get
32
33       ' set CCylinder2 height if argument value is positive
34   Set(ByVal heightValue As Double)
35
36          If heightValue >= 0 Then ' mHeight must be nonnegative
37             mHeight = heightValue
38          End If
39
40       End Set
41
42    End Property ' Height
43
44  ' override method Area to calculate CCylinder2 surface area
45  Public Overrides Function Area() As Double
46       Return 2 * MyBase.Area + MyBase.Circumference * mHeight
47   End Function ' Area
48
49  ' calculate CCylinder2 volume
50   Public Overrides Function Volume() As Double
51    Return MyBase.Area * mHeight
52    End Function ' Volume
53
54  ' convert CCylinder2 to String
55    Public Overrides Function ToString() As String
56     Return MyBase.ToString() & "; Height = " & mHeight
57    End Function ' ToString
58
59    ' override property Name from class CCircle2
60 Public Overrides ReadOnly Property Name() As String
61
62       Get
63          Return "CCylinder2"
64       End Get
65
66    End Property ' Name
67
68 End Class ' CCylinder2

Fig. 10.7 CCylinder2 class inherits from class CCircle2 (part 2 of 2).



406 Object-Oriented Programming: Polymorphism Chapter 10

Figure 10.8 defines class CTest2 whose method Main creates an object of each of
the three concrete classes and manipulates the objects polymorphically using an array of
CShape references. Lines 11–13 instantiate CPoint2 object point, CCircle2 object
circle, and CCylinder2 object cylinder, respectively. Next, line 16 instantiates
array arrayOfShapes, which contains three CShape references. Line 19 assigns refer-
ence point to array element arrayOfShapes(0), line 22 assigns reference circle
to array element arrayOfShapes(1) and line 25 assigns reference cylinder to array
element arrayOfShapes(2). These assignments are possible, because a CPoint2 is
a CShape, a CCircle2 is a CShape and a CCylinder2 is a CShape. Therefore, we
can assign instances of derived-classes CPoint2, CCircle2 and CCylinder2 to base-
class CShape references.

1 ' Fig. 10.8: Test2.vb
2 ' Demonstrate polymorphism in Point-Circle-Cylinder hierarchy.
3
4 Imports System.Windows.Forms
5
6 Class CTest2
7
8 Shared Sub Main()
9

10      ' instantiate CPoint2, CCircle2 and CCylinder2 objects
11       Dim point As New CPoint2(7, 11)
12       Dim circle As New CCircle2(22, 8, 3.5)
13       Dim cylinder As New CCylinder2(10, 10, 3.3, 10)
14
15       ' instantiate array of base-class references
16       Dim arrayOfShapes(2) As CShape
17
18       ' arrayOfShapes(0) refers to CPoint2 object
19       arrayOfShapes(0) = point
20
21       ' arrayOfShapes(1) refers to CCircle2 object
22       arrayOfShapes(1) = circle
23
24       ' arrayOfShapes(2) refers to CCylinder2 object
25       arrayOfShapes(2) = cylinder
26
27       Dim output As String = point.Name & ": " & _
28          point.ToString() & vbCrLf & circle.Name & ": " & _
29          circle.ToString() & vbCrLf & cylinder.Name & _
30          ": " & cylinder.ToString()
31
32       Dim shape As CShape
33
34       ' display name, area and volume for each object in
35       ' arrayOfShapes polymorphically
36       For Each shape In arrayOfShapes
37          output &= vbCrLf & vbCrLf & shape.Name & ": " & _
38             shape.ToString() & vbCrLf & "Area = " & _

Fig. 10.8 CTest2 demonstrates polymorphism in Point-Circle-Cylinder hierarchy 
(part 1 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 407

Lines 27–30 invoke property Name and method ToString for objects point,
circle and cylinder. Property Name returns the object’s class name and method
ToString returns the object’s String representation (i.e., x-y coordinate pair, radius
and height, depending on each object’s type). Note that lines 27–30 use derived-class ref-
erences to invoke each derived-class object’s methods and properties.

By contrast, the For Each structure (lines 36–41) uses base-class CShape references
to invoke each derived-class object’s methods and properties. The For Each structure
calls property Name and methods ToString, Area and Volume for each CShape ref-
erence in arrayOfShapes. The property and methods are invoked on each object in
arrayOfShapes. When the compiler looks at each method/property call, the compiler
determines whether each CShape reference (in arrayOfShapes) can make these calls.
This is the case for property Name and methods Area and Volume, because they are
defined in class CShape. However, class CShape does not define method ToString.
For this method, the compiler proceeds to CShape’s base class (class Object), and deter-
mines that CShape inherited a no-argument ToString method from class Object.

The screen capture of Fig. 10.8 illustrates that the “appropriate” property Name and
methods ToString, Area and Volume were invoked for each type of object in array-
OfShapes. By “appropriate,” we mean that Visual Basic maps each property and method
call to the proper object. For example, in the For Each structure’s first iteration, reference
arrayOfShapes(0) (which is of type CShape) refers to the same object as point

39             String.Format("{0:F}", shape.Area) & vbCrLf & _
40             "Volume = " & String.Format("{0:F}", shape.Volume)
41       Next
42
43       MessageBox.Show(output, "Demonstrating Polymorphism")
44 End Sub ' Main
45
46 End Class ' CTest2

Fig. 10.8 CTest2 demonstrates polymorphism in Point-Circle-Cylinder hierarchy 
(part 2 of 2).



408 Object-Oriented Programming: Polymorphism Chapter 10

(which is of type CPoint2). Class CPoint2 overrides property Name and method
ToString, and inherits method Area and Volume from class CShape. At runtime,
arrayOfShapes(0) invokes property Name and methods ToString, Area and
Volume of the CPoint object. Visual Basic determines the correct object type, then uses
that type to determine the appropriate methods to invoke. Through polymorphism, the call
to property Name returns the string "CPoint2:"; the call to method ToString returns
the String representation of point’s x-y coordinate pair; and methods Area and
Volume each return 0 (as shown in the second group of outputs in Fig. 10.8).

Polymorphism occurs in the next two iterations of the For Each structure as well.
Reference arrayOfShapes(1) refers to the same object as circle (which is of type
CCircle2). Class CCircle2 provides implementations for property Name, method
ToString and method Area, and inherits method Volume from class CPoint2
(which, in turn, inherited method Volume from class CShape). Visual Basic associates
property Name and methods ToString, Area and Volume of the CCircle2 object to
reference arrayOfShapes(1). As a result, property Name returns the string
"CCircle2:"; method ToString returns the String representation of circle’s x-
y coordinate pair and radius; method Area returns the area (38.48); and method Volume
returns 0.

For the final iteration of the For Each structure, reference arrayOfShapes(2)
refers to the same object as cylinder (which is of type CCylinder2). Class
CCylinder2 provides its own implementations for property Name and methods
ToString, Area and Volume. Visual Basic associates property Name and methods
ToString, Area and Volume of the CCylinder2 object to reference arrayOf-
Shapes(2). Property Name returns the string "CCylinder2:"; method ToString
returns the String representation of cylinder’s x-y coordinate pair, radius and height;
method Area returns the cylinder’s surface area (275.77); and method Volume returns
the cylinder’s volume (342.12).

10.7  NotInheritable Classes and NotOverridable
Methods
A class that is declared NotInheritable cannot be a base class. Programmers use this
feature to prevent inheritance beyond the NotInheritable class in the hierarchy. A
NotInheritable class is the “opposite” of a MustInherit class. A NotInherit-
able class is a concrete class that cannot act as a base class, whereas a MustInherit
class is an abstract class that may act as a base class.

 A method that was declared Overridable in a base class can be declared
NotOverridable in a derived class. This prevents overriding the method in classes that
inherit from the derived class. All classes derived from the class that contains the Not-
Overridable method use that class’s method implementation. Methods that are
declared Shared and methods that are declared Private implicitly are Not-
Overridable.

Software Engineering Observation 10.7
If a method is declared NotOverridable, it cannot be overridden in derived classes.
Calls to NotOverridable methods cannot be sent polymorphically to objects of those de-
rived classes. 10.7



Chapter 10 Object-Oriented Programming: Polymorphism 409

Software Engineering Observation 10.8
A class that is declared NotInheritable cannot be a base class (i.e., a class cannot in-
herit from a NotInheritable class). All methods in a NotInheritable class implic-
itly are NotOverridable. 10.8

10.8 Case Study: Payroll System Using Polymorphism
Let us use abstract classes (declared as MustInherit), abstract methods (declared as
MustOverride) and polymorphism to perform different payroll calculations for various
types of employees. We begin by creating an abstract base class CEmployee. The derived
classes of CEmployee are CBoss (paid a fixed weekly salary, regardless of the number
of hours worked), CCommissionWorker (paid a flat base salary plus a percentage of the
worker’s sales), CPieceWorker (paid a flat fee per item produced) and CHourly-
Worker (paid by the hour with “time-and-a-half” for overtime). In this example, we de-
clare all classes that inherit from class CEmployee as NotInheritable, because we
do not intend to derive classes from them.

The application must determine the weekly earnings for all types of employees, so
each class derived from CEmployee requires method Earnings. However, each derived
class uses a different calculation to determine earnings for a specific type of employee.
Therefore, we declare method Earnings as MustOverride in CEmployee and
declare CEmployee to be a MustInherit class. Each derived class overrides this
method to calculate earnings for that employee type.

To calculate any employee’s earnings, the program can use a base-class reference to a
derived-class object and invoke method Earnings. In a real payroll system, the various
CEmployee objects might be referenced by individual elements in an array of CEm-
ployee references. The program would traverse the array one element at a time, using the
CEmployee references to invoke the appropriate Earnings method of each object.

Software Engineering Observation 10.9
The ability to declare an abstract (MustOverride) method gives the class designer con-
siderable control over how derived classes are defined in a class hierarchy. Any class that
inherits directly from a base class containing an abstract method must override the abstract
method. Otherwise, the new class also would be abstract, and attempts to instantiate objects
of that class would fail. 10.9

Let us consider class CEmployee (Fig. 10.9). The Public members include a con-
structor (lines 10–15) that takes as arguments an employee’s first and last names; properties
FirstName (lines 18–28) and LastName (lines 31–41); method ToString (lines 44–
46) that returns the first name and last name separated by a space; and MustOverride
method Earnings (line 50). The MustInherit keyword (line 4) indicates that class
CEmployee is abstract; thus, it cannot be used to instantiate CEmployee. Method
Earnings is declared as MustOverride, so the class does not provide a method imple-
mentation. All classes derived directly from class CEmployee—except for abstract
derived classes—must define this method. Method Earnings is abstract in CEmployee,
because we cannot calculate the earnings for a generic employee. To determine earnings,
we first must know of what kind of employee it is. By declaring this method Must-
Override, we indicate that we will provide an implementation in each concrete derived
class, but not in the base class itself.



410 Object-Oriented Programming: Polymorphism Chapter 10

1 ' Fig. 10.9: Employee.vb
2 ' Abstract base class for employee derived classes.
3
4 Public MustInherit Class CEmployee
5
6 Private mFirstName As String
7 Private mLastName As String
8
9    ' constructor

10 Public Sub New(ByVal firstNameValue As String, _
11       ByVal lastNameValue As String)
12
13       FirstName = firstNameValue
14       LastName = lastNameValue
15    End Sub ' New
16
17    ' property FirstName
18 Public Property FirstName() As String
19
20       Get
21          Return mFirstName
22       End Get
23
24       Set(ByVal firstNameValue As String)
25          mFirstName = firstNameValue
26       End Set
27
28    End Property ' FirstName
29
30    ' property LastName
31 Public Property LastName() As String
32
33       Get
34          Return mLastName
35       End Get
36
37       Set(ByVal lastNameValue As String)
38          mLastName = lastNameValue
39       End Set
40
41    End Property ' LastName
42
43    ' obtain String representation of employee
44 Public Overrides Function ToString() As String
45        Return mFirstName & " " & mLastName
46    End Function ' ToString
47
48    ' abstract method that must be implemented for each derived
49    ' class of CEmployee to calculate specific earnings
50 Public MustOverride Function Earnings() As Decimal
51
52 End Class ' CEmployee

Fig. 10.9 MustInherit class CEmployee definition.



Chapter 10 Object-Oriented Programming: Polymorphism 411

Class CBoss (Fig. 10.10) inherits from CEmployee. Class CBoss’s constructor
(lines 10–15) receives as arguments a first name, a last name and a salary. The constructor
passes the first name and last name to the CEmployee constructor (line 13), which initial-
izes the FirstName and LastName members of the base-class part of the derived-class
object. Other Public methods contained in CBoss include method Earnings (lines
36–38), which defines the calculation of a boss’ earnings, and method ToString (lines
41–43), which returns a String indicating the type of employee (i.e., "CBoss: ") and
the boss’s name. Class CBoss also includes property WeeklySalary (lines 18–33),
which sets and gets the value for member variable mSalary. Note that this property
ensures only that mSalary cannot hold a negative value—in a real payroll system, this
validation would be more extensive and carefully controlled. 

1 ' Fig. 10.10: Boss.vb
2 ' Boss class derived from CEmployee.
3
4 Public NotInheritable Class CBoss
5 Inherits CEmployee
6
7 Private mSalary As Decimal
8
9    ' constructor for class CBoss

10 Public Sub New(ByVal firstNameValue As String, _
11       ByVal lastNameValue As String, ByVal salaryValue As Decimal)
12
13       MyBase.New(firstNameValue, lastNameValue)
14       WeeklySalary = salaryValue
15 End Sub ' New
16
17    ' property WeeklySalary
18 Public Property WeeklySalary() As Decimal
19
20       Get
21          Return mSalary
22       End Get
23
24       Set(ByVal bossSalaryValue As Decimal)
25
26          ' validate mSalary
27          If bossSalaryValue > 0
28             mSalary = bossSalaryValue
29          End If
30
31       End Set
32
33    End Property ' WeeklySalary
34
35    ' override base-class method to calculate Boss earnings
36 Public Overrides Function Earnings() As Decimal
37       Return WeeklySalary
38 End Function ' Earnings
39

Fig. 10.10 CBoss class inherits from class CEmployee (part 1 of 2).



412 Object-Oriented Programming: Polymorphism Chapter 10

Class CCommissionWorker (Fig. 10.11) also inherits from class CEmployee.
The constructor for this class (lines 12–21) receives as arguments a first name, a last name,
a salary, a commission and a quantity of items sold. Line 17 passes the first name and last
name to the base-class CEmployee constructor. Class CCommissionWorker also pro-
vides properties Salary (lines 24–39), Commission (lines 42–57) and Quantity
(lines 60–75); method Earnings (lines 78–80), which calculates the worker’s wages; and
method ToString (lines 83–85), which returns a String indicating the employee type
(i.e., "CCommissionWorker: ") and the worker’s name.

40    ' return Boss' name
41 Public Overrides Function ToString() As String
42       Return "CBoss: " & MyBase.ToString()
43    End Function ' ToString
44
45 End Class ' CBoss

1 ' Fig. 10.11: CommissionWorker.vb
2 ' CEmployee implementation for a commission worker.
3
4 Public NotInheritable Class CCommissionWorker
5 Inherits CEmployee
6
7 Private mSalary As Decimal ' base salary per week
8 Private mCommission As Decimal ' amount per item sold
9 Private mQuantity As Integer ' total items sold 

10
11    ' constructor for class CCommissionWorker
12 Public Sub New(ByVal firstNameValue As String, _
13       ByVal lastNameValue As String, ByVal salaryValue As Decimal, _
14       ByVal commissionValue As Decimal, _
15       ByVal quantityValue As Integer)
16
17       MyBase.New(firstNameValue, lastNameValue)
18       Salary = salaryValue
19       Commission = commissionValue
20       Quantity = quantityValue
21    End Sub ' New
22
23 ' property Salary
24 Public Property Salary() As Decimal
25
26       Get
27          Return mSalary
28       End Get
29

Fig. 10.11 CCommissionWorker class inherits from class CEmployee (part 1 of 3).

Fig. 10.10 CBoss class inherits from class CEmployee (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 413

30       Set(ByVal salaryValue As Decimal)
31
32          ' validate mSalary
33          If salaryValue > 0 Then
34             mSalary = salaryValue
35          End If
36
37       End Set
38
39    End Property ' Salary
40
41 ' property Commission
42 Public Property Commission() As Decimal
43
44       Get
45          Return mCommission
46       End Get
47
48       Set(ByVal commissionValue As Decimal)
49
50          ' validate mCommission
51          If commissionValue > 0 Then
52             mCommission = commissionValue
53          End If
54
55       End Set
56
57    End Property ' Commission
58
59 ' property Quantity
60 Public Property Quantity() As Integer
61
62       Get
63          Return mQuantity
64       End Get
65
66       Set(ByVal QuantityValue As Integer)
67
68          ' validate mQuantity
69          If QuantityValue > 0 Then
70             mQuantity = QuantityValue
71          End If
72
73       End Set
74
75    End Property ' Quantity
76
77 ' override method to calculate CommissionWorker earnings
78 Public Overrides Function Earnings() As Decimal
79       Return Salary + Commission * Quantity
80    End Function ' Earnings
81

Fig. 10.11 CCommissionWorker class inherits from class CEmployee (part 2 of 3).



414 Object-Oriented Programming: Polymorphism Chapter 10

Class CPieceWorker (Fig. 10.12) inherits from class CEmployee. The con-
structor for this class (lines 11–19) receives as arguments a first name, a last name, a wage
per piece and a quantity of items produced. Line 16 then passes the first name and last name
to the base-class CEmployee constructor. Class CPieceWorker also provides proper-
ties WagePerPiece (lines 22–37) and Quantity (lines 40–55); method Earnings
(lines 58–60), which calculates a piece worker’s earnings; and method ToString (lines
63–65), which returns a String indicating the type of the employee (i.e., "CPiece-
Worker: ") and the piece worker’s name.

Class CHourlyWorker (Fig. 10.13) inherits from class CEmployee. The con-
structor for this class (lines 11–18) receives as arguments a first name, a last name, a wage
and the number of hours worked. Line 15 passes the first name and last name to the base-
class CEmployee constructor. Class CHourlyWorker also provides properties
HourlyWage (lines 21–36) and Hours (lines 39–54); method Earnings (lines 57–67),
which calculates an hourly worker’s earnings; and method ToString (lines 70–72),
which returns a String indicating the type of the employee (i.e., "CHourlyWorker:")
and the hourly worker’s name. Note that hourly workers are paid “time-and-a-half” for
“overtimes” (i.e., hours worked in excess of 40 hours). 

82 ' return commission worker's name
83 Public Overrides Function ToString() As String
84       Return "CCommissionWorker: " & MyBase.ToString()
85    End Function ' ToString
86
87 End Class ' CCommissionWorker

1 ' Fig. 10.12: PieceWorker.vb
2 ' CPieceWorker class derived from CEmployee.
3
4 Public NotInheritable Class CPieceWorker
5 Inherits CEmployee
6
7 Private mAmountPerPiece As Decimal ' wage per piece output
8 Private mQuantity As Integer ' output per week
9

10    ' constructor for CPieceWorker
11 Public Sub New(ByVal firstNameValue As String, _
12       ByVal lastNameValue As String, _
13       ByVal wagePerPieceValue As Decimal, _
14       ByVal quantityValue As Integer)
15
16       MyBase.New(firstNameValue, lastNameValue)
17       WagePerPiece = wagePerPieceValue
18       Quantity = quantityValue
19    End Sub ' New
20

Fig. 10.12 CPieceWorker class inherits from class CEmployee (part 1 of 2).

Fig. 10.11 CCommissionWorker class inherits from class CEmployee (part 3 of 3).



Chapter 10 Object-Oriented Programming: Polymorphism 415

Method Main (lines 8–50) of class CTest (Fig. 10.14) declares CEmployee refer-
ence employee (line 9). Each employee type is handled similarly in Main, so we discuss
only the manipulations of the CBoss object.  

21    ' property WagePerPiece
22 Public Property WagePerPiece() As Decimal
23
24       Get
25          Return mAmountPerPiece
26       End Get
27
28       Set(ByVal wagePerPieceValue As Decimal)
29
30          ' validate mAmountPerPiece
31          If wagePerPieceValue > 0 Then
32             mAmountPerPiece = wagePerPieceValue
33          End If
34
35       End Set
36
37    End Property ' WagePerPiece
38
39    ' property Quantity
40 Public Property Quantity() As Integer
41
42       Get
43          Return mQuantity
44       End Get
45
46       Set(ByVal quantityValue As Integer)
47
48          ' validate mQuantity
49          If quantityValue > 0 Then
50             mQuantity = quantityValue
51          End If
52
53       End Set
54
55    End Property ' Quantity
56
57    ' override base-class method to calculate PieceWorker's earnings
58 Public Overrides Function Earnings() As Decimal
59       Return Quantity * WagePerPiece
60    End Function ' Earnings
61
62    ' return piece worker's name
63 Public Overrides Function ToString() As String
64       Return "CPieceWorker: " & MyBase.ToString()
65    End Function ' ToString
66
67 End Class ' CPieceWorker

Fig. 10.12 CPieceWorker class inherits from class CEmployee (part 2 of 2).



416 Object-Oriented Programming: Polymorphism Chapter 10

1 ' Fig. 10.13: HourlyWorker.vb
2 ' CEmployee implementation for an hourly worker.
3
4 Public NotInheritable Class CHourlyWorker
5 Inherits CEmployee
6
7 Private mWage As Decimal ' wage per hour
8 Private mHoursWorked As Double ' hours worked for week
9

10    ' constructor for class CHourlyWorker
11 Public Sub New(ByVal firstNameValue As String, _
12       ByVal lastNameValue As String, _
13       ByVal wageValue As Decimal, ByVal hourValue As Double)
14
15       MyBase.New(firstNameValue, lastNameValue)
16       HourlyWage = wageValue
17       Hours = hourValue
18 End Sub ' New
19
20    ' property HourlyWage
21 Public Property HourlyWage() As Decimal
22
23       Get
24          Return mWage
25       End Get
26
27       Set(ByVal hourlyWageValue As Decimal)
28
29          ' validate mWage
30          If hourlyWageValue > 0 Then
31             mWage = hourlyWageValue
32          End If
33
34       End Set
35
36    End Property ' HourlyWage
37
38    ' property Hours
39 Public Property Hours() As Double
40
41       Get
42          Return mHoursWorked
43       End Get
44
45       Set(ByVal hourValue As Double)
46
47          ' validate mHoursWorked
48          If hourValue > 0 Then
49             mHoursWorked = hourValue
50          End If
51
52       End Set
53

Fig. 10.13 CHourlyWorker class inherits from class CEmployee (part 1 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 417

54    End Property ' Hours
55
56    ' override base-class method to calculate HourlyWorker earnings
57 Public Overrides Function Earnings() As Decimal
58
59       ' calculate for "time-and-a-half"
60       If mHoursWorked <= 40
61          Return Convert.ToDecimal(mWage * mHoursWorked)
62       Else
63          Return Convert.ToDecimal((mWage * mHoursWorked) + _
64             (mHoursWorked - 40) * 1.5 * mWage)
65       End If
66
67    End Function ' Earnings
68
69    ' return hourly worker's name
70 Public Overrides Function ToString() As String
71       Return "CHourlyWorker: " & MyBase.ToString()
72    End Function ' ToString
73
74 End Class ' CHourlyWorker

1 ' Fig 10.14: Test.vb
2 ' Displays the earnings for each CEmployee.
3
4 Imports System.Windows.Forms
5
6 Class CTest
7
8 Shared Sub Main()
9       Dim employee As CEmployee ' base-class reference

10       Dim output As String
11
12       Dim boss As CBoss = New CBoss("John", "Smith", 800)
13
14       Dim commissionWorker As CCommissionWorker = _
15          New CCommissionWorker("Sue", "Jones", 400, 3, 150)
16
17       Dim pieceWorker As CPieceWorker = _
18          New CPieceWorker("Bob", "Lewis", _
19             Convert.ToDecimal(2.5), 200)
20
21       Dim hourlyWorker As CHourlyWorker = _
22          New CHourlyWorker("Karen", "Price", _
23             Convert.ToDecimal(13.75), 40)
24
25       ' employee reference to a CBoss
26       employee = boss
27       output &= GetString(employee) & boss.ToString() & _
28          " earned " & boss.Earnings.ToString("C") & vbCrLf & vbCrLf

Fig. 10.14 CTest class tests the CEmployee class hierarchy (part 1 of 2).

Fig. 10.13 CHourlyWorker class inherits from class CEmployee (part 2 of 2).



418 Object-Oriented Programming: Polymorphism Chapter 10

Line 12 assigns to CBoss reference boss a CBoss object and passes to its con-
structor the boss’s first name (“John”), last name (“Smith”) and fixed weekly salary
(800). Line 26 assigns the derived-class reference boss to the base-class CEmployee

29
30       ' employee reference to a CCommissionWorker
31       employee = commissionWorker
32       output &= GetString(employee) & _
33          commissionWorker.ToString() & " earned " & _
34          commissionWorker.Earnings.ToString("C") & vbCrLf & vbCrLf
35
36       ' employee reference to a CPieceWorker
37       employee = pieceWorker
38       output &= GetString(employee) & pieceWorker.ToString() & _ 
39          " earned " & pieceWorker.Earnings.ToString("C") _
40          & vbCrLf & vbCrLf
41
42       ' employee reference to a CHourlyWorker
43       employee = hourlyWorker
44       output &= GetString(employee) & _
45          hourlyWorker.ToString() & " earned " & _  
46          hourlyWorker.Earnings.ToString("C") & vbCrLf & vbCrLf
47
48       MessageBox.Show(output, "Demonstrating Polymorphism", _
49          MessageBoxButtons.OK, MessageBoxIcon.Information)
50 End Sub ' Main
51
52    ' return String containing employee information
53 Shared Function GetString(ByVal worker As CEmployee) As String
54       Return worker.ToString() & " earned " & _
55          worker.Earnings.ToString("C") & vbCrLf
56    End Function ' GetString
57
58 End Class ' CTest

Fig. 10.14 CTest class tests the CEmployee class hierarchy (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 419

reference employee, so that we can demonstrate the polymorphic determination of
boss’s earnings. Line 27 passes reference employee as an argument to Private
method GetString (lines 53–56), which polymorphically invokes methods ToString
and Earnings on the CEmployee object the method receives as an argument. At this
point, Visual Basic determines that the object passed to GetString is of type CBoss, so
lines 54–55 invoke CBoss methods ToString and Earnings. These are classic exam-
ples of polymorphic behavior.

Method Earnings returns a Decimal object on which line 55 then calls method
ToString. In this case, the string "C", which is passed to an overloaded version of Dec-
imal method ToString, stands for Currency and ToString formats the string as a
currency amount. 

When method GetString returns to Main, lines 27–28 explicitly invoke methods
ToString and Earnings through derived-class CBoss reference boss to show the
method invocations that do not use polymorphic processing. The output generated in lines
27–28 is identical to that generated by methods ToString and Earnings through base-
class reference employee (i.e., the methods that use polymorphism), verifying that the
polymorphic methods invoke the appropriate methods in derived class CBoss.

To prove that the base-class reference employee can invoke the proper derived-class
versions of methods ToString and Earnings for the other types of employees, lines
31, 37 and 43 assign to base-class reference employee a different type of CEmployee
object (CCommissionWorker, CPieceWorker and CHourlyWorker, respec-
tively). After each assignment, the application calls method GetString to return the
results via the base-class reference. Then, the application calls methods ToString and
Earnings off each derived-class reference to show that Visual Basic correctly associates
each method call to its corresponding derived-class object.

10.9 Case Study: Creating and Using Interfaces
We now present two more examples of polymorphism through the use of an interface,
which specifies a set of Public services (i.e., methods and properties) that classes must
implement. An interface is used when there is no default implementation to inherit (i.e., no
instance variables and no default-method implementations). Whereas an abstract class is
best used for providing data and services for objects in a hierarchical relationship, an inter-
face can be used for providing services that “bring together” disparate objects that relate to
one another only through that interface’s services.

An interface definition begins with the keyword Interface and contains a list of
Public methods and properties. To use an interface, a class must specify that it Imple-
ments the interface and must provide implementations for every method and property
specified in the interface definition. Having a class implement an interface is like signing a
contract with the compiler that states, “this class will define all the methods and properties
specified by the interface.”

Common Programming Error 10.9
When a class Implements an Interface, leaving even a single Interface method
or property undefined is an error. The class must define every method and property in the
Interface. 10.9



420 Object-Oriented Programming: Polymorphism Chapter 10

Common Programming Error 10.10
In Visual Basic, an Interface can be declared only as Public or Friend; the decla-
ration of an Interface as Private or Protected is an error. 10.10

Interfaces provide a uniform set of methods and properties to objects of disparate
classes. These methods and properties enable programs to process the objects of those dis-
parate classes polymorphically. For example, consider disparate objects that represent a
person, a tree, a car and a file. These objects have “nothing to do” with each other—a
person has a first name and last name; a tree has a trunk, a set of branches and a bunch of
leaves; a car has wheels, gears and several other mechanisms enabling the car to move; and
a file contains data. Because of the lack in commonality among these classes, modeling
them via an inheritance hierarchy with an abstract class seems illogical. However, these
objects certainly have at least one common characteristic—an age. A person’s age is rep-
resented by the number of years since that person was born; a tree’s age is represented by
the number of rings in its trunk; a car’s age is represented by its manufacture date; and file’s
age is represented by its creation date. We can use an interface that provides a method or
property that objects of these disparate classes can implement to return each object’s age.

In this example, we use interface IAge (Fig. 10.15) to return the age information for
classes CPerson (Fig. 10.16) and CTree (Fig. 10.17). The definition of interface IAge
begins at line 4 with Public Interface and ends at line 10 with End Interface.
Lines 7–8 specify properties Age and Name, for which every class that implements inter-
face IAge must provide implementations. Interface IAge declares these properties as
ReadOnly, but doing so is not required—an interface can also provide methods (Subs
and Functions), WriteOnly properties and properties with both get and set accessors.
By containing these property declarations, interface IAge provides an opportunity for an
object that implements IAge to return its age and name, respectively. However, the classes
that implement these methods are not “required” by either interface IAge or Visual Basic
to return an age and a name. The compiler requires only that classes implementing interface
IAge provide implementations for the interface’s properties. (Technically, interface IAge
should not provide the opportunity for an object to return its name. However, as we will see
later, clients that process interface objects polymorphically can interact with those objects
only through the interface; therefore, property Name gives an object a chance to “identify”
itself in our example.)

1 ' Fig. 10.15: IAge.vb
2 ' Interface IAge declares property for setting and getting age.
3
4 Public Interface IAge
5
6    ' classes that implement IAge must define these properties
7 ReadOnly Property Age() As Integer
8 ReadOnly Property Name() As String
9

10 End Interface ' IAge

Fig. 10.15 Interface for returning age of objects of disparate classes.



Chapter 10 Object-Oriented Programming: Polymorphism 421

Line 5 of Fig. 10.16 uses keyword Implements to indicate that class CPerson
implements interface IAge. In this example, class CPerson implements only one inter-
face. A class can implement any number of interfaces in addition to inheriting from one
class. To implement more than one interface, the class definition must provide a comma-
separated list of interface names after keyword Implements. Class CPerson has
member variables mYearBorn, mFirstName and mLastName (lines 7–9), for which
the constructor (lines 12–29) set the values. Because class CPerson implements interface
IAge, class CPerson must implement properties Age and Name—defined on lines 32–
39 and lines 42–49, respectively. Property Age allows the client to obtain the person’s age,
and property Name returns a String containing mFirstName and mLastName. Note
that property Age calculates the person’s age by subtracting mYearBorn from the current
year (via property Year of property Date.Now, which returns the current date). These
properties satisfy the implementation requirements defined in interface IAge, so class
CPerson has fulfilled its “contract” with the compiler.

1 ' Fig. 10.16: Person.vb
2 ' Class CPerson has a birthday.
3
4 Public Class CPerson
5 Implements IAge
6
7 Private mYearBorn As Integer
8 Private mFirstName As String
9 Private mLastName As String

10
11    ' constructor receives first name, last name and birth date
12 Public Sub New(ByVal firstNameValue As String, _
13       ByVal lastNameValue As String, _
14       ByVal yearBornValue As Integer)
15
16       ' implicit call to Object constructor
17       mFirstName = firstNameValue
18       mLastName = lastNameValue
19
20       ' validate year
21       If (yearBornValue > 0 AndAlso _
22          yearBornValue <= Date.Now.Year)
23
24          mYearBorn = yearBornValue
25       Else
26          mYearBorn = Date.Now.Year
27       End If
28
29 End Sub ' New
30
31    ' property Age implementation of interface IAge
32 ReadOnly Property Age() As Integer _
33       Implements IAge.Age
34

Fig. 10.16 CPerson class implements IAge interface (part 1 of 2).



422 Object-Oriented Programming: Polymorphism Chapter 10

Class CTree (Fig. 10.17) also implements interface IAge. Class CTree has member
variables mRings (line 7), which represents the number of rings inside the tree’s trunk—
this variable corresponds directly with the tree’s age. The CTree constructor (lines 10–14)
receives as an argument an Integer that specifies when the tree was planted. Class
CTree includes method AddRing (lines 17–19), which enables a user to increment the
number of rings in the tree. Because class CTree implements interface IAge, class
CTree must implement properties Age and Name—defined on lines 22–29 and lines 32–
39, respectively. Property Age returns the value of mRings, and property Name returns
String “Tree.”

35       Get
36          Return Date.Now.Year - mYearBorn
37       End Get
38
39 End Property ' Age
40
41    ' property Name implementation of interface IAge
42 ReadOnly Property Name() As String _
43       Implements IAge.Name
44
45       Get
46          Return mFirstName & " " & mLastName
47       End Get
48
49 End Property ' Name
50
51 End Class ' CPerson

1 ' Fig. 10.17: Tree.vb
2 ' Class CTree contains number of rings corresponding to age.
3
4 Public Class CTree
5 Implements IAge
6
7 Private mRings As Integer
8
9    ' constructor receives planting date

10 Public Sub New(ByVal yearPlanted As Integer)
11
12       ' implicit call to Object constructor
13       mRings = Date.Now.Year - yearPlanted
14 End Sub ' New
15
16    ' increment mRings
17 Public Sub AddRing()
18       mRings += 1
19 End Sub ' AddRing
20

Fig. 10.17 CTeee class implements IAge interface (part 1 of 2).

Fig. 10.16 CPerson class implements IAge interface (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 423

Class CTest (Fig. 10.18) demonstrates polymorphism on the objects of disparate
classes CPerson and CTree. Line 11 instantiates object tree of class CTree, and line 12
instantiates object person of class CPerson. Line 15 declares iAgeArray—an array
of two references to IAge objects. Line 18 and 21 assign tree and person to the first
and second reference in iAgeArray, respectively. Lines 24–26 invoke method
ToString on tree, then invoke its properties Age and Name to return age and name
information for object tree. Lines 29–31 invoke method ToString on person, then
invoke its properties Age and Name to return age and name information for object
person. Next, we manipulate these objects polymorphically through the iAgeArray of
references to IAge objects. Lines 36–39 define a For-Each structure that uses properties
Age and Name to obtain age and name information for each IAge object in iAgeArray.
Note that we use Name so that each object in iAgeArray can “identify” itself in our pro-
gram’s output. Objects tree and person can use method ToString to do this, because
classes CTree and CPerson both inherit from class Object. However, when CTest
interacts with these objects polymorphically, CTest can use only properties Age and
Name for each interface object. Because interface IAge does not provide method
ToString, clients cannot invoke method ToString through interface IAge references.

21    ' property Age
22 ReadOnly Property Age() As Integer _
23       Implements IAge.Age
24
25       Get
26          Return mRings
27       End Get
28
29 End Property ' Age
30
31    ' property Name implementation of interface IAge
32 ReadOnly Property Name() As String _
33       Implements IAge.Name
34
35       Get
36          Return "Tree"
37       End Get
38
39 End Property ' Name
40
41 End Class ' CTree

1 ' Fig. 10.18: Test.vb
2 ' Demonstrate polymorphism.
3
4 Imports System.Windows.Forms
5
6 Class CTest
7

Fig. 10.18 Demonstrate polymorphism on objects of disparate classes (part 1 of 2).

Fig. 10.17 CTeee class implements IAge interface (part 2 of 2).



424 Object-Oriented Programming: Polymorphism Chapter 10

8 Shared Sub Main()
9

10       ' instantiate CTree and CPerson objects
11       Dim tree As New CTree(1977)
12       Dim person As New CPerson("Bob", "Jones", 1983)
13
14       ' instantiate array of base-class references
15       Dim iAgeArray(1) As IAge
16
17       ' iAgeArray(0) references CTree object
18       iAgeArray(0) = tree
19
20       ' iAgeArray(1) references CPerson object
21       iAgeArray(1) = person
22
23       ' display tree information
24       Dim output As String = tree.ToString() & ": " & _
25          tree.Name & vbCrLf & "Age is " & tree.Age & vbCrLf & _
26          vbCrLf
27
28       ' display person information
29       output &= person.ToString() & ": " & _
30          person.Name & vbCrLf & "Age is " & person.Age & _
31          vbCrLf
32
33       Dim ageReference As IAge
34
35       ' display name and age for each IAge object in iAgeArray
36       For Each ageReference In iAgeArray
37          output &= vbCrLf & ageReference.Name & ": " & _
38             "Age is " & ageReference.Age
39       Next
40
41       MessageBox.Show(output, "Demonstrating Polymorphism")
42 End Sub ' Main
43
44 End Class ' CTest

Fig. 10.18 Demonstrate polymorphism on objects of disparate classes (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 425

Our next example reexamines the CPoint–CCircle–CCylinder hierarchy using
an interface, rather than using an abstract class, to describe the common methods and prop-
erties of the classes in the hierarchy. We now show how a class can implement an interface,
then act as a base class for derived classes to inherit the implementation. We create inter-
face IShape (Fig. 10.19), which specifies methods Area and Volume and property
Name (lines 7–9). Every class that implements interface IShape must provide implemen-
tations for these two methods and this property. Note that, even though the methods in this
interface do not receive arguments, interface methods can receive arguments (just as reg-
ular methods can).

Good Programming Practice 10.1
By convention, begin the name of each interface with “I.” 10.1

Because class CPoint3 (Fig. 10.20) implements interface IShape, class CPoint3
must implement all three IShape members. Lines 55–59 implement method Area, which
returns 0, because points have an area of zero. Lines 62–66 implement method Volume,
which also returns 0, because points have a volume of zero. Lines 69–76 implement Rea-
dOnly property Name, which returns the class name as a String ("CPoint3"). Note
the inclusion of keyword Implements followed by the interface method/property name
in these method/property implementations—this keyword informs the compiler that each
method/property is an implementation of its corresponding interface method/property.
Also note that class CPoint3 specifies these methods/properties as Overridable,
enabling derived classes to override them.

Common Programming Error 10.11
When implementing an Interface method, failure to include keyword Implements fol-
lowed by that Interface method’s name is a syntax error. 10.11

When a class implements an interface, the class enters the same kind of is-a relationship
that inheritance establishes. In our example, class CPoint3 implements interface IShape.
Therefore, a CPoint3 object is an IShape, and objects of any class that inherits from
CPoint3 are also IShapes. For example, class CCircle3 (Fig. 10.21) inherits from class
CPoint3; thus, a CCircle3 is an IShape. Class CCircle3 implements interface
IShape implicitly, because class CCircle3 inherits the IShape methods that class
CPoint implemented. Because circles do not have volume, class CCircle3 inherits class
CPoint3’s Volume method, which returns zero. However, we do not want to use the class
CPoint3 method Area or property Name for class CCircle3. Class CCircle3 should
provide its own implementation for these, because the area and name of a circle differ from
those of a point. Lines 51–53 override method Area to return the circle’s area, and lines 56–
62 override property Name to return String "CCircle3".

Class CCylinder3 (Fig. 10.22) inherits from class CCircle3. Class
CCylinder3 implements interface IShape implicitly, because class CCylinder3
inherits method Area and property Name from class CCircle3 and method Volume
from class CPoint3. However, class CCylinder3 overrides property Name and
methods Area and Volume to perform CCylinder3-specific operations. Lines 43–45
override method Area to return the cylinder’s surface area, lines 48–50 override method
Volume to return the cylinder’s volume and lines 58–64 override property Name to return
String "CCylinder3".



426 Object-Oriented Programming: Polymorphism Chapter 10

1 ' Fig. 10.19: Shape.vb
2 ' Interface IShape for Point, Circle, Cylinder hierarchy.
3
4 Public Interface IShape
5
6    ' classes that implement IShape must define these methods
7  Function Area() As Double
8 Function Volume() As Double
9 ReadOnly Property Name() As String

10
11 End Interface ' IShape

Fig. 10.19 IShape interface provides methods Area and Volume and property 
Name.

1 ' Fig. 10.20: Point3.vb
2 ' Class CPoint3 implements IShape.
3
4 Public Class CPoint3
5 Implements IShape
6
7  ' point coordinate
8  Private mX, mY As Integer
9

10  ' default constructor
11   Public Sub New()
12       X = 0
13       Y = 0
14  End Sub ' New
15
16    ' constructor
17    Public Sub New(ByVal xValue As Integer, _
18       ByVal yValue As Integer)
19       X = xValue
20       Y = yValue
21  End Sub ' New
22
23    ' property X
24   Public Property X() As Integer
25
26       Get
27          Return mX
28       End Get
29
30       Set(ByVal xValue As Integer)
31          mX = xValue ' no need for validation
32       End Set
33
34    End Property ' X
35

Fig. 10.20 CPoint3 class implements interface IShape (part 1 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 427

36 ' property Y 
37 Public Property Y() As Integer
38
39      Get
40          Return mY
41       End Get
42
43       Set(ByVal yValue As Integer)
44          mY = yValue ' no need for validation
45       End Set
46
47    End Property ' Y
48
49  ' return String representation of CPoint3
50    Public Overrides Function ToString() As String
51       Return "[" & mX & ", " & mY & "]"
52   End Function ' ToString
53
54 ' implement interface IShape method Area
55    Public Overridable Function Area() As Double _
56       Implements IShape.Area
57
58   Return 0
59    End Function ' Area
60
61    ' implement interface IShape method Volume
62 Public Overridable Function Volume() As Double _
63       Implements IShape.Volume
64
65       Return 0
66   End Function ' Volume
67
68    ' implement interface IShape property Name
69  Public Overridable ReadOnly Property Name() As String _
70       Implements IShape.Name
71
72       Get
73         Return "CPoint3"
74       End Get
75
76  End Property ' Name
77
78 End Class ' CPoint3

1 ' Fig. 10.21: Circle3.vb
2 ' CCircle3 inherits CPoint3 and overrides some of its methods.
3
4 Public Class CCircle3
5  Inherits CPoint3 ' CCircle3 Inherits from class CPoint3
6

Fig. 10.21 CCircle3 class inherits from class CPoint3 (part 1 of 3).

Fig. 10.20 CPoint3 class implements interface IShape (part 2 of 2).



428 Object-Oriented Programming: Polymorphism Chapter 10

7  Private mRadius As Double
8
9  ' default constructor

10   Public Sub New()
11       Radius = 0
12 End Sub ' New
13
14   ' constructor
15  Public Sub New(ByVal xValue As Integer, _
16       ByVal yValue As Integer, ByVal radiusValue As Double)
17
18       ' use MyBase reference to CPoint constructor explicitly
19     MyBase.New(xValue, yValue)
20       Radius = radiusValue
21  End Sub ' New
22
23 ' property Radius
24  Public Property Radius() As Double
25
26   Get
27          Return mRadius
28       End Get
29
30       Set(ByVal radiusValue As Double)
31
32          If radiusValue >= 0
33             mRadius = radiusValue ' mRadius cannot be negative
34          End If
35
36       End Set
37
38    End Property ' Radius
39
40    ' calculate CCircle3 diameter
41 Public Function Diameter() As Double
42       Return mRadius * 2
43 End Function ' Diameter
44
45    ' calculate CCircle3 circumference
46 Public Function Circumference() As Double
47       Return Math.PI * Diameter()
48 End Function ' Circumference
49
50    ' calculate CCircle3 area
51 Public Overrides Function Area() As Double
52       Return Math.PI * mRadius ^ 2
53 End Function ' Area
54
55    ' override interface IShape property Name from class CPoint3
56  Public ReadOnly Overrides Property Name() As String
57

Fig. 10.21 CCircle3 class inherits from class CPoint3 (part 2 of 3).



Chapter 10 Object-Oriented Programming: Polymorphism 429

58       Get
59         Return "CCircle3"
60       End Get
61
62  End Property ' Name
63
64  ' return String representation of CCircle3
65    Public Overrides Function ToString() As String
66
67       ' use MyBase to return CCircle3 String representation
68   Return "Center = " & MyBase.ToString() & _
69          "; Radius = " & mRadius
70   End Function ' ToString
71
72 End Class ' CCircle3

1 ' Fig. 10.22: Cylinder3.vb
2 ' CCylinder3 inherits from CCircle3 and overrides key members.
3
4 Public Class CCylinder3
5  Inherits CCircle3 ' CCylinder3 inherits from class CCircle3
6
7  Protected mHeight As Double
8
9   ' default constructor

10   Public Sub New()
11       Height = 0
12    End Sub ' New
13
14  ' four-argument constructor
15   Public Sub New(ByVal xValue As Integer, _ 
16       ByVal yValue As Integer, ByVal radiusValue As Double, _
17       ByVal heightValue As Double)
18
19     ' explicit call to CCircle2 constructor
20       MyBase.New(xValue, yValue, radiusValue)
21       Height = heightValue ' set CCylinder2 height
22  End Sub ' New
23
24    ' property Height
25  Public Property Height() As Double
26
27       Get
28          Return mHeight
29       End Get
30
31       ' set CCylinder3 height if argument value is positive
32   Set(ByVal heightValue As Double)
33

Fig. 10.22 CCylinder3 class inherits from class CCircle3 (part 1 of 2).

Fig. 10.21 CCircle3 class inherits from class CPoint3 (part 3 of 3).



430 Object-Oriented Programming: Polymorphism Chapter 10

Class CTest3 (Fig. 10.23) demonstrates our point-circle-cylinder hierarchy that uses
interfaces. Class CTest3 has only two differences from the version in Fig. 10.8, which
tested the class hierarchy created from the MustInherit base class CShape. In
Fig. 10.23, line 16 declares arrayOfShapes as an array of IShape interface refer-
ences, rather than CShape base-class references. In Fig. 10.8, calls to method ToString
were made through CShape base-class references—however, because interface IShape
does not provide method ToString, clients cannot invoke method ToString on each
IShape object.

Software Engineering Observation 10.10
In Visual Basic, an interface reference may invoke only those methods and/or properties that
the interface declares. 10.10

In this example, interface IShape declares methods Area and Volume and property
Name, but does not declare method ToString. Even though every reference refers to
some type of Object, and every Object has method ToString, if we attempt to use

34          If heightValue >= 0 Then
35             mHeight = heightValue
36          End If
37
38       End Set
39
40    End Property ' Height
41
42  ' override method Area to calculate CCylinder2 area
43  Public Overrides Function Area() As Double
44       Return 2 * MyBase.Area + MyBase.Circumference * mHeight
45   End Function ' Area
46
47  ' calculate CCylinder3 volume
48   Public Overrides Function Volume() As Double
49    Return MyBase.Area * mHeight
50    End Function ' Volume
51
52  ' convert CCylinder3 to String
53    Public Overrides Function ToString() As String
54     Return MyBase.ToString() & "; Height = " & mHeight
55    End Function ' ToString
56
57    ' override property Name from class CCircle3
58 Public Overrides ReadOnly Property Name() As String
59
60       Get
61          Return "CCylinder3"
62       End Get
63
64    End Property ' Name
65
66 End Class ' CCylinder3

Fig. 10.22 CCylinder3 class inherits from class CCircle3 (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 431

IShape interface references to invoke ToString, the compiler will generate the fol-
lowing syntax error:

"ToString is not a member of InterfaceTest.IShape"

(where InterfaceTest is the assembly/namespace that contains interface IShape).
Figure 10.8 was able to invoke method ToString through a CShape base-class refer-
ence, because class CShape inherited method ToString from base class Object. Note
that the output of the program demonstrates that interface references can be used to perform
polymorphic processing of objects that implement the interface.

Software Engineering Observation 10.11
In Visual Basic, an interface provides only those Public services declared in the interface,
whereas a MustInherit (abstract) class provides the Public services defined in the
MustInherit class and those members inherited from the MustInherit class’s base
class. 10.11

1 ' Fig. 10.23: Test3.vb
2 ' Demonstrate polymorphism in Point-Circle-Cylinder hierarchy.
3
4 Imports System.Windows.Forms
5
6 Class CTest3
7
8 Shared Sub Main()
9

10      ' instantiate CPoint3, CCircle3 and CCylinder3 objects
11       Dim point As New CPoint3(7, 11)
12       Dim circle As New CCircle3(22, 8, 3.5)
13       Dim cylinder As New CCylinder3(10, 10, 3.3, 10)
14
15       ' instantiate array of base-class references
16       Dim arrayOfShapes(2) As IShape
17
18       ' arrayOfShapes(0) references CPoint3 object
19       arrayOfShapes(0) = point
20
21       ' arrayOfShapes(1) references CCircle3 object
22       arrayOfShapes(1) = circle
23
24       ' arrayOfShapes(2) references CCylinder3 object
25       arrayOfShapes(2) = cylinder
26
27       Dim output As String = point.Name & ": " & _
28          point.ToString() & vbCrLf & circle.Name & ": " & _
29          circle.ToString() & vbCrLf & cylinder.Name & _
30          ": " & cylinder.ToString()
31
32       Dim shape As IShape
33

Fig. 10.23 CTest3 uses interfaces to demonstrate polymorphism in Point-Circle-
Cylinder hierarchy (part 1 of 2).



432 Object-Oriented Programming: Polymorphism Chapter 10

10.10 Delegates
In Chapter 6, we discussed how objects can pass member variables as arguments to meth-
ods. However, sometimes, it is beneficial for objects to pass methods as arguments to other
methods. For example, suppose that you wish to sort a series of values in ascending and
descending order. Rather than providing separate ascending and descending sorting meth-
ods (one for each type of comparison), we could use a single method that receives as an
argument a reference to the comparison method to use. To perform an ascending sort, we
could pass to the sorting method the reference to the ascending-sort-comparison method;
to perform an descending sort, we could pass to the sorting method the reference to the de-
scending-sort-comparison method. The sorting method then would use this reference to
sort the list—the sorting method would not need to know whether it is performing an as-
cending or descending sort.

Visual Basic does not allow passing method references directly as arguments to other
methods, but does provide delegates, which are classes that encapsulate a set of references
to methods. A delegate object that contains method references can be passed to another

34       ' display name, area and volume for each object in
35       ' arrayOfShapes
36       For Each shape In arrayOfShapes
37          output &= vbCrLf & vbCrLf & shape.Name & ": " & _
38             vbCrLf & "Area = " & _
39             String.Format("{0:F}", shape.Area) & vbCrLf & _
40             "Volume = " & String.Format("{0:F}", shape.Volume)
41       Next
42
43       MessageBox.Show(output, "Demonstrating Polymorphism")
44 End Sub ' Main
45
46 End Class ' CTest3

Fig. 10.23 CTest3 uses interfaces to demonstrate polymorphism in Point-Circle-
Cylinder hierarchy (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 433

method. Rather than send a method reference directly, an object can send the delegate
instance, which contains the reference of the method that we would like to send. The
method that receives the reference to the delegate then can invoke the methods the delegate
contains.

Delegates containing a single method are known as singlecast delegates and are cre-
ated or derived from class Delegate. Delegates containing multiple methods are multi-
cast delegates and are created or derived from class MulticastDelegate. Both
delegate classes belong to namespace System.

To use a delegate, we first must declare one. The delegate’s declaration specifies a
method signature (parameters and return value). Methods whose references will be con-
tained within a delegate object, must have the same method signature as that defined in the
delegate declaration. We then create methods that have this signature. The third step is to
create a delegate instance via keyword AddressOf, which implicitly creates a delegate
instance enclosing a reference to that method. After we create the delegate instance, we can
invoke the method reference that it contains. We show this process in our next example.

Class CDelegateBubbleSort (Fig. 10.24), which is a modified version of the
bubble-sort example in Chapter 7, uses delegates to sort an Integer array in ascending
or descending order. Lines 7–9 provide the declaration for delegate Comparator. To
declare a delegate (line 7), we declare a signature of a method—keyword Delegate after
the member-access modifier (in this case, Public), followed by keyword Function (or
keyword Sub), the delegate name, parameter list and return type. Delegate Comparator
defines a method signature for methods that receive two Integer arguments and return a
Boolean. Note that delegate Comparator contains no body. As we soon demonstrate,
our application (Fig. 10.25) implements methods that adhere to delegate Comparator’s
signature, then passes these methods (as arguments of type Comparator) to method
SortArray. Note also that we declare delegate Comparator as a Function, because
it returns a value (Boolean). The declaration of a delegate does not define its intended
role or implementation; our application uses this particular delegate when comparing two
Integers, but other applications might use it for different purposes. 

1 ' Fig. 10.24: DelegateBubbleSort.vb
2 ' Uses delegates to sort random numbers (ascending or descending).
3
4 Public Class CDelegateBubbleSort
5
6    ' delegate definition
7 Public Delegate Function Comparator( _
8       ByVal element1 As Integer, _
9       ByVal element2 As Integer) As Boolean

10
11    ' sort array depending on comparator
12 Public Sub SortArray(ByVal array() As Integer, _
13       ByVal Compare As Comparator)
14
15       Dim i, pass As Integer
16

Fig. 10.24 Bubble sort using delegates (part 1 of 2).



434 Object-Oriented Programming: Polymorphism Chapter 10

Lines 12–30 define method SortArray, which takes an array and a reference to a
Comparator delegate object as arguments. Method SortArray modifies the array by
sorting its contents. Line 22 uses the delegate method to determine how to sort the array.
Line 22 invokes the method enclosed within the delegate object by treating the delegate ref-
erence as the method that the delegate object contains. The Visual Basic invokes the
enclosed method reference directly, passing it parameters array(i) and array(i+1).
The Comparator determines the sorting order for its two arguments. If the Compar-
ator returns True, the two elements are out of order, so line 23 invokes method Swap
(lines 33–41) to swap the elements. If the Comparator returns False, the two elements
are in the correct order. To sort in ascending order, the Comparator returns True when
the first element being compared is greater than the second element being compared. Sim-
ilarly, to sort in descending order, the Comparator returns True when the first element
being compared is less than the second element being compared.

Class CFrmBubbleSort (Fig. 10.25) displays a Form with two text boxes and three
buttons. The first text box displays a list of unsorted numbers, and the second box displays
the same list of numbers after they are sorted. The Create Data button creates the list of
unsorted values. The Sort Ascending and Sort Descending buttons sort the array in
ascending and descending order, respectively. Methods SortAscending (lines 31–35)
and SortDescending (lines 38–42) each have a signature that corresponds with the sig-
nature defined by the Comparator delegate declaration (i.e., each receives two Integers
and returns a Boolean). As we will see, the program passes to CDelegateBubbleSort

17       For pass = 0 To array.Length - 1
18
19          ' comparison inner loop
20          For i = 0 To array.Length - 2
21
22             If Compare(array(i), array(i + 1)) Then
23                Swap(array(i), array(i + 1))
24             End If
25
26          Next ' inner loop
27
28       Next ' outer loop
29
30 End Sub ' SortArray
31
32    ' swap two elements
33 Private Sub Swap(ByRef firstElement As Integer, _
34       ByRef secondElement As Integer)
35
36       Dim hold As Integer
37
38       hold = firstElement
39       firstElement = secondElement
40       secondElement = hold
41 End Sub ' Swap
42
43 End Class ' CDelegateBubbleSort

Fig. 10.24 Bubble sort using delegates (part 2 of 2).



Chapter 10 Object-Oriented Programming: Polymorphism 435

method SortArray delegates containing references to methods SortAscending and
SortDescending, which will specify class CDelegateBubbleSort’s sorting
behavior.

1 ' Fig. 10.25: FrmBubbleSort.vb
2 ' Create GUI that enables user to sort array.
3
4 Imports System.Windows.Forms
5
6 Public Class CFrmBubbleSort
7 Inherits Form
8
9    ' TextBox that contains original list

10 Friend WithEvents txtOriginal As TextBox
11 Friend WithEvents lblOriginal As Label
12
13    ' TextBox that contains sorted list
14 Friend WithEvents txtSorted As TextBox
15 Friend WithEvents lblSorted As Label
16
17    ' Buttons for creating and sorting lists
18 Friend WithEvents cmdCreate As Button
19 Friend WithEvents cmdSortAscending As Button
20 Friend WithEvents cmdSortDescending As Button
21
22 ' Windows Form Designer generate code
23
24    ' reference to object containing delegate
25 Dim mBubbleSort As New CDelegateBubbleSort()
26
27    ' original array with unsorted elements
28 Dim mElementArray(9) As Integer
29
30    ' delegate implementation sorts in asending order
31 Private Function SortAscending(ByVal element1 As Integer, _
32       ByVal element2 As Integer) As Boolean
33
34       Return element1 > element2
35 End Function ' SortAscending
36
37    ' delegate implementation sorts in descending order
38 Private Function SortDescending(ByVal element1 As Integer, _
39       ByVal element2 As Integer) As Boolean
40
41       Return element1 < element2
42 End Function ' SortDescending
43
44    ' creates random generated numbers
45 Private Sub cmdCreate_Click(ByVal sender As System.Object, _
46       ByVal e As System.EventArgs) Handles cmdCreate.Click
47
48       txtSorted.Clear()

Fig. 10.25 Bubble-sort Form application (part 1 of 3).



436 Object-Oriented Programming: Polymorphism Chapter 10

49
50       Dim output As String
51       Dim randomNumber As Random = New Random()
52       Dim i As Integer
53
54       ' create String with 10 random numbers
55       For i = 0 To mElementArray.Length - 1
56          mElementArray(i) = randomNumber.Next(100)
57          output &= mElementArray(i) & vbCrLf
58       Next
59
60       txtOriginal.Text = output ' display numbers
61
62       ' enable sort buttons
63       cmdSortAscending.Enabled = True
64       cmdSortDescending.Enabled = True
65 End Sub ' cmdCreate_Click
66
67    ' display array contents in specified TextBox
68 Private Sub DisplayResults()
69
70       Dim output As String
71       Dim i As Integer
72
73       ' create string with sorted numbers
74       For i = 0 To mElementArray.Length - 1
75          output &= mElementArray(i) & vbCrLf
76       Next
77
78       txtSorted.Text = output ' display numbers
79 End Sub ' DisplayResults
80
81    ' sorts randomly generated numbers in ascending manner
82 Private Sub cmdSortAscending_Click(ByVal sender As _
83       System.Object, ByVal e As System.EventArgs) _
84       Handles cmdSortAscending.Click
85
86       ' sort array
87       mBubbleSort.SortArray(mElementArray, AddressOf SortAscending)
88
89       DisplayResults() ' display results
90
91       cmdSortAscending.Enabled = False
92       cmdSortDescending.Enabled = True
93 End Sub ' cmdSortAscending_Click
94
95    ' sorts randomly generated numbers in descending manner
96 Private Sub cmdSortDescending_Click(ByVal sender As _
97       System.Object, ByVal e As System.EventArgs) _
98       Handles cmdSortDescending.Click
99
100       ' create sort object and sort array
101       mBubbleSort.SortArray(mElementArray, AddressOf SortDescending)

Fig. 10.25 Bubble-sort Form application (part 2 of 3).



Chapter 10 Object-Oriented Programming: Polymorphism 437

102
103       DisplayResults() ' display results
104
105       cmdSortDescending.Enabled = False
106       cmdSortAscending.Enabled = True
107 End Sub ' cmdSortDescending_Click
108
109 End Class ' CFrmBubbleSort

Fig. 10.25 Bubble-sort Form application (part 3 of 3).



438 Object-Oriented Programming: Polymorphism Chapter 10

Methods cmdSortAscending_Click (lines 82–93) and cmdSort-
Descending_Click (lines 96–107) are invoked when the user clicks the Sort
Ascending and Sort Descending buttons, respectively. In method
cmdSortAscending_Click, line 87 passes to CDelegateBubbleSort method
SortArray the unsorted mElementArray and a reference to method SortAs-
cending. Keyword AddressOf returns a reference to method SortAscending.
Visual Basic implicitly converts the method reference into a delegate object that contains
the method reference. The second argument of line 87 is equivalent to

New CDelegateBubbleSort.Comparator(AddressOf SortAscending)

which explicitly creates a CDelegateBubbleSort Comparator delegate object. In
method cmdSortDescending_Click, line 101 passes the unsorted mElementAr-
ray and a reference to method SortDescending to method SortArray. We continue
to use delegates in Chapters 12–14, when we discuss event handling and multithreading.

In Chapter 11, Exception Handling, we discuss how to handle problems that might
occur during a program’s execution. The features presented in Chapter 11 enable program-
mers to write more robust and fault-tolerant programs.

SUMMARY
• Polymorphism enables us to write programs in a general fashion to handle a wide variety of exist-

ing and future related classes.

• One means of processing objects of many different types is to use a Select Case statement to
perform an appropriate action on each object based on that object’s type.

• Polymorphic programming can eliminate the need for Select Case logic.

• When we override a base class’s method in a derived class, we hide the base class’s implementa-
tion of that method.

• With polymorphism, new types of objects not even envisioned when a system is created may be
added without modification to the system (other than the new class itself).

• Polymorphism allows one method call to cause different actions to occur, depending on the type
of the object receiving the call. The same message assumes “many forms”—hence, the term poly-
morphism.

• With polymorphism, the programmer can deal in generalities and let the executing program con-
cern itself with the specifics.

• When we apply the MustInherit keyword to a class, we cannot create instances of that class.
Instead, we create classes that inherit from the MustInherit class and create instances of those
derived classes.

• Any class with a MustOverride method in it must, itself, be declared MustInherit.

• Although we cannot instantiate objects of MustInherit base classes, we can declare references
to MustInherit base classes. Such references can manipulate instances of the derived classes
polymorphically.

• A method that is declared NotOverridable cannot be overridden in a derived class.

• Methods that are declared Shared and methods that are declared Private are implicitly No-
tOverridable.

• A class that is declared NotInheritable cannot be a base class (i.e., a class cannot inherit from
a NotInheritable class).



Chapter 10 Object-Oriented Programming: Polymorphism 439

• A class declared NotInheritable cannot be inherited from, and every method in it is implic-
itly NotOverridable.

• In Visual Basic, it is impossible to pass a method reference directly as an argument to another
method. To address this problem, Visual Basic allows the creation of delegates, which are classes
that encapsulate a set of references to methods.

• Keyword AddressOf returns a reference to a delegate method. Visual Basic implicitly converts
the method reference into a delegate object that contains the method reference.

TERMINOLOGY

SELF-REVIEW EXERCISES
10.1 Fill in the blanks in each of the following statements:

a) Treating a base-class object as a  can cause errors.
b) Polymorphism helps eliminate  logic.
c) If a class contains one or more MustOverride methods, it is an  class.
d) Classes from which objects can be instantiated are called  classes.
e) Classes declared with keyword  cannot be inherited.
f) An attempt to cast an object to one of its derived types can cause an .
g) Polymorphism involves using a base-class reference to manipulate .
h) Abstract classes are declared with the  keyword.
i) Class members can be overridden only with the  keyword.
j)  are classes that encapsulate references to methods.

10.2 State whether each of the following is true or false. If false, explain why.
a) All methods in a MustInherit base class must be declared MustOverride.
b) Referring to a derived-class object with a base-class reference is dangerous.
c) A class with a MustOverride method must be declared MustInherit.
d) Methods that are declared MustOverride still must be implemented when they are de-

clared.
e) Classes declared with the NotInheritable keyword cannot be base classes.
f) Polymorphism allows programmers to manipulate derived classes with references to base

classes.
g) Polymorphic programming can eliminate the need for unnecessary Select-Case logic.
h) Use keyword MustInherit to declare an abstract method.

abstract method multicast delegate
abstract class MustInherit base class
AddressOf keyword MustOverride method
cast NotInheritable class
class declared NotInheritable NotOverridable method
class hierarchy object-oriented programming (OOP)
concrete class Overridable method
delegate Overrides keyword
information hiding polymorphic programming
inheritance polymorphism
inheritance hierarchy reference type
interface references to abstract base class
“is-a” relationship Select Case logic
InvalidCastException singlecast delegate
method reference



440 Object-Oriented Programming: Polymorphism Chapter 10

i) The delegate’s declaration must specify its implementation.
j) Keyword AddressOf returns a reference to a delegate method. 

ANSWERS TO SELF-REVIEW EXERCISES
10.1 a) derived-class object. b) Select Case. c) abstract. d) concrete. e) NotInheritable.
f) InvalidCastException. g) derived-class objects. h) MustInherit. i) Overrides.
j) Delegates

10.2 a) False. Not all methods in a MustInherit class must be declared MustOverride.
b) False. Referring to a base-class object with a derived-class reference is dangerous. c) True.
d) False. Methods that are declared MustOverride do not need to be implemented, except in the
derived, concrete class. e) True. f) True. g) True. h) False. Use keyword MustInherit to declare
an abstract class. i) False. The delegate’s declaration specifies only a method signature (method
name, parameters and return value). j) True.

EXERCISES 
10.3 How is it that polymorphism enables you to program “in the general” rather than “in the spe-
cific”? Discuss the key advantages of programming “in the general.”

10.4 Discuss the problems of programming with Select-Case logic. Explain why polymor-
phism is an effective alternative to using Select-Case logic.

10.5 Distinguish between inheriting services and inheriting implementation. How do inheritance
hierarchies designed for inheriting services differ from those designed for inheriting implementation?

10.6 Modify the payroll system of Fig. 10.10–Fig. 10.14 to add Private instance variables
mBirthDate (use class CDay from Fig 8.8) and mDepartmentCode (an Integer) to class
CEmployee. Assume this payroll is processed once per month. Create an array of CEmployee ref-
erences to store the various employee objects. In a loop, calculate the payroll for each CEmployee
(polymorphically) and add a $100.00 bonus to the person’s payroll amount if this is the month in
which the CEmployee’s birthday occurs. 

10.7 Implement the CShape hierarchy shown in Fig. 9.3. Each CTwoDimensionalShape
should contain method Area to calculate the area of the two-dimensional shape. Each CThree-
DimensionalShape should have methods Area and Volume to calculate the surface area and
volume of the three-dimensional shape, respectively. Create a program that uses an array of CShape
references to objects of each concrete class in the hierarchy. The program should output the String
representation of each object in the array. Also, in the loop that processes all the shapes in the array,
determine whether each shape is a CTwoDimensionalShape or a CThreeDimensional-
Shape. If a shape is a CTwoDimensionalShape, display its Area. If a shape is a CThree-
DimensionalShape, display its Area and Volume.

10.8 Reimplement the program of Exercise 10.7 such that classes CTwoDimensionalShape
and CThreeDimensionalShape implement an IShape interface, rather than extending Must-
Inherit class CShape.



11
Exception Handling

Objectives
• To understand exceptions and error handling. 
• To be able to use Try blocks to delimit code in which 

exceptions might occur.
• To be able to Throw exceptions.
• To use Catch blocks to specify exception handlers.
• To use the Finally block to release resources.
• To understand the Visual Basic exception class 

hierarchy.
• To create programmer-defined exceptions. 
It is common sense to take a method and try it. If it fails, 
admit it frankly and try another. But above all, try something.
Franklin Delano Roosevelt

O! throw away the worser part of it,
And live the purer with the other half.
William Shakespeare

If they’re running and they don’t look where they’re going
I have to come out from somewhere and catch them.
Jerome David Salinger

And oftentimes excusing of a fault
Doth make the fault the worse by the excuse.
William Shakespeare

I never forget a face, but in your case I’ll make an exception.
Groucho (Julius Henry) Marx



442 Exception Handling Chapter 11

11.1 Introduction
In this chapter, we introduce exception handling. An exception is an indication of a problem
that occurs during a program’s execution. The name “exception” comes from the fact that,
although the problem can occur, it occurs infrequently. If the “rule” is that a statement nor-
mally executes correctly, then the occurrence of the problem represents the “exception to the
rule.” Exception handling enables programmers to create applications that can resolve (or
handle) exceptions. In many cases, the handling of an exception allows a program to continue
executing as if no problems were encountered. However, more severe problems might pre-
vent a program from continuing normal execution, instead requiring the program to notify the
user of the problem and then terminate in a controlled manner. The features presented in this
chapter enable programmers to write clear, robust and more fault-tolerant programs.

The style and details of exception handling in Visual Basic .NET are based in part on the
work of Andrew Koenig and Bjarne Stroustrup, as presented in their paper, “Exception Han-
dling for C++ (revised).”1 Visual Basic’s designers implemented an exception-handling
mechanism similar to that used in C++, using Koenig’s and Stroustrup’s work as a model.

This chapter begins with an overview of exception-handling concepts and demonstra-
tions of basic exception-handling techniques. The chapter also offers an overview of the
exception-handling class hierarchy. Programs typically request and release resources (such
as files on disk) during program execution. Often, the supply of these resources is limited,
or the resources can be used by only one program at a time. We demonstrate a part of the
exception-handling mechanism that enables a program to use a resource and then guaran-
tees that the program releases the resource for use by other programs. The chapter continues
with an example that demonstrates several properties of class System.Exception (the
base class of all exception classes); this is followed by an example that shows programmers
how to create and use their own exception classes. The chapter concludes with a practical
application of exception handling, in which a program handles exceptions generated by
arithmetic calculations that result in out-of-range values for a particular data type—a con-
dition known as arithmetic overflow.

Outline

11.1 Introduction
11.2 Exception Handling Overview

11.3 Example: DivideByZeroException

11.4 .NET Exception Hierarchy

11.5 Finally Block

11.6 Exception Properties
11.7 Programmer-Defined Exception Classes
11.8 Handling Overflows

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Koenig, A. and B. Stroustrup “Exception Handling for C++ (revised)”, Proceedings of the Usenix
C++ Conference, 149–176, San Francisco, April 1990.



Chapter 11 Exception Handling 443

11.2 Exception Handling Overview
The logic of a program frequently tests conditions that determine how program execution
proceeds. Consider the following pseudocode: 

Perform a task

If the preceding task did not execute correctly
Perform error processing

Perform next task

If the preceding task did not execute correctly
Perform error processing

…

In this pseudocode, we begin by performing a task. We then test whether that task executed
correctly. If not, we perform error processing. Otherwise, we continue on to the next task
and start the entire process again. Although this form of error handling works, the intermix-
ing of program logic with error-handling logic can make the program difficult to read, mod-
ify, maintain and debug. This is especially true in large applications. In fact, if many of the
potential problems occur infrequently, the intermixing of program logic and error handling
can degrade the performance of the program, because the program must test extra condi-
tions to determine whether the next task can be performed.

Exception handling enables the programmer to remove error-handling code from the
“main line” of the program’s execution. This improves program clarity and enhances
modifiability. Programmers can decide to handle whatever exceptions arise—all types of
exceptions, all exceptions of a certain type or all exceptions of a group of related types.
Such flexibility reduces the likelihood that errors will be overlooked, thereby increasing
a program’s robustness.

Testing and Debugging Tip 11.1
Exception handling helps improve a program’s fault tolerance. If it is easy to write error-
processing code, programmers are more likely to use it. 11.1

Software Engineering Observation 11.1
Although it is possible to do so, do not use exceptions for conventional flow of control. It is
difficult to keep track of a large number of exception cases, and programs with a large num-
ber of exception cases are hard to read and maintain. 11.1

Good Programming Practice 11.1
Avoid using exception handling for purposes other than error handling, because such usage
can reduce program clarity. 11.1

When using programming languages that do not support exception handling, program-
mers often postpone the writing of error-processing code and sometimes forget to include
it. This results in less robust software products. Visual Basic enables the programmer to
deal with exception handling in a convenient manner from the inception of a project. How-
ever, the programmer still must put considerable effort into incorporating an exception-
handling strategy into software projects.



444 Exception Handling Chapter 11

Software Engineering Observation 11.2
Try to incorporate an exception-handling strategy into a system from the inception of the de-
sign process. It can be difficult to add effective exception handling to a system after it has
been implemented. 11.2

Software Engineering Observation 11.3
In the past, programmers used many techniques to implement error-processing code. Excep-
tion handling provides a single, uniform technique for processing errors. This helps pro-
grammers working on large projects to understand each other’s error-processing code. 11.3

The exception-handling mechanism also is useful for processing problems that occur
when a program interacts with software elements, such as methods, properties, assemblies
and classes. Rather than handling all problems internally, such software elements often use
exceptions to notify programs when problems occur. This enables programmers to imple-
ment error handling customized for each application.

Common Programming Error 11.1
Aborting a program could leave a resource—such as file stream or I/O device—in a state that
causes the resource to be unavailable to other programs. This is known as a “resource leak.” 11.1

Performance Tip 11.1
When no exceptions occur, exception-handling code does not hinder the program’s perfor-
mance. Thus, programs that implement exception handling operate more efficiently than do
programs that perform error handling throughout the program logic. 11.1

Performance Tip 11.2
Exception-handling should be used only for problems that occur infrequently. As a "rule of
thumb," if a problem occurs at least 30 percent of the time when a particular statement exe-
cutes, the program should test for the error inline, because the overhead of exception han-
dling will cause the program to execute more slowly.2 11.2

Software Engineering Observation 11.4
Methods with common error conditions should return Nothing (or another appropriate
value), rather than throwing exceptions. A program calling such a method can check the re-
turn value to determine the success or failure of the method call.3 11.4

A complex application normally consists of predefined software components (such as
those defined in the .NET Framework) and components specific to the application that uses
the predefined components. When a predefined component encounters a problem, that
component must have a mechanism by which it can communicate the problem to the appli-
cation-specific component. This is because the predefined component cannot know in
advance how a specific application will process a problem that occurs. Exception handling
facilitates efficient collaboration between software components by enabling predefined
components to communicate the occurrence of problems to application-specific compo-
nents, which then can process the problems in an application-specific manner. 

2. “Best Practices for Handling Exceptions [Visual Basic],” .NET Framework Developer's Guide,
Visual Studio .NET Online Help.

3. “Best Practices for Handling Exceptions [Visual Basic].”



Chapter 11 Exception Handling 445

Exception handling is designed to process synchronous errors—errors that occur
during the normal flow of program control. Common examples of these errors are out-of-
range array subscripts, arithmetic overflow (i.e., the occurrence of a value that is outside
the representable range of values), division by zero for integral types, invalid method
parameters and running out of available memory. Exception handling is not designed to
process asynchronous events, such as disk-I/O completions, network-message arrivals,
mouse clicks and keystrokes. 

Exception handling is geared toward situations in which the method that detects an
error is unable to handle it. Such a method throws an exception. There is no guarantee that
the program contains an exception handler—code that executes when the program detects
an exception—to process that kind of exception. If an appropriate exception handler exists,
the exception will be caught and handled. The result of an uncaught exception is dependant
on whether the program is executing in debug mode or standard execution mode. In debug
mode, when the runtime environment detects an uncaught exception, a dialog appears that
enables the programmer to view the problem in the debugger or to continue program exe-
cution by ignoring the problem. In standard execution mode, a Windows application pre-
sents a dialog that allows the user to continue or terminate program execution. A console
application presents a dialog that enables the user to open the program in the debugger or
terminate program execution.

Visual Basic .NET uses Try blocks to enable exception handling. A Try block con-
sists of keyword Try, followed by a block of code in which exceptions might occur. The
Try block encloses statements that could cause exceptions and statements that should not
execute if an exception occurs. Immediately following the Try block are zero or more
Catch blocks (also called Catch handlers). Each Catch block specifies an exception
parameter representing the type of exception that the Catch block can handle. If an excep-
tion parameter includes an optional parameter name, the Catch handler can use that
parameter name to interact with a caught exception object. Optionally, programmers can
include a parameterless Catch block that catches all exception types. After the last
Catch block, an optional Finally block contains code that always executes, regardless
of whether an exception occurs.

When a method called in a program detects an exception, or when the Common Lan-
guage Runtime (CLR) detects a problem, the method or CLR throws an exception. The
point in the program at which an exception occurs is called the throw point—an important
location for debugging purposes (as we demonstrate in Section 11.6). Exceptions are
objects of classes that extend class Exception of namespace System. If an exception
occurs in a Try block, the Try block expires (i.e., terminates immediately), and program
control transfers to the first Catch handler (if there is one) following the Try block.
Visual Basic is said to use the termination model of exception handling, because the Try
block enclosing a thrown exception expires immediately when that exception occurs.4 As
with any other block of code, when a Try block terminates, local variables defined in the
block go out of scope. Next, the CLR searches for the first Catch handler that can process
the type of exception that occurred. The CLR locates the matching Catch by comparing
the thrown exception’s type to each Catch’s exception-parameter type. A match occurs if

4. Some languages use the resumption model of exception handling in which, after handling the ex-
ception, control returns to the point at which the exception was thrown and execution resumes
from that point.



446 Exception Handling Chapter 11

the types are identical or if the thrown exception’s type is a derived class of the exception-
parameter type. Once an exception is matched to a Catch handler, the other Catch han-
dlers are ignored.

Testing and Debugging Tip 11.2
If several handlers match the type of an exception, and if each of these handles the excep-
tion differently, then the order of the handlers will affect the manner in which the exception
is handled. 11.4

Common Programming Error 11.2
It is a logic error if a catch that catches a base-class object is placed before a catch for that
class’s derived-class types. 11.2

If no exceptions occur in a Try block, the CLR ignores the exception handlers for that
block. Program execution continues with the next statement after the Try/Catch
sequence, regardless of whether an exception occurs. If an exception that occurs in a Try
block has no matching Catch handler, or if an exception occurs in a statement that is not
in a Try block, the method containing that statement terminates immediately, and the CLR
attempts to locate an enclosing Try block in a calling method. This process is called stack
unwinding and is discussed in Section 11.6.

11.3 Example: DivideByZeroException
Let us consider a simple example of exception handling. The application in Fig. 11.1 uses
Try and Catch to specify a block of code that might throw exceptions and to handle
those exceptions if they occur. The application displays two TextBoxes in which the
user can type integers. When the user presses the Click To Divide button, the program
invokes cmdDivide_Click (lines 25–61), which obtains the user’s input, converts the
input values to type Integer and divides the first number (numerator) by the second
number (denominator). Assuming that the user provides integers as input and does
not specify 0 as the denominator for the division, cmdDivide_Click displays the di-
vision result in lblOutput. However, if the user inputs a non-integer value or supplies
0 as the denominator, exceptions occur. This program demonstrates how to catch such
exceptions.  

Before we discuss the details of this program, let us consider the sample output win-
dows in Fig. 11.1. The first window shows a successful calculation, in which the user inputs
the numerator 100 and the denominator 7. Note that the result (14) is an Integer,
because Integer division always yields an Integer result. The next two windows
depict the result of inputting a non-Integer value—in this case, the user entered
"hello" in the second TextBox. When the user presses Click To Divide, the program
attempts to convert the input Strings into Integer values using method Con-
vert.ToInt32. If an argument passed to Convert.ToInt32 is not an integer, the
method generates a FormatException (namespace System). The program detects the
exception and displays an error message dialog, indicating that the user must enter two
Integers. The last two output windows demonstrate the result after an attempt to divide
by zero. In integer arithmetic, the CLR tests for division by zero and generates a
DivideByZeroException (namespace System) if the denominator is zero. The pro-



Chapter 11 Exception Handling 447

gram detects the exception and displays an error message dialog, indicating that an attempt
has been made to divide by zero.5

1 ' Fig. 11.1: DivideByZeroTest.vb
2 ' Basics of Visual Basic exception handling.
3
4 Imports System.Windows.Forms.Form
5
6 Public Class FrmDivideByZero
7 Inherits Form
8
9    ' Label and TextBox for specifying numerator

10 Friend WithEvents lblNumerator As Label
11 Friend WithEvents txtNumerator As TextBox
12
13    ' Label and TextBox for specifying denominator
14 Friend WithEvents lblDenominator As Label
15 Friend WithEvents txtDenominator As TextBox
16
17    ' Button for dividing numerator by denominator
18 Friend WithEvents cmdDivide As Button
19
20 Friend WithEvents lblOutput As Label ' output for division
21
22    ' Visual Studio .NET generated code
23
24    ' obtain integers from user and divide numerator by denominator
25 Private Sub cmdDivide_Click(ByVal sender As System.Object, _
26       ByVal e As System.EventArgs) Handles cmdDivide.Click
27
28       lblOutput.Text = ""
29
30       ' retrieve user input and call Quotient
31       Try
32
33          ' Convert.ToInt32 generates FormatException if argument
34          ' is not an integer
35          Dim numerator As Integer = _
36             Convert.ToInt32(txtNumerator.Text)
37
38          Dim denominator As Integer = _
39             Convert.ToInt32(txtDenominator.Text)

Fig. 11.1 Exception handlers for FormatException and 
DivideByZeroException (part 1 of 2).

5. The CLR allows floating-point division by zero, which produces a positive or negative infinity re-
sult, depending on whether the numerator is positive or negative. Dividing zero by zero is a special
case that results in a value called “not a number.” Programs can test for these results using con-
stants for positive infinity (PositiveInfinity), negative infinity (NegativeInfinity)
and not a number (NaN) that are defined in type Double (for Double calculations) and Single
(for floating-point calculations).



448 Exception Handling Chapter 11

40
41          ' division generates DivideByZeroException if 
42          ' denominator is 0
43          Dim result As Integer = numerator \ denominator
44
45          lblOutput.Text = result.ToString()
46
47       ' process invalid number format
48       Catch formatExceptionParameter As FormatException
49          MessageBox.Show("You must enter two integers", _
50             "Invalid Number Format", MessageBoxButtons.OK, _
51             MessageBoxIcon.Error)
52
53       ' user attempted to divide by zero
54       Catch divideByZeroExceptionParameter As DivideByZeroException
55          MessageBox.Show(divideByZeroExceptionParameter.Message, _
56             "Attempted to Divide by Zero", _
57             MessageBoxButtons.OK, MessageBoxIcon.Error)
58
59       End Try
60
61 End Sub ' cmdDivide_Click
62
63 End Class ' FrmDivideByZero

Fig. 11.1 Exception handlers for FormatException and 
DivideByZeroException (part 2 of 2).



Chapter 11 Exception Handling 449

Now, we consider the user interactions and flow of control that yield the results shown
in the sample output windows. The user inputs values into the TextBoxes that represent
the numerator and denominator and then presses Click To Divide. At this point, the pro-
gram invokes method cmdDivide_Click. Line 28 assigns the empty String to
lblOutput to clear any prior result, because the program is about to attempt a new cal-
culation. Lines 31–59 define a Try block enclosing the code that might throw exceptions,
as well as the code that should not execute if an exception occurs. For example, the program
should not display a new result in lblOutput (line 45) unless the calculation (line 43)
completes successfully. Remember that the Try block terminates immediately if an excep-
tion occurs, so the remaining code in the Try block will not execute.

Software Engineering Observation 11.5
Enclose in a Try block a significant logical section of the program in which several state-
ments can throw exceptions, rather than using a separate Try block for every statement that
might throw an exception. However, each Try block should enclose a small enough section
of code such that when an exception occurs, the specific context is known, and the Catch
handlers can process the exception properly. 11.5

The two statements that read the Integers from the TextBoxes (lines 35–39) call
method Convert.ToInt32 to convert Strings to Integer values. This method
throws a FormatException if it cannot convert its String argument to an Integer.
If lines 35–39 convert the values properly (i.e., no exceptions occur), then line 43 divides
the numerator by the denominator and assigns the result to variable result. If the
denominator is zero, line 43 causes the CLR to throw a DivideByZeroException. If
line 43 does not cause an exception to be thrown, then line 45 displays the result of the divi-
sion. If no exceptions occur in the Try block, the program successfully completes the Try
block by ignoring the Catch handlers at lines 48–51 and 54–57 and reaching line 59.
Then, the program executes the first statement following the Try/Catch sequence. In this
example, the program reaches the end of event handler cmdDivide_Click (line 61), so
the method terminates, and the program awaits the next user interaction. 

Immediately following the Try block are two Catch handlers. Lines 48–51 define
the Catch handler for a FormatException, and lines 54–57 define the Catch handler
for the DivideByZeroException. Each Catch handler begins with keyword
Catch, followed by an exception parameter that specifies the type of exception handled
by the Catch block. The exception-handling code appears in the Catch-handler body. In
general, when an exception occurs in a Try block, a Catch block catches the exception
and handles it. In Fig. 11.1, the first Catch handler specifies that it catches FormatEx-
ceptions (thrown by method Convert.ToInt32), and the second Catch block spec-
ifies that it catches DivideByZeroExceptions (thrown by the CLR). If an exception
occurs, the program executes only the matching Catch handler. Both the exception han-
dlers in this example display an error message dialog. When program control reaches the
end of a Catch handler, the program considers the exception to be handled, and program
control continues with the first statement after the Try/Catch sequence (the end of the
method, in this example). 

In the second sample output, the user input hello as the denominator. When lines 38–
39 execute, Convert.ToInt32 cannot convert this String to an Integer, so Con-
vert.ToInt32 creates a FormatException object and throws it to indicate that the
method was unable to convert the String to an Integer. When the exception occurs,



450 Exception Handling Chapter 11

the Try block expires (terminates). Any local variables defined in the Try block go out of
scope; therefore, those variables are not available to the exception handlers. Next, the CLR
attempts to locate a matching Catch handler. Starting with the Catch in line 48, the pro-
gram compares the type of the thrown exception (FormatException) with the excep-
tion type in the Catch-block declaration (also FormatException). A match occurs, so
the exception handler executes, and the program ignores all other exception handlers fol-
lowing the Try block. If a match did not occur, the program would compare the type of the
thrown exception with the next Catch handler in sequence, repeating this process until a
match is found. 

Common Programming Error 11.3
An attempt to access a Try block’s local variables in one of that Try block’s associated
Catch handlers is a syntax error. Before a corresponding Catch handler can execute, the
Try block expires, and its local variables go out of scope. 11.3

Common Programming Error 11.4
Specifying a comma-separated list of exception parameters in a Catch handler is a syntax
error. Each Catch handler can have at most one exception parameter. 11.4

In the third sample output, the user inputs 0 as the denominator. When line 43 exe-
cutes, the CLR throws a DivideByZeroException object to indicate the occurrence
of an attempt to divide by zero. Once again, the Try block terminates immediately upon
encountering the exception, and the program attempts to locate a matching Catch handler.
Starting from the Catch handler in line 48, the program compares the type of the thrown
exception (DivideByZeroException) with the exception type in the Catch-handler
declaration (FormatException). In this case, the first Catch handler does not produce
a match. This is because the exception type in the Catch-handler declaration is not the
same as the type of the thrown exception, and FormatException is not a base class of
DivideByZeroException. Therefore, the program proceeds to line 54 and compares
the type of the thrown exception (DivideByZeroException) with the exception type
in the Catch-handler declaration (DivideByZeroException). A match occurs,
which causes that exception handler to execute, using property Message of class Excep-
tion to display the error message. If there were additional Catch handlers, the program
would ignore them. 

11.4 .NET Exception Hierarchy
The exception-handling mechanism allows only objects of class Exception and its de-
rived classes to be thrown and caught. This section overviews several of the .NET Frame-
work’s exception classes. In addition, we discuss how to determine whether a particular
method throws exceptions.

Class Exception of namespace System is the base class of the .NET Framework
exception hierarchy. Two of the most important classes derived from Exception are
ApplicationException and SystemException. ApplicationException
is a base class that programmers can extend to create exception data types that are specific
to their applications. We discuss the creation of programmer-defined exception classes in
Section 11.7. Programs can recover from most ApplicationExceptions and con-
tinue execution. 



Chapter 11 Exception Handling 451

The CLR generates SystemExceptions, which can occur at any point during the
execution of the program. Many of these exceptions can be avoided if applications are
coded properly. These are called runtime exceptions. Runtime exceptions are are derived
from class SystemException. For example, if a program attempts to access an out-of-
range array subscript, the CLR throws an exception of type IndexOutOfRangeExcep-
tion (a derived class of SystemException). Similarly, a runtime exception occurs
when a program uses an object reference to manipulate an object that does not yet exist (i.e.,
the reference has a Nothing value). Attempting to use a Nothing reference causes a
NullReferenceException (another derived class of SystemException).
According to Microsoft’s “Best Practices for Handling Exceptions [Visual Basic],”6 pro-
grams typically cannot recover from most exceptions that the CLR throws. Therefore, pro-
grams generally should not throw or catch SystemExceptions. [Note: For a complete
list of the derived classes of Exception, search for “Exception class” in the Index of
the Visual Studio .NET online documentation.]

A benefit of using the exception class hierarchy is that a Catch handler can catch
exceptions of a particular type or can use a base-class type to catch exceptions in a hier-
archy of related exception types. For example, Section 11.2 discussed the parameterless
Catch handler, which catches exceptions of all types. A Catch handler that specifies an
exception parameter of type Exception also can catch all exceptions, because Excep-
tion is the base class of all exception classes. The advantage of using this approach is that
the exception handler can use the exception parameter to access the information of the
caught exception.

The use of inheritance with exceptions enables an exception handler to catch related
exceptions using a concise notation. An exception handler certainly could catch each derived-
class exception type individually, but catching the base-class exception type is more concise.
However, this makes sense only if the handling behavior is the same for a base class and all
derived classes. Otherwise, catch each derived-class exception individually.

We know that many different exception types exist and we also know that methods,
properties and the CLR can throw exceptions. But, how do we determine that an exception
might occur in a program? For methods contained in the .NET Framework classes, pro-
grammers can investigate the detailed description of the methods in the online documenta-
tion. If a method throws an exception, its description contains a section called Exceptions
that specifies the types of exceptions thrown by the method and briefly describes potential
causes for the exceptions. For example, search for “Convert.ToInt32 method” in the
Index of the Visual Studio .NET online documentation. In the document that describes the
method, click the link Overloads Public Shared Function ToInt32(String) As
Integer. In the document that appears, the Exceptions section indicates that method
Convert.ToInt32 throws three exception types—ArgumentException,
FormatException and OverflowException—and describes the reason why each
exception type might occur.

Software Engineering Observation 11.6
If a method throws exceptions, statements that invoke the method should be placed in Try
blocks, and those exceptions should be caught and handled. 11.1

6. “Best Practices for Handling Exceptions [Visual Basic],” .NET Framework Developer's Guide,
Visual Studio .NET Online Help.



452 Exception Handling Chapter 11

It is more difficult to determine when the CLR throws exceptions. Typically, such
information appears in the Visual Basic Language Specification, which is located in the
online documentation. To access the language specification, select Help > Contents… in
Visual Studio. In the Contents dialogue, expand Visual Studio .NET, Visual Basic
and Visual C#, Reference, Visual Basic Language and Visual Basic .NET Lan-
guage Specification.

The language specification defines the syntax of the language and specifies cases in
which exceptions are thrown. For example, in Fig. 11.1, we demonstrated that the CLR
throws a DivideByZeroException when a program attempts to divide by zero in
integer arithmetic. Section 10.5.4 of the language specification discusses the division oper-
ator. In this section, programmers find a detailed analysis of when a DivideBy-
ZeroException occurs.

11.5 Finally Block
Programs frequently request and release resources dynamically (i.e., at execution time). For
example, a program that reads a file from disk first requests to open that file. If that request
succeeds, the program reads the contents of the file. Operating systems typically prevent
more than one program from manipulating a file at once. Therefore, when a program fin-
ishes processing a file, the program normally closes the file (i.e., releases the resource).
This enables other programs to use the file. Closing the file helps prevent a resource leak;
this occurs when the file resource is not available to other programs, because a program us-
ing the file never closed it. Programs that obtain certain types of resources (such as files)
must return those resources explicitly to the system to avoid resource leaks.

In programming languages such as C and C++, in which the programmer is responsible
for dynamic memory management, the most common type of resource leak is a memory
leak. A memory leak occurs when a program allocates memory (as Visual Basic program-
mers do via keyword New), but does not deallocate the memory when the memory is no
longer needed in the program. Normally, this is not an issue in Visual Basic, because the
CLR performs "garbage collection" of memory that is no longer needed by an executing
program. However, other kinds of resource leaks (such as the unclosed files that we men-
tioned previously) can occur in Visual Basic. 

Testing and Debugging Tip 11.3
The CLR does not eliminate memory leaks completely. The CLR will not garbage collect an
object until the program contains no more references to that object. Thus, memory leaks can
occur if programmers erroneously keep references to unwanted objects. 11.3

Potential exceptions are associated with the processing of most resources that require
explicit release. For example, a program that processes a file might receive IOExcep-
tions during the processing. For this reason, file-processing code normally appears in a
Try block. Regardless of whether a program successfully processes a file, the program
should close the file when the file is no longer needed. Suppose a program places all
resource-request and resource-release code in a Try block. If no exceptions occur, the Try
block executes normally and releases the resources after using them. However, if an excep-
tion occurs, the Try block may expire before the resource-release code can execute. We
could duplicate all resource-release code in the Catch handlers, but this would make the
code more difficult to modify and maintain. 



Chapter 11 Exception Handling 453

To address this problem, Visual Basic’s exception handling mechanism provides the
Finally block, which is guaranteed to execute if program control enters the corre-
sponding Try block. The Finally block executes regardless of whether that Try block
executes successfully or an exception occurs. This guarantee makes the Finally block
an ideal location in which to place resource deallocation code for resources that are
acquired and manipulated in the corresponding Try block. If the Try block executes suc-
cessfully, the Finally block executes immediately after the Try block terminates. If an
exception occurs in the Try block, the Finally block executes immediately after a
Catch handler completes. If the exception is not caught by a Catch handler associated
with that Try block, or if a Catch handler associated with that Try block throws an
exception, the Finally block executes before the exception is processed by the next
enclosing Try block (if there is one).

Testing and Debugging Tip 11.4
A Finally block typically contains code to release resources acquired in the correspond-
ing Try block; this makes the Finally block an effective way to eliminate resource leaks. 11.4

Testing and Debugging Tip 11.5
The only reason that a Finally block will not execute if program control enters the corre-
sponding Try block is if the application terminates before Finally can execute. 11.5

Performance Tip 11.3
As a rule, resources should be released as soon as it is apparent that they are no longer need-
ed in a program. This makes the resources available for reuse, thus enhancing resource uti-
lization in the program. 11.3

If one or more Catch handlers follow a Try block, the Finally block is optional.
However, if no Catch handlers follow a Try block, a Finally block must appear imme-
diately after the Try block. If any Catch handlers follow a Try block, the Finally
block appears after the last Catch handler. Only whitespace and comments can separate
the blocks in a Try/Catch/Finally sequence. 

Common Programming Error 11.5
Placing the Finally block before a Catch handler is a syntax error. 11.5

The Visual Basic application in Fig. 11.2 demonstrates that the Finally block
always executes, regardless of whether an exception occurs in the corresponding Try
block. The program consists of method Main (lines 8–52) and four other Shared methods
that Main invokes to demonstrate Finally. These methods are DoesNotThrowEx-
ception (lines 55–73), ThrowExceptionWithCatch (lines 76–97), ThrowEx-
ceptionWithoutCatch (lines 100–118) and ThrowExceptionCatchRethrow
(lines 121–149). [Note: We use Shared methods in this example so that Main can invoke
these methods directly, without creating CUsingExceptions objects. This enables us
to focus on the mechanics of the Try/Catch/Finally sequence.]

Line 12 of Main invokes method DoesNotThrowException (lines 55–73). The
Try block (lines 58–70) for this method begins by outputting a message (line 59). Because
the Try block does not throw any exceptions, program control ignores the Catch handler
(lines 62–63) and executes the Finally block (lines 66–68), which outputs a message. At



454 Exception Handling Chapter 11

this point, program control continues with the first statement after the End Try statement
(line 72), which outputs a message indicating that the end of the method has been reached.
Then, program control returns to Main.

Line 18 of Main invokes method ThrowExceptionWithCatch (lines 76–97);
which begins in its Try block (lines 79–94) by outputting a message. Next, the Try block
creates an Exception object and uses a Throw statement to throw the exception object
(lines 82–83). The String passed to the constructor becomes the exception object’s error
message. When a Throw statement in a Try block executes, the Try block expires imme-
diately, and program control continues at the first Catch (lines 86–87) following the Try
block. In this example, the type thrown (Exception) matches the type specified in the
Catch, so line 87 outputs a message indicating the type of exception that occurred. Then,
the Finally block (lines 90–92) executes and outputs a message. At this point, program
control continues with the first statement after the End Try statement (line 96), which out-
puts a message indicating that the end of the method has been reached. Program control
then returns to Main. In line 87, note that we use the exception object’s Message property
to retrieve the error message associated with the exception (i.e., the message passed to the
Exception constructor). Section 11.6 discusses several properties of class Exception.

Lines 26–34 of Main define a Try block in which Main invokes method Throw-
ExceptionWithoutCatch (lines 100–118). The Try block enables Main to catch any
exceptions thrown by ThrowExceptionWithoutCatch. The Try block in lines 103–
114 of ThrowExceptionWithoutCatch begins by outputting a message. Next, the
Try block throws an Exception (lines 106–107), and the Try block expires immediately. 

1 ' Fig 11.2: UsingExceptions.vb
2 ' Using Finally blocks.
3
4 ' demonstrating that Finally always executes
5 Class CUsingExceptions
6
7    ' entry point for application
8 Shared Sub Main()
9

10       ' Case 1: No exceptions occur in called method
11       Console.WriteLine("Calling DoesNotThrowException")
12       DoesNotThrowException()
13
14       ' Case 2: Exception occurs and is caught in called method
15       Console.WriteLine(vbCrLf & _
16          "Calling ThrowExceptionWithCatch")
17
18       ThrowExceptionWithCatch()
19
20       ' Case 3: Exception occurs, but not caught in called method 
21       ' because no Catch handler.
22       Console.WriteLine(vbCrLf & _
23          "Calling ThrowExceptionWithoutCatch")
24

Fig. 11.2 Finally statements always execute, regardless of whether an exception 
occurs (part 1 of 4).



Chapter 11 Exception Handling 455

25       ' call ThrowExceptionWithoutCatch
26       Try
27          ThrowExceptionWithoutCatch()
28
29       ' process exception returned from ThrowExceptionWithoutCatch
30       Catch
31          Console.WriteLine("Caught exception from " & _
32             "ThrowExceptionWithoutCatch in Main")
33
34       End Try
35
36       ' Case 4: Exception occurs and is caught in called method,
37       ' then rethrown to caller.
38       Console.WriteLine(vbCrLf & _
39          "Calling ThrowExceptionCatchRethrow")
40
41       ' call ThrowExceptionCatchRethrow
42       Try
43          ThrowExceptionCatchRethrow()
44
45       ' process exception returned from ThrowExceptionCatchRethrow
46       Catch
47          Console.WriteLine("Caught exception from " & _
48             "ThrowExceptionCatchRethrow in Main")
49
50       End Try
51
52 End Sub ' Main
53
54    ' no exceptions thrown
55 Public Shared Sub DoesNotThrowException()
56
57       ' Try block does not throw any exceptions 
58       Try
59          Console.WriteLine("In DoesNotThrowException")
60
61       ' this Catch never executes
62       Catch
63          Console.WriteLine("This Catch never executes")
64
65       ' Finally executes because corresponding Try executed
66       Finally
67          Console.WriteLine( _
68             "Finally executed in DoesNotThrowException")
69
70       End Try
71
72       Console.WriteLine("End of DoesNotThrowException")
73 End Sub ' DoesNotThrowException
74

Fig. 11.2 Finally statements always execute, regardless of whether an exception 
occurs (part 2 of 4).



456 Exception Handling Chapter 11

75    ' throws exception and catches it locally
76 Public Shared Sub ThrowExceptionWithCatch()
77
78       ' Try block throws exception
79       Try
80          Console.WriteLine("In ThrowExceptionWithCatch")
81
82          Throw New Exception( _
83             "Exception in ThrowExceptionWithCatch")
84
85       ' catch exception thrown in Try block
86       Catch exceptionParameter As Exception
87          Console.WriteLine("Message: " & exceptionParameter.Message)
88
89       ' Finally executes because corresponding Try executed
90       Finally
91          Console.WriteLine( _
92             "Finally executed in ThrowExceptionWithCatch")
93
94       End Try
95
96       Console.WriteLine("End of ThrowExceptionWithCatch")
97 End Sub ' ThrowExceptionWithCatch
98
99    ' throws exception and does not catch it locally
100 Public Shared Sub ThrowExceptionWithoutCatch()
101
102       ' throw exception, but do not catch it
103       Try
104          Console.WriteLine("In ThrowExceptionWithoutCatch")
105
106          Throw New Exception( _
107             "Exception in ThrowExceptionWithoutCatch")
108
109       ' Finally executes because corresponding Try executed
110       Finally
111          Console.WriteLine("Finally executed in " & _
112             "ThrowExceptionWithoutCatch")
113
114       End Try
115
116       ' unreachable code; logic error 
117       Console.WriteLine("End of ThrowExceptionWithoutCatch")
118 End Sub ' ThrowExceptionWithoutCatch
119
120    ' throws exception, catches it and rethrows it
121 Public Shared Sub ThrowExceptionCatchRethrow()
122
123       ' Try block throws exception
124       Try
125          Console.WriteLine("In ThrowExceptionCatchRethrow")
126

Fig. 11.2 Finally statements always execute, regardless of whether an exception 
occurs (part 3 of 4).



Chapter 11 Exception Handling 457

Normally, program control would continue at the first Catch following this Try
block. However, this Try block does not have any corresponding Catch handlers. There-

127          Throw New Exception( _
128             "Exception in ThrowExceptionCatchRethrow")
129
130       ' catch any exception and rethrow
131       Catch exceptionParameter As Exception
132          Console.WriteLine("Message: " & _
133             exceptionParameter.Message)
134
135          ' rethrow exception for further processing
136          Throw exceptionParameter
137
138          ' unreachable code; logic error
139
140       ' Finally executes because corresponding Try executed
141       Finally
142          Console.WriteLine("Finally executed in " & _
143             "ThrowExceptionCatchRethrow")
144
145       End Try
146
147       ' any code placed here is never reached
148       Console.WriteLine("End of ThrowExceptionCatchRethrow")
149 End Sub ' ThrowExceptionCatchRethrow
150
151 End Class ' UsingExceptions

Calling DoesNotThrowException
In DoesNotThrowException
Finally executed in DoesNotThrowException
End of DoesNotThrowException

Calling ThrowExceptionWithCatch
In ThrowExceptionWithCatch
Message: Exception in ThrowExceptionWithCatch
Finally executed in ThrowExceptionWithCatch
End of ThrowExceptionWithCatch

Calling ThrowExceptionWithoutCatch
In ThrowExceptionWithoutCatch
Finally executed in ThrowExceptionWithoutCatch
Caught exception from ThrowExceptionWithoutCatch in Main

Calling ThrowExceptionCatchRethrow
In ThrowExceptionCatchRethrow
Message: Exception in ThrowExceptionCatchRethrow
Finally executed in ThrowExceptionCatchRethrow
Caught exception from ThrowExceptionCatchRethrow in Main

Fig. 11.2 Finally statements always execute, regardless of whether an exception 
occurs (part 4 of 4).



458 Exception Handling Chapter 11

fore, the exception is not caught in method ThrowExceptionWithoutCatch. Normal
program control cannot continue until the exception is caught and processed. Thus, the
CLR terminates ThrowExceptionWithoutCatch, and program control returns to
Main. Before control returns to Main, the Finally block (lines 110–112) executes and
outputs a message. At this point, program control returns to Main—any statements
appearing after the Finally block (e.g., line 117) do not execute. In this example, such
statements could cause logic errors, because the exception thrown in lines 106–107 is not
caught. In Main, the Catch handler in lines 30–32 catches the exception and displays a
message indicating that the exception was caught in Main.

Common Programming Error 11.6
The argument of a Throw—an exception object—must be of class Exception or one of its
derived classes. 11.6

Lines 42–50 of Main define a Try block in which Main invokes method Throw-
ExceptionCatchRethrow (lines 121–149). The Try block enables Main to catch
any exceptions thrown by ThrowExceptionCatchRethrow. The Try block in lines
124–145 of ThrowExceptionCatchRethrow begins by outputting a message. Next,
the Try block throws an Exception (lines 127–128). The Try block expires immedi-
ately, and program control continues at the first Catch (lines 131–136) following the Try
block. In this example, the type thrown (Exception) matches the type specified in the
Catch, so lines 132–133 outputs a message indicating where the exception occurred. Line
136 uses the Throw statement to rethrow the exception. This indicates that the Catch
handler performed partial processing of the exception and now is passing the exception
back to the calling method (in this case, Main) for further processing. Note that the argu-
ment to the Throw statement is the reference to the exception that was caught. When
rethrowing the original exception, you also can use the statement

Throw

with no argument. Section 11.6 demonstrates using a Throw statement with an argument
from a Catch handler. After an exception is caught, such a Throw statement enables pro-
grammers to create an exception object then throw a different type of exception from the
Catch handler. Class-library designers often do this to customize the exception types thrown
from methods in their class libraries or to provide additional debugging information.

Software Engineering Observation 11.7
Before rethrowing an exception to a calling method, the method that rethrows the exception
should release any resources it acquired before the exception occurred.7 11.7

Software Engineering Observation 11.8
Whenever possible, a method should handle exceptions that are thrown in that method, rath-
er than passing the exceptions to another region of the program. 11.8

The exception handling in method ThrowExceptionCatchRethrow does not
complete, because the program cannot run code in the Catch handler placed after the
invocation of the Throw statement (line 136). Therefore, method Throw-
ExceptionCatchRethrow terminates and returns control to Main. Once again, the

7. “Best Practices for Handling Exceptions [Visual Basic].”



Chapter 11 Exception Handling 459

Finally block (lines 141–143) executes and outputs a message before control returns
to Main. When control returns to Main, the Catch handler in lines 46–48 catches the
exception and displays a message indicating that the exception was caught. Then, the pro-
gram terminates.

Note that the location to which program control returns after the Finally block exe-
cutes depends on the exception-handling state. If the Try block successfully completes, or
if a Catch handler catches and handles an exception, control continues with the next state-
ment after the End Try statement. However, if an exception is not caught, or if a Catch
handler rethrows an exception, program control continues in the next enclosing Try block.
The enclosing Try could be in the calling method or in one of its callers. It also is possible
to nest a Try/Catch sequence in a Try block; in such a case, the outer Try block’s
Catch handlers would process any exceptions that were not caught in the inner Try/
Catch sequence. If a Try block executes and has a corresponding Finally block, the
Finally block always executes—even if the Try block terminates due to a Return
statement. The Return occurs after the execution of the Finally block.

Common Programming Error 11.7
Throwing an exception from a Finally block can be dangerous. If an uncaught exception
is awaiting processing when the Finally block executes, and the Finally block throws
a new exception that is not caught in the Finally block, the first exception is lost, and the
new exception is passed to the next enclosing Try block. 11.7

Testing and Debugging Tip 11.6
When placing code that can throw an exception in a Finally block, always enclose that
code in a Try/Catch sequence that catches the appropriate exception types. This pre-
vents the loss of any uncaught and rethrown exceptions that occur before the Finally
block executes. 11.6

Software Engineering Observation 11.9
Visual Basic’s exception-handling mechanism removes error-processing code from the main
line of a program to improve program clarity. Do not place Try/Catch/Finally around
every statement that might throw an exception, because this can make programs difficult to
read. Rather, place one Try block around a significant portion of code, and follow this Try
block with Catch handlers that handle each of the possible exceptions. Then, follow the
Catch handlers with a single Finally block. 11.9

11.6 Exception Properties
As we discussed in Section 11.4, exception data types derive from class Exception,
which has several properties. These properties frequently are used to formulate error mes-
sages indicating a caught exception. Two important properties are Message and Stack-
Trace. Property Message stores the error message associated with an Exception
object. This message can be a default message associated with the exception type or a cus-
tomized message passed to an Exception object’s constructor when the Exception
object is thrown. Property StackTrace contains a String that represents the method-
call stack. The runtime environment keeps a list of method calls that have been made up to
a given moment. The StackTrace String represents this sequential list of methods
that had not finished processing at the time the exception occurred. The exact location at
which the exception occurs in the program is called the exception’s throw point.



460 Exception Handling Chapter 11

Testing and Debugging Tip 11.7
A stack trace shows the complete method-call stack at the time an exception occurred. This
enables the programmer to view the series of method calls that led to the exception. Informa-
tion in the stack trace includes the names of the methods on the call stack at the time of the
exception, names of the classes in which those methods are defined, names of the namespaces
in which those classes are defined. The stack trace also includes line numbers; the first line
number indicates the throw point, and subsequent line numbers indicate the locations from
which the methods in the stack trace were called. 11.7

Another property used frequently by class-library programmers is InnerExcep-
tion. Typically, programmers use this property to “wrap” exception objects caught in
their code so that they then can throw new exception types that are specific to their libraries.
For example, a programmer implementing an accounting system might have some account-
number processing code in which account numbers are input as Strings, but represented
as Integers in the code. Recall, a program can convert Strings to Integer values
with Convert.ToInt32, which throws a FormatException when it encounters an
invalid number format. When an invalid account-number format occurs, the accounting-
system programmer might wish employ a different error message than the default message
supplied by FormatException or might wish to indicate a new exception type, such as
InvalidAccountNumberFormatException. In these cases, the programmer
would provide code to catch the FormatException and then would create an Excep-
tion object in the Catch handler, passing the original exception as one of the constructor
arguments. The original exception object becomes the InnerException of the new
exception object. When an InvalidAccountNumberFormatException occurs in
code that uses the accounting-system library, the Catch block that catches the exception
can obtain a reference to the original exception via property InnerException. Thus,
the exception indicates both that the user specified an invalid account number and that the
particular problem was an invalid number format.

Class Exception provides other properties, including HelpLink, Source and
TargetSite. Property HelpLink specifies the location of the help file that describes
the problem that occurred. This property is Nothing if no such file exists. Property
Source specifies the name of the application where the exception occurred. Property
TargetSite specifies the method where the exception originated. 

Our next example (Fig. 11.3) demonstrates properties Message, StackTrace and
InnerException and method ToString of class Exception. In addition, this
example introduces stack unwinding, which is the process of attempting to locate an appro-
priate Catch handler for an uncaught exception. As we discuss this example, we keep
track of the methods on the call stack so that we can discuss property StackTrace and
the stack-unwinding mechanism.

Program execution begins with the invocation of Main, which becomes the first
method on the method call stack. Line 13 of the Try block in Main invokes Method1
(defined in lines 37–39), which becomes the second method on the stack. If Method1
throws an exception, the Catch handler in lines 17–30 handles the exception and outputs
information about the exception that occurred. Line 38 of Method1 invokes Method2
(lines 42–44), which becomes the third method on the stack. Then, line 43 of Method2
invokes Method3 (lines 47–61) which becomes the fourth method on the stack. 



Chapter 11 Exception Handling 461

At this point, the method call stack for the program is:

Method3
Method2
Method1
Main

Notice the most recent method to be called (Method3) appears at the top of the list, where-
as the first method called (Main) appears at the bottom. The Try block (lines 50–59) in
Method3 invokes method Convert.ToInt32 (line 51), which attempts to convert a
String to an Integer. At this point, Convert.ToInt32 becomes the fifth and final
method on the call stack. 

Because the argument to Convert.ToInt32 is not in Integer format, line 51
throws a FormatException that is caught in line 54 of Method3. The exception termi-
nates the call to Convert.ToInt32, so the method is removed from the method-call stack.
The Catch handler in Method3 then creates and throws an Exception object. The first
argument to the Exception constructor is the custom error message for our example,
“Exception occurred in Method3.” The second argument is the InnerExcep-
tion—the FormatException that was caught. The StackTrace for this new excep-
tion object reflects the point at which the exception was thrown (line 56). Now, Method3
terminates, because the exception thrown in the Catch handler is not caught in the method
body. Thus, control returns to the statement that invoked Method3 in the prior method in the
call stack (Method2). This removes, or unwinds, Method3 from the method-call stack. 

When control returns to line 42 in Method2, the CLR determines that line 42 is not in
a Try block. Therefore, the exception cannot be caught in Method2, and Method2 termi-
nates. This unwinds Method2 from the call stack and returns control to line 37 in Method1.

Here again, line 37 is not in a Try block, so the exception cannot be caught in Method1.
The method terminates and unwinds from the call stack, returning control to line 13 in Main,
which is located in a Try block. The Try block in Main expires and the Catch handler
(lines 17–30) catches the exception. The Catch handler uses method ToString and prop-
erties Message, StackTrace and InnerException to create the output. Stack
unwinding continues until a Catch handler catches the exception or the program terminates. 

The first block of output (reformatted for readability) in Fig. 11.3 contains the excep-
tion’s String representation, which is returned from method ToString. The String
begins with the name of the exception class followed by the Message property value. The
next ten lines present the String representation of the InnerException object. The
remainder of the block of output shows the StackTrace for the exception thrown in
Method3. Note that the StackTrace represents the state of the method-call stack at the
throw point of the exception, rather than at the point where the exception eventually is
caught. Each StackTrace line that begins with “at” represents a method on the call
stack. These lines indicate the method in which the exception occurred, the file in which
that method resides and the line number in the file where the exception is thrown (throw
point). Also, note that the stack trace includes the inner exception stack trace.

Testing and Debugging Tip 11.8
When reading a stack trace, start from the top of the stack trace and read the error message
first. Then, read the remainder of the stack trace, searching for the first line that references
code from your program. Normally, this is the location that caused the exception. 11.8



462 Exception Handling Chapter 11

1 ' Fig. 11.3: Properties.vb
2 ' Stack unwinding and Exception class properties.
3
4 ' demonstrates using properties Message, StackTrace and 
5 ' InnerException
6 Class CProperties
7
8 Shared Sub Main()
9

10       ' call Method1; any Exception generated is caught
11       ' in Catch handler that follows
12       Try
13          Method1()
14
15       ' output String representation of Exception, then output
16       ' properties InnerException, Message and StackTrace
17       Catch exceptionParameter As Exception
18          Console.WriteLine("exceptionParameter.ToString: " & _
19             vbCrLf & "{0}" & vbCrLf, exceptionParameter.ToString())
20
21          Console.WriteLine("exceptionParameter.Message: " & _
22             vbCrLf & "{0}" & vbCrLf, exceptionParameter.Message)
23
24          Console.WriteLine("exceptionParameter.StackTrace: " & _
25             vbCrLf & "{0}" & vbCrLf, exceptionParameter.StackTrace)
26
27          Console.WriteLine( _
28             "exceptionParameter.InnerException: " & _
29             vbCrLf & "{0}" & vbCrLf, _
30             exceptionParameter.InnerException.ToString())
31
32       End Try
33
34 End Sub ' Main
35
36    ' calls Method2
37 Public Shared Sub Method1()
38       Method2()
39 End Sub
40
41    ' calls Method3
42 Public Shared Sub Method2()
43       Method3()
44 End Sub
45
46    ' throws an Exception containing InnerException
47 Public Shared Sub Method3()
48
49       ' attempt to convert String to Integer
50       Try
51          Convert.ToInt32("Not an integer")
52

Fig. 11.3 Exception properties and stack unwinding (part 1 of 3).



Chapter 11 Exception Handling 463

53       ' wrap FormatException in new Exception
54       Catch formatExceptionParameter As FormatException
55
56          Throw New Exception("Exception occurred in Method3", _
57             formatExceptionParameter)
58
59       End Try
60
61 End Sub ' Method3
62
63 End Class ' CProperties

exceptionParameter.ToString:
System.Exception: Exception occurred in Method3 ---> 
   System.FormatException: Input string was not in a correct format.
   at System.Number.ParseInt32(String s, NumberStyles style, 
      NumberFormatInfo info)
   at System.Int32.Parse(String s, NumberStyles style, 
      IFormatProvider provider)
   at System.Int32.Parse(String s)
   at System.Convert.ToInt32(String value)
   at Properties.CProperties.Method3() in 
 C:\Fig11_03\Properties\Properties.vb:line 51
   --- End of inner exception stack trace ---
   at Properties.CProperties.Method3() in
 C:\Fig11_03\Properties\Properties.vb:line 56
   at Properties.CProperties.Method2() in
 C:\Fig11_03\Properties\Properties.vb:line 43
   at Properties.CProperties.Method1() in
 C:\Fig11_03\Properties\Properties.vb:line 38
   at Properties.CProperties.Main() in
 C:\Fig11_03\Properties\Properties.vb:line 13

exceptionParameter.Message:
Exception occurred in Method3

exceptionParameter.StackTrace:
   at Properties.CProperties.Method3() in 
 C:\Fig11_03\Properties\Properties.vb:line 56
   at Properties.CProperties.Method2() in
 C:\Fig11_03\Properties\Properties.vb:line 43
   at Properties.CProperties.Method1() in
 C:\Fig11_03\Properties\Properties.vb:line 38
   at Properties.CProperties.Main() in
 C:\Fig11_03\Properties\Properties.vb:line 13

exceptionParameter.InnerException:
System.FormatException: Input string was not in a correct format.
   at System.Number.ParseInt32(String s, NumberStyles style, 
      NumberFormatInfo info)
                                              (continued on next page)

Fig. 11.3 Exception properties and stack unwinding (part 2 of 3).



464 Exception Handling Chapter 11

Testing and Debugging Tip 11.9
When catching and rethrowing an exception, provide additional debugging information in
the rethrown exception. To do so, create an Exception object containing more specific de-
bugging information and then pass the original caught exception to the new exception ob-
ject’s constructor to initialize the InnerException property.8 11.1

The next block of output (two lines) simply displays the Message property’s value
(Exception occurred in Method3) of the exception thrown in Method3.

The third block of output displays the StackTrace property of the exception thrown
in Method3. Note that this StackTrace property contains the stack trace starting from
line 56 in Method3, because that is the point at which the Exception object was created
and thrown. The stack trace always begins from the exception’s throw point. 

Finally, the last block of output displays the ToString representation of the Inner-
Exception property, which includes the namespace and class name of that exception
object, as well as its Message property and StackTrace property.

11.7 Programmer-Defined Exception Classes
In many cases, programmers can use existing exception classes from the .NET Framework
to indicate exceptions that occur in their programs. However, in some cases, programmers
might wish to create new exception types that are specific to the problems that occur in their
programs. Programmer-defined exception classes should derive directly or indirectly from
class ApplicationException of namespace System.

Good Programming Practice 11.2
The association of each type of malfunction with an appropriately named exception class im-
proves program clarity. 11.2

Software Engineering Observation 11.10
Before creating programmer-defined exception classes, investigate the existing exception
classes in the .NET Framework to determine whether an appropriate exception type al-
ready exists. 11.10

Software Engineering Observation 11.11
Programmers should create exception classes only if they need to catch and handle the new
exceptions in a different manner than other existing exception types. 11.2

                                              (continued from previous page)
   at System.Int32.Parse(String s, NumberStyles style, 
      IFormatProvider provider)
   at System.Int32.Parse(String s)
   at System.Convert.ToInt32(String value)
   at Properties.CProperties.Method3() in 
 C:\Fig11_03\Properties\Properties.vb:line 51

Fig. 11.3 Exception properties and stack unwinding (part 3 of 3).

8. “Best Practices for Handling Exceptions [Visual Basic],” .NET Framework Developer's Guide,
Visual Studio .NET Online Help.



Chapter 11 Exception Handling 465

Figure 11.4 and Fig. 11.5 demonstrate a programmer-defined exception class. Class
NegativeNumberException (Fig. 11.4) is a programmer-defined exception class
representing exceptions that occur when a program performs an illegal operation on a neg-
ative number, such as attempting to calculate the square root of a negative number. 

According to Microsoft,9 programmer-defined exceptions should extend class
ApplicationException, should have a class name that ends with “Exception” and
should define three constructors—a default constructor, a constructor that receives a
String argument (the error message) and a constructor that receives a String argument
and an Exception argument (the error message and the inner exception object). 

NegativeNumberExceptions most likely occur during arithmetic operations, so
it seems logical to derive class NegativeNumberException from class
ArithmeticException. However, class ArithmeticException derives from
class SystemException—the category of exceptions thrown by the CLR. The base
class for programmer-defined exception classes should inherit from Application-
Exception, rather than SystemException.

Class FrmSquareRoot (Fig. 11.5) demonstrates our programmer-defined exception
class. The application enables the user to input a numeric value and then invokes method
SquareRoot (lines 23–34) to calculate the square root of that value. To perform this calcu-
lation, SquareRoot invokes class Math’s Sqrt method, which receives a Double value
as its argument. Normally, if the argument is negative, method Sqrt returns constant NaN
from class Double. In this program, we would like to prevent the user from calculating the
square root of a negative number. If the numeric value that the user enters is negative,
SquareRoot throws a NegativeNumberException (lines 27–28). Otherwise,
SquareRoot invokes class Math’s method Sqrt to compute the square root (line 33).

When the user inputs a value and clicks the Square Root button, the program invokes
event handler cmdSquareRoot_Click (lines 37–67). The Try block (lines 44–65)
attempts to invoke SquareRoot using the value input by the user. If the user input is not
a valid number, a FormatException occurs, and the Catch handler in lines 51–54 pro-
cesses the exception. If the user inputs a negative number, method SquareRoot throws
a NegativeNumberException (lines 27–28). The Catch handler in lines 57–63
catches and handles this type of exception.  

9. “Best Practices for Handling Exceptions [Visual Basic],” .NET Framework Developer's Guide,
Visual Studio .NET Online Help.

1 ' Fig. 11.4: NegativeNumberExceptionDefinition.vb
2 ' NegativeNumberException represents exceptions caused by
3 ' illegal operations performed on negative numbers.
4
5 Public Class NegativeNumberException
6 Inherits ApplicationException
7
8    ' default constructor
9 Public Sub New()

10       MyBase.New("Illegal operation for a negative number")
11    End Sub ' New

Fig. 11.4 ApplicationException derived class thrown when a program 
performs an illegal operation on a negative number (part 1 of 2).



466 Exception Handling Chapter 11

12
13    ' constructor for customizing error message
14 Public Sub New(ByVal messageValue As String)
15       MyBase.New(messageValue)
16 End Sub ' New
17
18    ' constructor for customizing error message and specifying
19    ' InnerException object
20 Public Sub New(ByVal messageValue As String, _
21       ByVal inner As Exception)
22
23       MyBase.New(messageValue, inner)
24 End Sub ' New
25
26 End Class ' NegativeNumberException

1 ' Fig. 11.5: SquareRootTest.vb
2 ' Demonstrating a programmer-defined exception class.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmSquareRoot
7 Inherits Form
8
9    ' Label for showing square root

10 Friend WithEvents lblOutput As Label
11 Friend WithEvents lblInput As Label
12
13    ' Button invokes square-root calculation
14 Friend WithEvents cmdSquareRoot As Button
15
16    ' TextBox receives user's Integer input
17 Friend WithEvents txtInput As TextBox
18
19    ' Visual Studio .NET generated code
20
21    ' computes square root of parameter; throws 
22    ' NegativeNumberException if parameter is negative
23 Public Function SquareRoot(ByVal value As Double) As Double
24
25       ' if negative operand, throw NegativeNumberException
26       If value < 0 Then
27          Throw New NegativeNumberException( _
28             "Square root of negative number not permitted")
29
30       End If
31

Fig. 11.5 FrmSquareRoot class throws an exception if an error occurs when 
calculating the square root (part 1 of 2).

Fig. 11.4 ApplicationException derived class thrown when a program 
performs an illegal operation on a negative number (part 2 of 2).



Chapter 11 Exception Handling 467

32       ' compute square root
33       Return Math.Sqrt(value)
34 End Function ' SquareRoot
35
36    ' obtain user input, convert to Double, calculate square root
37 Private Sub cmdSquareRoot_Click( _
38       ByVal sender As System.Object, _
39       ByVal e As System.EventArgs) Handles cmdSquareRoot.Click
40
41       lblOutput.Text = ""
42
43       ' catch any NegativeNumberException thrown
44       Try
45          Dim result As Double = _
46             SquareRoot(Convert.ToDouble(txtInput.Text))
47
48          lblOutput.Text = result.ToString()
49
50       ' process invalid number format
51       Catch formatExceptionParameter As FormatException
52          MessageBox.Show(formatExceptionParameter.Message, _
53             "Invalid Number Format", MessageBoxButtons.OK, _
54             MessageBoxIcon.Error)
55
56       ' display MessageBox if negative number input
57       Catch negativeNumberExceptionParameter As _ 
58          NegativeNumberException
59
60          MessageBox.Show( _
61             negativeNumberExceptionParameter.Message, _
62             "Invalid Operation", MessageBoxButtons.OK, _
63             MessageBoxIcon.Error)
64
65       End Try
66
67 End Sub ' cmdSquareRoot_Click
68
69 End Class ' FrmSquareRoot

Fig. 11.5 FrmSquareRoot class throws an exception if an error occurs when 
calculating the square root (part 2 of 2).



468 Exception Handling Chapter 11

11.8 Handling Overflows
In Visual Basic, primitive data types can represent values only within a fixed range. For
instance, the maximum value of an Integer is 2,147,483,647. In Integer arithmetic,
a value larger than 2,147,483,647 causes overflow—type Integer cannot represent such
a number. Overflow also can occur with other Visual Basic primitive types. Overflows of-
ten cause programs to produce incorrect results. 

Visual Basic enables the user to specify whether arithmetic occurs in a checked context
or unchecked context. In a checked context, the CLR throws an OverflowException
(namespace System) if overflow occurs during the evaluation of an arithmetic expression.
In an unchecked context, overflow produces a truncated result. 

By default, calculations occur in a checked context. However, the programmer can
modify a project’s properties to disable checking for arithmetic overflow—a dangerous
practice. To do so, first select the project in the Solution Explorer. Next, select View >
Property Pages. In the Property Pages dialog, select the Configuration Proper-
ties folder. Under Optimizations, select the checkbox named Remove integer over-
flow checks to disable checking for arithmetic overflow.

Performance Tip 11.4
The removal of integer-overflow checking improves runtime performance, but can yield faulty
program results if an overflow occurs. Programmers should disable integer-overflow checking
only if they have tested a program thoroughly and are certain that no overflows can occur. 11.4

The operators *, /, + and - can cause overflow when used with integral data types
(such as Integer and Long). In addition, conversions between integral data types can
cause overflow. For example, the conversion of 1,000,000 from an Integer to a Short
results in overflow because a Short can store a maximum value of 32,767. Figure 11.6
demonstrates overflows occurring in both checked and unchecked contexts. The first
output depicts the program execution when integer-overflow checking is enabled, whereas
the second output illustrates program execution without checking.  

1 ' Fig. 11.6: Overflow.vb
2 ' Demonstrating overflows with and without checking.
3
4 ' demonstrates overflows with and without checking
5 Class COverflow
6
7 Shared Sub Main()
8
9       ' calculate sum of number1 and number 2

10       Try
11
12          Dim number1 As Integer = Int32.MaxValue ' 2,147,483,647
13          Dim number2 As Integer = Int32.MaxValue ' 2,147,483,647
14          Dim sum As Integer = 0
15

Fig. 11.6 OverflowException cannot occur if user disables integer-overflow 
checking (part 1 of 2).



Chapter 11 Exception Handling 469

The Try block in lines 10–34 begins by defining Integer variables number1 and
number2 (lines 12–13), and assigning to each variable the maximum value for an
Integer, which is 2,147,483,647. (This maximum is defined by Int32.MaxValue.)
Next, line 23 calculates the total of number1 and number2 and stores the result in variable
sum. Because variables number1 and number2 already contain the maximum value for an
Integer, adding these values when integer-overflow checking is enabled causes an Over-
flowException. The Catch handler in lines 31–32 catches the exception and outputs its
String representation. Note that, if integer-overflow checking is disabled (as represented

16          ' output numbers
17          Console.WriteLine("number1: {0}" & vbCrLf & _
18             "number2: {1}", number1, number2)
19
20          Console.WriteLine(vbCrLf & _
21             "Sum integers in checked context:")
22
23          sum = number1 + number2 ' compute sum
24
25          ' this statement will not throw OverflowException if user
26          ' removes integer-overflow checks
27          Console.WriteLine(vbCrLf & _
28             "Sum after operation: {0}", sum)
29
30       ' catch overflow exception
31       Catch overflowExceptionParameter As OverflowException
32          Console.WriteLine(overflowExceptionParameter.ToString())
33
34       End Try
35
36 End Sub ' Main
37
38 End Class ' COverflow

number1: 2147483647
number2: 2147483647

Sum integers in checked context:
System.OverflowException: Arithmetic operation resulted in an overflow.
   at Overflow.COverflow.Main() in 
C:\books\2001\vbhtp2\ch11\Overflow\Overflow.vb:line 23

number1: 2147483647
number2: 2147483647

Sum integers in checked context:

Sum after operation: -2

Fig. 11.6 OverflowException cannot occur if user disables integer-overflow 
checking (part 2 of 2).



470 Exception Handling Chapter 11

by the second output window), line 23 does not generate an OverflowException. Lines
27–28 output the sum of number1 and number2. The result of the calculation should be
4,294,967,294. However, this value is too large to be represented as an Integer, so Visual
Basic truncates part of the value, resulting in a sum of -2 in the output. The result of the
unchecked calculation does not resemble the actual sum of the variables.   

In this chapter, we demonstrated the exception-handling mechanism and discussed
how to make applications more robust by writing exception handlers to process potential
problems. As programmers develop applications, it is important that they investigate poten-
tial exceptions thrown by the methods that their program invokes or by the CLR. They then
should implement appropriate exception-handling code to make their applications more
robust. In the next chapter, we begin a more in-depth treatment of graphical user interfaces.

Testing and Debugging Tip 11.10
Use a checked context when performing calculations that can result in overflows. The pro-
grammer define exception handlers to deal with the overflow situations. 11.10

SUMMARY
• An exception is an indication of a problem that occurs during a program’s execution. 

• Exception handling enables programmers to create applications that can resolve exceptions, often
allowing programs to continue execution as if no problems were encountered. 

• Exception handling enables programmers to write clear, robust and more fault-tolerant programs.

• Exception handling also enables programmers to remove error-handling code from the “main line”
of the program’s execution. This improves program clarity and enhances modifiability.

• Exception handling is designed to process synchronous errors, such as out-of-range array sub-
scripts, arithmetic overflow, division by zero and invalid method parameters. 

• Exception handling is not designed to process asynchronous events, such as disk-I/O completions,
network message arrivals, mouse clicks and keystrokes.  

• When a method detects an error and is unable to handle it, the method throws an exception. There
is no guarantee that there will be an exception handler to process that kind of exception. If there
is, the exception will be caught and handled. 

• In debug mode, when the runtime environment detects an uncaught exception, a dialog appears
that enables the programmer to view the problem in the debugger or to continue program execution
by ignoring the problem. 

• Visual Basic uses Try blocks to enable exception handling. A Try block consists of keyword
Try followed a block of code in which exceptions might occur. 

• Immediately following the Try block are zero or more Catch handlers. Each Catch specifies
an exception parameter representing the exception type that the Catch can handle. 

• The Catch handler can use the exception-parameter name to interact with a caught exception object. 

• A Try block can contain one parameterless Catch block that catches all exception types. 

• After the last Catch block, an optional Finally block contains code that always executes, re-
gardless of whether an exception occurs.

• When a method, property or the CLR detects a problem, the method, property or CLR throws an
exception. The point in the program at which the exception occurs is called the throw point. 

• Exceptions are objects of classes that inherit from class System.Exception.



Chapter 11 Exception Handling 471

• Visual Basic uses the termination model of exception handling. If an exception occurs in a Try
block, the block expires and program control transfers to the first Catch handler following the
Try block. 

• The CLR searches for the first Catch handler that can process the type of exception that occurred.
The appropriate handler is the first one in which the thrown exception’s type matches, or is derived
from, the exception type specified by the Catch block’s exception parameter. 

• If no exceptions occur in a Try block, the CLR ignores the exception handlers for that block. 

• If no exception occurs or an exception is caught and handled, the program resumes execution with
the next statement after the Try/Catch/Finally sequence. 

• If an exception occurs in a statement that is not in a Try block, the method containing that state-
ment terminates immediately, and the CLR attempts to locate an enclosing Try block in a calling
method—a process called stack unwinding.

• When a Try block terminates, local variables defined in the block go out of scope. 

• If an argument passed to method Convert.ToInt32 is not an Integer, a FormatExcep-
tion occurs. 

• In integer arithmetic, an attempt to divide by zero causes a DivideByZeroException.

• A Try block encloses a portion of code that might throw exceptions, as well as any code that
should not execute if an exception occurs. 

• Each Catch handler begins with keyword Catch, followed by an optional exception parameter
that specifies the type of exception handled by the Catch handler. The exception-handling code
appears in the body of the Catch handler. 

• If an exception occurs, the program executes only the matching Catch handler. When program
control reaches the end of a Catch handler, the CLR considers the exception to be handled, and
program control continues with the first statement after the Try/Catch sequence. 

• The exception-handling mechanism allows only objects of class Exception and its derived
classes to be thrown and caught. Class Exception of namespace System is the base class of
the .NET Framework exception hierarchy. 

• ApplicationException is a base class that programmers can extend to create exception data
types that are specific to their applications. Programs can recover from most ApplicationEx-
ceptions and continue execution. 

• The CLR generates SystemExceptions. If a program attempts to access an out-of-range array
subscript, the CLR throws an IndexOutOfRangeException. An attempt to manipulate an
object through a Nothing reference causes a NullReferenceException.

• Programs typically cannot recover from most exceptions thrown by the CLR. Programs generally
should not throw SystemExceptions nor attempt to catch them.

• A Catch handler can catch exceptions of a particular type or can use a base-class type to catch
exceptions in a hierarchy of related exception types. A Catch handler that specifies an exception
parameter of type Exception can catch all exceptions, because Exception is the base class
of all exception classes. 

• For methods in the .NET Framework classes, programmers should investigate the detailed descrip-
tion of the method in the online documentation to determine whether the method throws exceptions. 

• Information on exceptions thrown by the CLR appears in the Visual Basic Language Specification,
which is located in the online documentation. 

• Many computer operating systems prevent more than one program from manipulating a resource
at the same time. Therefore, when a program no longer needs a resource, the program normally



472 Exception Handling Chapter 11

releases the resource to allow other programs to use the resource. This helps prevent resource
leaks, and helps ensure that resources are available to other programs when needed. 

• In C and C++, the most common resource leaks are memory leaks, which occur when a program
allocates memory, but does not deallocate the memory when the memory is no longer needed in
the program. In Visual Basic, however, the CLR performs garbage collection of memory that is no
longer needed by an executing program, thus preventing most memory leaks. 

• A program should release a resource when the resource is no longer needed. The Finally block
is guaranteed to execute if program control enters the corresponding Try block, regardless of
whether that Try block executes successfully or an exception occurs. This guarantee makes the
Finally block an ideal location in which to place resource-deallocation code for resources ac-
quired and manipulated in the corresponding Try block. 

• A Try block that contains one or more Catch blocks does not require a Finally block—the
Finally block is optional and appears after the last Catch. A Try block that does not contain
any Catch blocks requires a Finally block. 

• A Throw statement throws an exception object.

• A Throw statement can be used in a Catch handler to rethrow an exception. This indicates that
the Catch handler has performed partial processing of the exception and now is passing the ex-
ception back to a calling method for further processing. 

• Exception property Message stores the error message associated with an Exception ob-
ject. This message can be a default message associated with the exception type or a customized
message passed to an exception object’s constructor when the program created the exception. 

• Exception property StackTrace contains a String that represents the method-call stack at
the throw point of the exception.

• Exception property InnerException typically is used to “wrap” a caught exception object
in a new exception object and then throw the object of that new exception type. 

• Exception property HelpLink specifies the location of the help file that describes the prob-
lem that occurred. This property is Nothing if no such file exists. 

• Exception property Source specifies the name of the application that caused the exception. 

• Exception property TargetSite specifies the method that caused the exception. 

• When an exception is uncaught in a method, the method terminates. This removes, or unwinds, the
method from the method-call stack. 

• Programmer-defined exceptions should extend class ApplicationException, should have a
class name that ends with “Exception” and should define three constructors. These are a default
constructor, a constructor that receives a String argument (the error message) and a constructor
that receives a String argument and an Exception argument (the error message and the inner
exception object).

• Overflow occurs in integer arithmetic when the value of an expression is greater than the maxi-
mum value that can be stored in a particular data type.

• Visual Basic enables the user to specify whether arithmetic occurs in a checked context or un-
checked context. In a checked context, the CLR throws an OverflowException if overflow
occurs during the evaluation of an arithmetic expression. In an unchecked context, overflow pro-
duces a truncated result (normally, a dangerous thing to allow).

• The operators *, /, + and - can cause overflow when used with integral data types (such as In-
teger and Long). Also, explicit conversions between integral data types can cause overflow. 



Chapter 11 Exception Handling 473

TERMINOLOGY

SELF-REVIEW EXERCISES
11.1 Fill in the blanks in each of the following statements:

a) Exception handling deals with  errors, but not  errors.
b) A method is said to  an exception when that method detects that a problem

occurred.
c) When present, the  block associated with a Try block always executes.
d) Exception objects are derived from class .
e) The statement that throws an exception is called the  of the exception.
f) Visual Basic uses the  model of exception handling.
g) An uncaught exception in a method causes that method to  from the method

call stack.
h) Method Convert.ToInt32 can throw a  exception if its argument is not

a valid integer value.
i) Runtime exceptions derive from class .
j) In a  context, the CLR throws an OverflowException if overflow oc-

curs during the evaluation of an arithmetic exception.

11.2 State whether each of the following is true or false. If false, explain why.
a) Exceptions always are handled in the method that initially detects the exception.
b) Programmer-defined exception classes should extend class SystemException.
c) Accessing an out-of-bounds array index causes the CLR to throw an exception.

ApplicationException class NaN constant of class Double
arithmetic overflow NullReferenceException class
asynchronous event out-of-range array subscript 
call stack overflow 
Catch block OverflowException class 
Catch handler ToInt32 method of Convert
catch-related errors parameterless Catch block 
checked context polymorphic processing of related errors 
disk-I/O completion 
divide by zero resource leak 
DivideByZeroException class resumption model of exception handling
eliminate resource leak rethrow an exception 
error-processing code runtime exception 
exception Source property of Exception
Exception class stack unwinding 
exception handler StackTrace property of Exception
fault-tolerant program synchronous error 
Finally block SystemException class 
FormatException class TargetSite property of Exception
HelpLink property of Exception termination model of exception handling 
IndexOutOfRangeException class throw an exception 
inheritance with exceptions throw point 
InnerException property of Exception Throw statement 
MaxValue constant of Int32 Try block 
memory leak Try block expires 
Message property of Exception unchecked context 
method call stack programmer-defined exception class



474 Exception Handling Chapter 11

d) A Finally block is optional after a Try block that does not have any corresponding
Catch handlers.

e) If a Finally block appears in a method, that Finally block is guaranteed to execute.
f) It is possible to return to the throw point of an exception using keyword Return.
g) Exceptions can be rethrown.
h) A checked context causes a syntax error when integral arithmetic overflow occurs.
i) Property Message returns a String indicating the method from which the exception

was thrown.
j) Exceptions can be thrown only by methods explicitly called in a Try block.

ANSWERS TO SELF-REVIEW EXERCISES
11.1 a) synchronous, asynchronous. b) throw. c) Finally. d) Exception. e) throw point.
f) termination. g) unwind. h) FormatException. i) SystemException. j) checked.

11.2 a) False. Exceptions can be handled by other methods on the method-call stack. b) False. Pro-
grammer-defined exception classes should extend class ApplicationException. c) True. d)
False. A Try block that does not contain any Catch handler requires a Finally block. e) False.
The Finally block executes only if program control enters the corresponding Try block. f) False.
Return causes control to return to the caller. g) True. h) False. A checked context causes an Over-
flowException when arithmetic overflow occurs at execution time. i) False. Property Message
returns a String representing the error message. j) False. Exceptions can be thrown by any method,
regardless of whether it is called from a Try block. The CLR also can throw exceptions.

EXERCISES 
11.3 Use inheritance to create an exception base class and various exception-derived classes. Write
a program to demonstrate that the Catch specifying the base class catches derived-class exceptions.

11.4 Write a program that demonstrates how various exceptions are caught with

Catch exceptionParameter As Exception

11.5 Write a program demonstrating the importance of the order of exception handlers. Write two
programs, one with correct ordering of Catch handlers (i.e., place the base-class exception handler
after all derived-class exception handlers) and another with improper ordering (i.e., place the base-
class exception handler before the derived-class exception handlers). Show that derived-class excep-
tions are not invoked when Catch handlers are ordered improperly.

11.6 Exceptions can be used to indicate problems that occur when an object is being constructed.
Write a program that shows a constructor passing information about constructor failure to an excep-
tion handler. The exception thrown also should contain the arguments sent to the constructor.

11.7 Write a program that demonstrates rethrowing an exception.

11.8 Write a program demonstrating that a method with its own Try block does not have to
Catch every possible exception that occurs within the Try block. Some exceptions can slip through
to, and be handled in, other scopes.



12
Graphical User Interface 

Concepts: Part 1

Objectives
• To understand the design principles of graphical user 

interfaces.
• To be able to use events.
• To understand namespaces that contain graphical user 

interface components and event-handling classes.
• To be able to create graphical user interfaces.
• To be able to create and manipulate buttons, labels, 

lists, textboxes and panels.
• To be able to use mouse and keyboard events.
… the wisest prophets make sure of the event first.
Horace Walpole

...The user should feel in control of the computer; not the 
other way around. This is achieved in applications that 
embody three qualities: responsiveness, permissiveness, and 
consistency.
Inside Macintosh, Volume 1
Apple Computer, Inc. 1985

All the better to see you with, my dear.
The Big Bad Wolf to Little Red Riding Hood



476 Graphical User Interface Concepts: Part 1 Chapter 12

12.1 Introduction
A graphical user interface (GUI) allows a user to interact visually with a program. A GUI
(pronounced “GOO-ee”) gives a program a distinctive “look” and “feel.” By providing dif-
ferent applications with a consistent set of intuitive user-interface components, GUIs en-
able users to spend less time trying to remember which keystroke sequences perform what
functions, freeing up time that can be spent using the program in a productive manner.

Look-and-Feel Observation 12.1
Consistent user interfaces enable a user to learn new applications more quickly. 12.1

As an example of a GUI, Fig. 12.1 depicts an Internet Explorer window in which var-
ious GUI components have been labeled. Near the top of the window, there is a menu bar
containing menus, including File, Edit, View, Favorites, Tools and Help. Below the
menu bar is a set of buttons, each of which has a defined task in Internet Explorer. Below
these buttons lies a textbox, in which users can type the locations of World Wide Web sites
that they wish to visit. To the left of the textbox is a label that indicates the textbox’s pur-
pose. Scrollbars are situated on the far right and bottom of the window. Usually, scrollbars
are employed when a window contains more information than can be displayed in the
window’s viewable area. By clicking the scrollbars, the user can view different portions of
the window. These components form a user-friendly interface through which the user inter-
acts with the Internet Explorer Web browser.

GUIs are built from GUI components (which are sometimes called controls or wid-
gets—short for window gadgets). A GUI component is an object with which the user inter-
acts via the mouse or keyboard. Several common GUI components are listed in Fig. 12.2.
In the sections that follow, we discuss each of these GUI components in detail. The next
chapter explores the features and properties of more advanced GUI components.

Outline

12.1 Introduction
12.2 Windows Forms
12.3 Event-Handling Model
12.4 Control Properties and Layout

12.5 Labels, TextBoxes and Buttons

12.6 GroupBoxes and Panels

12.7 CheckBoxes and RadioButtons

12.8 PictureBoxes
12.9 Mouse-Event Handling
12.10 Keyboard-Event Handling

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



Chapter 12 Graphical User Interface Concepts: Part 1 477

Fig. 12.1 GUI components in a sample Internet Explorer window.

Component Description

Label An area in which icons or uneditable text is displayed.

Textbox An area in which the user inputs data from the keyboard. This area 
also can display information.

Button An area that triggers an event when clicked.

CheckBox A component that is either selected or unselected.

ComboBox A drop-down list of items from which the user can make a selection 
either by clicking an item in the list or by typing into a box.

ListBox An area in which a list of items is displayed. The user can make a 
selection from the list by clicking on any item. Multiple elements can 
be selected.

Panel A container in which components can be placed.

Scrollbar A component that allows the user to access a range of elements that 
normally cannot fit in the control’s container.

Fig. 12.2 Some basic GUI components.

Menu Menu barButtonLabel Textbox Scrollbars



478 Graphical User Interface Concepts: Part 1 Chapter 12

12.2 Windows Forms
Windows Forms (also called WinForms) are used to create the GUIs for programs. A form
is a graphical element that appears on the desktop; it can be a dialog, a window or an MDI
window (multiple document interface window, discussed in Chapter 13, Graphical User In-
terfaces Concepts: Part 2). A component is an instance of a class that implements the
IComponent interface, which defines the behaviors that components must implement. A
control, such as a button or label, is a component that has a graphical representation at runt-
ime. Controls are visible, whereas components that lack the graphical representation (e.g.,
class Timer of namespace System.Windows.Forms, see Chapter 13) are not.

Figure 12.3 displays the Windows Forms controls and components that are contained
in the Toolbox. The first two screenshots show the controls, and the last screenshot shows
the components. To add a component or control to a Windows Form, a user selects that
component or control from the Toolbox and drags it onto the Windows Form. Note that
the Pointer (the icon at the top of the list) is not a component; rather it allows the pro-
grammer to use the mouse pointer and does not add an item to the form. In this chapter and
the next, we discuss many of these controls.

Fig. 12.3 Components and controls for Windows Forms.



Chapter 12 Graphical User Interface Concepts: Part 1 479

 In a series of windows, the active window is the frontmost window and has a high-
lighted title bar. A window becomes the active window when the user clicks somewhere
inside it. During interaction with windows, the active Window is said to have the focus.

The form acts as a container for components and controls. As we saw in Chapter 4,
Control Structures: Part 1, when we drag a control from the Toolbox onto the form, Visual
Studio .NET generates this code for us,  instantiating the component and setting its basic
properties. Although we could write the code ourselves, it is much easier to create and
modify controls using the Toolbox and Properties windows and allow Visual Studio
.NET to handle the details. We introduced basic concepts relating to this kind of visual pro-
gramming earlier in the book. In this chapter and the next, we use visual programming to
build much richer and more complex GUIs.

When the user interacts with a control via the mouse or keyboard, events (discussed in
Section 12.3) are generated. Typically, events are messages sent by a program to signal to an
object or a set of objects that an action has occurred. Events are used most commonly used to
signal user interactions with GUI components, but also can signal internal actions in a pro-
gram. For example, clicking the OK button in a MessageBox generates an event. The Mes-
sageBox handles this event. The MessageBox component is designed to close when the
event is handled, which occurs when the OK button is clicked. Section 12.3 describes how to
design components so that they react differently to various types of events. 

Each class we present in this chapter (i.e., form, component and control) is in the
System.Windows.Forms namespace. Class Form, the basic window used by Win-
dows applications, is fully qualified as System.Windows.Forms.Form. Likewise,
class Button actually is System.Windows.Forms.Button.

The general design process for creating Windows applications requires generating a
Windows Form, setting its properties, adding controls, setting their properties and imple-
menting the event handlers (methods that are called in response to an event). Figure 12.4
lists common Form properties, methods and events.

Form Properties and 
Events Description / Delegate and Event Arguments

Common Properties

AcceptButton Button that is clicked when Enter is pressed.

AutoScroll Boolean value that allows or disallows scrollbars to appear when 
needed.

CancelButton Button that is clicked when the Escape key is pressed.

FormBorderStyle Border style for the form (e.g., none, single, 3D, sizable).

Font Font of text displayed on the form, and the default font of controls 
added to the form.

Text Text in the form’s title bar.

Common Methods

Close Closes a form and releases all resources. A closed form cannot be 
reopened.

Fig. 12.4 Common Form properties, methods and events (part 1 of 2).



480 Graphical User Interface Concepts: Part 1 Chapter 12

When we create controls and event handlers, Visual Studio .NET generates a large
amount of the GUI–related code. Constructing GUIs can be performed graphically, by
dragging and dropping components onto the form and setting properties via the Proper-
ties window. In visual programming, the IDE generally maintains GUI-related code and
the programmer writes the necessary event handlers.

12.3 Event-Handling Model
GUIs are event driven—they generate events when a program’s user interacts with the GUI.
Typical interactions include moving the mouse, clicking the mouse, clicking a button, typ-
ing in a textbox, selecting an item from a menu and closing a window. Event information
is passed to event handlers, which are methods that are called as a result of specific events.
For example, consider a form that changes color when a button is clicked. Clicking the but-
ton generates an event and passes it to the button’s event handler, causing the event-handler
code to change the form’s color.

Events are based on the notion of delegates, which are objects that reference methods
(see Section 10.11). Event delegates are multicast (class MulticastDelegate), which
means that they represent a set of delegates with the same signature. Multicast delegates
enable event calls to be sent sequentially to all delegates contained within the multicast del-
egate. To learn more about delegates, see Chapter 10, Object-Oriented Programming: Poly-
morphism. In the event-handling model, delegates act as intermediaries between the objects
creating (raising) events and the methods handling the events (Fig. 12.5).

Hide Hides form (does not destroy the form or release its resources).

Show Displays a hidden form.

Common Events (Delegate EventHandler, event arguments EventArgs)

Load Occurs before a form is displayed to the user. The handler for this 
event is displayed in the editor when the form is double-clicked in the 
Visual Studio .NET designer.

Fig. 12.5 Event-handling model using delegates.

Form Properties and 
Events Description / Delegate and Event Arguments

Fig. 12.4 Common Form properties, methods and events (part 2 of 2).

Object A generates event E Delegate for event E

Handler 1 for event E

Handler 2 for event E

Handler 3 for event E

call calls



Chapter 12 Graphical User Interface Concepts: Part 1 481

Delegates enable classes to specify methods that will not be named or implemented
until the class is instantiated. This is extremely helpful in creating event handlers. For
example, the creator of the Form class does not need to name or define the method that will
handle the Click event. Using delegates, the class can specify when such an event handler
would be called. Programmers who create their own forms can then name and define this
event handler. As long as the event handler has been registered with the proper delegate,
the method will be called at the proper time.

Once an event is generated, the system calls every method (event handler) referenced
by the delegate. Every method in the delegate must have the same signature, because all the
methods are being passed the same information.

Many situations require handling events generated by .NET controls, such as buttons
and scrollbars. These controls already have predefined delegates corresponding to every
event they can generate. The programmer creates the event handler and registers it with the
delegate; Visual Studio .NET helps automate this task. In the following example, we create
a form that displays a message box when clicked. Afterwards, we analyze the event code
generated by Visual Studio .NET.

Following the steps we outlined in Chapter 4, Control Structures: Part 1, create a Form
containing a Label. First, create a new Windows application. Then, select the Label ele-
ment from the Windows Forms list in the Toolbox window. Drag the Label element
over the form to create a label. In the Properties window, set the (Name) property to
lblOutput and the Text property to "Click Me!".

We have been working in Design mode, which provides a graphical representation of
our program. However, Visual Studio .NET has been creating code in the background, and
that code can be accessed using the tab for the code or by right-clicking anywhere in the
Design window and selecting View Code. To define and register an event handler for
lblOutput, the IDE must be displaying the code listing for the Window application.

While viewing the code, notice the two drop-down menus above the editor window.
(Fig. 12.6). The drop-down menu on the left-hand side, called the Class Name menu, contains
a list of all components contained in our Form other than those elements that correspond to
the Form base class. The Class Name drop-down menu for our Form should list one Label,
named lblOutput. Select this element from the menu. On the right-hand side, the Method
Name drop-down menu allows the programmer to access, modify and create event handlers
for a component. This drop-down menu lists the events that the object can generate. 

For the purposes of this exercise, we want the label to respond when clicked. Select the
Click event in the Method Name drop-down menu. This creates an empty event handler
inside the program code.

Private Sub lblOutput_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles lblOutput.Click

End Sub

This is the method that is called when the form is clicked. We program the form to respond
to the event by displaying a message box. To do this, insert the statement

MessageBox.Show("Label was clicked.")

into the event handler. The event handler now should appear as follows:



482 Graphical User Interface Concepts: Part 1 Chapter 12

Private Sub lblOutput_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles lblOutput.Click

   MessageBox.Show("Label was clicked.")
End Sub

Now we can compile and execute the program, which appears in Fig. 12.7. Whenever
the label is clicked, a message box appears displaying the text "Label was clicked".
In previous examples, we commented out the code generated by the Visual Studio IDE. In
this example, we present the complete code listing which we discuss in detail. 

The Visual Studio .NET IDE generated the code pertaining to the creation and initial-
ization of the application that we built through the GUI design window. The code generated
by Visual Studio is contained within #Region and #End Region preprocessor direc-
tives (lines 7–69). In Visual Studio, these preprocessor directives allow code to be col-
lapsed into a single line, enabling the programmer to focus on only certain portions of a
program at a time. The only code that this example required us to write is the event-han-
dling code (line 75). 

Fig. 12.6 Events section in the Method Name drop-down menu.

1 ' Fig. 12.7: SimpleEventExample.vb
2 ' Program demonstrating simple event handler.
3
4 Public Class FrmSimple
5 Inherits System.Windows.Forms.Form

Fig. 12.7 Simple event-handling example using visual programming (part 1 of 3).

Code view
Method Name drop-

down menu Selected event

Class Name drop-
down menu



Chapter 12 Graphical User Interface Concepts: Part 1 483

6
7 #Region " Windows Form Designer generated code "
8
9 Public Sub New()

10       MyBase.New()
11
12       ' This call is required by the Windows Form Designer.
13       InitializeComponent()
14
15
16       ' Add any initialization after the 
17       ' InitializeComponent() call
18 End Sub 
19
20    ' Form overrides dispose to clean up the component list.
21 Protected Overloads Overrides Sub Dispose( _ 
22       ByVal disposing As Boolean)
23
24       If disposing Then
25
26          If Not (components Is Nothing) Then
27             components.Dispose()
28          End If
29
30       End If
31
32       MyBase.Dispose(disposing)
33 End Sub 
34
35 Friend WithEvents lblOutput As System.Windows.Forms.Label
36
37    ' Required by the Windows Form Designer
38 Private components As System.ComponentModel.Container
39
40    ' NOTE: The following procedure is required by 
41    ' the Windows Form Designer.
42    ' It can be modified using the Windows Form Designer.  
43    ' Do not modify it using the code editor.
44    <System.Diagnostics.DebuggerStepThrough()> _
45 Private Sub InitializeComponent()
46       Me.lblOutput = New System.Windows.Forms.Label()
47       Me.SuspendLayout()
48       '
49       'lblOutput
50       '
51       Me.lblOutput.Location = New System.Drawing.Point(32, 48)
52       Me.lblOutput.Name = "lblOutput"
53       Me.lblOutput.Size = New System.Drawing.Size(168, 40)
54       Me.lblOutput.TabIndex = 0
55       Me.lblOutput.Text = "Click Me!"
56       '
57       'FrmSimple
58       '

Fig. 12.7 Simple event-handling example using visual programming (part 2 of 3).



484 Graphical User Interface Concepts: Part 1 Chapter 12

The Visual Studio-generated code contains all references to the controls that we cre-
ated through the GUI design window (in this case, lblOutput), the non-parameterized
constructor (lines 9–18), the destructor (lines 21–33) and the initialization code for each of
the controls (lines 44–67). The initialization code corresponds to the changes made to the
Properties window for each control. Note that as we have learned in previous chapters,
Visual Studio .NET adds comments to the code that it generates. The comments appear
throughout the code, such as in lines 40–43. To make programs more concise and readable,
we remove some of these generated comments in future examples, leaving only those com-
ments that pertain to new concepts.

 Lines 9–18 define the constructor. Because class FrmSimpleExample inherits
from System.Windows.Forms.Form, line 10 of the default constructor calls the
base-class constructor. This allows the base-class constructor to perform initialization
before class FrmSimpleExample instantiates. Line 13 calls the Visual Studio-generated
method InitializeComponent (lines 44–67), which regulates the property settings
for all the controls that we created in the Design window. The property settings method
InitializeComponent establishes such properties as the Form title, the Form size,
component sizes and text within components. Visual Studio .NET examines this method to
create the design view of the code. If we change this method, Visual Studio .NET might not
recognize our modifications, in which case it would display the design improperly. It is
important to note that the design view is based on the code, and not vice versa. A program
can run even if its design view displays incorrectly. 

59       Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
60       Me.ClientSize = New System.Drawing.Size(272, 237)
61       Me.Controls.AddRange( _
62          New System.Windows.Forms.Control() {Me.lblOutput})
63
64       Me.Name = "FrmSimple"
65       Me.Text = "SimpleEventExample"
66       Me.ResumeLayout(False)
67 End Sub
68
69 #End Region
70
71    ' handler for click event on lblOutput
72 Private Sub lblOutput_Click(ByVal sender As Object, _
73       ByVal e As System.EventArgs) Handles lblOutput.Click
74
75       MessageBox.Show("Label was clicked")
76 End Sub ' lblOutput_Click
77
78 End Class ' FrmSimpleExample

Fig. 12.7 Simple event-handling example using visual programming (part 3 of 3).



Chapter 12 Graphical User Interface Concepts: Part 1 485

Software Engineering Observation 12.1
The complexity of the Visual Studio generated code favors a recommendation that program-
mers modify individual control’s properties through the Properties window. 12.1

Visual Studio also places within the #Region and #End Region preprocessor
directives a declaration to each control that is created via the design window. Line 35
declares the lblOutput control. There are three things to note about the declaration of
reference lblOutput. First, the declaration has a Friend access modifier. By default,
all variable declarations for controls created through the design window have a Friend
access modifier. Second, line 35 declares a member variable (lblOutput) to class Frm-
SimpleExample. Although lblOutput is declared within the #Region and #End
Region preprocessor directives, it is still a class member to FrmSimpleExample. This
is because the compiler does not consider the block of code encapsulated by the #Region
and #End Region preprocessor directives to be a separate block of code. This means that
the scope of variables declared within the #Region and #End Region preprocessor
directives is not affected—the variables are included in the scope of the main class. Finally,
the member variable lblOutput is declared with the keyword WithEvents.

The WithEvents keyword tells the compiler that methods handling events triggered
by this component are identified by the inclusion of the suffix Handles component-
Name.eventName in their method declaration. When we selected event Click from the
Method Name drop-down menu, the Visual Studio .NET IDE created a method signature
that matched the Click event-handler delegate, placing the suffix Handles
lblOutput.Click at the end of the method signature. This tells the Visual Basic com-
piler that the method will handle Click events triggered by lblOutput. However, it is
possible to define additional methods that also handle lblOutput Click events. To reg-
ister additional event handlers, we simply create a new method that has the same signature
as the Click delegate and is accompanied by the method declaration suffix Handles
lblOutput.Click.

The inclusion of multiple handlers for one event is called event multicasting. Although
all event handlers are called when the event occurs, the order in which the event handlers
are called is indeterminate. 

Common Programming Error 12.1
The assumption that multiple event handlers registered for the same event are called in a par-
ticular order can lead to logic errors. If the order is important, register the first event handler
and have it call the others in order, passing the event arguments to each handler. 12.1

As previously mentioned, every event handler must have a unique signature, which is spec-
ified by the event delegate. Two objects are passed to event handlers: A reference to the
object that generated the event (sender) and an event arguments object (e). Argument e
is of type EventArgs. Class EventArgs is the base class for objects that contain event
information. We discuss the information contained in EventArgs objects later in the
chapter.

To create the event handler, we first must find the delegate’s signature. When we click
an event name in the Method Name drop-down menu, Visual Studio .NET creates a method
with the proper signature. The naming convention is ControlName_EventName; in our pre-
vious examples, the event handler is lblOutput_Click. Instead of using the Method
Name drop-down menu, we also can look up the event-arguments class. Consult the docu-



486 Graphical User Interface Concepts: Part 1 Chapter 12

mentation under each control’s class (i.e., Form class), and click the events section
(Fig. 12.8). This displays a list of all the events that the class can generate. Click the name
of an event to bring up its delegate, its event argument type and a description (Fig. 12.9).

Fig. 12.8 List of Form events.

Fig. 12.9 Click event details.

Class name List of events

Event argument class Event delegateEvent name



Chapter 12 Graphical User Interface Concepts: Part 1 487

In general, the format of the event-handling method is,

Private Sub ControlName_EventName(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles ControlName.EventName

      event-handling code
End Sub

where the name of the event handler is, by default, the name of the control, followed by an
underscore (_) and the name of the event. Event handlers are methods that take two argu-
ments: An Object (usually sender), and an instance of an EventArgs class. The dif-
ferences between the various EventArgs classes are discussed later in this chapter.

Software Engineering Observation 12.2
The handlers for predefined events (such as Click) are procedures. The programmer
should not expect return values from event handlers; rather, event handlers are designed to
execute code based on an action and then return control to the main program. 12.2

Good Programming Practice 12.1
Use the event-handler naming convention ControlName_EventName, so that method names
are meaningful. Such names tell users what event a method handles, and for what control.
Visual Studio .NET uses this naming convention when creating event handlers from the
Method Name drop-down menu. 12.1

 In the upcoming sections, we indicate the EventArgs class and the EventHandler dele-
gate that correspond to each event we present. To locate additional information about a par-
ticular type of event, review the help documentation under ClassName class, events.

12.4 Control Properties and Layout
This section overviews properties that are common to many controls. Controls derive from
class Control (namespace System.Windows.Forms). Figure 12.10 lists some of
class Control’s properties and methods; these properties can be set for many controls.
The Text property determines the text that appears on a control. The appearance of this
text can vary depending on the context. For example, the text of a Windows Form is its title
bar, but the text of a button appears on its face. 

Class Control
Properties and 
Methods Description

Common Properties

BackColor Sets the control’s background color.

BackgroundImage Sets the control’s background image.

Enabled Indicates whether the control is enabled (i.e., if the user can interact 
with it). A disabled control is displayed, but portions of the control 
appear in gray.

Fig. 12.10 Class Control properties and methods (part 1 of 2).



488 Graphical User Interface Concepts: Part 1 Chapter 12

The Focus method transfers the focus to a control. A control that has the focus is
referred to as the active control. When the Tab key is pressed, controls are given the focus
in the order specified by their TabIndex property. The TabIndex property is set by
Visual Studio .NET, but can be changed by the programmer. TabIndex is helpful for
users who enter information in many different locations—the user can enter information
and quickly select the next control by pressing the Tab key. The Enabled property indi-
cates whether a control can be used; often, if a control is disabled, it is because an option is
unavailable to the user. In most cases, a disabled control’s text appears in gray (rather than
in black) when a control is disabled. However, a programmer can hide a control’s text from
the user without disabling the control by setting the Visible property to False or by
calling method Hide. When a control’s Visible property is set to False, the control
still exists, but it is not shown on the form.

Visual Studio .NET enables control anchoring and docking, which allow the pro-
grammer to specify the layout of controls inside a container (such as a form). Anchoring
causes controls to remain at a fixed distance from the sides of the container even when the
control is resized. Docking sets the dimensions of a control to the dimensions of the parent
container at all times. 

Focused Indicates whether a control has the focus.

Font Sets the Font used to display the control’s text.

ForeColor Sets the control’s foreground color. This usually determines the color 
of the Text property.

TabIndex Sets the tab order of the control. When the Tab key is pressed, the 
focus transfers to various controls according to the tab order. This 
order can be set by the programmer.

TabStop Indicates whether users can employ the Tab key to select the control. 
If True, then a user can select this control through the Tab key.

Text Sets the text associated with the control. The location and appearance 
varies depending on the type of control.

TextAlign Establishes the alignment of the text on the control—possibilities are 
one of three horizontal positions (left, center or right) and one of three 
vertical positions (top, middle or bottom).

Visible Indicates whether the control is visible.

Common Methods

Focus Acquires the focus.

Hide Hides the control (sets Visible to False).

Show Shows the control (sets Visible to True).

Class Control
Properties and 
Methods Description

Fig. 12.10 Class Control properties and methods (part 2 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 489

For example, a programmer might want a control to appear in a certain position (top,
bottom, left or right) in a form even if that form is resized. The programmer can specify this
by anchoring the control to a side (top, bottom, left or right). The control then maintains a
fixed distance between itself and the side to its parent container. Although most parent con-
tainers are forms, other controls also can act as parent containers.

When parent containers are resized, all controls move. Unanchored controls move rel-
ative to their original position on the form, whereas anchored controls move so that their
distance from the sides to which they are anchored does not vary. For example, in
Fig. 12.11, the top-most button is anchored to the top and left sides of the parent form.
When the form is resized, the anchored button moves so that it remains a constant distance
from the top and left sides of the form (its parent). By contrast, the unanchored button
changes position as the form is resized.

To see the effects of anchoring a control, create a simple Windows application that
contains two buttons (Fig. 12.12). Anchor one control to the right side by setting the
Anchor property as shown in Fig. 12.12. Leave the other control unanchored. Now,
enlarge the form by dragging its right side. Notice that both controls move. The anchored
control moves so that it is always at the same distance from the top-right corner of the form,
whereas the unanchored control adjusts its location relative to each side of the form.

Fig. 12.11 Anchoring demonstration.

Fig. 12.12 Manipulating the Anchor property of a control.

Before resizing After resizing

Constant distance to 
left and top sides

Click down-arrow in 
Anchor property to 
display anchoring 
window

Darkened bar indicates the 
container’s side to which 
the control is anchored

anchoring 
window



490 Graphical User Interface Concepts: Part 1 Chapter 12

Sometimes, it is desirable that a control span an entire side of the form, even when the
form is resized. This is useful when we want one control, such as a status bar, to remain
prevalent on the form. Docking allows a control span an entire side (left, right, top or
bottom) of its parent container. When the parent is resized, the docked control resizes as
well. In Fig. 12.13, a button is docked at the top of the form (it spans the top portion). When
the form is resized horizontally, the button is resized to the form’s new width. Windows
Forms provide property DockPadding; which specifies the distance between the docked
controls and the form edges. The default value is zero, which results in docked controls that
are attached to the edge of the form. The control layout properties are summarized in the
table in Fig. 12.14. 

Fig. 12.13 Docking demonstration.

Common Layout 
Properties Description

Anchor Attaches control to the side of parent container. Used during resizing. 
Possible values include top, bottom, left and right.

Dock Allows controls to span along the sides of their containers—values 
cannot be combined.

DockPadding
(for containers)

Sets the space between a container’s edges and docked controls. 
Default is zero, causing controls to appear flush with the sides of the 
container.

Location Specifies the location of the upper-left corner of the control, in rela-
tion to its container.

Size Specifies the size of the control. Takes a Size type, which has prop-
erties Height and Width.

Fig. 12.14 Control layout properties (part 1 of 2).

Before resizing After resizing

Control extends along 
entire top portion of form



Chapter 12 Graphical User Interface Concepts: Part 1 491

The docking and anchoring options refer to the parent container, which includes the
form as well as other parent containers we discuss later in the chapter. The minimum and
maximum form sizes can be set via properties MinimumSize and MaximumSize,
respectively. Both properties use the Size type, which has properties Height and
Width, to specify the size of the form. Properties MinimumSize and MaximumSize
allow the programmer to design the GUI layout for a given size range. To set a form to a
fixed size, set its minimum and maximum size to the same value.

Look-and-Feel Observation 12.2
Allow Windows Forms to be resized whenever possible—this enables users with limited
screen space or multiple applications running at once to use the application more easily.
Make sure that the GUI layout appears consistent across different permissible form sizes. 12.2

12.5 Labels, TextBoxes and Buttons
Labels provide text instructions or information and are defined with class Label, which is
derived from class Control. A Label displays read-only text (i.e., text that the user can-
not modify). At runtime, a Label’s text can be changed by setting Label’s Text prop-
erty. Figure 12.15 lists common Label properties.

A textbox (class TextBox) is an area in which text can either be displayed by the
program or be input by the user via the keyboard. A password textbox is a TextBox that
hides the information entered by the user. As the user types in characters, the password
textbox masks the user input by displaying characters (usually *). If a value is provided
for the PasswordChar property, the textbox becomes a password textbox. Otherwise
it is a textbox. 

MinimumSize,
MaximumSize 
(for Windows Forms)

Indicates the minimum and maximum size of the form.

Common Layout 
Properties Description

Fig. 12.14 Control layout properties (part 2 of 2).

Common Label
Properties Description / Delegate and Event Arguments

Font The font used by the text on the Label.

Text The text that appears on the Label.

TextAlign The alignment of the Label’s text on the control. Possibilities are 
one of three horizontal positions (left, center or right) and one of three 
vertical positions (top, middle or bottom).

Fig. 12.15 Common Label properties.



492 Graphical User Interface Concepts: Part 1 Chapter 12

Users often encounter both types of textboxes, when logging into a computer or Web
site. The username textbox allows users to input their usernames; the password textbox
allows users to enter their passwords. Figure 12.16 lists the common properties and events
of TextBoxes. 

A button is a control that the user clicks to trigger a specific action. A program can
employ several specific types of buttons, such as checkboxes and radio buttons. All the
button types are derived from ButtonBase (namespace System.Windows.Forms),
which defines common button features. In this section, we concentrate on the class
Button, which initiates a command. The other button types are covered in subsequent
sections. The text on the face of a Button is called a button label. Figure 12.17 lists the
common properties and events of Buttons. 

Look-and-Feel Observation 12.3
Although Labels, TextBoxes and other controls can respond to mouse clicks, Buttons
more naturally convey this meaning. Use a Button (such as OK), rather than another type
of control, to initiate a user action. 12.3

The program in Fig. 12.18 uses a TextBox, a Button and a Label. The user enters
text into a password box and clicks the Button, causing the text input to be displayed in
the Label. Normally, we would not display this text—the purpose of password textboxes
is to hide the text being entered by the user from anyone who might be looking over the
user’s shoulder. Figure 12.18 demonstrates that the text input into the password textbox is
unaffected by property PasswordChar’s value. 

First, we create the GUI by dragging the controls (a Button, a Label and a
TextBox) onto the form. Once the controls are positioned, we change their names in the
Properties window (by setting the (Name) property) from the default values—
TextBox1, Label1 and Button1—to the more descriptive lblOutput, txtInput
and cmdShow. Visual Studio .NET creates the necessary code and places it inside method
InitializeComponent. The (Name) property in the Properties window enables us
to change the variable name of the object reference. 

TextBox Properties 
and Events Description / Delegate and Event Arguments

Common Properties

AcceptsReturn If True, pressing Enter creates a new line (if textbox is configured to 
contain multiple lines.) If False, pressing Enter clicks the default 
button of the form.

Multiline If True, Textbox can span multiple lines. The default value is 
False.

PasswordChar If a character is provided for this property, the TextBox becomes a 
password box, and the specified character masks each character typed 
by the user. If no character is specified, Textbox displays the typed 
text.

Fig. 12.16 TextBox properties and events (part 1 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 493

ReadOnly If True, TextBox has a gray background, and its text cannot be 
edited. The default value is False.

ScrollBars For multiline textboxes, indicates which scrollbars appear (none,
horizontal, vertical or both).

Text The textbox’s text content.

Common Events (Delegate EventHandler, event arguments EventArgs)

TextChanged Generated when text changes in TextBox (i.e., when the user adds 
or deletes characters). When a programmer double-clicks the Text-
Box control in Design view, an empty event handler for this event is 
generated.

Button properties 
and events Description / Delegate and Event Arguments

Common Properties

Text Specifies text displayed on the Button face.

Common Events (Delegate EventHandler, event arguments EventArgs)

Click Generated when user clicks the control. When a programmer double-
clicks the Button control in design view, an empty event handler for 
this event is created.

Fig. 12.17 Button properties and events.

1 ' Fig. 12.18: LabelTextBoxButtonTest.vb
2 ' Using a textbox, label and button to display the hidden
3 ' text in a password box.
4
5 Imports System.Windows.Forms
6
7 Public Class FrmButtonTest
8 Inherits Form
9

10 Friend WithEvents txtInput As TextBox ' input field
11 Friend WithEvents lblOutput As Label  ' display label
12 Friend WithEvents cmdShow As Button   ' activation button
13
14    ' Visual Studio .NET generated code
15

Fig. 12.18 Program to display hidden text in a password box (part 1 of 2).

TextBox Properties 
and Events Description / Delegate and Event Arguments

Fig. 12.16 TextBox properties and events (part 2 of 2).



494 Graphical User Interface Concepts: Part 1 Chapter 12

We then set cmdShow’s Text property to “Show Me” and clear the Text of
lblOutput and txtInput so that they are blank when the program begins its execution.
The BorderStyle property of lblOutput is set to Fixed3D, giving our Label a
three-dimensional appearance. Notice that the BorderStyle property of all TextBoxes
is set to Fixed3D by default. The password character is set by assigning the asterisk char-
acter (*) to the PasswordChar property. This property accepts only one character.

We create an event handler for cmdShow by selecting cmdShow from the Class
Name drop-down menu and by selecting Click from the Method Name drop-down menu.
This generates an empty event handler. We add line 20 to the event-handler code. When
the user clicks Button Show Me, line 20 obtains user-input text in txtInput and
displays it in lblOutput.

12.6 GroupBoxes and Panels
GroupBoxes and Panels arrange controls on a GUI. For example, buttons with similar
functionality can be placed inside a GroupBox or Panel within the Visual Studio .NET
Form Designer. All these buttons move together when the GroupBox or Panel is moved.

The main difference between the two classes is that GroupBoxes can display a cap-
tion (i.e., text) and do not include scrollbars, whereas Panels can include scrollbars and
do not include a caption. GroupBoxes have thin borders by default; Panels can be set so
that they also have borders, by changing their BorderStyle property.

Look-and-Feel Observation 12.4
Panels and GroupBoxes can contain other Panels and GroupBoxes. 12.4

Look-and-Feel Observation 12.5
Organize the GUI by anchoring and docking controls (of similar functionality) inside a
GroupBox or Panel. The GroupBox or Panel then can be anchored or docked inside
a form. This divides controls into functional “groups” that can be arranged easily. 12.5

16   ' handles cmdShow_Click events
17    Private Sub cmdShow_Click(ByVal sender As System.Object, _
18       ByVal e As System.EventArgs) Handles cmdShow.Click
19
20       lblOutput.Text = txtInput.Text
21    End Sub ' cmdShow_Click
22
23 End Class ' FrmButtonTest

Fig. 12.18 Program to display hidden text in a password box (part 2 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 495

To create a GroupBox, drag it from the toolbar and place it on a form. Then, create
new controls and place them inside the GroupBox. These controls are added to the
GroupBox’s Controls property and become part of the GroupBox class. The
GroupBox’s Text property determines its caption. The following tables list the common
properties of GroupBoxes (Fig. 12.19) and Panels (Fig. 12.20).

To create a Panel, drag it onto the form, and add controls to it. To enable the scroll-
bars, set the Panel’s AutoScroll property to True. If the Panel is resized and cannot
display all of its controls, scrollbars appear (Fig. 12.21). The scrollbars then can be used to
view all the controls in the Panel (both when running and designing the form). This
allows the programmer to see the GUI exactly as it appears to the client. 

GroupBox
Properties Description

Controls Lists the controls that the GroupBox contains.

Text Specifies text displayed at the top of the GroupBox (its caption).

Fig. 12.19 GroupBox properties.

Panel Properties Description

AutoScroll Indicates whether scrollbars appear when the Panel is too small to 
display all of its controls. Default is False.

BorderStyle Sets the border of the Panel (default None; other options are 
Fixed3D and FixedSingle).

Controls Lists the controls that the Panel contains.

Fig. 12.20 Panel properties.

Fig. 12.21 Creating a Panel with scrollbars.

Panel

Control
inside panel

Panel
scrollbars Panel 

resized



496 Graphical User Interface Concepts: Part 1 Chapter 12

Look-and-Feel Observation 12.6
Use Panels with scrollbars to avoid cluttering a GUI and to reduce the GUI’s size. 12.6

The program in Fig. 12.22 uses a GroupBox and a Panel to arrange buttons. These
buttons change the text on a Label.

The GroupBox (named mainGroupBox, line 10) has two buttons, cmdHi
(labeled Hi, line 11) and cmdBye (labeled Bye, line 12). The Panel (named main-
Panel, line 18) also has two buttons, cmdLeft (labeled Far Left, line19) and cmd-
Right (labeled Far Right, line 20). The mainPanel control has its AutoScroll
property set to True, allowing scrollbars to appear when the contents of the Panel
require more space than the Panel’s visible area. The Label (named lblMessage)
is initially blank. 

To add controls to mainGroupBox, Visual Studio .NET creates a Win-
dows.Forms.Control array containing the controls. It then passes the array to method
AddRange of the Controls collection in the GroupBox. Similarly, to add controls to
mainPanel, Visual Studio .NET creates a Windows.Forms.Control array and
passes it to the mainPanel’s Controls.AddRange method. Method Con-
trols.Add adds a single control to a Panel or GroupBox.

The event handlers for the four buttons are located in lines 25–50. To create an empty
Click event handler, double click the button in design mode (instead of using the
Method Name drop-down menu). We then add a line in each handler to change the text
of lblMessage.

1 ' Fig. 12.22: GroupBoxPanelExample.vb   
2 ' Using GroupBoxes and Panels to hold buttons.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmGroupBox
7  Inherits Form
8
9    ' top group box and controls

10 Friend WithEvents mainGroupBox As GroupBox
11 Friend WithEvents cmdHi As Button
12 Friend WithEvents cmdBye As Button
13
14    ' middle display
15 Friend WithEvents lblMessage As Label
16
17    ' bottom panel and controls
18 Private WithEvents mainPanel As Panel
19 Friend WithEvents cmdLeft As Button
20 Friend WithEvents cmdRight As Button
21
22    ' Visual Studio .NET generated code
23

Fig. 12.22 Using GroupBoxes and Panels to arrange Buttons  (part 1 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 497

12.7 CheckBoxes and RadioButtons
Visual Basic .NET has two types of state buttons—CheckBox and RadioButton—that
can be in the on/off or true/false state. Classes CheckBox and RadioButton are derived
from class ButtonBase. A RadioButton is different from a CheckBox in that Ra-
dioButtons are usually organized into groups and that only one of the RadioButtons
in the group can be selected (True) at any time. 

24   ' event handlers to change lblMessage
25    Private Sub cmdHi_Click(ByVal sender As System.Object, _
26       ByVal e As System.EventArgs) Handles cmdHi.Click
27
28       lblMessage.Text = "Hi pressed"
29  End Sub ' cmdHi_Click
30
31    ' bye button handler
32 Private Sub cmdBye_Click(ByVal sender As System.Object, _
33       ByVal e As System.EventArgs) Handles cmdBye.Click
34
35       lblMessage.Text = "Bye pressed"
36  End Sub ' cmdBye_Click
37
38    ' far left button handler
39 Private Sub cmdLeft_Click(ByVal sender As System.Object, _
40       ByVal e As System.EventArgs) Handles cmdLeft.Click
41
42       lblMessage.Text = "Far left pressed"
43  End Sub ' cmdLeft_Click
44
45 ' far right button handler
46 Private Sub cmdRight_Click(ByVal sender As System.Object, _
47       ByVal e As System.EventArgs) Handles cmdRight.Click
48
49       lblMessage.Text = "Far right pressed"
50  End Sub ' cmdRight_Click
51
52 End Class ' FrmGroupBox

Fig. 12.22 Using GroupBoxes and Panels to arrange Buttons  (part 2 of 2).



498 Graphical User Interface Concepts: Part 1 Chapter 12

A checkbox is a small white square that either is blank or contains a checkmark. When
a checkbox is selected, a black checkmark appears in the box. There are no restrictions on
how checkboxes are used—any number of boxes can be selected at a time. The text that
appears alongside a checkbox is referred to as the checkbox label. A list of common prop-
erties and events of class Checkbox appears in Fig. 12.23.

The program in Fig. 12.24 allows the user to select a CheckBox to change the font
style of a Label. One CheckBox applies a bold style, whereas the other applies an italic
style. If both CheckBoxes are selected, the style of the font is both bold and italic. When
the program initially executes, neither CheckBox is checked. 

CheckBox events 
and properties Description / Delegate and Event Arguments

Common Properties

Checked Indicates whether the CheckBox is checked (contains a black 
checkmark) or unchecked (blank).

CheckState Indicates whether the Checkbox is checked or unchecked. An enu-
meration with values Checked, Unchecked or Indetermi-
nate (checks and shades checkbox).

Text Specifies the text displayed to the right of the CheckBox (called 
the label).

Common Events (Delegate EventHandler, event arguments EventArgs)

CheckedChanged Generated every time the Checkbox is either checked or 
unchecked. When a user double-clicks the CheckBox control in 
design view, an empty event handler for this event is generated.

CheckStateChanged Generated when the CheckState property changes.

Fig. 12.23 CheckBox properties and events.

1 ' Fig. 12.24: CheckBoxTest.vb
2 ' Using CheckBoxes to toggle italic and bold styles.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmCheckBox
7 Inherits Form
8
9   ' display label

10 Friend WithEvents lblOutput As Label
11
12    ' font checkboxes
13 Friend WithEvents chkBold As CheckBox
14 Friend WithEvents chkItalic As CheckBox
15
16    ' Visual Studio .NET generated code
17

Fig. 12.24 Using CheckBoxes to change font styles  (part 1 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 499

The first CheckBox, named chkBold (line 13), has its Text property set to Bold.
The other CheckBox is named chkItalic (line 14) and labeled Italic. The Text prop-
erty of the Label, named lblOutput, is set to Watch the font style change.

After creating the controls, we define their event handlers. Double clicking the
CheckBox named chkBold at design time creates an empty CheckedChanged event
handler (line 29). To understand the code added to the event handler, we first discuss the
Font property of lblOutput.

To enable the font to be changed, the programmer must set the Font property to a
Font object. The Font constructor (lines 23–25 and 33–35) that we use takes the font
name, size and style. The first two arguments namely lblOutput.Font.Name and
lblOutput.Font.Size (line 34), make use of lblOutput’s Font object. The style
is a member of the FontStyle enumeration, which contains the font styles Regular,
Bold, Italic, Strikeout and Underline. (The Strikeout style displays text

18    ' use Xor to toggle italic, keep other styles same
19 Private Sub chkItalic_CheckedChanged _
20       (ByVal sender As System.Object, ByVal e As System.EventArgs) _
21       Handles chkItalic.CheckedChanged
22
23       lblOutput.Font = New Font(lblOutput.Font.Name, _
24          lblOutput.Font.Size, lblOutput.Font.Style _
25          Xor FontStyle.Italic)
26 End Sub ' chkItalic_CheckedChanged
27
28    ' use Xor to toggle bold, keep other styles same
29 Private Sub chkBold_CheckedChanged _
30       (ByVal sender As System.Object, ByVal e As System.EventArgs) _
31       Handles chkBold.CheckedChanged
32
33       lblOutput.Font = New Font(lblOutput.Font.Name, _
34          lblOutput.Font.Size, lblOutput.Font.Style _
35          Xor FontStyle.Bold)
36 End Sub ' chkBold_CheckedChanged
37
38 End Class ' FrmCheckBox

Fig. 12.24 Using CheckBoxes to change font styles  (part 2 of 2).



500 Graphical User Interface Concepts: Part 1 Chapter 12

with a line through it; the Underline style displays text with a line below it.) A Font
object’s Style property, which is read-only, is set when the Font object is created.

Styles can be combined via bitwise operators—operators that perform manipulation
on bits. Recall from Chapter 1 that all data is represented on the computer as a series of 0s
and 1s. Each 0 or 1 represents a bit. The FCL documentation indicates that FontStyle is
a System.FlagAttribute, meaning that the FontStyle bit-values are selected in
a way that allows us to combine different FontStyle elements to create compound
styles, using bitwise operators. These styles are not mutually exclusive, so we can combine
different styles and remove them without affecting the combination of previous Font-
Style elements. We can combine these various font styles, using either the Or operator
or the Xor operator. As a result of applying the Or operator to two bits, if at least one bit
out of the two bits is 1, then the result is 1. The combination of styles using the Or operator
works as follows. Assume that FontStyle.Bold is represented by bits 01 and that
FontStyle.Italic is represented by bits 10. When we Or both styles, we obtain the
bitset 11.

     01    = Bold
Or   10    = Italic
     --
     11    = Bold and Italic

The Or operator is helpful in the creation of style combinations, as long as we do not need
to undo the bitwise operation. However, what happens if we want to undo a style combina-
tion, as we did in Fig. 12.24? 

The Xor operator enables us to accomplish the Or operator behavior while allowing
us to undo compound styles. As a result of applying Xor to two bits, if both bits are the
same ( [1, 1] or [0, 0]), then the result is 0. If both bits are different ([1, 0] or [0, 1]), then
the result is 1.

The combination of styles using Xor works as follows. Assume, again, that Font-
Style.Bold is represented by bits 01 and that FontStyle.Italic is represented by
bits 10. When we Xor both styles, we obtain the bitset 11.

     01    = Bold
Xor  10    = Italic
     --
     11    = Bold and Italic

Now, suppose that we would like to remove the FontStyle.Bold style from the
previous combination of FontStyle.Bold and FontStyle.Italic. The easiest
way to do so is to reapply the Xor operator to the compound style and Font-
Style.Bold.

     11    = Bold and Italic
Xor  01    = Bold
     ----
     10    = Italic

This is a simple example. The advantages of using bitwise operators to combine Font-
Style elements become more evident when we consider that there are five different
FontStyle elements (Bold, Italic, Regular, Strikeout and Underline), re-



Chapter 12 Graphical User Interface Concepts: Part 1 501

sulting in 16 different FontStyle combinations. Using bitwise operators to combine font
styles greatly reduces the amount of code required to check all possible font combinations.

In Fig. 12.24, we need to set the FontStyle so that the text appears bold if it was not
bold originally, and vice versa. Notice that, in line 35, we use the bitwise Xor operator to
do this. If lblOutput.Font.Style (line 34) is bold, then the resulting style is not
bold. If the text is originally italicized, the resulting style is italicized and bold, rather than
just bold. The same applies for FontStyle.Italic in line 25. 

If we did not use bitwise operators to compound FontStyle elements, we would
have to test for the current style and change it accordingly. For example, in the method
chkBold_CheckChanged, we could test for the regular style and make it bold; test for
the bold style and make it regular; test for the italic style and make it bold italic; and test
for the italic bold style and make it italic. However, this method is cumbersome because,
for every new style we add, we double the number of combinations. If we added a checkbox
for underline, we would have to test for eight possible styles. To add a checkbox for
strikeout then would require an additional 16 tests in each event handler. By using the bit-
wise Xor operator, we save ourselves from this trouble. 

Radio buttons (defined with class RadioButton) are similar to checkboxes in that
they also have two states—selected and not selected (also called deselected). However,
radio buttons normally appear as a group, in which only one radio button can be selected
at a time. The selection of one radio button in the group forces all other radio buttons in the
group to be deselected. Therefore, radio buttons are used to represent a set of mutually
exclusive options (i.e., a set in which multiple options cannot be selected at the same time).

Look-and-Feel Observation 12.7
Use RadioButtons when the user should choose only one option in a group. 12.7

Look-and-Feel Observation 12.8
Use CheckBoxes when the user should be able to choose multiple options in a group. 12.8

All radio buttons added to a form become part of the same group. To separate radio
buttons into several groups, the radio buttons must be added to GroupBoxes or Panels.
The common properties and events of class RadioButton are listed in Fig. 12.25.

RadioButton
properties and events Description / Delegate and Event Arguments

Common Properties

Checked Indicates whether the RadioButton is checked.

Text Specifies the text displayed to the right of the RadioButton (called 
the label).

Common Events (Delegate EventHandler, event arguments EventArgs)

Click Generated when user clicks the control.

Fig. 12.25 RadioButton properties and events (part 1 of 2).



502 Graphical User Interface Concepts: Part 1 Chapter 12

Software Engineering Observation 12.3
Forms, GroupBoxes, and Panels can act as logical groups for radio buttons. The radio
buttons within each group are mutually exclusive to each other, but not to radio buttons in
different groups. 12.3

The program in Fig. 12.26 uses radio buttons to enable the selection of options for a
MessageBox. After selecting the desired attributes, the user presses Button Display,
causing the MessageBox to appear. A Label in the lower-left corner shows the result of
the MessageBox (Yes, No, Cancel etc.). The different MessageBox icons and button
types are illustrated and explained in Chapter 5, Control Structures: Part 2. 

To store the user’s choice of options, the objects iconType and buttonType are
created and initialized (lines 9–10). Object iconType is a MessageBoxIcon enumer-
ation that can have values Asterisk, Error, Exclamation, Hand, Information,
Question, Stop and Warning. In this example, we use only Error, Exclamation,
Information and Question.

CheckedChanged Generated every time the RadioButton is checked or unchecked. 
When a user double-clicks the TextBox control in design view, an 
empty event handler for this event is generated.

RadioButton
properties and events Description / Delegate and Event Arguments

Fig. 12.25 RadioButton properties and events (part 2 of 2).

1 ' Fig. 12.26: RadioButtonTest.vb
2 ' Using RadioButtons to set message window options.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmRadioButton
7 Inherits Form
8
9 Private iconType As MessageBoxIcon

10 Private buttonType As MessageBoxButtons
11
12    ' button type group box and controls
13 Friend WithEvents buttonTypeGroupBox As GroupBox
14 Friend WithEvents radOk As RadioButton
15 Friend WithEvents radOkCancel As RadioButton
16 Friend WithEvents radAbortRetryIgnore As RadioButton
17 Friend WithEvents radYesNoCancel As RadioButton
18 Friend WithEvents radYesNo As RadioButton
19 Friend WithEvents radRetryCancel As RadioButton
20
21    ' icon group box and controls
22 Friend WithEvents iconGroupBox As GroupBox
23 Friend WithEvents radAsterisk As RadioButton

Fig. 12.26 Using RadioButtons to set message-window options (part 1 of 6).



Chapter 12 Graphical User Interface Concepts: Part 1 503

24 Friend WithEvents radError As RadioButton
25 Friend WithEvents radExclamation As RadioButton
26 Friend WithEvents radHand As RadioButton
27 Friend WithEvents radInformation As RadioButton
28 Friend WithEvents radQuestion As RadioButton
29 Friend WithEvents radStop As RadioButton
30 Friend WithEvents radWarning As RadioButton
31
32    ' display button
33 Friend WithEvents cmdDisplay As Button
34
35    ' output label
36 Friend WithEvents lblDisplay As Label
37
38    ' Visual Studio .NET generated code
39
40    ' display message box and obtain dialogue button clicked
41 Private Sub cmdDisplay_Click(ByVal sender _
42       As System.Object, ByVal e As System.EventArgs) _
43       Handles cmdDisplay.Click
44
45       Dim dialog As DialogResult = MessageBox.Show( _
46          "This is Your Custom MessageBox", "Custom MessageBox", _ 
47          buttonType, iconType)
48
49       ' check for dialog result and display on label
50       Select Case dialog
51
52          Case DialogResult.OK
53             lblDisplay.Text = "OK was pressed"
54
55          Case DialogResult.Cancel
56             lblDisplay.Text = "Cancel was pressed"
57
58          Case DialogResult.Abort
59             lblDisplay.Text = "Abort was pressed"
60
61          Case DialogResult.Retry
62             lblDisplay.Text = "Retry was pressed"
63
64          Case DialogResult.Ignore
65             lblDisplay.Text = "Ignore was pressed"
66
67          Case DialogResult.Yes
68             lblDisplay.Text = "Yes was pressed"
69
70          Case DialogResult.No
71             lblDisplay.Text = "No was pressed"
72       End Select
73
74 End Sub ' cmdDisplay_Click
75

Fig. 12.26 Using RadioButtons to set message-window options (part 2 of 6).



504 Graphical User Interface Concepts: Part 1 Chapter 12

76    ' set button type to OK
77 Private Sub radOk_CheckedChanged(ByVal sender _
78       As System.Object, ByVal e As System.EventArgs) _
79       Handles radOk.CheckedChanged
80
81       buttonType = MessageBoxButtons.OK
82 End Sub ' radOk_CheckedChanged
83
84    ' set button type to OkCancel
85 Private Sub radOkCancel_CheckedChanged(ByVal sender _
86       As System.Object, ByVal e As System.EventArgs) _
87       Handles radOkCancel.CheckedChanged
88
89       buttonType = MessageBoxButtons.OKCancel
90 End Sub ' radOkCancel_CheckedChanged
91
92    ' set button type to AbortRetryIgnore
93 Private Sub radAbortRetryIgnore_CheckedChanged(ByVal sender _
94       As System.Object, ByVal e As System.EventArgs) _
95       Handles radAbortRetryIgnore.CheckedChanged
96
97       buttonType = MessageBoxButtons.AbortRetryIgnore
98    End Sub ' radAbortRetryIgnore_CheckedChanged
99
100    ' set button type to YesNoCancel
101 Private Sub radYesNoCancel_CheckedChanged(ByVal sender _
102       As System.Object, ByVal e As System.EventArgs) _
103       Handles radYesNoCancel.CheckedChanged
104
105       buttonType = MessageBoxButtons.YesNoCancel
106 End Sub ' radYesNoCancel_CheckedChanged
107
108    ' set button type to YesNo
109 Private Sub radYesNo_CheckedChanged(ByVal sender _
110       As System.Object, ByVal e As System.EventArgs) _
111       Handles radYesNo.CheckedChanged
112
113       buttonType = MessageBoxButtons.YesNo
114 End Sub ' radYesNo_CheckedChanged
115
116    ' set button type to RetryCancel 
117 Private Sub radRetryCancel_CheckedChanged(ByVal sender _
118       As System.Object, ByVal e As System.EventArgs) _
119       Handles radRetryCancel.CheckedChanged
120
121       buttonType = MessageBoxButtons.RetryCancel
122    End Sub ' radRetryCancel_CheckedChanged
123
124    ' set icon type to Asterisk when Asterisk checked
125 Private Sub radAsterisk_CheckedChanged(ByVal sender _
126       As System.Object, ByVal e As System.EventArgs) _
127       Handles radAsterisk.CheckedChanged
128

Fig. 12.26 Using RadioButtons to set message-window options (part 3 of 6).



Chapter 12 Graphical User Interface Concepts: Part 1 505

129       iconType = MessageBoxIcon.Asterisk
130    End Sub ' radAsterisk_CheckedChanged
131
132    ' set icon type to Error when Error checked
133 Private Sub radError_CheckedChanged(ByVal sender _
134       As System.Object, ByVal e As System.EventArgs) _
135       Handles radError.CheckedChanged
136
137       iconType = MessageBoxIcon.Error
138    End Sub ' radError_CheckedChanged
139
140    ' set icon type to Exclamation when Exclamation checked
141 Private Sub radExclamation_CheckedChanged(ByVal sender _
142       As System.Object, ByVal e As System.EventArgs) _
143       Handles radExclamation.CheckedChanged
144
145       iconType = MessageBoxIcon.Exclamation
146    End Sub ' radExclamation_CheckedChanged
147
148    ' set icon type to Hand when Hand checked
149 Private Sub radHand_CheckedChanged(ByVal sender _
150       As System.Object, ByVal e As System.EventArgs) _
151       Handles radHand.CheckedChanged
152
153       iconType = MessageBoxIcon.Hand
154    End Sub ' radHand_CheckedChanged
155
156    ' set icon type to Information when Information checked
157 Private Sub radInformation_CheckedChanged(ByVal sender _
158       As System.Object, ByVal e As System.EventArgs) _
159       Handles radInformation.CheckedChanged
160
161       iconType = MessageBoxIcon.Information
162    End Sub ' radInformation_CheckedChanged
163
164    ' set icon type to Question when Question checked
165 Private Sub radQuestion_CheckedChanged(ByVal sender _
166       As System.Object, ByVal e As System.EventArgs) _
167       Handles radQuestion.CheckedChanged
168
169       iconType = MessageBoxIcon.Question
170    End Sub ' radQuestion_CheckedChanged
171
172    ' set icon type to Stop when Stop checked
173 Private Sub radStop_CheckedChanged(ByVal sender _
174       As System.Object, ByVal e As System.EventArgs) _
175       Handles radStop.CheckedChanged
176
177       iconType = MessageBoxIcon.Stop
178    End Sub ' radStop_CheckedChanged
179

Fig. 12.26 Using RadioButtons to set message-window options (part 4 of 6).



506 Graphical User Interface Concepts: Part 1 Chapter 12

180    ' set icon type to Warning when Warning checked
181 Private Sub radWarning_CheckedChanged(ByVal sender _
182       As System.Object, ByVal e As System.EventArgs) _
183       Handles radWarning.CheckedChanged
184
185       iconType = MessageBoxIcon.Warning
186    End Sub ' radWarning_CheckedChanged
187
188 End Class ' FrmRadioButtons

Fig. 12.26 Using RadioButtons to set message-window options (part 5 of 6).

Information icon type Question icon type

(YesNoCancel button type)(AbortRetryIgnore button type)

Exclamation icon type Error icon type

(OK button type)(OKCancel button type)



Chapter 12 Graphical User Interface Concepts: Part 1 507

Object buttonType is a MessageBoxButton enumeration with values Abort-
RetryIgnore, OK, OKCancel, RetryCancel, YesNo and YesNoCancel. The
name indicates the options that are presented to the user. This example employs all Mes-
sageBoxButton enumeration values.

Two GroupBoxes are created, one for each enumeration. Their captions are Button
Type and Icon. There is also a button (cmdDisplay, line 33) labeled Display; when a
user clicks it, a customized message box is displayed. A Label (lblDisplay, line 36)
displays which button within the message box was pressed. RadioButtons are created
for the enumeration options, and their labels are set appropriately. Because the radio but-
tons are grouped, only one RadioButton can be selected from each GroupBox.

Each radio button has an event handler that handles the radio button’s Checked-
Changed event. When a radio button contained in the Button Type GroupBox is
checked, the checked radio button’s corresponding event-handler sets buttonType to the
appropriate value. Lines 77–122 contain the event handling for these radio buttons. Similarly,
when the user checks the radio buttons belonging to the Icon GroupBox, the event handlers
associated to these events (lines 125–186) sets iconType to its corresponding value. 

To create the event handler for an event, it is necessary to use the functionality pro-
vided by Visual Studio. Note that each check box has its own event handler. This design
has several advantages. First, it allows developers to modify the functionality of their code
(i.e., by adding or removing check boxes) with minimal structural changes. The design
structure also partitions the event-handling code to each respective event handler, reducing
the potential for the accidental introduction of bugs into the code when an event handler for
a particular check box must change. One common alternative design employs one event
handler to handle all CheckedChanged events from a set of radio buttons. A “monolithic
control structure” typically determines which code to execute on the basis of the control
that triggered the event. This design offers the benefit that all event-handling code is local-
ized to one event handler. However, the design complicates the process of extending the
code for each event handler. Whenever the programmer modifies the event-handling code
for a given CheckBox, a bug could be introduced into the monolithic control structure and
could affect the code for the other, unmodified event handlers. This event-handling scheme
is not recommended. It is always a good idea to separate unrelated sections of code from
one another. This reduces the potential for bugs, thus decreasing development time. 

The Click handler for cmdDisplay (lines 41–74) creates a MessageBox (lines
45–47). The MessageBox options are set by iconType and buttonType. The result
of the message box is a DialogResult enumeration that has possible values Abort,
Cancel, Ignore, No, None, OK, Retry or Yes. The Select Case statement on lines
50–72 tests for the result and sets lblDisplay.Text appropriately.

Fig. 12.26 Using RadioButtons to set message-window options (part 6 of 6).

(RetryCancel button type)(YesNo button type)



508 Graphical User Interface Concepts: Part 1 Chapter 12

12.8 PictureBoxes
A picture box (class PictureBox) displays an image. The image, set by an object of class
Image, can be in a bitmap, a GIF (Graphics Interchange Format), a JPEG (Joint Photo-
graphic Expert Group), icon or metafile format. (Images and multimedia are discussed in
Chapter 16, Graphics and Multimedia.)

The Image property specifies the image that is displayed, and the SizeMode property
indicates how the image is displayed (Normal,StretchImage,Autosize or Center-
Image). Figure 12.27 describes important properties and events of class PictureBox.

The program in Fig. 12.28 uses PictureBox picImage to display one of three
bitmap images—image0, image1 or image2. These images are located in the directory
images (in the bin/images directory of our project), where the executable file is also
located. Whenever a user clicks picImage, the image changes. The Label
(named lblPrompt) at the top of the form displays the text Click On Picture Box to
View Images.

PictureBox
properties and events Description / Delegate and Event Arguments

Common Properties

Image Sets the image to display in the PictureBox.

SizeMode Enumeration that controls image sizing and positioning. Values are 
Normal (default), StretchImage, AutoSize and CenterIm-
age. Normal places image in top-left corner of PictureBox, and 
CenterImage puts image in middle (both truncate image if it is too 
large). StretchImage resizes image to fit in PictureBox.
AutoSize resizes PictureBox to hold image.

Common Events (Delegate EventHandler, event arguments EventArgs)

Click Generated when user clicks the control. Default event when this con-
trol is double clicked in the designer.

Fig. 12.27 PictureBox properties and events.

1 ' Fig. 12.28: PictureBoxTest.vb
2 ' Using a PictureBox to display images.
3
4 Imports System.IO
5 Imports System.Windows.Forms
6
7 Public Class FrmPictureBox
8    Inherits Form
9

10    Private imageNumber As Integer = -1
11
12    ' instructions display label
13 Friend WithEvents lblPrompt As Label

Fig. 12.28 Using a PictureBox to display images  (part 1 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 509

14
15    ' image display area
16 Friend WithEvents picImage As Label
17
18  ' Visual Studio .NET generated code
19
20    ' replace image in picImage
21 Private Sub picImage_Click(ByVal sender As System.Object, _
22       ByVal e As System.EventArgs) Handles picImage.Click
23
24       ' imageNumber from 0 to 2
25       imageNumber = (imageNumber + 1) Mod 3
26
27       ' create Image object from file, display in PictureBox
28       picImage.Image = Image.FromFile _
29          (Directory.GetCurrentDirectory & "\images\image" & _
30          imageNumber & ".bmp")
31 End Sub ' picImage_Click
32
33 End Class ' FrmPictureBox

Fig. 12.28 Using a PictureBox to display images  (part 2 of 2).



510 Graphical User Interface Concepts: Part 1 Chapter 12

To respond to the user’s clicks, the program must handle the Click event. Inside the
event handler, picImage_Click, we use an Integer (imageNumber) to store the
image we want to display. We then set the Image property of picImage to an Image
(line 28–30). Although class Image is discussed in Chapter 16, Graphics and Multimedia,
we now overview method FromFile, which takes a String (the image file) and creates
an Image object.

To find the images, we use class Directory (namespace System.IO, specified on
line 4) method GetCurrentDirectory (line 29). This returns the current directory of
the executable file as a String. To access the images subdirectory, we append
“\images\” and the file name to the name of the current directory. We use image-
Number to append the proper number, enabling us to load either image0, image1 or
image2. The value of Integer imageNumber stays between 0 and 2 because of the
modulus calculation in line 25. Finally, we append ".bmp" to the filename. Thus, if we
want to load image0, the String becomes “CurrentDir\images\image0.bmp”,
where CurrentDir is the directory of the executable.

12.9 Mouse-Event Handling
This section explains the handling of mouse events, such as clicks, presses and moves,
which are generated when the mouse interacts with a control. Mouse events can be handled
for any control that derives from class System.Windows.Forms.Control. Mouse-
event information is passed through class MouseEventArgs, and the delegate used to
create mouse-event handlers is MouseEventHandler. Each mouse-event-handling
method requires an Object and a MouseEventArgs object as arguments. For example,
the Click event, which we covered earlier, uses delegate EventHandler and event ar-
guments EventArgs.

Class MouseEventArgs contains information related to the mouse event, such as
the x- and y-coordinates of the mouse pointer, the mouse button pressed Right, Left or
Middle), the number of times the mouse was clicked and the number of notches through
which the mouse wheel turned. Note that the x- and y-coordinates of the MouseEven-
tArgs object are relative to the control that generated the event. Point (0,0) represents the
upper-left corner of the control. Several mouse events are described in Fig. 12.29.

Mouse Events, Delegates and Event Arguments

Mouse Events (Delegate EventHandler, event arguments EventArgs)

MouseEnter Generated if the mouse cursor enters the area of the control.

MouseLeave Generated if the mouse cursor leaves the area of the control.

Mouse Events (Delegate MouseEventHandler, event arguments MouseEventArgs)

MouseDown Generated if the mouse button is pressed while its cursor is over the 
area of the control.

MouseHover Generated if the mouse cursor hovers over the area of the control.

Fig. 12.29 Mouse events, delegates and event arguments (part 1 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 511

The program in Fig. 12.30 uses mouse events to draw on a form. Whenever the user
drags the mouse (i.e., moves the mouse while holding down a button), a line is drawn on
the form.

In line 7, the program declares variable shouldPaint, which determines whether to
draw on the form. We want the program to draw only while the mouse button is pressed (i.e.,
held down). Thus, in the event handler for event MouseDown (lines 28–33), shouldPaint
is set to True. As soon as the mouse button is released, the program stops drawing: shoul-
dPaint is set to False in the FrmPainter_MouseUp event handler (lines 36–41). 

Whenever the mouse moves, the system generates a MouseMove event at a rate pre-
defined by the operating system. Inside the FrmPainter_MouseMove event handler
(lines 18–23), the program draws only if shouldPaint is True (indicating that the
mouse button is pressed). Line 19 creates the form’s Graphics object, which offers
methods that draw various shapes. For example, method FillEllipse (lines 21–22)
draws a circle at every point over which the mouse cursor moves (while the mouse button
is pressed). The first parameter to method FillEllipse is a SolidBrush object,
which specifies the color of the shape drawn. We create a new SolidBrush object by
passing a Color value to the constructor. Type Color contains numerous predefined
color constants—we selected Color.BlueViolet (line 22). The SolidBrush fills an
elliptical region that lies inside a bounding rectangle. The bounding rectangle is specified
by the x- and y-coordinates of its upper-left corner, its height and its width. These are the
final four arguments to method FillEllipse. The x- and y-coordinates represent the
location of the mouse event and can be taken from the mouse-event arguments (e.X and
e.Y). To draw a circle, we set the height and width of the bounding rectangle so that they
are equal—in this example, both are 4 pixels. 

MouseMove Generated if the mouse cursor is moved while in the area of the con-
trol.

MouseUp Generated if the mouse button is released when the cursor is over the 
area of the control.

Class MouseEventArgs Properties

Button Specifies the mouse button that was pressed (left, right, mid-
dle or none).

Clicks Indicates the number of times that the mouse button was clicked.

X The x-coordinate of the event, within the control.

Y The y-coordinate of the event, within the control.

1 ' Fig. 12.30: Painter.vb
2 ' Using the mouse to draw on a form.
3

Fig. 12.30 Using the mouse to draw on a form (part 1 of 2).

Mouse Events, Delegates and Event Arguments

Fig. 12.29 Mouse events, delegates and event arguments (part 2 of 2).



512 Graphical User Interface Concepts: Part 1 Chapter 12

Whenever the user clicks or holds down a mouse button, the system generates a
MouseDown event. FrmPainter_MouseDown (lines 28–33) handles the MouseDown

4 Public Class FrmPainter
5 Inherits System.Windows.Forms.Form
6
7 Dim shouldPaint As Boolean = False
8
9    ' Visual Studio .NET generated code

10
11    ' draw circle if shouldPaint is True
12 Private Sub FrmPainter_MouseMove( _
13       ByVal sender As System.Object, _
14       ByVal e As System.Windows.Forms.MouseEventArgs) _
15       Handles MyBase.MouseMove
16
17       ' paint circle if mouse pressed
18       If shouldPaint Then
19          Dim graphic As Graphics = CreateGraphics()
20
21          graphic.FillEllipse _
22             (New SolidBrush(Color.BlueViolet), e.X, e.Y, 4, 4)
23       End If
24
25 End Sub ' FrmPainter_MouseMove
26
27    ' set shouldPaint to True
28 Private Sub FrmPainter_MouseDown(ByVal sender As Object, _
29       ByVal e As System.Windows.Forms.MouseEventArgs) _
30       Handles MyBase.MouseDown
31
32       shouldPaint = True
33 End Sub ' FrmPainter_MouseDown
34
35    ' set shouldPaint to False 
36 Private Sub FrmPainter_MouseUp(ByVal sender As Object, _
37       ByVal e As System.Windows.Forms.MouseEventArgs) _
38       Handles MyBase.MouseUp
39
40       shouldPaint = False
41 End Sub ' FrmPainter_MouseUp
42
43 End Class ' FrmPainter

Fig. 12.30 Using the mouse to draw on a form (part 2 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 513

event. Line 32 sets shouldPaint to True. Unlike MouseMove events, the system gen-
erates a MouseDown event only once while the mouse button is down. 

When the user releases the mouse button (to complete a “click” operation), the system
generates a single MouseUp event. FrmPainter_MouseUp handles the MouseUp
event (lines 36–41). Line 40 sets shouldPaint to False.

12.10 Keyboard-Event Handling
This section explains the handling of key events, which are generated when keys on the key-
board are pressed and released. Such events can be handled by any control that inherits
from System.Windows.Forms.Control. There are two types of key events. The
first is event KeyPress, which fires when a key representing an ASCII character is
pressed (determined by KeyPressEventArgs property KeyChar). ASCII is a 128-
character set of alphanumeric symbols, a full listing of which can be found in Appendix E,
ASCII Character Set.

However the KeyPress event does not enable us to determine whether modifier keys
(e.g., Shift, Alt and Control) were pressed. It is necessary to handle the second type of key
events, the KeyUp or KeyDown events, to determine such actions. Class KeyEventArgs
contains information about special modifier keys. The key’s Key enumeration value can
be returned, providing information about a wide range of non-ASCII keys. Often, modifier
keys are used in conjunction with the mouse to select or highlight information.
KeyEventHandler (event argument class KeyEventArgs) and KeyPress–
EventHandler (event argument class KeyPressEventArgs) are the delegates for
the two classes. Figure 12.31 lists important information about key events.

Keyboard Events, Delegates and Event Arguments

Key Events (Delegate KeyEventHandler, event arguments KeyEventArgs)

KeyDown Generated when key is initially pressed.

KeyUp Generated when key is released.

Key Events (Delegate KeyPressEventHandler, event arguments KeyPressEventArgs)

KeyPress Generated when key is pressed. Occurs repeatedly 
while key is held down, at a rate specified by the oper-
ating system.

Class KeyPressEventArgs Properties

KeyChar Returns the ASCII character for the key pressed.

Handled Indicates whether the KeyPress event was handled.

Class KeyEventArgs Properties

Alt Indicates whether the Alt key was pressed.

Control Indicates whether the Control key was pressed.

Shift Indicates whether the Shift key was pressed.

Fig. 12.31 Keyboard events, delegates and event arguments (part 1 of 2).



514 Graphical User Interface Concepts: Part 1 Chapter 12

Figure 12.32 demonstrates the use of the key-event handlers to display a key pressed
by a user. The program is a form with two Labels. It displays the pressed key on one
Label and modifier information on the other. 

Initially, the two Labels (lblCharacter and lblInformation) are empty. The
lblCharacter label displays the character value of the key pressed, whereas lblIn-
formation displays information relating to the pressed key. Because the KeyDown and
KeyPress events convey different information, the form (FrmKeyDemo) handles both.

The KeyPress event handler (lines 18–23) accesses the KeyChar property of the
KeyPressEventArgs object. This returns the pressed key as a Char and displays the
result in lblCharacter (line 22). If the pressed key is not an ASCII character, then the
KeyPress event will not fire, and lblCharacter remains empty. ASCII is a common
encoding format for letters, numbers, punctuation marks and other characters. It does not sup-
port keys such as the function keys (like F1) or the modifier keys (Alt, Control and Shift).

Handled Indicates whether the event was handled.

KeyCode Returns the key code for the key as a Keys enumera-
tion. This does not include modifier-key information. 
Used to test for a specific key.

KeyData Returns the key code for a key as a Keys enumera-
tion, combined with modifier information. Contains 
all information about the pressed key.

KeyValue Returns the key code as an Integer, rather than as a 
Keys enumeration. Used to obtain a numeric repre-
sentation of the pressed key.

Modifiers Returns a Keys enumeration for any modifier keys 
pressed (Alt, Control and Shift). Used to determine 
modifier-key information only.

1 ' Fig. 12.32: KeyDemo.vb
2 ' Displaying information about a user-pressed key.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmKeyDemo
7    Inherits Form
8
9    ' KeyPressEventArgs display label

10 Friend WithEvents lblCharacter As Label
11
12    ' KeyEventArgs display label
13 Friend WithEvents lblInformation As Label
14

Fig. 12.32 Demonstrating keyboard events (part 1 of 3).

Keyboard Events, Delegates and Event Arguments

Fig. 12.31 Keyboard events, delegates and event arguments (part 2 of 2).



Chapter 12 Graphical User Interface Concepts: Part 1 515

15    ' Visual Studio .NET generated code
16
17    ' event handler for key press
18 Private Sub FrmKeyDemo_KeyPress(ByVal sender As System.Object, _
19     ByVal e As System.windows.Forms.KeyPressEventArgs) _
20     Handles MyBase.KeyPress
21
22       lblCharacter.Text = "Key pressed: " & e.KeyChar
23    End Sub
24
25    ' display modifier keys, key code, key data and key value
26  Private Sub FrmKeyDemo_KeyDown(ByVal sender As System.Object, _
27     ByVal e As System.Windows.Forms.KeyEventArgs) _
28       Handles MyBase.KeyDown
29
30       lblInformation.Text = ""
31
32       ' if key is Alt
33      If e.Alt Then
34          lblInformation.Text &= "Alt: Yes" & vbCrLf
35    Else
36          lblInformation.Text &= "Alt: No" & vbCrLf
37       End If
38
39       ' if key is Shift
40       If e.Shift Then
41          lblInformation.Text &= "Shift: Yes" & vbCrLf
42   Else
43          lblInformation.Text &= "Shift: No" & vbCrLf
44       End If
45
46       ' if key is Ctrl
47       If e.Control Then
48          lblInformation.Text &= "Ctrl: Yes" & vbCrLf
49       Else
50          lblInformation.Text &= "Ctrl: No" & vbCrLf
51    End If
52
53       lblInformation.Text &= "KeyCode: " & e.KeyCode.ToString & _
54          vbCrLf & "KeyData: " & e.KeyData.ToString & _ 
55          vbCrLf & "KeyValue: " & e.KeyValue
56 End Sub ' FrmKeyDemo_KeyDown
57
58 ' clear labels when key is released
59    Private Sub FrmKeyDemo_KeyUp(ByVal sender As System.Object, _
60     ByVal e As System.windows.Forms.KeyEventArgs) _
61      Handles MyBase.KeyUp
62
63       lblInformation.Text = ""
64       lblCharacter.Text = ""
65 End Sub ' FrmKeyDemo_KeyUp
66
67 End Class ' FrmKeyDemo

Fig. 12.32 Demonstrating keyboard events (part 2 of 3).



516 Graphical User Interface Concepts: Part 1 Chapter 12

The KeyDown event handler (lines 26–56) displays information from its KeyEven-
tArgs object. It tests for the Alt, Shift and Control keys by using the Alt, Shift and
Control properties, each of which returns Boolean—True if their respective keys are
pressed, False otherwise. It then displays the KeyCode, KeyData and KeyValue
properties.

The KeyCode property returns a Keys enumeration, which is converted to a String
via method ToString (line 53). The KeyCode property returns the pressed key, but does
not provide any information about modifier keys. Thus, both a capital and a lowercase “a”
are represented as the A key.

The KeyData property (line 54) also returns a Keys enumeration, but this property
includes data about modifier keys. Thus, if “A” is input, the KeyData shows that the A
key and the Shift key were pressed. Lastly, KeyValue (line 47) returns the key code of the
pressed key as an Integer. This Integer is the Windows virtual key code, which pro-
vides an Integer value for a wide range of keys and for mouse buttons. The Windows
virtual key code is useful when one is testing for non-ASCII keys (such as F12). 

The KeyUp event handler (lines 59–65) clears both labels when the key is released. As
we can see from the output, non-ASCII keys are not displayed in lblCharacter,
because the KeyPress event is not generated. However, the KeyDown event still is gen-
erated, and lblInformation displays information about the key. The Keys enumera-
tion can be used to test for specific keys by comparing the key pressed to a specific
KeyCode. The Visual Studio. NET documentation contains a complete list of the Keys
enumeration constants, under the topic Keys enumeration.

Fig. 12.32 Demonstrating keyboard events (part 3 of 3).

H pressed

Ctrl pressed

Enter pressed

$ pressed



Chapter 12 Graphical User Interface Concepts: Part 1 517

Software Engineering Observation 12.4
To cause a control to react when a certain key is pressed (such as Enter), handle a key event
and test for the pressed key. To cause a button to be clicked when the Enter key is pressed on
a form, set the form’s AcceptButton property. 12.8

Throughout the chapter we introduced various GUI controls. We named the variables
that referenced these controls according to their use in each program. We added a prefix that
describes each control’s type. This prefix enhances program readability by identifying a con-
trol’s type. We include a table (Fig. 12.33) that contains the prefixes we use in this book. 

In this chapter, we explored several GUI components in greater detail. In the next
chapter, we continue our discussion of GUI components and GUI development by intro-
ducing additional controls.

SUMMARY
• A graphical user interface (GUI) presents a pictorial interface to a program. A GUI (pronounced

“GOO-ee”) gives a program a distinctive “look” and “feel.” 

• By providing different applications with a consistent set of intuitive user-interface components,
GUIs allow the user to concentrate on using programs productively.

• GUIs are built from GUI components (sometimes called controls). A control is a visual object with
which the user interacts via the mouse or keyboard.

• A Form is a graphical element that appears on the desktop. A form can be a dialog or a window.

• A component is a class that implements the IComponent interface.

• A control is a graphical component, such as a button.

• The active window has the focus. The active window is the frontmost window and has a highlight-
ed title bar.

• A Form acts as a container for controls.

• When the user interacts with a control, an event is generated. This event can trigger methods that
respond to the user’s actions.

• All forms, components and controls are classes.

• The general design process for creating Windows applications involves creating a Windows Form,
setting its properties, adding controls, setting their properties and configuring event handlers. 

Prefix Control

Frm Form

lbl Label

txt TextBox

cmd Button

chk CheckBox

rad RadioButton

pic PictureBox

Fig. 12.33 Abbreviations for controls introduced in chapter.



518 Graphical User Interface Concepts: Part 1 Chapter 12

• GUIs are event driven. When a user interaction occurs, an event is generated. The event informa-
tion then is passed to event handlers.

• Events are based on the notion of delegates. Delegates act as an intermediate step between the ob-
ject creating (raising) the event and the method handling it.

• Use the Class Name and Method Name drop-down menus to create and register event handlers.

• The information the programmer needs to register an event is the EventArgs class (to define the
event handler) and the EventHandler delegate (to register the event handler).  

• Labels (class Label) display read-only text to the user. 

• A TextBox is a single-line area in which text can be input or displayed. A password textbox
masks each character input by the user with another character (e.g., *). 

• A Button is a control that the user clicks to trigger a specific action. Buttons typically respond
to the Click event.

• GroupBoxes and Panels help arrange controls on a GUI. The main difference between these
classes is that GroupBoxes can display text and Panels can have scrollbars.

• Visual Basic .NET has two types of state buttons—CheckBoxes and RadioButtons—that
have on/off or true/false values. 

• A checkbox is a small square that can be blank or contain a checkmark.

• Use the bitwise Xor operator to combine or negate a font style.

• Radio buttons (class RadioButton) have two states—selected, and not selected. Radio buttons
appear as a group in which only one radio button can be selected at a time. To create new groups,
radio buttons must be added to GroupBoxes or Panels. Each GroupBox or Panel is a group.

• Radio buttons and checkboxes generate the CheckChanged event.

• A picture box (class PictureBox) displays an image (class Image).

• Mouse events (such as clicks and presses) can be handled for any control that derives from Sys-
tem.Windows.Forms.Control. Mouse events use class MouseEventArgs (Mou-
seEventHandler delegate) and EventArgs (EventHandler delegate). 

• Class MouseEventArgs contains information about the x- and y-coordinates, the button used,
the number of clicks and the number of notches through which the mouse wheel turned.

• Key events are generated when keyboard’s keys are pressed and released. These events can be han-
dled by any control that inherits from System.Windows.Forms.Control.

• Event KeyPress can return a Char for any ASCII character pressed. One cannot determine from
a KeyPress event whether special modifier keys (such as Shift, Alt and Control) were pressed.

• Events KeyUp and KeyDown test for special modifier keys (using KeyEventArgs). The dele-
gates are KeyPressEventHandler (KeyPressEventArgs) and KeyEventHandler
(KeyEventArgs).

• Class KeyEventArgs has properties KeyCode, KeyData and KeyValue.

• The KeyCode property returns the key pressed, but does not give any information about modifier
keys.

• The KeyData property includes data about modifier keys.

• The KeyValue property returns the key code for the key pressed as an Integer.

TERMINOLOGY
#Region (tag) and #End Regions active window 

preprocessor directive Alt property 



Chapter 12 Graphical User Interface Concepts: Part 1 519

ASCII character KeyPressEventArgs class 
background color KeyUp event 
bitwise operator label 
button Label class 
Button class menu 
button label menu bar 
checkbox mouse 
CheckBox class mouse click 
checkbox label mouse event 
CheckedChanged event mouse move 
click a button mouse press 
click a mouse button MouseDown event 
Click event MouseEventArgs class 
component MouseEventHandler delegate 
container MouseHover event 
control MouseLeave event 
Control property MouseMove event 
delegate MouseUp event 
drag and drop MouseWheel event 
Enter key moving the mouse 
Enter mouse event multicast delegate 
event MulticastDelegate class 
event argument mutual exclusion
event delegate Name property 
event driven NewValue property 
event handler panel 
EventArgs class Panel class 
event-handling model password box 
Events window in Visual Studio  PasswordChar property 
focus picture box 
Font property PictureBox class 
font style preprocessor directive
form radio button 
Form class RadioButton class 
generate an event radio-button group 
GetCurrentDirectory method read-only text 
graphical user interface (GUI) register an event handler 
GroupBox  class Scroll event 
handle event scrollbar 
Image property scrollbar on a panel 
InitializeComponent method Shift property 
input data from the keyboard SizeMode property 
key code System.Windows.Forms namespace 
key data text box 
key event Text property 
key value TextBox class 
keyboard TextChanged event 
KeyDown event trigger an event 
KeyEventArgs class uneditable text or icon 
KeyPress event virtual key code 



520 Graphical User Interface Concepts: Part 1 Chapter 12

SELF-REVIEW EXERCISES
12.1 State whether each of the following is true or false. If false, explain why.

a) The KeyData property includes data about modifier keys.
b) Windows Forms commonly are used to create GUIs.
c) A form is an example of a container.
d) All forms, components and controls are classes.
e) Events are based on properties.
f) A Label displays text that the user can edit.
g) Button presses generate events.
h) Checkboxes in the same group are mutually exclusive.
i) All mouse events use the same event arguments class.
j) Visual Studio can register an event and create an empty event handler.

12.1 Fill in the blanks in each of the following statements:
a) The active control is said to have the .
b) The form acts as a  for the controls that are added.
c) GUIs are  driven. 
d) Every method that handles the same event must have the same .
e) The information required when registering an event handler is the  class and

the .
f) A(n)  textbox masks user input with another character.
g) Class  and class  help arrange controls on a GUI and provide log-

ical groups for radio buttons.
h) Typical mouse events include ,  and .
i)  events are generated when a key on the keyboard is pressed or released.
j) The modifier keys are ,  and .
k) A(n)  event or delegate can call multiple methods.

ANSWERS TO SELF-REVIEW EXERCISES
12.1 a) True. b) True. c) False. A control is a visible component. d) True. e) False. Events are
based on delegates. f) False. A Label‘s text cannot be edited by the user. g) True. h) False. Radio
buttons in the same group are mutually exclusive. i) False. Some mouse events use EventArgs, oth-
ers MouseEventArgs. j) True.

12.2 a) focus. b) container. c) event. d) signature. e) event arguments, delegate. f) password.
g) GroupBox, Panel. h) mouse clicks, mouse presses, mouse moves. i) Key. j) Shift, Control, Alt.
k) multicast.

EXERCISES
12.2 Extend the program in Fig. 12.24 to include a CheckBox for every font style option. [Hint:
Use Xor rather than testing for every bit explicitly.]

12.3 Create the following GUI: 

visual programming Windows Form 
widget Xor
window gadget



Chapter 12 Graphical User Interface Concepts: Part 1 521

You do not have to provide any functionality.

12.4 Create the following GUI: 

You do not have to provide any functionality.

12.5 Write a temperature conversion program that converts from Fahrenheit to Celsius. The Fahr-
enheit temperature should be entered from the keyboard (via a TextBox). A Label should be used
to display the converted temperature. Use the following formula for the conversion:

             Celsius = 5 / 9 x ( Fahrenheit – 32 )

12.6 Extend the program of Fig. 12.30 to include options for changing the size and color of the
lines drawn. Create a GUI similar to the one following. 



522 Graphical User Interface Concepts: Part 1 Chapter 12

12.7 Write a program that plays “guess the number” as follows: Your program chooses the num-
ber to be guessed by selecting an Integer at random in the range 1–1000. The program then dis-
plays the following text in a label:

I have a number between 1 and 1000--can you guess my number?
Please enter your first guess.

A TextBox should be used to input the guess. As each guess is input, the background color should
change to red or blue. Red indicates that the user is getting “warmer,” blue that the user is getting
“colder.” A Label should display either “Too High” or “Too Low,” to help the user “zero-in” on
the correct answer. When the user guesses the correct answer, display “Correct!” in a message
box, change the form’s background color to green and disable the TextBox. Provide a Button
that allows the user to play the game again. When the Button is clicked, generate a new random
number, change the background to the default color and enable the TextBox.



13
Graphical User 

Interfaces Concepts:
Part 2

Objectives
• To be able to create menus, tabbed windows and 

multiple-document-interface (MDI) programs.
• To understand the use of the ListView and 
TreeView controls for displaying information.

• To be able to create hyperlinks using the 
LinkLabel control.

• To be able to display lists of information in 
ListBoxes and ComboBoxes.

• To create custom controls.
I claim not to have controlled events, but confess plainly that 
events have controlled me.
Abraham Lincoln

A good symbol is the best argument, and is a missionary to 
persuade thousands.
Ralph Waldo Emerson

Capture its reality in paint!
Paul Cézanne

But, soft! what light through yonder window breaks? 
It is the east, and Juliet is the sun!
William Shakespeare

An actor entering through the door, you’ve got nothing. But 
if he enters through the window, you’ve got a situation.
Billy Wilder



524 Graphical User Interfaces Concepts: Part 2 Chapter 13

13.1 Introduction
This chapter continues our study of GUIs. We begin our discussion of more advanced top-
ics with a frequently used GUI component, the menu, which presents a user with several
logically organized commands (or options). We discuss how to develop menus with the
tools provided by Visual Studio .NET. We introduce LinkLabels, powerful GUI com-
ponents that enable the user to click the mouse to be taken to one of several destinations.

We consider GUI components that encapsulate smaller GUI components. We demon-
strate how to manipulate a list of values via a ListBox and how to combine several check-
boxes in a CheckedListBox. We also create drop-down lists using ComboBoxes and
display data hierarchically with a TreeView control. We present two important GUI com-
ponents—tab controls and multiple-document-interface windows. These components
enable developers to create real-world programs with sophisticated GUIs.

Visual Studio .NET provides a large set of GUI components, many of which are dis-
cussed in this chapter. Visual Studio .NET enables programmers to design custom controls
and add those controls to the ToolBox. The techniques presented in this chapter form the
groundwork for creating complex GUIs and custom controls.

13.2 Menus
Menus provide groups of related commands for Windows applications. Although these
commands depend on the program, some—such as Open and Save—are common to
many applications. Menus are an integral part of GUIs, because they organize commands
without “cluttering” the GUI.

Outline

13.1 Introduction
13.2 Menus

13.3 LinkLabels

13.4 ListBoxes and CheckedListBoxes
13.4.1 ListBoxes

13.4.2 CheckedListBoxes

13.5 ComboBoxes

13.6 TreeViews

13.7 ListViews
13.8 Tab Control
13.9 Multiple-Document-Interface (MDI) Windows
13.10 Visual Inheritance
13.11 User-Defined Controls

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



Chapter 13 Graphical User Interfaces Concepts: Part 2 525

In Fig. 13.1, an expanded menu lists various commands (called menu items), plus sub-
menus (menus within a menu). Notice that the top-level menus appear in the left portion of
the figure, whereas any submenus or menu items are displayed to the right. The menu that
contains a menu item is called that menu item’s parent menu. A menu item that contains a
submenu is considered to be the parent of that submenu.

All menu items can have Alt key shortcuts (also called access shortcuts or hot keys),
which are accessed by pressing Alt and the underlined letter (for example, Alt + F expands
the File menu). Menus that are not top-level menus can have shortcut keys as well (com-
binations of Ctrl, Shift, Alt, F1, F2, letter keys, etc.). Some menu items display checkmarks,
usually indicating that multiple options on the menu can be selected at once.

To create a menu, open the Toolbox and drag a MainMenu control onto the form.
This creates a menu bar on the top of the form and places a MainMenu icon at the bottom
of the IDE. To select the MainMenu, click this icon. This configuration is known as the
Visual Studio .NET Menu Designer, which allows the user to create and edit menus.
Menus, like other controls, have properties, which can be accessed through the Properties
window or the Menu Designer (Fig. 13.2), and events, which can be accessed through the
Class Name and Method Name drop-down menus.  

To add command names to the menu, click the Type Here textbox (Fig. 13.2) and
type the menu command’s name. Each entry in the menu is of type MenuItem from the
System.Windows.Forms namespace. The menu itself is of type MainMenu. After
the programmer presses the Enter key, the menu item name is added to the menu. Then,
more Type Here textboxes appear, allowing the programmer to add items underneath or
to the side of the original menu item (Fig. 13.3). 

Fig. 13.1 Expanded and checked menus.

Checked menu item

Submenu

Separator 
bar

Shortcut key

isabled 
ommand

Menu



526 Graphical User Interfaces Concepts: Part 2 Chapter 13

To create an access shortcut (or keyboard shortcut), type an ampersand (&) in front
of the character to be underlined. For example, to create the File menu item, type &File.
The ampersand character is displayed by typing &&. To add other shortcut keys (e.g., Ctrl
+ F9), set the Shortcut property of the MenuItem.

Look-and-Feel Observation 13.1
Buttons also can have access shortcuts. Place the & symbol immediately before the desired
character. To click the button, the user then presses Alt and the underlined character. 13.1

Programmers can remove a menu item by selecting it with the mouse and pressing the
Delete key. Menu items can be grouped logically by creating separator bars. Separator bars
are inserted by right-clicking the menu and selecting Insert Separator or by typing “-”
for the menu text.

Menu items generate a Click event when selected. To create an empty event handler,
enter code-view mode and select the MenuItem instance from the Class Name drop-down
menu. Then, select the desired event from the Method Name drop-down menu. Common
menu actions include displaying dialogs an d setting properties. Menus also can display the
names of open windows in multiple-document-interface (MDI) forms (see Section 13.9).
Menu properties and events are summarized in Fig. 13.4.  

Fig. 13.2 Visual Studio .NET Menu Designer

MainMenu icon

Type menu
name in
textbox

Main menu bar



Chapter 13 Graphical User Interfaces Concepts: Part 2 527

Look-and-Feel Observation 13.2
It is convention to place an ellipsis (…) after a menu item that display a dialog (such as Save
As...). Menu items that produce an immediate action without prompting the user (such as
Save) should not have an ellipsis following their name. 13.2

Look-and-Feel Observation 13.3
Using common Windows shortcuts (such as Ctrl+F for Find operations and Ctrl+S for Save
operations) decreases an application’s learning curve. 13.3

Fig. 13.3 Adding MenuItems to MainMenu.

Place & character
before letter to
underline in the

menu

Text boxes for 
adding items to the 
menu

MainMenu and 
MenuItem events 
and properties Description / Delegate and Event Arguments

MainMenu Properties

MenuItems Lists the MenuItems that are contained in the MainMenu.

Fig. 13.4 MainMenu and MenuItem properties and events (part 1 of 2).



528 Graphical User Interfaces Concepts: Part 2 Chapter 13

Class FrmMenu (Fig. 13.5) creates a simple menu on a form. The form has a top-level
File menu with menu items About (displays a message box) and Exit (terminates the pro-
gram).The menu also includes a Format menu, which changes the text on a label. The
Format menu has submenus Color and Font, which change the color and font of the text
on a label. 

RightToLeft Causes text to display from right to left. Useful for languages, such as 
Arabic, that are read from right to left.

MenuItem Properties

Checked Indicates whether a menu item is checked (according to property 
RadioCheck). Default value is False, meaning that the menu 
item is unchecked.

Index Specifies an item’s position in its parent menu. A value of 0 places 
the MenuItem at the beginning of the menu.

MenuItems Lists the submenu items for a particular menu item.

RadioCheck Specifies whether a selected menu item appears as a radio button 
(black circle) or as a checkmark. True displays a radio button, and 
False displays a checkmark; default False.

Shortcut Specifies the shortcut key for the menu item (e.g., Ctrl + F9 is equiv-
alent to clicking a specific item).

ShowShortcut Indicates whether a shortcut key is shown beside menu item text. 
Default is True, which displays the shortcut key.

Text Specifies the menu item’s text. To create an Alt access shortcut, pre-
cede a character with & (e.g., &File for File).

Common Event (Delegate EventHandler, event arguments EventArgs)

Click Generated when item is clicked or shortcut key is used. This is the 
default event when the menu is double-clicked in designer.

1 ' Fig 13.5: MenuTest.vb
2 ' Using menus to change font colors and styles.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmMenu
7 Inherits Form
8
9    ' display label

10 Friend WithEvents lblDisplay As Label
11

Fig. 13.5 Menus for changing text font and color (part 1 of 5).

MainMenu and 
MenuItem events 
and properties Description / Delegate and Event Arguments

Fig. 13.4 MainMenu and MenuItem properties and events (part 2 of 2).



Chapter 13 Graphical User Interfaces Concepts: Part 2 529

12    ' main menu (contains file and format menus)
13 Friend WithEvents mnuMainMenu As MainMenu
14
15    ' file menu 
16 Friend WithEvents mnuFile As MenuItem
17 Friend WithEvents mnuitmAbout As MenuItem
18 Friend WithEvents mnuitmExit As MenuItem
19
20    ' format menu (contains format and font submenus)
21 Friend WithEvents mnuFormat As MenuItem
22
23    ' color submenu
24 Friend WithEvents mnuitmColor As MenuItem
25 Friend WithEvents mnuitmBlack As MenuItem
26 Friend WithEvents mnuitmBlue As MenuItem
27 Friend WithEvents mnuitmRed As MenuItem
28 Friend WithEvents mnuitmGreen As MenuItem
29
30    ' font submenu
31 Friend WithEvents mnuitmFont As MenuItem
32 Friend WithEvents mnuitmTimes As MenuItem
33 Friend WithEvents mnuitmCourier As MenuItem
34 Friend WithEvents mnuitmComic As MenuItem
35 Friend WithEvents mnuitmDash As MenuItem
36 Friend WithEvents mnuitmBold As MenuItem
37 Friend WithEvents mnuitmItalic As MenuItem
38
39    ' Visual Studio .NET generated code
40
41    ' display MessageBox
42 Private Sub mnuitmAbout_Click( _
43       ByVal sender As System.Object, _
44       ByVal e As System.EventArgs) Handles mnuitmAbout.Click
45
46       MessageBox.Show("This is an example" & vbCrLf & _
47          "of using menus.", "About", MessageBoxButtons.OK, _
48          MessageBoxIcon.Information)
49 End Sub ' mnuitmAbout_Click
50
51    ' exit program
52 Private Sub mnuitmExit_Click( _
53       ByVal sender As System.Object, _
54       ByVal e As System.EventArgs) Handles mnuitmExit.Click
55
56       Application.Exit()
57 End Sub ' mnuitmExit_Click
58
59    ' reset font color 
60 Private Sub ClearColor()
61
62       ' clear all checkmarks
63       mnuitmBlack.Checked = False
64       mnuitmBlue.Checked = False

Fig. 13.5 Menus for changing text font and color (part 2 of 5).



530 Graphical User Interfaces Concepts: Part 2 Chapter 13

65       mnuitmRed.Checked = False
66       mnuitmGreen.Checked = False
67 End Sub ' ClearColor
68
69    ' update menu state and color display black
70 Private Sub mnuitmBlack_Click(ByVal sender As System.Object, _
71       ByVal e As System.EventArgs) Handles mnuitmBlack.Click
72
73       ' reset checkmarks for color menu items
74       ClearColor()
75
76       ' set color to black
77       lblDisplay.ForeColor = Color.Black
78       mnuitmBlack.Checked = True
79 End Sub ' mnuitmBlack_Click
80
81    ' update menu state and color display blue
82 Private Sub mnuitmBlue_Click(ByVal sender As System.Object, _
83       ByVal e As System.EventArgs) Handles mnuitmBlue.Click
84
85       ' reset checkmarks for color menu items
86       ClearColor()
87
88       ' set color to blue
89       lblDisplay.ForeColor = Color.Blue
90       mnuitmBlue.Checked = True
91 End Sub ' mnuitmBlue_Click
92
93    ' update menu state and color display red
94 Private Sub mnuitmRed_Click(ByVal sender As System.Object, _
95       ByVal e As System.EventArgs) Handles mnuitmRed.Click
96
97       ' reset checkmarks for color menu items
98       ClearColor()
99
100       ' set color to red
101       lblDisplay.ForeColor = Color.Red
102       mnuitmRed.Checked = True
103 End Sub ' mnuitmRed_Click
104
105    ' update menu state and color display green
106 Private Sub mnuitmGreen_Click(ByVal sender As System.Object, _
107       ByVal e As System.EventArgs) Handles mnuitmGreen.Click
108
109       ' reset checkmarks for color menu items
110       ClearColor()
111
112       ' set color to green
113       lblDisplay.ForeColor = Color.Green
114       mnuitmGreen.Checked = True
115 End Sub ' mnuitmGreen_Click
116

Fig. 13.5 Menus for changing text font and color (part 3 of 5).



Chapter 13 Graphical User Interfaces Concepts: Part 2 531

117    ' reset font type
118 Private Sub ClearFont()
119
120       ' clear all checkmarks
121       mnuitmTimes.Checked = False
122       mnuitmCourier.Checked = False
123       mnuitmComic.Checked = False
124 End Sub ' ClearFont
125
126    ' update menu state and set font to Times
127 Private Sub mnuitmTimes_Click(ByVal sender As System.Object, _
128       ByVal e As System.EventArgs) Handles mnuitmTimes.Click
129
130       ' reset checkmarks for font menu items
131       ClearFont()
132
133       ' set Times New Roman font
134       mnuitmTimes.Checked = True
135       lblDisplay.Font = New Font("Times New Roman", 30, _
136          lblDisplay.Font.Style)
137 End Sub ' mnuitmTimes_Click
138
139    ' update menu state and set font to Courier
140 Private Sub mnuitmCourier_Click(ByVal sender As System.Object, _
141       ByVal e As System.EventArgs) Handles mnuitmCourier.Click
142
143       ' reset checkmarks for font menu items
144       ClearFont()
145
146       ' set Courier font
147       mnuitmCourier.Checked = True
148       lblDisplay.Font = New Font("Courier New", 30, _
149          lblDisplay.Font.Style)
150 End Sub ' mnuitmCourier_Click
151
152    ' update menu state and set font to Comic Sans MS
153 Private Sub mnuitmComic_Click(ByVal sender As System.Object, _
154       ByVal e As System.EventArgs) Handles mnuitmComic.Click
155
156       ' reset check marks for font menu items
157       ClearFont()
158
159       ' set Comic Sans font
160       mnuitmComic.Checked = True
161       lblDisplay.Font = New Font("Comic Sans MS", 30, _
162          lblDisplay.Font.Style)
163 End Sub ' mnuitmComic_Click 
164
165    ' toggle checkmark and toggle bold style
166 Private Sub mnuitmBold_Click( _
167       ByVal sender As System.Object, _
168       ByVal e As System.EventArgs) Handles mnuitmBold.Click
169

Fig. 13.5 Menus for changing text font and color (part 4 of 5).



532 Graphical User Interfaces Concepts: Part 2 Chapter 13

170       ' toggle checkmark
171       mnuitmBold.Checked = Not mnuitmBold.Checked
172
173       ' use Xor to toggle bold, keep all other styles
174       lblDisplay.Font = New Font( _
175          lblDisplay.Font.FontFamily, 30, _
176          lblDisplay.Font.Style Xor FontStyle.Bold)
177 End Sub ' mnuitmBold_Click
178
179    ' toggle checkmark and toggle italic style
180 Private Sub mnuitmItalic_Click( _
181       ByVal sender As System.Object, _
182       ByVal e As System.EventArgs) Handles mnuitmItalic.Click
183
184       ' toggle checkmark
185       mnuitmItalic.Checked = Not mnuitmItalic.Checked
186
187       ' use Xor to toggle italic, keep all other styles
188       lblDisplay.Font = New Font( _
189          lblDisplay.Font.FontFamily, 30, _
190          lblDisplay.Font.Style Xor FontStyle.Italic)
191 End Sub ' mnuitmItalic_Click
192
193 End Class ' FrmMenu

Fig. 13.5 Menus for changing text font and color (part 5 of 5).



Chapter 13 Graphical User Interfaces Concepts: Part 2 533

We begin by dragging the MainMenu from the ToolBox onto the form. We then
create our entire menu structure, using the Menu Designer. The File menu (mnuFile, line
16) has menu items About (mnuitmAbout, line 17) and Exit (mnuitmExit, line 18);
the Format menu (mnuFormat, line 21) has two submenus. The first submenu, Color
(mnuitmColor, line 24), contains menu items Black (mnuitmBlack, line 25), Blue
(mnuitmBlue, line 26), Red (mnuitmRed, line 27) and Green (mnuitmGreen, line
28). The second submenu, Font (mnuitmFont, line 31), contains menu items Times
New Roman (mnuitmTimes, line 32), Courier (mnuitmCourier, line 33), Comic
Sans (mnuitmComic, line 34), a separator bar (mnuitmDash, line 35), Bold (mnuit-
mBold, line 36) and Italic (mnuitmItalic, line 37).

The About menu item in the File menu displays a MessageBox when clicked (lines
46–48). The Exit menu item closes the application through Shared method Exit of class
Application (line 56). Class Application’s Shared methods control program
execution. Method Exit causes our application to terminate.

We made the items in the Color submenu (Black, Blue, Red and Green) mutually
exclusive—the user can select only one at a time (we explain how we did this shortly). To
indicate this fact to the user, we set each Color menu item’s RadioCheck properties to
True. This causes a radio button to appear (instead of a checkmark) when a user selects a
Color-menu item.

Each Color menu item has its own event handler. The method handler for color Black
is mnuitmBlack_Click (lines 70–79). Similarly, the event handlers for colors Blue,
Red and Green are mnuitmBlue_Click (lines 82–91), mnuitmRed_Click (lines
94–103) and mnuitmGreen_Click (lines 106–115), respectively. Each Color menu
item must be mutually exclusive, so each event handler calls method ClearColor (lines
60–67) before setting its corresponding Checked property to True. Method
ClearColor sets the Checked property of each color MenuItem to False, effec-
tively preventing more than one menu item from being selected at a time.

Software Engineering Observation 13.1
The mutual exclusion of menu items is not enforced by the MainMenu, even when the
RadioCheck property is True. This behavior must be programmed. 13.3

Look-and-Feel Observation 13.4
Set the RadioCheck property to reflect the desired behavior of menu items. Use radio but-
tons (RadioCheck property set to True) to indicate mutually exclusive menu items. Use
check marks (RadioCheck property set to False) for menu items that have no logical re-
striction. 13.4

The Font menu contains three menu items for font types (Courier, Times New
Roman and Comic Sans) and two menu items for font styles (Bold and Italic). We
added a separator bar between the font-type and font-style menu items to indicate the dis-
tinction: Font types are mutually exclusive; styles are not. This means that a Font object
can specify only one font type at a time but can set multiple styles at once (e.g., a font can
be both bold and italic). We set the font-type menu items to display checks. As with the
Color menu, we also must enforce mutual exclusion in our event handlers. 

Event handlers for font-type menu items TimesRoman, Courier and ComicSans
are mnuitmTimes_Click (lines 127–137), mnuitmCourier_Click (lines 140–150)
and mnuitmComic_Click (lines 153–163), respectively. These event handlers behave in



534 Graphical User Interfaces Concepts: Part 2 Chapter 13

a manner similar to that of the event handlers for the Color menu items. Each event handler
clears the Checked properties for all font-type menu items by calling method ClearFont
(lines 118–124), then sets the Checked property of the menu item that raised the event to
True. This enforces the mutual exclusion of the font-type menu items. 

The event handlers for the Bold and Italic menu items (lines 166–191) use the bitwise
Xor operator. For each font style, the Xor operator changes the text to include the style or,
if that style is already applied, to remove it. The toggling behavior provided by the Xor
operator is explained in Chapter 12, Graphical User Interfaces Concepts: Part 1. As
explained in Chapter 12, this program’s event-handling structure allows the programmer to
add and remove menu entries while making minimal structural changes to the code. 

13.3 LinkLabels
The LinkLabel control displays links to other resources, such as files or Web pages
(Fig. 13.6). A LinkLabel appears as underlined text (colored blue by default). When the
mouse moves over the link, the pointer changes to a hand; this is similar to the behavior of
a hyperlink in a Web page. The link can change color to indicate whether the link is new,
previously visited or active. When clicked, the LinkLabel generates a LinkClicked
event (see Fig. 13.7). Class LinkLabel is derived from class Label and therefore inher-
its all of class Label’s functionality.

Look-and-Feel Observation 13.5
Although other controls can perform actions similar to those of a LinkLabel (such as the
opening of a Web page), LinkLabels indicate that a link can be followed—a regular label
or button does not necessarily convey that idea. 13.5

Fig. 13.6 LinkLabel control in running program.

LinkLabel
properties and events Description / Delegate and Event Arguments

Common Properties

ActiveLinkColor Specifies the color of the active link when clicked. Red is the default.

LinkArea Specifies which portion of text in the LinkLabel is part of the link.

Fig. 13.7 LinkLabel properties and events (part 1 of 2).

LinkLabel
on a form Hand image displays when 

mouse moves over LinkLabel



Chapter 13 Graphical User Interfaces Concepts: Part 2 535

Class FrmLinkLabel (Fig. 13.8) uses three LinkLabels, to link to the C: drive,
the Deitel Web site (www.deitel.com) and the Notepad application, respectively. The
Text properties of the LinkLabel’s lnklblCDrive (line 10), lnklblDeitel (line
11) and lnklblNotepad (line 12) describe each link’s purpose.

The event handlers for the LinkLabel instances call method Start of class Pro-
cess (namespace System.Diagnostics). This method allows us to execute other pro-
grams from our application. Method Start can take as arguments either the file to open (a
String) or the application to run and its command-line arguments (two Strings). Method
Start’s arguments can be in the same form as if they were provided for input to the Win-
dows Run command. For applications, full path names are not needed, and the .exe exten-
sion often can be omitted. To open a file that has a file type that Windows recognizes, simply
insert the file’s full path name. The Windows operating system must be able to use the appli-
cation associated with the given file’s extension to open the file.  

The event handler for lnklblCDrive’s LinkClicked events browses the C:
drive (lines 17–24). Line 22 sets the LinkVisited property to True, which changes the
link’s color from blue to purple (the LinkVisited colors are configured through the
Properties window in Visual Studio). The event handler then passes "C:\" to method
Start (line 23), which opens a Windows Explorer window.

The event handler for lnklblDeitel’s LinkClicked event (lines 27–35) opens
the Web page www.deitel.com in Internet Explorer. We achieve this by passing the
Web-page address as a String (lines 33–34), which opens Internet Explorer. Line 32 sets
the LinkVisited property to True.

LinkBehavior Specifies the link’s behavior, such as how the link appears when the 
mouse is placed over it.

LinkColor Specifies the original color of all links before they have been visited. 
Blue is the default.

Links Lists the LinkLabel.Link objects, which are the links contained 
in the LinkLabel.

LinkVisited If True, link appears as though it were visited (its color is changed to 
that specified by property VisitedLinkColor). Default value is 
False.

Text Specifies the control’s text.

UseMnemonic If True, & character in Text property acts as a shortcut (similar to 
the Alt shortcut in menus).

VisitedLinkColor Specifies the color of visited links. Purple is the default.

Common Event (Delegate LinkLabelLinkClickedEventHandler, event 
arguments LinkLabelLinkClickedEventArgs)

LinkClicked Generated when the link is clicked. This is the default event when the 
control is double-clicked in designer.

LinkLabel
properties and events Description / Delegate and Event Arguments

Fig. 13.7 LinkLabel properties and events (part 2 of 2).



536 Graphical User Interfaces Concepts: Part 2 Chapter 13

1 ' Fig. 13.8: LinkLabelTest.vb
2 ' Using LinkLabels to create hyperlinks.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmLinkLabel
7 Inherits Form
8
9    ' linklabels to C:\ drive, www.deitel.com and Notepad

10 Friend WithEvents lnklblCDrive As LinkLabel
11 Friend WithEvents lnklblDeitel As LinkLabel
12 Friend WithEvents lnklblNotepad As LinkLabel
13
14    ' Visual Studio .NET generated code
15
16    ' browse C:\ drive
17 Private Sub lnklblCDrive_LinkClicked( _
18       ByVal sender As System.Object, ByVal e As _
19       System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
20       Handles lnklblCDrive.LinkClicked
21
22       lnklblCDrive.LinkVisited = True
23       System.Diagnostics.Process.Start("C:\")
24 End Sub ' lnklblCDrive
25
26    ' load www.deitel.com in Web browser
27 Private Sub lnklblDeitel_LinkClicked( _
28       ByVal sender As System.Object, ByVal e As _
29       System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
30       Handles lnklblDeitel.LinkClicked
31
32       lnklblDeitel.LinkVisited = True
33       System.Diagnostics.Process.Start( _
34          "IExplore", "http://www.deitel.com")
35 End Sub ' lnklblDeitel
36
37    ' run application Notepad
38 Private Sub lnklblNotepad_LinkClicked( _
39       ByVal sender As System.Object, ByVal e As _
40       System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
41       Handles lnklblNotepad.LinkClicked
42
43       lnklblNotepad.LinkVisited = True
44
45       ' run notepad application
46       ' full path not needed
47       System.Diagnostics.Process.Start("notepad")
48 End Sub ' lnklblNotepad_LinkClicked
49
50 End Class ' LinkLabelList

Fig. 13.8 LinkLabels used to link to a drive, a Web page and an application
 (part 1 of 2).



Chapter 13 Graphical User Interfaces Concepts: Part 2 537

Fig. 13.8 LinkLabels used to link to a drive, a Web page and an application
 (part 2 of 2).

Click first LinkLabel to look at 
contents of C: drive

Click second 
LinkLabel to go to 

Web site.

Click on third LinkLabel
to open notepad



538 Graphical User Interfaces Concepts: Part 2 Chapter 13

The event handler for lnklblNotepad’s LinkClicked events opens the speci-
fied Notepad application (lines 38–47). Line 43 sets the link to appear in the event handler
as a visited link. Line 47 passes the argument "notepad" to method Start, which runs
notepad.exe. Note that, in line 47, the .exe extension is not required—Windows can
determine whether the argument given to method Start is an executable file.

13.4 ListBoxes and CheckedListBoxes
The ListBox control allows the user to view and select from multiple items in a list.
ListBoxes are static GUI entities, which means that users cannot add items to the list, un-
less the application adds items programmatically. The CheckedListBox control ex-
tends a ListBox by including check boxes next to each item in the list. This allows users
to place checks on multiple items at once, as is possible in a CheckBox control (users also
can select multiple items from a ListBox, but not by default). Figure 13.9 displays a
ListBox and a CheckedListBox. In both controls, scrollbars appear if the number of
items exceeds the ListBox’s viewable area. Figure 13.10 lists common ListBox prop-
erties, methods and events.  

Fig. 13.9 ListBox and CheckedListBox on a form.

ListBox
properties, methods 
and events Description / Delegate and Event Arguments

Common Properties

Items The collection of items in the ListBox.

Fig. 13.10 ListBox properties, methods and events (part 1 of 2).

CheckedListBox

ListBox

Scroll bars appear 
if necessary

Selected items

Checked item



Chapter 13 Graphical User Interfaces Concepts: Part 2 539

The SelectionMode property determines the number of items that can be selected.
This property has the possible values None, One, MultiSimple and MultiExtended
(from the SelectionMode enumeration)—the differences among these settings are
explained in Fig. 13.10. The SelectedIndexChanged event occurs when the user
selects a new item.

Both the ListBox and CheckedListBox have properties Items, Selecte-
dItem and SelectedIndex. Property Items returns all the list items as a collection.
Collections are a common way of exposing lists of Objects in the .NET framework. Many
.NET GUI components (e.g., ListBoxes) use collections to expose lists of internal objects
(e.g., items contained within a ListBox). We discuss collections further in Chapter 23, Data
Structures and Collections. Property SelectedItem returns the ListBox’s currently
selected item. If the user can select multiple items, use collection SelectedItems to return
all the selected items as a collection. Property SelectedIndex returns the index of the
selected item—if there could be more than one, use property SelectedIndices. If no
items are selected, property SelectedIndex returns -1. Method GetSelected takes
an index and returns True if the corresponding item is selected.

MultiColumn Indicates whether the ListBox can break a list into multiple columns. 
Multiple columns eliminate vertical scrollbars from the display.

SelectedIndex Returns the index of the selected item. If the user selects multiple 
items, this property arbitrarily returns one of the selected indices; if no 
items have been selected, the property returns -1.

SelectedIndices Returns a collection containing the indices for all selected items.

SelectedItem Returns a reference to the selected item (if multiple items are selected, 
it returns the item with the lowest index number).

SelectedItems Returns a collection of the selected item(s).

SelectionMode Determines the number of items that can be selected, and the means 
through which multiple items can be selected. Values None, One,
MultiSimple (multiple selection allowed) or MultiExtended
(multiple selection allowed using a combination of arrow keys or 
mouse clicks and Shift and Control keys).

Sorted Indicates whether items are sorted alphabetically. Setting this prop-
erty’s value to True sorts the items. The default value is False.

Common Method

GetSelected Takes an index as an argument, and returns True if the corresponding 
item is selected.

Common Event (Delegate EventHandler, event arguments EventArgs)

SelectedIndex-
Changed

Generated when selected index changes. This is the default event when 
the control is double-clicked in the designer.

ListBox
properties, methods 
and events Description / Delegate and Event Arguments

Fig. 13.10 ListBox properties, methods and events (part 2 of 2).



540 Graphical User Interfaces Concepts: Part 2 Chapter 13

To add items to a ListBox or to a CheckedListBox we must add objects to its
Items collection. This can be accomplished by calling method Add to add a String to
the ListBox’s or CheckedListBox’s Items collection. For example, we could write

myListBox.Items.Add( myListItem )

to add String myListItem to ListBox myListBox. To add multiple objects, program-
mers can either call method Add multiple times or call method AddRange to add an array
of objects. Classes ListBox and CheckedListBox each call the submitted object’s
ToString method to determine the label for the corresponding object’s entry in the list.
This allows programmers to add different objects to a ListBox or a CheckedListBox
that later can be returned through properties SelectedItem and SelectedItems.

Alternatively, we can add items to ListBoxes and CheckedListBoxes visually
by examining the Items property in the Properties window. Clicking the ellipsis button
opens the String Collection Editor, a text area in which programmers add items; each
item appears on a separate line (Fig. 13.11). Visual Studio .NET then adds these Strings
to the Items collection inside method InitializeComponent.

13.4.1 ListBoxes

Figure 13.12 uses class FrmListBox to add, remove and clear items from ListBox
lstDisplay (line 10). Class FrmListBox uses TextBox txtInput (line 13) to al-
low the user to type in a new item. When the user clicks the Add button (cmdAdd in line
16), the new item appears in lstDisplay. Similarly, if the user selects an item and clicks
Remove (cmdRemove in line 17), the item is deleted. When clicked, Clear (cmdClear
in line 18) deletes all entries in lstDisplay. The user terminates the application by
clicking Exit (cmdExit in line 19).  

Fig. 13.11 String Collection Editor.

1 ' Fig. 13.12: ListBoxTest.vb
2 ' Program to add, remove and clear list box items.
3
4 Imports System.Windows.Forms

Fig. 13.12 Program that adds, removes and clears ListBox items (part 1 of 3).



Chapter 13 Graphical User Interfaces Concepts: Part 2 541

5
6 Public Class FrmListBox
7 Inherits Form
8
9    ' contains user-input list of elements

10 Friend WithEvents lstDisplay As ListBox
11
12    ' user-input textbox
13 Friend WithEvents txtInput As TextBox
14
15    ' add, remove, clear and exit command buttons
16 Friend WithEvents cmdAdd As Button
17 Friend WithEvents cmdRemove As Button
18 Friend WithEvents cmdClear As Button
19 Friend WithEvents cmdExit As Button
20
21    ' Visual Studio .NET generated code
22
23    ' add new item (text from input box) and clear input box
24 Private Sub cmdAdd_Click(ByVal sender As System.Object, _
25       ByVal e As System.EventArgs) Handles cmdAdd.Click
26
27       lstDisplay.Items.Add(txtInput.Text)
28       txtInput.Text = ""
29    End Sub ' cmdAdd_Click
30
31    ' remove item if one is selected
32 Private Sub cmdRemove_Click (ByVal sender As System.Object, _
33       ByVal e As System.EventArgs) Handles cmdRemove.Click
34
35       ' remove only if item is selected
36       If lstDisplay.SelectedIndex <> -1 Then
37          lstDisplay.Items.RemoveAt(lstDisplay.SelectedIndex)
38       End If
39
40    End Sub ' cmdRemove_Click
41
42    ' clear all items
43 Private Sub cmdClear_Click (ByVal sender As System.Object, _
44       ByVal e As System.EventArgs) Handles cmdClear.Click
45
46       lstDisplay.Items.Clear()
47    End Sub ' cmdClear_Click
48
49    ' exit application
50 Private Sub cmdExit_Click (ByVal sender As System.Object, _
51       ByVal e As System.EventArgs) Handles cmdExit.Click
52
53       Application.Exit()
54    End Sub ' cmdExit_Click
55
56 End Class ' FrmListBox

Fig. 13.12 Program that adds, removes and clears ListBox items (part 2 of 3).



542 Graphical User Interfaces Concepts: Part 2 Chapter 13

The cmdAdd_Click event handler (lines 24–29) calls method Add of the Items
collection in the ListBox. This method takes a String as the item to add to lstDis-
play. In this case, the String used is the user-input text, or txtInput.Text (line 27).
After the item is added, txtInput.Text is cleared (line 28).

The cmdRemove_Click event handler (lines 32–40) calls method Remove of the
Items collection. Event handler cmdRemove_Click first uses property Selected-
Index to determine which index is selected. Unless SelectedIndex is empty (-1)
(line 36), the handler removes the item that corresponds to the selected index. 

The event handler for cmdClear_Click (lines 43–47) calls method Clear of the
Items collection (line 46). This removes all the entries in lstDisplay. Finally, event
handler cmdExit_Click (lines 50–54) terminates the application, by calling method
Application.Exit (line 53).

13.4.2 CheckedListBoxes

The CheckedListBox control derives from class ListBox and includes a checkbox
next to each item. As in ListBoxes, items can be added via methods Add and AddRange
or through the String Collection Editor. CheckedListBoxes imply that multiple
items can be selected, and the only possible values for the SelectionMode property are

Fig. 13.12 Program that adds, removes and clears ListBox items (part 3 of 3).



Chapter 13 Graphical User Interfaces Concepts: Part 2 543

None and One. One allows multiple selection, because checkboxes imply that there are no
logical restrictions on the items—the user can select as many items as required. Thus, the
only choice is whether to give the user multiple selection or no selection at all. This keeps
the CheckedListBox’s behavior consistent with that of CheckBoxes. The program-
mer is unable to set the last two SelectionMode values, MultiSimple and Multi-
Extended, because the only logical two selection modes are handled by None and One.
Common properties and events of CheckedListBoxes appear in Fig. 13.13.

Common Programming Error 13.1
The IDE displays an error message if the programmer attempts to set the SelectionMode
property to MultiSimple or MultiExtended in the Properties window of a
CheckedListBox; If this value is set programmatically, a runtime error occurs. 13.1

Event ItemCheck is generated whenever a user checks or unchecks a
CheckedListBox item. Event argument properties CurrentValue and NewValue
return CheckState values for the current and new state of the item, respectively. A com-
parison of these values allows the programmer to determine whether the
CheckedListBox item was checked or unchecked. The CheckedListBox control
retains the SelectedItems and SelectedIndices properties (it inherits them from
class ListBox). However, it also includes properties CheckedItems and Checked-
Indices, which return information about the checked items and indices.  

CheckedListBox
properties, methods 
and events Description / Delegate and Event Arguments

Common Properties (All the ListBox properties and events are inherited by 
CheckedListBox.)

CheckedItems Contains the collection of items that are checked. This is distinct from 
the selected item, which is highlighted (but not necessarily checked). 
[Note: There can be at most one selected item at any given time.]

CheckedIndices Returns indices for all checked items. This is not the same as the 
selected index.

SelectionMode Determines how many items can be checked. Only possible values are 
One (allows multiple checks to be placed) or None (does not allow any 
checks to be placed).

Common Method

GetItemChecked Takes an index and returns True if the corresponding item is checked.

Common Event (Delegate ItemCheckEventHandler, event arguments Item-
CheckEventArgs)

ItemCheck Generated when an item is checked or unchecked.

ItemCheckEventArgs Properties

CurrentValue Indicates whether the current item is checked or unchecked. Possible 
values are Checked, Unchecked and Indeterminate.

Fig. 13.13 CheckedListBox properties, methods and events (part 1 of 2).



544 Graphical User Interfaces Concepts: Part 2 Chapter 13

In Fig. 13.14, class FrmCheckedListBox uses a CheckedListBox and a
ListBox to display a user’s selection of books. The CheckedListBox named chkl-
stInput (line 10), allows the user to select multiple titles. In the String Collection
Editor, items were added for some Deitel™ books: C++, Java™, Visual Basic, Internet &
WWW, Perl, Python, Wireless Internet and Advanced Java (the acronym HTP stands for
“How to Program”). The ListBox, named lstDisplay (line 13), displays the user’s
selection. In the screenshots accompanying this example, the CheckedListBox appears
to the left, the ListBox on the right.

When the user checks or unchecks an item in CheckedListBox chklstInput,  an
ItemCheck event is generated. Event handler chklstInput_ItemCheck (lines 18–
34) handles the event. An If/Else control structure (lines 28–32) determines whether the
user checked or unchecked an item in the CheckedListBox. Line 28 uses the NewValue
property to determine whether the item is being checked (CheckState.Checked). If the
user checks an item, line 29 adds the checked entry to the ListBox lstDisplay. If the
user unchecks an item, line 31 removes the corresponding item from lstDisplay.

Index Returns index of the item that changed.

NewValue Specifies the new state of the item.

1 ' Fig. 13.14: CheckedListBoxTest.vb
2 ' Using the checked list boxes to add items to a list box.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmCheckedListBox
7 Inherits Form
8
9    ' list of available book titles

10 Friend WithEvents chklstInput As CheckedListBox
11
12    ' user selection list
13 Friend WithEvents lstDisplay As ListBox
14
15   ' Visual Studio .NET generated code 
16
17    ' item about to change, add or remove from lstDisplay
18 Private Sub chklstInput_ItemCheck( _
19       ByVal sender As System.Object, _
20       ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
21       Handles chklstInput.ItemCheck

Fig. 13.14 CheckedListBox and ListBox used in a program to display a user 
selection (part 1 of 2).

CheckedListBox
properties, methods 
and events Description / Delegate and Event Arguments

Fig. 13.13 CheckedListBox properties, methods and events (part 2 of 2).



Chapter 13 Graphical User Interfaces Concepts: Part 2 545

13.5 ComboBoxes
The ComboBox control combines TextBox features with a drop-down list. A drop-down
list is a GUI component that contains a list from which a value can be selected. It usually
appears as a text box with a down arrow to its right. By default, the user can enter text into
the text box or click the down arrow to display a list of predefined items. If a user chooses
an element from this list, that element is displayed in the text box. If the list contains more
elements than can be displayed in the drop-down list, a scrollbar appears. The maximum
number of items that a drop-down list can display at one time is set by property MaxDrop-
DownItems. Figure 13.15 shows a sample ComboBox in three different states.

As with the ListBox control, the programmer can add objects to collection Items
programmatically, using methods Add and AddRange, or visually, with the String Col-
lection Editor. Figure 13.16 lists common properties and events of class ComboBox.

22
23       ' obtain reference of selected item
24       Dim item As String = chklstInput.SelectedItem
25
26       ' if item checked add to listbox 
27       ' otherwise remove from listbox
28       If e.NewValue = CheckState.Checked Then
29          lstDisplay.Items.Add(item)
30       Else
31          lstDisplay.Items.Remove(item)
32       End If
33
34 End Sub ' chklstInput_ItemCheck
35
36 End Class ' FrmCheckedListBox

Fig. 13.14 CheckedListBox and ListBox used in a program to display a user 
selection (part 2 of 2).



546 Graphical User Interfaces Concepts: Part 2 Chapter 13

Look-and-Feel Observation 13.6
Use a ComboBox to save space on a GUI. The disadvantage is that, unlike with a ListBox,
the user cannot see available items without expanding the drop-down list. 13.6

Fig. 13.15 ComboBox demonstration.

Click the down arrow to 
display items in drop-down list

Selecting an item from drop-down list 
changes text in textbox portion

ComboBox events 
and properties Description / Delegate and Event Arguments

Common Properties

DropDownStyle Determines the type of combo box. Value Simple means that the 
text portion is editable and the list portion is always visible. Value 
DropDown (the default) means that the text portion is editable, but 
the user must click an arrow button to see the list portion. Value 
DropDownList means that the text portion is not editable and the 
user must click the arrow button to see the list portion.

Items The collection of items in the ComboBox control.

MaxDropDownItems Specifies the maximum number of items (between 1 and 100) that 
the drop-down list can display. If the number of items exceeds the 
maximum number of items to display, a scrollbar appears.

SelectedIndex Returns the index of the selected item. If there is no selected item, -1
is returned.

SelectedItem Returns a reference to the selected item.

Sorted Indicates whether items are sorted alphabetically. Setting this prop-
erty’s value to True sorts the items. Default is False.

Common Event (Delegate EventHandler, event arguments EventArgs)

SelectedIndex-
Changed

Generated when the selected index changes (such as when a different 
item is selected). This is the default event when control is double-
clicked in designer.

Fig. 13.16 ComboBox properties and events.



Chapter 13 Graphical User Interfaces Concepts: Part 2 547

Property DropDownStyle determines the type of ComboBox. Style Simple does
not display a drop-down arrow. Instead, a scrollbar appears next to the control, allowing the
user to select a choice from the list. The user also can type in a selection. Style DropDown
(the default) displays a drop-down list when the down arrow is clicked (or the down-arrow
key is pressed). The user can type a new item into the ComboBox. The last style is Drop-
DownList, which displays a drop-down list but does not allow the user to enter a new
item. 

The ComboBox control has properties Items (a collection), SelectedItem and
SelectedIndex, which are similar to the corresponding properties in ListBox. There
can be at most one selected item in a ComboBox (if zero, then SelectedIndex is -1).
When the selected item changes, event SelectedIndexChanged is generated.

Class FrmComboBox (Fig. 13.17) allows users to select a shape to draw—an empty
or filled circle, ellipse, square or pie—by using a ComboBox. The combo box in this
example is uneditable, so the user cannot input a custom item.

Look-and-Feel Observation 13.7
Make lists (such as ComboBoxes) editable only if the program is designed to accept user-sub-
mitted elements. Otherwise, the user might try to enter a custom item and be unable to use it. 13.7

1 ' Fig. 13.17: ComboBoxTest.vb
2 ' Using ComboBox to select shape to draw.
3
4 Imports System.Windows.Forms
5 Imports System.Drawing
6
7 Public Class FrmComboBox
8 Inherits Form
9

10    ' contains shape list (circle, square, ellipse, pie) 
11 Friend WithEvents cboImage As ComboBox
12
13    ' Visual Studio .NET generated code
14
15    ' get selected index, draw shape
16 Private Sub cboImage_SelectedIndexChanged( _
17       ByVal sender As System.Object, _
18       ByVal e As System.EventArgs) _
19       Handles cboImage.SelectedIndexChanged
20
21       ' create graphics object, pen and brush
22       Dim myGraphics As Graphics = MyBase.CreateGraphics()
23
24       ' create Pen using color DarkRed
25       Dim myPen As New Pen(Color.DarkRed)
26
27       ' create SolidBrush using color DarkRed
28       Dim mySolidBrush As New SolidBrush(Color.DarkRed)
29
30       ' clear drawing area by setting it to color White
31       myGraphics.Clear(Color.White)

Fig. 13.17 ComboBox used to draw a selected shape (part 1 of 3).



548 Graphical User Interfaces Concepts: Part 2 Chapter 13

32
33       ' find index, draw proper shape
34       Select Case cboImage.SelectedIndex
35
36          Case 0 ' case circle is selected
37             myGraphics.DrawEllipse(myPen, 50, 50, 150, 150)
38
39          Case 1 ' case rectangle is selected
40             myGraphics.DrawRectangle(myPen, 50, 50, 150, 150)
41
42          Case 2 ' case ellipse is selected
43             myGraphics.DrawEllipse(myPen, 50, 85, 150, 115)
44
45          Case 3 ' case pie is selected
46             myGraphics.DrawPie(myPen, 50, 50, 150, 150, 0, 45)
47
48          Case 4 ' case filled circle is selected 
49             myGraphics.FillEllipse( _
50                mySolidBrush, 50, 50, 150, 150)
51
52          Case 5 ' case filled rectangle is selected
53             myGraphics.FillRectangle( _
54                mySolidBrush, 50, 50, 150, 150)
55
56          Case 6 ' case filled ellipse is selected
57             myGraphics.FillEllipse( _
58                mySolidBrush, 50, 85, 150, 115)
59
60          Case 7 ' case filled pie is selected
61             myGraphics.FillPie( _
62                mySolidBrush, 50, 50, 150, 150, 0, 45)
63
64       End Select 
65
66    End Sub ' cboImage_SelectedIndexChanged
67
68 End Class ' FrmComboBox

Fig. 13.17 ComboBox used to draw a selected shape (part 2 of 3).



Chapter 13 Graphical User Interfaces Concepts: Part 2 549

After creating ComboBox cboImage (line 11), we make it uneditable by setting its
DropDownStyle to DropDownList in the Properties window. Next, we add items
Circle, Square, Ellipse, Pie, Filled Circle, Filled Square, Filled
Ellipse and Filled Pie to the Items collection using the String Collection
Editor. Whenever the user selects an item from cboImage, a SelectedIndex-
Changed event is generated. Event handler cboImage_SelectedIndexChanged
(lines 16–66) handles these events. Lines 22–28 create a Graphics object, a Pen and a
SolidBrush, which are used to draw on the form. The Graphics object (line 22)
allows a pen or brush to draw on a component using one of several Graphics methods.
The Pen object is used by methods drawEllipse, drawRectangle and drawPie
(lines 37, 40, 43 and 46) to draw the outlines of their corresponding shapes. The Solid-
Brush object is used by methods fillEllipse, fillRectangle and fillPie
(lines 49–50, 53–54, 57–58 and 61–62) to draw their corresponding solid shapes. Line 31
colors the entire form White, using Graphics method Clear. These methods are dis-
cussed in greater detail in Chapter 16, Graphics and Multimedia.

The application draws a particular shape on the basis of the selected item’s index. The
Select Case statement (lines 34–64) uses cboImage.SelectedIndex to deter-
mine which item the user selected. Class Graphics method DrawEllipse (line 37)
takes a Pen, the x- and y- coordinates of the center and the width and height of the ellipse
to draw. The origin of the coordinate system is in the upper-left corner of the form; the x-
coordinate increases to the right, and the y-coordinate increases downward. A circle is a
special case of an ellipse (the height and width are equal). Line 37 draws a circle. Line 43
draws an ellipse that has different values for height and width. 

Class Graphics method DrawRectangle (line 40) takes a Pen, the x- and y-
coordinates of the upper-left corner and the width and height of the rectangle to draw.
Method DrawPie (line 46) draws a pie as a portion of an ellipse. The ellipse is bounded
by a rectangle. Method DrawPie takes a Pen, the x- and y- coordinates of the upper-left
corner of the rectangle, its width and height, the start angle (in degrees) and the sweep angle
(in degrees) of the pie. Angles increase clockwise. The FillEllipse (lines 49–50 and
57–58), FillRectange (lines 53–54) and FillPie (lines 61–62) methods are similar
to their unfilled counterparts, except that they take a SolidBrush instead of a Pen. Some
of the drawn shapes are illustrated in the screen shots at the bottom of Fig. 13.17.

Fig. 13.17 ComboBox used to draw a selected shape (part 3 of 3).



550 Graphical User Interfaces Concepts: Part 2 Chapter 13

13.6 TreeViews
The TreeView control displays nodes hierarchically in a tree. Traditionally, nodes are ob-
jects that contain values and can refer to other nodes. A parent node contains child nodes,
and the child nodes can be parents to other nodes. Two child nodes that have the same par-
ent node are considered sibling nodes. A tree is a collection of nodes, usually organized in
hierarchical manner. The first parent node of a tree is the root node (a TreeView can have
multiple roots). For example, the file system of a computer can be represented as a tree. The
top-level directory (perhaps C:) would be the root, each subfolder of C: would be a child
node and each child folder could have its own children. TreeView controls are useful for
displaying hierarchal information, such as the file structure that we just mentioned. We
cover nodes and trees in greater detail in Chapter 24, Data Structures. Figure 13.18 displays
a sample TreeView control on a form.

A parent node can be expanded or collapsed by clicking the plus box or minus box to
its left. Nodes without children do not have these boxes. 

The nodes displayed in a TreeView are instances of class TreeNode. Each
TreeNode has a Nodes collection (type TreeNodeCollection), which contains a
list of other TreeNodes—its children. The Parent property returns a reference to the
parent node (or Nothing if the node is a root node). Figure 13.19 and Fig. 13.20 list the
common properties of TreeViews and TreeNodes, and a TreeView event.  

Fig. 13.18 TreeView displaying a sample tree.

TreeView
properties and events Description / Delegate and Event Arguments

Common Properties

CheckBoxes Indicates whether checkboxes appear next to nodes. A value of True
displays checkboxes. The default value is False.

Fig. 13.19 TreeView properties and events (part 1 of 2).

Click–to collapse node 
and hide child nodes

Click + to expand node 
and display child nodes

Root node

Child nodes (of 
Manager2)



Chapter 13 Graphical User Interfaces Concepts: Part 2 551

ImageList Specifies the ImageList containing the node icons. An Image-
List is a collection that contains Image objects.

Nodes Lists the collection of TreeNodes in the control. Contains methods 
Add (adds a TreeNode object), Clear (deletes the entire collec-
tion) and Remove (deletes a specific node). Removing a parent node 
deletes all its children.

SelectedNode The selected node.

Common Event (Delegate TreeViewEventHandler, event arguments 
TreeViewEventArgs)

AfterSelect Generated after selected node changes. This is the default event when 
the control is double-clicked in the designer.

TreeNode properties 
and methods Description / Delegate and Event Arguments

Common Properties

Checked Indicates whether the TreeNode is checked (CheckBoxes
property must be set to True in parent TreeView).

FirstNode Specifies the first node in the Nodes collection (i.e., first child in 
tree).

FullPath Indicates the path of the node, starting at the root of the tree.

ImageIndex Specifies the index of the image shown when the node is dese-
lected.

LastNode Specifies the last node in the Nodes collection (i.e., last child in 
tree).

NextNode Next sibling node.

Nodes The collection of TreeNodes contained in the current node (i.e., 
all the children of the current node). Contains methods Add (adds 
a TreeNode object), Clear (deletes the entire collection) and 
Remove (deletes a specific node). Removing a parent node deletes 
all its children.

PrevNode Indicates the previous sibling node.

SelectedImageIndex Specifies the index of the image to use when the node is selected.

Text Specifies the TreeView’s text.

Fig. 13.20 TreeNode properties and methods (part 1 of 2).

TreeView
properties and events Description / Delegate and Event Arguments

Fig. 13.19 TreeView properties and events (part 2 of 2).



552 Graphical User Interfaces Concepts: Part 2 Chapter 13

To add nodes to the TreeView visually, click the ellipsis by the Nodes property in
the Properties window. This opens the TreeNode Editor, which displays an empty tree
representing the TreeView (Fig. 13.21). There are buttons to create a root, to add or delete
a node, and to rename a node.

To add nodes programmatically, we first must create a root node. Create a new
TreeNode object and pass it a String to display. Then, call method Add to add this new
TreeNode to the TreeView’s Nodes collection. Thus, to add a root node to TreeView
myTreeView, write

myTreeView.Nodes.Add(New TreeNode(RootLabel))

where myTreeView is the TreeView to which we are adding nodes, and RootLabel is the
text to display in myTreeView. To add children to a root node, add new TreeNodes to its
Nodes collection. We select the appropriate root node from the TreeView by writing 

Common Methods

Collapse Collapses a node.

Expand Expands a node.

ExpandAll Expands all the children of a node.

GetNodeCount Returns the number of child nodes.

TreeNode properties 
and methods Description / Delegate and Event Arguments

Fig. 13.20 TreeNode properties and methods (part 2 of 2).

Fig. 13.21 TreeNode Editor.



Chapter 13 Graphical User Interfaces Concepts: Part 2 553

myTreeView.Nodes(myIndex)

where myIndex is the root node’s index in myTreeView’s Nodes collection. We add nodes
to child nodes through the same process by which we added root nodes to myTreeView. To
add a child to the root node at index myIndex, write

myTreeView.Nodes(myIndex).Nodes.Add(New TreeNode(ChildLabel))

Class FrmTreeViewDirectory (Fig. 13.22) uses a TreeView to display the
directory file structure on a computer. The root node is the C:\ drive, and each subfolder
of C:\ becomes a child. This layout is similar to that used in Windows Explorer. Folders
can be expanded or collapsed by clicking the plus or minus boxes that appear to their left. 

When FrmTreeViewDirectory loads, a Load event is generated, that is handled
by event handler FrmTreeViewDirectory_Load (lines 56–62). Line 60 adds a root
node (C:) to our TreeView, named treDirectory. C: is the root folder for the entire
directory structure. Line 61 calls method PopulateTreeView (lines 16–53), which
takes a directory (a String) and a parent node. Method PopulateTreeView then cre-
ates child nodes corresponding to the subdirectories of the directory that was passed to it.

Method PopulateTreeView (lines 16–53) obtains a list of subdirectories, using
method GetDirectories of class Directory (namespace System.IO) on lines
23–24. Method GetDirectories takes a String (the current directory) and returns an
array of Strings (the subdirectories). If a directory is not accessible for security reasons,
an UnauthorizedAccessException is thrown. Line 49 catches this exception and
adds a node containing “Access Denied” instead of displaying the subdirectories. 

1 ' Fig. 13.22: TreeViewDirectoryStructureTest.vb
2 ' Using TreeView to display directory structure.
3
4 Imports System.Windows.Forms
5 Imports System.IO
6
7 Public Class FrmTreeViewDirectory
8 Inherits Form
9

10   ' contains view of c:\ drive directory structure
11 Friend WithEvents treDirectory As TreeView
12
13    ' Visual Studio .NET generated code
14
15    ' add all subfolders of 'directoryValue' to 'parentNode'
16 Private Sub PopulateTreeView(ByVal directoryValue As String, _
17       ByVal parentNode As TreeNode)
18
19       ' populate current node with subdirectories
20       Try
21
22          ' get all subfolders
23          Dim directoryArray As String() = _
24             Directory.GetDirectories(directoryValue)

Fig. 13.22 TreeView used to display directories (part 1 of 3).



554 Graphical User Interfaces Concepts: Part 2 Chapter 13

25
26          If directoryArray.Length <> 0 Then ' if at least one
27
28             Dim currentDirectory As String
29
30             ' for every subdirectory, create new TreeNode, 
31             ' add as child of current node and
32             ' recursively populate child nodes with subdirectories
33             For Each currentDirectory In directoryArray
34
35                ' create TreeNode for current directory
36                Dim myNode As TreeNode = _
37                   New TreeNode(currentDirectory)
38
39                ' add current directory node to parent node
40                parentNode.Nodes.Add(myNode)
41
42                ' recursively populate every subdirectory 
43                PopulateTreeView(currentDirectory, myNode)
44             Next
45
46          End If
47
48       ' catch exception
49       Catch unauthorized As UnauthorizedAccessException
50          parentNode.Nodes.Add("Access Denied")
51       End Try
52
53 End Sub ' PopulateTreeView
54
55    ' called by system when form loads
56 Private Sub FrmTreeViewDirectory_Load(ByVal sender As Object, _
57       ByVal e As System.EventArgs) Handles MyBase.Load
58
59       ' add c:\ drive to treDirectory and insert its subfolders
60       treDirectory.Nodes.Add("C:")
61       PopulateTreeView("C:\", treDirectory.Nodes(0))
62 End Sub ' FrmTreeViewDirectory_Load
63
64 End Class ' FrmTreeViewDirectory

Fig. 13.22 TreeView used to display directories (part 2 of 3).



Chapter 13 Graphical User Interfaces Concepts: Part 2 555

If there are accessible subdirectories, each String in the directoryArray is used
to create a new child node (lines 36–37). We use method Add (line 40) to add each child
node to the parent. Then, method PopulateTreeView is called recursively on every
subdirectory (line 43) and eventually populates the entire directory structure. Our recursive
algorithm causes our program to have an initial delay when it loads—it must create a tree
for the entire C: drive. However, once the drive folder names are added to the appropriate
Nodes collection, they can be expanded and collapsed without delay. In the next section,
we present an alternate algorithm to solve this problem.

13.7 ListViews
The ListView control is similar to a ListBox in that both display lists from which the
user can select one or more items (to see an example of a ListView, look ahead to the
output of Fig. 13.25). The important difference between the two classes is that a List-
View can display icons alongside the list items in a variety of ways (controlled by its Im-
ageList property). Property MultiSelect (a boolean) determines whether multiple
items can be selected. Checkboxes can be included by setting property CheckBoxes (a
Boolean) to True, making the ListView’s appearance similar to that of a
CheckedListBox. The View property specifies the layout of the ListBox. Property
Activation determines the method by which the user selects a list item. The details of
these properties are explained in Fig. 13.23.

ListView allows the programmer to define the images used as icons for ListView
items. To display images, an ImageList component is required. Create one by dragging
it onto a form from the ToolBox. Then, click the Images collection in the Properties
window to display the Image Collection Editor (Fig. 13.24). Here, developers can
browse for images that they wish to add to the ImageList, which contains an array of
Images. Once the images have been defined, set property SmallImageList of the
ListView to the new ImageList object. Property SmallImageList specifies the
image list for the small icons. Property LargeImageList sets the ImageList for large
icons. Icons for the ListView items are selected by setting the item’s ImageIndex
property to the appropriate index.

Fig. 13.22 TreeView used to display directories (part 3 of 3).



556 Graphical User Interfaces Concepts: Part 2 Chapter 13

ListView events 
and properties Description / Delegate and Event Arguments

Common Properties

Activation Determines how the user activates an item. This property takes a value 
in the ItemActivation enumeration. Possible values are 
OneClick (single-click activation), TwoClick (double-click activa-
tion, item changes color when selected) and Standard (double-click 
activation).

CheckBoxes Indicates whether items appear with checkboxes. True displays check-
boxes. False is the default.

LargeImageList Specifies the ImageList containing large icons for display.

Items Returns the collection of ListViewItems in the control.

MultiSelect Determines whether multiple selection is allowed. Default is True,
which enables multiple selection.

SelectedItems Lists the collection of selected items.

SmallImageList Specifies the ImageList containing small icons for display.

View Determines appearance of ListViewItems. Values LargeIcon
(large icon displayed, items can be in multiple columns), SmallIcon
(small icon displayed), List (small icons displayed, items appear in a 
single column) and Details (like List, but multiple columns of 
information can be displayed per item).

Common Event (Delegate EventHandler, event arguments EventArgs)

ItemActivate Raised when an item in the ListView is activated. Does not contain 
the specifics of which item is activated.

Fig. 13.23 ListView properties and events.

Fig. 13.24 Image Collection Editor window for an ImageList component.



Chapter 13 Graphical User Interfaces Concepts: Part 2 557

Class FrmListView (Fig. 13.25) displays files and folders in a ListView, along
with small icons representing each file or folder. If a file or folder is inaccessible because
of permission settings, a message box appears. The program scans the contents of the direc-
tory as it browses, rather than indexing the entire drive at once.

To display icons beside list items, we must create an ImageList for the ListView
lvwBrowser (line 15). First, drag and drop an ImageList onto the form and open the
Image Collection Editor. Create two simple bitmap images—one for a folder (array
index 0) and another for a file (array index 1). Then, set the object lvwBrowser property
SmallImageList to the new ImageList in the Properties window. Developers can
create such icons with any image software, such as Adobe® Photoshop™, Jasc® Paint
Shop Pro™ or Microsoft® Paint. 

1 ' Fig. 13.25: ListViewTest.vb
2 ' Displaying directories and their contents in ListView.
3
4 Imports System.Windows.Forms
5 Imports System.IO
6
7 Public Class FrmListView
8 Inherits Form
9

10    ' display labels for current location in directory tree
11 Friend WithEvents lblCurrent As Label
12 Friend WithEvents lblDisplay As Label
13
14    ' displays contents of current directory
15 Friend WithEvents lvwBrowser As ListView
16
17    ' specifies images for file icons and folder icons
18 Friend WithEvents ilsFileFolder As ImageList
19
20    ' Visual Studio .NET generated code
21
22    ' get current directory
23 Dim currentDirectory As String = _
24       Directory.GetCurrentDirectory()
25
26    ' browse directory user clicked or go up one level
27 Private Sub lvwBrowser_Click(ByVal sender As System.Object, _
28       ByVal e As System.EventArgs) Handles lvwBrowser.Click
29
30       ' ensure item selected
31       If lvwBrowser.SelectedItems.Count <> 0 Then
32
33          ' if first item selected, go up one level 
34          If lvwBrowser.Items(0).Selected Then
35
36             ' create DirectoryInfo object for directory
37             Dim directoryObject As DirectoryInfo = _
38                New DirectoryInfo(currentDirectory)

Fig. 13.25 ListView displaying files and folders (part 1 of 4).



558 Graphical User Interfaces Concepts: Part 2 Chapter 13

39
40             ' if directory has parent, load it
41             If Not (directoryObject.Parent Is Nothing) Then
42                LoadFilesInDirectory( _
43                   directoryObject.Parent.FullName)
44             End If
45
46          ' selected directory or file
47          Else
48
49             ' directory or file chosen
50             Dim chosen As String = _
51                lvwBrowser.SelectedItems(0).Text
52
53             ' if item selected is directory 
54             If Directory.Exists(currentDirectory & _
55                "\" & chosen) Then
56
57                ' load subdirectory
58                ' if in c:\, do not need "\", otherwise we do
59                If currentDirectory = "C:\" Then
60                   LoadFilesInDirectory(currentDirectory & chosen)
61                Else
62                   LoadFilesInDirectory(currentDirectory & _
63                      "\" & chosen)
64                End If
65
66             End If
67
68          End If
69
70          ' update lblDisplay
71          lblDisplay.Text = currentDirectory
72       End If
73
74 End Sub ' lvwBrowser_Click
75
76    ' display files/subdirectories of current directory
77 Public Sub LoadFilesInDirectory( _
78       ByVal currentDirectoryValue As String)
79
80       ' load directory information and display
81       Try
82
83          ' clear ListView and set first item
84          lvwBrowser.Items.Clear()
85          lvwBrowser.Items.Add("Go Up One Level")
86
87          ' update current directory
88          currentDirectory = currentDirectoryValue
89          Dim newCurrentDirectory As DirectoryInfo = _
90             New DirectoryInfo(currentDirectory)
91

Fig. 13.25 ListView displaying files and folders (part 2 of 4).



Chapter 13 Graphical User Interfaces Concepts: Part 2 559

92          ' put files and directories into arrays
93          Dim directoryArray As DirectoryInfo() = _
94             newCurrentDirectory.GetDirectories()
95
96          Dim fileArray As FileInfo() = _
97             newCurrentDirectory.GetFiles()
98
99          ' add directory names to ListView
100          Dim dir As DirectoryInfo
101
102          For Each dir In directoryArray
103
104             ' add directory to listview
105             Dim newDirectoryItem As ListViewItem = _
106                lvwBrowser.Items.Add(dir.Name)
107
108             ' set directory image
109             newDirectoryItem.ImageIndex = 0
110          Next
111
112          ' add file names to ListView
113          Dim file As FileInfo
114
115          For Each file In fileArray
116
117             ' add file to ListView
118             Dim newFileItem As ListViewItem = _
119                lvwBrowser.Items.Add(file.Name)
120
121             newFileItem.ImageIndex = 1    ' set file image
122          Next
123
124       ' access denied
125       Catch exception As UnauthorizedAccessException 
126          MessageBox.Show("Warning: Some files may " & _
127             "not be visible due to permission settings", _
128             "Attention", 0, MessageBoxIcon.Warning)
129       End Try
130
131 End Sub ' LoadFilesInDirectory
132
133    ' handle load event when Form displayed for first time
134 Private Sub FrmListView_Load(ByVal sender As System.Object, _
135       ByVal e As System.EventArgs) Handles MyBase.Load
136
137       ' set image list
138       Dim folderImage As Image = Image.FromFile _
139          (currentDirectory & "\images\folder.bmp")
140
141       Dim fileImage As Image = Image.FromFile _
142          (currentDirectory & "\images\file.bmp")
143
144       ilsFileFolder.Images.Add(folderImage)

Fig. 13.25 ListView displaying files and folders (part 3 of 4).



560 Graphical User Interfaces Concepts: Part 2 Chapter 13

145       ilsFileFolder.Images.Add(fileImage)
146
147       ' load current directory into browserListView
148       LoadFilesInDirectory(currentDirectory)
149       lblDisplay.Text = currentDirectory
150 End Sub ' FrmListView_Load
151
152 End Class ' FrmListView

Fig. 13.25 ListView displaying files and folders (part 4 of 4).



Chapter 13 Graphical User Interfaces Concepts: Part 2 561

Method LoadFilesInDirectory (lines 77–131) populates lvwBrowser with the
directory passed to it (currentDirectoryValue). It clears lvwBrowser and adds the
element "Go Up One Level". When the user clicks this element, the program attempts to
move up one level (we see how shortly). The method then creates a DirectoryInfo object
initialized with the String currentDirectory (lines 89–90). If permission is not given
to browse the directory, an exception is thrown (caught on line 125). Method LoadFiles-
InDirectory works differently from method PopulateTreeView in the previous pro-
gram (Fig. 13.22). Instead of loading all the folders in the entire hard drive, method
LoadFilesInDirectory loads only the folders in the current directory.

Class DirectoryInfo (namespace System.IO) enables us to browse or manipu-
late the directory structure easily. Method GetDirectories (lines 93–94) returns an
array of DirectoryInfo objects containing the subdirectories of the current directory.
Similarly, method GetFiles (lines 96–97) returns an array of class FileInfo objects
containing the files in the current directory. Property Name (of both class Directory-
Info and class FileInfo) contains only the directory or file name, such as temp instead
of C:\myfolder\temp. To access the full name, use property FullName.

Lines 102–110 and lines 115–122 iterate through the subdirectories and files of the
current directory and add them to lvwBrowser. Lines 109 and 121 set the ImageIndex
properties of the newly created items. If an item is a directory, we set its icon to a directory
icon (index 0); if an item is a file, we set its icon to a file icon (index 1).

Method lvwBrowser_Click (lines 27–74) responds when the user clicks control
lvwBrowser. Line 31 checks whether anything is selected. If a selection has been made,
line 34 determines whether the user chose the first item in lvwBrowser. The first item in
lvwBrowser is always Go up one level; if it is selected, the program attempts to go up
a level. Lines 37–38 create a DirectoryInfo object for the current directory. Line 41
tests property Parent to ensure that the user is not at the root of the directory tree. Prop-
erty Parent indicates the parent directory as a DirectoryInfo object; if it exists
Parent returns the value Nothing. If a parent directory exists, then lines 42–43 pass the
full name of the parent directory to method LoadFilesInDirectory.

If the user did not select the first item in lvwBrowser, lines 47–68 allow the user to
continue navigating through the directory structure. Lines 50–51 create String chosen,
which receives the text of the selected item (the first item in collection SelectedItems).
Lines 54–55 determine whether the user has selected a valid directory (rather than a file).
The program combines variables currentDirectory and chosen (the new direc-
tory), separated by a slash (\), and passes this value to class Directory’s method
Exists. Method Exists returns True if its String parameter is a directory. If this
occurs, the program passes the String to method LoadFilesInDirectory. Because
the C:\ directory already includes a slash, a slash is not needed when combining cur-
rentDirectory and chosen (line 60). However, other directories must include the
slash (lines 62–63). Finally, lblDisplay is updated with the new directory (line 71).

This program loads quickly, because it indexes only the files in the current directory.
This means that, rather than having a large delay in the beginning, a small delay occurs
whenever a new directory is loaded. In addition, changes in the directory structure can be
shown by reloading a directory. The previous program (Fig. 13.22) needs to be restarted to
reflect any changes in the directory structure. This type of trade-off is typical in the soft-
ware world. When designing applications that run for long periods of time, developers



562 Graphical User Interfaces Concepts: Part 2 Chapter 13

might choose a large initial delay to improve performance throughout the rest of the pro-
gram. However, when creating applications that run for only short periods of time, devel-
opers often prefer fast initial loading times and a small delay after each action.

13.8 Tab Control
The TabControl control creates tabbed windows, such as the ones we have seen in the
Visual Studio .NET IDE (Fig. 13.26). This allows the programmer to specify more infor-
mation in the same space on a form, such as in the items of the Windows Control Panel.

TabControls contain TabPage objects, which are similar to Panels and Group-
Boxes in that TabPages also can contain controls. The programmer first adds controls to
the TabPage objects, then adds the TabPages to the TabControl. Only one TabPage
is displayed at a time. To add objects to the TabPage and the TabControl, write

myTabPage.Controls.Add(myControl)
myTabControl.Controls.Add(myTabPage)

These statements call method Add of the Controls collection. The example adds Tab-
Control myControl to TabPage myTabPage, then adds myTabPage to myTabControl.
Alternatively, we can use method AddRange to add an array of TabPages and an array
of controls to TabControl and TabPage instances, respectively. Figure 13.27 depicts a
sample TabControl.

Fig. 13.26 Tabbed windows in Visual Studio .NET.

Tab Windows



Chapter 13 Graphical User Interfaces Concepts: Part 2 563

Programmers can add TabControls visually by dragging and dropping them onto a
form in design mode. To add TabPages in the Visual Studio .NET designer, right-click
the TabControl, and select Add Tab (Fig. 13.28). Alternatively, click the TabPages
collection in the Properties window, and add tabs in the dialog that appears. To change a
tab label, set the Text property of the TabPage. Note that clicking the tabs selects the
TabControl—to select the TabPage, click the control area underneath the tabs. The
programmer can add controls to the TabPage by dragging and dropping items from the
ToolBox. To view different TabPages, click the appropriate tab (in either design or run
mode). Common properties and events of TabControls are described in Fig. 13.28. 

Each TabPage raises its own Click event when its tab is clicked. Remember, events
for controls can be handled by any event handler that is registered with the control’s event
delegate. This also applies to controls contained in a TabPage. For convenience, Visual
Studio .NET generates the empty event handlers for these controls.

Class FrmTabs (Fig. 13.30) uses a TabControl to display various options relating
to the text on a label (Color, Size and Message). The last TabPage displays an About
message, which describes the use of TabControls.

Fig. 13.27 TabControl with TabPages example.

Fig. 13.28 TabPages added to a TabControl.

TabPage

Controls in TabPage

TabControl



564 Graphical User Interfaces Concepts: Part 2 Chapter 13

TabControl properties 
and events Description / Delegate and Event Arguments

Common Properties

ImageList Specifies images to be displayed on tabs.

ItemSize Specifies tab size.

MultiLine Indicates whether multiple rows of tabs can be displayed.

SelectedIndex Index of selected TabPage.

SelectedTab The selected TabPage.

TabCount Returns the number of tab pages.

TabPages Collection of TabPages within the TabControl.

Common Event (Delegate EventHandler, event arguments EventArgs)

SelectedIndexChanged Generated when SelectedIndex changes (i.e., another 
TabPage is selected).

Fig. 13.29 TabControl properties and events.

1 ' Fig. 13.30: UsingTabs.vb
2 ' Using TabControl to display various font settings.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmTabs
7 Inherits Form
8
9    ' output label reflects text changes

10 Friend WithEvents lblDisplay As Label   
11
12    ' table control containing table pages tbpColor,
13    ' tbpSize, tbpMessage and tbpAbout
14 Friend WithEvents tbcTextOptions As TabControl
15
16    ' table page containing color options
17 Friend WithEvents tbpColor As TabPage
18 Friend WithEvents radBlack As RadioButton
19 Friend WithEvents radRed As RadioButton
20 Friend WithEvents radGreen As RadioButton
21
22    ' table page containing font size options
23 Friend WithEvents tbpSize As TabPage
24 Friend WithEvents radSize12 As RadioButton
25 Friend WithEvents radSize16 As RadioButton
26 Friend WithEvents radSize20 As RadioButton
27
28    ' table page containing text display options
29 Friend WithEvents tbpMessage As TabPage

Fig. 13.30 TabControl used to display various font settings (part 1 of 3).



Chapter 13 Graphical User Interfaces Concepts: Part 2 565

30 Friend WithEvents radHello As RadioButton
31 Friend WithEvents radGoodbye As RadioButton
32
33    ' table page containing about message
34 Friend WithEvents tbpAbout As TabPage
35 Friend WithEvents lblMessage As Label
36
37    ' Visual Studio .NET generated code
38
39    ' event handler for black radio button
40 Private Sub radBlack_CheckedChanged( _
41       ByVal sender As System.Object, ByVal e As System.EventArgs) _
42       Handles radBlack.CheckedChanged
43
44       lblDisplay.ForeColor = Color.Black
45 End Sub ' radBlack_CheckedChanged
46
47    ' event handler for red radio button
48 Private Sub radRed_CheckedChanged( _
49       ByVal sender As System.Object, ByVal e As System.EventArgs) _
50       Handles radRed.CheckedChanged
51
52       lblDisplay.ForeColor = Color.Red
53 End Sub ' radRed_CheckedChanged
54
55    ' event handler for green radio button
56 Private Sub radGreen_CheckedChanged( _
57       ByVal sender As System.Object, ByVal e As System.EventArgs) _
58       Handles radGreen.CheckedChanged
59
60       lblDisplay.ForeColor = Color.Green
61 End Sub ' radGreen_CheckedChanged
62
63    ' event handler for size 12 radio button
64 Private Sub radSize12_CheckedChanged( _
65       ByVal sender As System.Object, ByVal e As System.EventArgs) _
66       Handles radSize12.CheckedChanged
67
68       lblDisplay.Font = New Font(lblDisplay.Font.Name, 12)
69 End Sub ' radSize12_CheckedChanged
70
71    ' event handler for size 16 radio button
72 Private Sub radSize16_CheckedChanged( _
73       ByVal sender As System.Object, ByVal e As System.EventArgs) _
74       Handles radSize16.CheckedChanged
75
76       lblDisplay.Font = New Font(lblDisplay.Font.Name, 16)
77 End Sub ' radSize16_CheckedChanged
78
79    ' event handler for size 20 radio button
80 Private Sub radSize20_CheckedChanged( _
81       ByVal sender As System.Object, ByVal e As System.EventArgs) _
82       Handles radSize20.CheckedChanged

Fig. 13.30 TabControl used to display various font settings (part 2 of 3).



566 Graphical User Interfaces Concepts: Part 2 Chapter 13

The TabControl tbcTextOptions (line 14) and TabPages tbpColor (line
17), tbpSize (line 23), tbpMessage (line 29) and tbpAbout (line 34) are created in
the designer (as described previously). TabPage tbpColor contains three radio buttons
for the colors black (radBlack, line 18), red (radRed, line 19) and green (radGreen,

83
84       lblDisplay.Font = New Font(lblDisplay.Font.Name, 20)
85 End Sub ' radSize20_CheckedChanged
86
87    ' event handler for message "Hello!" radio button
88 Private Sub radHello_CheckedChanged( _
89       ByVal sender As System.Object, ByVal e As System.EventArgs) _
90       Handles radHello.CheckedChanged
91
92       lblDisplay.Text = "Hello!"
93 End Sub ' radHello_CheckedChanged
94
95    ' event handler for message "Goodbye!" radio button
96 Private Sub radGoodbye_CheckedChanged( _
97       ByVal sender As System.Object, ByVal e As System.EventArgs) _
98       Handles radGoodbye.CheckedChanged
99
100       lblDisplay.Text = "Goodbye!"
101 End Sub ' radGoodbye_CheckedChanged
102
103 End Class ' FrmTabs

Fig. 13.30 TabControl used to display various font settings (part 3 of 3).



Chapter 13 Graphical User Interfaces Concepts: Part 2 567

line 20). The CheckChanged event handler for each button updates the color of the text
in lblDisplay (lines 44, 52 and 60). TabPage tbpSize has three radio buttons, cor-
responding to font sizes 12 (radSize12, line 24), 16 (radSize16, line 25) and 20
(radSize20, line 26), which change the font size of lblDisplay—lines 68, 76 and 84,
respectively. TabPage tbpMessage contains two radio buttons for the messages Hello!
(radHello, line 30) and Goodbye! (radGoodbye, line 31). The two radio buttons
determine the text on lblDisplay (lines 92 and 100, respectively). The last TabPage
(tbpAbout, line 34) contains a Label (lblMessage, line 35) describing the purpose
of TabControls.

Software Engineering Observation 13.2
A TabPage can act as a container for a single logical group of radio buttons and enforces
their mutual exclusivity. To place multiple radio-button groups inside a single TabPage,
programmers should group radio buttons within Panels or GroupBoxes contained within
the TabPage. 13.2

13.9 Multiple-Document-Interface (MDI) Windows
In previous chapters, we have built only single-document-interface (SDI) applications.
Such programs (including Notepad or Paint) can support only one open window or docu-
ment at a time. SDI applications usually have contracted abilities—Paint and Notepad, for
example, have limited image- and text-editing features. To edit multiple documents, the
user must create another instance of the SDI application.

Multiple document interface (MDI) programs (such as PaintShop Pro or Adobe Pho-
toshop) enable users to edit multiple documents at once. MDI programs also tend to be
more complex—PaintShop Pro and Photoshop have a greater number of image-editing
features than does Paint. Until now, we had not mentioned that the applications we cre-
ated were SDI applications. We define this here to emphasize the distinction between the
two types of programs.

The application window of an MDI program is called the parent window, and each
window inside the application is referred to as a child window. Although an MDI applica-
tion can have many child windows, each has only one parent window. Furthermore, a max-
imum of one child window can be active at once. Child windows cannot be parents
themselves and cannot be moved outside their parent. Otherwise, a child window behaves
like any other window (with regard to closing, minimizing, resizing etc.). A child window’s
functionality can be different from the functionality of other child windows of the parent.
For example, one child window might edit images, another might edit text and a third might
display network traffic graphically, but all could belong to the same MDI parent.
Figure 13.31 depicts a sample MDI application. 

To create an MDI form, create a new Form and set its IsMDIContainer property
to True. The form changes appearance, as in Fig. 13.32.

Next, create a child form class to be added to the form. To do this, right-click the
project in the Solution Explorer, select Add Windows Form... and name the file. To
add the child form to the parent, we must create a new child form object, set its Mdi-
Parent property to the parent form and call method Show. In general, to add a child form
to a parent, write



568 Graphical User Interfaces Concepts: Part 2 Chapter 13

Dim frmChild As New ChildFormClass()
frmChild.MdiParent = frmParent
frmChild.Show()

In most cases, the parent form creates the child so that the frmParent reference is Me.
The code to create a child usually lies inside an event handler, which creates a new window
in response to a user action. Menu selections (such as File followed by a submenu option
of New followed by a submenu option of Window) are common methods of creating new
child windows.

Class Form property MdiChildren returns an array of child Form references. This
is useful if the parent window wants to check the status of all its children (such as to ensure
that all are saved before the parent closes). Property ActiveMdiChild returns a refer-
ence to the active child window; it returns Nothing if there are no active child windows.
Other features of MDI windows are described in Fig. 13.33.  

Fig. 13.31 MDI parent window and MDI child windows.

Fig. 13.32 SDI and MDI forms.

MDI parent

MDI child

MDI child

Single Document Interface (SDI) Multiple Document Interface (MDI)



Chapter 13 Graphical User Interfaces Concepts: Part 2 569

Child windows can be minimized, maximized and closed independently of each other
and of the parent window. Figure 13.34 shows two images, one containing two minimized
child windows and a second containing a maximized child window. When the parent is min-
imized or closed, the child windows are minimized or closed as well. Notice that the title bar
in the second image of Fig. 13.34 is Parent Window - [Child]. When a child window is
maximized, its title bar is inserted into the parent window’s title bar. When a child window is
minimized or maximized, its title bar displays a restore icon, which can be used to return the
child window to its previous size (its size before it was minimized or maximized).

The parent and child forms can have different menus, which are merged whenever a
child window is selected. To specify how the menus merge, programmers can set the Mer-
geOrder and the MergeType properties for each MenuItem (see Fig. 13.4). Mer-
geOrder determines the order in which MenuItems appear when two menus are merged.
MenuItems with a lower MergeOrder value appear first. For example, if Menu1 has
items File, Edit and Window (and their orders are 0, 10 and 20) and Menu2 has items
Format and View (and their orders are 7 and 15), then the merged menu contains menu
items File, Format, Edit, View and Window, in that order.

Each MenuItem instance has its own MergeOrder property. It it likely that, at some
point in an application, two MenuItems with the same MergeOrder value will merge.
Property MergeType resolves this conflict by determining the order in which the two
menus are displayed. 

MDI Form events and 
properties Description / Delegate and Event Arguments

Common MDI Child Properties

IsMdiChild Indicates whether the Form is an MDI child. If True, Form is an 
MDI child (read-only property).

MdiParent Specifies the MDI parent Form of the child.

Common MDI Parent Properties

ActiveMdiChild Returns the Form that is the currently active MDI child (returns 
Nothing if no children are active).

IsMdiContainer Indicates whether a Form can be an MDI parent. If True, the Form
can be an MDI parent. The default value is False.

MdiChildren Returns the MDI children as an array of Forms.

Common Method

LayoutMdi Determines the display of child forms on an MDI parent. Takes as a 
parameter an MdiLayout enumeration with possible values 
ArrangeIcons, Cascade, TileHorizontal and TileVer-
tical. Figure 13.36 depicts the effects of these values.

Common Event (Delegate EventHandler, event arguments EventArgs)

MdiChildActivate Generated when an MDI child is closed or activated.

Fig. 13.33 MDI parent and MDI child events and properties.



570 Graphical User Interfaces Concepts: Part 2 Chapter 13

The MergeType property takes a MenuMerge enumeration value and determines
which menu items are displayed when two menus are merged. A menu item with value Add
is added to its parent’s menu as a new menu on the menu bar (the parent’s menu items come
first). If a child form’s menu item has value Replace, it attempts to take the place of its
parent form’s corresponding menu item during merging. A menu with value MergeItems
combines its items with that of its parent’s corresponding menu (if parent and child menus
originally occupy the same space, their submenus are combined as one menu). A child’s
menu item with value Remove disappears when the menu is merged with that of its parent. 

Value MergeItems acts passively—if the parent’s menu has a MergeType that is
different from the child menu’s MergeType, the child’s menu setting determines the out-
come of the merge. When the child window is closed, the parent’s original menu is restored.

Software Engineering Observation 13.3
Set the parent’s menu items’ MergeType property to value MergeItems. This allows
the child window to add most menu items according to its own settings. Parent menu items
that must remain should have value Add, and those that must be removed should have val-
ue Remove. 13.3

Visual Basic .NET provides a property that facilitates the tracking of which child win-
dows are opened in an MDI container. Property MdiList (a Boolean) of class Menu-
Item determines whether a MenuItem displays a list of open child windows. The list
appears at the bottom of the menu following a separator bar (first screen in Figure 13.35).
When a new child window is opened, an entry is added to the list. If nine or more child win-
dows are open, the list includes the option More Windows..., which allows the user to
select a window from a list, using a scrollbar. Multiple MenuItems can have their
MdiList property set; each displays a list of open child windows.

Good Programming Practice 13.1
When creating MDI applications, include a menu item with its MdiList property set to
True. This helps the user select a child window quickly, rather than having to search for it
in the parent window. 13.1

Fig. 13.34 Minimized and maximized child windows.

Parent window icons: 
minimize, maximize and close

Maximized child window icons: 
minimize, restore and close

Minimized child window icons: 
restore, maximize and close

Parent title bar indicates 
maximized child



Chapter 13 Graphical User Interfaces Concepts: Part 2 571

MDI containers allow developers to organize the placement of child windows. The
child windows in an MDI application can be arranged by calling method LayoutMdi of
the parent form. Method LayoutMdi takes a LayoutMdi enumeration, which can have
values ArrangeIcons, Cascade, TileHorizontal and TileVertical. Tiled
windows completely fill the parent and do not overlap; such windows can be arranged hor-
izontally (value TileHorizontal) or vertically (value TileVertical). Cascaded
windows (value Cascade) overlap—each is the same size and displays a visible title bar,
if possible. Value ArrangeIcons arranges the icons for any minimized child windows.
If minimized windows are scattered around the parent window, value ArrangeIcons
orders them neatly at the bottom-left corner of the parent window. Figure 13.36 illustrates
the values of the LayoutMdi enumeration.

Class FrmUsingMDI (Fig. 13.37) demonstrates the use of MDI windows. Class
FrmUsingMDI uses three instances of child form FrmChild (Fig. 13.38), each con-
taining a PictureBox that displays an image. The parent MDI form contains a menu
enabling users to create and arrange child forms. 

Fig. 13.35 MenuItem property MdiList example.

Separator bar 

9 or more child 
windows enables the 
More Windows... option

Child windows list 



572 Graphical User Interfaces Concepts: Part 2 Chapter 13

Fig. 13.36 LayoutMdi enumeration values.

1 ' Fig. 13.37: UsingMDI.vb
2 ' Demonstrating use of MDI parent and child windows.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmUsingMDI
7 Inherits Form
8
9    ' main menu containing menu items File and Window

10 Friend WithEvents mnuMain As MainMenu
11
12    ' menu containing submenu New and menu item Exit
13 Friend WithEvents mnuitmFile As MenuItem
14 Friend WithEvents mnuitmExit As MenuItem
15

Fig. 13.37 MDI parent-window class (part 1 of 4).

ArrangeIcons Cascade

TileHorizontal TileVertical



Chapter 13 Graphical User Interfaces Concepts: Part 2 573

16    ' submenu New
17 Friend WithEvents mnuitmNew As MenuItem
18 Friend WithEvents mnuitmChild1 As MenuItem
19 Friend WithEvents mnuitmChild2 As MenuItem
20 Friend WithEvents mnuitmChild3 As MenuItem
21
22    ' menu containing menu items Cascade, TileHorizontal and 
23    ' TileVertical
24 Friend WithEvents mnuitmWindow As MenuItem
25 Friend WithEvents mnuitmCascade As MenuItem
26 Friend WithEvents mnuitmTileHorizontal As MenuItem
27 Friend WithEvents mnuitmTileVertical As MenuItem
28
29  ' Visual Studio .NET generated code
30
31    ' create Child1 when menu clicked
32 Private Sub mnuitmChild1_Click( _ 
33       ByVal sender As System.Object, _
34       ByVal e As System.EventArgs) Handles mnuitmChild1.Click
35
36       ' create image path
37       Dim imagePath As String = _
38          Directory.GetCurrentDirectory() & "\images\image0.jpg"
39
40       ' create new child
41       childWindow = New FrmChild(imagePath, "Child1")
42       childWindow.MdiParent = Me ' set parent
43       childWindow.Show()          ' display child
44 End Sub ' mnuitmChild1_Click
45
46    ' create Child2 when menu clicked
47 Private Sub mnuitmChild2_Click( _
48       ByVal sender As System.Object, _
49       ByVal e As System.EventArgs) Handles mnuitmChild2.Click
50
51      ' create image path
52       Dim imagePath As String = _
53          Directory.GetCurrentDirectory() & "\images\image1.jpg"
54
55       ' create new child
56       childWindow = New FrmChild(imagePath, "Child2")
57       childWindow.MdiParent = Me ' set parent
58       childWindow.Show()          ' display child
59 End Sub ' mnuitmChild2_Click
60
61    ' create Child3 when menu clicked
62 Private Sub mnuitmChild3_Click( _
63       ByVal sender As System.Object, _
64       ByVal e As System.EventArgs) Handles mnuitmChild3.Click
65
66       ' create image path
67       Dim imagePath As String = _
68          Directory.GetCurrentDirectory() & "\images\image2.jpg"

Fig. 13.37 MDI parent-window class (part 2 of 4).



574 Graphical User Interfaces Concepts: Part 2 Chapter 13

69
70       ' create new child
71       childWindow = New FrmChild(imagePath, "Child3")
72       childWindow.MdiParent = Me  ' set parent
73       childWindow.Show()          ' display child
74 End Sub ' mnuitmChild3_Click
75
76    ' exit application
77 Private Sub mnuitmExit_Click(ByVal sender As System.Object, _
78       ByVal e As System.EventArgs) Handles mnuitmExit.Click
79
80       Application.Exit()
81 End Sub ' mnuitmExit_Click
82
83    ' set cascade layout
84 Private Sub mnuitmCascade_Click(ByVal sender As System.Object, _
85       ByVal e As System.EventArgs) Handles mnuitmCascade.Click
86
87       Me.LayoutMdi(MdiLayout.Cascade)
88 End Sub ' mnuitmCascade_Click
89
90    ' set TileHorizontal layout
91 Private Sub mnuitmTileHorizontal_Click( _
92       ByVal sender As System.Object, ByVal e As System.EventArgs) _ 
93       Handles mnuitmTileHorizontal.Click
94
95       Me.LayoutMdi(MdiLayout.TileHorizontal)
96 End Sub ' mnuitmTileHorizontal_Click
97
98    ' set TileVertical layout
99 Private Sub mnuitmTileVertical_Click( _
100       ByVal sender As System.Object, _ 
101       ByVal e As System.EventArgs) Handles mnuitmTileVertical.Click
102
103       Me.LayoutMdi(MdiLayout.TileVertical)
104 End Sub ' mnuitmTileVertical_Click
105
106 End Class ' FrmUsingMDI

Fig. 13.37 MDI parent-window class (part 3 of 4).



Chapter 13 Graphical User Interfaces Concepts: Part 2 575

The program in Fig. 13.37 is the application. The MDI parent form, which is created
first, contains two top-level menus. The first of these menus, File (mnuitmFile, line 13),
contains both an Exit item (mnuitmExit, line 14) and a New submenu (mnuitmNew,
line 17) consisting of items for each child window. The second menu, Window (mnuit-
mWindow, line 24), provides options for laying out the MDI children, plus a list of the
active MDI children. 

1 ' Fig. 13.38: Child.vb
2 ' A child window of the MDI parent.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmChild
7 Inherits Form
8
9    ' contains image loaded from disk

10 Friend WithEvents picDisplay As PictureBox
11
12    ' Visual Studio .NET generated code
13
14    ' constructor
15 Public Sub New(ByVal picture As String, _
16       ByVal name As String)
17
18       ' call Visual Studio generated default constructor
19       Me.New()
20
21       ' set title
22       Me.Text = name
23

Fig. 13.38 MDI child FrmChild (part 1 of 2).

Fig. 13.37 MDI parent-window class (part 4 of 4).



576 Graphical User Interfaces Concepts: Part 2 Chapter 13

In the Properties window, we set the Form’s IsMdiContainer property to True,
making the Form an MDI parent. In addition, we set the mnuitmWindow MdiList prop-
erty to True. This enables mnuitmWindow to contain the list of child MDI windows. 

The Cascade menu item (mnuitmCascade, line 25) has an event handler
(mnuitmCascade_Click, lines 84–88) that arranges the child windows in a cascading
manner. The event handler calls method LayoutMdi with the argument Cascade from
the MdiLayout enumeration (line 87). 

The Tile Horizontal menu item (mnuitmTileHorizontal, line 26) has an event
handler (mnuitmTileHorizontal_Click, lines 91–96) that arranges the child win-
dows in a horizontal manner. The event handler calls method LayoutMdi with the argu-
ment TileHorizontal from the MdiLayout enumeration (line 95). 

Finally, the Tile Vertical menu item (mnuitmTileVertical, line 27) has an
event handler (mnuitmTileVertical_Click, lines 99–104) that arranges the child
windows in a vertical manner. The event handler calls method LayoutMdi with the argu-
ment TileVertical from the MdiLayout enumeration (line 103).

At this point the application is still incomplete—we must define the MDI child class. To
do this, right-click the project in the Solution Explorer and select Add, then Add Win-
dows Form.... Then, name the new class in the dialog as FrmChild (Fig. 13.38). Next, we
add a PictureBox (picDisplay, line 10) to form FrmChild. We override the con-
structor generated by Visual Studio. Line 19 calls the default Visual Studio generated con-
structor to allow the form and all of its components to initialize. Line 22 sets the title bar text.
Line 25 sets FrmChild’s Image property to an Image, using method FromFile. Method
FromFile takes as a String argument the path of the image to load. 

After the MDI child class is defined, the parent MDI form (Fig. 13.37) can create new
instances of them. The event handlers in lines 32–74 create a new child form corresponding
to the menu item clicked. Each event handler creates a String representing the image file
path each FrmChild displays (lines 37–38, 52–53 and 67–68). Lines 41, 56 and 71 create
new instances of FrmChild. Lines 42, 57 and 72 sets each FrmChild’s MdiParent
property to the parent form. Lines 43, 58 and 73 call method Show to display each child form.

13.10 Visual Inheritance
In Chapter 9, Object-Oriented Programming: Inheritance, we discuss how to create classes
by inheriting from other classes. In Visual Basic, we also can use inheritance to create
Forms that display a GUI, because Forms are classes that derive from class Sys-
tem.Windows.Forms.Form. Visual inheritance allows us to create a new Form by in-
heriting from another Form. The derived Form class contains the functionality of its Form
base class, including any base-class properties, methods, variables and controls. The de-
rived class also inherits all visual aspects—such as sizing, component layout, spacing be-
tween GUI components, colors and fonts—from its base class. 

24       ' set image for picture box
25       picDisplay.Image = Image.FromFile(picture)
26 End Sub ' New
27
28 End Class ' FrmChild

Fig. 13.38 MDI child FrmChild (part 2 of 2).



Chapter 13 Graphical User Interfaces Concepts: Part 2 577

Visual inheritance enables developers to achieve visual consistency across applications
by reusing code. For example, a company could define a base form that contains a product’s
logo, a static background color, a predefined menu bar and other elements. Programmers then
could use the base form throughout an application for purposes of uniformity and branding. 

Class FrmInheritance (Fig. 13.39) is a derived class of class Form. The output
depicts the workings of the program. The GUI contains two labels with text Bugs, Bugs,
Bugs and Copyright 2002, by Bug2Bug.com., as well as one button displaying the
text Learn More. When a user presses the Learn More button, method
cmdLearn_Click (lines 16–22) is invoked. This method displays a message box that
provides some informative text.

To allow other forms to inherit from FrmInheritance, we must package FrmIn-
heritance as a .dll.  Right click the project's name in the Solution Explorer and
choose Properties. Under Common Properties > General, change Output Type to
Class Library. Building the project produces the .dll.

To visually inherit from FrmInheritance, we create an empty project. From the
Project menu, select Add Inherited Form... to display the Add New Item dialog.
Select Inherited Form from the Templates pane. Clicking OK displays the Inherit-
ance Picker tool. The Inheritance Picker tool enables programmers to create a form
which inherits from a specified form. Click button Browse and select the .dll file cor-
responding to FrmInheritance. This .dll file normally is located within the project’s
bin directory. Click OK. The Form Designer should now display the inherited form
(Fig. 13.40). We can add components to the form. 

1 ' Fig. 13.39: FrmInheritance.vb
2 ' Form template for use with visual inheritance.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmInheritance
7 Inherits Form
8
9 Friend WithEvents lblBug As Label        ' top label

10 Friend WithEvents lblCopyright As Label  ' bottom label
11 Friend WithEvents cmdLearn As Button     ' left button
12
13  ' Visual Studio .NET generated code
14
15  ' invoked when user clicks Learn More button
16   Private Sub cmdLearn_Click(ByVal sender As System.Object, _
17       ByVal e As System.EventArgs) Handles cmdLearn.Click
18
19       MessageBox.Show("Bugs, Bugs, Bugs is a product of " & _
20          " Bug2Bug.com.", "Learn More", MessageBoxButtons.OK, _
21          MessageBoxIcon.Information)
22  End Sub ' cmdLearn_Click
23
24 End Class ' FrmInheritance

Fig. 13.39 Class FrmInheritance, which inherits from class Form, contains a 
button (Learn More) (part 1 of 2).



578 Graphical User Interfaces Concepts: Part 2 Chapter 13

Class FrmVisualTest (Fig. 13.41) is a derived class of class Visual-
Form.FrmInheritance. The output illustrates the functionality of the program. The
GUI contains those components derived from class FrmInheritance, as well as an
additional button with text Learn The Program. When a user presses this button, method
cmdProgram_Click (lines 13–20) is invoked. This method displays another message
box providing different informative text.

Figure 13.41 demonstrates that the components, their layouts and the functionality of
base-class FrmInheritance (Fig. 13.39) are inherited by FrmVisualTest. If a user
clicks button Learn More, the base-class event handler cmdLearn_Click displays a
MessageBox. FrmInheritance uses a Friend access modifier to declare its con-
trols, so class FrmVisualTest cannot modify the controls inherited from class FrmIn-

Fig. 13.40 Visual Inheritance through the Form Designer.

Fig. 13.39 Class FrmInheritance, which inherits from class Form, contains a 
button (Learn More) (part 2 of 2).



Chapter 13 Graphical User Interfaces Concepts: Part 2 579

heritance. As we discussed in Chapter 9, Friend access modifiers allow access only
to other classes or modules belonging to the same assembly. In this example, FrmVisu-
alTest does not belong to the assembly of FrmInheritance (VisualForm), so
FrmVisualTest cannot modify the controls that it inherits from FrmInheritance.

1 ' Fig. 13.41: VisualTest.vb
2 ' A form that uses visual inheritance.
3
4 Public Class FrmVisualTest
5 Inherits VisualForm.FrmInheritance
6
7    ' new button added to form
8 Friend WithEvents cmdProgram As Button 
9

10 ' Visual Studio .NET generated code
11
12 ' invoke when user clicks Learn the Program button
13 Private Sub cmdProgram_Click(ByVal sender As System.Object, _
14       ByVal e As System.EventArgs) Handles cmdProgram.Click
15
16       MessageBox.Show( _
17          "This program was created by Deitel & Associates", _
18          "Learn the Program", MessageBoxButtons.OK, _
19          MessageBoxIcon.Information)
20   End Sub ' cmdProgram_Click
21
22 End Class ' FrmVisualTest

Fig. 13.41 Class FrmVisualTest, which inherits from class 
VisualForm.FrmInheritance, contains an additional button.

Derived class 
cannot modify 
these controls.

Derived class 
can modify 
this control.



580 Graphical User Interfaces Concepts: Part 2 Chapter 13

13.11 User-Defined Controls
The .NET Framework allows programmers to create customized controls or custom con-
trols that inherit from a variety of classes. These customized controls appear in the user’s
Toolbox and can be added to Forms, Panels or GroupBoxes in the same way that we
add Buttons, Labels, and other predefined controls. The simplest way to create a cus-
tomized control is to derive a class from an existing Windows Forms control, such as a La-
bel. This is useful if the programmer wants to add functionality to an existing control,
rather than having to reimplement the existing control in addition to including the desired
functionality. For example, we can create a new type of label that behaves like a normal
Label but has a different appearance. We accomplish this by inheriting from class Label
and overriding method OnPaint.

Look-and-Feel Observation 13.8
To change the appearance of any control, override method OnPaint. 13.8

All controls contain method OnPaint, which the system calls when a component
must be redrawn (such as when the component is resized). Method OnPaint is passed a
PaintEventArgs object, which contains graphics information—property Graphics
is the graphics object used to draw, and property ClipRectangle defines the rectan-
gular boundary of the control. Whenever the system raises the Paint event, our control’s
base class catches the event. Through polymorphism, our control’s OnPaint method is
called. Our base class’s OnPaint implementation is not called, so we must call it explic-
itly from our OnPaint implementation before we execute our custom-paint code. Alter-
nately, if we do not wish to let our base class paint itself, we should not call our base class’s
OnPaint method implementation. 

To create a new control composed of existing controls, use class UserControl.
Controls added to a custom control are called constituent controls. For example, a pro-
grammer could create a UserControl composed of a button, a label and a text box, each
associated with some functionality (such as if the button sets the label’s text to that con-
tained in the text box). The UserControl acts as a container for the controls added to it.
The UserControl contains constituent controls, so it does not determine how these con-
stituent controls are displayed. Method OnPaint cannot be overridden in these custom
controls—their appearance can be added only by handling each constituent control’s
Paint event. The Paint event handler is passed a PaintEventArgs object, which
can be used to draw graphics (lines, rectangles etc.) on the constituent controls.

Using another technique, a programmer can create a brand new control by inheriting
from class Control. This class does not define any specific behavior; that task is left to
the programmer. Instead, class Control handles the items associated with all controls,
such as events and sizing handles. Method OnPaint should contain a call to the base
class’s OnPaint method, which calls the Paint event handlers. The programmer must
then add code that adds custom graphics inside the overridden OnPaint method when
drawing the control. This technique allows for the greatest flexibility, but also requires the
most planning. All three approaches are summarized in Fig. 13.42.

We create a “clock” control in Fig. 13.43. This is a UserControl composed of a
label and a timer—whenever the timer raises an event, the label is updated to reflect the
current time.



Chapter 13 Graphical User Interfaces Concepts: Part 2 581

Timers (System.Windows.Forms namespace) are non-visible components that
reside on a form, generating Tick events at a set interval. This interval is set by the
Timer’s Interval property, which defines the number of milliseconds (thousandths of
a second) between events. By default, timers are disabled.  

Custom Control Techniques 
and PaintEventArgs
Properties Description 

Inherit from Windows Forms 
control

Add functionality to a preexisting control. If overriding 
method OnPaint, call base class OnPaint. Can add only 
to the original control appearance, not redesign it.

Create a UserControl Create a UserControl composed of multiple preexisting 
controls (and combine their functionality). Cannot override 
OnPaint methods of custom controls. Instead, add drawing 
code to a Paint event handler. Can add only to the original 
control appearance, not redesign it.

Inherit from class Control Define a brand-new control. Override OnPaint method, 
call base class method OnPaint and include methods to 
draw the control. Can customize control appearance and 
functionality.

PaintEventArgs Properties Use this object inside method OnPaint or Paint to draw 
on the control.

Graphics The graphics object of the control. Used to draw on the con-
trol.

ClipRectangle Specifies the rectangle indicating the boundary of the control.

Fig. 13.42 Custom control creation.

1 ' Fig 13.43: CClockUserControl.vb
2 ' User-defined control with timer and label.
3
4 Imports System.Windows.Forms
5
6 ' create clock control that inherits from UserControl
7 Public Class CClockUserControl
8 Inherits UserControl
9

10    ' displays time
11 Friend WithEvents lblDisplay As Label
12
13    ' non-visible event-triggering timer object
14 Friend WithEvents tmrClock As Timer
15
16    ' Visual Studio .NET generated code
17

Fig. 13.43 UserControl-defined clock (part 1 of 2).



582 Graphical User Interfaces Concepts: Part 2 Chapter 13

We create a Form that displays our custom control, CClockUserControl
(Fig. 13.43). Next, we create a UserControl class for the project by selecting Project >
Add User Control.... This displays a dialog from which we can select the type of control
to add—user controls are already selected. We then name the file (and the class) CClock-
UserControl. This brings up our empty CClockUserControl as a grey rectangle.

We can treat this control like a Windows Form, meaning that we can add controls
using the ToolBox and set properties, using the Properties window. However, instead
of creating an application (notice there is no Main method in the Control class), we are
simply creating a new control composed of other controls. We add a Label (lblDis-
play, line 11) and a Timer (tmrClock, line 14) to the UserControl. We set the
Timer interval to 100 milliseconds and set lblDisplay’s text with each event (lines
19–24). Note that tmrClock must be enabled by setting property Enabled to True in
the Properties window.

Structure DateTime (namespace System) contains member Now, which is the cur-
rent time. Method ToLongTimeString converts Now to a String containing the cur-
rent hour, minute and second (along with AM or PM). We use this to set lblDisplay on
line 23.

Once created, our clock control appears as an item on the ToolBox. To use the control,
we can simply drag it onto a form and run the Windows application. The CClockUser-
Control object has a white background to make it stand out in the form. Figure 13.43 shows
the output of FrmClock, which contains our CClockUserControl.

The above steps are useful when we need to define a custom control for the project on
which we are working. Visual Studio .NET allows developers to share their custom con-
trols with other developers. To create a UserControl that can be exported to other solu-
tions, do the following:

1. Create a new Windows Control Library project.

2. Inside the project, add controls and functionality to the UserControl
(Fig. 13.44).

18    ' update label at every tick
19 Private Sub tmrClock_Tick(ByVal sender As System.Object, _
20       ByVal e As System.EventArgs) Handles tmrClock.Tick
21
22       ' get current time (Now), convert to string
23       lblDisplay.Text = DateTime.Now.ToLongTimeString
24    End Sub ' tmrClock_Tick
25
26 End Class ' CClockUserControl

Fig. 13.43 UserControl-defined clock (part 2 of 2).



Chapter 13 Graphical User Interfaces Concepts: Part 2 583

3. Build the project. Visual Studio .NET creates a .dll file for the UserControl
in the output directory. The file is not executable: Control classes do not have
a Main method. Select Project > Properties to find the output directory and
output file (Fig. 13.45).

4. Create a new Windows application.

5. Import the UserControl. In the new Windows application, right click the
ToolBox, and select Customize Toolbox.... In the dialog that appears, select
the .NET Framework Components tab. Browse for the .dll file, which is in
the output directory for the Windows control library project. Click the checkbox
next to the control, and click OK (Fig. 13.46).

Fig. 13.44 Custom-control creation.

Fig. 13.45 Project properties dialog.



584 Graphical User Interfaces Concepts: Part 2 Chapter 13

6. The UserControl appears on the ToolBox and can be added to the form as if
it were any other control (Fig. 13.47).

Testing and Debugging Tip 13.1
Control classes do not have a Main method—they cannot be run by themselves. To test their
functionality, add them to a sample Windows application and run them there. 13.1

Fig. 13.46 Custom control added to the ToolBox.

Fig. 13.47 Custom control added to a Form.

New ToolBox icon Newly inserted control



Chapter 13 Graphical User Interfaces Concepts: Part 2 585

As mentioned in Chapter 12, prefixing a variable name with an abbreviation of its type
improves code readability. Figure 13.48 lists the abbreviations for the controls introduced
in this chapter’s code examples.

Many of today’s most successful commercial programs provide GUIs that are easy to
use and manipulate. Because of this demand for user-friendly GUIs, the ability to design
sophisticated GUIs is an essential programming skill. Fortunately, Visual Studio .NET pro-
vides an IDE that makes GUI development quick and easy. In the last two chapters, we have
presented the basic techniques required to add various GUI components to a program.The
next chapter explores a more behind-the-scenes topic, multithreading. In many program-
ming languages, the programmer can create multiple threads, enabling several processes to
occur at once. By learning to create and manage multithreading in Visual Basic .NET,
readers begin their study of a more mission-critical type of software.

SUMMARY
• Menus provide groups of related commands for Windows applications. Menus are an integral part

of GUIs, because they enable user–application interaction without unnecessarily “cluttering” the
GUI.

• Window’s top-level menus appear on the left of the screen—any submenus or menu items are in-
dented. All menu items can have Alt key shortcuts (also called access shortcuts).

• Sub menus can have shortcut keys (combinations of Ctrl, Shift, Alt, function keys F1, F2, letter
keys etc.).

• To create a menu, open the Toolbox and drag a MainMenu control onto the form.

• To add entries to the menu, click the Type Here textbox and type the text that should appear in
the menu. Remove a menu item by selecting it with the mouse and pressing the Delete key.

• Menus raise a Click event when selected.   

Prefix Control

mnu Menu

mnuitm MenuItem

lnklbl LinkLabel

lst ListBox

chklst CheckedListBox

cbo ComboBox

tre TreeView

lvw ListView

ils ImageList

tbc TabControl

tbp TabPage

tmr Timer

Fig. 13.48 Prefixes for controls used in chapter.



586 Graphical User Interfaces Concepts: Part 2 Chapter 13

• Use the Xor (exclusive OR) operator to toggle single bits, such as those representing the bold and
italic styles.

• The LinkLabel control displays links to other resources, such as files or Web pages. The links
can change color to reflect whether each link is new, visited or active.

• When clicked, a LinkLabel generate a LinkClicked event.

• Method Start of class Process (namespace System.Diagnostics) can begin a new ap-
plication. This method requires either the file to open (a String) or the application to run and the
command line arguments (two Strings).

• The ListBox control allows the user to view and select multiple items from a list. The user can-
not create new list items in a ListBox.

• The CheckedListBox control extends a ListBox by preceding each item in the list with a
checkbox. This allows multiple items to be selected with no logical restriction.

• The SelectionMode property determines how many items in a CheckedListBox can be se-
lected.

• The SelectedIndexChanged event occurs when the user selects a new item in a
CheckedListBox.

• CheckBox’s property Items returns all the objects in the list as a collection. Property Select-
edItem returns the selected item. SelectedIndex returns the index of the selected item.

• Method GetSelected takes an index and returns True if the corresponding item is selected.

• Add items visually by examining the Items collection in the Properties window. Clicking the
ellipsis opens the String Collection Editor, in which programmers can type the items to add.

• CheckedListBoxes imply that multiple items can be selected—the SelectionMode prop-
erty can only have values None or One. One allows multiple selection.

• Event ItemCheck is generated whenever a CheckedListBox item is about to change.

• The ComboBox control combines TextBox features with a drop-down list. The user can either
select an option from the list or type one in (if allowed by the programmer). If the number of ele-
ments exceeds the maximum that can be displayed in the drop-down list, a scrollbar appears. 

• Property DropDownStyle determines the type of ComboBox.

• The ComboBox control has properties Items (a collection), SelectedItem and
SelectedIndex, which are similar to the corresponding properties in ListBox.

• When the selected item changes, event SelectedIndexChanged is raised.

• A Graphics object allows a pen or brush to draw on a component, using one of several Graph-
ics methods.

• The TreeView control can display nodes hierarchically in a tree.

• A node is an element that contains a value and references to other nodes.

• A parent node contains child nodes, and the child nodes can be parents themselves.

• A tree is a collection of nodes, usually organized in some manner. The first parent node of a tree
is often called the root node.

• Each node has a Nodes collection, which contains a list of the Node’s children.

• To add nodes to the TreeView visually, click the ellipsis by the Nodes property in the Proper-
ties window. This opens the TreeNode Editor, where there are buttons to create a root, and to
add, delete and rename nodes.

• Method GetDirectories takes a String (the current directory) and returns an array of
Strings (the subdirectories).



Chapter 13 Graphical User Interfaces Concepts: Part 2 587

• The ListView control is similar to a ListBox—it displays a list from which the user can select
one or more items. However, a ListView can display icons alongside the list items.

• To display images, the programmer must use an ImageList component. Create one by dragging
it onto the form from the ToolBox. Click the Images collection in the Properties window to
display the Image Collection Editor.

• Class DirectoryInfo (namespace System.IO) allows programmers to browse or manipu-
late the directory structure easily. Method GetDirectories returns an array of Directory-
Info objects containing the subdirectories of the current directory. Method GetFiles returns
an array of class FileInfo objects containing the files in the current directory.

• The TabControl control creates tabbed windows. This allows the programmer to provide large
quantities of information while saving screen space.

• TabControls contain TabPage objects, which can contain controls. 

• To add TabPages in the Visual Studio .NET designer, right-click the TabControl, and select
Add Tab.

• Each TabPage raises its own Click event when its tab is clicked. Events for controls inside the
TabPage are still handled by the form.

• Single-document-interface (SDI) applications can support only one open window or document
at a time. Multiple-document-interface (MDI) programs allows users to edit multiple documents
at a time.

• Each window inside an MDI application is called a child window, and the application window is
called the parent window.

• To create an MDI form, set the form’s IsMDIContainer property to True.

• The parent and child windows of an application can have different menus, which are merged (com-
bined) whenever a child window is selected.

• Class MenuItem property MdiList (a Boolean) allows a menu item to contain a list of open
child windows.

• The child windows in an MDI application can be arranged by calling method LayoutMdi of the
parent form.

• The .NET Framework allows the programmer to create customized controls. The most basic way
to create a customized control is to derive a class from an existing Windows Forms control. If we
inherit from an existing Windows Forms control, we can add to its appearance, but not redesign it.
To create a new control composed of existing controls, use class UserControl. To create a new
control from the ground up, inherit from class Control.

• Timers are non-visible components that reside on a form and generate Tick events at a set interval.

• We create a UserControl class for the project by selecting Project, then Add User Con-
trol.... We can treat this control like a Windows Form, meaning that we can add controls, using
the ToolBox, and set properties, using the Properties window.

• Structure DateTime (namespace System) contains member Now, which is the current time.

TERMINOLOGY
& (menu access shortcut) ActiveMdiChild property of class Form
access shortcut Add member of enumeration MenuMerge
Activation property of class ListView Add method of class TreeNodeCollection
ActiveLinkColor property of class  
   LinkLabel

Add Tab menu item 
Add User Control... option in Visual Studio  



588 Graphical User Interfaces Concepts: Part 2 Chapter 13

Add Windows Form... option in   Expand method of class TreeNode
Visual Studio ExpandAll method of class TreeNode

adding controls to ToolBox expanding a node 
AfterSelect event of class TreeView FillEllipse method of class Graphics
ArrangeIcons value in LayoutMdi FillPie method of class Graphics

enumeration FillRectange method of class Graphics
boundary of a control FirstNode property of class TreeNode
Cascade value in LayoutMdi enumeration FullName property 
CheckBoxes property of class ListView FullPath property of class TreeNode
CheckBoxes property of class TreeView GetDirectories method of class
Checked property of class MenuItem Directory
Checked property of class TreeNode GetDirectories method of class 
CheckedIndices property of class  DirectoryInfo

CheckedListBox GetFiles method of class DirectoryInfo
CheckedItems property of class GetItemChecked method of class  

CheckedListBox CheckedListBox
CheckedListBox class GetNodeCount method of class TreeNode
child node GetSelected method of class ListBox
child window Graphics class 
child window maximized Graphics property of class  
child window minimized PaintEventArgs
Clear method of class  Image Collection Editor

TreeNodeCollection ImageIndex property of class  
Click event of class MenuItem ListViewItem
ClipRectangle property of class ImageIndex property of class TreeNode

PaintEventArgs ImageList class 
Collapse method of class TreeNode ImageList collection 
collapsing a node ImageList property of class TabControl
ComboBox class ImageList property of class TreeView
control boundary Index event of class CheckedListBox
Control class Index property of class MenuItem
CurrentValue event of class  inherit from a Windows Form control 

CheckedListBox Insert Separator option 
custom control Interval property of class Timer
custom control being adding to ToolBox IsMdiChild property of class Form
Customize Toolbox... option in Visual Studio  IsMdiContainer property of class Form
DateTime structure ItemActivate event of class ListView
DirectoryInfo class ItemCheck event of class 
displaying files and folders in a ListView CheckedListBox
draw on a control ItemCheckEventArgs event of class  
DrawEllipse method of class Graphics CheckedListBox
DrawPie method of class Graphics Items property of class ComboBox
DrawRectangle method of class Graphics Items property of class ListBox
drop-down list Items property of class ListView
DropDown style for ComboBox ItemSize property of class TabControl
DropDownList style for ComboBox LargeImageList property of class 
DropDownStyle property of class  ListView

ComboBox LastNode property of class TreeNode
events at an interval LayoutMdi enumeration
Exit method of class Application LayoutMdi method of class Form



Chapter 13 Graphical User Interfaces Concepts: Part 2 589

LinkArea property of class LinkLabel OnPaint method 
LinkBehavior property of class  PaintEventArgs class 

LinkLabel parent menu 
LinkClicked event of class LinkLabel parent node 
LinkColor property of class LinkLabel parent window 
LinkLabel class PictureBox class 
Links property of class LinkLabel PrevNode property of class TreeNode
LinkVisited property of class LinkLabel Process class 
ListBox class project properties dialog 
ListView class project, Windows control library 
Main method radio buttons, using with TabPage
MainMenu class RadioCheck property of class MenuItem
MaxDropDownItems property of class Remove member of enumeration MenuMerge

ComboBox Remove method of class 
MDI form TreeNodeCollection
MDI parent-window class Replace member of enumeration  
MDI title bar MenuMerge
MdiChildActivate event of class Form RightToLeft property of class MainMenu
MdiChildren property of class Form  root node 
MdiList property of class MenuItem SelectedImageIndex property of class  
MdiParent property of class Form TreeNode
menu SelectedIndex property of class  
menu-access shortcut ComboBox
Menu Designer in Visual Studio SelectedIndex property of class ListBox
menu item SelectedIndex property of class  
menu, expanded and checked TabControl
MenuItem class SelectedIndexChanged event of class  
MenuItems property of class MainMenu ComboBox
MenuItems property of class MenuItem SelectedIndexChanged event of class 
MenuMerge enumeration ListBox
MergeItems member of enumeration  SelectedIndexChanged event of class 

MenuMerge TabControl
MergeOrder property of class MenuItem SelectedIndices property of class  
MergeType property of class MenuItem ListBox
More Windows... option in Visual Studio SelectedItem property of class ComboBox
MultiColumn property of class ListBox SelectedItem property of class ListBox
MultiExtended value of SelectionMode SelectedItems property of class ListBox
MultiLine property of class TabControl SelectedItems property of class  
multiple-document interface (MDI) ListView
MultiSelect property of class ListView SelectedNode property of class TreeView
MultiSimple value of SelectionMode SelectedTab property of class  
Name property of class DirectoryInfo TabControl
Name property of class FileInfo SelectionMode enumeration 
NewValue event of class CheckedListBox SelectionMode property of class  
NextNode property of class TreeNode CheckedListBox
Nodes property of class TreeNode SelectionMode property of class ListBox
Nodes property of class TreeView separator bar 
None value of SelectionMode separator, menu 
Now property of structure DateTime shortcut key 
One value of SelectionMode Shortcut property of class MenuItem



590 Graphical User Interfaces Concepts: Part 2 Chapter 13

SELF-REVIEW EXERCISES

13.1 State whether each of the following is true or false. If false, explain why.
a) Menus provide groups of related classes.
b) Menu items can display radio buttons, checkmarks and access shortcuts.
c) The ListBox control allows only single selection (like a radio button), whereas the

CheckedListBox allows multiple selection (like a check box).
d) A ComboBox control has a drop-down list.
e) Deleting a parent node in a TreeView control deletes its child nodes.
f) The user can select only one item in a ListView control.
g) A TabPage can act as a container for radio buttons.
h) In general, multiple document interface (MDI) windows are used with simple applica-

tions.
i) An MDI child window can have MDI children.
j) MDI child windows can be moved outside the boundaries of their parent window.
k) There are two basic ways to create a customized control.

13.2 Fill in the blanks in each of the following statements:
a) Method  of class Process can open files and Web pages, similar to the Run

menu in Windows.
b) If more elements appear in a ComboBox than can fit, a  appears.
c) The top-level node in a TreeView is the  node.
d) A(n)  displays icons contained in ImageList control.
e) The MergeOrder and MergeType properties determine how  merge.
f) The  property allows a menu to display a list of active child windows.
g) An important feature of the ListView control is the ability to display .
h) Class  allows the programmer to combine several controls into a single, cus-

tom control.
i) The  saves space by layering TabPages on top of each other.

Show method of class Form Text property of class LinkLabel
ShowShortcut property of class MenuItem Text property of class MenuItem
sibling node Text property of class TreeNode
Simple style for ComboBox Tick event of class Timer
single-document interface (SDI) TileHorizontal value in LayoutMdi
SmallImageList property of class  enumeration

ListView TileVertical value in LayoutMdi
Solution Explorer in Visual Studio .NET enumeration
Sorted property of class ComboBox ToolBox customization 
Sorted property of class ListBox tree 
Start method of class Process TreeNode class 
String Collection Editor in Visual Studio .NET TreeNode Editor
submenu TreeView class 
TabControl class UseMnemonic property of class LinkLabel
TabControl, adding a TabPage user-defined control 
TabCount property of class TabControl UserControl class 
TabPage class View property of class ListView
TabPage, add to TabControl VisitedLinkColor property of class  
TabPage, using radio buttons LinkLabel
TabPages property of class TabControl Windows control library



Chapter 13 Graphical User Interfaces Concepts: Part 2 591

j) The  window layout option makes all windows the same size and layers them
so every title bar is visible (if possible).

k)  are typically used to display hyperlinks to other resources, files or Web pages.

ANSWERS TO SELF-REVIEW EXERCISES
13.1 a) False. Menus provide groups of related commands. b) True. c) False. Both controls can
have single or multiple selection. d) True. e) True. f) False. The user can select one or more items.
g) True. h) False. MDI windows tend to be used with complex applications. i) False. Only an MDI
parent window can have MDI children. An MDI parent window cannot be an MDI child. j) False.
MDI child windows cannot be moved outside their parent window. k) False. There are three ways:
1) Derive from an existing control, 2) use a UserControl or 3) derive from Control and create
a control from scratch.

13.2 a) Start. b) scrollbar. c) root. d) ListView. e) menus. f) MdiList. g) icons. h) User-
Control. i) TabControl. j) Cascade. k) LinkLabels.

EXERCISES
13.3 Write a program that displays the names of 15 states in a ComboBox. When an item is se-
lected from the ComboBox, remove it.

13.4 Modify your solution to the previous exercise to add a ListBox. When the user selects an
item from the ComboBox, remove the item from the ComboBox and add it to the ListBox. Your
program should check to ensure that the ComboBox contains at least one item. If it does not, print a
message, using a message box, and terminate program execution.

13.5 Write a program that allows the user to enter Strings in a TextBox. Each String input
is added to a ListBox. As each String is added to the ListBox, ensure that the Strings are
in sorted order. Any sorting method may be used. [Note: Do not use property Sort]

13.6 Create a file browser (similar to Windows Explorer) based on the programs in Fig. 13.8,
Fig. 13.22 and Fig. 13.25. The file browser should have a TreeView, which allows the user to
browse directories. There should also be a ListView, which displays the contents (all subdirecto-
ries and files) of the directory being browsed. Double-clicking a file in the ListView should open
it, and double-clicking a directory in either the ListView or the TreeView should browse it. If a
file or directory cannot be accessed, because of its permission settings, notify the user.

13.7 Create an MDI text editor. Each child window should contain a multiline RichTextBox.
The MDI parent should have a Format menu, with submenus to control the size, font and color of
the text in the active child window. Each submenu should have at least three options. In addition, the
parent should have a File menu with menu items New (create a new child), Close (close the active
child) and Exit (exit the application). The parent should have a Window menu to display a list of the
open child windows and their layout options.

13.8 Create a UserControl called LoginPasswordUserControl. The LoginPass-
wordUserControl contains a Label (lblLogin) that displays String "Login:", a Text-
Box (txtLogin) where the user inputs a login name, a Label (lblPassword) that displays the
String "Password:" and finally, a TextBox (txtPassword) where a user inputs a password
(do not forget to set property PasswordChar to "*" in the TextBox’s Properties window).
LoginPasswordUserControl must provide Public read-only properties Login and Pass-
word that allow an application to retrieve the user input from txtLogin and txtPassword. The
UserControl must be exported to an application that displays the values input by the user in Log-
inPasswordUserControl.



14
Multithreading

Objectives
• To understand the concept of multithreading.
• To appreciate how multithreading can improve 

program performance.
• To understand how to create, manage and destroy 

threads.
• To understand the life cycle of a thread.
• To understand thread synchronization.
• To understand thread priorities and scheduling.
The spider’s touch, how exquisitely fine!
Feels at each thread, and lives along the line.
Alexander Pope

A person with one watch knows what time it is; a person with 
two watches is never sure.
Proverb

Learn to labor and to wait.
Henry Wadsworth Longfellow

The most general definition of beauty…Multeity in Unity.
Samuel Taylor Coleridge



Chapter 14 Multithreading 593

14.1 Introduction
The human body performs a great variety of operations in parallel—or, as we will say
throughout this chapter, concurrently. Respiration, blood circulation and digestion, for ex-
ample, can occur concurrently. Similarly, all the senses—sight, touch, smell, taste and
hearing—can occur at once. Computers, too, perform operations concurrently. It is com-
mon for a desktop personal computer to compile a program, send a file to a printer and re-
ceive electronic mail messages over a network concurrently.

Ironically, most programming languages do not enable programmers to specify con-
current activities. Rather, these programming languages provide only a simple set of con-
trol structures that allow programmers to organize successive actions; a program proceeds
to the next action after the previous action is completed. Historically, the type of concur-
rency that computers perform today generally has been implemented as operating-system
“primitives” available only to highly experienced “systems programmers.”

The Ada programming language, developed by the United States Department of
Defense, made concurrency primitives widely available to defense contractors building
military command-and-control systems. However, Ada has not been widely adopted by
universities or commercial industry.

The .NET Framework Class Library makes concurrency primitives available to appli-
cations programmers. A programmer can specify that an application contains "threads of
execution," where each thread designates a portion of a program that might execute con-
currently with other threads. This capability is called multithreading. Multithreading is
available in all .NET programming languages, including Visual Basic, C# and Visual C++.

Software Engineering Observation 14.1
The .NET Framework Class Library, System.Threading namespace, includes multi-
threading capabilities. These capabilities encourage the use of multithreading among a larg-
er portion of the applications-programming community. 14.1

In this chapter, we discuss various applications of concurrent programming. For
example, when programs download large files, such as audio clips or video clips from the
World Wide Web, users do not want to wait until an entire clip, downloads before starting
the playback. To solve this problem, we can put multiple threads to work—one thread
downloads a clip, and another plays the clip. This enables these activities, or tasks, to pro-

Outline

14.1 Introduction
14.2 Thread States: Life Cycle of a Thread
14.3 Thread Priorities and Thread Scheduling

14.4 Thread Synchronization and Class Monitor
14.5 Producer/Consumer Relationship without Thread Synchronization
14.6 Producer/Consumer Relationship with Thread Synchronization
14.7 Producer/Consumer Relationship: Circular Buffer

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises 



594 Multithreading Chapter 14

ceed concurrently. To avoid choppy playback, we synchronize the threads so that the player
thread does not begin until the amount of the clip contained in memory is sufficient to keep
the player thread busy while the downloading thread completes its execution.

Another example of multithreading is Visual Basic’s automatic garbage collection. In
C and C++, the programmer must assume responsibility for reclaiming dynamically allo-
cated memory. By contrast, Visual Basic provides a garbage-collector thread that reclaims
dynamically allocated memory when it is no longer needed.

Testing and Debugging Tip 14.1
In C and C++, programmers must provide statements explicitly for reclaiming dynamically
allocated memory. When memory is not reclaimed (because a programmer forgets to do so,
because of a logic error or because an exception diverts program control), an error called a
memory leak occurs. Overtime, memory leaks can exhaust the supply of free memory and
even cause program termination. Visual Basic’s automatic garbage collection eliminates the
vast majority of memory leaks. 14.1

Performance Tip 14.1
One reason that C and C++ have remained popular over the years is that these memory lan-
guages management techniques were more efficient than those of languages that used gar-
bage collectors. However, memory management in Visual Basic often is faster than in C or
C++.1 14.1

Good Programming Practice 14.1
Set an object reference to Nothing when the program no longer needs that object. This en-
ables the garbage collector to determine at the earliest possible moment that the object can
be garbage collected. If the program retains other references to the object, that object cannot
be collected. 14.1

The writing of multithreaded programs can be tricky. Although the human mind can
perform functions concurrently, people often find it difficult to jump between parallel
“trains of thought.” To perceive why multithreading can be difficult to program and under-
stand, try the following experiment: Open three books to page one and try reading the books
concurrently. Read a few words from the first book, then read a few words from the second
book, then read a few words from the third book, then loop back and read the next few
words from the first book, etc. After conducting this experiment, students will appreciate
the challenges presented by multithreading. It is exceedingly difficult to switch between
books, read each book briefly, remember your place in each book, move the book you are
reading closer so you can see it and push books you are not reading aside. Moreover, it is
nearly impossible to comprehend the content of the books amidst all this chaos!

Performance Tip 14.2
A problem with single-threaded applications is that lengthy activities must complete before
other activities can begin. In a multithreaded application, threads can share a processor (or
set of processors), enabling multiple tasks to be performed in parallel. 14.2

1. E. Schanzer, “Performance Considerations for Run-Time Technologies in the .NET Framework,”
August 2001 <http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dndotnet/html/dotnetperftechs.asp>.



Chapter 14 Multithreading 595

14.2 Thread States: Life Cycle of a Thread
At any time, a thread is said to be in one of several thread states (illustrated in Fig. 14.1).
This section discusses the various states, as well as the transitions between states. Two
classes that are essential to multithreaded applications are Thread and Monitor (Sys-
tem.Threading namespace). This section also discusses several methods of classes
Thread and Monitor that cause state transitions.

When a program creates a new thread, the new thread begins its lifecyle in the
Unstarted state. The thread remains in the Unstarted state until the program calls Thread
method Start, which places the thread in the Started state (sometimes called the Ready
or Runnable state) and then immediately returns control to the calling thread. At this point,
the thread that invoked Start, the newly Started thread and any other threads in the pro-
gram can execute concurrently. 

The highest priority Started thread enters the Running state (i.e., begins executing)
when the operating system assigns a processor to the thread (Section 14.3 discusses thread
priorities). When a Started thread receives a processor for the first time and becomes a Run-
ning thread, the thread executes its ThreadStart delegate, which specifies the actions
that the thread will perform during its lifecyle. When a program creates a new Thread, the
program specifies the Thread’s ThreadStart delegate as an argument to the Thread
constructor. The ThreadStart delegate must be a procedure that takes no arguments. 

Fig. 14.1 Thread life cycle.

Started

Running

WaitSleepJoin Suspended Stopped Blocked

dispatch
(assign a 
processor)

quantum
expiration

Start

I/O completion

Issue I/O requestSuspend
Wait

Interrupt
sleep interval expires

Resume

Sleep, Join

Pulse
PulseAll

complete

Unstarted



596 Multithreading Chapter 14

A Running thread enters the Stopped (or Dead) state when its ThreadStart dele-
gate terminates. Note that a program can force a thread into the Stopped state by calling
Thread method Abort on the appropriate Thread object. Method Abort throws a
ThreadAbortException in the thread, normally causing the thread to terminate.
When a thread is in the Stopped state and there are no references to the thread object remain
in the program, the garbage collector can remove the thread object from memory.

A thread enters the Blocked state when the thread issues an input/output request. The
operating system blocks the thread from executing until the operating system can complete
the I/O for which the thread is waiting. Once the request is complete, the thread returns to
the Started state and can resume execution. A Blocked thread cannot use a processor, even
if one is available. 

There are three ways in which a Running thread enters the WaitSleepJoin state. If a
thread encounters code that it cannot execute yet (normally because a condition is not sat-
isfied), the thread can call Monitor method Wait to enter the WaitSleepJoin state. Once
in this state, a thread returns to the Started state when another thread invokes Monitor
method Pulse or PulseAll. Method Pulse moves the next waiting thread back to the
Started state. Method PulseAll moves all waiting threads back to the Started state.

Alternatively, a Running thread can call Thread method Sleep to enter the Wait-
SleepJoin state for a number of milliseconds specified as the argument to Sleep. A
sleeping thread returns to the Started state when its designated sleep time expires. Like
Blocked threads, sleeping threads cannot use a processor, even if one is available.

Any thread that enters the WaitSleepJoin state by calling Monitor method Wait or
by calling Thread method Sleep leaves the WaitSleepJoin state and returns to the
Started state if the sleeping or waiting Thread’s Interrupt method is called by another
thread in the program.

If a thread (which we will call the dependent thread) cannot continue executing unless
another thread terminates, the dependent thread calls the other thread’s Join method to
"join" the two threads. When two threads are "joined," the dependent thread leaves the
WaitSleepJoin state when the other thread finishes execution (enters the Stopped state). 

If a Running Thread’s Suspend method is called, the Running thread enters the Sus-
pended state. A Suspended thread returns to the Started state when another thread in the
program invokes the Suspended thread’s Resume method. 

14.3 Thread Priorities and Thread Scheduling
Every thread has a priority in the range from ThreadPriority.Lowest to
ThreadPriority.Highest. These two values come from the ThreadPriority
enumeration (namespace System.Threading), which consists of the values Lowest,
BelowNormal, Normal, AboveNormal and Highest. By default, each thread has
priority Normal. The thread scheduler determines when each thread executes based on the
thread’s priority.

The Windows platform supports a concept called timeslicing, which enables threads of
equal priority to share a processor. Without timeslicing, each thread in a set of equal-pri-
ority threads runs to completion (unless the thread leaves the Running state and enters the
WaitSleepJoin, Suspended or Blocked state) before the thread’s peers get a chance to exe-
cute. With timeslicing, each thread receives a brief burst of processor time, called a
quantum, during which the thread can execute. At the completion of the quantum, even if



Chapter 14 Multithreading 597

the thread has not finished executing, the processor is taken away from that thread and
given to the next thread of equal priority, if one is available.

The job of the thread scheduler is to keep the highest-priority thread running at all
times and, if there is more than one highest-priority thread, to ensure that all such threads
execute for a quantum in round-robin fashion. Figure 14.2 illustrates the multilevel priority
queue for threads. In Fig. 14.2, assuming that we are using a single-processor computer,
threads A and B each execute for a quantum in round-robin fashion until both threads com-
plete execution. This means that A gets a quantum of time to run, then B gets a quantum,
then A gets another quantum and B gets another quantum. This continues until one thread
completes. The processor then devotes all its power to the thread that remains (unless
another thread of that priority is Started). Once A and B have finished executing, thread C
runs to completion. Next threads D, E and F each execute for a quantum in round-robin
fashion until they all complete execution. This process continues until all threads run to
completion. Note that, depending on the operating system, new higher-priority threads
could postpone—possibly indefinitely—the execution of lower-priority threads. Such
indefinite postponement often is referred to more colorfully as starvation.

A thread’s priority can be adjusted via the Priority property, which accepts values
from the ThreadPriority enumeration. If the argument is not one of the valid thread-
priority constants, an ArgumentException occurs. 

A thread executes until it dies, becomes Blocked for input/output (or for some other
reason), calls Sleep, calls Monitor methods Wait or Join, is preempted by a thread
of higher priority or has its quantum expire. A thread with a higher priority than the Run-
ning thread can become Started (and hence preempt the Running thread) if a sleeping thread
wakes up, if I/O completes for a thread that Blocked for that I/O, if either Pulse or
PulseAll is called for an object on which a thread is waiting, or if a thread to which the
high-priority thread was Joined completes.

Fig. 14.2 Thread-priority scheduling.

Priority Highest

Priority AboveNormal

Priority Normal

Priority BelowNormal

Priority Lowest

Ready threads

A B

C

D E F

G



598 Multithreading Chapter 14

Figure 14.3 and Figure 14.4 demonstrate basic threading techniques, including the
construction of a Thread object and the use of the Thread class’s Shared method
Sleep. Module modThreadTester (Fig. 14.4) creates three threads that each have
default priority Normal. Each thread displays a message indicating that it is going to sleep
for a random interval between 0 and 5000 milliseconds and then goes to sleep. When each
threads awakens, the thread displays message indicating its name and that it is done
sleeping and enters the Stopped state. Readers will see that method Main (i.e., the Main
thread of execution) terminates before the application terminates. The program consists of
one module—modThreadTester (Fig. 14.4), which creates the three threads—and one
class—CMessagePrinter (Fig. 14.3), which defines a Print method containing the
actions that each thread will perform.

1 ' Fig. 14.3: MessagePrinter.vb
2 ' Thread control method prints verbose message, 
3 ' sleeps and prints waking up verbose message.
4
5 Imports System.Threading
6
7 Public Class CMessagePrinter
8
9 Private sleepTime As Integer

10 Private Shared randomObject As New Random()
11
12    ' constructor to initialize a CMessagePrinter object
13 Public Sub New()
14
15       ' pick random sleep time between 0 and 5 seconds
16       sleepTime = randomObject.Next(5001)
17 End Sub ' New
18
19    ' method Print controls thread that prints messages
20 Public Sub Print()
21
22       ' obtain reference to currently executing thread
23       Dim current As Thread = Thread.CurrentThread
24
25       ' put thread to sleep for sleepTime amount of time
26       Console.WriteLine(current.Name & " going to sleep for " & _
27          sleepTime)
28
29       Thread.Sleep(sleepTime)
30
31       ' print thread name
32       Console.WriteLine(current.Name & " done sleeping")
33 End Sub ' Print
34
35 End Class ' CMessagePrinter

Fig. 14.3 ThreadStart delegate Print displays message and sleeps for 
arbitrary duration of time.



Chapter 14 Multithreading 599

Objects of class CMessagePrinter (Fig. 14.3) control the lifecycle of each of the
three threads that module modThreadTester’s Main method creates. Class CMessage-
Printer consists of instance variable sleepTime (line 9), Shared variable random-
Object (line 10), a constructor (lines 13–17) and a Print method (lines 20–33). Variable
sleepTime stores a random Integer value chosen when a new CMessagePrinter
object’s constructor is called. Each thread controlled by a CMessagePrinter object
sleeps for the amount of time specified by the corresponding CMessagePrinter object’s
sleepTime.

The CMessagePrinter constructor (lines 13–17) initializes sleepTime to a
random Integer from 0 up to, but not including, 5001 (i.e., from 0 to 5000). 

Method Print (lines 20–33) begins by obtaining a reference to the currently executing
thread (line 23) via class Thread’s Shared property CurrentThread. The currently
executing thread is the one that invokes method Print. Next, lines 26–27 display a mes-
sage containing the name of the currently executing thread and an indicaton that the thread
is going to sleep for a certain number of milliseconds. Note that line 26 uses the currently
executing thread via the thread’s Name property, which is set in method Main (Fig. 14.4,
lines 8–35) when each thread is created. Line 29 invokes Shared Thread method Sleep
to place the thread into the WaitSleepJoin state. At this point, the thread loses the processor,
and the system allows another thread to execute. When the thread awakens, it reenters the
Started state until the system assigns a processor to the thread. When the CMessage-
Printer object enters the Running state again, line 32 outputs the thread’s name in a mes-
sage that indicates the thread is done sleeping, and method Print terminates. 

Module modThreadTester’s Main method (Fig. 14.4, lines 8–35) creates three
objects of class CMessagePrinter, in lines 11–13. Lines 17–19 create and initialize the
three Thread objects that correspond to the CMessagePrinter objects created. Lines
22–24 set each Thread’s Name property, which we use for output purposes. Note that
each Thread’s constructor receives a ThreadStart delegate as an argument.
Remember that a ThreadStart delegate specifies the actions that a thread performs
during its lifecyle. Line 17 specifies that the delegate for thread1 will be method Print
of the object to which printer1 refers. When thread1 enters the Running state for the
first time, thread1 invokes printer1’s Print method to perform the tasks specified
in method Print’s body. Thus, thread1 prints its name, displays the amount of time for
which it will go to sleep, sleeps for that amount of time, wakes up and displays a message
indicating that the thread is done sleeping. At that point, method Print terminates. A
thread completes its task when the method specified by a Thread’s ThreadStart del-
egate terminates, placing the thread in the Stopped state. When thread2 and thread3
enter the Running state for the first time, they invoke the Print methods of printer2
and printer3, respectively. Threads thread2 and thread3 perform the same tasks
that thread1 performs by executing the Print methods of the objects to which
printer2 and printer3 refer (each of which has its own randomly chosen sleep time).

Testing and Debugging Tip 14.2
The naming of threads assists in the debugging of a multithreaded program. Visual Studio
.NET’s debugger provides a Threads window that displays the name of each thread and en-
ables programmers to view the execution of any thread in the program. 14.2

Lines 30–32 invoke each Thread’s Start method to place the threads in the Started
state (this process sometimes is called launching a thread). Method Start returns imme-



600 Multithreading Chapter 14

diately from each invocation; line 34 then outputs a message indicating that the threads
were started, and the Main thread of execution terminates. The program itself does not ter-
minate, however, because it still contains threads that are alive (i.e., threads that were
Started and have not reached the Stopped state yet). The program will not terminate until
its last thread dies. When the system assigns a processor to a thread, the thread enters the
Running state and calls the method specified by the thread’s ThreadStart delegate. In
this program, each thread invokes method Print of the appropriate CMessagePrinter
object to perform the tasks discussed previously.

Note that the sample outputs for this program display the name and sleep time of each
thread as the thread goes to sleep. The thread with the shortest sleep time normally awakens
first, then indicates that it is done sleeping and terminates. Section 14.7 discusses multi-
threading issues that may prevent the thread with the shortest sleep time from awakening first.

1 ' Fig. 14.4: ThreadTester.vb
2 ' Shows multiple threads that print at different intervals.
3
4 Imports System.Threading
5
6 Module modThreadTester
7
8 Sub Main()
9

10       ' create CMessagePrinter instances
11       Dim printer1 As New CMessagePrinter()
12       Dim printer2 As New CMessagePrinter()
13       Dim printer3 As New CMessagePrinter()
14
15       ' Create each thread. Use CMessagePrinter's
16       ' Print method as argument to ThreadStart delegate
17       Dim thread1 As New Thread(AddressOf printer1.Print)
18       Dim thread2 As New Thread(AddressOf printer2.Print)
19       Dim thread3 As New Thread(AddressOf printer3.Print)
20
21       ' name each thread
22       thread1.Name = "thread1"
23       thread2.Name = "thread2"
24       thread3.Name = "thread3"
25
26       Console.WriteLine("Starting threads")
27
28       ' call each thread's Start method to place each
29       ' thread in Started state
30       thread1.Start()
31       thread2.Start()
32       thread3.Start()
33
34       Console.WriteLine("Threads started" & vbCrLf)
35 End Sub ' Main
36
37 End Module ' modThreadTester

Fig. 14.4 Threads sleeping and printing (part 1 of 2).



Chapter 14 Multithreading 601

14.4 Thread Synchronization and Class Monitor
Often, multiple threads of execution manipulate shared data. If threads that have access to
shared data simply read that data, there is no need to prevent the data from being accessed
by more than one thread at a time. However, when multiple threads share data and that data
is modified by one or more of those threads, then indeterminate results might occur. If one
thread is in the process of updating the data and another thread tries to update it too, the data
will reflect the most recent update. If the data is an array or other data structure in which
the threads could update separate parts of the data concurrently, it is possible that part of
the data would reflect the information from one thread, whereas another part of the data
would reflect information from a different thread. When this happens, it is difficult for the
program to determine whether the data has been updated properly.

Programmers can solve this problem by giving any thread that is manipulating shared
data exclusive access to that data during the manipulating. While one thread is manipu-
lating the data, other threads desiring to access the data should be kept waiting. When the
thread with exclusive access to the data completes its manipulation of the data, one of the
waiting threads should be allowed to proceed. In this fashion, each thread accessing the
shared data excludes all other threads from doing so simultaneously. This is called mutual
exclusion, or thread synchronization.

Visual Basic uses the .NET Framework’s monitors2 to perform synchronization. Class
Monitor provides methods for locking objects, which enables the implementation of syn-
chronized access to shared data. The locking of an object means that only one thread can

Starting threads
Threads started

thread1 going to sleep for 1977
thread2 going to sleep for 4513
thread3 going to sleep for 1261
thread3 done sleeping
thread1 done sleeping
thread2 done sleeping

Starting threads
Threads started

thread1 going to sleep for 1466
thread2 going to sleep for 4245
thread3 going to sleep for 1929
thread1 done sleeping
thread3 done sleeping
thread2 done sleeping

2. Hoare, C. A. R. “Monitors: An Operating System Structuring Concept,” Communications of the
ACM. Vol. 17, No. 10, October 1974: 549–557. Corrigendum, Communications of the ACM. Vol.
18, No. 2, February 1975: 95.

Fig. 14.4 Threads sleeping and printing (part 2 of 2).



602 Multithreading Chapter 14

access that object at a time. When a thread wishes to acquire exclusive control over an
object, the thread invokes Monitor method Enter to acquire the lock on that data object.
Each object has a SyncBlock that maintains the state of that object’s lock. Methods of class
Monitor use the data in an object’s SyncBlock to determine the state of the lock for that
object. After acquiring the lock for an object, a thread can manipulate that object’s data.
While the object is locked, all other threads attempting to acquire the lock on that object are
blocked (i.e., they enter the Blocked state) from acquiring the lock. When the thread that
locked the shared object no longer requires the lock, that thread invokes Monitor method
Exit to release the lock. This updates the SyncBlock of the shared object to indicate that
the lock for the object is available again. At this point, if there is a thread that was previ-
ously blocked from acquiring the lock on the shared object, that thread acquires the lock
and can begin its processing of the object. If all threads with access to an object must
acquire the object’s lock before manipulating the object, only one thread at a time will be
allowed to manipulate the object. This helps ensure the integrity of the data.

Common Programming Error 14.1
Make sure that all code that updates a shared object locks the object before doing so. Oth-
erwise, a thread calling a method that does not lock the object can make the object unstable,
even when another thread has acquired the lock for the object. 14.1

Common Programming Error 14.2
Deadlock occurs when a waiting thread (let us call this thread1) cannot proceed, because it
is waiting for another thread (let us call this thread2) to proceed. Similarly, thread2 cannot
proceed, because it is waiting for thread1 to proceed. Because the two threads are waiting
for each other, the actions that would enable each thread to continue execution never occur. 14.2

Visual Basic also provides another means of manipulating an object’s lock—keyword
SyncLock. The placement of SyncLock before a block of code, as in:

SyncLock ( objectReference )
' code that requires synchronization goes here

End SyncLock

obtains the lock on the object to which the objectReference in parentheses refers. The
objectReference is the same reference that normally would be passed to Monitor methods
Enter, Exit, Pulse and PulseAll. When a SyncLock block terminates for any rea-
son, Visual Basic releases the lock on the object to which the objectReference refers. We
explain SyncLock further in Section 14.7. 

If a thread determines that it cannot perform its task on a locked object, the thread can
call Monitor method Wait, passing as an argument the object on which the thread will
wait until the thread can perform its task. Calling method Wait from a thread releases the
lock the thread has on the object that method Wait receives as an argument. Method Wait
then places the calling thread into the WaitSleepJoin state for that object. A thread in the
WaitSleepJoin state for an object leaves the WaitSleepJoin state when a separate thread
invokes Monitor method Pulse or PulseAll with the object as an argument. Method
Pulse transitions the object’s first waiting thread from the WaitSleepJoin state to the
Started state. Method PulseAll transitions all threads in the object’s WaitSleepJoin state
to the Started state. The transition to the Started state enables the thread (or threads) to pre-
pare to continue executing.



Chapter 14 Multithreading 603

 There is a difference between threads waiting to acquire the lock for an object and
threads waiting in an object’s WaitSleepJoin state. Threads waiting in an object’s WaitSleep-
Join state call Monitor method Wait with the object as an argument. By contrast, threads
that are waiting to acquire the lock enter the Blocked state and wait there until the object’s
lock becomes available. Then, one of the blocked threads can acquire the object’s lock. 

Common Programming Error 14.3
A thread in the WaitSleepJoin state cannot reenter the Started state to continue execution un-
til a separate thread invokes Monitor method Pulse or PulseAll with the appropriate
object as an argument. If this does not occur, the waiting thread will wait forever and so can
cause deadlock. 14.3

Testing and Debugging Tip 14.3
When multiple threads manipulate a shared object using monitors, the programmer should en-
sure that, if one thread calls Monitor method Wait to enter the WaitSleepJoin state for the
shared object, a separate thread eventually will call Monitor method Pulse to transition
the thread waiting on the shared object back to the Started state. If multiple threads might be
waiting for the shared object, a separate thread can call Monitor method PulseAll as a
safeguard to ensure that all waiting threads have another opportunity to perform their tasks. 14.3

Performance Tip 14.3
Synchronization of threads in multithreaded programs can make programs run smore slowly,
due to monitor overhead and the frequent transitioning of threads among the Running, Wait-
SleepJoin and Started states. There is not much to say, however, for highly efficient, incorrect
multithreaded programs! 14.3

Monitor methods Enter, Exit, Wait, Pulse and PulseAll all take a refer-
ence to an object—usually the keyword Me—as their argument.

14.5 Producer/Consumer Relationship without Thread 
Synchronization
In a producer/consumer relationship, the producer portion of an application generates data,
and the consumer portion of the application uses that data. In a multithreaded producer/con-
sumer relationship, a producer thread calls a produce method to generate data and place it
into a shared region of memory, called a buffer. A consumer thread then calls a consume
method to read that data. If the producer waiting to put the next data into the buffer deter-
mines that the consumer has not yet read the previous data from the buffer, the producer
thread should call Wait; otherwise, the consumer never sees the previous data, and that
data is lost to the application. When the consumer thread reads the data, it should call
Pulse to allow a waiting producer to proceed. If a consumer thread finds the buffer empty
or determines that it has already read the data in the buffer, the consumer should call Wait;
otherwise, the consumer might read “garbage” from the buffer, or the consumer might pro-
cess a previous data item more than once. Any of these possibilities results in a logic error
in the application. When the producer places the next data into the buffer, the producer
should call Pulse to allow the consumer thread to proceed.

Now, let us consider how logic errors can arise if we do not synchronize access among
multiple threads manipulating shared data. Imagine a producer/consumer relationship in
which a producer thread writes a sequence of numbers (we use 1–4) into a shared buffer—
a memory location shared among multiple threads. The consumer thread reads this data



604 Multithreading Chapter 14

from the shared buffer and then displays the data. We display in the program’s output the
values that the producer writes (produces) and that the consumer reads (consumes).
Figure 14.8 demonstrates a producer and a consumer accessing a single shared cell
(Integer variable mBuffer, Fig. 14.5 line 9) of memory without any synchronization.
Both the consumer and the producer threads access this single cell: The producer thread
writes to the cell, whereas the consumer thread reads from it. We would like each value that
the producer thread writes to the shared cell to be consumed exactly once by the consumer
thread. However, the threads in this example are not synchronized. Therefore, data can be
lost if the producer places new data into the slot before the consumer consumes the previous
data. In addition, data can be incorrectly repeated if the consumer consumes data again
before the producer produces the next item. To illustrate these possibilities, the consumer
thread in the following example keeps a total of all the values it reads. The producer thread
produces values from 1 to 4. If the consumer reads each value once and only once, the total
would be 10. However, if students execute this program several times, they will see that the
total is rarely, if ever, 10. To emphasize our point, the producer and consumer threads in
the example each sleep for random intervals of up to three seconds between performing
their tasks. Thus, we do not know exactly when the producer thread will attempt to write a
new value, nor do we know when the consumer thread will attempt to read a value. 

The program consists of module modSharedCell (Fig. 14.8) and three classes—
CHoldIntegerUnsynchronized (Fig. 14.5), CProducer (Fig. 14.6) and CCon-
sumer (Fig. 14.7). 

Class CHoldIntegerUnsynchronized (Fig. 14.5) consists of instance variable
mBuffer (line 9) and property Buffer (lines 12–28), which provides Get and Set
accessors. Property Buffer’s accessors do not synchronize access to instance variable
mBuffer. Note that each accessor uses class Thread’s Shared property Current-
Thread to obtain a reference to the currently executing thread and then uses that thread’s
property Name to obtain the thread’s name.

1 ' Fig. 14.5: HoldIntegerUnsynchronized.vb
2 ' Definition of a shared integer without synchronization mechanisms.
3
4 Imports System.Threading
5
6 Public Class CHoldIntegerUnsynchronized
7
8    ' buffer shared by producer and consumer threads
9 Private mBuffer As Integer = -1

10
11    ' property Buffer
12 Property Buffer() As Integer
13
14       Get
15          Console.WriteLine(Thread.CurrentThread.Name & _
16             " reads " & mBuffer)
17
18          Return mBuffer
19       End Get

Fig. 14.5 Unsynchronized shared Integer buffer (part 1 of 2).



Chapter 14 Multithreading 605

Class CProducer (Fig. 14.6) consists of instance variable sharedLocation (line
8), instance variable randomSleepTime (line 9), a constructor (lines 12–17) to initialize
the instance variables and a Produce method (lines 20–33). The constructor initializes
instance variable sharedLocation so that it refers to the CHoldIntegerUnsyn-
chronized object received from method Main. The producer thread in this program exe-
cutes the tasks specified in method Produce of class CProducer. Method Produce
contains a For structure (lines 25–28) that loops four times. Each iteration of the loop first
invokes Thread method Sleep to place the producer thread into the WaitSleepJoin state
for a random time interval of between 0 and 3 seconds (line 26). When the thread awakens,
line 27 assigns the value of control variable count to the CHoldIntegerUnsynchro-
nized object’s Buffer property, which causes the Set accessor of CHoldInte-
gerUnsynchronized to modify the mBuffer instance variable of the
CHoldIntegerUnsynchronized object. When the loop completes, lines 30–32 dis-
play a line of text in the command window to indicate that the thread finished producing
data and is terminating. Then, the Produce method terminates, placing the producer
thread in the Stopped state.

20
21       Set(ByVal Value As Integer)
22          Console.WriteLine(Thread.CurrentThread.Name & _
23             " writes " & Value)
24
25          mBuffer = Value
26       End Set
27
28 End Property ' Buffer
29
30 End Class ' CHoldIntegerUnsynchronized

1 ' Fig. 14.6: Producer.vb
2 ' Produces integers from 1 to 4 and places them in 
3 ' unsynchronized buffer.
4
5 Imports System.Threading
6
7 Public Class CProducer
8 Private sharedLocation As CHoldIntegerUnsynchronized
9 Private randomSleepTime As Random

10
11    ' constructor
12 Public Sub New(ByVal sharedObject As _ 
13       CHoldIntegerUnsynchronized, ByVal randomObject As Random)
14
15       sharedLocation = sharedObject
16       randomSleepTime = randomObject
17 End Sub ' New
18

Fig. 14.6 Producer places Integers in unsynchronized shared buffer (part 1 of 2).

Fig. 14.5 Unsynchronized shared Integer buffer (part 2 of 2).



606 Multithreading Chapter 14

Class CConsumer (Fig. 14.7) consists of instance variable sharedLocation (line
7), instance variable randomSleepTime (line 8), a constructor (lines 11–16) to initialize
the instance variables and a Consume method (lines 19–32). The constructor initializes
sharedLocation so that it refers to the CHoldIntegerUnsynchronized
received from Main as the argument sharedObject. The consumer thread in this pro-
gram performs the tasks specified in class CConsumer’s Consume method. The method
contains a For structure (lines 24–27) that loops four times. Each iteration of the loop
invokes Thread method Sleep to put the consumer thread into the WaitSleepJoin state
for a random time interval of between 0 and 3 seconds (line 25). Next, line 26 gets the value
of the CHoldIntegerUnsynchronized object’s Buffer property and adds the
value to the variable sum. When the loop completes, lines 29–31 display a line in the com-
mand window indicating the sum of all values that were read. Then the Consume method
terminates, placing the consumer thread in the Stopped state.

19    ' store values 1-4 in object sharedLocation
20 Public Sub Produce()
21       Dim count As Integer
22
23       ' sleep for random interval up to 3000 milliseconds
24       ' set sharedLocation's Buffer property
25       For count = 1 To 4
26          Thread.Sleep(randomSleepTime.Next(3000))
27          sharedLocation.Buffer = count
28       Next
29
30       Console.WriteLine(Thread.CurrentThread.Name & _
31          " done producing." & vbCrLf & "Terminating " & _
32          Thread.CurrentThread.Name & ".")
33 End Sub ' Produce
34
35 End Class ' CProducer

1 ' Fig. 14.7: Consumer.vb
2 ' Consumes 4 integers from unsynchronized buffer.
3
4 Imports System.Threading
5
6 Public Class CConsumer
7 Private sharedLocation As CHoldIntegerUnsynchronized
8 Private randomSleepTime As Random
9

10    ' constructor
11 Public Sub New(ByVal sharedObject As _
12       CHoldIntegerUnsynchronized, ByVal randomObject As Random)
13
14       sharedLocation = sharedObject
15       randomSleepTime = randomObject
16 End Sub ' New

Fig. 14.7 Consumer reads Integers from unsynchronized shared buffer (part 1 of 2).

Fig. 14.6 Producer places Integers in unsynchronized shared buffer (part 2 of 2).



Chapter 14 Multithreading 607

Note: We use method Sleep in this example to emphasize the fact that, in multi-
threaded applications, it is unclear when each thread will perform its task and how long it
will take to perform that task when it has the processor. Normally, dealing with these
thread-scheduling issues is the job of the computer’s operating system. In this program, our
thread’s tasks are quite simple—the producer must loop four times and perform an assign-
ment statement;the consumer must loop four times and add a value to variable sum. If we
omit the Sleep method call, and if the producer executes first, the producer would com-
plete its task before the consumer ever gets a chance to execute. In the same situation, if the
consumer executes first, it would consume -1 four times and then terminate before the pro-
ducer can produce the first real value.

Module modSharedCell’s Main method (Fig. 14.8) instantiates a shared CHold-
IntegerUnsynchronized object (line 14) and a Random object (line 17) for gener-
ating random sleep times; it then passes these objects as arguments to the constructors for
the objects of classes CProducer (producer, line 20) and CConsumer (consumer,
line 21). The CHoldIntegerUnsynchronized object contains the data that will be
shared between the producer and consumer threads. Line 25 creates producerThread.
The ThreadStart delegate for producerThread specifies that the thread will exe-
cute method Produce of object producer. Line 26 creates the consumerThread.
The ThreadStart delegate for the consumerThread specifies that the thread will
execute method Consume of object consumer. Lines 29–30 name threads producer-
Thread and consumerThread. Finally, lines 33–34 place the two threads in the
Started state by invoking each thread’s Start method. Then, the Main thread terminates.

Ideally, we would like every value produced by the CProducer object to be con-
sumed exactly once by the CConsumer object. However, when we study the first output
of Fig. 14.8, we see that the consumer retrieved a value (-1) before the producer ever
placed a value in the shared buffer, and that the value 1 was consumed three times. The
consumer finished executing before the producer had an opportunity to produce the values
2, 3 and 4. Therefore, those three values were lost. In the second output, we see that the

17
18    ' store values 1-4 in object sharedLocation
19 Public Sub Consume()
20       Dim count, sum As Integer
21
22       ' sleep for random interval up to 3000 milliseconds
23       ' then add sharedLocation's Buffer property value to sum
24       For count = 1 To 4
25          Thread.Sleep(randomSleepTime.Next(3000))
26          sum += sharedLocation.Buffer
27       Next
28
29       Console.WriteLine(Thread.CurrentThread.Name & _
30          " read values totaling: " & sum & "." & vbCrLf & _
31          "Terminating " & Thread.CurrentThread.Name & ".")
32 End Sub ' Consume
33
34 End Class ' CConsumer

Fig. 14.7 Consumer reads Integers from unsynchronized shared buffer (part 2 of 2).



608 Multithreading Chapter 14

1 ' Fig. 14.8: SharedCell.vb
2 ' Creates producer and consumer threads which interact
3 ' with each other through common CHoldIntegerUnsynchronized
4 ' object.
5
6 Imports System.Threading
7
8 Module modSharedCell
9

10    ' create producer and consumer threads and start 
11 Sub Main()
12
13       ' create shared object used by threads
14       Dim holdInteger As New CHoldIntegerUnsynchronized()
15
16       ' Random object used by each thread
17       Dim randomObject As New Random()
18
19       ' create Producer and Consumer objects
20       Dim producer As New CProducer(holdInteger, randomObject)
21       Dim consumer As New CConsumer(holdInteger, randomObject)
22
23       ' create threads for producer and consumer  
24       ' set delegates for each thread
25       Dim producerThread As New Thread(AddressOf producer.Produce)
26       Dim consumerThread As New Thread(AddressOf consumer.Consume)
27
28       ' name each thread
29       producerThread.Name = "Producer"
30       consumerThread.Name = "Consumer"
31
32       ' start each thread
33       producerThread.Start()
34       consumerThread.Start()
35 End Sub ' Main
36
37 End Module ' modSharedCell

Consumer reads -1
Producer writes 1
Consumer reads 1
Consumer reads 1
Consumer reads 1
Consumer read values totaling: 2.
Terminating Consumer.
Producer writes 2
Producer writes 3
Producer writes 4
Producer done producing.
Terminating Producer.

Fig. 14.8 Producer and consumer threads accessing a shared object without 
synchronization (part 1 of 2).



Chapter 14 Multithreading 609

value 1 was lost, because the values 1 and 2 were produced before the consumer thread
could read the value 1. In addition, the value 4 was consumed twice. The last sample output
demonstrates that it is possible, with some luck, to achieve a proper output, in which each
value that the producer produces is consumed once and only once by the consumer. This
example clearly demonstrates that access to shared data by concurrent threads must be con-
trolled carefully; otherwise, a program might produce incorrect results. 

sTo solve the problems that occur in the previous example regarding lost and repeat-
edly consumed data, we will (in Fig. 14.9) synchronize the concurrent producer and con-
sumer threads access to the shared data by using Monitor class methods Enter, Wait,
Pulse and Exit. When a thread uses synchronization to access a shared object, the object
is locked, and no other thread can acquire the lock for that shared object until the thread
holding the lock releases it.

14.6 Producer/Consumer Relationship with Thread 
Synchronization
Figure 14.12 demonstrates a producer and a consumer accessing a shared cell of memory
with synchronization. The consumer consumes only after the producer produces a value,
and the producer produces a new value only after the consumer consumes the previously
produced value. Classes CProducer (Fig. 14.10), CConsumer (Fig. 14.11) and module

Producer writes 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer reads 4
Consumer read values totaling: 13.
Terminating Consumer.

Producer writes 1
Consumer reads 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer read values totaling: 10.
Terminating Consumer.

Fig. 14.8 Producer and consumer threads accessing a shared object without 
synchronization (part 2 of 2).



610 Multithreading Chapter 14

modSharedCell (Fig. 14.12) are identical to those in Fig. 14.6, Fig. 14.7 and Fig. 14.8,
respectively, except that they use the new class CHoldIntegerSynchronized
(Fig. 14.9). [Note: In this example, we demonstrate synchronization with class Monitor’s
Enter and Exit methods. In the next example, we demonstrate the same concepts using
a SyncLock block.]    

1 ' Fig. 14.9: HoldIntegerSynchronized.vb
2 ' Synchronizes access to an Integer.
3
4 Imports System.Threading
5
6 Public Class CHoldIntegerSynchronized
7
8    ' buffer shared by producer and consumer threads
9 Private mBuffer As Integer = -1

10
11    ' occupiedBufferCount maintains count of occupied buffers
12 Private occupiedBufferCount As Integer
13
14 Public Property Buffer() As Integer
15
16       Get
17
18          ' obtain lock on this object
19          Monitor.Enter(Me)
20
21          ' if there is no data to read, place invoking
22          ' thread in WaitSleepJoin state
23          If occupiedBufferCount = 0 Then
24             Console.WriteLine(Thread.CurrentThread.Name & _
25                " tries to read.")
26
27             DisplayState("Buffer empty. " & _
28                Thread.CurrentThread.Name & " waits.")
29
30             Monitor.Wait(Me)
31          End If
32
33          ' indicate that producer can store another value 
34          ' because consumer just retrieved buffer value
35          occupiedBufferCount -= 1
36
37          DisplayState(Thread.CurrentThread.Name & " reads " & _
38             mBuffer)
39
40          ' tell waiting thread (if there is one) to
41          ' become ready to execute (Started state)
42          Monitor.Pulse(Me)
43
44          ' Get copy of buffer before releasing lock.
45          ' It is possible that the producer could be
46          ' assigned the processor immediately after the 

Fig. 14.9 Synchronized shared Integer buffer (part 1 of 3).



Chapter 14 Multithreading 611

47          ' monitor is released and before the return
48          ' statement executes. In this case, the producer
49          ' would assign a new value to buffer before the
50          ' return statement returns the value to the 
51          ' consumer. Thus, the consumer would receive the
52          ' new value. Making a copy of buffer and 
53          ' returning the copy helps ensure that the
54          ' consumer receives the proper value.
55          Dim bufferCopy As Integer = mBuffer
56
57          ' release lock on this object
58          Monitor.Exit(Me)
59
60          Return bufferCopy
61       End Get
62
63       Set(ByVal Value As Integer)
64
65          ' acquire lock for this object
66          Monitor.Enter(Me)
67
68          ' if there are no empty locations, place invoking
69          ' thread in WaitSleepJoin state
70          If occupiedBufferCount = 1 Then
71             Console.WriteLine(Thread.CurrentThread.Name & _
72                " tries to write.")
73
74             DisplayState("Buffer full. " & _
75                Thread.CurrentThread.Name & " waits.")
76
77             Monitor.Wait(Me)
78          End If
79
80          ' set new buffer value
81          mBuffer = Value
82
83          ' indicate producer cannot store another value
84          ' until consumer retrieves current buffer value
85          occupiedBufferCount += 1
86
87          DisplayState(Thread.CurrentThread.Name & " writes " & _
88             mBuffer)
89
90          ' tell waiting thread (if there is one) to
91          ' become ready to execute (Started state)
92          Monitor.Pulse(Me)
93
94          ' release lock on this object
95          Monitor.Exit(Me)
96       End Set
97
98 End Property ' Buffer
99

Fig. 14.9 Synchronized shared Integer buffer (part 2 of 3).



612 Multithreading Chapter 14

100 Public Sub DisplayState(ByVal operation As String)
101       Console.WriteLine("{0,-35}{1,-9}{2}" & vbCrLf, _
102          operation, mBuffer, occupiedBufferCount)
103 End Sub ' DisplayState
104
105 End Class ' CHoldIntegerSynchronized

1 ' Fig. 14.10: Producer.vb
2 ' Produce 4 integers and place them in synchronized buffer.
3
4 Imports System.Threading
5
6 Public Class CProducer
7 Private sharedLocation As CHoldIntegerSynchronized
8 Private randomSleepTime As Random
9

10    ' constructor
11 Public Sub New(ByVal sharedObject As _
12       CHoldIntegerSynchronized, ByVal randomObject As Random)
13
14       sharedLocation = sharedObject
15       randomSleepTime = randomObject
16 End Sub ' New
17
18    ' store values 1-4 in object sharedLocation
19 Public Sub Produce()
20       Dim count As Integer
21
22       ' sleep for random interval up to 3000 milliseconds
23       ' set sharedLocation's Buffer property
24       For count = 1 To 4
25          Thread.Sleep(randomSleepTime.Next(3000))
26          sharedLocation.Buffer = count
27       Next
28
29       Console.WriteLine(Thread.CurrentThread.Name & _
30          " done producing. " & vbCrLf & "Terminating " & _
31          Thread.CurrentThread.Name & "." & vbCrLf)
32 End Sub ' Produce
33
34 End Class ' CProducer

Fig. 14.10 Producer places Integers in synchronized shared buffer.

1 ' Fig. 14.11: Consumer.vb
2 ' Consumes 4 Integers from synchronized buffer.
3
4 Imports System.Threading
5

Fig. 14.11 Consumer reads Integers from synchronized shared buffer (part 1 of 2).

Fig. 14.9 Synchronized shared Integer buffer (part 3 of 3).



Chapter 14 Multithreading 613

6 Public Class CConsumer
7 Private sharedLocation As CHoldIntegerSynchronized
8 Private randomSleepTime As Random
9

10    ' constructor
11 Public Sub New(ByVal sharedObject As  _
12       CHoldIntegerSynchronized, ByVal randomObject As Random)
13
14       sharedLocation = sharedObject
15       randomSleepTime = randomObject
16 End Sub ' New
17
18    ' read sharedLocation's value four times
19 Public Sub Consume()
20       Dim count, sum As Integer
21
22       ' sleep for random interval up to 3000 milliseconds
23       ' add sharedLocation's Buffer property value to sum
24       For count = 1 To 4
25          Thread.Sleep(randomSleepTime.Next(3000))
26          sum += sharedLocation.Buffer
27       Next
28
29       Console.WriteLine(Thread.CurrentThread.Name & _
30          " read values totaling: " & sum & "." & vbCrLf & _
31          "Terminating " & Thread.CurrentThread.Name & "." & _
32          vbCrLf)
33 End Sub ' Consume
34
35 End Class ' CConsumer

1 ' Fig. 14.12: SharedCell.vb
2 ' Create producer and consumer threads.
3
4 Imports System.Threading
5
6 Module modSharedCell
7
8 Sub Main()
9

10       ' create shared object used by threads
11       Dim holdInteger As New CHoldIntegerSynchronized()
12
13       ' Random object used by each thread
14       Dim randomObject As New Random()
15
16       ' create CProducer and CConsumer objects
17       Dim producer As New CProducer(holdInteger, randomObject)
18       Dim consumer As New CConsumer(holdInteger, randomObject)

Fig. 14.12 Producer and consumer threads accessing a shared object with 
synchronization (part 1 of 3).

Fig. 14.11 Consumer reads Integers from synchronized shared buffer (part 2 of 2).



614 Multithreading Chapter 14

19
20       Console.WriteLine("{0,-35}{1,-9}{2}" & vbCrLf, _
21          "Operation", "Buffer", "Occupied Count")
22
23       holdInteger.DisplayState("Initial State")
24
25       ' create threads for producer and consumer 
26       ' set delegates for each thread
27       Dim producerThread As _ 
28          New Thread(AddressOf producer.Produce)
29
30       Dim consumerThread As _ 
31          New Thread(AddressOf consumer.Consume)
32
33       ' name each thread
34       producerThread.Name = "Producer"
35       consumerThread.Name = "Consumer"
36
37       ' start each thread
38       producerThread.Start()
39       consumerThread.Start()
40 End Sub ' Main
41
42 End Module ' modSharedCell

Operation                          Buffer   Occupied C

Initial state                      -1       0

Producer writes 1                  1        1

Consumer reads 1                   1        0

Consumer tries to read.
Buffer empty. Consumer waits.      1        0

Producer writes 2                  2        1

Consumer reads 2                   2        0

Producer writes 3                  3        1

Producer tries to write.
Buffer full. Producer waits.       3        1

Consumer reads 3                   3        0

Producer writes 4                  4        1

Producer done producing.
Terminating Producer.

Consumer reads 4                   4        0

Consumer read values totaling: 10.
Terminating Consumer.

Fig. 14.12 Producer and consumer threads accessing a shared object with 
synchronization (part 2 of 3).



Chapter 14 Multithreading 615

Operation                          Buffer   Occupied Count

Initial state                      -1       0

Consumer tries to read.
Buffer empty. Consumer waits.      -1       0

Producer writes 1                  1        1

Consumer reads 1                   1        0

Producer writes 2                  2        1

Consumer reads 2                   2        0

Producer writes 3                  3        1

Producer tries to write.
Buffer full. Producer waits.       3        1

Consumer reads 3                   3        0

Producer writes 4                  4        1

Producer done producing.
Terminating Producer.

Consumer reads 4                   4        0

Consumer read values totaling: 10.
Terminating Consumer.

Operation                          Buffer   Occupied Count

Initial state                      -1       0

Producer writes 1                  1        1

Consumer reads 1                   1        0

Producer writes 2                  2        1

Consumer reads 2                   2        0

Producer writes 3                  3        1

Consumer reads 3                   3        0

Producer writes 4                  4        1

Producer done producing.
Terminating Producer.

Consumer reads 4                   4        0

Consumer read values totaling: 10.
Terminating Consumer.

Fig. 14.12 Producer and consumer threads accessing a shared object with 
synchronization (part 3 of 3).



616 Multithreading Chapter 14

Class CHoldIntegerSynchronized (Fig. 14.9) contains two instance vari-
ables—mBuffer (line 9) and occupiedBufferCount (line 12). Property Buffer’s
Get (lines 16–61) and Set (lines 63–96) accessors now use methods of class Monitor
to synchronize access to property Buffer. Thus, each object of class CHoldInte-
gerSynchronized has a SyncBlock to maintain synchronization. Instance variable
occupiedBufferCount is known as a condition variable—property Buffer’s acces-
sors use this Integer in conditions to determine whether it is the producer’s turn to per-
form a task or the consumer’s turn to perform a task. If occupiedBufferCount is 0,
property Buffer’s Set accessor can place a value into variable mBuffer, because the
variable currently does not contain information. However, this means that property
Buffer’s Get accessor currently cannot read the value of mBuffer. If occupied-
BufferCount is 1, the Buffer property’s Get accessor can read a value from variable
mBuffer, because the variable currently contains information. In this case, property
Buffer’s Set accessor currently cannot place a value into mBuffer.

As in Fig. 14.6, the producer thread (Fig. 14.10) performs the tasks specified in the pro-
ducer object’s Produce method. When line 26 sets the value of CHoldIntegerSyn-
chronized property Buffer, the producer thread invokes the Set accessor in lines 63–
96 (Fig. 14.9). Line 66 invokes Monitor method Enter to acquire the lock on the CHold-
IntegerSynchronized object. The If structure in lines 70–78 then determines whether
occupiedBufferCount is 1. If this condition is True, lines 71–72 output a message
indicating that the producer thread tried to write a value, and lines 74–75 invoke method
DisplayState (lines 100–103) to output another message indicating that the buffer is full
and that the producer thread waits. Line 77 invokes Monitor method Wait to place the
calling thread (i.e., the producer) in the WaitSleepJoin state for the CHoldIntegerSyn-
chronized object and releases the lock on the object. The WaitSleepJoin state for an object
is maintained by that object’s SyncBlock. Now, another thread can invoke an accessor method
of the CHoldIntegerSynchronized object’s Buffer property. 

The producer thread remains in state WaitSleepJoin until the thread is notified that it can
proceed—at which point the thread returns to the Started state and waits to be assigned a pro-
cessor. When the thread returns to the Running state, the thread implicitly reacquires the lock
on the CHoldIntegerSynchronized object, and the Set accessor continues executing
with the next statement after Wait. Line 81 assigns Value to mBuffer. Line 85 increments
the occupiedBufferCount to indicate that the shared buffer now contains a value (i.e.,
a consumer can read the value, and a producer cannot yet put another value there). Lines 87–
88 invoke method DisplayState to output a line to the command window indicating that
the producer is writing a new value into the mBuffer. Line 92 invokes Monitor method
Pulse with the CHoldIntegerSynchronized object as an argument. If there are any
waiting threads in that object’s SyncBlock, the first waiting thread enters the Started state; this
thread can attempt its task again as soon as the thread is assigned a processor. The Pulse
method returns immediately. Line 95 invokes Monitor method Exit to release the lock on
the CHoldIntegerSynchronized object, and the Set accessor returns to its caller.

Common Programming Error 14.4
Failure to release the lock on an object when that lock is no longer needed is a logic error.
This will prevent other threads that require the lock from acquiring the lock and proceeding
with their tasks. These threads will be forced to wait (unnecessarily, because the lock is no
longer needed). Such waiting can lead to deadlock and indefinite postponement. 14.4



Chapter 14 Multithreading 617

The Get and Set accessors are implemented similarly. As in Fig. 14.7, the consumer
thread (Fig. 14.11)performs the tasks specified in the consumer object’s Consume
method. The consumer thread gets the value of the CHoldIntegerSynchronized
object’s Buffer property (Fig. 14.11, line 26) by invoking the Get accessor at Fig. 14.9,
lines 16–61. In Fig. 14.9, line 19 invokes Monitor method Enter to acquire the lock on
the CHoldIntegerSynchronized object. 

The If structure in lines 23–31 determines whether occupiedBufferCount is
0. If this condition is True, lines 24–25 output a message indicating that the consumer
thread tried to read a value, and lines 27–28 invoke method DisplayState to output
another message indicating that the buffer is empty and that the consumer thread waits.
Line 30 invokes Monitor method Wait to place the calling thread (i.e., the consumer)
in the WaitSleepJoin state for the CHoldIntegerSynchronized object and releases
the lock on the object. Now, another thread can invoke an accessor method of the
CHoldIntegerSynchronized object’s Buffer property. 

The consumer thread object remains in the WaitSleepJoin state until the thread is
notified that it can proceed—at which point the thread returns to the Started state and
waits for the system to assign a processor to the thread. When the thread reenters the Run-
ning state, the thread implicitly reacquires the lock on the CHoldIntegerSynchro-
nized object, and the Get accessor continues executing with the next statement after
Wait. Line 35 decrements occupiedBufferCount to indicate that the shared buffer
now is empty (i.e., a consumer cannot read the value, but a producer can place another
value into the shared buffer). Lines 37–38 output a line to the command window speci-
fying the value that the consumer is reading, and line 42 invokes Monitor method
Pulse with the CHoldIntegerSynchronized object as an argument. If there are
any waiting threads in that object’s SyncBlock, the first waiting thread enters the Started
state, indicating that the thread can attempt its task again as soon as the thread is assigned
a processor. The Pulse method returns immediately. Line 55 creates a copy of
mBuffer before releasing lock. It is possible that the producer could be assigned the
processor immediately after the lock is released (line 58) and before the Return state-
ment executes (line 60). In this case, the producer would assign a new value to mBuffer
before the Return statement returns the value to the consumer. Thus, the consumer
would receive the new value. By, making a copy of mBuffer and returning the copy,
we ensure that the consumer receives the proper value. Line 58 invokes Monitor
method Exit to release the lock on the CHoldIntegerSynchronized object, and
the Get accessor returns bufferCopy to its caller.

Study the outputs depicted in Fig. 14.12. Observe that every Integer produced is
consumed exactly once—no values are lost, and no values are consumed more than once.
This occurs because the producer and consumer cannot perform tasks unless it is "their
turn." The producer must go first; the consumer must wait if the producer has not pro-
duced a value since the consumer last consumed; and the producer must wait if the con-
sumer has not yet consumed the value that the producer most recently produced. Execute
this program several times to confirm that every Integer produced is consumed
exactly once. 

In the first and second sample outputs, notice the lines indicating when the producer
and consumer must wait to perform their respective tasks. In the third sample output,
notice that the producer and consumer were able to perform their tasks without waiting.



618 Multithreading Chapter 14

14.7 Producer/Consumer Relationship: Circular Buffer
Figure 14.9 uses thread synchronization to guarantee that two threads correctly manipulate
data in a shared buffer. However, the application might not perform optimally. If the two
threads operate at different speeds, one of the threads will spend more (or most) of its time
waiting. For example, in Fig. 14.12, we shared a single Integer between the two threads.
If the producer thread produces values faster than the consumer can consume those values,
then the producer thread waits for the consumer, because there are no other memory loca-
tions in which to place the next value. Similarly, if the consumer consumes faster than the
producer can produce values, the consumer waits until the producer places the next value
into the shared location in memory. Even when we have threads that operate at the same
relative speeds, over a period of time, those threads could become “out of sync,” causing
one of the threads to wait for the other. We cannot make assumptions about the relative
speeds of asynchronous concurrent threads. Too many interactions occur among the oper-
ating system, the network, the user and other components, and these interactions can cause
the threads to operate a different speeds. When this happens, threads wait. When threads
wait, programs become less productive, user-interactive programs become less responsive
and network applications suffer longer delays. 

To minimize waiting by threads that share resources and operate at the same relative
speeds, we can implement a circular buffer, which provides extra buffers into which the pro-
ducer can place values and from which the consumer can retrieve those values. Let us assume
the buffer is implemented as an array. The producer and consumer work from the beginning
of the array. When either thread reaches the end of the array, it simply returns to the first ele-
ment of the array to perform its next task. If the producer temporarily produces values faster
than the consumer can consume them, the producer can write additional values into the extra
buffers (if cells are available). This enables the producer to perform its task, even though the
consumer is not ready to receive the value currently being produced. Similarly, if the con-
sumer consumes faster than the producer produces new values, the consumer can read addi-
tional values from the buffer (if there are any). This enables the consumer to perform its task,
even though the producer is not ready to produce additional values. 

Readers should note that the circular buffer would be inappropriate if the producer and
consumer operate at different speeds. If the consumer always executes faster than the pro-
ducer, then a buffer with one location would suffice. Additional locations would waste
memory. If the producer always executes faster, a buffer with an infinite number of loca-
tions would be required to absorb the extra production. 

The key to using a circular buffer is to define it with enough extra cells so that it can
handle the expected “extra” production. If, over a period of time, we determine that the pro-
ducer often produces as many as three more values than the consumer can consume, we can
define a buffer of at least three cells to handle the extra production. We do not want the
buffer to be too small, because that would result in waiting threads. On the other hand, we
do not want the buffer to be too large, because that would waste memory. 

Performance Tip 14.4
Even when using a circular buffer, it is possible that a producer thread could fill the buffer,
which would force the producer thread to wait until a consumer consumes a value to free an
element in the buffer. Similarly, if the buffer is empty at any given time, the consumer thread
must wait until the producer produces another value. The key to using a circular buffer to
optimize the buffer size, thus minimizing the amount of thread-wait time. 14.4



Chapter 14 Multithreading 619

Figure 14.16 demonstrates a producer and a consumer accessing a circular buffer (in this
case, a shared array of three cells) with synchronization. In this version of the producer/con-
sumer relationship, the consumer consumes a value only when the array is not empty, and the
producer produces a value only when the array is not full. This program is implemented as a
Windows application that sends its output to a TextBox. Classes CProducer (Fig. 14.14)
and CConsumer (Fig. 14.15) perform the same tasks as in Fig. 14.10 and Fig. 14.11, respec-
tively, except that they output messages to the TextBox in the application window. The
statements that created and started the thread objects in the Main methods of module mod-
SharedCell (Fig. 14.8 and Fig. 14.12) now appear in module modCircularBuffer
(Fig. 14.16), where the Load event handler (lines 15–50) performs the statements. 

The most significant differences between this and the previous synchronized example
occur in class CHoldIntegerSynchronized (Fig. 14.13), which now contains five
instance variables. Array mBuffer is a three-element Integer array that represents the
circular buffer. Variable occupiedBufferCount is the condition variable used to
determine whether a producer can write into the circular buffer (i.e., occupiedBuffer-
Count is less than the number of elements in array mBuffer) and whether a consumer
can read from the circular buffer (i.e., occupiedBufferCount is greater than 0). Vari-
able readLocation indicates the position from which the next value can be read by a
consumer. Variable writeLocation indicates the next location in which a value can be
placed by a producer. The program displays output in txtOutput (a TextBox control).

The Set accessor (lines 73–115) of property Buffer performs the same tasks that it
did in Fig. 14.9, but with a few modifications. Rather than using Monitor methods
Enter and Exit to acquire and release the lock on the CHoldIntegerSynchro-
nized object, we use a block of code preceded by keyword SyncLock (line 77) to lock
the CHoldIntegerSynchronized object. As program control enters the SyncLock
block, the currently executing thread acquires the lock (assuming the lock currently is avail-
able) on the CHoldIntegerSynchronized object (i.e., Me). When the SyncLock
block terminates, the thread releases the lock automatically. 

Common Programming Error 14.5
When using class Monitor’s Enter and Exit methods to manage an object’s lock, Exit
must be called explicitly to release the lock. If an exception occurs in a method before Exit
can be called and that exception is not caught, the method could terminate without calling
Exit. If so, the lock is not released. To avoid this error, place code that might throw excep-
tions in a Try block, and then place the call to Exit in the corresponding Finally block.
This ensures that the lock is released. 14.5

Software Engineering Observation 14.2
Using a SyncLock block to manage the lock on a synchronized object eliminates the pos-
sibility of forgetting to release the lock via a call to Monitor method Exit. When a Syn-
cLock block terminates for any reason, Visual Basic implicitly calls Monitor method
Exit. Thus, even if an exception occurs in the block, the lock will be released. 14.2

The If structure in lines 81–88 of the Set accessor determines whether the producer
must wait (i.e., all buffers are full). If the producer thread must wait, lines 82–83 append
text to the txtOutput indicating that the producer is waiting to perform its task, and line
87 invokes Monitor method Wait to place the producer thread in the WaitSleepJoin state
of the CHoldIntegerSynchronized object. When execution continues at line 92



620 Multithreading Chapter 14

after the If structure, the value written by the producer is placed in the circular buffer at
location writeLocation. Next, lines 94–96 append to the TextBox a message con-
taining the produced value. Line 100 increments occupiedBufferCount, because the
buffer now contains at least one value that the consumer can read. Then, lines 104–105
update writeLocation for the next call to the Set accessor of property Buffer. In
line 107 method CreateStateOutput (lines 120–165) creates output indicating the
number of occupied buffers, the contents of the buffers and the current writeLocation
and readLocation. Finally, line 112 invokes Monitor method Pulse to indicate that
a thread waiting on the CHoldIntegerSynchronized object (if there is a waiting
thread) should transition to the Started state. Note that reaching the closing SyncLock
statement (End SyncLock) in line 113 causes the thread to release the lock on the
CHoldIntegerSynchronized object.

The Get accessor (lines 29–71) of property Buffer also performs the same tasks in this
example that it did in Fig. 14.9, but with a few minor modifications. The If structure in lines
37–43 of the Get accessor determines whether the consumer must wait (i.e., all buffers are
empty). If the consumer thread must wait, lines 38–39 append text to the txtOutput indi-
cating that the consumer is waiting to perform its task, and line 42 invokes Monitor method
Wait to place the consumer thread in the WaitSleepJoin state of the CHoldIntegerSyn-
chronized object. Once again, we use a SyncLock block to acquire and release the lock
on the CHoldIntegerSynchronized object, rather than using Monitor methods
Enter and Exit. When execution continues at line 47 after the If structure, readValue
is assigned the value at location readLocation in the circular buffer. Lines 49–51 appends
the consumed value to the TextBox. Line 55 decrements the occupiedBufferCount,
because the buffer contains at least one open position in which the producer thread can place
a value. Then, line 59 update readLocation for the next call to the Get accessor of
Buffer. Line 61 invokes method CreateStateOutput to output the number of occu-
pied buffers, the contents of the buffers and the current writeLocation and readLoca-
tion. Finally, line 66 invokes method Pulse to transition the next thread waiting for the
CHoldIntegerSynchronized object into the Started state, and line 68 returns the con-
sumed value to the calling method.    

1 ' Fig. 14.13: HoldIntegerSynchronized.vb
2 ' Synchronize access to circular Integer buffer.
3
4 Imports System.Threading
5 Imports System.Windows.Forms
6
7 Public Class CHoldIntegerSynchronized
8
9    ' each array element is a buffer

10 Private mBuffer As Integer() = {-1, -1, -1}
11
12    ' occupiedBufferCount maintains count of occupied buffers
13 Private occupiedBufferCount As Integer
14
15    ' maintains read and write buffer locations
16 Private readlocation, writeLocation As Integer

Fig. 14.13 Synchronized shared circular buffer (part 1 of 4).



Chapter 14 Multithreading 621

17
18    ' GUI component to display output
19 Private txtOutput As TextBox
20
21    ' constructor
22 Public Sub New(ByVal output As TextBox)
23       txtOutput = output
24 End Sub ' New
25
26    ' property Buffer
27 Property Buffer() As Integer
28
29       Get
30
31          ' lock this object while getting value
32          ' from mBuffer array
33          SyncLock (Me)
34
35             ' if there is no data to read, place invoking
36             ' thread in WaitSleepJoin state
37             If occupiedBufferCount = 0 Then
38                txtOutput.Text &= vbCrLf & "All buffers empty. " & _
39                   Thread.CurrentThread.Name & " waits."
40
41                txtOutput.ScrollToCaret()
42                Monitor.Wait(Me)
43             End If
44
45             ' obtain value at current readLocation
46             ' add string indicating consumed value to output
47             Dim readValue As Integer = mBuffer(readlocation)
48
49             txtOutput.Text &= vbCrLf & _
50                Thread.CurrentThread.Name & " reads " & _
51                mBuffer(readlocation) & " "
52
53             ' just consumed value, so decrement number of 
54             ' occupied buffers
55             occupiedBufferCount -= 1
56
57             ' update readLocation for future read operation
58             ' add current state to output
59             readlocation = (readlocation + 1) Mod mBuffer.Length
60
61             txtOutput.Text &= CreateStateOutput()
62             txtOutput.ScrollToCaret()
63
64             ' return waiting thread (if there is one)
65             ' to Started state
66             Monitor.Pulse(Me)
67
68             Return readValue
69          End SyncLock

Fig. 14.13 Synchronized shared circular buffer (part 2 of 4).



622 Multithreading Chapter 14

70
71       End Get
72
73       Set(ByVal Value As Integer)
74
75          ' lock this object while setting value
76          ' in mBuffer array
77          SyncLock (Me)
78
79             ' if there are no empty locations, place invoking
80             ' thread in WaitSleepJoin state
81             If occupiedBufferCount = mBuffer.Length Then
82                txtOutput.Text &= vbCrLf & "All buffers full. " & _
83                   Thread.CurrentThread.Name & " waits."
84
85                txtOutput.ScrollToCaret()
86
87                Monitor.Wait(Me)
88             End If
89
90             ' place value in writeLocation of mBuffer, then
91             ' add string indicating produced value to output
92             mBuffer(writeLocation) = Value
93
94             txtOutput.Text &= vbCrLf & _
95                Thread.CurrentThread.Name & " writes " & _
96                mBuffer(writeLocation) & " "
97
98             ' just produced value, so increment number of 
99             ' occupied mBuffer elements
100             occupiedBufferCount += 1
101
102             ' update writeLocation for future write operation,
103             ' then add current state to output
104             writeLocation = (writeLocation + 1) Mod _
105                mBuffer.Length
106
107             txtOutput.Text &= CreateStateOutput()
108             txtOutput.ScrollToCaret()
109
110             ' return waiting thread (if there is one)
111             ' to Started state
112             Monitor.Pulse(Me)
113          End SyncLock
114
115       End Set
116
117 End Property ' Buffer
118
119    ' create state output
120 Public Function CreateStateOutput() As String
121
122       Dim i As Integer

Fig. 14.13 Synchronized shared circular buffer (part 3 of 4).



Chapter 14 Multithreading 623

123
124       ' display first line of state information
125       Dim output As String = "(buffers occupied: " & _
126          occupiedBufferCount & ")" & vbCrLf & "buffers: "
127
128       For i = 0 To mBuffer.GetUpperBound(0)
129          output &= " " & mBuffer(i) & "  "
130       Next
131
132       output &= vbCrLf
133
134       ' display second line of state information
135       output &= "         "
136
137       For i = 0 To mBuffer.GetUpperBound(0)
138          output &= "---- "
139       Next
140
141       output &= vbCrLf
142
143       ' display third line of state information
144       output &= "         "
145
146       For i = 0 To mBuffer.GetUpperBound(0)
147
148          If (i = writeLocation AndAlso _
149             writeLocation = readlocation) Then
150
151             output &= " WR  "
152          ElseIf i = writeLocation Then
153             output &= " W   "
154          ElseIf i = readlocation Then
155             output &= "  R  "
156          Else
157             output &= "     "
158          End If
159
160       Next
161
162       output &= vbCrLf
163
164       Return output
165 End Function ' CreateStateOutput
166
167 End Class ' CHoldIntegerSynchronized

1 ' Fig. 14.14: Producer.vb
2 ' Produce 10 Integers into synchronized Integer buffer.
3
4 Imports System.Threading

Fig. 14.14 Producer places Integers in synchronized circular buffer (part 1 of 2).

Fig. 14.13 Synchronized shared circular buffer (part 4 of 4).



624 Multithreading Chapter 14

5 Imports System.Windows.Forms
6
7 Public Class CProducer
8 Private sharedLocation As CHoldIntegerSynchronized
9 Private randomSleepTime As Random

10 Private txtOutput As TextBox
11
12    ' constructor
13 Public Sub New(ByVal sharedObject As CHoldIntegerSynchronized, _
14       ByVal randomObject As Random, ByVal output As TextBox)
15
16       sharedLocation = sharedObject
17       randomSleepTime = randomObject
18       txtOutput = output
19 End Sub ' New
20
21    ' store values 11-20 and place them  
22    ' in sharedLocation's buffer
23 Public Sub Produce()
24       Dim count As Integer
25
26       ' sleep for random interval up to 3000 milliseconds
27       ' set sharedLocation's Buffer property
28       For count = 11 To 20
29          Thread.Sleep(randomSleepTime.Next(1, 3000))
30          sharedLocation.Buffer = count
31       Next
32
33       txtOutput.Text &= vbCrLf & Thread.CurrentThread.Name & _
34          " done producing. " & vbCrLf & _
35          Thread.CurrentThread.Name & " terminated." & vbCrLf
36 End Sub ' Produce
37
38 End Class ' CProducer

1 ' Fig. 14.15: Consumer.vb
2 ' Consume 10 Integers from synchronized circular buffer.
3
4 Imports System.Threading
5 Imports System.Windows.Forms
6
7 Public Class CConsumer
8 Private sharedLocation As CHoldIntegerSynchronized
9 Private randomSleepTime As Random

10 Private txtOutput As TextBox
11
12    ' constructor
13 Public Sub New(ByVal sharedObject As CHoldIntegerSynchronized, _
14       ByVal randomObject As Random, ByVal output As TextBox)
15

Fig. 14.15 Consumer reads Integers from synchronized circular buffer (part 1 of 2).

Fig. 14.14 Producer places Integers in synchronized circular buffer (part 2 of 2).



Chapter 14 Multithreading 625

16       sharedLocation = sharedObject
17       randomSleepTime = randomObject
18       txtOutput = output
19 End Sub ' New
20
21    ' consume 10 Integers from buffer
22 Public Sub Consume()
23       Dim count, sum As Integer
24
25       ' loop 10 times and sleep for random interval up to
26       ' 3000 milliseconds 
27       ' add sharedLocation's Buffer property value to sum
28       For count = 1 To 10
29          Thread.Sleep(randomSleepTime.Next(1, 3000))
30          sum += sharedLocation.Buffer
31       Next
32
33       txtOutput.Text &= vbCrLf & "Total " & _
34          Thread.CurrentThread.Name & " consumed: " & sum & vbCrLf & _
35          Thread.CurrentThread.Name & " terminated." & vbCrLf
36
37       txtOutput.ScrollToCaret()
38 End Sub ' Consume
39
40 End Class ' CConsumer

1 ' Fig. 14.16: FrmCircularBuffer.vb
2 ' Create display form and start threads.
3
4 Imports System.Threading
5 Imports System.Windows.Forms
6
7 Public Class FrmCircularBuffer
8 Inherits Form
9

10 Friend WithEvents txtOutput As TextBox
11
12    ' Visual Studio .NET generated code
13
14    ' initialize threads upon loading
15 Private Sub FrmCircularBuffer_Load(ByVal sender As Object, _
16       ByVal e As System.EventArgs) Handles MyBase.Load
17
18       ' create shared object
19       Dim sharedLocation As _
20          New CHoldIntegerSynchronized(txtOutput)
21
22       ' display sharedLocation state before producer 
23       ' and consumer threads begin execution
24       txtOutput.Text = sharedLocation.CreateStateOutput()

Fig. 14.16 Producer and consumer threads accessing a circular buffer (part 1 of 4).

Fig. 14.15 Consumer reads Integers from synchronized circular buffer (part 2 of 2).



626 Multithreading Chapter 14

25
26       ' Random object used by each thread
27       Dim randomObject As New Random()
28
29       ' create CProducer and CConsumer objects
30       Dim producer As New CProducer(sharedLocation, _
31          randomObject, txtOutput)
32
33       Dim consumer As New CConsumer(sharedLocation, _
34          randomObject, txtOutput)
35
36       ' create threads
37       Dim producerThread As _
38          New Thread(AddressOf producer.Produce)
39       
40       Dim consumerThread As _
41          New Thread(AddressOf consumer.Consume)
42
43       ' name threads
44       producerThread.Name = "Producer"
45       consumerThread.Name = "Consumer"
46
47       ' start threads
48       producerThread.Start()
49       consumerThread.Start()
50 End Sub ' FrmCircularBuffer_Load
51
52 End Class ' FrmCircularBuffer

Fig. 14.16 Producer and consumer threads accessing a circular buffer (part 2 of 4).

Value placed in last buffer.
Next value will be deposited in 
leftmost buffer.



Chapter 14 Multithreading 627

Fig. 14.16 Producer and consumer threads accessing a circular buffer (part 3 of 4).

Circular buffer effect—the 
fourth value is deposited in the 
leftmost buffer.

Value placed in last buffer.
Next value will be deposited in 
leftmost buffer.

Circular buffer effect—the 
seventh value is deposited in the 
leftmost buffer.

Value placed in last buffer.
Next value will be deposited in 
leftmost buffer.

Circular buffer effect—the tenth 
value is deposited in the leftmost 
buffer.



628 Multithreading Chapter 14

In Fig. 14.16, the outputs include the current occupiedBufferCount, the contents
of the buffers and the current writeLocation and readLocation. In the output, the
letters W and R represent the current writeLocation and readLocation, respectively.
Notice that, after the third value is placed in the third element of the buffer, the fourth value
is inserted at the beginning of the array. This produces the circular buffer effect. 

SUMMARY
• Computers can perform operations concurrently, such as compiling programs, printing files and

receiving electronic mail messages over a network.

• Programming languages generally provide only a simple set of control structures that enable pro-
grammers to perform one action at a time, proceeding to the next action only after the previous one
finishes. 

• Historically, the type of concurrency that computers perform generally has been implemented as
operating system “primitives” available only to highly experienced “systems programmers.”

• The .NET Framework Class Library makes concurrency primitives available to the applications
programmer. The programmer can specify that an application contains threads of execution, where
each thread designates a portion of a program that might execute concurrently with other threads—
this capability is called multithreading.

• A thread that was just created is in the Unstarted state. A thread is initialized using the Thread
class’s constructor, which receives a ThreadStart delegate. This delegate specifies the method
that contains the tasks that a thread will perform.

• A thread remains in the Unstarted state until the thread’s Start method is called; this causes the
thread to enter the Started state (also known as the Ready, or Runnable, state).

• A thread in the Started state enters the Running state when the system assigns a processor to the
thread. The system assigns the processor to the highest-priority Started thread.

• A thread enters the Stopped (or Dead) state when its ThreadStart delegate completes or ter-
minates. A thread is forced into the Stopped state when its Abort method is called (by itself or
by another thread).

Fig. 14.16 Producer and consumer threads accessing a circular buffer (part 4 of 4).



Chapter 14 Multithreading 629

• A Running thread enters the Blocked state when the thread issues an input/output request. A
Blocked thread becomes Started when the I/O it is waiting for completes. A Blocked thread cannot
use a processor, even if one is available.

• If a thread wants to go to sleep, it calls Thread method Sleep. A thread wakes up when the des-
ignated sleep interval expires.

• If a thread cannot continue executing (we will call this the dependent thread) unless another thread
terminates, the dependent thread calls the other thread’s Join method to "join" the two threads.
When two threads are "joined," the dependent thread leaves the WaitSleepJoin state when the other
thread finishes execution (enters the Stopped state). 

• In thread synchronization, when a thread encounters code that it cannot yet run, the thread can call
Monitor method Wait until certain actions occur that enable the thread to continue executing.

• Any thread in the WaitSleepJoin state can leave that state if another thread invokes Thread meth-
od Interrupt on the thread that is in the WaitSleepJoin state.

• If a thread calls Monitor method Wait, a corresponding call to the Monitor method Pulse
or PulseAll by another thread in the program will transition the original thread from the Wait-
SleepJoin state to the Started state.

• If Thread method Suspend is called on a thread (by the thread itself or by another thread in the
program), the thread enters the Suspended state. A thread leaves the Suspended state when a sep-
arate thread invokes Thread method Resume on the suspended thread.

• Every Visual Basic thread has a priority of ThreadPriority.Lowest, ThreadPriori-
ty.BelowNormal, ThreadPriority.Normal, ThreadPriority.AboveNormal or
ThreadPriority.Highest.

• The job of the thread scheduler is to keep the highest-priority thread running at all times and, if
there is more than one highest-priority thread, to ensure that all equally high-priority threads exe-
cute for a quantum at a time in round-robin fashion.

• A thread’s priority can be adjusted with the Priority property, which accepts an argument from
the ThreadPriority enumeration.

• A thread that updates shared data calls Monitor method Enter to acquire the lock on that data.
It then updates the data and calls Monitor method Exit upon completion of the update. While
that data is locked, all other threads attempting to acquire the lock on that data must wait.

• If a programmer places the SyncLock keyword before a block of code, the lock is acquired on
the specified object as program control enters the block; the lock then is released when the block
terminates for any reason.

• If a thread decides that it cannot continue execution, it can call Wait. This puts the thread into the
WaitSleepJoin state. When the thread can continue execution again, Pulse or PulseAll is
called to notify the thread to continue running.

• When the SyncLock keyword is used, Visual Basic implicitly calls the Exit method whenever
we leave the scope of the block.

TERMINOLOGY
Abort method of class Thread Blocked state
AboveNormal constant in ThreadPriority Blocked thread
accessing shared data with synchronization built-in multithreading
acquire the lock for an object circular buffer
automatic garbage collection concurrency
BelowNormal constant in ThreadPriority concurrent producer and consumer threads



630 Multithreading Chapter 14

SELF-REVIEW EXERCISES
14.1 Fill in the blanks in each of the following statements:

a) Monitor methods  and  acquire and release the lock on an object.
b) Among a group of equal-priority threads, each thread receives a brief burst of time called

a , during which the thread has the processor and can perform its tasks.
c) Visual Basic provides a  thread that reclaims dynamically allocated memory.
d) Four reasons that a thread would be alive but not in the Started state are that the thread is

, ,  or .
e) A thread enters the  state when the method that controls the thread’s lifecycle

terminates.
f) A thread’s priority must be one of the ThreadPriority constants ,

, ,  and .
g) To wait for a designated number of milliseconds and then resume execution, a thread

should call the  method of class Thread.
h) Method  of class Monitor transitions a thread from the WaitSleepJoin state

to the Started state.

concurrent programming quantum
condition variable quantum expiration
consumer Ready state
Dead state release a lock
deadlock Resume method of class Thread
DomainUpDown control Runnable state
Enter method of class Monitor Running state
Exit method of class Monitor scheduling
garbage collection shared buffer
garbage-collector thread sleep interval expires
Highest constant in ThreadPriority Sleep method of class Thread
Hoare, C. A. R. sleeping thread
I/O completion Start method of class Thread
I/O request Started state
indefinite postponement starvation
input/output blocking Stopped state
Interrupt method of class Thread Suspend method of class Thread
Join method of class Thread SyncBlock
life cycle of a thread SyncLock keyword
locking objects synchronized block of code
Lowest constant in ThreadPriority System.Threading namespace
memory leak task
Monitor class Thread class
multilevel priority queue thread of execution
multithreading thread-priority scheduling
Name property of class Thread thread state
Normal constant in ThreadPriority ThreadAbortException
Priority property of class Thread ThreadPriority enumeration
priority scheduling ThreadStart delegate
producer Unstarted state
producer/consumer relationship Wait method of class Monitor
Pulse method of class Monitor WaitSleepJoin state
PulseAll method of class Monitor



Chapter 14 Multithreading 631

i) A  block automatically acquires the lock on an object as the program control
enters the block and releases the lock on that object when the block terminates execution.

j) Class Monitor provides methods that  access to shared data.

14.1 State whether each of the following is true or false. If false, explain why.
a) A thread cannot execute if it is in the Stopped state.
b) In Visual Basic, a higher priority thread entering (or reentering) the Started state will pre-

empt threads of lower priority.
c) The code that a thread executes is defined in its Main method.
d) A thread in the WaitSleepJoin state always returns to the Started state when Monitor

method Pulse is called.
e) Method Sleep of class Thread does not consume processor time while a thread sleeps.
f) A blocked thread can be placed in the Started state by Monitor method Pulse.
g) Class Monitor’s Wait, Pulse and PulseAll methods can be used in any block of

code.
h) The programmer must place a call to Monitor method Exit in a SyncLock block to

relinquish the lock.
i) When Monitor class method Wait is called within a locked block, the lock for that

block is released, and the thread that called Wait is placed in the WaitSleepJoin state.

ANSWERS TO SELF-REVIEW EXERCISES
14.1 a) Enter, Exit. b) timeslice or quantum. c) garbage collector. d) waiting, sleeping, sus-
pended, blocked for input/output. e) Stopped. f) Lowest, BelowNormal, Normal, AboveNor-
mal, Highest. g) Sleep. h) Pulse. i) SyncLock. j) synchronize.

14.1 a) True. b) True. c) False. The code that a thread executes is defined in the method specified
by the thread’s ThreadStart delegate. d) False. A thread might be in the WaitSleepJoin state for
several reasons. Calling Pulse moves a thread from the WaitSleepJoin state to the Started state only
if the thread entered the WaitSleepJoin state as the result of a call to Monitor method Wait.
e) True. f) False. A thread is blocked by the operating system and returns to the Started state when
the operating system determines that the thread can continue executing (e.g., when an I/O request
completes or when a lock the thread attempted to acquire becomes available). g) False. Class Mon-
itor methods can be called only if the thread performing the call currently owns the lock on the ob-
ject that each method receives as an argument. h) False. A SyncLock block implicitly relinquishes
the lock when the thread completes execution of the SyncLock block. i) True.

EXERCISES
14.2 =The code that manipulates the circular buffer in Fig. 14.13 will work with a buffer of two or
more elements. Try changing the buffer size to see how it affects the producer and consumer threads.
In particular, notice that the producer waits to produce less frequently as the buffer grows in size.

14.3 Write a program to demonstrate that, as a high-priority thread executes, it will delay the ex-
ecution of all lower-priority threads.

14.4 Write a program that demonstrates timeslicing among several equal-priority threads. Show
that a lower-priority thread’s execution is deferred by the timeslicing of the higher-priority threads.

14.5 Write a program that demonstrates a high-priority thread using Sleep to give lower-priority
threads a chance to run.

14.6 Two problems that can occur in languages like Visual Basic that allow threads to wait are
deadlock, in which one or more threads will wait forever for an event that cannot occur, and indefinite
postponement, in which one or more threads will be delayed for some unpredictably long time, but



632 Multithreading Chapter 14

might eventually complete. Give an example of how each of these problems can occur in a multi-
threaded Visual Basic program.

14.7 (Readers and Writers) This exercise asks you to develop a Visual Basic monitor to solve a
famous problem in concurrency control. This problem was first discussed and solved by P. J. Cour-
tois, F. Heymans and D. L. Parnas in their research paper, “Concurrent Control with Readers and
Writers,” Communications of the ACM, Vol. 14, No. 10, October 1971, pp. 667–668. The interested
student might also want to read C. A. R. Hoare’s seminal research paper on monitors, “Monitors: An
Operating System Structuring Concept,” Communications of the ACM, Vol. 17, No. 10, October
1974, pp. 549–557. Corrigendum, Communications of the ACM, Vol. 18, No. 2, February 1975, p.
95. [The readers and writers problem is discussed at length in Chapter 5 of the author’s book: Deitel,
H. M., Operating Systems, Reading, MA: Addison-Wesley, 1990.]

With multithreading, many threads can access shared data; as we have seen, access to shared
data must be synchronized to avoid corrupting the data.

Consider an airline-reservation system in which many clients are attempting to book seats on
particular flights between particular cities. All the information about flights and seats is stored in a
common database in memory. The database consists of many entries, each representing a seat on a
particular flight for a particular day between particular cities. In a typical airline-reservation sce-
nario, the client would probe the database, looking for the “optimal” flight to meet that client’s
needs. A client might probe the database many times before trying to book a particular flight. A seat
that was available during this probing phase could easily be booked by someone else before the cli-
ent has a chance to book it after deciding on it. In that case, when the client attempts to make the res-
ervation, the client will discover that the data has changed, and the flight is no longer available.

The client probing the database is called a reader. The client attempting to book the flight is
called a writer. Any number of readers can probe shared data at once, but each writer needs exclu-
sive access to the shared data to prevent the data from being corrupted.

Write a multithreaded Visual Basic program that launches multiple reader threads and multiple
writer threads, each attempting to access a single reservation record. A writer thread has two possi-
ble transactions, MakeReservation and CancelReservation. A reader has one possible
transaction, QueryReservation.

First, implement a version of your program that allows unsynchronized access to the reserva-
tion record. Show how the integrity of the database can be corrupted. Next, implement a version of
your program that uses Visual Basic monitor synchronization with Wait and Pulse to enforce a
disciplined protocol for readers and writers accessing the shared reservation data. In particular, your
program should allow multiple readers to access the shared data simultaneously when no writer is
active—but, if a writer is active, then no reader should be allowed to access the shared data.

Be careful. This problem has many subtleties. For example, what happens when there are several
active readers and a writer wants to write? If we allow a steady stream of readers to arrive and share
the data, they could indefinitely postpone the writer (who might become tired of waiting and take his
or her business elsewhere). To solve this problem, you might decide to favor writers over readers. But
here, too, there is a trap, because a steady stream of writers could then indefinitely postpone the wait-
ing readers, and they, too, might choose to take their business elsewhere! Implement your monitor
with the following methods: StartReading, which is called by any reader who wants to begin
accessing a reservation; StopReading, which is called by any reader who has finished reading a
reservation; StartWriting, which is called by any writer who wants to make a reservation; and
StopWriting, which is called by any writer who has finished making a reservation.



15
Strings, Characters and 

Regular Expressions

Objectives
• To be able to create and manipulate nonmodifiable 

character string objects of class String.
• To be able to create and manipulate modifiable 

character string objects of class StringBuilder.
• To be able to use regular expressions in conjunction 

with classes Regex and Match.
The chief defect of Henry King
Was chewing little bits of string.
Hilaire Belloc

Vigorous writing is concise. A sentence should contain no 
unnecessary words, a paragraph no unnecessary sentences.
William Strunk, Jr.

I have made this letter longer than usual, because I lack the 
time to make it short.
Blaise Pascal

The difference between the almost-right word & the right 
word is really a large matter—it’s the difference between the 
lightning bug and the lightning.
Mark Twain

Mum’s the word.
Miguel de Cervantes, Don Quixote de la Mancha



634 Strings, Characters and Regular Expressions Chapter 15

15.1 Introduction
In this chapter, we introduce Visual Basic string and character processing capabilities and
demonstrate the use of regular expressions to search for patterns in text. The techniques
presented in this chapter can be employed to develop text editors, word processors, page-
layout software, computerized typesetting systems and other kinds of text-processing soft-
ware. Previous chapters have already presented several string-processing capabilities. In
this chapter, we expand on this information by detailing the capabilities of class String
and type Char from the System namespace, class StringBuilder from the Sys-
tem.Text namespace and classes Regex and Match from the System.Text.Reg-
ularExpressions namespace. 

15.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of Visual Basic source code. Every pro-
gram is composed of characters that, when grouped together meaningfully, create a se-
quence that the compiler interprets as a series of instructions that describe how to
accomplish a task. In addition to normal characters, a program also can contain character
constants. A character constant is a character that is represented as an integer value, called
a character code. For example, the integer value of 122 corresponds to the character con-
stant "z"c. Character constants are established according to the Unicode character set, an
international character set that contains many more symbols and letters than does the ASCII

Outline

15.1 Introduction
15.2 Fundamentals of Characters and Strings
15.3 String Constructors
15.4 String Length and Chars Properties, and CopyTo Method
15.5 Comparing Strings
15.6 String Method GetHashCode
15.7 Locating Characters and Substrings in Strings
15.8 Extracting Substrings from Strings
15.9 Concatenating Strings
15.10 Miscellaneous String Methods
15.11 Class StringBuilder
15.12 StringBuilder Indexer, Length and Capacity Properties, and 

EnsureCapacity Method
15.13 StringBuilder Append and AppendFormat Methods
15.14 StringBuilder Insert, Remove and Replace Methods
15.16 Card Shuffling and Dealing Simulation
15.17 Regular Expressions and Class Regex

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



Chapter 15 Strings, Characters and Regular Expressions 635

character set (see Appendix E, ASCII character set). To learn the integer equivalents of
many common Unicode characters, see Appendix F, Unicode.

A string is a series of characters treated as a single unit. These characters can be upper-
case letters, lowercase letters, digits and various special characters, such as +, -, *, /, $
and others. A string is an object of class String in the System namespace. We write
string literals, or string constants (often called literal String objects), as sequences of
characters in double quotation marks, as follows:

"John Q. Doe"
"9999 Main Street"
"Waltham, Massachusetts"
"(201) 555-1212"

A declaration can assign a String literal to a String reference. The declaration

Dim color As String = "blue"

initializes String reference color to refer to the String literal object "blue".

Performance Tip 15.1
If there are multiple occurrences of the same String literal object in an application, a sin-
gle copy of the String literal object will be referenced from each location in the program
that uses that String literal. It is possible to share the object in this manner, because
String literal objects are implicitly constant. Such sharing conserves memory. 15.1

15.3 String Constructors
Class String provides three constructors for initializing String objects in various
ways. Figure 15.1 demonstrates the use of three of the constructors.

1 ' Fig. 15.1: StringConstructor.vb
2 ' Demonstrating String class constructors.
3
4 Imports System.Windows.Forms
5
6 Module modStringConstructor
7
8 Sub Main()
9       Dim characterArray As Char()

10       Dim output As String
11       Dim quotes As Char = ChrW(34)
12       Dim originalString, string1, string2, string3, _
13                string4 As String
14
15       characterArray = New Char() {"b"c, "i"c, "r"c, _
16          "t"c, "h"c, " "c, "d"c, "a"c, "y"c}
17
18       ' string initialization
19       originalString = "Welcome to VB.NET Programming!"
20       string1 = originalString
21       string2 = New String(characterArray)

Fig. 15.1 String constructors (part 1 of 2).



636 Strings, Characters and Regular Expressions Chapter 15

In line 11, we declare variable quotes and give it the value returned by function
ChrW when ChrW is passed a value of 34. The value passed to function ChrW is a Unicode
character code. Function ChrW returns as a Char data type the character that corresponds
to the specified Unicode character code. In this case, function ChrW returns a double quote
character ("). (To learn more about character codes, see Appendix F, Unicode.)  

Lines 15–16 allocate Char array characterArray, which contains nine characters.
The c suffix that follows each String converts it to a character literal. We do this because
Option Strict prohibits the implicit conversion from type String to type Char.

Line 19 assigns literal string "Welcome to VB.NET Programming!" to String
reference originalString. Line 20 sets string1 to reference String literal
originalString.

Software Engineering Observation 15.1
In most cases, it is not necessary to make a copy of an existing String object. All String
objects are immutable—their character contents cannot be changed after they are created.
Also, if there are one or more references to a String object (or any object for that matter),
the object cannot be reclaimed by the garbage collector. 15.1

Line 21 assigns to string2 a new String object, using the String constructor
that takes a character array as an argument. The new String object contains a copy of the
characters in array characterArray.

Line 22 assigns to string3 a new String object, using the String constructor
that takes a Char array and two Integer arguments. The second argument specifies the
starting index position (the offset) from which characters in the array are copied. The third
argument specifies the number of characters (the count) to be copied from the specified
starting position in the array. The new String object contains a copy of the specified
characters in the array. If the specified offset or count indicates that the program should

22       string3 = New String(characterArray, 6, 3)
23       string4 = New String("C"c, 5)
24
25       output = "string1 = " & quotes & string1 & quotes & _
26          vbCrLf & "string2 = " & quotes & string2 & quotes & _
27          vbCrLf & "string3 = " & quotes & string3 & quotes & _
28          vbCrLf & "string4 = " & quotes & string4 & quotes
29
30       MessageBox.Show(output, "String Class Constructors", _
31          MessageBoxButtons.OK, MessageBoxIcon.Information)
32 End Sub ' Main
33
34 End Module ' modStringConstructor

Fig. 15.1 String constructors (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 637

access an element outside the bounds of the character array, an ArgumentOutOfRan-
geException is thrown.

Line 23 assigns to string4 a new String object, using the String constructor
that takes as arguments a character and an Integer specifying the number of times to
repeat that character in the String.

Each instance of variable quotes (lines 25–28) represents a double quote character
("). Visual Studio .NET treats double quotes as delimiters for Strings and does not treat
them as part of a String. We can represent a quotation mark within a String by using
the numerical code of the character (e.g., line 11) or by placing consecutive double quote
characters ("") in the String.

15.4 String Length and Chars Properties, and CopyTo
Method
The application in Fig. 15.2 presents the String property Chars, which facilitates the
retrieval of any character in the String, and the String property Length, which re-
turns the length of the String. The String method CopyTo copies a specified number
of characters from a String into a Char array.

1 ' Fig. 15.2: StringMiscellaneous.vb
2 ' Using properties Length and Chars, and method CopyTo
3 ' of class string.
4
5 Imports System.Windows.Forms
6
7 Module modMiscellaneous
8
9 Sub Main()

10       Dim string1, output As String
11       Dim characterArray As Char()
12       Dim i As Integer
13       Dim quotes As Char = ChrW(34)
14
15       string1 = "hello there"
16       characterArray = New Char(5) {}
17
18       ' output string
19       output = "string1: " & quotes & string1 & quotes
20
21       ' test Length property
22       output &= vbCrLf & "Length of string1: " & string1.Length
23
24       ' loop through characters in string1 and display 
25       ' reversed
26       output &= vbCrLf & "The string reversed is: "
27
28       For i = string1.Length - 1 To 0 Step -1
29          output &= string1.Chars(i)
30       Next

Fig. 15.2 String Length and Chars properties, and CopyTo method (part 1 
of 2).



638 Strings, Characters and Regular Expressions Chapter 15

In this example, we create an application that determines the length of a String,
reverses the order of the characters in the String and copies a series of characters from
the String into a character array.

Line 22 uses String property Length to determine the number of characters in
String string1. Like arrays, Strings always know their own size.

Lines 28–30 append to output the characters of the String string1 in reverse
order. The String property Chars returns the character located in a specific index in the
String. Property Chars takes an Integer argument specifying the index and returns
the character at that index. As in arrays, the first element of a String is at index 0.

Common Programming Error 15.1
Attempting to access a character that is outside the bounds of a String (i.e., an index less
than 0 or an index greater than or equal to the String’s length) results in an Index-
OutOfRangeException. 15.1

Line 33 uses String method CopyTo to copy the characters of a String
(string1) into a character array (characterArray). The first argument given to
method CopyTo is the index from which the method begins copying characters in the
String. The second argument is the character array into which the characters are copied.
The third argument is the index specifying the location at which the method places the
copied characters in the character array. The last argument is the number of characters that
the method will copy from the String. Lines 36–38 append the Char array contents to
String output one character at a time.

31
32       ' copy characters from string1 into characterArray
33       string1.CopyTo(0, characterArray, 0, 5)
34       output &= vbCrLf & "The character array is: "
35
36       For i = 0 To characterArray.GetUpperBound(0)
37          output &= characterArray(i)
38       Next
39
40       MessageBox.Show(output, "Demonstrating String" & _
41          " properties Length and Chars", _
42          MessageBoxButtons.OK, MessageBoxIcon.Information)
43 End Sub ' Main
44
45 End Module ' modMiscellaneous

Fig. 15.2 String Length and Chars properties, and CopyTo method (part 2 
of 2).



Chapter 15 Strings, Characters and Regular Expressions 639

15.5 Comparing Strings
The next two examples demonstrate the various methods that Visual Basic provides for
comparing String objects. To understand how one String can be “greater than” or
“less than” another String, consider the process of alphabetizing a series of last names.
The reader would, no doubt, place "Jones" before "Smith", because the first letter of
"Jones" comes before the first letter of "Smith" in the alphabet. The alphabet is more
than just a set of 26 letters—it is an ordered list of characters in which each letter occurs in
a specific position. For example, Z is more than just a letter of the alphabet; Z is specifically
the twenty-sixth letter of the alphabet.

Computers can order characters alphabetically because the characters are represented
internally as Unicode numeric codes. When comparing two Strings, computers simply
compare the numeric codes of the characters in the Strings.

Class String provides several ways to compare Strings. The application in
Fig. 15.3 demonstrates the use of method Equals, method CompareTo and the equality
operator (=).

1 ' Fig. 15.3: StringCompare.vb
2 ' Comparing strings.
3
4 Imports System.Windows.Forms
5
6 Module modCompare
7
8 Sub Main()
9       Dim string1 As String = "hello"

10       Dim string2 As String = "good bye"
11       Dim string3 As String = "Happy Birthday"
12       Dim string4 As String = "happy birthday"
13       Dim output As String
14       Dim quotes As Char = ChrW(34)
15
16    ' output values of four Strings
17       output = "string1 = " & quotes & string1 & quotes & _
18          vbCrLf & "string2 = " & quotes & string2 & quotes & _
19          vbCrLf & "string3 = " & quotes & string3  & quotes & _
20          vbCrLf & "string4 = " & quotes & string4  & quotes &  _
21          vbCrLf & vbCrLf
22
23       ' test for equality using Equals method
24       If (string1.Equals("hello")) Then
25          output &= "string1 equals " & quotes & "hello" & _
26             quotes & vbCrLf
27
28       Else
29          output &= "string1 does not equal " & quotes & _
30             "hello" & quotes & vbCrLf
31       End If
32

Fig. 15.3 String test to determine equality (part 1 of 2).



640 Strings, Characters and Regular Expressions Chapter 15

33       ' test for equality with =
34       If string1 = "hello" Then
35          output &= "string1 equals " & quotes & "hello" & _
36             quotes & vbCrLf
37
38       Else
39          output &= "string1 does not equal " & quotes & _
40             "hello" & quotes & vbCrLf
41       End If
42
43       ' test for equality comparing case
44       If (String.Equals(string3, string4)) Then
45          output &= "string3 equals string4" & vbCrLf
46       Else
47          output &= "string3 does not equal string4" & vbCrLf
48       End If
49
50       ' test CompareTo
51       output &= vbCrLf & "string1.CompareTo(string2) is " & _
52          string1.CompareTo(string2) & vbCrLf & _
53          "string2.CompareTo(string1) is " & _
54          string2.CompareTo(string1) & vbCrLf & _
55          "string1.CompareTo(string1) is " & _
56          string1.CompareTo(string1) & vbCrLf & _
57          "string3.CompareTo(string4) is " & _
58          string3.CompareTo(string4) & vbCrLf & _
59          "string4.CompareTo(string3) is " & _
60          string4.CompareTo(string3) & vbCrLf & vbCrLf
61
62       MessageBox.Show(output, "Demonstrating string" & _
63          " comparisons", MessageBoxButtons.OK, _
64          MessageBoxIcon.Information)
65 End Sub ' Main
66
67 End Module ' modCompare

Fig. 15.3 String test to determine equality (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 641

The If structure condition (line 24) uses method Equals to compare string1 and
literal String "hello" to determine whether they are equal. Method Equals (inherited
by String from class Object) tests any two objects for equality (i.e., checks whether the
objects contain identical contents). The method returns True if the objects are equal and
False otherwise. In this instance, the preceding condition returns True, because string1
references String literal object "hello". Method Equals uses a lexicographical com-
parison—the integer Unicode values that represent each character in each String are com-
pared. Method Equals compares the Integer Unicode values that represent the
characters in each String. A comparison of the String "hello" with the String
"HELLO" would return False, because the Integer representations of lowercase letters
are different from the Integer representations of corresponding uppercase letters.

The condition in the second If structure (line 34) uses the equality operator (=) to
compare String string1 with the literal String "hello" for equality. In Visual
Basic, the equality operator also uses a lexicographical comparison to compare two
Strings. Thus, the condition in the If structure evaluates to True, because the values
of string1 and "hello" are equal. As with any reference type, the Is operator may be
used to determine whether two Strings reference the same object.

We present the test for String equality between string3 and string4 (line 44)
to illustrate that comparisons are indeed case sensitive. Here, Shared method Equals
(as opposed to the instance method in line 24) is used to compare the values of two
Strings. "Happy Birthday" does not equal "happy birthday", so the condition
of the If structure fails, and the message "string3 does not equal string4" is
added to the output message (line 47).

Lines 52–60 use the String method CompareTo to compare String objects.
Method CompareTo returns 0 if the Strings are equal, a -1 if the String that invokes
CompareTo is less than the String that is passed as an argument and a 1 if the String
that invokes CompareTo is greater than the String that is passed as an argument.
Method CompareTo uses a lexicographical comparison.

Notice that CompareTo considers string3 to be larger than string4. The only
difference between these two strings is that string3 contains two uppercase letters. This
example illustrates that an uppercase letter has a higher value in the Unicode character set
than its corresponding lowercase letter.

The application in Fig. 15.4 shows how to test whether a String instance begins or
ends with a given String. Method StartsWith determines if a String instance starts
with the String text passed to it as an argument. Method EndsWith determines if a
String instance ends with the String text passed to it as an argument. Application
modStartEnd’s Main method defines an array of Strings (called strings), which
contains "started", "starting", "ended" and "ending". The remainder of
method Main tests the elements of the array to determine whether they start or end with a
particular set of characters.

Line 20 uses method StartsWith, which takes a String argument. The condition
in the If structure determines whether the String at index i of the array starts with the
characters "st". If so, the method returns True and appends strings(i) to String
output for display purposes.

Line 32 uses method EndsWith, which also takes a String argument. The condi-
tion in the If structure determines whether the String at index i of the array ends with



642 Strings, Characters and Regular Expressions Chapter 15

1 ' Fig. 15.4: StringStartEnd.vb
2 ' Demonstrating StartsWith and EndsWith methods.
3
4 Imports System.Windows.Forms
5
6 Module modStartEnd
7
8 Sub Main()
9       Dim strings As String()

10       Dim output As String = ""
11       Dim i As Integer
12       Dim quotes As Char = ChrW(34)
13
14       strings = New String() {"started", "starting", _
15          "ended", "ending"}
16
17     ' test every string to see if it starts with "st"
18       For i = 0 To strings.GetUpperBound(0)
19
20          If strings(i).StartsWith("st") Then
21             output &= quotes & strings(i) & quotes & _
22                " starts with " & quotes & "st" & quotes & vbCrLf
23          End If
24
25       Next
26
27       output &= vbCrLf
28
29    ' test every string to see if it ends with "ed"
30       For i = 0 To strings.GetUpperBound(0)
31
32          If strings(i).EndsWith("ed") Then
33             output &= quotes & strings(i) & quotes & _
34                " ends with " & quotes & "ed" & quotes & vbCrLf
35          End If
36
37       Next
38
39       MessageBox.Show(output, "Demonstrating StartsWith and" & _
40          " EndsWith methods", MessageBoxButtons.OK, _
41          MessageBoxIcon.Information)
42 End Sub ' Main
43
44 End Module ' modStartEnd

Fig. 15.4 StartsWith and EndsWith methods.



Chapter 15 Strings, Characters and Regular Expressions 643

the characters "ed". If so, the method returns True, and strings(i) is appended to
String output for display purposes.
.

15.6 String Method GetHashCode
Often, it is necessary to store Strings and other data types in a manner that enables the
information to be found quickly. One of the best ways to make information easily accessi-
ble is to store it in a hash table. A hash table stores an object by performing a special cal-
culation on that object, which produces a hash code. The object then is stored at a location
in the hash table determined by the calculated hash code. When a program needs to retrieve
the information, the same calculation is performed, generating the same hash code. Any ob-
ject can be stored in a hash table. Class Object defines method GetHashCode to per-
form the hash-code calculation. Although all classes inherit this method from class
Object, it is recommended that they override Object’s default implementation.
String Overrides method GetHashCode to provide a good hash-code distribution
based on the contents of the String. We will discuss hashing in detail in Chapter 24, Data
Structures.

The example in Fig. 15.5 demonstrates the application of the GetHashCode
method to two Strings ("hello" and "Hello"). Here, the hash-code value for each
String is different. However, Strings that are not identical can have the same hash-
code value.

1 ' Fig. 15.5: StringHashCode.vb
2 ' Demonstrating method GetHashCode of class String.
3
4 Imports System.Windows.Forms
5
6 Module modHashCode
7
8 Sub Main()
9       Dim string1 As String = "hello"

10       Dim string2 As String = "Hello"
11       Dim output As String
12       Dim quotes As Char = ChrW(34)
13
14       output = "The hash code for " & quotes & string1 & _
15          quotes & " is " & string1.GetHashCode() & vbCrLf
16          
17       output &= "The hash code for " & quotes & string2 & _
18          quotes & " is " & string2.GetHashCode()
19
20       MessageBox.Show(output, _
21          "Demonstrating String Method GetHashCode")
22    End Sub ' Main
23
24 End Module ' modHashCode

Fig. 15.5 GetHashCode method demonstration (part 1 of 2). 



644 Strings, Characters and Regular Expressions Chapter 15

15.7 Locating Characters and Substrings in Strings
In many applications, it is necessary to search for a character or set of characters in a
String. For example, a programmer creating a word processor would want to provide ca-
pabilities for searching through documents. The application in Fig. 15.6 demonstrates some
of the many versions of String methods IndexOf, IndexOfAny, LastIndexOf
and LastIndexOfAny, which search for a specified character or substring in a String.
We perform all searches in this example on the String letters (initialized with "ab-
cdefghijklmabcdefghijklm") located in method Main of module modIn-
dexMethods. Notice that this program makes use of adjacent quotation marks instead of
creating a quotes variable with the value ChrW(34).

Lines 14–21 use method IndexOf to locate the first occurrence of a character or sub-
string in a String. If IndexOf finds a character, IndexOf returns the index of the spec-
ified character in the String; otherwise, IndexOf returns –1. The expression on line 18
uses a version of method IndexOf that takes two arguments—the character to search for
and the starting index at which the search of the String should begin. The method does
not examine any characters that occur prior to the starting index (in this case 1). The expres-
sion in line 21 uses another version of method IndexOf which takes three arguments—
the character to search for, the index at which to start searching and the number of charac-
ters to search.

1 ' Fig. 15.6: StringIndexMethods
2 ' Using String searching methods.
3
4 Imports System.Windows.Forms
5
6 Module modIndexMethods
7
8 Sub Main()
9       Dim letters As String = "abcdefghijklmabcdefghijklm"

10       Dim output As String
11       Dim searchLetters As Char() = New Char() {"c"c, "a"c, "$"c}
12
13       ' test IndexOf to locate a character in a string
14       output &= """c"" is located at index " & _
15          letters.IndexOf("c"c)
16
17       output &= vbCrLf & """a"" is located at index " & _
18          letters.IndexOf("a"c, 1)

Fig. 15.6 Searching for characters and substrings in Strings (part 1 of 3).

Fig. 15.5 GetHashCode method demonstration (part 2 of 2). 



Chapter 15 Strings, Characters and Regular Expressions 645

19
20       output &= vbCrLf & """$"" is located at index " & _
21          letters.IndexOf("$"c, 3, 5)
22
23       ' test LastIndexOf to find a character in a string
24       output &= vbCrLf & vbCrLf & "Last ""c"" is located at " & _
25          "index " & letters.LastIndexOf("c"c)
26
27       output &= vbCrLf & "Last ""a"" is located at index " & _
28          letters.LastIndexOf("a"c, 25)
29
30       output &= vbCrLf & "Last ""$"" is located at index " & _
31          letters.LastIndexOf("$"c, 15, 5)
32
33       ' test IndexOf to locate a substring in a string
34       output &= vbCrLf & vbCrLf & """def"" is located at" & _
35          " index " & letters.IndexOf("def")
36
37       output &= vbCrLf & """def"" is located at index " & _
38          letters.IndexOf("def", 7)
39
40       output &= vbCrLf & """hello"" is located at index " & _
41          letters.IndexOf("hello", 5, 15)
42
43       ' test LastIndexOf to find a substring in a string
44       output &= vbCrLf & vbCrLf & "Last ""def"" is located " & _
45          "at index " & letters.LastIndexOf("def")
46
47       output &= vbCrLf & "Last ""def"" is located at " & _
48          letters.LastIndexOf("def", 25)
49
50       output &= vbCrLf & "Last ""hello"" is located at " & _
51 "index " & letters.LastIndexOf("hello", 20, 15)
52
53       ' test IndexOfAny to find first occurrence of character 
54       ' in array
55       output &= vbCrLf & vbCrLf & "First occurrence of ""c""," & _
56         " ""a"" or ""$"" is located at " & _
57         letters.IndexOfAny(searchLetters)
58
59       output &= vbCrLf & "First occurrence of ""c"", ""a"" or " & _
60          """$"" is located at " & _
61          letters.IndexOfAny(searchLetters, 7)
62
63       output &= vbCrLf & "First occurrence of ""c"", ""a"" or " & _
64          """$"" is located at " & _
65          letters.IndexOfAny(searchLetters, 20, 5)
66
67       ' test LastIndexOfAny to find first occurrence of character 
68       ' in array
69       output &= vbCrLf & vbCrLf & "Last occurrence of ""c""," & _
70          " ""a"" or ""$"" is located at " & _
71          letters.LastIndexOfAny(searchLetters)

Fig. 15.6 Searching for characters and substrings in Strings (part 2 of 3).



646 Strings, Characters and Regular Expressions Chapter 15

Lines 24–31 use method LastIndexOf to locate the last occurrence of a character
in a String. Method LastIndexOf performs the search from the end of the String
toward the beginning of the String. If method LastIndexOf finds the character,
LastIndexOf returns the index of the specified character in the String; otherwise,
LastIndexOf returns –1. There are three versions of LastIndexOf that search for
characters in a String. The expression in line 25 uses the version of method LastIn-
dexOf that takes as an argument the character for which to search. The expression in line
28 uses the version of method LastIndexOf that takes two arguments—the character for
which to search and the highest index from which to begin searching backward for the char-
acter. The expression in line 31 uses a third version of method LastIndexOf that takes
three arguments—the character for which to search, the starting index from which to start
searching backward and the number of characters (the portion of the String) to search. 

Lines 34–51 use versions of IndexOf and LastIndexOf that take a String
instead of a character as the first argument. These versions of the methods perform identi-

72
73       output &= vbCrLf & "Last occurrence of ""c"", ""a"" or " & _
74          """$"" is located at " & _
75          letters.LastIndexOfAny(searchLetters, 1)
76
77       output &= vbCrLf & "Last occurrence of ""c"", ""a"" or " & _
78          """$"" is located at " & _
79          letters.LastIndexOfAny(searchLetters, 25, 5)
80
81       MessageBox.Show(output, _
82          "Demonstrating String class index methods")
83 End Sub ' Main
84
85 End Module ' modIndexMethods

Fig. 15.6 Searching for characters and substrings in Strings (part 3 of 3).



Chapter 15 Strings, Characters and Regular Expressions 647

cally to those described above except that they search for sequences of characters (or sub-
strings) that are specified by their String arguments.

Lines 55–79 use methods IndexOfAny and LastIndexOfAny, which take an
array of characters as the first argument. These versions of the methods also perform iden-
tically to those described above except that they return the index of the first occurrence of
any of the characters in the character array argument.

Common Programming Error 15.2
In the overloaded methods LastIndexOf and LastIndexOfAny that take three param-
eters, the second argument must always be bigger than or equal to the third argument. This
might seem counterintuitive, but remember that the search moves from the end of the string
toward the start of the string. 15.2

15.8 Extracting Substrings from Strings
Class String provides two Substring methods, which are used to create a new
String object by copying part of an existing String object. Each method returns a new
String object. The application in Fig. 15.7 demonstrates the use of both methods. 

1 ' Fig. 15.7: SubString.vb
2 ' Demonstrating the String Substring method.
3
4 Imports System.Windows.Forms
5
6 Module modSubString
7
8 Sub Main()
9       Dim letters As String = "abcdefghijklmabcdefghijklm"

10       Dim output As String
11       Dim quotes As Char = ChrW(34)
12
13       ' invoke SubString method and pass it one parameter
14       output = "Substring from index 20 to end is " & _
15          quotes & letters.Substring(20) & quotes & vbCrLf
16
17       ' invoke SubString method and pass it two parameters
18       output &= "Substring from index 0 to 6 is " & _
19          quotes & letters.Substring(0, 6) & quotes
20
21       MessageBox.Show(output, _
22         "Demonstrating String method Substring")
23    End Sub ' Main
24
25 End Module ' modSubString

Fig. 15.7 Substrings generated from Strings.



648 Strings, Characters and Regular Expressions Chapter 15

The statement in lines 14–15 uses the Substring method that takes one Integer
argument. The argument specifies the starting index from which the method copies charac-
ters in the original String. The substring returned contains a copy of the characters from
the starting index to the end of the String. If the index specified in the argument is out-
side the bounds of the String, the program throws an ArgumentOutOfRangeEx-
ception.

The second version of method Substring (line 19) takes two Integer arguments.
The first argument specifies the starting index from which the method copies characters
from the original String. The second argument specifies the length of the substring to be
copied. The substring returned contains a copy of the specified characters from the original
String.

15.9 Concatenating Strings
The & operator (discussed in Chapter 3, Introduction to Visual Basic Programming) is not
the only way to perform String concatenation. The Shared method Concat of class
String (Fig. 15.8) concatenates two String objects and returns a new String object
containing the combined characters from both original Strings. Line 18 appends the
characters from string2 to the end of string1 using method Concat. The statement
on line 18 does not modify the original Strings.

Common Programming Error 15.3
In Visual Basic, the + operator also can be used to concatenate Strings. However, using
the + operator in this way can lead to subtle errors and ambiguous program code. 15.3

1 ' Fig. 15.8: StringConcatination.vb
2 ' Demonstrating String class Concat method.
3
4 Imports System.Windows.Forms
5
6 Module modStringConcatenation
7
8 Sub Main()
9       Dim string1 As String = "Happy "

10       Dim string2 As String = "Birthday"
11       Dim output As String
12
13       output = "string1 = """ & string1 & """" & _
14          vbCrLf & "string2 = """ & string2 & """"
15
16       output &= vbCrLf & vbCrLf & _
17          "Result of String.Concat(string1, string2) = " & _
18          String.Concat(string1, string2)
19
20       MessageBox.Show(output, _
21          "Demonstrating String method Concat")
22    End Sub ' Main
23
24 End Module ' modStringConcatenation

Fig. 15.8 Concat Shared method (part 1 of 2).



Chapter 15 Strings, Characters and Regular Expressions 649

15.10 Miscellaneous String Methods
Class String provides several methods that return modified copies of Strings. The ap-
plication in Fig. 15.9 demonstrates the use of these methods, which include String meth-
ods Replace, ToLower, ToUpper, Trim and ToString.

1 ' Fig. 15.9: StringMiscellaneous.vb
2 ' Demonstrating String methods Replace, ToLower, ToUpper, Trim, 
3 ' and ToString.
4
5 Imports System.Windows.Forms
6
7 Module modStringMiscellaneous
8
9 Sub Main()

10       Dim string1 As String = "cheers!"
11       Dim string2 As String = "GOOD BYE "
12       Dim string3 As String = "   spaces   "
13       Dim output As String
14       Dim quotes As Char = ChrW(34)
15       Dim i As Integer
16
17       output = "string1 = " & quotes & string1 & quotes & _
18          vbCrLf & "string2 = " & quotes & string2 & quotes & _
19          vbCrLf & "string3 = " & quotes & string3 & quotes
20
21       ' call method Replace
22       output &= vbCrLf & vbCrLf & "Replacing " & quotes & "e" & _
23          quotes & " with " & quotes & "E" & quotes & _
24          " in string1: " & quotes & string1.Replace("e"c, "E"c) & _
25          quotes
26
27   ' call ToLower and ToUpper
28       output &= vbCrLf & vbCrLf & "string1.ToUpper() = " & _
29          quotes & string1.ToUpper() & quotes & vbCrLf & _
30          "string2.ToLower() = " & quotes & string2.ToLower() & _
31          quotes
32

Fig. 15.9 String methods Replace, ToLower, ToUpper, Trim and 
ToString (part 1 of 2).

Fig. 15.8 Concat Shared method (part 2 of 2).



650 Strings, Characters and Regular Expressions Chapter 15

Line 24 uses String method Replace to return a new String object, replacing
every occurrence in string1 of character "e"c with character "E"c. Method Replace
takes two arguments—a String for which to search and another String with which to
replace all matching occurrences of the first argument. The original String remains
unchanged. If there are no occurrences of the first argument in the String, the method
returns the original String.

String method ToUpper generates a new String object (line 29) that replaces
any lowercase letters in string1 with their uppercase equivalent. The method returns a
new String object containing the converted String; the original String remains
unchanged. If there are no characters to convert to uppercase, the method returns the orig-
inal String. Line 30 uses String method ToLower to return a new String in which
any uppercase letters in string1 are replaced by their lowercase equivalents. The orig-
inal String is unchanged. As with ToUpper, if there are no characters to convert to low-
ercase, method ToLower returns the original String.

Line 35 uses String method Trim to remove all whitespace characters that appear
at the beginning and end of a String. Without altering the original String, the method
returns a new String object that contains the String, but omits leading or trailing
whitespace characters. Another version of method Trim takes a character array, removes
all whitespace characters from the beginning and end of the array and returns the result in
a String.

33     ' call Trim method
34       output &= vbCrLf & vbCrLf & "string3 after trim = " & _
35          quotes & string3.Trim() & quotes
36
37    ' call ToString method
38       output &= vbCrLf & vbCrLf & "string1 = " & _
39          quotes & string1.ToString() & quotes
40
41       MessageBox.Show(output, _
42       "Demonstrating miscellaneous String methods")
43    End Sub ' Main
44
45 End Module ' modStringMiscellaneous

Fig. 15.9 String methods Replace, ToLower, ToUpper, Trim and 
ToString (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 651

Line 39 uses class String’s method ToString to show that the various other
methods employed in this application have not modified string1. Why is the
ToString method provided for class String? In Visual Basic .NET, all objects are
derived from class Object, which defines Overridable method ToString. Thus,
method ToString can be called to obtain a String representation any object. If a class
that inherits from Object (such as String) does not override method ToString, the
class uses the default version from class Object, which returns a String consisting of
the object’s class name. Classes usually override method ToString to express the con-
tents of an object as text. Class String overrides method ToString so that, instead of
returning the class name, it simply returns the String.

15.11 Class StringBuilder
The String class provides many capabilities for processing Strings. However a
String’s contents can never change. Operations which seem to concatenate Strings are
in fact assigning String references to newly created Strings (e.g., the &= operator creates
a new String and assigns the initial String reference to the newly created String).

The next several sections discuss the features of class StringBuilder (namespace
System.Text), which is used to create and manipulate dynamic string information—i.e.,
modifiable strings. Every StringBuilder can store a certain number of characters that
is specified by its capacity. Exceeding the capacity of a StringBuilder causes the
capacity to expand to accommodate the additional characters. As we will see, members of
class StringBuilder, such as methods Append and AppendFormat, can be used for
concatenation like the operators & and &= for class String.

Software Engineering Observation 15.2
String objects are constant strings, whereas StringBuilder objects are modifiable
strings. Visual Basic can perform certain optimizations involving String objects (such as
the sharing of one String object among multiple references), because it knows these ob-
jects will not change. 15.2

Performance Tip 15.2
When given the choice between using a String object to represent a string and using a
StringBuilder object to represent that string, always use a String object if the con-
tents of the object will not change. When appropriate, using String objects instead of
StringBuilder objects improves performance. 15.2

Class StringBuilder provides six overloaded constructors. Module modBuild-
erConstructor (Fig. 15.10) demonstrates the use of three of these overloaded con-
structors. 

1 ' Fig. 15.10: StringBuilderConstructor.vb
2 ' Demonstrating StringBuilder class constructors.
3
4 Imports System.Text
5 Imports System.Windows.Forms
6

Fig. 15.10 StringBuilder class constructors  (part 1 of 2).



652 Strings, Characters and Regular Expressions Chapter 15

Line 14 employs the no-argument StringBuilder constructor to create a
StringBuilder that contains no characters and has a default initial capacity of 16 char-
acters. Line 15 uses the StringBuilder constructor that takes an Integer argument
to create a StringBuilder that contains no characters and has the initial capacity spec-
ified in the Integer argument (i.e., 10). Line 16 uses the StringBuilder constructor
that takes a String argument to create a StringBuilder containing the characters of
the String argument. The initial capacity is the smallest power of two greater than the
number of characters in the String passed as an argument.

Lines 18–25 use StringBuilder method ToString to obtain a String repre-
sentation of the StringBuilders’ contents. This method returns the String-
Builders’ underlying string.

15.12 StringBuilder Indexer, Length and Capacity
Properties, and EnsureCapacity Method
Class StringBuilder provides the Length and Capacity properties to return the
number of characters currently in a StringBuilder and the number of characters that

7 Module modBuilderConstructor
8
9 Sub Main()

10       Dim buffer1, buffer2, buffer3 As StringBuilder
11       Dim quotes As Char = ChrW(34)
12       Dim output As String
13
14       buffer1 = New StringBuilder()
15       buffer2 = New StringBuilder(10)
16       buffer3 = New StringBuilder("hello")
17
18       output = "buffer1 = " & quotes & buffer1.ToString() & _
19          quotes & vbCrLf
20
21       output &= "buffer2 = " & quotes & _
22          buffer2.ToString() & quotes & vbCrLf
23
24       output &= "buffer3 = " & quotes & _
25          buffer3.ToString() & quotes
26
27       MessageBox.Show(output, _
28          "Demonstrating StringBuilder class constructors")
29 End Sub ' Main
30
31 End Module ' modBuilderConstructor

Fig. 15.10 StringBuilder class constructors  (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 653

a StringBuilder can store without allocating more memory, respectively. These prop-
erties also can increase or decrease the length or the capacity of the StringBuilder.

Method EnsureCapacity allows programmers to guarantee that a String-
Builder has a capacity that reduces the number of times the capacity must be increased.
Method EnsureCapacity doubles the StringBuilder instance’s current capacity.
If this doubled value is greater than the value that the programmer wishes to ensure, it
becomes the new capacity. Otherwise, EnsureCapacity alters the capacity to make it
one more than the requested number. For example, if the current capacity is 17 and we wish
to make it 40, 17 multiplied by 2 is not greater than 40, so the call will result in a new
capacity of 41. If the current capacity is 23 and we wish to make it 40, 23 will be multiplied
by 2 to result in a new capacity of 46. Both 41 and 46 are greater than 40, and so a capacity
of 40 is indeed ensured by method EnsureCapacity. The program in Fig. 15.11 dem-
onstrates the use of these methods and properties. 

The program contains one StringBuilder, called buffer. Lines 11–12 of the
program use the StringBuilder constructor that takes a String argument to instan-
tiate the StringBuilder and initialize its value to "Hello, how are you?". Lines
15–17 append to output the content, length and capacity of the StringBuilder. In
the output window, notice that the capacity of the StringBuilder is initially 32.
Remember, the StringBuilder constructor that takes a String argument creates a
StringBuilder object with an initial capacity that is the smallest power of two greater
than the number of characters in the String passed as an argument. 

1 ' Fig. 15.11: StringBuilderFeatures.vb
2 ' Demonstrating some features of class StringBuilder.
3
4 Imports System.Text
5 Imports System.Windows.Forms
6
7 Module modBuilderFeatures
8
9 Sub Main()

10       Dim i As Integer
11       Dim buffer As StringBuilder = _
12          New StringBuilder("Hello, how are you?")
13
14       ' use Length and Capacity properties
15       Dim output As String = "buffer = " & buffer.ToString & _
16          vbCrLf & "Length = " & buffer.Length & vbCrLf & _
17          "Capacity = " & buffer.Capacity
18
19       ' use EnsureCapacity method
20       buffer.EnsureCapacity(75)
21
22       output &= vbCrLf & vbCrLf & "New capacity = " & _
23          buffer.Capacity
24
25       ' truncate StringBuilder by setting Length property
26       buffer.Length = 10
27

Fig. 15.11 StringBuilder size manipulation (part 1 of 2).



654 Strings, Characters and Regular Expressions Chapter 15

Line 20 expands the capacity of the StringBuilder to a minimum of 75 characters.
The current capacity (32) multiplied by two is less than 75, so method EnsureCa-
pacity increases the capacity to one greater than 75 (i.e., 76). If new characters are added
to a StringBuilder so that its length exceeds its capacity, the capacity grows to accom-
modate the additional characters in the same manner as if method EnsureCapacity had
been called.

Line 26 uses Length’s Set accessor to set the length of the StringBuilder to
10. If the specified length is less than the current number of characters in the String-
Builder, the contents of StringBuilder are truncated to the specified length (i.e., the
program discards all characters in the StringBuilder that occur after the specified
length). If the specified length is greater than the number of characters currently in the
StringBuilder, null characters (characters with the numeric representation 0 that
signal the end of a String) are appended to the StringBuilder until the total number
of characters in the StringBuilder is equal to the specified length. 

Common Programming Error 15.4
Assigning Nothing to a String reference can lead to logic errors. The keyword Noth-
ing is a null reference, not a String. Do not confuse Nothing with the empty string, ""
(the String that is of length 0 and contains no characters). 15.4

15.13 StringBuilder Append and AppendFormat
Methods
Class StringBuilder provides 19 overloaded Append methods that allow various
data-type values to be added to the end of a StringBuilder. Visual Basic provides ver-

28       output &= vbCrLf & vbCrLf & "New Length = " & _
29          buffer.Length & vbCrLf & "buffer = "
30
31       ' use StringBuilder Indexer
32       For i = 0 To buffer.Length - 1
33          output &= buffer(i)
34       Next
35
36       MessageBox.Show(output, "StringBuilder features")
37    End Sub ' Main
38
39 End Module ' modBuilderFeatures

Fig. 15.11 StringBuilder size manipulation (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 655

sions for each of the primitive data types and for character arrays, Strings and Objects.
(Remember that method ToString produces a String representation of any Object.)
Each of the methods takes an argument, converts it to a String and appends it to the
StringBuilder. Figure 15.12 demonstrates the use of several Append methods.

1 ' Fig. 15.12: StringBuilderAppend.vb
2 ' Demonstrating StringBuilder Append methods.
3
4 Imports System.Text
5 Imports System.Windows.Forms
6
7 Module modBuilderAppend
8
9 Sub Main()

10       Dim objectValue As Object = "hello"
11       Dim stringValue As String = "good bye"
12       Dim characterArray As Char() = {"a"c, "b"c, "c"c, _
13          "d"c, "e"c, "f"c}
14
15       Dim booleanValue As Boolean = True
16       Dim characterValue As Char = "Z"c
17       Dim integerValue As Integer = 7
18       Dim longValue As Long = 1000000
19       Dim singleValue As Single = 2.5
20       Dim doubleValue As Double = 33.333
21       Dim buffer As StringBuilder = New StringBuilder()
22
23       ' use method Append to append values to buffer
24       buffer.Append(objectValue)
25       buffer.Append("  ")
26       buffer.Append(stringValue)
27       buffer.Append("  ")
28       buffer.Append(characterArray)
29       buffer.Append("  ")
30       buffer.Append(characterArray, 0, 3)
31       buffer.Append("  ")
32       buffer.Append(booleanValue)
33       buffer.Append("  ")
34       buffer.Append(characterValue)
35       buffer.Append("  ")
36       buffer.Append(integerValue)
37       buffer.Append("  ")
38       buffer.Append(longValue)
39       buffer.Append("  ")
40       buffer.Append(singleValue)
41       buffer.Append("  ")
42       buffer.Append(doubleValue)
43
44       MessageBox.Show("buffer = " & buffer.ToString(), _
45            "Demonstrating StringBuilder Append methods", _
46            MessageBoxButtons.OK, MessageBoxIcon.Information)
47 End Sub ' Main

Fig. 15.12 Append methods of StringBuilder (part 1 of 2).



656 Strings, Characters and Regular Expressions Chapter 15

Lines 24–42 use 10 different overloaded Append methods to attach the objects cre-
ated in lines 10–21 to the end of the StringBuilder. Append behaves similarly to the
& operator which is used with Strings. Just as & seems to append objects to a String,
method Append can append data types to a StringBuilder’s underlying string. 

Class StringBuilder also provides method AppendFormat, which converts a
String to a specified format and then appends it to the StringBuilder. The example
in Fig. 15.13 demonstrates the use of this method.

48
49 End Module ' modBuilderAppend

1 ' Fig. 15.13: StringBuilderAppendFormat.vb
2 ' Demonstrating method AppendFormat.
3
4 Imports System.Text
5 Imports System.Windows.Forms
6
7 Module modBuilderAppendFormat
8
9 Sub Main()

10       Dim buffer As StringBuilder = New StringBuilder()
11       Dim string1, string2 As String
12
13       ' formatted string
14       string1 = "This {0} costs: {1:C}." & vbCrLf
15
16       ' string1 argument array
17       Dim objectArray As Object() = New Object(1) {}
18
19       objectArray(0) = "car"
20       objectArray(1) = 1234.56
21
22       ' append to buffer formatted string with argument
23       buffer.AppendFormat(string1, objectArray)
24
25       ' formatted string
26       string2 = "Number:{0:D3}. " & vbCrLf & _
27          "Number right aligned with spaces:{0, 4}." & vbCrLf & _
28          "Number left aligned with spaces:{0, -4}."
29
30       ' append to buffer formatted string with argument
31       buffer.AppendFormat(string2, 5)

Fig. 15.13 StringBuilder’s AppendFormat method (part 1 of 2).

Fig. 15.12 Append methods of StringBuilder (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 657

Line 14 creates a String that contains formatting information. The information
enclosed within the braces determines how to format a specific piece of information. Formats
have the form {X[,Y][:FormatString]}, where X is the number of the argument to be
formatted, counting from zero. Y is an optional argument, which can be positive or negative,
indicating how many characters should be in the result of formatting. If the resulting String
is less than the number Y, the String will be padded with spaces to make up for the differ-
ence. A positive integer aligns the string to the right; a negative integer aligns it to the left.
The optional FormatString applies a particular format to the argument: Currency, dec-
imal, scientific, as well as others. In this case, “{0}” means the first argument will be printed
out. “{1:C}” specifies that the second argument will be formatted as a currency value.

Line 23 shows a version of AppendFormat, which takes two parameters—a String
specifying the format and an array of objects to serve as the arguments to the format String.
The argument referred to by “{0}” is in the object array at index 0, and so on.

Lines 26–28 define another String used for formatting. The first format “{0:D3}”
specifies that the first argument will be formatted as a three-digit decimal, meaning any
number that has fewer than three digits will have leading zeros placed in front to make up
the difference. The next format, “{0, 4}” specifies that the formatted String should
have four characters and should be right aligned. The third format, “{0, -4}” specifies
that the Strings should be aligned to the left. For more formatting options, please refer
to the documentation.

Line 31 uses a version of AppendFormat, which takes two parameters: a String
containing a format and an object to which the format is applied. In this case, the object is
the number 5. The output of Fig. 15.13 displays the result of applying these two version of
AppendFormat with their respective arguments.

15.14 StringBuilder Insert, Remove and Replace
Methods
Class StringBuilder provides 18 overloaded Insert methods to allow various data-
type values to be inserted at any position in a StringBuilder. The class provides ver-
sions for each of the primitive data types and for character arrays, Strings and Objects.

32
33       ' display formatted strings
34       MessageBox.Show(buffer.ToString(), "Using AppendFormat", _
35          MessageBoxButtons.OK, MessageBoxIcon.Information)
36 End Sub ' Main
37
38 End Module ' modBuilderAppendFormat

Fig. 15.13 StringBuilder’s AppendFormat method (part 2 of 2).



658 Strings, Characters and Regular Expressions Chapter 15

(Remember that method ToString produces a String representation of any Object.)
Each method takes its second argument, converts it to a String and inserts the String
in the StringBuilder in front of the index specified by the first argument. The index
specified by the first argument must be greater than or equal to 0 and less than the length
of the StringBuilder; otherwise, the program throws an ArgumentOutOfRange-
Exception.

Class StringBuilder also provides method Remove for deleting any portion of a
StringBuilder. Method Remove takes two arguments—the index at which to begin
deletion and the number of characters to delete. The sum of the starting subscript and the
number of characters to be deleted must always be less than the length of the String-
Builder; otherwise, the program throws an ArgumentOutOfRangeException.
The Insert and Remove methods are demonstrated in Fig. 15.14.

1 ' Fig. 15.14: StringBuilderInsertRemove.vb
2 ' Demonstrating methods Insert and Remove of the 
3 ' StringBuilder class.
4
5 Imports System.Text
6 Imports System.Windows.Forms
7
8 Module modBuilderInsertRemove
9

10 Sub Main()
11       Dim objectValue As Object = "hello"
12       Dim stringValue As String = "good bye"
13       Dim characterArray As Char() = {"a"c, "b"c, "c"c, _
14          "d"c, "e"c, "f"c}
15        
16       Dim booleanValue As Boolean = True
17       Dim characterValue As Char = "K"c
18       Dim integerValue As Integer = 7
19       Dim longValue As Long = 10000000
20       Dim singleValue As Single = 2.5
21       Dim doubleValue As Double = 33.333
22       Dim buffer As StringBuilder = New StringBuilder()
23       Dim output As String
24
25       ' insert values into buffer
26       buffer.Insert(0, objectValue)
27       buffer.Insert(0, "  ")
28       buffer.Insert(0, stringValue)
29       buffer.Insert(0, "  ")
30       buffer.Insert(0, characterArray)
31       buffer.Insert(0, "  ")
32       buffer.Insert(0, booleanValue)
33       buffer.Insert(0, "  ")
34       buffer.Insert(0, characterValue)
35       buffer.Insert(0, "  ")
36       buffer.Insert(0, integerValue)
37       buffer.Insert(0, "  ")

Fig. 15.14 StringBuilder text insertion and removal (part 1 of 2).



Chapter 15 Strings, Characters and Regular Expressions 659

Another useful method included with StringBuilder is Replace. Replace
searches for a specified String or character and substitutes another String or character
in its place. Figure 15.15 demonstrates this method.

38       buffer.Insert(0, longValue)
39       buffer.Insert(0, "  ")
40       buffer.Insert(0, singleValue)
41       buffer.Insert(0, "  ")
42       buffer.Insert(0, doubleValue)
43       buffer.Insert(0, "  ")
44
45       output = "buffer after inserts:" & vbCrLf & _
46          buffer.ToString() & vbCrLf & vbCrLf
47
48       buffer.Remove(12, 1) ' delete 5 in 2.5
49       buffer.Remove(2, 4) ' delete .333 in 33.333
50
51       output &= "buffer after Removes:" & vbCrLf & _
52          buffer.ToString()
53
54       MessageBox.Show(output, "Demonstrating StringBuilder " & _
55           "Insert and Remove Methods", MessageBoxButtons.OK, _
56           MessageBoxIcon.Information)
57   End Sub ' Main 
58
59 End Module ' modBuilderInsertRemove

1 ' Fig. 15.15: StringBuilderReplace.vb
2 ' Demonstrating method Replace.
3
4 Imports System.Text
5 Imports System.Windows.Forms
6
7 Module modBuilderReplace
8
9 Sub Main()

10       Dim builder1 As StringBuilder = _
11          New StringBuilder("Happy Birthday Jane")
12
13       Dim builder2 As StringBuilder = _
14          New StringBuilder("good bye greg")

Fig. 15.15 StringBuilder text replacement (part 1 of 2).

Fig. 15.14 StringBuilder text insertion and removal (part 2 of 2).



660 Strings, Characters and Regular Expressions Chapter 15

Line 19 uses method Replace to replace all instances of the String "Jane" with
the String "Greg" in builder1. Another overload of this method takes two charac-
ters as parameters and replaces all occurrences of the first with the second. Line 20 uses an
overload of Replace that takes four parameters, the first two of which are characters and
the second two of which are Integers. The method replaces all instances of the first char-
acter with the second, beginning at the index specified by the first Integer and con-
tinuing for a count specified by the second. Thus, in this case, Replace looks through
only five characters starting with the character at index 0. As the outputs illustrates, this
version of Replace replaces g with G in the word "good", but not in "greg".This is
because the gs in "greg" do not fall in the range indicated by the Integer arguments
(i.e., between indexes 0 and 4).

15.15 Char Methods
Visual Basic provides a program building block, called a structure, which is similar to a
class. Although structures and classes are comparable in many ways, structures encapsulate
value types. Like classes, structures include methods and properties. Both use the same
modifiers (such as Public, Private and Protected) and access members via the
member access operator (.). However, classes are created by using the keyword Class,
and structures are created using the keyword Structure.

15
16       Dim output As String = "Before Replacements:" & vbCrLf & _
17          builder1.ToString() & vbCrLf & builder2.ToString()
18
19       builder1.Replace("Jane", "Greg")
20       builder2.Replace("g"c, "G"c, 0, 5)
21
22       output &= vbCrLf & vbCrLf & "After Replacements:" & _
23          vbCrLf & builder1.ToString() & vbCrLf & _
24          builder2.ToString()
25
26       MessageBox.Show(output, _
27      "Using StringBuilder method Replace", _
28          MessageBoxButtons.OK, MessageBoxIcon.Information)
29 End Sub ' Main
30
31 End Module ' modBuilderReplace

Fig. 15.15 StringBuilder text replacement (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 661

Many of the primitive data types that we have used in this book are actually aliases for
different structures. For instance, an Integer is defined by structure System.Int32,
a Long by System.Int64, and so on. These structures are derived from class Value-
Type, which in turn is derived from class Object. In this section, we present structure
Char, which is the structure for characters.

Most Char methods are Shared, take at least one character argument and perform
either a test or a manipulation on the character. We present several of these methods in the
next example. Figure 15.16 demonstrates Shared methods that test characters to deter-
mine whether they are a specific character type and Shared methods that perform case
conversions on characters.

1 ' Fig. 15.16: CharMethods.vb
2 ' Demonstrates Shared character testing methods 
3 ' from Char structure
4
5 Public Class FrmCharacter
6 Inherits Form
7
8    Friend WithEvents lblEnter As Label ' prompts for input
9

10    Friend WithEvents txtInput As TextBox  ' reads a Char
11    Friend WithEvents txtOutput As TextBox ' displays results
12
13 ' reads and displays information about input
14    Friend WithEvents cmdAnalyze As Button
15
16  ' Visual Studio .NET generated code
17
18  ' handle cmdAnalyze Click
19 Private Sub cmdAnalyze_Click(ByVal sender As System.Object, _
20       ByVal e As System.EventArgs) Handles cmdAnalyze.Click
21
22       Dim character As Char = Convert.ToChar(txtInput.Text)
23
24       BuildOutput(character)
25 End Sub ' cmdAnalyze_Click
26
27 ' display character information in txtOutput
28  Public Sub BuildOutput(ByVal inputCharacter As Char)
29       Dim output As String
30
31       output = "is digit: " & _
32          Char.IsDigit(inputCharacter) & vbCrLf
33
34       output &= "is letter: " & _
35          Char.IsLetter(inputCharacter) & vbCrLf
36
37       output &= "is letter or digit: " & _
38          Char.IsLetterOrDigit(inputCharacter) & vbCrLf
39

Fig. 15.16 Char’s Shared character-testing methods and case-conversion 
methods (part 1 of 2).



662 Strings, Characters and Regular Expressions Chapter 15

This Windows application contains a prompt, a TextBox into which the user can
input a character, a button that the user can press after entering a character and a second
TextBox that displays the output of our analysis. When the user clicks the Analyze
Character button, event handler cmdAnalyze_Click (lines 19–25) is invoked. This
method converts the entered data from a String to a Char using method Con-
vert.ToChar (line 22). On line 24, we call method BuildOutput, which is defined
in lines 28–58.

Line 32 uses Char method IsDigit to determine whether character input-
Character is defined as a digit. If so, the method returns True; otherwise, it returns
False.

40       output &= "is lower case: " & _
41          Char.IsLower(inputCharacter) & vbCrLf
42
43       output &= "is upper case: " & _
44          Char.IsUpper(inputCharacter) & vbCrLf
45
46       output &= "to upper case: " & _
47          Char.ToUpper(inputCharacter) & vbCrLf
48
49       output &= "to lower case: " & _
50          Char.ToLower(inputCharacter) & vbCrLf
51
52       output &= "is punctuation: " & _
53          Char.IsPunctuation(inputCharacter) & vbCrLf
54
55       output &= "is symbol: " & Char.IsSymbol(inputCharacter)
56
57       txtOutput.Text = output
58  End Sub ' BuildOutput
59
60 End Class ' FrmCharacter

Fig. 15.16 Char’s Shared character-testing methods and case-conversion 
methods (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 663

Line 35 uses Char method IsLetter to determine whether character inputCh-
aracter is a letter. If so, the method returns True; otherwise, it returns False. Line 38
uses Char method IsLetterOrDigit to determine whether character inputChar-
acter is a letter or a digit. If so, the method returns True; otherwise, it returns False.

Line 41 uses Char method IsLower to determine whether character inputChar-
acter is a lowercase letter. If so, the method returns True; otherwise, it returns False.
Line 44 uses Char method IsUpper to determine whether character inputChar-
acter is an uppercase letter. If so, the method returns True; otherwise, it returns False.
Line 47 uses Char method ToUpper to convert the character inputCharacter to its
uppercase equivalent. The method returns the converted character if the character has an
uppercase equivalent; otherwise, the method returns its original argument. Line 50 uses
Char method ToLower to convert the character inputCharacter to its lowercase
equivalent. The method returns the converted character if the character has a lowercase
equivalent; otherwise, the method returns its original argument.

Line 53 uses Char method IsPunctuation to determine whether character
inputCharacter is a punctuation mark. If so, the method returns True; otherwise, it
returns False. Line 55 uses Char method IsSymbol to determine whether character
inputCharacter is a symbol. If so, the method returns True; otherwise it returns
False.

Structure type Char also contains other methods not shown in this example. Many of
the Shared methods are similar; for instance, IsWhiteSpace is used to determine
whether a certain character is a whitespace character (e.g., newline, tab or space). The
structure also contains several Public instance methods; many of these, such as methods
ToString and Equals, are methods that we have seen before in other classes. This
group includes method CompareTo, which is used to compare two character values with
one another.

15.16 Card Shuffling and Dealing Simulation
In this section, we use random-number generation to develop a program that simulates the
shuffling and dealing of cards. Once created, this program can be implemented in programs
that imitate specific card games. We include several exercises at the end of this chapter that
require card shuffling and dealing capabilities.

We develop application DeckOfCards (Fig. 15.18), which creates a deck of 52
playing cards using CCard objects. Users can deal each card by clicking the Deal Card
button. Each dealt card is displayed in a Label. Users also can shuffle the deck at any time
by clicking the Shuffle Cards button.

1 ' Fig. 15.17: Card.vb
2 ' Stores suit and face information on each card.
3
4 Public Class CCard
5 Private face As String
6 Private suit As String
7

Fig. 15.17 CCard class (part 1 of 2).



664 Strings, Characters and Regular Expressions Chapter 15

8 Public Sub New(ByVal faceValue As String, _
9       ByVal suitValue As String)

10
11       face = faceValue
12       suit = suitValue
13 End Sub ' New
14
15 Public Overrides Function ToString() As String
16       Return face & " of " & suit
17 End Function ' ToString
18
19 End Class ' CCard

1 ' Fig. 15.18: DeckOfCards.vb
2 ' Simulating card dealing and shuffling.
3
4 Public Class FrmDeck
5 Inherits Form
6
7 Friend WithEvents lblDisplay As Label ' displays dealt card
8    Friend WithEvents lblStatus As Label  ' number of cards dealt
9

10    Friend WithEvents cmdDeal As Button    ' deal one card
11    Friend WithEvents cmdShuffle As Button ' shuffle cards
12
13    ' Visual Studio .NET generated code
14
15    Private currentCard As Integer
16    Private randomObject As Random = New Random()
17 Private deck As CCard() = New CCard(51) {}
18
19 ' handles form at load time
20 Public Sub FrmDeck_Load(ByVal sender As System.Object, _
21       ByVal e As System.EventArgs) Handles MyBase.Load
22
23       Dim faces As String() = {"Ace", "Deuce", "Three", _
24          "Four", "Five", "Six", "Seven", "Eight", "Nine", _
25          "Ten", "Jack", "Queen", "King"}
26
27       Dim suits As String() = {"Hearts", "Diamonds", "Clubs", _
28          "Spades"}
29
30       Dim i As Integer
31
32   ' no cards have been drawn
33       currentCard = -1
34

Fig. 15.18 Card dealing and shuffling simulation (part 1 of 4).

Fig. 15.17 CCard class (part 2 of 2).



Chapter 15 Strings, Characters and Regular Expressions 665

35      ' initialize deck
36       For i = 0 To deck.GetUpperBound(0)
37          deck(i) = New CCard(faces(i Mod 13), suits(i Mod 4))
38       Next
39
40    End Sub ' FrmDeck_Load
41
42 ' handles cmdDeal Click
43   Private Sub cmdDeal_Click(ByVal sender As System.Object, _
44       ByVal e As System.EventArgs) Handles cmdDeal.Click
45
46       Dim dealt As CCard = DealCard()
47
48       ' if dealt card is Null, then no cards left
49       ' player must shuffle cards
50       If Not (dealt Is Nothing) Then
51          lblDisplay.Text = dealt.ToString()
52          lblStatus.Text = "Card #: " & currentCard
53       Else
54          lblDisplay.Text = "NO MORE CARDS TO DEAL"
55          lblStatus.Text = "Shuffle cards to continue"
56       End If
57
58    End Sub ' cmdDeal_Click
59
60 ' shuffle cards
61 Public Sub Shuffle()
62       Dim i As Integer
63       Dim j As Integer
64       Dim temporaryValue As CCard
65
66       currentCard = -1
67
68       ' swap each card with random card
69       For i = 0 To deck.GetUpperBound(0)
70          j = randomObject.Next(52)
71
72          ' swap cards
73          temporaryValue = deck(i)     
74          deck(i) = deck(j)            
75          deck(j) = temporaryValue    
76       Next
77
78       cmdDeal.Enabled = True
79  End Sub ' Shuffle
80
81 Public Function DealCard() As CCard
82
83       ' if there is a card to deal then deal it 
84       ' otherwise signal that cards need to be shuffled by  
85       ' disabling cmdDeal and returning Nothing
86       If (currentCard + 1) < deck.GetUpperBound(0) Then
87          currentCard += 1

Fig. 15.18 Card dealing and shuffling simulation (part 2 of 4).



666 Strings, Characters and Regular Expressions Chapter 15

88
89          Return deck(currentCard)
90       Else
91          cmdDeal.Enabled = False
92
93          Return Nothing
94       End If
95
96    End Function ' DealCard
97
98    ' cmdShuffle_Click
99  Private Sub cmdShuffle_Click(ByVal sender As System.Object, _
100       ByVal e As System.EventArgs) Handles cmdShuffle.Click
101
102       lblDisplay.Text = "SHUFFLING..."
103
104       Shuffle()
105
106       lblDisplay.Text = "DECK IS SHUFFLED"
107    End Sub ' cmdShuffle_Click
108
109 End Class ' FrmDeck

Fig. 15.18 Card dealing and shuffling simulation (part 3 of 4).



Chapter 15 Strings, Characters and Regular Expressions 667

Class CCard (Fig. 15.17) contains two String instance variables—face and
suit—that store references to the face name and suit name of a specific card. The con-
structor for the class receives two Strings that it uses to initialize face and suit.
Method ToString creates a String consisting of the face of the card and the suit
of the card.

Method FrmDeck_Load (lines 20–40 of Fig. 15.18) uses the For structure (lines
36–38) to fill the deck array with CCards. Note that each CCard is instantiated and ini-
tialized with two Strings—one from the faces array (Strings "Ace" through
"King") and one from the suits array ("Hearts", "Diamonds", "Clubs" or
"Spades"). The calculation i Mod 13 always results in a value from 0 to 12 (the thirteen
subscripts of the faces array), and the calculation i Mod 4 always results in a value from
0 to 3 (the four subscripts in the suits array). The initialized deck array contains the
cards with faces ace through king for each suit.

When users click the Deal Card button, event handler cmdDeal_Click (line 43)
invokes method DealCard (defined in lines 81–96) to get the next card in the deck array.
If the deck is not empty, the method returns a CCard object reference; otherwise, it
returns Nothing. If the reference is not Nothing, lines 51–52 display the CCard in
lblDisplay and display the card number in the lblStatus.

If dealCard returns a Nothing reference, the String "NO MORE CARDS TO
DEAL" is displayed in lblDisplay, and the String "Shuffle cards to con-
tinue" is displayed in lblStatus.

When users click the Shuffle Cards button, its event-handling method
cmdShuffle_Click (lines 99–107) invokes method Shuffle (defined on line 61) to
shuffle the cards. The method loops through all 52 cards (array subscripts 0–51). For each
card, the method randomly picks a number between 0 and 51. Then the current CCard
object and the randomly selected CCard object are swapped in the array. To shuffle the
cards, method Shuffle makes a total of only 52 swaps during a single pass of the entire
array. When the shuffling is complete, lblDisplay displays the String "DECK IS
SHUFFLED".

15.17 Regular Expressions and Class Regex
Regular expressions are specially formatted Strings used to find patterns in text and can
be useful during information validation, to ensure that data is in a particular format. For ex-
ample, a ZIP code must consist of five digits, and a last name must start with a capital letter.
One application of regular expressions is to facilitate the construction of a compiler. Often,
a large and complex regular expression is used to validate the syntax of a program. If the

Fig. 15.18 Card dealing and shuffling simulation (part 4 of 4).



668 Strings, Characters and Regular Expressions Chapter 15

program code does not match the regular expression, the compiler knows that there is a syn-
tax error within the code.

The .NET Framework provides class Regex (System.Text.RegularExpres-
sions namespace) to help developers recognize and manipulate regular expressions.
Class Regex provides method Match, which returns an object of class Match that repre-
sents a single regular expression match. RegEx also provides method Matches, which
finds all matches of a regular expression in an arbitrary String and returns a MatchC-
ollection object—i.e., a set of Matches.

Common Programming Error 15.5
When using regular expressions, do not confuse class Match with the method Match, which
belongs to class Regex. 15.5

Common Programming Error 15.6
Visual Studio does not add System.Text.RegularExpressions to the list of
namespaces imported in the project properties, so a programmer must import it manually
with the statement Imports System.Text.RegularExpressions. 15.6

The table in Fig. 15.19 specifies some character classes that can be used with regular
expressions. A character class is an escape sequence that represents a group of characters.

A word character is any alphanumeric character or underscore. A whitespace char-
acter is a space, a tab, a carriage return, a newline or a form feed. A digit is any numeric
character. Regular expressions are not limited to these character classes, however. The
expressions employ various operators and other forms of notation to search for complex
patterns. We discuss several of these techniques in the context of the next example.

Figure 15.20 presents a simple example that employs regular expressions. This pro-
gram takes birthdays and tries to match them to a regular expression. The expression only
matches birthdays that do not occur in April and that belong to people whose names begin
with "J".

Character Matches Character Matches

\d any digit \D any non-digit

\w any word character \W any non-word character

\s any whitespace \S any non-whitespace

Fig. 15.19 Character classes.

1 ' Fig. 15.20: RegexMatches.vb
2 ' Demonstrating Class Regex.
3
4 Imports System.Text.RegularExpressions
5 Imports System.Windows.Forms
6
7 Module modRegexMatches
8

Fig. 15.20 Regular expressions checking birthdays (part 1 of 2).



Chapter 15 Strings, Characters and Regular Expressions 669

Line 15 creates an instance of class Regex and defines the regular expression pattern
for which Regex will search. The first character in the regular expression, "J", is treated
as a literal character. This means that any String matching this regular expression is
required to start with "J".

In a regular expression, the dot character "." matches any single character except a
newline character. However, when the dot character is followed by an asterisk, as in the
expression ".*", it matches any number of unspecified characters. In general, when the
operator "*" is applied to any expression, the expression will match zero or more occur-
rences of the expression. By contrast, the application of the operator "+" to an expression
causes the expression to match one or more occurrences of that expression. For example,
both "A*" and "A+" will match "A", but only "A*" will match an empty String.

As indicated in Fig. 15.19, "\d" matches any numeric digit. To specify sets of char-
acters other than those that have a character class, characters can be listed in square
brackets, []. For example, the pattern "[aeiou]" can be used to match any vowel.
Ranges of characters can be represented by placing a dash (-) between two characters. In
the example, "[0-35-9]" matches only digits in the ranges specified by the pattern. In
this case, the pattern matches any digit between 0 and 3 or between 5 and 9; therefore, it

9 Sub Main()
10       Dim output As String = ""
11       Dim myMatch As Match
12
13       ' create regular expression
14       Dim expression As Regex = _ 
15          New Regex("J.*\d[0-35-9]-\d\d-\d\d")
16
17       Dim string1 As String = "Jane's Birthday is 05-12-75" & _
18          vbCrLf & "Dave's Birthday is 11-04-68" & vbCrLf & _
19          "John's Birthday is 04-28-73" & vbCrLf & _
20          "Joe's Birthday is 12-17-77"
21
22       ' match regular expression to string and  
23       ' print out all matches
24       For Each myMatch In expression.Matches(string1)
25          output &= myMatch.ToString() & vbCrLf
26       Next
27
28       MessageBox.Show(output, "Using Class Regex", _
29          MessageBoxButtons.OK, MessageBoxIcon.Information)
30    End Sub ' Main
31
32 End Module ' modRegexMatches

Fig. 15.20 Regular expressions checking birthdays (part 2 of 2).



670 Strings, Characters and Regular Expressions Chapter 15

matches any digit except 4. If the first character in the brackets is the "^", the expression
accepts any character other than those indicated. However, it is important to note that
"[^4]" is not the same as "[0-35-9]", as the former matches any non-digit in addition
to the digits other than 4.

Although the "–" character indicates a range when it is enclosed in square brackets,
instances of the "-" character outside grouping expressions are treated as literal characters.
Thus, the regular expression in line 15 searches for a String that starts with the letter
"J", followed by any number of characters, followed by a two-digit number (of which the
second digit cannot be 4), followed by a dash, another two-digit number, a dash and another
two-digit number.

Lines 24-26 use a For Each loop to iterate through each Match obtained from
expression.Matches, which used string1 as an argument. The output in
Fig. 15.20 indicates the two matches that were found in string1. Notice that both
matches conform to the patter specified by the regular expression.

The asterisk (*) and plus (+) in the previous example are called quantifiers.
Figure 15.21 lists various quantifiers and their uses.

We have already discussed how the asterisk (*) and plus (+) work. The question mark
(?) matches zero or one occurrences of the expression that it quantifies. A set of braces con-
taining one number ({n}), matches exactly n occurrences of the expression it quantifies.
We demonstrate this quantifier in the next example. Including a comma after the number
enclosed in braces matches at least n occurrences of the quantified expression. The set of
braces containing two numbers ({n,m}), matches between n and m occurrences of the
expression that it qualifies. All of the quantifiers are greedy. This means that they will
match as many occurrences as they can as long as the match is successful. However, if any
of these quantifiers is followed by a question mark (?), the quantifier becomes lazy. It then
will match as few occurrences as possible as long as the match is successful.

The Windows application in Fig. 15.22 presents a more involved example that vali-
dates user input via regular expressions. 

Quantifier Matches

* Matches zero or more occurrences of the pattern.

+ Matches one or more occurrences of the pattern.

? Matches zero or one occurrences of the pattern.

{n} Matches exactly n occurrences.

{n,} Matches at least n occurrences.

{n,m} Matches between n and m (inclusive) occurrences.

Fig. 15.21 Quantifiers used regular expressions.

1 ' Fig. 15.22: Validate.vb
2 ' Validate user information using regular expressions.
3

Fig. 15.22 Validating user information using regular expressions (part 1 of 5).



Chapter 15 Strings, Characters and Regular Expressions 671

4 Imports System.Text.RegularExpressions
5
6 Public Class FrmValid
7 Inherits Form
8
9    ' field labels

10  Friend WithEvents lblLast As Label
11    Friend WithEvents lblFirst As Label
12    Friend WithEvents lblAddress As Label
13 Friend WithEvents lblCity As Label
14    Friend WithEvents lblState As Label
15   Friend WithEvents lblZip As Label
16    Friend WithEvents lblPhone As Label 
17
18    ' field inputs
19   Friend WithEvents txtLast As TextBox
20  Friend WithEvents txtFirst As TextBox
21   Friend WithEvents txtAddress As TextBox
22 Friend WithEvents txtCity As TextBox
23    Friend WithEvents txtState As TextBox
24  Friend WithEvents txtZip As TextBox
25    Friend WithEvents txtPhone As TextBox
26
27    Friend WithEvents cmdOK As Button ' validate all fields
28
29    ' Visual Studio .NET generated code
30
31    ' handles cmdOK Click event
32 Private Sub cmdOK_Click(ByVal sender As System.Object, _
33       ByVal e As System.EventArgs) Handles cmdOK.Click
34
35       ' ensures no textboxes are empty
36       If (txtPhone.Text = "" OrElse txtZip.Text = "" OrElse _
37          txtState.Text = "" OrElse txtCity.Text = "" OrElse _
38          txtAddress.Text = "" OrElse txtFirst.Text = "" OrElse _
39          txtLast.Text = "") Then
40
41          ' display popup box 
42          MessageBox.Show("Please fill in all fields", "Error", _
43             MessageBoxButtons.OK, MessageBoxIcon.Error)
44
45          ' set focus to txtLast
46          txtLast.Focus()
47
48          Return
49       End If
50
51       ' if last name format invalid show message
52       If Not Regex.Match(txtLast.Text, _
53          "^[A-Z][a-zA-Z]*$").Success Then
54
55          ' last name was incorrect
56          MessageBox.Show("Invalid Last Name", "Message")

Fig. 15.22 Validating user information using regular expressions (part 2 of 5).



672 Strings, Characters and Regular Expressions Chapter 15

57          txtLast.Focus()
58
59          Return
60       End If
61
62       ' if first name format invalid show message
63       If Not Regex.Match(txtFirst.Text, _
64          "^[A-Z][a-zA-Z]*$").Success Then
65
66          ' first name was incorrect
67          MessageBox.Show("Invalid First Name", "Message")
68          txtFirst.Focus()
69
70          Return
71       End If
72
73       ' if address format invalid show message
74       If Not Regex.Match(txtAddress.Text, "^[0-9]+\s+([a-zA-Z]" & _
75          "+|[a-zA-Z]+\s[a-zA-Z]+)$").Success Then
76
77          ' address was incorrect
78          MessageBox.Show("Invalid Address", "Message")
79          txtAddress.Focus()
80
81          Return
82       End If
83
84       ' if city format invalid show message
85       If Not Regex.Match(txtCity.Text, "^([a-zA-Z]+|[a-zA-Z]" & _
86          "+\s[a-zA-Z]+)$").Success Then
87
88          ' city was incorrect
89          MessageBox.Show("Invalid City", "Message")
90          txtCity.Focus()
91
92          Return
93       End If
94
95       ' if state format invalid show message
96       If Not Regex.Match(txtState.Text, _
97          "^([a-zA-Z]+|[a-zA-Z]+\s[a-zA-Z]+)$").Success Then
98
99          ' state was incorrect
100          MessageBox.Show("Invalid State", "Message")
101          txtState.Focus()
102
103          Return
104       End If
105
106       ' if zip code format invalid show message
107       If Not Regex.Match(txtZip.Text, "^\d{5}$").Success Then
108

Fig. 15.22 Validating user information using regular expressions (part 3 of 5).



Chapter 15 Strings, Characters and Regular Expressions 673

109          ' zip code was incorrect
110          MessageBox.Show("Invalid zip code", "Message")
111          txtZip.Focus()
112
113          Return
114       End If
115
116       ' if phone number format invalid show message
117       If Not Regex.Match(txtPhone.Text, "^[1-9]" & _
118          "\d{2}-[1-9]\d{2}-\d{4}$").Success Then
119
120          ' phone was incorrect
121          MessageBox.Show("Invalid Phone Number", "Message")
122          txtPhone.Focus()
123
124          Return
125       End If
126
127       ' information is valid, signal user and exit application
128       Me.Hide()
129       MessageBox.Show("Thank you!", "Information Correct", _
130            MessageBoxButtons.OK, MessageBoxIcon.Information)
131
132       Application.Exit()
133 End Sub ' cmdOK_Click
134
135 End Class ' FrmValid

Fig. 15.22 Validating user information using regular expressions (part 4 of 5).



674 Strings, Characters and Regular Expressions Chapter 15

When a user clicks the OK button, the program checks to make sure that none of the
fields are empty (lines 36–39). If one or more fields are empty, the program signals the user
that all fields must be filled before the program can validate the input information (lines
42–43). Line 46 calls instance method Focus of class TextBox. Method Focus places
the cursor within the TextBox that made the call. The program then exits the event han-
dler (line 48). If there are no empty fields, the user input is validated. The Last Name is
validated first (lines 52–60). If it passes the test (i.e., if the Success property of the
Match instance is True), control moves on to validate the First Name (lines 63–71).
This process continues until all TextBoxes are validated, or until a test fails (Success
is False) and the program sends an appropriate error message. If all fields contain valid
information, success is signaled, and the program quits.

Fig. 15.22 Validating user information using regular expressions (part 5 of 5).



Chapter 15 Strings, Characters and Regular Expressions 675

In the previous example, we searched for substrings that matched a regular expression.
In this example, we want to check whether an entire String conforms to a regular expres-
sion. For example, we want to accept "Smith" as a last name, but not "9@Smith#". We
achieve this effect by beginning each regular expression with a "^" character and ending
it with a "$" character. The "^" and "$" characters match the positions at the beginning
and end of a String, respectively. This forces the regular expression to evaluate the entire
String and not return a match if a substring matches successfully.

In this program, we use the Shared version of Regex method Match, which takes
an additional parameter specifying the regular expression that we are trying to match. The
expression in line 53 uses the square bracket and range notation to match an uppercase first
letter, followed by letters of any case—a-z matches any lowercase letter, and A-Z
matches any uppercase letter. The * quantifier signifies that the second range of characters
may occur zero or more times in the String. Thus, this expression matches any String
consisting of one uppercase letter, followed by zero or more additional letters.

The notation \s matches a single whitespace character (lines 74–75 and 86). The
expression \d{5}, used in the Zip (zip code) field, matches any five digits (line 107). In
general, an expression with a positive integer x in the curly braces will match any x digits.
(Notice the importance of the "^" and "$" characters to prevent zip codes with extra digits
from being validated.)

The character “|” matches the expression to its left or to its right. For example,
Hi (John|Jane) matches both Hi John and Hi Jane. Note the use of parentheses to
group parts of the regular expression. Quantifiers may be applied to patterns enclosed in
parentheses to create more complex regular expressions.

The Last Name and First Name fields both accept Strings of any length, which
begin with an uppercase letter. The Address field matches a number of at least one digit,
followed by a space and either one or more letters or one or more letters followed by a space
and another series of one or more letters (lines 74–75). Therefore, "10 Broadway" and
"10 Main Street" are both valid addresses. The City (lines 85–86) and State (lines
96–97) fields match any word of at least one character or, alternatively, any two words of
at least one character if the words are separated by a single space. This means both
Waltham and West Newton would match. As previously stated, the Zip code must be a
five-digit number (line 107). The Phone number must be of the form xxx-yyy-yyyy,
where the xs represent the area code and ys the number (lines 117–118). The first x and
the first y may not be zero. 

Sometimes it is useful to replace parts of a String with another, or split a String
according to a regular expression. For this purpose, the Regex class provides Shared and
instance versions of methods Replace and Split, which are demonstrated in Fig. 15.23.

1 ' Fig. 15.23: RegexSubstitution.vb
2 ' Using Regex method Replace.
3
4 Imports System.Text.RegularExpressions
5 Imports System.Windows.Forms
6
7 Module modRegexSubstitution

Fig. 15.23 Regex methods Replace and Split (part 1 of 3).



676 Strings, Characters and Regular Expressions Chapter 15

8
9 Sub Main()

10       Dim testString1 As String = _
11          "This sentence ends in 5 stars *****"
12
13       Dim testString2 As String = "1, 2, 3, 4, 5, 6, 7, 8"
14       Dim testRegex1 As Regex = New Regex("stars")
15       Dim testRegex2 As Regex = New Regex("\d")
16       Dim results As String()
17       Dim resultString As String
18       Dim output As String = "Original String 1" & vbTab & _
19          vbTab & vbTab & testString1
20
21       testString1 = Regex.Replace(testString1, "\*", "^")
22
23       output &= vbCrLf & "^ substituted for *" & vbTab & _
24          vbTab & vbTab & testString1
25
26       testString1 = testRegex1.Replace(testString1, "carets")
27
28       output &= vbCrLf & """carets"" substituted for " & _
29          """stars""" & vbTab & testString1
30
31       output &= vbCrLf & "Every word replaced by " & _
32          """word""" & vbTab & _
33          Regex.Replace(testString1, "\w+", "word")
34
35       output &= vbCrLf & vbCrLf & "Original String 2" & _
36          vbTab & vbTab & vbTab & testString2
37
38       output &= vbCrLf & "First 3 digits replaced by " & _
39          """digit""" & vbTab & _
40          testRegex2.Replace(testString2, "digit", 3)
41       
42       output &= vbCrLf & "String split at commas" & vbTab & _
43          vbTab & "["
44
45       results = Regex.Split(testString2, ",\s*")
46
47       For Each resultString In results
48          output &= """" & resultString & """, "
49       Next
50
51       output = output.Substring(0, output.Length - 2) & "]"
52
53       MessageBox.Show(output, _
54          "Substitution using regular expressions")
55 End Sub ' Main
56
57 End Module ' modRegexSubstitution

Fig. 15.23 Regex methods Replace and Split (part 2 of 3).



Chapter 15 Strings, Characters and Regular Expressions 677

Method Replace replaces text in a String with new text wherever the original
String matches a regular expression. We present two versions of this method in
Fig. 15.23. The first version (line 21) is Shared and takes three parameters—the String
to modify, the String containing the regular expression to match and the replacement
String. Here, Replace replaces every instance of "*" in testString1 with "^".
Notice that the regular expression ("\*") precedes character * with a backslash, \. Nor-
mally, * is a quantifier indicating that a regular expression should match any number of
occurrences of a preceding pattern. However, in line 21, we want to find all occurrences of
the literal character *; to do this, we must escape character * with character \. By escaping
a special regular expression character with a \, we inform the regular-expression matching
engine to find the actual character, as opposed to what it represents in a regular expression.
The second version of method Replace (line 26) is an instance method that uses the reg-
ular expression passed to the constructor for testRegex1 (line 14) to perform the
replacement operation. In this case, every match for the regular expression "stars" in
testString1 is replaced with "carets".

Line 15 instantiates testRegex2 with argument "\d". The call to instance method
Replace in line 40 takes three arguments—a String to modify, a String containing
the replacement text and an Integer specifying the number of replacements to make. In
other words, this version of Replace replaces the first three instances of a digit ("\d")
in testString2 with the text "digit" (line 40).

Method Split divides a String into several substrings. The original String is
broken in any location that matches a specified regular expression. Method Split returns
an array containing the substrings between matches for the regular expression. In line 45,
we use the Shared version of method Split to separate a String of comma-separated
integers. The first argument is the String to split, and the second argument is the regular
expression. In this case, we use the regular expression ",\s*" to separate the substrings
wherever a comma occurs. By matching any whitespace characters, we eliminate extra
spaces from the resulting substrings.

SUMMARY
• Characters are the fundamental building blocks of Visual Basic program code. Every program is

composed of a sequence of characters that is interpreted by the compiler as a series of instructions
used to accomplish a task.

Fig. 15.23 Regex methods Replace and Split (part 3 of 3).



678 Strings, Characters and Regular Expressions Chapter 15

• A String is a series of characters treated as a single unit. A String may include letters, digits
and various special characters, such as +, -, *, /, $ and others.

• All characters correspond to numeric codes (see Appendix E). When the computer compares two
Strings, it actually compares the numeric codes of the characters in the Strings.

• Method Equals uses a lexicographical comparison, meaning that if a certain String has a high-
er value than another String, it would be found later in a dictionary. Method Equals compares
the integer Unicode values that represent each character in each String.

• Method CompareTo returns 0 if the Strings are equal, a negative number if the String that
invokes CompareTo is less than the String passed as an argument and a positive number if the
String that invokes CompareTo is greater than the String passed as an argument. Method
CompareTo uses a lexicographical comparison.

• A hash table stores information, using a special calculation on the object to be stored that produces
a hash code. The hash code is used to choose the location in the table at which to store the object. 

• Class Object defines method GetHashCode to perform the hash-code calculation. This meth-
od is inherited by all subclasses of Object. Method GetHashCode is overridden by String
to provide a good hash-code distribution based on the contents of the String.

• Class String provides two Substring methods to enable a new String object to be created
by copying part of an existing String object.

• String method IndexOf locates the first occurrence of a character or a substring in a String.
Method LastIndexOf locates the last occurrence of a character or a substring in a String.

• String method StartsWith determines whether a String starts with the characters speci-
fied as an argument. String method EndsWith determines whether a String ends with the
characters specified as an argument.

• The Shared method Concat of class String concatenates two String objects and returns a
new String object containing the characters from both original Strings.

• Methods Replace, ToUpper, ToLower, Trim and Remove are provided for more advanced
String manipulation.

• The String class provides many capabilities for processing Strings. However, once a
String object is created, its contents can never change. Class StringBuilder is available for
creating and manipulating dynamic Strings, i.e., Strings that can change.

• Class StringBuilder provides Length and Capacity properties to return the number of
characters currently in a StringBuilder and the number of characters that can be stored in a
StringBuilder without allocating more memory, respectively. These properties also can be
used to increase or decrease the length or the capacity of the StringBuilder.

• Method EnsureCapacity allows programmers to guarantee that a StringBuilder has a
minimum capacity. Method EnsureCapacity attempts to double the capacity. If this value is
greater than the value that the programmer wishes to ensure, this will be the new capacity. Other-
wise, EnsureCapacity alters the capacity to make it one more than the requested number.

• Class StringBuilder provides 19 overloaded Append methods to allow various data-type
values to be added to the end of a StringBuilder. Versions are provided for each of the prim-
itive data types and for character arrays, Strings and Objects.

• The braces in a format String specify how to format a specific piece of information. Formats
have the form {X[,Y][:FormatString]}, where X is the number of the argument to be for-
matted, counting from zero. Y is an optional argument, which can be positive or negative. Y indi-
cates how many characters should be in the result of formatting, if the resulting String is less
than this number it will be padded with spaces to make up for the difference. A positive integer
means the String will be right aligned, a negative one means it will be left aligned. The optional



Chapter 15 Strings, Characters and Regular Expressions 679

FormatString indicates what kind of formatting should be applied to the argument: Currency,
decimal, scientific, as well as others. 

• Class StringBuilder provides 19 overloaded Insert methods to allow various data-type
values to be inserted at any position in a StringBuilder. Versions are provided for each of the
primitive data types and for character arrays, Strings and Objects.

• Class StringBuilder also provides method Remove for deleting any portion of a String-
Builder.

• Another useful method included with StringBuilder is Replace. Replace searches for a
specified String or character and substitutes another in its place.

• Visual Basic provides Structures, a program building block similar to classes.

• Structures are in many ways similar to classes, the largest difference between them being that
structures encapsulate value types, whereas classes encapsulate reference types. 

• Many of the primitive data types that we have been using are actually aliases for different struc-
tures. These structures are derived from class ValueType, which in turn is derived from class
Object.

• Char is a structure that represents characters.

• Method Char.Parse converts data into a character.

• Method Char.IsDigit determines whether a character is a defined Unicode digit.

• Method Char.IsLetter determines whether a character is a letter.

• Method Char.IsLetterOrDigit determines whether a character is a letter or a digit.

• Method Char.IsLower determines whether a character is a lowercase letter.

• Method Char.IsUpper determines whether a character is an uppercase letter.

• Method Char.ToUpper converts a character to its uppercase equivalent.

• Method Char.ToLower converts a character to its lowercase equivalent.

• Method Char.IsPunctuation determines whether a character is a punctuation mark.

• Method Char.IsSymbol determines whether a character is a symbol.

• Method Char.IsWhiteSpace determines whether a character is a white-space character.

• Char method CompareTo compares two character values.

• Regular expressions find patterns in text. 

• The .NET Framework provides class Regex to aid developers in recognizing and manipulating
regular expressions. Regex provides method Match, which returns an object of class Match.
This object represents a single match in a regular expression. Regex also provides the method
Matches, which finds all matches of a regular expression in an arbitrary String and returns a
MatchCollection—a set of Matches. 

• Both classes Regex and Match are in System.Text.RegularExpressions namespace.

• In general, applying the quantifier * to any expression will match zero or more occurrences of that
expression, and applying the quantifier + will match one or more occurrences of that expression. 

• The pattern "[0-35-9]" is a regular expression that matches one in a range of characters. This
String will match any digit 0-3 and 5-9, so it will match any digit except 4.

• The character “|” matches the expression to its left or to its right. For example,
"Hi (John|Jane)" matches both "Hi John" and "Hi Jane".

• Method Replace replaces substrings in a String that match a certain regular expression with
a specified String.



680 Strings, Characters and Regular Expressions Chapter 15

TERMINOLOGY

SELF-REVIEW EXERCISES
15.1 State whether each of the following is true or false. If false, explain why.

a) When String objects are compared with =, the result is true if the Strings contain
the same values.

& operator lazy quantifier
&= concatenation operator Length property of class String
= comparison operator Length property of class StringBuilder
alphabetizing lexicographical comparison 
Append method of class StringBuilder literal String objects 
AppendFormat method of class Match class 
   StringBuilder MatchCollection class 
ArgumentOutOfRangeException Parse method of structure Char
Capacity property of class  page-layout software 
   StringBuilder quantifier
Char array random-number generation 
Char structure Regex class 
Chars property of class String Remove method of class StringBuilder
character Replace method of class Regex
character class Replace method of class String
CompareTo method of class String Replace method of class StringBuilder
CompareTo method of structure Char special characters 
Concat method of class String Split method of class Regex
CopyTo method of class String StartsWith method of class String
Enabled property of class Control String class 
EndsWith method of class String string literal 
EnsureCapacity method of class  String reference 
   StringBuilder StringBuilder class 
Equals method of class String Structure
format string Substring method of class String
garbage collector Success property of class Match
GetHashCode System namespace 
greedy quantifier System.Text namespace 
hash code System.Text.RegularExpressions
hash table    namespace 
immutable String text editor 
IndexOf method of class String ToLower method of class String
IndexOfAny method of class String ToLower method of structure Char
IsDigit method of structure Char ToString method of class String
IsLetter method of structure Char ToString method of class StringBuilder
IsLetterOrDigit method of ToUpper method of class String
   structure Char ToUpper method of structure Char
IsLower method of structure Char trailing whitespace characters 
IsPunctuation method of structure Char Trim method of class String
IsSymbol method of structure Char Unicode character set 
IsUpper method of structure Char ValueType class
IsWhiteSpace method of structure Char whitespace characters 
LastIndexOf method of class String word character
LastIndexOfAny method of class String



Chapter 15 Strings, Characters and Regular Expressions 681

b) A String can be modified after it is created.
c) Class String has no ToString method.
d) StringBuilder EnsureCapacity method sets the capacity to its argument.
e) The method Equals and the equality operator work the same for Strings.
f) Method Trim removes all whitespace at the beginning and the end of a String.
g) A regular expression matches a String to a pattern.
h) It is always better to use Strings rather than StringBuilders because Strings

containing the same value will reference the same object in memory.
i) Class String method ToUpper capitalizes just the first letter of the String.
j) The expression \d in a regular expression denotes all letters.

15.2 Fill in the blanks in each of the following statements:
a) To concatenate strings, use the  operator or class  method

.
b) Method Compare of class String uses a  comparison of Strings.
c) Class Regex is located in namespace .
d) StringBuilder method  first formats the specified String then concat-

enates it to the end of the StringBuilder.
e) If the arguments to a Substring method call are out of range, an  excep-

tion is thrown.
f) Regex method  changes all occurrences of a pattern in a String to a spec-

ified String.
g) Method  is inherited by every object and calculates its hash code.
h) A C in a format means to output the number as .
i) Regular expression quantifier  matches zero or more occurrences of an ex-

pression.
j) Regular expression operator  inside square brackets will not match any of the

characters in that set of brackets.

ANSWERS TO SELF-REVIEW EXERCISES
15.1 a) True. b) False. String objects are immutable and cannot be modified after they are cre-
ated. StringBuilder objects can be modified after they are created. c) False. Class String in-
herits a ToString method from class Object. d) AppendFormat. e) True. f) True. g) True. h)
False. StringBuilder should be used if the String is to be modified. i) False. Class String
method ToUpper capitalizes all letters in the String. j) False. The expression \d denotes all dec-
imals in a regular expression.

15.2 a) &, StringBuilder, Append. b) lexicographical. c) System.Text.RegularEx-
pressions. d) AppendFormat e) ArgumentOutOfRangeException. f) Replace. g)
GetHashCode. h) currency. i) *. j) ^.

EXERCISES
15.3 Modify the program in Fig. 15.18 so that the card-dealing method deals a five-card poker
hand. Then write the following additional methods:

a) Determine if the hand contains a pair.
b) Determine if the hand contains two pairs.
c) Determine if the hand contains three of a kind (e.g., three jacks).
d) Determine if the hand contains four of a kind (e.g., four aces).
e) Determine if the hand contains a flush (i.e., all five cards of the same suit).
f) Determine if the hand contains a straight (i.e., five cards of consecutive face values).



682 Strings, Characters and Regular Expressions Chapter 15

g) Determine if the hand contains a full house (i.e., two cards of one face value and three
cards of another face value).

15.4 Use the methods developed in Exercise 15.3 to write a program that deals two five-card
poker hands, evaluates each hand and determines which is the better hand.

15.5 Write an application that uses String method CompareTo to compare two Strings in-
put by the user. Output whether the first String is less than, equal to or greater than the second. 

15.6 Write an application that uses random-number generation to create sentences. Use four arrays
of Strings called article, noun, verb and preposition. Create a sentence by selecting a
word at random from each array in the following order: article, noun, verb, preposition,
article and noun. As each word is picked, concatenate it to the previous words in the sentence.
The words should be separated by spaces. When the final sentence is output, it should start with a
capital letter and end with a period. The program should generate 20 sentences and output them to a
text area.

The arrays should be filled as follows: the article array should contain the articles
"the", "a", "one", "some" and "any"; the noun array should contain the nouns "boy",
"girl", "dog", "town" and "car"; the verb array should contain the past-tense verbs
"drove", "jumped", "ran", "walked" and "skipped"; the preposition array should
contain the prepositions "to", "from", "over", "under" and "on".

After the preceding program is written, modify the program to produce a short story consist-
ing of several of these sentences. (How about the possibility of a random term-paper writer!)

15.7 (Pig Latin) Write an application that encodes English language phrases into pig Latin. Pig
Latin is a form of coded language often used for amusement. Many variations exist in the methods
used to form pig Latin phrases. For simplicity, use the following algorithm:

To translate each English word into a pig Latin word, place the first letter of the English word
at the end of the word and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the
word “the” becomes “hetay” and the word “computer” becomes “omputercay.” Blanks be-
tween words remain as blanks. Assume the following: The English phrase consists of words separated
by blanks, there are no punctuation marks, and all words have two or more letters. Enable the user to
input a sentence. Use techniques discussed in this chapter to divide the sentence into separate words.
Method GetPigLatin should translate a single word into pig Latin. Keep a running display of all
the converted sentences in a text area.

15.8 Write a program that reads a five-letter word from the user and produces all possible three-
letter words that can be derived from the letters of the five-letter word. For example, the three-letter
words produced from the word “bathe” include the commonly used words “ate,” “bat,” “bet,” “tab,”
“hat,” “the” and “tea.”



16
Graphics and 
Multimedia

Objectives
• To understand graphics contexts and graphics objects.
• To be able to manipulate colors and fonts.
• To understand and be able to use GDI+ Graphics

methods to draw lines, rectangles, Strings and 
images.

• To be able to use class Image to manipulate and 
display images.

• To be able to draw complex shapes from simple 
shapes with class GraphicsPath.

• To be able to use Windows Media Player and 
Microsoft Agent in a Visual Basic application.

One picture is worth ten thousand words.
Chinese proverb

Treat nature in terms of the cylinder, the sphere, the cone, all 
in perspective.
Paul Cezanne

Nothing ever becomes real till it is experienced—even a 
proverb is no proverb to you till your life has illustrated it.
John Keats

A picture shows me at a glance what it takes dozens of pages 
of a book to expound.
Ivan Sergeyevich



684 Graphics and Multimedia Chapter 16

16.1 Introduction
In this chapter, we overview Visual Basic’s tools for drawing two-dimensional shapes and
for controlling colors and fonts. Visual Basic supports graphics that enable programmers to
enhance their Windows applications visually. The language contains many sophisticated
drawing capabilities as part of namespace System.Drawing and the other namespaces
that make up the .NET resource GDI+.  GDI+, an extension of the Graphical Device Inter-
face, is an application programming interface (API) that provides classes for creating two-
dimensional vector graphics (a high-performance technique for creating graphics), manip-
ulating fonts and inserting images. GDI+ expands GDI by simplifying the programming
model and introducing several new features, such as graphics paths, extended image file
format support and alpha blending. Using the GDI+ API, programmers can create images
without worrying about the platform-specific details of their graphics hardware.

We begin with an introduction to Visual Basic’s drawing capabilities. We then present
more powerful drawing capabilities, such as changing the styles of lines used to draw
shapes and controlling the colors and patterns of filled shapes.

Figure 16.1 depicts a portion of the System.Drawing class hierarchy, which
includes several of the basic graphics classes and structures covered in this chapter. The
most commonly used components of GDI+ reside in the System.Drawing and
System.Drawing.Drawing2D namespaces.

Class Graphics contains methods used for drawing Strings, lines, rectangles and
other shapes on a Control. The drawing methods of class Graphics usually require a
Pen or Brush object to render a specified shape. The Pen draws shape outlines; the
Brush draws solid objects.

Structure Color contains numerous Shared properties, which set the colors of var-
ious graphical components, as well as methods that allow users to create new colors. Class

Outline

16.1 Introduction
16.2 Graphics Contexts and Graphics Objects
16.3 Color Control
16.4 Font Control
16.5 Drawing Lines, Rectangles and Ovals
16.6 Drawing Arcs
16.7 Drawing Polygons and Polylines
16.8 Advanced Graphics Capabilities
16.9 Introduction to Multimedia
16.10 Loading, Displaying and Scaling Images
16.11 Animating a Series of Images
16.12 Windows Media Player
16.13 Microsoft Agent

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



Chapter 16 Graphics and Multimedia 685

Font contains properties that define unique fonts. Class FontFamily contains methods
for obtaining font information.

To begin drawing in Visual Basic, we first must understand GDI+’s coordinate system
(Fig. 16.2), a scheme for identifying every point on the screen. By default, the upper-left
corner of a GUI component (such as a Panel or a Form) has the coordinates (0, 0). A
coordinate pair has both an x-coordinate (the horizontal coordinate) and a y-coordinate
(the vertical coordinate). The x-coordinate is the horizontal distance (to the right) from the
upper-left corner. The y-coordinate is the vertical distance (downward) from the upper-left
corner. The x-axis defines every horizontal coordinate, and the y-axis defines every vertical
coordinate. Programmers position text and shapes on the screen by specifying their (x,y)
coordinates. Coordinate units are measured in pixels (“picture elements”), which are the
smallest units of resolution on a display monitor.

Portability Tip 16.1
Different display monitors have different resolutions, so the density of pixels on such monitors
will vary. This might cause the sizes of graphics to appear different on different monitors. 16.1

Fig. 16.1 System.Drawing namespace’s Classes and Structures.

System.Drawing

Bitmap

Font

FontFamily

Graphics

Icon

Pen

Region

SolidBrush

TextureBrush

Image

Brush

HatchBrush

LinearGradientBrush

PathGradientBrush

SolidBrush

TextureBrush

class

Structure

Color

Point

Rectangle

Size

Key

class

structure



686 Graphics and Multimedia Chapter 16

The System.Drawing namespace provides structures Rectangle and Point.
The Rectangle structure defines rectangular shapes and dimensions. The Point struc-
ture represents the x-y coordinates of a point on a two-dimensional plane. 

In the remainder of this chapter, we explore techniques of manipulating images and
creating smooth animations. We also discuss class Image, which can store and manipulate
images from many file formats. Later, we explain how to combine the graphical rendering
capabilities covered in the early sections of the chapter with those for image manipulation.

16.2 Graphics Contexts and Graphics Objects
A Visual Basic graphics context represents a drawing surface and enables drawing on the
screen. A Graphics object manages a graphics context by controlling how information
is drawn. Graphics objects contain methods for drawing, font manipulation, color ma-
nipulation and other graphics-related actions. Every Windows application that derives from
class System.Windows.Forms.Form inherits an Overridable OnPaint method
where most graphics operations are performed. The arguments to the OnPaint method in-
clude a PaintEventArgs object from which we can obtain a Graphics object for the
control. We must obtain the Graphics object on each call to the method, because the
properties of the graphics context that the graphics object represents could change. The
OnPaint method triggers the Control’s Paint event. 

When displaying graphical information on a Form’s client area, programmers can
override the OnPaint method to retrieve a Graphics object from argument Paint-
EventArgs or to create a new Graphics object associated with the appropriate surface.
We demonstrate these techniques of drawing in applications later in the chapter.

To override the inherited OnPaint method, use the following method definition:

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

Next, extract the incoming Graphics object from the PaintEventArgs argument:

Dim graphicsObject As Graphics = e.Graphics

Variable graphicsObject now is available to draw shapes and Strings on the form.

Fig. 16.2 GDI+ coordinate system. Units are measured in pixels.

x-axis

y-axis

(x, y)

+x

+y

(0, 0)



Chapter 16 Graphics and Multimedia 687

Calling the OnPaint method raises the Paint event. Instead of overriding the
OnPaint method, programmers can add an event handler for the Paint event. First,
write the code for the Paint event handler in this form:

Public Sub MyEventHandler_Paint( _ 
ByVal sender As Object, ByVal e As PaintEventArgs) _ 
Handles MyBase.Paint

Programmers seldom call the OnPaint method directly, because the drawing of
graphics is an event-driven process. An event—such as the covering, uncovering or resizing
of a window—calls the OnPaint method of that form. Similarly, when any control (such as
a TextBox or Label) is displayed, the program calls that control’s Paint method.

 If programmers need to invoke method OnPaint explicitly, they can call the
Invalidate method (inherited from Control). This method refreshes a control’s
client area and repaints all graphical components. Visual Basic contains several overloaded
Invalidate methods that allow programmers to update portions of the client area.

Performance Tip 16.1
 Calling the Invalidate method to refresh the Control often is inefficient. Instead, call
Invalidate with a Rectangle parameter to refresh only the area designated by the
rectangle.  This improves program performance. 16.1

Controls, such as Labels and Buttons, also have their own graphics contexts. To
draw on a control, first obtain its graphics object by invoking the CreateGraphics
method:

Dim graphicsObject As Graphics = label1.CreateGraphics()

Then, you can use the methods provided in class Graphics to draw on the control.

16.3 Color Control
Colors can enhance a program’s appearance and help convey meaning.  For example, a red
traffic light indicates stop,  yellow indicates caution and green indicates go. 

Structure Color defines methods and constants used to manipulate colors. Because it
is a lightweight object that performs only a handful of operations and stores Shared fields,
Color is implemented as a structure, rather than as a class. 

Every color can be created from a combination of alpha, red, green and blue compo-
nents. Together, these components are called ARGB values. All four ARGB components
are Bytes that represent integer values in the range from 0 to 255. The alpha value deter-
mines the intensity of the color. For example, the alpha value 0 results in a transparent
color, whereas the value  255 results in an opaque color. Alpha values between 0 and 255
result in a weighted blending effect of the color’s RGB value with that of any background
color, causing a semi-transparent effect. The first number in the RGB value defines the
amount of red in the color, the second defines the amount of green and the third defines the
amount of blue. The larger the value, the greater the amount of that particular color. Visual
Basic enables programmers to choose from almost 17 million colors. If a particular com-
puter cannot display all these colors, it will display the color closest to the one specified.
Figure 16.3 summarizes some predefined color constants, and Fig. 16.4 describes several
Color methods and properties.  



688 Graphics and Multimedia Chapter 16

The table in Fig. 16.4 describes two FromArgb method calls. One takes three
Integer arguments, and one takes four Integer arguments (all argument values must
be between 0 and 255). Both take Integer arguments specifying the amount of red, green
and blue. The overloaded version takes four arguments and allows the user to specify alpha;
the three-argument version defaults the alpha to 255. Both methods return a Color object
representing the specified values. Color properties A, R, G and B return Bytes that rep-
resent Integer values from 0 to 255, corresponding to the amounts of alpha, red, green
and blue, respectively. 

Programmers draw shapes and Strings using Brushes and Pens. A Pen, which
functions similarly to an ordinary pen, is used to draw lines. Most drawing methods require
a Pen object. The overloaded Pen constructors allow programmers to specify the colors
and widths of the lines that they wish to draw. The System.Drawing namespace also
provides a Pens collection containing predefined Pens.

Constants in structure 
Color (all are 
Public Shared) RGB value

Constants in structure 
Color (all are 
Public Shared) RGB value

Orange 255, 200, 0 White                255, 255, 255

Pink 255, 175, 175 Gray                 28, 128, 128

Cyan   0, 255, 255 DarkGray             64, 64, 64

Magenta  255, 0, 255 Red                  255, 0, 0

Yellow  255, 255, 0 Green                0, 255, 0

Black  0, 0, 0 Blue                0, 0, 255

Fig. 16.3 Color structure Shared constants and their RGB values .

Structure Color
methods and 
properties Description

Common Methods

Shared FromArgb Creates a color based on red, green and blue values expressed as Inte-
gers from 0 to 255. Overloaded version allows specification of alpha, 
red, green and blue values.

Shared FromName Creates a color from a name, passed as a String.

Common Properties

A Integer between 0 and 255, representing the alpha component.

R Integer between 0 and 255, representing the red component.

G Integer between 0 and 255, representing the green component.

B Integer between 0 and 255, representing the blue component.

Fig. 16.4 Color structure members.



Chapter 16 Graphics and Multimedia 689

All classes derived from abstract class Brush define objects that color the interiors of
graphical shapes (for example, the SolidBrush constructor takes a Color object—the
color to draw). In most Fill methods, Brushes fill a space with a color, pattern or image.
Figure 16.5 summarizes various Brushes and their functions.

The application in Fig. 16.6 demonstrates several of the methods described in
Fig. 16.4. It displays two overlapping rectangles, allowing the user to experiment with
color values and color names.   

Class Description

HatchBrush Uses a rectangular brush to fill a region with a pattern. The pattern is 
defined by a member of the HatchStyle enumeration, a foreground 
color (with which the pattern is drawn) and a background color.

LinearGradient-
Brush

Fills a region with a gradual blend of one color into another. Linear 
gradients are defined along a line. They can be specified by the two col-
ors, the angle of the gradient and either the width of a rectangle or two 
points.

SolidBrush Fills a region with one color. Defined by a Color object. 

TextureBrush Fills a region by repeating a specified Image across the surface.

Fig. 16.5 Classes that derive from class Brush.

1 ' Fig. 16.6: ShowColors.vb
2 ' Using different colors in Visual Basic.
3
4 Public Class FrmColorForm
5 Inherits System.Windows.Forms.Form
6
7    ' input text boxes
8 Friend WithEvents txtColorName As TextBox
9 Friend WithEvents txtGreenBox As TextBox

10 Friend WithEvents txtRedBox As TextBox
11 Friend WithEvents txtAlphaBox As TextBox
12 Friend WithEvents txtBlueBox As TextBox
13
14    ' set color command buttons
15 Friend WithEvents cmdColorName As Button
16 Friend WithEvents cmdColorValue As Button
17
18    ' color labels
19 Friend WithEvents lblBlue As Label
20 Friend WithEvents lblGreen As Label
21 Friend WithEvents lblRed As Label
22 Friend WithEvents lblAlpha As Label
23
24    ' group boxes
25 Friend WithEvents nameBox As GroupBox
26 Friend WithEvents colorValueGroup As GroupBox

Fig. 16.6 Color value and alpha demonstration (part 1 of 3).



690 Graphics and Multimedia Chapter 16

27
28  ' Visual Studio .NET generated code
29
30    ' color for back rectangle
31 Private mBehindColor As Color = Color.Wheat
32
33    ' color for front rectangle
34 Private mFrontColor As Color = Color.FromArgb(100, 0, 0, 255)
35
36    ' overrides Form OnPaint method
37 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
38       Dim graphicsObject As Graphics = e.Graphics ' get graphics
39
40       Dim textBrush As SolidBrush = _
41          New SolidBrush(Color.Black) ' create text brush
42
43       Dim brush As SolidBrush = _
44          New SolidBrush(Color.White) ' create solid brush
45
46       ' draw white background
47       graphicsObject.FillRectangle(brush, 4, 4, 275, 180)
48
49       ' display name of behindColor
50       graphicsObject.DrawString(mBehindColor.Name, Me.Font, _
51          textBrush, 40, 5)
52
53       ' set brush color and display back rectangle
54       brush.Color = mBehindColor
55
56       graphicsObject.FillRectangle(brush, 45, 20, 150, 120)
57
58       ' display Argb values of front color
59       graphicsObject.DrawString("Alpha: " & mFrontColor.A & _
60          " Red: " & mFrontColor.R & " Green: " & mFrontColor.G _
61          & " Blue: " & mFrontColor.B, Me.Font, textBrush, _
62          55, 165)
63
64       ' set brush color and display front rectangle
65       brush.Color = mFrontColor
66
67       graphicsObject.FillRectangle(brush, 65, 35, 170, 130)
68 End Sub ' OnPaint
69
70    ' handle cmdColorValue click event
71 Private Sub cmdColorValue_Click(ByVal sender As _
72       System.Object, ByVal e As System.EventArgs) _
73       Handles cmdColorValue.Click
74
75       ' obtain new front color from text boxes
76       mFrontColor = Color.FromArgb(txtAlphaBox.Text, _
77          txtRedBox.Text, txtGreenBox.Text, txtBlueBox.Text)
78

Fig. 16.6 Color value and alpha demonstration (part 2 of 3).



Chapter 16 Graphics and Multimedia 691

When the application begins its execution, it calls class ShowColors’ OnPaint
method to paint the window. Line 38 gets a reference to PaintEventArgs e’s
Graphics object and assigns it to Graphics object graphicsObject. Lines 40–44
create a black and a white  SolidBrush for drawing on the form. Class SolidBrush
derives from abstract base class Brush; programmers can draw solid shapes with the
SolidBrush.

Graphics method FillRectangle draws a solid white rectangle with the Brush
supplied as a parameter (line 47). It takes as parameters a brush, the x- and y-coordinates of
a point and the width and height of the rectangle to draw. The point represents the upper-
left corner of the rectangle. Lines 50–51 display the String Name property of the
Brush’s Color property with the Graphics DrawString method. The programmer
has access to several overloaded DrawString methods; the version demonstrated in lines
50–51 takes a String to display, the display Font, a Brush and the x- and y-coordinates
of the location for the String’s first character. 

Lines 54–56 assign the Color mBehindColor value to the Brush’s Color prop-
erty and display a rectangle. Lines 59–62 extract and display the ARGB values of Color
mFrontColor and then display a filled rectangle that overlaps the first.

79       Invalidate() ' refresh Form
80 End Sub ' cmdColorValue_Click
81
82 Private Sub cmdColorName_Click(ByVal sender As _
83       System.Object, ByVal e As System.EventArgs) _
84       Handles cmdColorName.Click
85
86       ' set behindColor to color specified in text box
87       mBehindColor = Color.FromName(txtColorName.Text)
88
89       Invalidate() ' refresh Form
90 End Sub ' cmdColorName_Click
91
92 End Class ' FrmColorForm

Fig. 16.6 Color value and alpha demonstration (part 3 of 3).



692 Graphics and Multimedia Chapter 16

Button event-handler method cmdColorValue_Click (lines 71–80) uses
Color method FromARGB to construct a new Color object from the ARGB values that
a user specifies via text boxes. It then assigns the newly created Color to mFrontColor.
Button event-handler method cmdColorName_Click (lines 82–90) uses the Color
method FromName to create a new Color object from the colorName that a user enters
in a text box. This Color is assigned to mBehindColor.

If the user assigns an alpha value between 0 and 255 for the mFrontColor, the
effects of alpha blending are apparent. In the screenshot output, the red back rectangle
blends with the blue front rectangle to create purple where the two overlap.

Software Engineering Observation 16.1
No methods in class Color enable programmers to change the characteristics of the current
color. To use a different color, create a new Color object. 16.1

The predefined GUI component ColorDialog is a dialog box that allows users to
select from a palette of available colors.  It also offers the option of creating custom colors.
The program in Fig. 16.7 demonstrates the use of such a dialog. When a user selects a color
and presses OK, the application retrieves the user’s selection via the ColorDialog’s
Color property. 

1 ' Fig. 16.7: ShowColorsComplex.vb
2 ' Change the background and text colors of a form.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmColorDialogTest
7 Inherits System.Windows.Forms.Form
8
9 Friend WithEvents cmdBackgroundButton As Button

10 Friend WithEvents cmdTextButton As Button
11
12    ' Visual Studio .NET generated code
13
14 ' change text color
15    Private Sub cmdTextButton_Click (ByVal sender As System.Object, _
16       ByVal e As System.EventArgs) Handles cmdTextButton.Click
17
18       ' create ColorDialog object
19       Dim colorBox As ColorDialog = New ColorDialog()
20       Dim result As DialogResult
21
22       ' get chosen color
23       result = colorBox.ShowDialog()
24
25       If result = DialogResult.Cancel Then
26          Return
27       End If
28

Fig. 16.7 ColorDialog used to change background and text color (part 1 of 2).



Chapter 16 Graphics and Multimedia 693

29    ' assign forecolor to result of dialog
30       cmdBackgroundButton.ForeColor = colorBox.Color
31       cmdTextButton.ForeColor = colorBox.Color
32  End Sub ' cmdTextButton_Click
33
34  ' change background color
35 Private Sub cmdBackgroundButton_Click( _
36       ByVal sender As System.Object, _
37       ByVal e As System.EventArgs) _
38       Handles cmdBackgroundButton.Click
39
40       ' create ColorDialog object
41       Dim colorBox As ColorDialog = New ColorDialog()
42       Dim result As DialogResult
43
44       ' show ColorDialog and get result
45       colorBox.FullOpen = True
46       result = colorBox.ShowDialog()
47
48       If result = DialogResult.Cancel Then
49          Return
50       End If
51
52       ' set background color
53       Me.BackColor = colorBox.Color
54    End Sub ' cmdBackgroundButton_Click
55
56 End Class ' FrmColorDialogTest

Fig. 16.7 ColorDialog used to change background and text color (part 2 of 2).



694 Graphics and Multimedia Chapter 16

The GUI for this application contains two Buttons. The top one, cmdBackground,
allows the user to change the form and button background colors. The bottom one, cmd-
TextButton, allows the user to change the button text colors.

Lines 15–32 define Button cmdTextButton’s event handler, which creates a new
ColorDialog named colorBox and invokes its ShowDialog method to display the
window. Property Color of colorBox stores users’ selections. Lines 30–31 set the text
color of both buttons to the selected color.

Lines 35–54 define the event handler for button cmdBackgroundButton. The
method modifies the background color of the form by setting BackColor equal to the
dialog’s Color property. The method creates a new ColorDialog and sets the dialog’s
FullOpen property to True. The dialog now displays all available colors, as shown in
the screen capture in Fig. 16.7. The regular color display does not show the right-hand por-
tion of the screen.

Users are not restricted to the ColorDialog’s 48 colors. To create a custom color,
users can click anywhere in the ColorDialog’s large rectangle—this displays the var-
ious color shades. Adjust the slider, hue and other features to refine the color. When fin-
ished, click the Add to Custom Colors button, which adds the custom color to a square
in the custom colors section of the dialog. Clicking OK sets the Color property of the
ColorDialog to that color. Selecting a color and pressing the dialog’s OK button causes
the application’s background color to change. 

16.4 Font Control
This section introduces methods and constants that are related to font control. Once a Font
has been created, its properties cannot be modified. If programmers require a different
Font, they must create a new Font object—there are many overloaded versions of the
Font constructor for creating custom Fonts. Some properties of class Font are summa-
rized in Fig. 16.8. 

Property Description

Bold Tests a font for a bold font style. Returns True if the font is bold.

FontFamily Represents the FontFamily of the Font (a grouping structure to organize 
fonts and define their similar properties).

Height Represents the height of the font.

Italic Tests a font for an italic font style. Returns True if the font is italic.

Name Represents the font’s name as a String.

Size Returns a Single value indicating the current font size measured in design 
units (design units are any specified units of measurement for the font). 

SizeInPoints Returns a Single value indicating the current font size measured in points.

Strikeout Tests a font for a strikeout font style. Returns True if the font is in strikeout 
format.

Underline Tests a font for a underline font style. Returns True if the font is underlined.

Fig. 16.8 Font class read-only properties.



Chapter 16 Graphics and Multimedia 695

Note that property Size returns the font size as measured in design units, whereas
SizeInPoints returns the font size as measured in points (the more common measure-
ment). When we say that the Size property measures the size of the font in design units,
we mean that the font size can be specified in a variety of ways, such as inches or millime-
ters. Some versions of the Font constructor accept a GraphicsUnit argument—an enu-
meration that allows users to specify the unit of measurement employed to describe the font
size. Members of the GraphicsUnit enumeration include Point (1/72 inch),  Dis-
play (1/75 inch), Document (1/300 inch), Millimeter, Inch and Pixel. If this
argument is provided the Size property contains the size of the font as measured in the
specified design unit, and the SizeInPoints property converts the size of the font into
points. For example, if we create a Font with a size of 1 and specify that Graphics-
Unit.Inch be used to measure the font, the Size property will be 1, and the SizeIn-
Points property will be 72. If we employ a constructor that does not accept a member of
the GraphicsUnit, the default measurement for the font size is Graphics-
Unit.Point (thus, the Size and SizeInPoints properties will be equal). 

Class Font has a number of constructors. Most require a font name, which is a
String representing the default font currently supported by the system. Common fonts
include Microsoft SansSerif and Serif. Constructors also usually require the font size as an
argument. Lastly, Font constructors usually require the font style, which is a member of
the FontStyle enumeration: Bold, Italic, Regular, Strikeout, Underline.
Font styles can be combined via the Or operator (for example, FontStyle.Italic Or
FontStyle.Bold, makes a font both italic and bold).

Graphics method DrawString sets the current drawing font—the font in which
the text displays—to its Font argument.

Common Programming Error 16.1
Specifying a font that is not available on a system is a logic error. If this occurs, Visual Basic
will substitute that system’s default font. 16.1

The program in Fig. 16.9 displays text in four different fonts, each of a different size.
The program uses the Font constructor to initialize Font objects (lines 17–29). Each call
to the Font constructor passes a font name (e.g., Arial, Times New Roman, Courier New
or Tahoma) as a String, a font size (a Single) and a FontStyle object (style).
Graphics method DrawString sets the font and draws the text at the specified loca-
tion. Note that line 14 creates a DarkBlue SolidBrush object (brush), causing all
Strings drawn with that brush to appear in DarkBlue.

Software Engineering Observation 16.2
There is no way to change the properties of a Font object—to use a different font, program-
mers must create a new Font object. 16.2

1 ' Fig. 16.9: UsingFonts.vb
2 ' Demonstrating various font settings.
3
4 Public Class FrmFonts
5 Inherits System.Windows.Forms.Form
6

Fig. 16.9 Fonts and FontStyles (part 1 of 2).



696 Graphics and Multimedia Chapter 16

7    ' Visual Studio .NET generated code
8
9  ' demonstrate various font and style settings

10   Protected Overrides Sub OnPaint( _ 
11       ByVal paintEvent As PaintEventArgs)
12
13       Dim graphicsObject As Graphics = paintEvent.Graphics
14       Dim brush As SolidBrush = New SolidBrush(Color.DarkBlue)
15
16       ' arial, 12 pt bold
17       Dim style As FontStyle = FontStyle.Bold
18       Dim arial As Font = New Font( _
19          New FontFamily("Arial"), 12, style)
20
21       ' times new roman, 12 pt regular
22       style = FontStyle.Regular
23       Dim timesNewRoman As Font = New Font( _
24          "Times New Roman", 12, style)
25
26   ' courier new, 16 pt bold and italic
27       style = FontStyle.Bold Or FontStyle.Italic
28       Dim courierNew As Font = New Font("Courier New", _
29          16, style)
30
31       ' tahoma, 18 pt strikeout
32       style = FontStyle.Strikeout
33       Dim tahoma As Font = New Font("Tahoma", 18, style)
34
35       graphicsObject.DrawString(arial.Name & " 12 point bold.", _
36          arial, brush, 10, 10)
37
38       graphicsObject.DrawString(timesNewRoman.Name & _
39          " 12 point plain.", timesNewRoman, brush, 10, 30)
40
41       graphicsObject.DrawString(courierNew.Name & _
42          " 16 point bold and italic.", courierNew, brush, 10, 54 )
43
44       graphicsObject.DrawString(tahoma.Name & _
45          " 18 point strikeout.", tahoma, brush, 10, 75)
46 End Sub ' OnPaint
47
48 End Class ' FrmFonts

Fig. 16.9 Fonts and FontStyles (part 2 of 2).



Chapter 16 Graphics and Multimedia 697

Programmers can define precise information about a font’s metrics (or properties), such
as height, descent (the amount that characters dip below the baseline), ascent (the amount
that characters rise above the baseline) and leading (the difference between the ascent of one
line and the decent of the previous line). Figure 16.10 illustrates these properties.

Class FontFamily defines characteristics common to a group of related fonts. Class
FontFamily provides several methods used to determine the font metrics that are shared
by members of a particular family. These methods are summarized in Fig. 16.11.

The program shown in Fig. 16.12 calls method ToString to display the metrics of
two fonts. Line 21 creates Font arial and sets it to 12-point Arial font. Line 22 uses
class Font property FontFamily to obtain object arial’s FontFamily object. Lines
30–31 call ToString to output the String representation of the font. Lines 33–47 then
use methods of class FontFamily to return integers specifying the ascent, descent, height
and leading of the font. Lines 50–67 repeat this process for font sansSerif, a Font
object derived from the MS Sans Serif FontFamily.

Fig. 16.10 An illustration of font metrics.

Method Description

GetCellAscent Returns an Integer representing the ascent of a font as measured 
in design units.

GetCellDescent Returns an Integer representing the descent of a font as measured 
in design units.

GetEmHeight Returns an Integer representing the height of a font as measured 
in design points.

GetLineSpacing Returns an Integer representing the distance between two consec-
utive lines of text as measured in design units. 

Fig. 16.11 FontFamily methods that return font-metrics information.

1 ' Fig. 16.12: UsingFontMetrics.vb
2 ' Displaying font metric information.
3
4 Imports System
5 Imports System.Drawing
6 Imports System.Drawing.Text

Fig. 16.12 FontFamily class used to obtain font-metric information (part 1 of 3).

leading

ascent

baseline
descent

height xy1Õ



698 Graphics and Multimedia Chapter 16

7
8 Public Class FrmFontMetrics
9 Inherits System.Windows.Forms.Form

10
11    ' Visual Studio .NET generated code
12
13  Protected Overrides Sub OnPaint( _
14       ByVal paintEvent As PaintEventArgs)
15
16       Dim graphicsObject As Graphics = paintEvent.Graphics
17       Dim brush As SolidBrush = New SolidBrush(Color.Red)
18       Dim pen As Pen = New Pen(brush, Convert.ToSingle(2.5))
19
20       ' Arial font metrics
21       Dim arial As Font = New Font("Arial", 12)
22       Dim family As FontFamily = arial.FontFamily
23       Dim sanSerif As Font = New Font("Microsoft Sans Serif", _
24          14, FontStyle.Italic)
25
26       pen.Color = brush.Color
27       brush.Color = Color.DarkBlue
28
29       ' display Arial font metrics
30       graphicsObject.DrawString("Current Font: " & arial.ToString, _
31          arial, brush, 10, 10)
32
33       graphicsObject.DrawString("Ascent: " & _ 
34          family.GetCellAscent(FontStyle.Regular), arial, brush, _
35           10, 30)
36
37       graphicsObject.DrawString("Descent: " & _
38          family.GetCellDescent(FontStyle.Regular), arial, brush, _ 
39          10, 50)
40
41       graphicsObject.DrawString("Height: " & _
42          family.GetEmHeight(FontStyle.Regular), _
43          arial, brush, 10, 70)
44
45       graphicsObject.DrawString("Leading: " & _
46          family.GetLineSpacing(FontStyle.Regular), arial, brush, _
47          10, 90)
48
49       ' display Sans Serif font metrics
50       family = sanSerif.FontFamily
51
52       graphicsObject.DrawString("Current Font: " & _
53          sanSerif.ToString(), sanSerif, brush, 10, 130)
54
55       graphicsObject.DrawString("Ascent: " & _
56          family.GetCellAscent(FontStyle.Italic), _
57          sanSerif, brush, 10, 150)
58

Fig. 16.12 FontFamily class used to obtain font-metric information (part 2 of 3).



Chapter 16 Graphics and Multimedia 699

16.5 Drawing Lines, Rectangles and Ovals
This section presents a variety of Graphics methods for drawing lines, rectangles and
ovals. Each of the drawing methods has several overloaded versions. When employing
methods that draw shape outlines, we use versions that take a Pen and four Integers;
when employing methods that draw solid shapes, we use versions that take a Brush and
four Integers. In both instances, the first two Integer arguments represent the coor-
dinates of the upper-left corner of the shape or its enclosing area, and the last two Inte-
gers indicate the shape’s width and height. Figure 16.13 summarizes the Graphics
methods and their parameters. .

59       graphicsObject.DrawString("Descent: " & _
60          family.GetCellDescent(FontStyle.Italic), sanSerif, _  
61          brush, 10, 170)
62
63       graphicsObject.DrawString("Height: " & family.GetEmHeight _
64          (FontStyle.Italic), sanSerif, brush, 10, 190)
65
66       graphicsObject.DrawString("Leading: " & _
67          family.GetLineSpacing(FontStyle.Italic), sanSerif, _ 
68          brush, 10, 210)
69  End Sub ' OnPaint
70
71 End Class ' FrmFontMetrics

Graphics Drawing Methods and Descriptions.

Note: Many of these methods are overloaded—consult the documentation for a full listing.

DrawLine(ByVal p As Pen, ByVal x1 As Integer, ByVal y1 As Integer,
ByVal x2 As Integer, ByVal y2 As Integer)
Draws a line from (x1, y1) to (x2, y2). The Pen determines the color, style and width of the line.

Fig. 16.13 Graphics methods that draw lines, rectangles and ovals (part 1 of 2).

Fig. 16.12 FontFamily class used to obtain font-metric information (part 3 of 3).



700 Graphics and Multimedia Chapter 16

The application in Fig. 16.14 draws lines, rectangles and ellipses. In this application,
we also demonstrate methods that draw filled and unfilled shapes. 

DrawRectangle(ByVal p As Pen, ByVal x As Integer, ByVal y As Inte-
ger, ByVal width As Integer, ByVal height As Integer)
Draws a rectangle of the specified width and height. The top-left corner of the rectangle is at point 
(x, y). The Pen determines the color, style, and border width of the rectangle.

FillRectangle(ByVal b As Brush, ByVal x As Integer, ByVal y As
Integer, ByVal width As Integer, ByVal height As Integer)
Draws a solid rectangle of the specified width and height. The top-left corner of the rectangle is at 
point (x, y). The Brush determines the fill pattern inside the rectangle.

DrawEllipse(ByVal p As Pen, ByVal x As Integer, ByVal y As Inte-
ger, ByVal width As Integer, ByVal height As Integer)
Draws an ellipse inside a rectangle. The width and height of the rectangle are as specified, and its 
top-left corner is at point (x, y). The Pen determines the color, style and border width of the ellipse.

FillEllipse(ByVal b As Brush, ByVal x As Integer, ByVal y As Inte-
ger, ByVal width As Integer, ByVal height As Integer)
Draws a filled ellipse inside a rectangle. The width and height of the rectangle are as specified, 
and its top-left corner is at point (x, y). The Brush determines the pattern inside the ellipse.

1 ' Fig. 16.14: LinesRectanglesOvals.vb
2 ' Demonstrating lines, rectangles, and ovals.
3
4 Public Class FrmDrawing
5 Inherits System.Windows.Forms.Form
6
7    ' Visual Studio .NET generated code
8
9    ' display ovals lines, and rectangles

10 Protected Overrides Sub OnPaint( _
11       ByVal paintEvent As PaintEventArgs)
12
13     ' get graphics object
14       Dim g As Graphics = paintEvent.Graphics
15       Dim brush As SolidBrush = New SolidBrush(Color.Blue)
16       Dim pen As Pen = New Pen(Color.AliceBlue)
17
18       ' create filled rectangle
19       g.FillRectangle(brush, 90, 30, 150, 90)
20
21       ' draw lines to connect rectangles
22       g.DrawLine(pen, 90, 30, 110, 40)

Fig. 16.14 Drawing lines, rectangles and elipses (part 1 of 2).

Graphics Drawing Methods and Descriptions.

Fig. 16.13 Graphics methods that draw lines, rectangles and ovals (part 2 of 2).



Chapter 16 Graphics and Multimedia 701

Methods DrawRectangle and FillRectangle (lines 19 and 28) draw rectan-
gles on the screen. For each method, the first argument specifies the drawing object to use.
The DrawRectangle method uses a Pen object, whereas the FillRectangle
method uses a Brush object (in this case, an instance of SolidBrush—a class that
derives from Brush). The next two arguments specify the coordinates of the upper-left
corner of the bounding rectangle, which represents the area in which the rectangle will be
drawn. The fourth and fifth arguments specify the rectangle’s width and height. Method
DrawLine (lines 22–25) takes a Pen and two pairs of Integers, specifying the start and
endpoint of the line. The method then draws a line, using the Pen object passed to it. 

Methods DrawEllipse and FillEllipse each provide overloaded versions that
take five arguments. In both methods, the first argument specifies the drawing object to use.
The next two arguments specify the upper-left coordinates of the bounding rectangle rep-
resenting the area in which the ellipse will be drawn. The last two arguments specify the
bounding rectangle’s width and height, respectively. Figure 16.15 depicts an ellipse
bounded by a rectangle. The ellipse touches the midpoint of each of the four sides of the
bounding rectangle. The bounding rectangle is not displayed on the screen.

23       g.DrawLine(pen, 90, 120, 110, 130)
24       g.DrawLine(pen, 240, 30, 260, 40)
25       g.DrawLine(pen, 240, 120, 260, 130)
26
27       ' draw top rectangle
28       g.DrawRectangle(pen, 110, 40, 150, 90)
29
30       ' set brush to red
31       brush.Color = Color.Red
32
33       ' draw base Ellipse
34       g.FillEllipse(brush, 280, 75, 100, 50)
35
36       ' draw connecting lines
37       g.DrawLine(pen, 380, 55, 380, 100)
38       g.DrawLine(pen, 280, 55, 280, 100)
39
40       ' draw Ellipse outline
41       g.DrawEllipse(pen, 280, 30, 100, 50)
42 End Sub ' OnPaint
43
44 End Class ' FrmDrawing

Fig. 16.14 Drawing lines, rectangles and elipses (part 2 of 2).



702 Graphics and Multimedia Chapter 16

16.6 Drawing Arcs
Arcs are portions of ellipses and are measured in degrees, beginning at a starting angle and
continuing for a specified number of degrees (called the arc angle). An arc is said to sweep
(traverse) its arc angle, beginning from its starting angle. Arcs that sweep in a clockwise
direction are measured in positive degrees, whereas arcs that sweep in a counterclockwise
direction are measured in negative degrees. Figure 16.16 depicts two arcs. Note that the left
portion of the figure sweeps downward from zero degrees to approximately 110 degrees.
Similarly, the arc in the right portion of the figure sweeps upward from zero degrees to ap-
proximately –110 degrees.

Notice the dashed boxes around the arcs in Fig. 16.16. We draw each arc as part of an
oval (the rest of which is not visible). When drawing an oval, we specify the oval’s dimen-
sions in the form of a bounding rectangle that encloses the oval. The boxes in Fig. 16.16
correspond to these bounding rectangles. The Graphics methods used to draw arcs—
DrawArc, DrawPie and FillPie—are summarized in Fig. 16.17. 

The program in Fig. 16.18 draws six images (three arcs and three filled pie slices) to
demonstrate the arc methods listed in Fig. 16.17. To illustrate the bounding rectangles that
determine the sizes and locations of the arcs, the arcs are displayed inside red rectangles
that have the same x-coordinates, y-coordinates, width and height arguments as those that
define the bounding rectangles for the arcs.

Fig. 16.15 Ellipse bounded by a rectangle.

Fig. 16.16 Positive and negative arc angles.

height

width

(x, y)

Positive angles

270°

90°

0°180°

270°

90°

0°180°

Negative angles



Chapter 16 Graphics and Multimedia 703

Graphics Methods And Descriptions

Note: Many of these methods are overloaded—consult the documentation for a full listing.

DrawArc(ByVal p As Pen, ByVal x As Integer, ByVal y As Integer,
ByVal width As Integer, ByVal height As Integer,
ByVal startAngle As Integer, ByVal sweepAngle As Integer)

Draws an arc of an ellipse, beginning from angle startAngle (in degrees) and sweeping 
sweepAngle degrees. The ellipse is defined by a bounding rectangle of width w, height h and 
upper-left corner (x,y). The Pen determines the color, border width and style of the arc.

DrawPie(ByVal p As Pen, ByVal x As Integer, ByVal y As Integer,
ByVal width As Integer, ByVal height As Integer,
ByVal startAngle As Integer, ByVal sweepAngle As Integer)

Draws a pie section of an ellipse, beginning from angle startAngle (in degrees) and sweeping 
sweepAngle degrees. The ellipse is defined by a bounding rectangle of width w, height h and 
upper-left corner (x,y). The Pen determines the color, border width and style of the arc.

FillPie(ByVal b As Brush, ByVal x As Integer, ByVal y As Integer,
ByVal width As Integer, ByVal height As Integer,
ByVal startAngle As Integer, ByVal sweepAngle As Integer)

Functions similarly to DrawPie, except draws a solid arc (i.e., a sector). The Brush determines 
the fill pattern for the solid arc.

Fig. 16.17 Graphics methods for drawing arcs.

1 ' Fig. 16.18: DrawArcs.vb
2 ' Drawing various arcs on a form.
3
4 Public Class FrmArcTest
5 Inherits System.Windows.Forms.Form
6
7    ' Visual Studio .NET generated code
8
9 Protected Overrides Sub OnPaint( _

10       ByVal paintEvent As PaintEventArgs)
11
12       ' get graphics object
13       Dim graphicsObject As Graphics = paintEvent.Graphics
14       Dim rectangle1 As Rectangle = New Rectangle(15, 35, 80, 80)
15       Dim brush1 As SolidBrush = New SolidBrush(Color.FireBrick)
16       Dim pen1 As Pen = New Pen(brush1, 1)
17       Dim brush2 As SolidBrush = New SolidBrush(Color.DarkBlue)
18       Dim pen2 As Pen = New Pen(brush2, 1)
19
20     ' start at 0 and sweep 360 degrees
21       graphicsObject.DrawRectangle(pen1, rectangle1)
22       graphicsObject.DrawArc(pen2, rectangle1, 0, 360)
23

Fig. 16.18 Arc method demonstration (part 1 of 2).



704 Graphics and Multimedia Chapter 16

Lines 13–16 create the objects that we need to draw various arcs: Graphics objects,
Rectangles, SolidBrushes and Pens. Lines 21–22 then draw a rectangle and an arc
inside the rectangle. The arc sweeps 360 degrees, becoming a circle. Line 25 changes the
location of the Rectangle by setting its Location property to a new Point. The
Point constructor takes the x- and y-coordinates of the new point. The Location prop-
erty determines the upper-left corner of the Rectangle. After drawing the rectangle, the
program draws an arc that starts at 0 degrees and sweeps 110 degrees. Because angles in
Visual Basic increase in a clockwise direction, the arc sweeps downward.

24       ' start at 0 and sweep 110 degrees
25       rectangle1.Location = New Point(100, 35)
26       graphicsObject.DrawRectangle(pen1, rectangle1)
27       graphicsObject.DrawArc(pen2, rectangle1, 0, 110)
28
29       ' start at 0 and sweep -270 degrees
30       rectangle1.Location = New Point(185, 35)
31       graphicsObject.DrawRectangle(pen1, rectangle1)
32       graphicsObject.DrawArc(pen2, rectangle1, 0, -270)
33
34       ' start at 0 and sweep 360 degrees
35       rectangle1.Location = New Point(15, 120)
36       rectangle1.Size = New Size(80, 40)
37       graphicsObject.DrawRectangle(pen1, rectangle1)
38       graphicsObject.FillPie(brush2, rectangle1, 0, 360)
39
40       ' start at 270 and sweep -90 degrees
41       rectangle1.Location = New Point(100, 120)
42       graphicsObject.DrawRectangle(pen1, rectangle1)
43       graphicsObject.FillPie(brush2, rectangle1, 270, -90)
44
45       ' start at 0 and sweep -270 degrees
46       rectangle1.Location = New Point(185, 120)
47       graphicsObject.DrawRectangle(pen1, rectangle1)
48       graphicsObject.FillPie(brush2, rectangle1, 0, -270)
49 End Sub ' OnPaint
50
51 End Class ' FrmArcTest

Fig. 16.18 Arc method demonstration (part 2 of 2).



Chapter 16 Graphics and Multimedia 705

Lines 30–32 perform similar functions, except that the specified arc sweeps -270
degrees. The Size property of a Rectangle determines the arc’s height and width. Line
36 sets the Size property to a new Size object, which changes the size of the rectangle.

The remainder of the program is similar to the portions described above, except that a
SolidBrush is used with method FillPie. The resulting arcs, which are filled, can be
seen in the bottom half of the screenshot Fig. 16.18.

16.7 Drawing Polygons and Polylines
Polygons are multisided shapes. There are several Graphics methods used to draw poly-
gons: DrawLines draws a series of connected points, DrawPolygon draws a closed
polygon and FillPolygon draws a solid polygon. These methods are described in
Fig. 16.19. The program in Fig. 16.20 allows users to draw polygons and connected lines
via the methods listed in Fig. 16.19.

Method Description

DrawLines Draws a series of connected lines. The coordinates of each point are speci-
fied in an array of Points. If the last point is different from the first point, 
the figure is not closed.

DrawPolygon Draws a polygon. The coordinates of each point are specified in an array of 
Point objects. This method draws a closed polygon, even if the last point 
is different from the first point.

FillPolygon Draws a solid polygon. The coordinates of each point are specified in an 
array of Points. This method draws a closed polygon, even if the last 
point is different from the first point.

Fig. 16.19 Graphics methods for drawing polygons.

1 ' Fig. 16.20: DrawPolygons.vb
2 ' Demonstrating polygons.
3
4 Public Class FrmPolygon
5 Inherits System.Windows.Forms.Form
6
7    ' polygon type options
8 Friend WithEvents filledPolygonRadio As RadioButton
9 Friend WithEvents lineRadio As RadioButton

10 Friend WithEvents polygonRadio As RadioButton
11
12    ' command buttons
13 Friend WithEvents cmdClear As Button
14 Friend WithEvents cmdNewColor As Button
15
16 Friend WithEvents drawWindow As Panel
17 Friend WithEvents typeGroup As GroupBox

Fig. 16.20 Polygon drawing demonstration (part 1 of 4).



706 Graphics and Multimedia Chapter 16

18
19    ' Visual Studio .NET generated code
20
21    ' contains list of polygon points 
22 Private mPoints As ArrayList = New ArrayList()
23
24    ' initialize default pen and brush
25 Dim mPen As Pen = New Pen(Color.DarkBlue)
26 Dim mBrush As SolidBrush = New SolidBrush(Color.DarkBlue)
27
28    ' draw panel mouse down event handler
29 Private Sub drawWindow_MouseDown(ByVal sender _
30       As Object, ByVal e As _
31       System.Windows.Forms.MouseEventArgs) _
32       Handles drawWindow.MouseDown
33
34       ' Add mouse position to vertex list
35       mPoints.Add(New Point(e.X, e.Y))
36       drawWindow.Invalidate() ' refresh panel
37 End Sub ' drawWindow_MouseDown
38
39   ' draw panel paint event handler
40 Private Sub drawWindow_Paint(ByVal sender As Object, _
41       ByVal e As System.Windows.Forms.PaintEventArgs) _
42       Handles drawWindow.Paint
43
44       ' get graphics object for panel
45       Dim graphicsObject As Graphics = e.Graphics
46
47   ' if arraylist has 2 or more points, display shape
48       If mPoints.Count > 1 Then
49
50          ' get array for use in drawing functions
51          Dim pointArray() As Point = _
52             mPoints.ToArray(mPoints(0).GetType())
53
54          If polygonRadio.Checked Then ' draw polygon
55             graphicsObject.DrawPolygon(mPen, pointArray)
56
57          ElseIf lineRadio.Checked Then ' draw lines
58             graphicsObject.DrawLines(mPen, pointArray)
59
60          ElseIf filledPolygonRadio.Checked Then ' draw filled
61             graphicsObject.FillPolygon(mBrush, pointArray)
62          End If
63
64       End If
65
66 End Sub ' drawWindow_Paint
67
68    ' handle cmdClear click event
69 Private Sub cmdClear_Click(ByVal sender As System.Object, _
70       ByVal e As System.EventArgs) Handles cmdClear.Click

Fig. 16.20 Polygon drawing demonstration (part 2 of 4).



Chapter 16 Graphics and Multimedia 707

71
72       mPoints = New ArrayList() ' remove points
73
74       drawWindow.Invalidate() ' refresh panel
75 End Sub ' cmdClear_Click
76
77    ' handle polygon radio button CheckedChange event
78 Private Sub polygonRadio_CheckedChanged(ByVal sender As _
79       System.Object, ByVal e As System.EventArgs) _
80       Handles polygonRadio.CheckedChanged
81
82       drawWindow.Invalidate() ' refresh panel
83 End Sub ' polygonRadio_CheckedChanged
84
85    ' handle line radio button CheckChanged event
86 Private Sub lineRadio_CheckedChanged(ByVal sender As _
87       System.Object, ByVal e As System.EventArgs) _
88       Handles lineRadio.CheckedChanged
89
90       drawWindow.Invalidate() ' refresh panel
91 End Sub ' lineRadio_CheckedChanged
92
93    ' handle filled polygon radio button CheckChanged event
94 Private Sub filledPolygonRadio_CheckedChanged(ByVal sender _
95       As System.Object, ByVal e As System.EventArgs) _
96       Handles filledPolygonRadio.CheckedChanged
97
98       drawWindow.Invalidate() ' refresh panel
99 End Sub ' filledPolygonRadio_CheckedChanged
100
101    ' handle cmdNewColor click event
102 Private Sub cmdNewColor_Click(ByVal sender As _
103       System.Object, ByVal e As System.EventArgs) _
104       Handles cmdNewColor.Click
105
106       ' create new color dialog
107       Dim colorBox As ColorDialog = New ColorDialog()
108
109       ' show dialog and obtain result
110       Dim result As DialogResult = colorBox.ShowDialog()
111
112       ' return if user cancels
113       If result = DialogResult.Cancel Then
114          Return
115       End If
116
117       mPen.Color = colorBox.Color ' set pen to new color
118       mBrush.Color = colorBox.Color ' set brush
119       drawWindow.Invalidate() ' refresh panel
120 End Sub ' cmdNewColor_Click
121
122 End Class ' FrmPolygon

Fig. 16.20 Polygon drawing demonstration (part 3 of 4).



708 Graphics and Multimedia Chapter 16

To allow the user to specify a variable number of points, line 22 declares ArrayList
mPoints as a container for our Point objects. Lines 25–25 declare the Pen and Brush used to
color our shapes. The MouseDown event handler (lines 29–37) for Panel drawWindow stores
mouse-click locations in the mPoints ArrayList. It then calls method Invalidate of draw-
Window to ensure that the panel refreshes to accommodate the new point. Method
drawWindow_Paint (lines 40–66) handles the Panel’s Paint event. It obtains the panel’s
Graphics object (line 45) and, if the ArrayList mPoints contains two or more Points, displays
the polygon using the method that the user selected via the GUI radio buttons (lines 54–62).
In lines 51–52, we extract an Array from the ArrayList via method ToArray. Method ToArray
can take a single argument to determine the type of the returned array; we obtain the type from
the first element in the ArrayList.

Method cmdClear_Click (lines 69–75) handles the Clear button’s click event,
creates an empty ArrayList (causing the old list to be erased) and refreshes the display.
Lines 78–++ define the event handlers for the radio buttons’ CheckedChanged event.
Each method refreshes Panel drawWindow to ensure that the panel display reflects the
selected drawing type. Event method cmlNewColor_Click (102–120) allows the user

Fig. 16.20 Polygon drawing demonstration (part 4 of 4).



Chapter 16 Graphics and Multimedia 709

to select a new drawing color with a ColorDialog, using the same technique demon-
strated in Fig. 16.7.

16.8  Advanced Graphics Capabilities
Visual Basic offers many additional graphics capabilities. The Brush hierarchy, for exam-
ple, also includes HatchBrush, LinearGradientBrush, PathGradientBrush
and TextureBrush.

The program in Fig. 16.21 demonstrates several graphics features, such as dashed
lines, thick lines and the ability to fill shapes with patterns. These represent just a few of
the additional capabilities of the System.Drawing namespace.

Lines 12–82 define the overridden OnPaint method for our form. Lines 19–21 create
LinearGradientBrush (namespace System.Drawing.Drawing2D) object
brush. A LinearGradientBrush enables users to draw with a color gradient. The
LinearGradientBrush used in this example takes four arguments: A Rectangle,
two Colors and a member of enumeration LinearGradientMode. In Visual Basic, all
linear gradients are defined along a line that determines the gradient endpoint. This line can
be specified either by starting and ending points or by the diagonal of a rectangle. The first
argument, Rectangle boundingRectangle, specifies the defining line for Line-
arGradientBrush brush. This Rectangle argument represents the endpoints of
the linear gradient—the upper-left corner is the starting point, and the bottom-right corner
is the ending point. The second and third arguments specify the colors that the gradient will
use. In this case, the color of the ellipse will gradually change from Color.Blue to
Color.Yellow. The last argument, a type from the enumeration LinearGradient-
Mode, specifies the linear gradient’s direction. In our case, we use LinearGradient-
Mode.ForwardDiagonal, which creates a gradient from the upper-left to the lower-
right corner. We then use Graphics method FillEllipse in line 38 to draw an ellipse
with brush; the color gradually changes from blue to yellow, as described above.

1 ' Fig. 16.21: DrawShapes.vb
2 ' Drawing various shapes on a form.
3
4 Imports System.Drawing.Drawing2D
5
6 Public Class FrmDrawShapes
7 Inherits System.Windows.Forms.Form
8
9    ' Visual Studio .NET generated code

10
11 ' draw various shapes on form
12  Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
13
14       ' references to object we will use
15       Dim graphicsObject As Graphics = e.Graphics
16
17       ' ellipse rectangle and gradient brush
18       Dim drawArea1 As Rectangle = New Rectangle(5, 35, 30, 100)

Fig. 16.21 Shapes drawn on a form (part 1 of 3).



710 Graphics and Multimedia Chapter 16

19       Dim linearBrush As LinearGradientBrush = _
20          New LinearGradientBrush(drawArea1, Color.Blue, _
21          Color.Yellow, LinearGradientMode.ForwardDiagonal)
22
23       ' pen and location for red outline rectangle
24       Dim thickRedPen As Pen = New Pen(Color.Red, 10)
25       Dim drawArea2 As Rectangle = New Rectangle(80, 30, 65, 100)
26
27       ' bitmap texture
28       Dim textureBitmap As Bitmap = New Bitmap(10, 10)
29       Dim graphicsObject2 As Graphics = _
30          Graphics.FromImage(textureBitmap) ' get bitmap graphics
31
32       ' brush and pen used throughout program
33       Dim solidColorBrush As SolidBrush = _
34          New SolidBrush(Color.Red)
35       Dim coloredPen As Pen = New Pen(solidColorBrush)
36
37       ' draw ellipse filled with a blue-yellow gradient
38       graphicsObject.FillEllipse(linearBrush, 5, 30, 65, 100)
39
40       ' draw thick rectangle outline in red
41       graphicsObject.DrawRectangle(thickRedPen, drawArea2)
42
43       ' fill textureBitmap with yellow
44       solidColorBrush.Color = Color.Yellow
45       graphicsObject2.FillRectangle(solidColorBrush, 0, 0, 10, 10)
46
47       ' draw small black rectangle in textureBitmap
48       coloredPen.Color = Color.Black
49       graphicsObject2.DrawRectangle(coloredPen, 1, 1, 6, 6)
50
51       ' draw small blue rectangle in textureBitmap
52       solidColorBrush.Color = Color.Blue
53       graphicsObject2.FillRectangle(solidColorBrush, 1, 1, 3, 3)
54
55       ' draw small red square in textureBitmap
56       solidColorBrush.Color = Color.Red
57       graphicsObject2.FillRectangle(solidColorBrush, 4, 4, 3, 3)
58
59       ' create textured brush and display textured rectangle
60       Dim texturedBrush As TextureBrush = _
61          New TextureBrush(textureBitmap)
62
63       graphicsObject.FillRectangle( _
64          texturedBrush, 155, 30, 75, 100)
65
66       ' draw pie-shaped arc in white
67       coloredPen.Color = Color.White
68       coloredPen.Width = 6
69       graphicsObject.DrawPie( _
70          coloredPen, 240, 30, 75, 100, 0, 270)
71

Fig. 16.21 Shapes drawn on a form (part 2 of 3).



Chapter 16 Graphics and Multimedia 711

In line 24, we create a Pen object pen. We pass to pen’s constructor Color.Red
and Integer argument 10, indicating that we want pen to draw red lines that are 10
pixels wide.

Line 28 creates a new Bitmap image, which initially is empty. Class Bitmap can
produce images in color and gray scale; this particular Bitmap is 10 pixels wide and 10
pixels tall. Method FromImage (line 29–30) is a Shared member of class Graphics
and retrieves the Graphics object associated with an Image, which may be used to draw
on an image. Lines 44–53 draw on the Bitmap a pattern consisting of black, blue, red and
yellow rectangles and lines. A TextureBrush is a brush that fills the interior of a shape
with an image, rather than a solid color. In line 63–64, TextureBrush object tex-
tureBrush fills a rectangle with our Bitmap. The TextureBrush constructor ver-
sion that we use takes as an argument an image that defines its texture.

Next, we draw a pie-shaped arc with a thick white line. Lines 67–69 set pen’s color
to White and modify its width to be six pixels. We then draw the pie on the form by spec-
ifying the Pen, x-coordinate, y-coordinate, length and width of the bounding rectangle,
start angle and sweep angle.

Finally, lines 79–80 make use of System.Drawing.Drawing2D enumerations
DashCap and DashStyle to draw a diagonal dashed line. Line 79 sets the DashCap
property of pen (not to be confused with the DashCap enumeration) to a member of the
DashCap enumeration. The DashCap enumeration specifies the styles for the start and
end of a dashed line. In this case, we want both ends of the dashed line to be rounded, so
we use DashCap.Round. Line 80 sets the DashStyle property of pen (not to be con-

72       ' draw lines in green and yellow
73       coloredPen.Color = Color.Green
74       coloredPen.Width = 5
75       graphicsObject.DrawLine(coloredPen, 395, 30, 320, 150)
76
77       ' draw a rounded, dashed yellow line
78       coloredPen.Color = Color.Yellow
79       coloredPen.DashCap = LineCap.Round
80       coloredPen.DashStyle = DashStyle.Dash
81       graphicsObject.DrawLine(coloredPen, 320, 30, 395, 150)
82 End Sub ' OnPaint
83
84 End Class ' FrmDrawShapes

Fig. 16.21 Shapes drawn on a form (part 3 of 3).



712 Graphics and Multimedia Chapter 16

fused with the DashStyle enumeration) to DashStyle.Dash, indicating that we want
our line to consist entirely of dashes.

Our next example demonstrates the use of a general path. A general path is a shape con-
structed from straight lines and complex curves. An object of class GraphicsPath
(System.Drawing.Drawing2D namespace) represents a general path. The Graphic-
sPath class provides functionality that enables the creation of complex shapes from vector-
based primitive graphics objects. A GraphicsPath object consists of figures defined by
simple shapes. The start point of each vector-graphics object (such as a line or arc) that is
added to the path is connected by a straight line to the end point of the previous object. When
called, the CloseFigure method attaches the final graphic object endpoint to the initial
starting point for the current figure by a straight line then starts a new figure. Method Start-
Figure begins a new figure within the path without closing the previous figure.

The program of Fig. 16.22 draws general paths in the shape of five-pointed stars. Line 29
sets the origin of the Graphics object. The arguments to method TranslateTrans-
form indicate that the origin should be translated to the coordinates (150, 150). Lines 20–23
define two Integer arrays, representing the x- and y-coordinates of the points in the star,
and line 26 defines GraphicsPath object star. A For loop then creates lines to connect
the points of the star and adds these lines to star. We use GraphicsPath method
AddLine to append a line to the shape. The arguments of AddLine specify the coordinates
for the line’s endpoints; each new call to AddLine adds a line from the previous point to the
current point. Line 38 uses GraphicsPath method CloseFigure to complete the shape. 

1 ' Fig. 16.22: DrawStars.vb
2 ' Using paths to draw stars on a form.
3
4 Imports System.Drawing.Drawing2D
5
6 Public Class FrmDrawStars
7 Inherits System.Windows.Forms.Form
8
9    ' Visual Studio .NET generated code

10
11 ' create path and draw stars along it
12 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
13       Dim graphicsObject As Graphics = e.Graphics
14       Dim i As Integer
15       Dim random As Random = New Random()
16       Dim brush As SolidBrush = _
17          New SolidBrush(Color.DarkMagenta)
18
19    ' x and y points of path
20       Dim xPoints As Integer() = _
21          {55, 67, 109, 73, 83, 55, 27, 37, 1, 43}
22       Dim yPoints As Integer() = _
23          {0, 36, 36, 54, 96, 72, 96, 54, 36, 36}
24
25       ' create graphics path for star
26       Dim star As GraphicsPath = New GraphicsPath()
27

Fig. 16.22 Paths used to draw stars on a form (part 1 of 2).



Chapter 16 Graphics and Multimedia 713

The For structure in lines 41–48 draws the star 18 times, rotating it around the
origin. Line 42 uses Graphics method RotateTransform to move to the next posi-
tion on the form; the argument specifies the rotation angle in degrees. Graphics method
FillPath (line 47) then draws a filled version of the star with the Brush created on
lines 44–45. The application determines the SolidBrush’s color randomly, using
Random variable random’s method Next.

28       ' translate origin to (150, 150)
29       graphicsObject.TranslateTransform(150, 150)
30
31       ' create star from series of points
32       For i = 0 To 8 Step 2
33          star.AddLine(xPoints(i), yPoints(i), _
34             xPoints(i + 1), yPoints(i + 1))
35       Next
36
37  ' close shape
38       star.CloseFigure()
39
40   ' rotate origin and draw stars in random colors
41       For i = 1 To 18
42          graphicsObject.RotateTransform(20)
43
44          brush.Color = Color.FromArgb(random.Next(200, 255), _
45             random.Next(255), random.Next(255), random.Next(255))
46
47          graphicsObject.FillPath(brush, star)
48       Next
49
50 End Sub ' OnPaint
51
52 End Class ' FrmDrawStars

Fig. 16.22 Paths used to draw stars on a form (part 2 of 2).



714 Graphics and Multimedia Chapter 16

16.9 Introduction to Multimedia
Visual Basic offers many convenient ways to include images and animations in programs.
People who entered the computing field decades ago used computers primarily to perform
arithmetic calculations. As the discipline evolves, we are beginning to realize the impor-
tance of computers’ data-manipulation capabilities. We are seeing a wide variety of excit-
ing new three-dimensional applications. Multimedia programming is an entertaining and
innovative field, but one that presents many challenges

Multimedia applications demand extraordinary computing power. Until recently,
affordable computers with this amount of power were not available. However, today’s
ultrafast processors are making multimedia-based applications commonplace. As the
market for multimedia explodes, users are purchasing faster processors, larger memories
and wider communications bandwidths needed to support multimedia applications. This
benefits the computer and communications industries, which provide the hardware, soft-
ware and services fueling the multimedia revolution.

In the remaining sections of this chapter, we introduce the use and manipulation of
images, as well as other multimedia features and capabilities. Section 16.10 discusses how
to load, display and scale images; Section 16.11 demonstrates image animation;
Section 16.12 presents the video capabilities of the Windows Media Player control; and
Section 16.13 explores Microsoft Agent technology.

16.10 Loading, Displaying and Scaling Images
Visual Basic’s multimedia capabilities include graphics, images, animations and video.
Previous sections demonstrated Visual Basic’s vector-graphics capabilities; this section
concentrates on image manipulation. The Windows form that we create in Fig. 16.23 dem-
onstrates the loading of an Image (System.Drawing namespace). The application al-
lows users to enter a desired height and width for the Image, which then is displayed in
the specified size.

1 ' Fig. 16.23: DisplayLogo.vb
2 ' Displaying and resizing an image.
3
4 Public Class FrmDisplayLogo
5 Inherits System.Windows.Forms.Form
6
7    ' width controls
8 Friend WithEvents txtWidth As TextBox
9 Friend WithEvents lblWidth As Label

10
11    ' height controls
12 Friend WithEvents lblHeight As Label
13 Friend WithEvents txtHeight As TextBox
14
15 Private mGraphicsObject As Graphics
16 Private mImage As Image
17

Fig. 16.23 Image resizing (part 1 of 3).



Chapter 16 Graphics and Multimedia 715

18  ' sets member variables on form load
19 Private Sub FrmDisplayLogo_Load(ByVal sender As _
20       System.Object, ByVal e As System.EventArgs) _
21       Handles MyBase.Load
22
23       ' get Form's graphics object
24       mGraphicsObject = Me.CreateGraphics
25
26   ' load image
27       mImage = Image.FromFile("images/Logo.gif")
28
29 End Sub ' FrmDisplayLogo_Load
30
31    ' Visual Studio .NET generated code
32
33 Private Sub cmdSetButton_Click (ByVal sender As System.Object, _
34       ByVal e As System.EventArgs) Handles cmdSetButton.Click
35
36       ' get user input
37       Dim width As Integer = Convert.ToInt32(txtWidth.Text)
38       Dim height As Integer = Convert.ToInt32(txtHeight.Text)
39
40       ' if specified dimensions are too large display problem
41       If (width > 375 OrElse height > 225) Then
42          MessageBox.Show("Height or Width too large")
43
44          Return
45       End If
46       mGraphicsObject.Clear(Me.BackColor) ' clear Windows Form
47
48       ' draw image
49       mGraphicsObject.DrawImage(mImage, 5, 5, width, height)
50    End Sub ' cmdSetButton_Click
51
52 End Class ' FrmDisplayLogo

Fig. 16.23 Image resizing (part 2 of 3).



716 Graphics and Multimedia Chapter 16

Line 16 declares Image reference mImage. The Shared Image method From-
File then retrieves an image stored on disk and assigns it to mImage (line 27). Line 24
uses Form method CreateGraphics to create a Graphics object associated with the
Form; we use this object to draw on the Form. Method CreateGraphics is inherited
from class Control; all Windows controls, such as Buttons and Panels, also provide
this method. When users click Set, the width and height parameters are validated to ensure
that they are not too large. If the parameters are valid, line 46 calls Graphics method
Clear to paint the entire Form in the current background color. Line 49 calls Graphics
method DrawImage with the following parameters: the image to draw, the x-coordinate
of the upper-left corner, the y-coordinate of the upper-left corner, the width of the image
and the height of the image. If the width and height do not correspond to the image’s orig-
inal dimensions, the image is scaled to fit the new specifications.

16.11 Animating a Series of Images
The next example animates a series of images stored in an array. The application uses the
same techniques to load and display Images as those illustrated in Fig. 16.23. The images
were created with Adobe Photoshop.

The animation in Fig. 16.24 uses a PictureBox, which contains the images that we
animate. We use a Timer to cycle through the images, causing a new image to display
every 50 milliseconds. Variable count keeps track of the current image number and
increases by one every time we display a new image. The array includes 30 images (num-
bered 0–29); when the application reaches image 29, it returns to image 0. The 30 images
were prepared in advance with a graphics software package and placed in the images
folder inside the bin/Debug directory of the project.

Lines 19–22 load each of 30 images and place them in an ArrayList. ArrayList
method Add allows us to add objects to the ArrayList; we use this method in lines 20–
21 to add each Image. Line 25 places the first image in the PictureBox, using the

Fig. 16.23 Image resizing (part 3 of 3).



Chapter 16 Graphics and Multimedia 717

ArrayList indexer. Line 28 modifies the size of the PictureBox so that it is equal to
the size of the Image it is displaying. The event handler for timer’s Tick event (line
38–46) then displays the next image from the ArrayList.

1 ' Fig. 16.24: LogoAnimator.vb
2 ' Program that animates a series of images.
3
4 Public Class FrmLogoAnimator
5 Inherits System.Windows.Forms.Form
6
7 Private mImages As ArrayList = New ArrayList()
8 Private mCount As Integer = 1
9

10 Public Sub New()
11       MyBase.New()
12
13       ' This call is required by Windows Form Designer.
14       InitializeComponent()
15
16       ' load all images
17       Dim i As Integer
18
19       For i = 0 To 29
20          mImages.Add(Image.FromFile("images/deitel" & i _
21             & ".gif"))
22       Next
23
24       ' load first image
25       logoPictureBox.Image = CType(mImages(0), Image)
26
27       ' set PictureBox to be same size as Image
28       logoPictureBox.Size = logoPictureBox.Image.Size
29    End Sub ' New
30
31 Friend WithEvents timer As System.Windows.Forms.Timer
32
33 Friend WithEvents logoPictureBox As _
34       System.Windows.Forms.PictureBox
35
36    ' Visual Studio .NET generated code
37
38 Private Sub timer_Tick(ByVal sender As System.Object, _
39       ByVal e As System.EventArgs) Handles timer.tick
40
41       ' increment counter
42       mCount = (mCount + 1) Mod 30
43
44       ' load next image
45       logoPictureBox.Image = CType(mImages(mCount), Image)
46    End Sub ' Timer_Tick
47
48 End Class ' FrmLogoAnimator

Fig. 16.24 Animation of a series of images (part 1 of 2).



718 Graphics and Multimedia Chapter 16

Performance Tip 16.2
It is more efficient to load an animation’s frames as one image than to load each image sep-
arately. (A painting program, such as Adobe Photoshop®, Jasc® or Paint Shop Pro™, can
be used to combine the animation’s frames into one image.) If the images are being loaded
separately from the Web, each loaded image requires a separate connection to the site on
which the images are stored; this process can result in poor performance. 16.2

Performance Tip 16.3
Loading animation frames can cause program delays, because the program waits for all
frames to load before displaying them. 16.3

The following chess example demonstrates the capabilities of GDI+ as they pertain to a
chess-game application. These include techniques for two-dimensional collision detection,
the selection of single frames from a multi-frame image and regional invalidation (refreshing
only the required parts of the screen) to increase performance. Two-dimensional collision
detection is the detection of an overlap between two shapes. In the next example, we demon-
strate the simplest form of collision detection, which determines whether a point (the mouse-
click location) is contained within a rectangle (a chess-piece image).

Class CChessPiece (Fig. 16.25) is a container class for the individual chess pieces.
Lines 7–14 define a public enumeration of constants that identify each chess-piece type.
The constants also serve to identify the location of each piece in the chess-piece image file.
Rectangle object mLocationRectangle (lines 20–21) identifies the image location
on the chess board. The x and y properties of the rectangle are assigned in the CChess-
Piece constructor, and all chess-piece images have heights and widths of 75.

Fig. 16.24 Animation of a series of images (part 2 of 2).

1 ' Fig. 16.25 : Chesspiece.vb
2 ' Storage class for chess piece attributes.
3
4 Public Class CChessPiece
5
6    ' define chess-piece type constants
7 Public Enum Types
8       KING
9       QUEEN

10       BISHOP
11       KNIGHT
12       ROOK

Fig. 16.25 Container class for chess pieces  (part 1 of 2).



Chapter 16 Graphics and Multimedia 719

The CChessPiece constructor (lines 24–35) requires that the calling class define a
chess-piece type, its x and y location and the Bitmap containing all chess-piece images.
Rather than loading the chess-piece image within the class, we allow the calling class to
pass the image. This avoids the image-loading overhead for each piece. It also increases the
flexibility of the class by allowing the user to change images; for example, in this case, we
use the class for both black and white chess-piece images. Lines 33–34 extract a subimage

13       PAWN
14 End Enum
15
16 Private mCurrentType As Integer ' this object's type
17 Private mPieceImage As Bitmap ' this object's image
18
19    ' default display location
20 Private mLocationRectangle As Rectangle = _
21       New Rectangle(0, 0, 75, 75)
22
23    ' construct piece
24 Public Sub New(ByVal type As Integer, _
25       ByVal xLocation As Integer, ByVal yLocation As Integer, _
26       ByVal sourceImage As Bitmap)
27
28       mCurrentType = type ' set current type
29       mLocationRectangle.X = xLocation ' set current x location
30       mLocationRectangle.Y = yLocation ' set current y location
31
32       ' obtain pieceImage from section of sourceImage
33       mPieceImage = sourceImage.Clone(New Rectangle(type * 75, _
34          0, 75, 75), Drawing.Imaging.PixelFormat.DontCare)
35 End Sub ' constructor
36
37    ' draw this piece
38 Public Sub Draw(ByVal graphicsObect As Graphics)
39       graphicsObect.DrawImage(mPieceImage, mLocationRectangle)
40 End Sub ' Draw
41
42    ' obtain this piece's location rectangle
43 Public Readonly Property LocationRectangle As Rectangle
44       Get
45          Return mLocationRectangle
46       End Get
47 End Property ' LocationRectangle
48
49    ' set this piece's location
50 Public Sub SetLocation(ByVal xLocation As Integer, _
51       ByVal yLocation As Integer)
52
53       mLocationRectangle.X = xLocation
54       mLocationRectangle.Y = yLocation
55 End Sub ' SetLocation
56
57 End Class ' CChesspiece

Fig. 16.25 Container class for chess pieces  (part 2 of 2).



720 Graphics and Multimedia Chapter 16

that contains only the current piece’s bitmap data. Our chess-piece images are defined in a
specific manner: One image contains six chess-piece images, each defined within a 75-
pixel block, resulting in a total image size of 450-by-75. We obtain a single image via
Bitmap’s Clone method, which allows us to specify a rectangle image location and the
desired pixel format. The location is a 75-by-75 pixel block with its upper-left corner x
equal to 75 * type and the corresponding y equal to 0. For the pixel format, we specify
constant DontCare, causing the format to remain unchanged. 

Method Draw (lines 38–40) causes the CChessPiece to draw mPieceImage in
mLocationRectangle on the passed Graphics object. Readonly Property
LocationRectangle returns the object mLocationRectangle for use in collision
detection, and SetLocation allows the calling class to specify a new piece location.

Class FrmChessSurface (Fig. 16.26) defines the game and graphics code for our
chess game. Lines 20–30 define class-scope variables that are required by the program.
ArrayList mChessTile (line 20) stores the board tile images; it contains four images:
Two light tiles and two dark tiles (to increase board variety). ArrayList mChess-
Pieces (line 23) stores all active CChessPiece objects, and Integer mSelected-
Index (line 26) identifies the index in mChessPieces of the currently selected piece.
The mBoard (line 27) is an 8-by-8, two-dimensional Integer array corresponding to the
squares of a Chess board. Each board element is an integer from 0 to 3 that corresponds to
an index in mChessTile and is used to specify the Chess-board square image. Integer
TILESIZE (line 30) is a constant defining the size of each tile in pixels. 

1 ' Fig. 16.26: ChessGame.vb
2 ' Chess Game graphics code.
3
4 Imports System.Drawing.Drawing2D
5
6 Public Class FrmChessSurface
7 Inherits System.Windows.Forms.Form
8
9    ' display box

10 Friend WithEvents pieceBox As PictureBox
11
12    ' game menu
13 Friend WithEvents gameMenu As MainMenu
14 Friend WithEvents gameItem As MenuItem
15 Friend WithEvents newGame As MenuItem
16
17    ' Visual Studio .NET generated code
18
19    ' ArrayList for board tile images
20 Dim mChessTile As ArrayList = New ArrayList()
21
22    ' ArrayList for chess pieces
23 Dim mChessPieces As ArrayList = New ArrayList()
24
25    ' define index for selected piece
26 Dim mSelectedIndex As Integer = -1
27 Dim mBoard As Integer(,) = New Integer(7,7) {} ' board array

Fig. 16.26 Chess-game code (part 1 of 9).



Chapter 16 Graphics and Multimedia 721

28
29    ' define chess tile size in pixels
30 Private Const TILESIZE As Integer = 75
31
32    ' load tile bitmaps and reset game
33 Private Sub FrmChessSurface_Load(ByVal sender _
34       As System.Object, ByVal e As System.EventArgs) _
35       Handles MyBase.Load
36
37       ' load chess board tiles
38       mChessTile.Add(Bitmap.FromFile("lightTile1.png"))
39       mChessTile.Add(Bitmap.FromFile("lightTile2.png"))
40       mChessTile.Add(Bitmap.FromFile("darkTile1.png"))
41       mChessTile.Add(Bitmap.FromFile("darkTile2.png"))
42
43       ResetBoard() ' initialize board
44       Invalidate() ' refresh form
45 End Sub ' FrmChessSurface_Load
46
47    ' initialize pieces to start positions and rebuild board
48 Private Sub ResetBoard()
49       Dim column As Integer = 0
50       Dim row As Integer = 0
51       Dim current As Integer
52       Dim piece As CChessPiece
53       Dim random As Random = New Random()
54       Dim light As Boolean = False
55       Dim type As Integer
56
57       ' ensure empty arraylist
58       mChessPieces = New ArrayList()
59
60       ' load whitepieces image
61       Dim whitePieces As Bitmap = _
62          Bitmap.FromFile("whitePieces.png")
63
64       ' load blackpieces image
65       Dim blackPieces As Bitmap = _
66          Bitmap.FromFile("blackPieces.png")
67
68       ' set whitepieces drawn first
69       Dim selected As Bitmap = whitePieces
70
71       ' traverse board rows in outer loop
72       For row = 0 To mBoard.GetUpperBound(0)
73
74          ' if at bottom rows, set to black piece images
75          If row > 5 Then
76             selected = blackPieces
77          End If
78

Fig. 16.26 Chess-game code (part 2 of 9).



722 Graphics and Multimedia Chapter 16

79          ' traverse board columns in inner loop
80          For column = 0 To mBoard.GetUpperBound(1)
81
82             ' if first or last row, organize pieces
83             If (row = 0 OrElse row = 7) Then
84
85                Select Case column
86
87                   Case 0, 7 ' set current piece to rook
88                      current = CChessPiece.Types.ROOK
89
90                   Case 1, 6 ' set current piece to knight
91                      current = CChessPiece.Types.KNIGHT
92
93                   Case 2, 5 ' set current piece to bishop
94                      current = CChessPiece.Types.BISHOP
95
96                   Case 3 ' set current piece to king
97                      current = CChessPiece.Types.KING
98
99                   Case 4 ' set current piece to queen
100                      current = CChessPiece.Types.QUEEN
101                End Select
102
103                ' create current piece at start position
104                piece = New CChessPiece(current, _
105                   column * TILESIZE, row * TILESIZE, selected)
106
107                ' add piece to ArrayList
108                mChessPieces.Add(piece)
109             End If
110
111             ' if second or seventh row, organize pawns
112             If (row = 1 OrElse row = 6) Then
113                piece = New CChessPiece(CChessPiece.Types.PAWN, _
114                   column * TILESIZE, row * TILESIZE, selected)
115
116                mChessPieces.Add(piece)
117             End If
118
119             ' determine board piece type
120             type = random.Next(0, 2)
121
122             If light Then ' set light tile
123                mBoard(row, column) = type
124                light = False
125             Else ' set dark tile
126                mBoard(row, column) = type + 2
127                light = True
128             End If
129
130          Next ' next column
131

Fig. 16.26 Chess-game code (part 3 of 9).



Chapter 16 Graphics and Multimedia 723

132          ' account for new row tile color switch
133          light = Not light
134       Next ' next row
135
136 End Sub ' ResetBoard
137
138    ' display board in form OnPaint event
139 Protected Overrides Sub OnPaint(ByVal paintEvent _
140       As PaintEventArgs)
141
142       ' obtain graphics object
143       Dim graphicsObject As Graphics = paintEvent.Graphics
144       Dim row, column As Integer
145
146       For row = 0 To mBoard.GetUpperBound(0)
147
148          For column = 0 To mBoard.GetUpperBound(1)
149
150             ' draw image specified in board array
151             graphicsObject.DrawImage( _
152                CType(mChessTile(mBoard(row, column)), _
153                Image), New Point(TILESIZE * column, _ 
154                TILESIZE * row))
155          Next
156
157       Next
158
159 End Sub ' OnPaint
160
161    ' return index of piece that intersects point
162    ' optionally exclude a value
163 Private Function CheckBounds(ByVal point As Point, _
164       Optional ByVal exclude As Integer = -1) As Integer
165
166       Dim rectangle As Rectangle ' current bounding rectangle
167       Dim i As Integer
168
169       For i = 0 To mChessPieces.Count - 1
170
171          ' get piece rectangle
172          rectangle = Getpiece(i).LocationRectangle()
173
174          ' check if rectangle contains point
175          If (rectangle.Contains(point) AndAlso i <> exclude) Then
176             Return i
177          End If
178
179       Next
180
181       Return -1
182 End Function ' CheckBounds
183

Fig. 16.26 Chess-game code (part 4 of 9).



724 Graphics and Multimedia Chapter 16

184    ' handle pieceBox pain event
185 Private Sub pieceBox_Paint(ByVal sender As System.Object, _
186       ByVal e As System.Windows.Forms.PaintEventArgs) _
187       Handles pieceBox.Paint
188
189       Dim i As Integer
190
191       ' draw all pieces
192       For i = 0 To mChessPieces.Count - 1
193          Getpiece(i).Draw(e.Graphics)
194       Next
195
196 End Sub ' pieceBox_Paint
197
198    ' on MouseDown event, select chess piece
199 Private Sub pieceBox_MouseDown(ByVal sender As System.Object, _
200       ByVal e As System.Windows.Forms.MouseEventArgs) _
201       Handles pieceBox.MouseDown
202
203       ' determine selected piece
204       mSelectedIndex = CheckBounds(New Point(e.X, e.Y))
205 End Sub ' pieceBox_MouseDown
206
207  ' if piece is selected, move it
208 Private Sub pieceBox_MouseMove(ByVal sender As System.Object, _
209       ByVal e As System.Windows.Forms.MouseEventArgs) _
210       Handles pieceBox.MouseMove
211
212       If mSelectedIndex > -1 Then
213
214          Dim region As Rectangle = New Rectangle(e.X - _
215             TILESIZE * 2, e.Y - TILESIZE * 2, TILESIZE * 4, _ 
216             TILESIZE * 4)
217
218          ' set piece center to mouse
219          Getpiece(mSelectedIndex).SetLocation(e.X - _
220             TILESIZE / 2, e.Y - TILESIZE / 2)
221
222          ' refresh immediate area
223          pieceBox.Invalidate(region)
224       End If
225
226 End Sub ' pieceBox_MouseMove
227
228    ' on mouse up, deselect chess piece and remove taken piece
229 Private Sub pieceBox_MouseUp(ByVal sender As _
230       System.Object, ByVal e As _
231       System.Windows.Forms.MouseEventArgs) _
232       Handles pieceBox.MouseUp
233
234       Dim remove As Integer = -1
235

Fig. 16.26 Chess-game code (part 5 of 9).



Chapter 16 Graphics and Multimedia 725

The chess game GUI consists of Form FrmChessSurface, the area in which we
draw the tiles; Panel pieceBox, the window in which we draw the pieces (note that
pieceBox background color is set to "transparent"); and a Menu that allows the
user to begin a new game. Although the pieces and tiles could have been drawn on the same
form, doing so would decrease performance. We would be forced to refresh the board as
well as the pieces every time we refreshed the control.

236       If mSelectedIndex > -1 Then ' if chess piece was selected
237
238          Dim current As Point = New Point(e.X, e.Y)
239          Dim newPoint As Point = New Point(current.X - _
240             current.X Mod TILESIZE, current.Y - _
241             current.Y Mod TILESIZE)
242
243          ' check bounds with point, exclude selected piece
244          remove = CheckBounds(current, mSelectedIndex)
245
246          ' snap piece into center of closest square
247          Getpiece(mSelectedIndex).SetLocation(newPoint.X, _
248             newPoint.Y)
249
250          mSelectedIndex = -1 ' deselect piece
251
252          ' remove taken piece
253          If remove > -1 Then
254             mChessPieces.RemoveAt(remove)
255          End If
256
257       End If
258
259       ' refresh pieceBox to ensure artifact removal
260       pieceBox.Invalidate()
261 End Sub ' pieceBox_MouseUp
262
263    ' helper function to convert ArrayList object as CChesspiece
264 Private Function Getpiece(ByVal i As Integer) _
265       As CChessPiece
266
267       Return CType(mChessPieces(i), CChessPiece)
268 End Function ' Getpiece
269
270  ' handle NewGame menu option click
271 Private Sub NewGame_Click(ByVal sender As Object, _
272       ByVal e As System.EventArgs) Handles NewGame.Click
273
274       ResetBoard() ' re-initialize board
275       Invalidate() ' refresh form
276 End Sub ' NewGame_Click
277
278 End Class ' FrmChessSurface

Fig. 16.26 Chess-game code (part 6 of 9).



726 Graphics and Multimedia Chapter 16

The FrmChessSurface Load event (lines 33–45) loads each tile image into
mChessTile. It then calls method ResetBoard to refresh the Form and begin the
game. Method ResetBoard (lines 48–136) assigns mChessPieces to a new Array-
List, loading images for both the black and white chess-piece sets, and creates Bitmap
selected to define the currently selected Bitmap set. Lines 72–134 loop through 64
positions on the chess board, setting the tile color and piece for each tile. Lines 75–77 cause
the currently selected image to switch to the blackPieces after the fifth row. If the row
counter is on the first or last row, lines 83–109 add a new piece to mChessPieces. The
type of the piece is based on the current column we are initializing. Pieces in chess are posi-
tioned in the following order, from left to right: Rook, knight, bishop, queen, king, bishop,
knight and rook. Lines 112–117 add a new pawn at the current location if the current row
is second or seventh. 

A chess board is defined by alternating light and dark tiles across a row in a pattern
where the color that starts each row is equal to the color of the last tile of the previous row.
Lines 122–128 assign the current board-tile color as an index in the mBoard array. Based
on the alternating value of Boolean variable light and the results of the random oper-
ation on line 120, 0 and 1 are light tiles, whereas 2 and 3 are dark tiles. Line 133 inverts
the value of light at the end of each row to maintain the staggered effect of a chess board.

Fig. 16.26 Chess-game code (part 7 of 9).



Chapter 16 Graphics and Multimedia 727

Method OnPaint (lines 139–159) overrides class Form’s OnPaint method and
draws the tiles according to their values in the board array. Method pieceBox_Paint,
which handles the pieceBox Panel paint event, iterates through each element of the
mChessPiece ArrayList and calls its Draw method. 

The MouseDown event handler (lines 199–205) calls method CheckBounds with
the location of the user’s click to determine whether the user selected a piece. Check-
Bounds returns an integer locating a collision from a given point.

The MouseMove event handler (lines 208–226) moves the currently selected piece
with the mouse. Lines 219–220 set the selected piece location to the mouse cursor position,
adjusting the location by half a tile to center the image on the mouse. Lines 214–215 define
and refresh a region of the Panel that spans two tiles in every direction from the mouse.
As mentioned earlier in the chapter, the Invalidate method is slow. This means that the
MouseMove event handler might be called again several times before the Invalidate
method completes. If a user working on a slow computer moves the mouse quickly, the
application could leave behind artifacts. An artifact is any unintended visual abnormality
in a graphical program. By causing the program to refresh a two-square rectangle, which
should suffice in most cases, we achieve a significant performance enhancement over an
entire component refresh during each MouseMove event. 

Fig. 16.26 Chess-game code (part 8 of 9).



728 Graphics and Multimedia Chapter 16

Lines 229–261 define the MouseUp event handler. If a piece has been selected, lines
236–257 determine the index in mChessPieces of any piece collision, remove the col-
lided piece, snap (align) the current piece into a valid location and deselect the piece. We
check for piece collisions to allow the chess piece to “take” other chess pieces. Line 244
checks whether any piece (excluding the currently selected piece) is beneath the current
mouse location. If a collision is detected, the returned piece index is assigned to Integer
remove. Lines 247–248 determine the closest valid chess tile and “snap” the selected
piece to that location. If remove contains a positive value mChessPieces, line 254
removes it from the mChessPieces ArrayList. Finally, the entire Panel is Inval-
idated in line 260 to display the new piece location and remove any artifacts created
during the move. 

Method CheckBounds (lines 163–182) is a collision-detection helper method; it iter-
ates through the mChessPieces ArrayList and returns the index of any piece rect-
angle containing the point value passed to the method (the mouse location, in this example).
Method CheckBounds optionally can exclude a single piece index (to ignore the selected
index in the MouseUp event handler, in this example).

Lines 264–268 define helper function GetPiece, which simplifies the conversion
from Objects in the ArrayList mChessPieces to CChessPiece types. Method

Fig. 16.26 Chess-game code (part 9 of 9).



Chapter 16 Graphics and Multimedia 729

NewGame_Click handles the NewGame menu item click event, calls RefreshBoard
to reset the game and Invalidates the entire form.

16.12 Windows Media Player
The Windows Media Player control enables an application to play video and sound in many
multimedia formats. These include MPEG (Motion Pictures Experts Group) audio and video,
AVI (audio–video interleave) video, WAV (Windows wave-file format) audio and MIDI
(Musical Instrument Digital Interface) audio. Users can find preexisting audio and video on
the Internet, or they can create their own files using available sound and graphics packages.

The application in Fig. 16.27 demonstrates the Windows Media Player control, which
enables users to play multimedia files. To use the Windows Media Player control, program-
mers must add the control to the Toolbox. This is accomplished by first selecting Cus-
tomize Toolbox from the Tool menu to display the Customize Toolbox dialog box.
In the dialog box, scroll down and select the option Windows Media Player. Then, click
the OK button to dismiss the dialog box. The icon for the Windows Media Player control
now should appear at the bottom of the Toolbox.

1 ' Fig 16.27: MediaPlayerTest.vb
2 ' Demonstrates the Windows Media Player control
3
4 Public Class FrmMediaPlayer
5 Inherits System.Windows.Forms.Form
6
7    ' action menus
8 Friend WithEvents applicationMenu As MainMenu
9 Friend WithEvents fileItem As MenuItem

10 Friend WithEvents openItem As MenuItem
11 Friend WithEvents exitItem As MenuItem
12 Friend WithEvents aboutItem As MenuItem
13 Friend WithEvents aboutMessageItem As MenuItem
14
15    ' media player control
16 Friend WithEvents player As AxMediaPlayer.AxMediaPlayer
17 Friend WithEvents openMediaFileDialog As OpenFileDialog
18
19    ' Visual Studio .NET generated code
20
21    ' open new media file in Windows Media Player
22 Private Sub openItem_Click(ByVal sender As System.Object, _
23       ByVal e As System.EventArgs) Handles openItem.Click
24
25       openMediaFileDialog.ShowDialog()
26
27       player.FileName = openMediaFileDialog.FileName
28
29       ' adjust the size of the Media Player control and the
30       ' Form according to the size of the image
31       player.Size = New Size( _
32          player.ImageSourceWidth, player.ImageSourceHeight)

Fig. 16.27 Windows Media Player demonstration (part 1 of 2).



730 Graphics and Multimedia Chapter 16

33
34       Me.Size = New Size(player.Size.Width + 20, _
35          player.Size.Height + 60)
36 End Sub ' openItem_Click
37
38    ' exit application
39 Private Sub exitItem_Click(ByVal sender As System.Object, _
40       ByVal e As System.EventArgs) Handles exitItem.Click
41
42       Application.Exit()
43 End Sub ' exitItem_Click
44
45    ' show the About box for Windows Media Player
46 Private Sub aboutMessageItem_Click(ByVal sender As _
47       System.Object, ByVal e As System.EventArgs) _
48       Handles aboutMessageItem.Click
49
50       player.AboutBox()
51 End Sub ' aboutMessageItem_Click
52
53 End Class ' FrmMediaPlayer

Fig. 16.27 Windows Media Player demonstration (part 2 of 2).



Chapter 16 Graphics and Multimedia 731

The Windows Media Player control provides several buttons that allow the user to play
the current file, pause, stop, play the previous file, rewind, forward and play the next file.
The control also includes a volume control and trackbars to select a specific position in the
media file.

The application provides a MainMenu, which includes File and About menus. The
File menu contains the Open and Exit menu items; the About menu contains the About
Windows Media Player menu item. 

When a user chooses Open from the File menu, the openMenuItem_Click event
handler (lines 22–36) executes. An OpenFileDialog box displays (line 25), allowing
the user to select a file. The program then sets the FileName property of the player (the
Windows Media Player control object of type AxMediaPlayer) to the name of the file
chosen by the user. The FileName property specifies the file that Windows Media Player
currently is using. Lines 31–35 adjust the size of player and the application to reflect the
size of the media contained in the file.

The event handler that executes when the user selects Exit from the File menu (lines
39–43) simply calls Application.Exit to terminate the application. The event han-
dler that executes when the user chooses About Windows Media Player from the
About menu (lines 46–51) calls the AboutBox method of the player. AboutBox simply
displays a preset message box containing information about Windows Media Player.

16.13 Microsoft Agent
Microsoft Agent is a technology used to add interactive animated characters to Windows
applications or Web pages. Interactivity is the key function of Microsoft Agent technology:
Microsoft Agent characters can speak and respond to user input via speech recognition and
synthesis. Microsoft employs its Agent technology in applications such as Word, Excel and
PowerPoint. Agents in these programs aid users in finding answers to questions and in un-
derstanding how the applications function.

The Microsoft Agent control provides programmers with access to four predefined
characters—Genie (a genie), Merlin (a wizard), Peedy (a parrot) and Robby (a robot). Each
character has a unique set of animations that programmers can use in their applications to
illustrate different points and functions. For instance, the Peedy character-animation set
includes different flying animations, which the programmer might use to move Peedy on
the screen. Microsoft provides basic information on Agent technology at its Web site: 

www.microsoft.com/msagent

Microsoft Agent technology enables users to interact with applications and Web pages
through speech, the most natural form of human communication. When the user speaks into
a microphone, the control uses a speech recognition engine, an application that translates
vocal sound input from a microphone into language that the computer understands. The
Microsoft Agent control also uses a text-to-speech engine, which generates characters’
spoken responses. A text-to-speech engine is an application that translates typed words into
audio sound that users hear through headphones or speakers connected to a computer.
Microsoft provides speech recognition and text-to-speech engines for several languages at
its Web site:

www.microsoft.com/products/msagent/downloads.htm



732 Graphics and Multimedia Chapter 16

Programmers can even create their own animated characters with the help of the
Microsoft Agent Character Editor and the Microsoft Linguistic Sound Editing Tool. These
products are available free for download from: 

www.microsoft.com/products/msagent/devdownloads.htm

This section introduces the basic capabilities of the Microsoft Agent control. For com-
plete details on downloading this control, visit:

www.microsoft.com/products/msagent/downloads.htm

The following example, Peedy’s Pizza Palace, was developed by Microsoft to illus-
trate the capabilities of the Microsoft Agent control. Peedy’s Pizza Palace is an online pizza
shop where users can place their orders via voice input. The Peedy character interacts with
users by helping them choose toppings and then calculating the totals for their orders. 

 Readers can view this example at:

agent.microsoft.com/agent2/sdk/samples/html/peedypza.htm

To run this example, students must download the Peedy character file, a text-to-speech
engine and a speech-recognition engine. When the page loads, the browser prompts for
these downloads. Follow the directions provided by Microsoft to complete installation.

When the window opens, Peedy introduces himself (Fig. 16.28), and the words he
speaks appear in a cartoon bubble above his head. Notice that Peedy’s animations corre-
spond to the words he speaks. 

Fig. 16.28 Peedy introducing himself when the window opens.

Bubble contains 
text equivalent 
to words Peedy 
speaks



Chapter 16 Graphics and Multimedia 733

Programmers can synchronize character animations with speech output to illustrate a
point or to convey a character’s mood. For instance, Fig. 16.29 depicts Peedy’s Pleased
animation. The Peedy character-animation set includes eighty-five different animations,
each of which is unique to the Peedy character. 

Look-and-Feel Observation 16.1
Agent characters remain on top of all active windows while a Microsoft Agent application is
running. Their motions are not limited to within the boundaries of the browser or application
window. 16.1

Peedy also responds to input from the keyboard and mouse. Figure 16.30 shows what
happens when a user clicks Peedy with the mouse pointer. Peedy jumps up, ruffles his
feathers and exclaims, “Hey that tickles!” or, “Be careful with that pointer!” Users can relo-
cate Peedy on the screen by clicking and dragging him with the mouse. However, even
when the user moves Peedy to a different part of the screen, he continues to perform his
pre-set animations and location changes.

Many location changes involve animations. For instance, Peedy can hop from one
screen location to another, or he can fly (Fig. 16.31). 

Once Peedy completes the ordering instructions, a text box appears beneath him indi-
cating that he is listening for a voice command (Fig. 16.32). Users can enter the type of
pizza they wish to order either by speaking the style name into a microphone or by clicking
the radio button corresponding to their choice. 

Fig. 16.29 Peedy’s Pleased animation.



734 Graphics and Multimedia Chapter 16

Fig. 16.30 Peedy’s reaction when he is clicked.

Fig. 16.31 Peedy flying animation

Pointer clicking 
Peedy



Chapter 16 Graphics and Multimedia 735

If a user chooses speech input, a box appears below Peedy displaying the words that
Peedy "heard" (i.e., the words translated to the program by the speech-recognition
engine). Once he recognizes the user input, Peedy gives the user a description of the
selected pizza. Figure 16.33 shows what happens when the user chooses Seattle as the
pizza style.

Peedy then asks the user to choose additional toppings. Again, the user can either
speak or use the mouse to make a selection. Check boxes corresponding to toppings that
come with the selected pizza style are checked for the user. Figure 16.34 shows what hap-
pens when a user chooses anchovies as an additional topping. Peedy makes a wisecrack
about the user’s choice.

The user can submit the order either by pressing the Place My Order button or by
speaking, “Place order” into the microphone. Peedy recounts the order while writing
down the order items on his notepad (Fig. 16.35). He then calculates the figures on his
calculator and reports the total to the user (Fig. 16.36). 

Fig. 16.32 Peedy waiting for speech input.

Text box 
indicates that 
Peedy is waiting 
for user input

Radio buttons 
corresponding 
to different pizza 
styles



736 Graphics and Multimedia Chapter 16

Fig. 16.33 Peedy repeating the user’s request for Seattle style pizza.

Fig. 16.34 Peedy repeating the user’s request for anchovies as an additional 
topping.

Text box 
indicates 
recognized 
speech



Chapter 16 Graphics and Multimedia 737

Fig. 16.35 Peedy recounting the order.

Fig. 16.36 Peedy calculating the total.



738 Graphics and Multimedia Chapter 16

The following example (Fig. 16.37) demonstrates how to build a simple application
using the Microsoft Agent control. This application contains two drop-down lists from
which the user can choose an Agent character and a character animation. When the user
chooses from these lists, the chosen character appears and performs the chosen animation.
The application uses speech recognition and synthesis to control the character animations
and speech: Users can tell the character which animation to perform by pressing the Scroll
Lock key and then speaking the animation name into a microphone. The example also
allows the user to switch to a new character by speaking its name, and also creates a custom
command, MoveToMouse. In addition, the characters also speak any text that a user enters
into the text box. Before running this example, readers first must download and install the
control, speech recognition engine, text to speech engine and the character definitions from
the Microsoft Agent Web site listed previously. 

1 ' Fig. 16.37:  Agent.vb
2 ' Demonstrating Microsoft Agent.
3
4 Imports System.IO
5 Imports System.Collections
6 Imports System.Windows.Forms
7
8 Public Class FrmAgent
9 Inherits System.Windows.Forms.Form

10
11 ' options
12 Friend WithEvents characterCombo As ComboBox
13 Friend WithEvents actionsCombo As ComboBox
14
15 Friend WithEvents GroupBox1 As GroupBox
16 Friend WithEvents cmdSpeak As Button
17 Friend WithEvents mainAgent As AxAgentObjects.AxAgent
18
19    ' input boxes
20 Friend WithEvents txtLocation As TextBox
21 Friend WithEvents txtSpeech As TextBox
22
23   ' current agent object
24 Private mSpeaker As AgentObjects.IAgentCtlCharacter
25
26    ' Visual Studio .NET generated code
27
28   ' keyDown event handler for locationTextBox
29 Private Sub txtLocation_KeyDown(ByVal sender As _
30       Object, ByVal e As System.Windows.Forms.KeyEventArgs)_
31       Handles txtLocation.KeyDown
32
33       If e.KeyCode = Keys.Enter Then
34
35          ' set character location to text box value
36          Dim location As String = txtLocation.Text
37

Fig. 16.37 Microsoft Agent demonstration (part 1 of 6).



Chapter 16 Graphics and Multimedia 739

38          ' initialize characters
39          Try
40
41             ' load characters into agent object
42             mainAgent.Characters.Load( _
43                "Genie", location & "Genie.acs")
44
45             mainAgent.Characters.Load( _
46                "Merlin", location & "Merlin.acs")
47
48             mainAgent.Characters.Load( _
49                "Peedy", location & "Peedy.acs")
50
51             mainAgent.Characters.Load( _
52                "Robby", location & "Robby.acs")
53
54             ' disable TextBox location and enable other controls
55             txtLocation.Enabled = False
56             txtSpeech.Enabled = True
57             cmdSpeak.Enabled = True
58             characterCombo.Enabled = True
59             actionsCombo.Enabled = True
60
61             ' set current character to Genie and show
62             mSpeaker = mainAgent.Characters("Genie")
63             GetAnimationNames() ' obtain animation name list
64             mSpeaker.Show(0)
65
66          Catch fileNotFound As FileNotFoundException
67             MessageBox.Show("Invalid character location", _
68                "Error", MessageBoxButtons.OK, _
69                MessageBoxIcon.Error)
70          End Try
71
72       End If
73
74 End Sub ' txtLocation_KeyDown
75
76    ' speak button event handler
77 Private Sub cmdSpeak_Click(ByVal sender As System.Object, _
78       ByVal e As System.EventArgs) Handles cmdSpeak.Click
79
80       ' if TextBox is empty, have character ask
81       ' user to type words into TextBox, otherwise
82       ' have character say words in TextBox
83       If txtSpeech.Text = "" Then
84          mSpeaker.Speak( _
85             "Please type the words you want me to speak", "")
86       Else
87          mSpeaker.Speak(txtSpeech.Text, "")
88       End If
89
90 End Sub ' cmdSpeak_Click

Fig. 16.37 Microsoft Agent demonstration (part 2 of 6).



740 Graphics and Multimedia Chapter 16

91
92  ' click event for agent
93 Private Sub mainAgent_ClickEvent(ByVal sender As Object _
94       Object, ByVal e As AxAgentObjects._AgentEvents_ClickEvent)_
95       Handles mainAgent.ClickEvent
96
97       mSpeaker.Play("Confused")
98       mSpeaker.Speak("Why are you poking me?", "")
99       mSpeaker.Play("RestPose")
100 End Sub ' mainAgent_ClickEvent
101
102  ' comboBox changed event, switch active agent
103 Private Sub characterCombo_SelectedIndexChanged(ByVal _
104       sender As System.Object, ByVal e As System.EventArgs) _
105       Handles characterCombo.SelectedIndexChanged
106
107       ChangeCharacter(characterCombo.Text)
108 End Sub ' characterCombo_SelectedIndexChanged
109
110    ' hide current character and show new
111 Private Sub ChangeCharacter(ByVal name As String)
112       mSpeaker.Hide(0)
113       mSpeaker = mainAgent.Characters(name)
114       GetAnimationNames() ' regenerate animation name list
115       mSpeaker.Show(0)
116 End Sub ' ChangeCharacter
117
118  ' get animation names and store in arraylist
119 Private Sub GetAnimationNames()
120
121       ' ensure thread safety
122       SyncLock (Me)
123
124          ' get animation names
125          Dim enumerator As IEnumerator = _
126             mainAgent.Characters.Character( _
127             mSpeaker.Name).AnimationNames.GetEnumerator()
128
129          Dim voiceString As String
130
131          ' clear cboActions combo box
132          actionsCombo.Items.Clear()
133          mSpeaker.Commands.RemoveAll()
134
135          ' copy enumeration to ArrayList
136          While enumerator.MoveNext() 
137
138             ' remove underscores in speech string
139             voiceString = Convert.ToString(enumerator.Current)
140             voiceString = voiceString.Replace("_", "underscore")
141
142             actionsCombo.Items.Add(enumerator.Current)
143

Fig. 16.37 Microsoft Agent demonstration (part 3 of 6).



Chapter 16 Graphics and Multimedia 741

144             ' add all animations as voice enabled commands
145             mSpeaker.Commands.Add(Convert.ToString( _
146                enumerator.Current, , voiceString, True, False)
147          End While
148
149          ' add custom command
150          mSpeaker.Commands.Add("MoveToMouse", "MoveToMouse", _
151             "MoveToMouse", True, True)
152       End SyncLock
153
154 End Sub ' GetAnimationNames
155
156   ' user selects new action
157 Private Sub actionsCombo_SelectedIndexChanged(ByVal sender _
158       As System.Object, ByVal e As System.EventArgs) _
159       Handles actionsCombo.SelectedIndexChanged
160
161       mSpeaker.Stop()
162       mSpeaker.Play(actionsCombo.Text)
163       mSpeaker.Play("RestPose")
164 End Sub ' actionsCombo_SelectedIndexChanged
165
166    ' handles agent commands
167 Private Sub mainAgent_Command(ByVal sender As System.Object, _
168       ByVal e As AxAgentObjects._AgentEvents_CommandEvent) _
169       Handles mainAgent.Command
170
171     ' get UserInput object
172       Dim command As AgentObjects.IAgentCtlUserInput = _
173          CType(e.userInput, AgentObjects.IAgentCtlUserInput)
174
175   ' change character if user speaks character name
176       If (command.Voice = "Peedy" OrElse _
177          command.Voice = "Robby" OrElse _
178          command.Voice = "Merlin" OrElse _
179          command.Voice = "Genie") Then
180          ChangeCharacter(command.Voice)
181
182          Return
183       End If
184
185       ' send agent to mouse
186       If command.Name = "MoveToMouse" Then
187          mSpeaker.MoveTo(Convert.ToInt16( _
188             Cursor.Position.X - 60), Convert.ToInt16( _
189             Cursor.Position.Y - 60))
190
191          Return
192       End If
193
194    ' play new animation
195       mSpeaker.Stop()
196       mSpeaker.Play(command.Name)

Fig. 16.37 Microsoft Agent demonstration (part 4 of 6).



742 Graphics and Multimedia Chapter 16

197
198 End Sub ' mainAgent_Command
199
200 End Class ' FrmAgent

Fig. 16.37 Microsoft Agent demonstration (part 5 of 6).

Drop-down list from which 
users can choose 
character animation

Writing animation

Genie performing 
Writing animation

Merlin responding to 
user spoken animation 
command. 

Text box indicating words 
the speech recognition 
engine translated to the 
application



Chapter 16 Graphics and Multimedia 743

To use the Microsoft Agent control, the programmer first must add it to the Toolbox.
Begin by selecting Customize Toolbox from the Tools menu to display the Cus-
tomize Toolbox dialog. In the dialog, scroll down and select the option Microsoft
Agent Control 2.0. When this option is selected properly, a small check mark appears in
the box to the left of the option. Then, click OK to dismiss the dialog. The icon for the
Microsoft Agent control now should appear at the bottom of the Toolbox.

In addition to the Microsoft Agent object mainAgent (of type AxAgent) that man-
ages all the characters, we also need an object (of type IAgentCtlCharacter) to rep-
resent the current character. We create this object, named mSpeaker, in line 24.

When the program begins, the only enabled control is the txtLocation. This text
box contains the default location for the character files, but the user can change this location
if the files are located elsewhere on the user’s computer. Once the user presses Enter in the
TextBox, event handler txtLocation_KeyDown (lines 29–74) executes. Lines 42–52
load the character descriptions for the predefined animated characters. If the specified loca-
tion of the characters is incorrect, or if any character is missing, a FileNotFoundEx-
ception is thrown. 

Fig. 16.37 Microsoft Agent demonstration (part 6 of 6).

Peedy repeating 
words input by user. 
Peedy’s speech can 
be heard through 
computer audio 
output.

Text input

Robby responding to 
user clicking him with 
the mouse pointer.

The commands 
pop-up window



744 Graphics and Multimedia Chapter 16

Lines 55–59 disable txtLocation and enable the rest of the controls. Lines 62–64
set Genie as the default character, obtain all animation names via method GetAnima-
tionNames and then call IAgentCtlCharacter method Show to display the char-
acter. We access characters through property Characters of mainAgent, which
contains all characters that have been loaded. We use the indexer of the Characters
property to specify the name of the character that we wish to load (Genie).

When a user clicks the character (i.e., pokes it with the mouse), event handler
mainAgent_ClickEvent (lines 93–100) executes. First, mSpeaker method Play
plays an animation. This method accepts as an argument a String representing one of the
predefined animations for the character (a list of animations for each character is available
at the Microsoft Agent Web site; each character provides over 70 animations). In our
example, the argument to Play is "Confused"—this animation is defined for all four
characters, each of which expresses this emotion in a unique way. The character then
speaks, "Why are you poking me?" via a call to method Speak. Finally, the Rest-
Pose animation is played, which returns the character to its neutral, resting pose. 

The list of valid commands for a character is contained in the Commands property of
the IAgentCtlCharacter object (mSpeaker, in this example). The commands for an
Agent character can be viewed in the Commands pop-up window, which displays when
the user right-clicks an Agent character (the last screenshot in Fig. 16.37). Method Add of
the Commands property adds a new command to the command list. Method Add takes
three String arguments and two Boolean arguments. The first String argument iden-
tifies the name of the command, which we use to identify the command programmatically.
The second String is optional and defines the command name as it appears in the Com-
mands pop-up window. The third String also is optional and defines the voice input
that triggers the command. The first Boolean specifies whether the command is active,
and the second Boolean indicates whether the command is visible in the Commands
pop-up window. A command is triggered when the user selects the command from the
Commands pop-up window or speaks the voice input into a microphone. Command logic
is handled in the Command event of the AxAgent control (mainAgent, in this example).
In addition, Agent defines several global commands that have predefined functions (for
example, speaking a character name causes that character to appear).

 Method GetAnimationNames (lines 119–154) fills the actionsCombo
ComboBox with the current character’s animation listing and defines the valid commands
that can be used with the character. The method contains a SyncLock block to prevent
errors resulting from rapid character changes. The method obtains the current character’s
animations as an enumerator (125–127), then clears the existing items in the ComboBox
and character’s Commands property. Lines 136–147 iterate through all items in the anima-
tion name enumerator. For each animation, in line 139, we assign the animation name to
String voiceString. Line 140 removes any underscore characters (_) and replaces
them with the String "underscore"; this changes the String so that a user can pro-
nounce and employ it as a command activator. The Add method (lines 145–146) of the
Commands property adds a new command to the current character. The Add method adds
all animations as commands by providing the following arguments: the animation name as
the new command’s name and voiceString for the voice activation String. The
method’s Boolean arguments enable the command, but make it unavailable in the Com-
mands pop-up window. Thus, the command can be activated only by voice input. Lines



Chapter 16 Graphics and Multimedia 745

150–151 create a new command, named MoveToMouse, which is visible in the Com-
mands pop-up window. 

After the  GetAnimationNames method has been called, the user can select a value
from the actionsCombo ComboBox. Event-handler method actions-
Combo.SelectedIndexChanged stops any current animation and then displays the
animation that the user selected from the ComboBox.

The user also can type text into the TextBox and click Speak. This causes event han-
dler cmdSpeak_Click (line 77–90) to call mSpeaker’s method Speak, supplying as
an argument the text in txtSpeech. If the user clicks Speak without providing text, the
character speaks, "Please, type the words you want me to speak".

At any point in the program, the user can choose to display a different character from
the ComboBox. When this happens, the SelectedIndexChanged event handler for
characterCombo (lines 103–108) executes. The event handler calls method Change-
Character (lines 111–116) with the text in the characterCombo ComboBox as an
argument. Method ChangeCharacter calls the Hide method of mSpeaker (line 112)
to remove the current character from view. Line 113 assigns the newly selected character
to mSpeaker, line 114 generates the character’s animation names and commands, and line
115 displays the character via a call to method Show.

Each time a user presses the Scroll Lock key and speaks into a microphone or selects
a command from the Commands pop-up window, event handler
mainAgent_Command is called. This method is passed an argument of type AxAgen-
tObjects._AgentEvents_CommandEvent, which contains a single method,
userInput. The userInput method returns an Object that can be converted to type
AgentObjects.IAgentCtlUserInput. The userInput object is assigned to a
IAgentCtlUserInput object command, which is used to identify the command and
then take appropriate action. Lines 176–180 use method ChangeCharacter to change
the current Agent character if the user speaks a character name. Microsoft Agent always
will show a character when a user speaks its name; however, by controlling the character
change, we can ensure that only one Agent character is displayed at a time. Lines 186–192
move the character to the current mouse location if the user invokes the MoveToMouse
command. The Agent method MoveTo takes x- and y-coordinate arguments and moves the
character to the specified screen position, applying appropriate movement animations. For
all other commands, we Play the command name as an animation on line 196.

In this chapter, we explored various graphics capabilities of GDI+, including pens,
brushes and images, as well as some multimedia capabilities of the .NET Famework Class
Library. In the next chapter, we cover the reading, writing and accessing of sequential- and
random-access files. We also explore several types of streams included in Visual Studio
.NET.

SUMMARY
• A coordinate system is used to identify every possible point on the screen. 

• The upper-left corner of a GUI component has coordinates (0, 0). A coordinate pair is composed
of an x-coordinate (the horizontal coordinate) and a y-coordinate (the vertical coordinate). 

• Coordinate units are measured in pixels. A pixel is the smallest unit of resolution on a display mon-
itor.



746 Graphics and Multimedia Chapter 16

• A graphics context represents a  drawing surface on the screen. A Graphics object provides ac-
cess to the graphics context of a control.

• An instance of the Pen class is used to draw lines.

• An instance of one of the classes that derive from abstract class Brush is used to draw solid
shapes.

• The Point structure can be used to represent a point in a two-dimensional plane.

• Graphics objects contain methods for drawing, font manipulation, color manipulation and other
graphics-related actions. 

• Method OnPaint normally is called in response to an event, such as the uncovering of a window.
This method, in turn, triggers a Paint event.

• Structure Color defines constants for manipulating colors in a Visual Basic program. 

• Color properties R, G and B return Integer values from 0 to 255, representing the amounts of
red, green and blue, respectively, that exist in a Color. The larger the value, the greater the
amount of that particular color. 

• Visual Basic provides class ColorDialog to display a dialog that allows users to select colors. 

• Component property BackColor (one of the many Component properties that can be called
on most GUI components) changes the component’s background color.

• Class Font’s constructors all take at least three arguments—the font name, the font size and the
font style. The font name is any font currently supported by the system. The font style is a member
of the FontStyle enumeration.

• Class FontMetrics defines several methods for obtaining font metrics. 

• Class Font provides the Bold, Italic, Strikeout and Underline properties, which re-
turn True if the font is bold, italic, strikeout or underlined, respectively.

• Class Font provides the Name property, which returns a String representing the name of the
font.

• Class Font provides the Size and SizeInPoints properties, which return the size of the font
in design units and points, respectively.

• The FontFamily class provides information about such font metrics as the family’s spacing and
height information.

• The FontFamily class provides the GetCellAscent, GetCellDescent, GetEmHeight
and GetLineSpacing methods, which return the ascent of a font, descent of a font, the font’s
height in points and the distance between two consecutive lines of text, respectively.

• Class Graphics provides methods DrawLine, DrawRectangle, DrawEllipse,
DrawArc, DrawLines, DrawPolygon and DrawPie, which draw lines and shape outlines.

• Class Graphics provides methods FillRectangle, FillEllipse, FillPolygon and
FillPie, which draw solid shapes.

• Classes HatchBrush, LinearGradientBrush, PathGradientBrush and Texture-
Brush all derive from class Brush and represent shape-filling styles.

• Graphics method FromImage retrieves the Graphics object associated with the image file
that is its argument.

• The DashStyle and DashCap enumerations define the style of dashes and their ends, respec-
tively.

• Class GraphicsPath represents a shape constructed from straight lines and curves.

• GraphicsPath method AddLine appends a line to the shape that is encapsulated by the object.



Chapter 16 Graphics and Multimedia 747

• GraphicsPath method CloseFigure completes the shape that is represented by the
GraphicsPath object.

• Class Image is used to manipulate images.

• Class Image provides method FromFile to retrieve an image stored on disk and load it into an
instance of class Image.

• Graphics method Clear paints the entire Control with the color that the programmer pro-
vides as an argument.

• Graphics method DrawImage draws the specified Image on the Control.

• Using Visual Studio .NET and Visual Basic, programmers can create applications that use com-
ponents such as Windows Media Player and Microsoft Agent.

• The Windows Media Player allows programmers to create applications that can play multimedia
files.

• Microsoft Agent is a technology that allows programmers to include interactive animated charac-
ters in their applications.

TERMINOLOGY
A property of structure Color Color property of class ColorDialog
AboutBox method of class AxMediaPlayer Color structure 
Add method of class ArrayList ColorDialog class 
AddLine method of class GraphicsPath complex curve 
animated characters connected lines 
animating a series of images coordinate system 
animation coordinates (0, 0) 
arc angle curve 
arc method customizing the Toolbox
ARGB values Cyan Shared property of structure Color
ArrayList class DarkBlue Shared property of 

   structure Colorascent of a font
audio–video interleave (AVI) DarkGray Shared property of 

   structure ColorAxAgent class 
AxMediaPlayer class Dash member of enumeration DashStyle
B property of structure Color DashCap enumeration 
bandwidth DashCap property of class Pen
Bitmap class dashed lines 
Black Shared property of structure Color DashStyle enumeration 
Blue Shared property of structure Color DashStyle property of class Pen
Bold member of enumeration FontStyle default font 
Bold property of class Font degree 
bounding rectangle descent of a font
bounding rectangle for an oval Display member of enumeration  

   GraphicsUnitBrush class 
Characters property of class AxAgent display monitor 
closed polygon Document member of enumeration  

   GraphicsUnitCloseFigure method of class 
   GraphicsPath DrawArc method of class Graphics
color constants DrawEllipse method of class Graphics
color manipulation DrawLine method of class Graphics
Color methods and properties DrawLines method of class Graphics



748 Graphics and Multimedia Chapter 16

DrawPie method of class Graphics graphics context 
DrawPolygon method of class Graphics GraphicsPath class 
DrawRectangle method of class Graphics GraphicsUnit
DrawString method of class Graphics Gray Shared property of structure Color
event-driven process Green Shared property of structure Color
FileName property of class  
   AxMediaPlayer

HatchBrush class 
HatchStyle enumeration 

Fill method of class Graphics Height property of class Font
fill a shape with color horizontal coordinate 
FillEllipse method of class Graphics IAgentCtlCharacter interface 
fill shape Inch member of enumeration  

   GraphicsUnitFillPie method of class Graphics
FillPolygon method of class Graphics interactive animated character 
FillRectangle method of class Graphics Invalidate method of class Control
FillRectangles method of class  
   Graphics

Italic member of enumeration FontStyle
Italic property of class Font

five-pointed star line 
font LinearGradientBrush class 
font ascent LinearGradientMode enumeration 
Font class Magenta Shared property of  

   structure Colorfont control 
font descent Merlin Microsoft Agent character 
font height Microsoft Agent
font leading Microsoft Agent Character Editor 
font manipulation Microsoft Linguistic Sound Editing Tool 
font metrics Microsoft Sans Serif font 
font name Microsoft Serif font 
font size MIDI 
font style Millimeter member of 

   enumeration GraphicsUnitFontFamily class 
FontFamily property of class Font Motion Pictures Experts Group (MPEG) 
FontStyle enumeration multimedia 
ForwardDiagonal member of enumeration 
   LinearGradientMode

Musical Instrument Digital Interface (MIDI) 
Name property of class Font

FromArgb method of structure Color Name property of structure Color
FromImage method of class Graphics negative arc angles 
FromName method OnPaint method of class Control
G property of structure Color Orange Shared property of structure Color
GDI+ PaintEventArgs class 
general path Panel class 
Genie Microsoft Agent character PathGradientBrush class 
GetCellAscent method of class 
   FontFamily

pattern 
Peedy Microsoft Agent character 

GetCellDescent method of class  
   FontFamily

Pen class 
Pink Shared property of structure Color

GetEmHeight method of class FontFamily pixel 
GetLineSpacing method of class  
   FontFamily

Pixel member of enumeration  
   GraphicsUnit

graphics Play method of interface  
   IAgentCtlCharacterGraphics class 



Chapter 16 Graphics and Multimedia 749

SELF-REVIEW EXERCISES
16.1 State whether each of the following is true or false. If false, explain why.

a) A Font object’s size can be changed by setting its Size property.
b) In the Visual Basic coordinate system, x-values increase from left to right.
c) Method FillPolygon draws a solid polygon with a specified Brush.
d) Method DrawArc allows negative angles.
e) Font property Size returns the size of the current font in centimeters.
f) Pixel coordinate (0, 0) is located at the exact center of the monitor.
g) A HatchBrush is used to draw lines. 
h) A Color is defined by its alpha, red, green and violet content. 
i) Every Control has an associated Graphics object. 
j) Method OnPaint is inherited by every Form.

16.2 Fill in the blanks in each of the following statements:
a) Class  is used to draw lines of various colors and thicknesses. 
b) Classes  and  define the fill for a shape in such a way that the fill

gradually changes from one color to another.

Point member of enumeration  
   GraphicsUnit

Strikeout property of class Font
sweep 

Point structure sweep counterclockwise 
positive and negative arc angles System.Drawing namespace 
R property of structure Color System.Drawing.Drawing2D namespace 
rectangle TextureBrush class 
Rectangle structure thick line
Red Shared property of structure Color thin line 
Regular member of enumeration  
   FontStyle

three-dimensional application 
Tick event of class Timer

resolution Timer class 
RGB values TranslateTransform method of 

   class GraphicsRobby the Robot MicrosoftAgent character 
RotateTransform method of class  
   Graphics

two-dimensional shape 
Underline member of enumeration  
   FontStyleRound member of enumeration DashCap

sector Underline property of class Font
Show method of interface  
   IAgentCtlCharacter

upper-left corner of a GUI component 
vertical coordinate 

Size property of class Font WAV 
style of a font White Shared property of structure Color
SizeInPoints property of class Font Windows Media Player 
solid arc Windows wave file format (WAV) 
solid polygon x-axis 
solid rectangle x-coordinate 
SolidBrush class y-axis 
starting angle y-coordinate 
straight line yellow 
Strikeout member of enumeration  
   FontStyle

Yellow Shared property of structure Color



750 Graphics and Multimedia Chapter 16

c) The  method of class Graphics draws a line between two points. 
d) ARGB is short for , ,  and .
e) Font sizes usually are measured in units called .
f) Class  fills a shape using a pattern drawn in a Bitmap.
g)  allows an application to play multimedia files. 
h) Class  defines a path consisting of lines and curves.
i) Visual Basic’s drawing capabilities are part of the namespaces  and

.
j) Method  loads an image from a disk into an Image object. 

ANSWERS TO SELF-REVIEW EXERCISES
16.1 a) False. Size is a read-only property. b) True. c) True. d) True. e) False. It returns the size
of the current Font in design units. f) False. The coordinate (0,0) corresponds to the upper-left corner
of a GUI component on which drawing occurs. g) False. A Pen is used to draw lines, a HatchBrush
fills a shape with a hatch pattern.  h) False. A color is defined by its alpha, red, green and blue content.
i) True. j) True.

16.2 a) Pen. b) LinearGradientBrush, PathGradientBrush. c) DrawLine. d) al-
pha, red, green, blue. e) points. f) TextureBrush. g) Windows Media Player h) GraphicsPath
i) System.Drawing, System.Drawing.Drawing2D. j) FromFile.

EXERCISES
16.3 Write a program that draws eight concentric circles. The circles should be separated from one
another by 10 pixels. Use the DrawArc method.

16.4 Write a program that draws 100 lines with random lengths, positions, thicknesses and colors.

16.5 Write a program that draws a tetrahedron (a pyramid). Use class GraphicsPath and meth-
od DrawPath.

16.6 Write a program that allows the user to draw “free-hand” images with the mouse in a Pic-
tureBox. Allow the user to change the drawing color and width of the pen. Provide a button that
allows the user to clear the PictureBox.

16.7 Write a program that repeatedly flashes an image on the screen. Do this by interspersing the
image with a plain background-color image.

16.8 If you want to emphasize an image, you might place a row of simulated light bulbs around
the image. Write a program which an image is emphasized this way. You can let the light bulbs flash
in unison or you can let them fire on and off in sequence, one after another.

16.9 (Eight Queens) A puzzler for chess buffs is the Eight Queens problem. Simply stated: Is it
possible to place eight queens on an empty chessboard so that no queen is “attacking” any other (i.e.,
so that no two queens are in the same row, the same column or along the same diagonal)? 

Create a GUI that allows the user to drag-and-drop each queen on the board. Use the graphical
features of Fig. 16.26. Provide eight queen images to the right of the board (Fig. 16.38), which the
user can drag-and-drop onto the board. When a queen is dropped on the board, its corresponding
image to the right should not be visible. If a queen is in conflict with another queen when placed on
the board, display a message box and remove the drag queen from the board.



Chapter 16 Graphics and Multimedia 751

Fig. 16.38 GUI for eight queens exercise.



17
Files and Streams

Objectives
• To be able to create, read, write and update files.
• To understand the Visual Basic streams class 

hierarchy.
• To be able to use classes File and Directory.
• To be able to use the FileStream and 
BinaryFormatter classes to read objects from, 
and write objects to, files.

• To become familiar with sequential-access and 
random-access file processing.

I can only assume that a “Do Not File” document is filed in 
a “Do Not File” file.
Senator Frank Church
Senate Intelligence Subcommittee Hearing, 1975

Consciousness … does not appear to itself chopped up in 
bits. … A “river” or a “stream” are the metaphors by which 
it is most naturally described.
William James

I read part of it all the way through.
Samuel Goldwyn



Chapter 17 Files and Streams 753

17.1 Introduction
Variables and arrays offer only temporary storage of data—the data are lost when a local
variable “goes out of scope” or when the program terminates. By contrast, files are used
for long-term retention of large amounts of data, even after the program that created the
data terminates. Data maintained in files  often are called persistent data. Computers store
files on secondary storage devices, such as magnetic disks, optical disks and magnetic
tapes. In this chapter, we explain how to create, update and process data files in Visual
Basic programs. We consider both “sequential-access” files and “random-access” files, in-
dicating the kinds of applications for which each is best suited. We have two goals in this
chapter: To introduce the sequential-access and random-access file-processing paradigms
and to provide the reader with sufficient stream-processing capabilities to support the net-
working features that we introduce in Chapter 22, Networking: Streams-Based Sockets
and Datagrams.

File processing is one of a programming language’s most important capabilities,
because it enables a language to support commercial applications that typically process
massive amounts of persistent data. This chapter discusses Visual Basic’s powerful and
abundant file-processing and stream-input/output features.

17.2 Data Hierarchy
Ultimately, all data items processed by a computer are reduced to combinations of zeros
and ones. This occurs because it is simple and economical to build electronic devices that
can assume two stable states—0 represents one state, and 1 represents the other. It is re-
markable that the impressive functions performed by computers involve only the most fun-
damental manipulations of 0s and 1s.

The smallest data item that computers support are called bits (short for “binary
digit”—a digit that can assume one of two values). Each data item, or bit, can assume either

Outline

17.1 Introduction
17.2 Data Hierarchy
17.3 Files and Streams

17.4 Classes File and Directory
17.5 Creating a Sequential-Access File
17.6 Reading Data from a Sequential-Access File
17.7 Random-Access Files
17.8 Creating a Random-Access File
17.9 Writing Data Randomly to a Random-Access File
17.10 Reading Data Sequentially from a Random-Access File
17.11 Case Study: A Transaction-Processing Program

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



754 Files and Streams Chapter 17

the value 0 or the value 1. Computer circuitry performs various simple bit manipulations,
such as examining the value of a bit, setting the value of a bit and reversing a bit (from 1
to 0 or from 0 to 1).

Programming with data in the low-level form of bits is cumbersome. It is preferable to
program with data in forms such as decimal digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9), letters
(i.e., A through Z and a through z) and special symbols (i.e., $, @, %, &, *, (, ), -, +, ", :, ?,
/ and many others). Digits, letters and special symbols are referred to as characters. The set
of all characters used to write programs and represent data items on a particular computer
is called that computer’s character set. Because computers can process only 1s and 0s,
every character in a computer’s character set is represented as a pattern of 1s and 0s. Bytes
are composed of eight bits (characters in Visual Basic are Unicode characters, which are
composed of 2 bytes). Programmers create programs and data items with characters; com-
puters manipulate and process these characters as patterns of bits.

Just as characters are composed of bits, fields are composed of characters. A field is a
group of characters that conveys some meaning. For example, a field consisting of upper-
case and lowercase letters can represent a person’s name.

Data items processed by computers form a data hierarchy (Fig. 17.1) in which data
items become larger and more complex in structure as we progress from bits, to characters,
to fieldsand up to larger data structures.

Typically, a record (i.e., a Class in Visual Basic) is composed of several fields
(called member variables in Visual Basic). In a payroll system, for example, a record for a
particular employee might include the following fields:

1. Employee identification number 

2. Name

3. Address 

4. Hourly pay rate 

5. Number of exemptions claimed

6. Year-to-date earnings 

7. Amount of taxes withheld

Thus, a record is a group of related fields. In the preceding example, each field is asso-
ciated with the same employee. A file is a group of related records.1 A company’s payroll
file normally contains one record for each employee. Thus, a payroll file for a small com-
pany might contain only 22 records, whereas a payroll file for a large company might con-
tain 100,000 records. It is not unusual for a company to have many files, some containing
millions, billions, or even trillions of characters of information.

To facilitate the retrieval of specific records from a file, at least one field in each record
is chosen as a record key. A record key identifies a record as belonging to a particular person
or entity and distiguishes that record from all other records. In the payroll record described
previously, the employee identification number normally would be chosen as the record key.

1. Generally, a file can contain arbitrary data in arbitrary formats. In some operating systems, a file
is viewed as nothing more than a collection of bytes. In such an operating system, any organization
of the bytes in a file (such as organizing the data into records) is a view created by the applications
programmer.



Chapter 17 Files and Streams 755

There are many ways of organizing records in a file. The most common type of orga-
nization is called a sequential file, in which records typically are stored in order by the
record-key field. In a payroll file, records usually are placed in order by employee identifi-
cation number. The first employee record in the file contains the lowest employee identifi-
cation number, and subsequent records contain increasingly higher employee identification
numbers.

Most businesses use many different files to store data. For example, a company might
have payroll files, accounts receivable files (listing money due from clients), accounts pay-
able files (listing money due to suppliers), inventory files (listing facts about all the items
handled by the business) and many other types of files. Sometimes, a group of related files
is called a database. A collection of programs designed to create and manage databases is
called a database management system (DBMS). We discuss databases in detail in Chapter
19, Databases, SQL and ADO.NET.

17.3 Files and Streams
Visual Basic views each file as a sequential stream of bytes (Fig. 17.2). Each file ends ei-
ther with an end-of-file marker or at a specific byte number that is recorded in a system-
maintained administrative data structure. When a file is opened, Visual Basic creates an ob-
ject and then associates a stream with that object. The runtime environment creates three
stream objects upon program execution, each accessible via properties Console.Out,
Console.In and Console.Error, respectively. These objects facilitate communica-
tion between a program and a particular file or device. Property Console.In returns the

Fig. 17.1 Data hierarchy.

Sally

Tom

Judy

Iris

Randy

Black

Blue

Green

Orange

Red

Judy Green

J u d y       Field

01001010   Byte (ASCII character J)

1 Bit

Record

File



756 Files and Streams Chapter 17

standard input stream object, which enables a program to input data from the keyboard.
Property Console.Out returns the standard output stream object, which enables a pro-
gram to output data to the screen. Property Console.Error returns the standard error
stream object, which enables a program to output error messages to the screen. We have
been using Console.Out and Console.In in our console applications—Console
methods Write and WriteLine use Console.Out to perform output, and methods
Read and ReadLine use Console.In to perform input.

To perform file processing in Visual Basic, namespace System.IO must be referenced.
This namespace includes definitions for stream classes such as StreamReader (for text
input from a file), StreamWriter (for text output to a file) and FileStream (for both
input and output to a file). Files are opened by creating objects of these stream classes, which
inherit from MustInherit classes TextReader, TextWriter and Stream, respec-
tively. Actually, Console.In and Console.Out are properties of class TextReader
and TextWriter, respectively. These classes are MustInherit; StreamReader and
StreamWriter are classes that derive from classes TextReader and TextWriter.

Visual Basic provides class BinaryFormatter, which is used in conjunction with
a Stream object to perform input and output of objects. Serialization involves converting
an object into a format that can be written to a file without losing any of that object’s data.
Deserialization consists of reading this format from a file and reconstructing the original
object from it. A BinaryFormatter can serialize objects to, and deserialize objects
from, a specified Stream.

Class System.IO.Stream provides functionality for representing streams as bytes.
This class is MustInherit, so objects of this class cannot be instantiated. Classes
FileStream, MemoryStream and BufferedStream (all from namespace
System.IO) inherit from class Stream. Later in the chapter, we use FileStream to
read data to, and write data from, sequential-access and random-access files. Class Memo-
ryStream enables the transferal of data directly to and from memory—this type of
transfer is much faster than other types of data transfer (e.g., to and from disk). Class
BufferedStream uses buffering to transfer data to or from a stream. Buffering is an I/
O-performance-enhancement technique, in which each output operation is directed to a
region in memory called a buffer that is large enough to hold the data from many output
operations. Then, actual transfer to the output device is performed in one large physical
output operation each time the buffer fills. The output operations directed to the output
buffer in memory often are called logical output operations.

Visual Basic offers many classes for performing input and output. In this chapter, we
use several key stream classes to implement a variety of file-processing programs that
create, manipulate and destroy sequential-access files and random-access files. In Chapter
22, Networking: Streams-Based Sockets and Datagrams, we use stream classes extensively
to implement networking applications.

Fig. 17.2 Visual Basic’s view of an n-byte file.

0 1 2 3 4 5 6 7 8 9 n-1...

... end-of-file marker



Chapter 17 Files and Streams 757

17.4 Classes File and Directory
Information on computers is stored in files, which are organized in directories. Class File
is provided for manipulating files, and class Directory is provided for manipulating di-
rectories. Class File cannot write to or read from files directly; we discuss methods for
reading and writing files in the following sections.

Note that the \ separator character separates directories and files in a path. On UNIX
systems, the separator character is /. Visual Basic actually processes both characters as
identical in a path name. This means that, if we specified the path c:\VisualBasic/
README, which uses one of each separator character, Visual Basic still processes the file
properly.

Figure 17.3 lists some methods in class File for manipulating and determining infor-
mation about particular files. Class File contains only Shared methods—you cannot
instantiate objects of type File. We use several of these methods in the example of
Fig. 17.5.

Class Directory provides the capabilities for manipulating directories with the
.NET framework. Figure 17.4 lists some methods that can be used for directory manipula-
tion. We use several of these methods in the example of Fig. 17.5.

The DirectoryInfo object returned by method CreateDirectory contains
information about a directory. Much of the information contained in this class also can be
accessed via the Directory methods. 

Shared Method Description

AppendText Returns a StreamWriter that appends to an existing file or cre-
ates a file if one does not exist.

Copy Copies a file to a new file.

Create Returns a FileStream associated with the file just created.

CreateText Returns a StreamWriter associated with the new text file.

Delete Deletes the specified file.

GetCreationTime Returns a DateTime object representing the time that the file was 
created.

GetLastAccessTime Returns a DateTime object representing the time that the file was 
last accessed.

GetLastWriteTime Returns a DateTime object representing the time that the file was 
last modified.

Move Moves the specified file to a specified location.

Open Returns a FileStream associated with the specified file and 
equipped with the specified read/write permissions.

OpenRead Returns a read-only FileStream associated with the specified file.

OpenText Returns a StreamReader associated with the specified file.

OpenWrite Returns a read/write FileStream associated with the specified file.

Fig. 17.3 File class methods (partial list).



758 Files and Streams Chapter 17

Class FrmFileTest (Fig. 17.5) uses various the methods described in Fig. 17.3 and
Fig. 17.4 to access file and directory information. This class contains TextBox
txtInput (line 15), which enables the user to input a file or directory name. For each key
that the user presses in the text box, the program calls method txtInput_KeyDown
(lines 20–84). If the user presses the Enter key (line 25), this method displays either file or
directory contents, depending on the text the user input in the TextBox. (Note that, if the
user does not press the Enter key, this method returns without displaying any content.) Line
33 uses method Exists of class File to determine whether the user-specified text is a
file. If the user specifies an existing file, line 36 invokes Private method GetInfor-
mation (lines 87–108), which calls methods GetCreationTime (line 97), GetLast-
WriteTime (line 101) and GetLastAccessTime (line 105) of class File to access
information on the file. When method GetInformation returns, lines 42–43 instantiate
a StreamReader for reading text from the file. The StreamReader constructor takes
as an argument a String containing the name of the file to open. Line 44 calls method
ReadToEnd of the StreamReader to read the file content from the file and then dis-
plays the content.

If line 33 determines that the user-specified text is not a file, line 56 determines
whether it is a directory using method Exists of class Directory. If the user specified
an existing directory, line 62 invokes method GetInformation to access the directory
information. Line 65 calls method GetDirectories of class Directory to obtain a

Shared Method Description

CreateDirectory Returns the DirectoryInfo object associated with the newly 
created directory.

Delete Deletes the specified directory.

Exists Returns True if the specified directory exists;  otherwise, it 
returns False.

GetLastWriteTime Returns a DateTime object representing the time that the 
directory was last modified.

GetDirectories Returns String array representing the names of the directories 
in the specified directory.

GetFiles Returns String array representing the names of the files in the 
specified directory.

GetCreationTime Returns a DateTime object representing the time that the 
directory was created.

GetLastAccessTime Returns a DateTime object representing the time that the 
directory was last accessed.

GetLastWriteTime Returns a DateTime object representing the time that items 
were last written to the directory.

Move Moves the specified directory to specified location.

Fig. 17.4 Directory class methods (partial list).



Chapter 17 Files and Streams 759

String array containing the names of subdirectories in the specified directory. Lines 71–
73 display each element in the String array. Note that, if line 56 determines that the user-
specified text is neither a file nor a directory, lines 77–79 notify the user (via a Mes-
sageBox) that the file or directory does not exist.

1 ' Fig 17.5: FileTest.vb
2 ' Using classes File and Directory.
3
4 Imports System.IO
5 Imports System.Windows.Forms
6
7 Public Class FrmFileTest
8 Inherits Form
9

10    ' label that gives directions to user
11 Friend WithEvents lblDirections As Label
12
13    ' text boxes for inputting and outputting data
14 Friend WithEvents txtOutput As TextBox
15 Friend WithEvents txtInput As TextBox
16
17    ' Visual Studio .NET generated code
18
19    ' invoked when user presses key
20 Protected Sub txtInput_KeyDown(ByVal sender As Object, _
21       ByVal e As System.Windows.Forms.KeyEventArgs) Handles _
22       txtInput.KeyDown
23
24       ' determine whether user pressed Enter key
25       If e.KeyCode = Keys.Enter Then
26
27          Dim fileName As String ' name of file or directory
28
29          ' get user-specified file or directory
30          fileName = txtInput.Text
31
32          ' determine whether fileName is a file
33          If File.Exists(fileName) Then
34
35             ' get file's creation date, modification date, etc.
36             txtOutput.Text = GetInformation(fileName)
37
38             ' display file contents through StreamReader
39             Try
40
41                ' obtain reader and file contents
42                Dim stream As StreamReader
43                stream = New StreamReader(fileName)
44                txtOutput.Text &= stream.ReadToEnd()
45

Fig. 17.5 FrmFileTest class tests classes File and Directory (part 1 of 3).



760 Files and Streams Chapter 17

46             ' handle exception if StreamReader is unavailable
47             Catch exceptionCatch As IOException
48
49                ' display error
50                MessageBox.Show("FILE ERROR", "FILE ERROR", _
51                   MessageBoxButtons.OK, MessageBoxIcon.Error)
52
53             End Try
54
55          ' determine whether fileName is a directory
56          ElseIf Directory.Exists(fileName) Then
57
58             Dim directoryList As String() ' array for directories
59             Dim i As Integer
60
61             ' get directory's creation date, modification date, etc
62             txtOutput.Text = GetInformation(fileName)
63
64             ' obtain directory list of specified directory
65             directoryList = Directory.GetDirectories(fileName)
66
67             txtOutput.Text &= vbCrLf & vbCrLf & _
68                "Directory contents:" & vbCrLf
69
70             ' output directoryList contents
71             For i = 0 To directoryList.Length - 1
72                txtOutput.Text &= directoryList(i) & vbCrLf
73             Next
74
75          ' notify user that neither file nor directory exists
76          Else
77             MessageBox.Show(txtInput.Text & " does not exist", _
78                "FILE ERROR", MessageBoxButtons.OK, _
79                MessageBoxIcon.Error)
80          End If
81
82       End If ' determine whether user pressed Enter key
83
84 End Sub ' txtInput_KeyDown
85
86    ' get information on file or directory
87 Private Function GetInformation(ByRef fileName As String) _
88       As String
89
90       Dim information As String
91
92       ' output that file or directory exists
93       information = fileName & " exists" & vbCrLf & vbCrLf
94
95       ' output when file or directory was created
96       information &= "Created : " & _
97          File.GetCreationTime(fileName) & vbCrLf
98

Fig. 17.5 FrmFileTest class tests classes File and Directory (part 2 of 3).



Chapter 17 Files and Streams 761

We now consider another example that uses Visual Basic’s file and directory-manipu-
lation capabilities. Class FrmFileSearch (Fig. 17.6) uses classes File and Direc-
tory in conjunction with classes for performing regular expressions to report the number
of files of each file type in the specified directory path. The program also serves as a “clean-
up” utility—when the program encounters a file that has the .bak extension (i.e., a backup
file), the program displays a MessageBox asking if that file should be removed and then
responds appropriately to the user’s input. 

99       ' output when file or directory was last modified
100       information &= "Last modified: " & _
101          File.GetLastWriteTime(fileName) & vbCrLf
102
103       ' output when file or directory was last accessed
104       information &= "Last accessed: " & _
105          File.GetLastAccessTime(fileName) & vbCrLf & vbCrLf
106
107       Return information
108 End Function ' GetInformation
109
110 End Class ' FrmFileTest

Fig. 17.5 FrmFileTest class tests classes File and Directory (part 3 of 3).



762 Files and Streams Chapter 17

When the user presses the Enter key or clicks the Search Directory button, the pro-
gram invokes method cmdSearch_Click (lines 47–88), which searches recursively
through the directory path that the user provides. If the user inputs text in the TextBox,
line 56 calls method Exists of class Directory to determine whether that text indi-
cates a valid directory. If the user specifies an invalid directory, lines 65–66 notify the user
of the error.

If the user specifies a valid directory, line 78 passes the directory name as an argument
to Private method SearchDirectory (lines 91–181). This method locates files on
the basis of the regular expression defined in lines 100–101 by the Regex object, which
matches any sequence of numbers or letters followed by a period and one or more letters.
Notice an unfamiliar substring of format (?<extension>regular-expression) con-
tained in the argument to the Regex constructor (line 101). All Strings with the sub-
string regular-expression are tagged with the name extension. In this program, we
assign to the variable extension any String matching one or more characters.

1 ' Fig 17.6: FileSearch.vb
2 ' Using regular expressions to determine file types.
3
4 Imports System.IO
5 Imports System.Text.RegularExpressions
6 Imports System.Collections.Specialized
7 Imports System.Windows.Forms
8
9 Public Class FrmFileSearch

10 Inherits Form
11
12    ' label that displays current directory
13    Friend WithEvents lblDirectory As Label
14
15    ' label that displays directions to user
16    Friend WithEvents lblDirections As Label
17
18    ' button that activates search
19 Friend WithEvents cmdSearch As Button
20
21    ' text boxes for inputting and outputting data
22    Friend WithEvents txtInput As TextBox
23    Friend WithEvents txtOutput As TextBox
24
25    ' Visual Studio .NET generated code
26
27 Dim currentDirectory As String = Directory.GetCurrentDirectory
28 Dim directoryList As String() ' subdirectories
29 Dim fileArray As String() ' files in current directory
30
31    ' store extensions found and number found
32 Dim found As NameValueCollection = New NameValueCollection()

Fig. 17.6 FrmFileSearch class uses regular expressions to determine file types 
(part 1 of 5).



Chapter 17 Files and Streams 763

33
34    ' invoked when user types in text box
35 Private Sub txtInput_KeyDown(ByVal sender As System.Object, _
36       ByVal e As System.Windows.Forms.KeyEventArgs) _
37       Handles txtInput.KeyDown
38
39       ' determine whether user pressed Enter
40       If (e.KeyCode = Keys.Enter) Then
41          cmdSearch_Click(sender, e)
42       End If
43
44 End Sub ' txtInput_KeyDown
45
46    ' invoked when user clicks "Search Directory" button
47 Private Sub cmdSearch_Click(ByVal sender As System.Object, _
48       ByVal e As System.EventArgs) Handles cmdSearch.Click
49
50       Dim current As String
51
52       ' check for user input; default is current directory
53       If txtInput.Text <> "" Then
54
55          ' verify that user input is a valid directory name
56          If Directory.Exists(txtInput.Text) Then
57             currentDirectory = txtInput.Text
58
59             ' reset input text box and update display
60             lblDirectory.Text = "Current Directory:" & vbCrLf & _
61               currentDirectory
62
63          ' show error if user does not specify valid directory
64          Else
65             MessageBox.Show("Invalid Directory", "Error", _
66                MessageBoxButtons.OK, MessageBoxIcon.Error)
67
68             Return
69          End If
70
71       End If
72
73       ' clear text boxes
74       txtInput.Text = ""
75       txtOutput.Text = ""
76
77       ' search directory
78       SearchDirectory(currentDirectory)
79
80       ' summarize and print results
81       For Each current In found
82          txtOutput.Text &= "* Found " & found(current) & " " _
83             & current & " files." & vbCrLf
84       Next

Fig. 17.6 FrmFileSearch class uses regular expressions to determine file types 
(part 2 of 5).



764 Files and Streams Chapter 17

85
86       ' clear output for new search
87       found.Clear()
88 End Sub ' cmdSearch_Click
89
90    ' search directory using regular expression
91 Private Sub SearchDirectory(ByVal currentDirectory As String)
92
93       ' for file name without directory path
94       Try
95          Dim fileName As String = ""
96          Dim myFile As String
97          Dim myDirectory As String
98
99          ' regular expression for extensions matching pattern
100          Dim regularExpression As Regex = _
101             New Regex("([a-zA-Z0-9]+\.(?<extension>\w+))")
102
103          ' stores regular-expression-match result 
104          Dim matchResult As Match
105
106          Dim fileExtension As String ' holds file extensions
107
108          ' number of files with given extension in directory
109          Dim extensionCount As Integer
110
111          ' get directories
112          directoryList = _
113             Directory.GetDirectories(currentDirectory)
114
115          ' get list of files in current directory
116          fileArray = Directory.GetFiles(currentDirectory)
117
118          ' iterate through list of files
119          For Each myFile In fileArray
120
121             ' remove directory path from file name
122             fileName = myFile.Substring( _
123                myFile.LastIndexOf("\") + 1)
124
125             ' obtain result for regular-expression search
126             matchResult = regularExpression.Match(fileName)
127
128             ' check for match
129             If (matchResult.Success) Then
130                fileExtension = matchResult.Result("${extension}")
131             Else
132                fileExtension = "[no extension]"
133             End If

Fig. 17.6 FrmFileSearch class uses regular expressions to determine file types 
(part 3 of 5).



Chapter 17 Files and Streams 765

134
135             ' store value from container
136             If (found(fileExtension) = Nothing) Then
137                found.Add(fileExtension, "1")
138             Else
139                extensionCount = _
140                   Convert.ToInt32(found(fileExtension)) + 1
141
142                found(fileExtension) = extensionCount.ToString()
143             End If
144
145             ' search for backup(.bak) files
146             If fileExtension = "bak" Then
147
148                ' prompt user to delete (.bak) file
149                Dim result As DialogResult = _
150                   MessageBox.Show("Found backup file " & _
151                   fileName & ". Delete?", "Delete Backup", _
152                   MessageBoxButtons.YesNo, _
153                   MessageBoxIcon.Question)
154
155                ' delete file if user clicked 'yes'
156                If (result = DialogResult.Yes) Then
157                   File.Delete(myFile)
158                   extensionCount = _
159                      Convert.ToInt32(found("bak")) - 1
160
161                   found("bak") = extensionCount.ToString()
162                End If
163
164             End If
165
166          Next
167
168          ' recursive call to search files in subdirectory
169          For Each myDirectory In directoryList
170             SearchDirectory(myDirectory)
171          Next
172
173       ' handle exception if files have unauthorized access
174       Catch unauthorizedAccess As UnauthorizedAccessException
175          MessageBox.Show("Some files may not be visible due to" _
176             & " permission settings", "Warning", _
177             MessageBoxButtons.OK, MessageBoxIcon.Information)
178
179       End Try
180
181 End Sub ' SearchDirectory
182
183 End Class ' FrmFileSearch

Fig. 17.6 FrmFileSearch class uses regular expressions to determine file types 
(part 4 of 5).



766 Files and Streams Chapter 17

Lines 112–113 call method GetDirectories of class Directory to retrieve the
names of all directories that belong to the current directory. Line 116 calls method Get-
Files of class Directory to store the names of all current-directory files in String
array fileArray. The For Each loop in line 119 searches for files with extension bak;
it then calls SearchDirectory recursively for each subdirectory in the current directory.
Lines 122–123 eliminate the directory path, so the program can test only the file name when
using the regular expression. Lines 126 uses method Match of the Regex object to match
the regular expression with the file name and then returns the result to object
matchResult of type Match. If the match is successful, line 130 uses method Result
of object matchResult to store the extension String from object matchResult in
fileExtension (the String that will contain the current file’s extension). If the match
is unsuccessful, line 132 sets fileExtension to hold a value of "[no extension]".

Class FrmFileSearch uses an instance of class NameValueCollection
(declared in line 32) to store each file-extension type and the number of files for each type.

Fig. 17.6 FrmFileSearch class uses regular expressions to determine file types 
(part 5 of 5).



Chapter 17 Files and Streams 767

A NameValueCollection contains a collection of key/value pairs, each of which is a
String, and provides method Add to add a key/value pair. The indexer for this pair can
index according to the order that the items were added or according to the entry key—both
means of indexing return the value corresponding to that key. Line 136 uses NameVal-
ueCollection variable found to determine whether this is the first occurrence of the
file extension. If so, line 137 adds to found that extension as a key with the value 1. Oth-
erwise, lines 139–142 increment the value associated with the extension in found to indi-
cate another occurrence of that file extension.

Line 146 determines whether fileExtension equals “bak”—i.e., the file is a
backup file. Lines 149–153 prompt the user to indicate whether the file should be
removed—if the user clicks Yes (line 156), lines 157–159 delete the file and decrement the
value for the “bak” file type in found.

Lines 169–171 call method SearchDirectory for each subdirectory. Using recur-
sion, we ensure that the program performs the same logic for finding bak files on each sub-
directory. After each subdirectory has been checked for bak files, method
SearchDirectory returns to the event handler (i.e., method cmdSearch_Click),
and lines 81–84 display the results.

17.5 Creating a Sequential-Access File
Visual Basic imposes no structure on a file. Thus, concepts like that of a “record” do not
exist in Visual Basic files. This means that, the programmer must structure files to meet the
requirements of applications. In this example, we use text and special characters to organize
our own concept of a “record.”

As we will see, the GUIs for most of the programs in this chapter are similar; therefore,
we created class FrmBankUI (Fig. 17.7) to encapsulate this GUI (see the screen capture
in Fig. 17.7). Class FrmBankUI contains four Labels (lines 10–13) and four Text-
Boxes (lines 16–19). Methods ClearTextBoxes (lines 35–52), SetTextBox-
Values (lines 55–72) and GetTextBoxValues (lines 75–86) clear, set the values of,
and get the values of the text in the TextBoxes, respectively.

1 ' Fig 17.7: BankUI.vb
2 ' A reusable windows form for the examples in this chapter.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmBankUI
7 Inherits Form
8
9    ' labels for TextBoxes

10 Public WithEvents lblAccount As Label
11 Public WithEvents lblFirstName As Label
12 Public WithEvents lblLastName As Label
13 Public WithEvents lblBalance As Label
14

Fig. 17.7 FrmBankUI class is the base class for GUIs in our file-processing 
applications (part 1 of 3).



768 Files and Streams Chapter 17

15    ' text boxes that receive user input 
16 Public WithEvents txtAccount As TextBox
17 Public WithEvents txtFirstName As TextBox
18 Public WithEvents txtLastName As TextBox
19 Public WithEvents txtBalance As TextBox
20
21    ' Visual Studio .NET generated code
22
23    ' number of TextBoxes on Form
24 Protected TextBoxCount As Integer = 4
25
26    ' enumeration constants specify TextBox indices
27 Public Enum TextBoxIndices
28    ACCOUNT
29    FIRST
30    LAST
31 BALANCE
32 End Enum
33
34    ' clear all TextBoxes
35 Public Sub ClearTextBoxes()
36       Dim myControl As Control ' current GUI component
37       Dim i As Integer
38
39       ' iterate through every Control on form
40       For i = 0 To Controls.Count - 1
41          myControl = Controls(i) ' get Control
42
43          ' determine whether Control is TextBox
44          If (TypeOf myControl Is TextBox) Then
45
46             ' clear Text property (set to empty String)
47             myControl.Text = ""
48          End If
49
50       Next
51
52 End Sub ' ClearTextBoxes
53
54    ' set TextBox values to String-array values
55 Public Sub SetTextBoxValues(ByVal values As String())
56
57       ' determine whether String array has correct length
58       If (values.Length <> TextBoxCount) Then
59
60          ' throw exception if not correct length
61          Throw New ArgumentException("There must be " & _
62             TextBoxCount + 1 & " strings in the array")
63
64       ' else set array values to TextBox values
65       Else
66          txtAccount.Text = values(TextBoxIndices.ACCOUNT)

Fig. 17.7 FrmBankUI class is the base class for GUIs in our file-processing 
applications (part 2 of 3).



Chapter 17 Files and Streams 769

To reuse class FrmBankUI, we compile the GUI into a DLL library by creating a
project of type Windows Control Library (the DLL we create is called BankLi-
brary). This library, as well as all the code in this book, can be found on the CD accom-
panying this book and at our Web site, www.deitel.com. However, students might
need to change the reference to this library, as it most likely resides in a different location
on their systems.

Figure 17.8 contains the CRecord class that the programs of Fig. 17.9, Fig. 17.11 and
Fig. 17.12 use for reading records from, and writing records to, a file sequentially. This
class also belongs to the BankLibrary DLL, which means that it is located in the same
project as is class FrmBankUI. (When students add class CRecord to the project con-
taining FrmBankUI, they must remember to rebuild the project.)

67          txtFirstName.Text = values(TextBoxIndices.FIRST)
68          txtLastName.Text = values(TextBoxIndices.LAST)
69          txtBalance.Text = values(TextBoxIndices.BALANCE)
70       End If
71
72 End Sub ' SetTextBoxValues
73
74    ' return TextBox values as String array
75 Public Function GetTextBoxValues() As String()
76
77       Dim values(TextBoxCount) As String
78
79       ' copy TextBox fields to String array
80       values(TextBoxIndices.ACCOUNT) = txtAccount.Text
81       values(TextBoxIndices.FIRST) = txtFirstName.Text
82       values(TextBoxIndices.LAST) = txtLastName.Text
83       values(TextBoxIndices.BALANCE) = txtBalance.Text
84
85       Return values
86 End Function ' GetTextBoxValues
87
88 End Class ' FrmBankUI

Fig. 17.7 FrmBankUI class is the base class for GUIs in our file-processing 
applications (part 3 of 3).



770 Files and Streams Chapter 17

1 ' Fig. 17.8: CRecord.vb
2 ' Serializable class that represents a data record.
3
4 <Serializable()> Public Class CRecord
5
6 Private mAccount As Integer
7 Private mFirstName As String
8 Private mLastName As String
9 Private mBalance As Double

10
11    ' default constructor sets members to default values
12 Public Sub New()
13       Me.New(0, "", "", 0.0)
14 End Sub ' New
15
16    ' overloaded constructor sets members to parameter values
17 Public Sub New(ByVal accountValue As Integer, _
18       ByVal firstNameValue As String, _
19       ByVal lastNameValue As String, _
20       ByVal balanceValue As Double)
21
22       Account = accountValue
23       FirstName = firstNameValue
24       LastName = lastNameValue
25       Balance = balanceValue
26 End Sub ' New
27
28    ' property Account
29 Public Property Account() As Integer
30
31       Get
32          Return mAccount
33       End Get
34
35       Set(ByVal accountValue As Integer)
36          mAccount = accountValue
37       End Set
38
39 End Property ' Account
40
41    ' property FirstName
42 Public Property FirstName() As String
43
44       Get
45          Return mFirstName
46       End Get
47
48       Set(ByVal firstNameValue As String)
49          mFirstName = firstNameValue
50       End Set
51
52 End Property ' FirstName

Fig. 17.8 CRecord class represents a record for sequential-access file-processing 
applications (part 1 of 2).



Chapter 17 Files and Streams 771

The Serializable attribute (line 4) indicates to the compiler that objects of class
CRecord can be serialized, or represented as sets of bytes—we then either can write these
bytes to streams or store stream data into these sets. Objects that we wish to write to or read
from a stream must include this attribute tag before their class definitions.

Class CRecord contains Private data members mAccount, mFirstName,
mLastName and mBalance (lines 6–9), which collectively represent all information
necessary to store record data. The default constructor (lines 12–14) sets these members to
their default (i.e., empty) values, and the overloaded constructor (lines 17–26) sets these
members to specified parameter values. Class CRecord also provides properties
Account (lines 29–39), FirstName (lines 42–52), LastName (lines 55–65) and Bal-
ance (lines 68–78) for accessing the account number, first name, last name and balance of
each customer, respectively.

Class FrmCreateSequentialAccessFile (Fig. 17.9) uses instances of class
CRecord to create a sequential-access file that might be used in an accounts-receivable
system—i.e., a program that organizes data regarding money owed by a company’s credit
clients. For each client, the program obtains an account number and the client’s first name,
last name and balance (i.e., the amount of money that the client owes to the company for
previously received goods or services). The data obtained for each client constitutes a
record for that client. In this application, the account number represents the record key—

53
54    ' property LastName
55 Public Property LastName() As String
56
57       Get
58          Return mLastName
59       End Get
60
61       Set(ByVal lastNameValue As String)
62          mLastName = lastNameValue
63       End Set
64
65 End Property ' LastName
66
67    ' property Balance
68 Public Property Balance() As Double
69
70       Get
71          Return mBalance
72       End Get
73
74       Set(ByVal balanceValue As Double)
75          mBalance = balanceValue
76       End Set
77
78 End Property ' Balance
79
80 End Class ' CRecord

Fig. 17.8 CRecord class represents a record for sequential-access file-processing 
applications (part 2 of 2).



772 Files and Streams Chapter 17

files are created and maintained in account-number order. This program assumes that the
user enters records in account-number order. However, in a comprehensive accounts-
receivable system would provide a sorting capability. The user could enter the records in
any order, and the records then could be sorted and written to the file in order. (Note that
all outputs in this chapter should be read row by row, from left to right in each row.)

Figure 17.9 contains the code for class FrmCreateSequentialAccessFile,
which either creates or opens a file (depending on whether one exists) and then allows the user
to write bank information to that file. Line 11 imports the BankLibrary namespace; this
namespace contains class FrmBankUI, from which class FrmCreateSequentialAc-
cessFile inherits (line 14). Because of this inheritance relationship, the FrmCreate-
SequentialAccessFile GUI is similar to that of class FrmBankUI (shown in the
Fig. 17.9 output), except that the inherited class contains buttons Save As, Enter and Exit.

1 ' Fig 17.9: CreateSequentialAccessFile.vb
2 ' Creating a sequential-access file.
3
4 ' Visual Basic namespaces
5 Imports System.IO
6 Imports System.Runtime.Serialization.Formatters.Binary
7 Imports System.Runtime.Serialization
8 Imports System.Windows.Forms
9

10 ' Deitel namespaces
11 Imports BankLibrary
12
13 Public Class FrmCreateSequentialAccessFile
14 Inherits FrmBankUI
15
16    ' GUI buttons to save file, enter data and exit program
17 Friend WithEvents cmdSave As Button
18 Friend WithEvents cmdEnter As Button
19 Friend WithEvents cmdExit As Button
20
21    ' Visual Studio .NET generated code
22
23    ' serializes CRecord in binary format
24 Private formatter As BinaryFormatter = New BinaryFormatter()
25
26    ' stream through which serializable data is written to file
27 Private output As FileStream
28
29    ' invoked when user clicks Save button
30 Protected Sub cmdSave_Click(ByVal sender As Object, _
31       ByVal e As System.EventArgs) Handles cmdSave.Click
32
33       ' create dialog box enabling user to save file
34       Dim fileChooser As SaveFileDialog = New SaveFileDialog()
35       Dim result As DialogResult = fileChooser.ShowDialog()
36       Dim fileName As String ' name of file to save data

Fig. 17.9 FrmCreateSequentialAccessFile class creates and writes to 
sequential-access files (part 1 of 5).



Chapter 17 Files and Streams 773

37
38       ' allow user to create file
39       fileChooser.CheckFileExists = False
40
41       ' exit event handler if user clicked "Cancel"
42       If result = DialogResult.Cancel Then
43          Return
44       End If
45
46       fileName = fileChooser.FileName ' get specified file name
47
48       ' show error if user specified invalid file
49       If (fileName = "" OrElse fileName = Nothing) Then
50          MessageBox.Show("Invalid File Name", "Error", _
51             MessageBoxButtons.OK, MessageBoxIcon.Error)
52       Else
53
54          ' save file via FileStream if user specified valid file
55          Try
56
57             ' open file with write access
58             output = New FileStream(fileName, _
59                FileMode.OpenOrCreate, FileAccess.Write)
60
61             cmdSave.Enabled = False ' disable Save button
62             cmdEnter.Enabled = True ' enable Enter button
63
64          ' notify user if file does not exist
65          Catch fileException As FileNotFoundException
66             MessageBox.Show("File Does Not Exits", "Error", _
67                MessageBoxButtons.OK, MessageBoxIcon.Error)
68
69          End Try
70
71       End If
72
73 End Sub ' cmdSave_Click
74
75    ' invoked when user clicks Enter button
76 Protected Sub cmdEnter_Click(ByVal sender As Object, _
77       ByVal Be As System.EventArgs) Handles cmdEnter.Click
78
79       ' account-number value from TextBox
80       Dim accountNumber As Integer
81
82       ' store TextBox-values String array
83       Dim values As String() = GetTextBoxValues()
84
85       ' CRecord containing TextBox values to serialize
86       Dim record As New CRecord()
87

Fig. 17.9 FrmCreateSequentialAccessFile class creates and writes to 
sequential-access files (part 2 of 5).



774 Files and Streams Chapter 17

88       ' determine whether TextBox account field is empty
89       If values(TextBoxIndices.ACCOUNT) <> "" Then
90
91          ' store TextBox values in CRecord and serialize CRecord
92          Try
93
94             ' get account-number value from TextBox
95             accountNumber = _
96                Convert.ToInt32(values(TextBoxIndices.ACCOUNT))
97
98             ' determine whether accountNumber is valid
99             If accountNumber > 0 Then
100
101                ' store TextBox fields in CRecord
102                record.Account = accountNumber
103                record.FirstName = values(TextBoxIndices.FIRST)
104                record.LastName = values(TextBoxIndices.LAST)
105                record.Balance = Convert.ToDouble( _
106                   values(TextBoxIndices.BALANCE))
107
108                ' write CRecord to FileStream (Serialize object)
109                formatter.Serialize(output, record)
110
111             ' notify user if invalid account number
112             Else
113                MessageBox.Show("Invalid Account Number", _
114                   "Error", MessageBoxButtons.OK, _
115                   MessageBoxIcon.Error)
116             End If
117
118          ' notify user if error occurs in serialization
119          Catch serializableException As SerializationException
120             MessageBox.Show("Error Writing to File", "Error", _
121                MessageBoxButtons.OK, MessageBoxIcon.Error)
122
123          ' notify user if error occurs regarding parameter format
124          Catch formattingException As FormatException
125             MessageBox.Show("Invalid Format", "Error", _
126                MessageBoxButtons.OK, MessageBoxIcon.Error)
127
128          End Try
129
130       End If
131
132       ClearTextBoxes() ' clear TextBox values
133 End Sub ' cmdEnter_Click
134
135    ' invoked when user clicks Exit button
136 Protected Sub cmdExit_Click(ByVal sender As Object, _
137       ByVal e As System.EventArgs) Handles cmdExit.Click
138

Fig. 17.9 FrmCreateSequentialAccessFile class creates and writes to 
sequential-access files (part 3 of 5).



Chapter 17 Files and Streams 775

139       ' determine whether file exists
140       If (output Is Nothing) = False Then
141
142          ' close file
143          Try
144             output.Close()
145
146          ' notify user of error closing file
147          Catch fileException As IOException
148             MessageBox.Show("Cannot close file", "Error", _
149                MessageBoxButtons.OK, MessageBoxIcon.Error)
150
151          End Try
152
153       End If
154
155       Application.Exit()
156 End Sub ' cmdExit_Click
157
158 End Class ' FrmCreateSequentialAccessFile

Fig. 17.9 FrmCreateSequentialAccessFile class creates and writes to 
sequential-access files (part 4 of 5).

BankUI graphical 
user interface

Files and directories

SaveFileDialog



776 Files and Streams Chapter 17

When the user clicks the Save As button, the program invokes method
cmdSave_Click (lines 30–73). Line 34 instantiates an object of class SaveFileDi-
alog, which belongs to the System.Windows.Forms namespace. Objects of this class
are used for selecting files (see the second screen in Fig. 17.9). Line 36 calls method
ShowDialog of the SaveFileDialog object to display the SaveFileDialog.

Fig. 17.9 FrmCreateSequentialAccessFile class creates and writes to 
sequential-access files (part 5 of 5).



Chapter 17 Files and Streams 777

When displayed, a SaveFileDialog prevents the user from interacting with any other
window in the program until the user closes the SaveFileDialog by clicking either
Save or Cancel. Dialogs that behave in this fashion are called modal dialogs. The user
selects the appropriate drive, directory and file name and then clicks Save. Method Show-
Dialog returns an integer specifying which button (Save or Cancel) the user clicked to
close the dialog. In this example, the Form property DialogResult receives the integer.
Line 42 tests whether the user clicked Cancel by comparing the value returned by property
DialogResult to Const DialogResult.Cancel. If the values are equal, method
cmdSave_Click returns (line 43). If the values are unequal (i.e., the user clicked Save,
instead of clicking Cancel), line 46 uses property FileName of class SaveFileDi-
alog to obtain the user-selected file.

As we stated previously in this chapter, we can open files to perform text manipulation
by creating objects of classes FileStream. In this example, we want the file to be opened
for output, so lines 58–59 instantiate a FileStream object. The FileStream constructor
that we use receives three arguments—a String containing the name of the file to be
opened, a Const describing how to open the file and a Const describing the file permis-
sions. Line 59 passes Const FileMode.OpenOrCreate to the FileStream con-
structor as the constructor’s second argument. This constant indicates that the FileStream
object should open the file, if the file exists, or create the file if the file does not exist. Visual
Basic offers other FileMode constants describing how to open files; we introduce these
constants as we use them in examples. Line 59 passes Const FileAccess.Write to the
FileStream constructor as the constructor’s third argument. This constant ensures that the
program can perform write-only operations on the FileStream object. Visual Basic pro-
vides two other constants for this parameter—FileAccess.Read for read-only access
and FileAccess.ReadWrite for both read and write access.

Good Programming Practice 17.1
When opening files, use the FileAccess enumeration to control user access. 17.1

After the user types information in each TextBox, the user clicks the Enter button,
which calls method cmdEnter_Click (lines 76–133) to save the TextBox data in the
user-specified file. If the user entered a valid account number (i.e., an integer greater than
zero), lines 102–106 store the TextBox values into an object of type CRecord. If the user
entered invalid data in one of the TextBoxes (such as entering a String in the Balance
field), the program throws a FormatException. The Catch statement in line 124 han-
dles such an exception by notifying the user (via a MessageBox) of the improper format.
If the user entered valid data, line 109 writes the record to the file by invoking method
Serialize of the BinaryFormatter object (instantiated in line 24). Class Binary-
Formatter uses methods Serialize and Deserialize to write and read objects
into streams, respectively. Method Serialize writes the object’s representation to a file.
Method Deserialize reads this representation from a file and reconstructs the original
object. Both methods throw SerializationExceptions if an error occurs during seri-
alization or deserialization (errors results when the methods attempt to access streams or
records that do not exist). Both methods Serialize and Deserialize require a
Stream object (e.g., the FileStream) as a parameter so that the BinaryFormatter
can access the correct file; the BinaryFormatter must receive an instance of a class that
derives from class Stream, because Stream is MustInherit. Class BinaryFor-



778 Files and Streams Chapter 17

matter belongs the System.Runtime.Serialization.Formatters.Binary
namespace.

Common Programming Error 17.1
Failure to open a file before attempting to reference it in a program is a logic error. 17.1

When the user clicks the Exit button, the program invokes method cmdExit_Click
(lines 136–156) to exit the application. Line 144 closes the FileStream if one has been
opened, and line 155 exits the program.

Performance Tip 17.1
Close each file explicitly when the program no longer needs to reference the file. This can
reduce resource usage in programs that continues executing long after they finish using a
specific file. The practice of explicitly closing files also improves program clarity. 17.1

Performance Tip 17.2
Releasing resources explicitly when they are no longer needed makes them immediately
available for reuse by the program, thus improving resource utilization. 17.2

In the sample execution for the program of Fig. 17.9, we entered information for five
accounts (Fig. 17.10). The program does not depict how the data records are rendered in
the file. To verify that the file has been created successfully, in the next section we create
a program to read and display the file.

17.6 Reading Data from a Sequential-Access File
Data are stored in files so that they can be retrieved for processing when they are needed.
The previous section demonstrated how to create a file for sequential access. In this section,
we discuss how to read (or retrieve) data sequentially from a file.
.

Class FrmReadSequentialAccessFile (Fig. 17.11) reads records from the file
created by the program in Fig. 17.9 and then displays the contents of each record. Much of
the code in this example is similar to that of Fig. 17.9, so we discuss only the unique aspects
of the application.

When the user clicks the Open File button, the program calls method
cmdOpen_Click (lines 29–58). Line 33 instantiates an object of class OpenFileDi-
alog, and line 34 calls the object’s ShowDialog method to display the Open dialog (see
the second screenshot in Fig. 17.11). The behavior and GUI between the two dialog types
are the same (except that Save is replaced by Open). If the user inputs a valid file name,
lines 52–53 create a FileStream object and assign it to reference input. We pass
Const FileMode.Open as the second argument to the FileStream constructor. This
constant indicates that the FileStream should open the file if one exists and throw a
FileNotFoundException if the file does not exist. (In this example, the
FileStream constructor will not throw a FileNotFoundException, because the
OpenFileDialog requires the user to enter a file that exists.) In the last example
(Fig. 17.9), we wrote text to the file using a FileStream object with write-only access.
In this example, (Fig. 17.11), we specify read-only access to the file by passing Const
FileAccess.Read as the third argument to the FileStream constructor.



Chapter 17 Files and Streams 779

Account Number First Name Last Name Balance

100 Nancy Brown -25.54

200 Stacey Dunn 314.33

300 Doug Barker 0.00

400 Dave Smith 258.34

500 Sam Stone 34.98

Fig. 17.10 Sample data for the program of Fig. 17.9.

1 ' Fig. 17.11: ReadSequentialAccessFile.vb
2 ' Reading a sequential-access file.
3
4 ' Visual Basic namespaces
5 Imports System.IO
6 Imports System.Runtime.Serialization.Formatters.Binary
7 Imports System.Runtime.Serialization
8 Imports System.Windows.Forms
9

10 ' Deitel namespaces
11 Imports BankLibrary
12
13 Public Class FrmReadSequentialAccessFile
14 Inherits FrmBankUI
15
16    ' GUI buttons for opening file and reading records
17 Friend WithEvents cmdOpen As Button
18 Friend WithEvents cmdNext As Button
19
20    ' Visual Studio .NET generated code
21
22    ' stream through which serializable data is read from file
23 Private input As FileStream
24
25    ' object for deserializing CRecord in binary format
26 Private reader As BinaryFormatter = New BinaryFormatter()
27
28    ' invoked when user clicks Open button
29 Protected Sub cmdOpen_Click(ByVal sender As Object, _
30       ByVal e As EventArgs) Handles cmdOpen.Click
31
32       ' create dialog box enabling user to open file
33       Dim fileChooser As OpenFileDialog = New OpenFileDialog()
34       Dim result As DialogResult = fileChooser.ShowDialog()
35       Dim fileName As String ' name of file containing data
36

Fig. 17.11 FrmReadSequentialAccessFile class reads sequential-access 
files (part 1 of 4).



780 Files and Streams Chapter 17

37       ' exit event handler if user clicked Cancel
38       If result = DialogResult.Cancel Then
39          Return
40       End If
41
42       fileName = fileChooser.FileName ' get specified file name
43       ClearTextBoxes()
44
45       ' show error if user specified invalid file
46       If (fileName = "" OrElse fileName = Nothing) Then
47          MessageBox.Show("Invalid File Name", "Error", _
48             MessageBoxButtons.OK, MessageBoxIcon.Error)
49       Else ' open file if user specified valid file
50
51          ' create FileStream to obtain read access to file
52          input = New FileStream(fileName, FileMode.Open, _
53             FileAccess.Read)
54
55          cmdNext.Enabled = True ' enable Next Record button
56
57       End If
58 End Sub ' cmdOpen_Click
59
60    ' invoked when user clicks Next button
61 Protected Sub cmdNext_Click(ByVal sender As Object, _
62        ByVal e As EventArgs) Handles cmdNext.Click
63
64       ' deserialize CRecord and store data in TextBoxes
65       Try
66
67          ' get next CRecord available in file 
68          Dim record As CRecord = _
69             CType(reader.Deserialize(input), CRecord)
70
71          ' store CRecord values in temporary String array
72          Dim values As String() = New String() { _
73             record.Account.ToString(), _
74             record.FirstName.ToString(), _
75             record.LastName.ToString(), _
76             record.Balance.ToString()}
77
78          ' copy String-array values to TextBox values
79          SetTextBoxValues(values)
80
81       ' handle exception when no CRecords in file
82       Catch serializableException As SerializationException
83
84          input.Close() ' close FileStream if no CRecords in file
85
86          cmdOpen.Enabled = True ' enable Open Record button
87          cmdNext.Enabled = False ' disable Next Record button
88

Fig. 17.11 FrmReadSequentialAccessFile class reads sequential-access 
files (part 2 of 4).



Chapter 17 Files and Streams 781

89          ClearTextBoxes()
90
91          ' notify user if no CRecords in file
92          MessageBox.Show("No more records in file", "", _
93             MessageBoxButtons.OK, MessageBoxIcon.Information)
94       End Try
95
96 End Sub ' cmdNext_Click
97
98 End Class ' FrmReadSequentialAccessFile

Fig. 17.11 FrmReadSequentialAccessFile class reads sequential-access 
files (part 3 of 4).



782 Files and Streams Chapter 17

Testing and Debugging Tip 17.1
Open a file with the FileAccess.Read file-open mode if the contents of the file should
not be modified. This prevents unintentional modification of the file’s contents. 17.1

When the user clicks the Next Record button, the program calls method
cmdNext_Click (lines 61–96), which reads the next record from the user-specified file.

Fig. 17.11 FrmReadSequentialAccessFile class reads sequential-access 
files (part 4 of 4).



Chapter 17 Files and Streams 783

(The user must click Next Record to view the first record after opening the file.) Lines
68–69 call method Deserialize of the BinaryFormatter object to read the next
record. Method Deserialize reads the data and casts the result to a CRecord—this
cast is necessary, because Deserialize returns a reference to an instance of class
Object (not of BinaryFormatter). Lines 72–79 then display the CRecord values in
the TextBoxes. When method Deserialize attempts to deserialize a record that does
not exist in the file (i.e., the program has displayed all file records), the method throws a
SerializationException. The Catch block (defined in line 82) that handles this
exception closes the FileStream object (line 84) and notifies the user that there are no
more records (lines 92–93).

To retrieve data sequentially from a file, programs normally start from the beginning
of the file, reading data consecutively until the desired data are found. It sometimes is nec-
essary to process a file sequentially several times (from the beginning of the file) during the
execution of a program. A FileStream object can reposition its file-position pointer
(which contains the byte number of the next byte to be read from or written to the file) to
any position in the file—we show this feature when we introduce random-access file-pro-
cessing applications. When a FileStream object is opened, its file-position pointer is set
to zero (i.e., the beginning of the file)

Performance Tip 17.3
It is time-consuming to close and reopen a file for the purpose of moving the file-position
pointer to the file’s beginning. Doing so frequently could slow program performance. 17.3

We now present a more substantial program that builds on the the concepts employed
in Fig. 17.11. Class FrmCreditInquiry (Fig. 17.12) is a credit-inquiry program that
enables a credit manager to display account information for those customers with credit
balances (i.e., customers to whom the company owes money), zero balances (i.e., cus-
tomers who do not owe the company money) and debit balances (i.e., customers who owe
the company money for previously received goods and services). Note that line 18 declares
a RichTextBox that will display the account information. RichTextBoxes provide
more functionality than do regular TextBoxes—for example, RichTextBoxes offers
method Find for searching individual Strings and method LoadFile for displaying
file contents. Class RichTextBox does not inherit from class TextBox; rather, both
classes inherit directly from MustInherit class System.Windows.Forms.Text-
BoxBase. We use a RichTextBox in this example, because, by default, a Rich-
TextBox displays multiple lines of text, whereas a regular TextBox displays only one.
Alternatively, we could have specified multiple lines of text for a TextBox object by set-
ting its Multiline property to True.

1 ' Fig. 17.12: CreditInquiry.vb
2 ' Read a file sequentially and display contents based on account
3 ' type specified by user (credit, debit or zero balances).
4
5 ' Visual Basic namespaces
6 Imports System.IO

Fig. 17.12 FrmCreditInquiry class is a program that displays credit inquiries 
(part 1 of 7).



784 Files and Streams Chapter 17

7 Imports System.Runtime.Serialization.Formatters.Binary
8 Imports System.Runtime.Serialization
9 Imports System.Windows.Forms

10
11 ' Deitel namespaces
12 Imports BankLibrary
13
14 Public Class FrmCreditInquiry
15 Inherits Form
16
17    ' displays several lines of output
18 Friend WithEvents txtDisplay As RichTextBox
19
20    ' buttons to open file, read records and exit program
21 Friend WithEvents cmdOpen As Button
22 Friend WithEvents cmdCredit As Button
23 Friend WithEvents cmdDebit As Button
24 Friend WithEvents cmdZero As Button
25 Friend WithEvents cmdDone As Button
26
27    ' Visual Studio .NET generated code
28
29    ' stream through which serializable data is read from file
30 Private input As FileStream
31
32    ' object for deserializing CRecord in binary format
33 Dim reader As BinaryFormatter = New BinaryFormatter()
34
35    ' name of file that stores credit, debit and zero balances
36 Private fileName As String
37
38    ' invoked when user clicks Open File button
39 Protected Sub cmdOpen_Click(ByVal sender As Object, _
40       ByVal e As System.EventArgs) Handles cmdOpen.Click
41
42       ' create dialog box enabling user to open file
43       Dim fileChooser As OpenFileDialog = New OpenFileDialog()
44       Dim result As DialogResult = fileChooser.ShowDialog()
45
46       ' exit event handler if user clicked Cancel
47       If result = DialogResult.Cancel Then
48          Return
49       End If
50
51       fileName = fileChooser.FileName ' get file name from user
52
53       ' enable buttons allowing user to display balances
54       cmdCredit.Enabled = True
55       cmdDebit.Enabled = True
56       cmdZero.Enabled = True
57

Fig. 17.12 FrmCreditInquiry class is a program that displays credit inquiries 
(part 2 of 7).



Chapter 17 Files and Streams 785

58       ' show error if user specified invalid file
59       If (fileName = "" OrElse fileName = Nothing) Then
60          MessageBox.Show("Invalid File Name", "Error", _
61             MessageBoxButtons.OK, MessageBoxIcon.Error)
62
63       ' else enable all GUI buttons, except for Open File button
64       Else
65          cmdOpen.Enabled = False
66          cmdCredit.Enabled = True
67          cmdDebit.Enabled = True
68          cmdZero.Enabled = True
69       End If
70
71 End Sub ' cmdOpen_Click
72
73    ' invoked when user clicks Credit Balances, Debit Balances
74    ' or Zero Balances button
75 Protected Sub cmdGet_Click(ByVal senderObject As Object, _
76       ByVal e As System.EventArgs) Handles cmdCredit.Click, _
77       cmdZero.Click, cmdDebit.Click
78
79       ' convert senderObject explicitly to object of type Button
80       Dim senderButton As Button = CType(senderObject, Button)
81
82       ' get text from clicked Button, which stores account type
83       Dim accountType As String = senderButton.Text
84
85       ' used to store each record read from file
86       Dim record As CRecord
87
88       ' read and display file information
89       Try
90
91          ' close file from previous operation
92          If (input Is Nothing) = False Then
93             input.Close()
94          End If
95
96          ' create FileStream to obtain read access to file
97          input = New FileStream(fileName, FileMode.Open, _
98             FileAccess.Read)
99
100          txtDisplay.Text = "The accounts are:" & vbCrLf
101
102          ' traverse file until end of file
103          While True
104
105             ' get next CRecord available in file 
106             record = CType(reader.Deserialize(input), CRecord)
107
108             ' store record's last field in balance
109             Dim balance As Double = record.Balance

Fig. 17.12 FrmCreditInquiry class is a program that displays credit inquiries 
(part 3 of 7).



786 Files and Streams Chapter 17

110
111             ' determine whether to display balance
112             If ShouldDisplay(balance, accountType) = True Then
113
114                ' display record
115                Dim output As String = record.Account & vbTab & _
116                   record.FirstName & vbTab & record.LastName & _
117                   Space(6) & vbTab
118
119                ' display balance with correct monetary format
120                output &= _
121                   String.Format("{0:F}", balance) & vbCrLf
122
123                txtDisplay.Text &= output ' copy output to screen
124             End If
125
126          End While
127
128       ' handle exception when file cannot be closed
129       Catch fileException As IOException
130          MessageBox.Show("Cannot Close File", "Error", _
131             MessageBoxButtons.OK, MessageBoxIcon.Error)
132
133       ' handle exception when no more records
134       Catch serializableException As SerializationException
135          input.Close() ' close FileStream if no CRecords in file
136
137       End Try
138
139 End Sub ' cmdGet_Click
140
141    ' determine whether to display given record
142 Private Function ShouldDisplay(ByVal balance As Double, _
143       ByVal accountType As String) As Boolean
144
145       If balance > 0 Then
146
147          ' display Credit Balances
148          If accountType = "Credit Balances" Then
149             Return True
150          End If
151
152       ElseIf balance < 0 Then
153
154          ' display Debit Balances
155          If accountType = "Debit Balances" Then
156             Return True
157          End If
158

Fig. 17.12 FrmCreditInquiry class is a program that displays credit inquiries 
(part 4 of 7).



Chapter 17 Files and Streams 787

159       Else ' balance = 0
160
161          ' display Zero Balances
162          If accountType = "Zero Balances" Then
163             Return True
164          End If
165
166       End If
167
168       Return False
169 End Function ' ShouldDisplay
170
171    ' invoked when user clicks Done button
172 Protected Sub cmdDone_Click(ByVal sender As Object, _
173       ByVal e As System.EventArgs) Handles cmdDone.Click
174
175       ' determine whether file exists
176       If input Is Nothing = False Then
177
178          ' close file
179          Try
180             input.Close()
181
182          ' notify user of error closing file
183          Catch fileException As IOException
184             MessageBox.Show("Cannot close file", "Error", _
185                MessageBoxButtons.OK, MessageBoxIcon.Error)
186
187          End Try
188
189       End If
190
191       Application.Exit()
192 End Sub ' cmdDone_Click
193
194 End Class ' FrmCreditInquiry

Fig. 17.12 FrmCreditInquiry class is a program that displays credit inquiries 
(part 5 of 7).



788 Files and Streams Chapter 17

Fig. 17.12 FrmCreditInquiry class is a program that displays credit inquiries 
(part 6 of 7).



Chapter 17 Files and Streams 789

The program displays buttons that enable a credit manager to obtain credit information.
The Open File button opens a file for gathering data. The Credit Balances button pro-
duces a list of accounts that have credit balances. The Debit Balances button produces a
list of accounts that have debit balances. The Zero Balances button produces a list of
accounts that have zero balances. The Done button exits the application.

When the user clicks the Open File button, the program calls method
cmdOpen_Click (lines 39–71). Line 43 instantiates an object of class OpenFileDi-
alog, and line 44 calls the object’s ShowDialog method to display the Open dialog, in
which the user inputs the name of the file to open.

When user clicks Credit Balances, Debit Balances or Zero Balances, the pro-
gram invokes method cmdGet_Click (lines 75–139). Line 80 casts the senderOb-
ject parameter, which contains information on the object that sent the event, to a Button
object. Line 83 extracts the Button object’s text, which the program uses to determine
which GUI Button the user clicked. Lines 97–98 create a FileStream object with
read-only file access and assign it to reference input. Lines 103–126 define a While
loop that uses Private method ShouldDisplay (lines 142–169) to determine whether
to display each record in the file. The While loop obtains the each record by calling
method Deserialize of the FileStream object repeatedly (line 106). When the file-
position pointer reaches the end of file, method Deserialize throws a Serializa-
tionException, which the Catch statement in line 134 handles—line 135 calls the
Close method of FileStream to close the file, and method cmdGet_Click returns.

17.7 Random-Access Files
So far, we have explained how to create sequential-access files and how to search through
such files to locate particular information. However, sequential-access files are inappropri-
ate for so-called “instant-access” applications, in which a particular record of information
must be located immediately. Popular instant-access applications include airline-reserva-
tion systems, banking systems, point-of-sale systems, automated-teller machines and other
kinds of transaction-processing systems that require rapid access to specific data. The bank
at which an individual has an account might have hundreds of thousands or even millions

Fig. 17.12 FrmCreditInquiry class is a program that displays credit inquiries 
(part 7 of 7).



790 Files and Streams Chapter 17

of other customers, however, when that individual uses an automated teller machine, the
appropriate account is checked for sufficient funds in seconds. This type of instant access
is made possible by random-access files. Individual records of a random-access file can be
accessed directly (and quickly) without searching through potentially large numbers of oth-
er records, as is necessary with sequential-access files. Random-access files sometimes are
called direct-access files.

As we discussed earlier in this chapter, Visual Basic does not impose structure on files,
so applications that use random-access files must create the random-access capability.
There are a variety of techniques for creating random-access files. Perhaps the simplest
involves requiring that all records in a file be of uniform fixed length. The use of fixed-
length records enables a program to calculate (as a function of the record size and the record
key) the exact location of any record in relation to the beginning of the file. We soon dem-
onstrate how this facilitates immediate access to specific records, even in large files. 

Figure 17.13 illustrates the view we will create of a random-access file composed of
fixed-length records (each record in this figure is 100 bytes long). Students can consider a
random-access file as analogous to a railroad train with many cars, some of which are
empty and some of which contain contents.

Data can be inserted into a random-access file without destroying other data in the file.
In addition, previously stored data can be updated or deleted without rewriting the entire
file. In the following sections, we explain how to create a random-access file, write data to
that file, read the data both sequentially and randomly, update the data and delete data that
is no longer needed.

Figure 17.14 contains class CRandomAccessRecord, which is used in the random-
access file-processing applications in this chapter. This class also belongs to the Bank-
Library DLL—i.e., it is part of the project that contains classes FrmBankUI and
CRecord. (When adding class CRandomAccessRecord to the project containing
FrmBankUI and CRecord, remember to rebuild the project.)

Like class CRecord (Fig. 17.8), class CRandomAccessRecord contains Pri-
vate data members (lines 18–21) for storing record information, two constructors for set-
ting these members to default and parameter-specified values, and properties for accessing
these members. However, class CRandomAccessRecord does not contain attribute
<Serializable> before its class definition. We do not serialize this class, because
Visual Basic does not provide a means to obtain an object’s size at runtime. This means that
we cannot guarantee a fixed-length record size.

Fig. 17.13 Random-access file with fixed-length records.

100 
bytes

100 
bytes

100 
bytes

100 
bytes

100 
bytes

100 
bytes

byte offsets
0 100 200 300 400 500



Chapter 17 Files and Streams 791

1 ' Fig. 17.14: CRandomAccessRecord.vb
2 ' Data-record class for random-access applications.
3
4 Public Class CRandomAccessRecord
5
6    ' length of recordFirstName and recordLastName
7 Private Const CHAR_ARRAY_LENGTH As Integer = 15
8
9 Private Const SIZE_OF_CHAR As Integer = 2

10 Private Const SIZE_OF_INT32 As Integer = 4
11 Private Const SIZE_OF_DOUBLE As Integer = 8
12
13    ' length of record
14 Public Const SIZE As Integer = SIZE_OF_INT32 + _
15       2 * (SIZE_OF_CHAR * CHAR_ARRAY_LENGTH) + SIZE_OF_DOUBLE
16
17    ' record data
18 Private mAccount As Integer
19 Private mFirstName(CHAR_ARRAY_LENGTH) As Char
20 Private mLastName(CHAR_ARRAY_LENGTH) As Char
21 Private mBalance As Double
22
23    ' default constructor sets members to default values
24 Public Sub New()
25       Me.New(0, "", "", 0.0)
26 End Sub ' New
27
28    ' overloaded constructor sets members to parameter values
29 Public Sub New(ByVal accountValue As Integer, _
30       ByVal firstNameValue As String, _
31       ByVal lastNameValue As String, _
32       ByVal balanceValue As Double)
33
34       Account = accountValue
35       FirstName = firstNameValue
36       LastName = lastNameValue
37       Balance = balanceValue
38 End Sub ' New
39
40    ' property Account
41 Public Property Account() As Integer
42
43       Get
44          Return mAccount
45       End Get
46
47       Set(ByVal accountValue As Integer)
48          mAccount = accountValue
49       End Set
50
51 End Property ' Account
52

Fig. 17.14 CRandomAccessRecord class represents a record for random-access 
file-processing applications (part 1 of 3).



792 Files and Streams Chapter 17

53    ' property FirstName
54 Public Property FirstName() As String
55
56       Get
57          Return mFirstName
58       End Get
59
60       Set(ByVal firstNameValue As String)
61
62          ' determine length of String parameter
63          Dim stringSize As Integer = firstNameValue.Length()
64
65          ' recordFirstName String representation
66          Dim recordFirstNameString As String = firstNameValue
67
68          ' append spaces to String parameter if too short
69          If CHAR_ARRAY_LENGTH >= stringSize Then
70             recordFirstNameString = firstNameValue & _
71                Space(CHAR_ARRAY_LENGTH - stringSize)
72
73          ' remove characters from String parameter if too long
74          Else
75             recordFirstNameString = _
76                firstNameValue.Substring(0, CHAR_ARRAY_LENGTH)
77          End If
78
79          ' convert String parameter to Char array
80          mFirstName = recordFirstNameString.ToCharArray()
81
82       End Set
83
84 End Property ' FirstName
85
86    ' property LastName
87 Public Property LastName() As String
88
89       Get
90          Return mLastName
91       End Get
92
93       Set(ByVal lastNameValue As String)
94
95          ' determine length of String parameter
96          Dim stringSize As Integer = lastNameValue.Length()
97
98          ' recordLastName String representation
99          Dim recordLastNameString As String = lastNameValue
100
101          ' append spaces to String parameter if too short
102          If CHAR_ARRAY_LENGTH >= stringSize Then
103             recordLastNameString = lastNameValue & _
104                Space(CHAR_ARRAY_LENGTH - stringSize)

Fig. 17.14 CRandomAccessRecord class represents a record for random-access 
file-processing applications (part 2 of 3).



Chapter 17 Files and Streams 793

Instead of serializing the class, we fix the length of the Private data members and
then write those data as a byte stream to the file. To fix this length, the Set accessors of
properties FirstName (lines 60–82) and LastName (lines 93–115) ensure that members
mFirstName and mLastName are Char arrays of exactly 15 elements. Each Set
accessor receives as an argument a String representing the first name and last name,
respectively. If the String parameter contains fewer than 15 Chars, the property’s Set
accessor copies the String’s values to the Char array and then populates the remainder
with spaces. If the String parameter contains more than 15 Chars, the Set accessor
stores only the first 15 Chars of the String parameter into the Char array.

Lines 14–15 declare Const SIZE, which specifies the record’s length. Each record
contains mAccount (4-byte Integer), mFirstName and mLastName (two 15-ele-
ment Char arrays, where each Char occupies two bytes, resulting in a total of 60 bytes)
and mBalance (8-byte Double). In this example, each record (i.e., the four Private
data members that our programs will read to and write from files) occupies 72 bytes (4
bytes + 60 bytes + 8 bytes).

105
106          ' remove characters from String parameter if too long
107          Else
108             recordLastNameString = _
109                lastNameValue.Substring(0, CHAR_ARRAY_LENGTH)
110          End If
111
112          ' convert String parameter to Char array
113          mLastName = recordLastNameString.ToCharArray()
114
115       End Set
116
117 End Property ' LastName
118
119    ' property Balance
120 Public Property Balance() As Double
121
122       Get
123          Return mBalance
124       End Get
125
126       Set(ByVal balanceValue As Double)
127          mBalance = balanceValue
128       End Set
129
130 End Property ' Balance
131
132 End Class ' CRandomAccessRecord

Fig. 17.14 CRandomAccessRecord class represents a record for random-access 
file-processing applications (part 3 of 3).



794 Files and Streams Chapter 17

17.8 Creating a Random-Access File
Consider the following problem statement for a credit-processing application:

Create a transaction-processing program capable of storing a maximum of 100 fixed-length
records for a company that can have a maximum of 100 customers. Each record consists of
an account number (that acts as the record key), a last name, a first name and a balance.
The program can update an account, create an account and delete an account.

The next several sections introduce the techniques necessary to create this credit-process-
ing program. We now discuss the program used to create the random-access file that the
programs of Fig. 17.16 and Fig. 17.17 and the transaction-processing application use to
manipulate data. Class FrmCreateRandomAccessFile (Fig. 17.15) creates a ran-
dom-access file.

1 ' Fig. 17.15: CreateRandomAccessFile.vb
2 ' Creating a random file.
3
4 ' Visual Basic namespaces
5 Imports System.IO
6 Imports System.Windows.Forms
7
8 ' Deitel namespaces
9 Imports BankLibrary

10
11 Public Class CCreateRandomAccessFile
12
13    ' number of records to write to disk
14 Private Const NUMBER_OF_RECORDS As Integer = 100
15
16    ' start application
17 Shared Sub Main()
18
19       ' create random file, then save to disk
20       Dim file As CCreateRandomAccessFile = _
21          New CCreateRandomAccessFile()
22
23       file.SaveFile()
24 End Sub ' Main
25
26    ' write records to disk
27 Private Sub SaveFile()
28
29       ' record for writing to disk
30       Dim blankRecord As CRandomAccessRecord = _ 
31          New CRandomAccessRecord()
32
33       ' stream through which serializable data is written to file
34       Dim fileOutput As FileStream
35
36       ' stream for writing bytes to file
37       Dim binaryOutput As BinaryWriter

Fig. 17.15 FrmCreateRandomAccessFile class create files for random-access 
file-processing applications (part 1 of 3).



Chapter 17 Files and Streams 795

38
39       ' create dialog box enabling user to save file
40       Dim fileChooser As SaveFileDialog = New SaveFileDialog()
41       Dim result As DialogResult = fileChooser.ShowDialog
42
43       ' get file name from user
44       Dim fileName As String = fileChooser.FileName
45       Dim i As Integer
46
47       ' exit event handler if user clicked Cancel
48       If result = DialogResult.Cancel Then
49          Return
50       End If
51
52       ' show error if user specified invalid file
53       If (fileName = "" OrElse fileName = Nothing) Then
54          MessageBox.Show("Invalid File Name", "Error", _
55             MessageBoxButtons.OK, MessageBoxIcon.Error)
56       Else
57
58          ' write records to file
59          Try
60
61             ' create FileStream to hold records
62             fileOutput = New FileStream(fileName, _
63                FileMode.Create, FileAccess.Write)
64
65             ' set length of file
66             fileOutput.SetLength( _
67                CRandomAccessRecord.SIZE * NUMBER_OF_RECORDS)
68
69             ' create object for writing bytes to file
70             binaryOutput = New BinaryWriter(fileOutput)
71
72             ' write empty records to file
73             For i = 0 To NUMBER_OF_RECORDS - 1
74
75                ' set file-position pointer in file
76                fileOutput.Position = i * CRandomAccessRecord.SIZE
77
78                ' write blank record to file
79                binaryOutput.Write(blankRecord.Account)
80                binaryOutput.Write(blankRecord.FirstName)
81                binaryOutput.Write(blankRecord.LastName)
82                binaryOutput.Write(blankRecord.Balance)
83             Next
84
85             ' notify user of success
86             MessageBox.Show("File Created", "Success", _
87                MessageBoxButtons.OK, MessageBoxIcon.Information)
88

Fig. 17.15 FrmCreateRandomAccessFile class create files for random-access 
file-processing applications (part 2 of 3).



796 Files and Streams Chapter 17

89          ' show error if error occurs during writing
90          Catch fileException As IOException
91             MessageBox.Show("Cannot write to file", "Error", _
92                MessageBoxButtons.OK, MessageBoxIcon.Error)
93
94          End Try
95
96       End If
97
98       ' close FileStream
99       If (fileOutput Is Nothing) <> False Then
100          fileOutput.Close()
101       End If
102
103       ' close BinaryWriter
104       If (binaryOutput Is Nothing) <> False Then
105          binaryOutput.Close()
106       End If
107
108 End Sub ' SaveFile
109
110 End Class ' FrmCreateRandomAccessFile

Fig. 17.15 FrmCreateRandomAccessFile class create files for random-access 
file-processing applications (part 3 of 3).



Chapter 17 Files and Streams 797

Method Main (lines 17–24) starts the application, which creates a random-access file
by calling user-defined method SaveFile (lines 27–108). Method SaveFile populates
a file with 100 copies of the default (i.e., empty) values for Private data members
recordAccount, recordFirstName, recordLastName and recordBalance
of class CRandomAccessRecord. Lines 40–41 create and display the SaveFileDi-
alog, which enables a user to specify the file to which the program writes data. Using this
file, lines 62–63 instantiate the FileStream—note that lines 63 passes Const
FileMode.Create, which either creates the specified file, if the file does not exist, or
overwrites the specified file if it does exist. Lines 66–67 sets the FileStream’s length,
which is equal to the size of an individual CRandomAccessRecord (obtained through
constant CRandomAccessRecord.SIZE) multiplied by the number of records we
want to copy (obtained through constant NUMBER_OF_RECORDS in line 14, which we set
to value 100).

We now require a means to write bytes to a file. Class BinaryWriter of
namespace System.IO provides methods for writing bytes to streams, rather than files.
The BinaryWriter constructor receives as an argument a reference to an instance of
class System.IO.Stream through which the BinaryWriter can write bytes.
Because class FileStream provides methods for writing streams to files and inherits
from class Stream, we can pass the FileStream object as an argument to the Bina-
ryWriter constructor (line 70). Now, we can use the BinaryWriter to write bytes
directly to the file.

Lines 73–83 define the For loop that populates the file with 100 copies of the empty
record values (i.e., default values for Private data members of class CRandomAc-
cessRecord). Line 76 changes the file-position pointer to specify the location in the file
in which to write the next empty record. Now that we are working with a random-access
file, we must set the file-pointer explicitly using the Set accessor of the FileStream
object’s Position property. This method receives as an argument a Long value
describing where to position the pointer relative to the beginning of the file—in this
example, we set the pointer so that it advances a number of bytes that is equal to the record
size (obtained by CRandomAccessRecord.SIZE). Lines 79–82 call method Write of
the BinaryWriter object to write the data. Method Write is an overloaded method that
receives as an argument any primitive data type and then writes that type to a stream of
bytes. After the For loop exits, lines 99–106 close the FileStream and Binary-
Writer objects.

17.9 Writing Data Randomly to a Random-Access File
Now that we have created a random-access file, we use class FrmWriteRandomAc-
cessFile (Fig. 17.16) to write data to that file. When a user clicks the Open File button,
the program invokes method cmdOpen_Click (lines 30–75), which displays the Open-
FileDialog for specifying the file to serialize data (lines 34–35), and then uses the spec-
ified file to create FileStream object with write-only access (lines 57–58). Line 61 uses
the FileStream reference to instantiate an object of class BinaryWriter, enabling
the program to write bytes to files. We used the same approach with class FrmCreateR-
andomAccessFile (Fig. 17.15).



798 Files and Streams Chapter 17

The user enters values in the TextBoxes for the account number, first name, last name
and balance. When the user clicks the Enter button, the program invokes method
cmdEnter_Click (lines 78–131), which writes the data in the TextBoxes to the file.
Line 85 calls method GetTextBoxValues (provided by base class FrmBankUI) to
retrieve the data. Lines 98–99 determine whether the Account Number TextBox holds
valid information (i.e., the account number is in the 1–100 range).

1 ' Fig 17.16: WriteRandomAccessFile.vb
2 ' Write data to a random-access file.
3
4 ' Visual Basic namespaces
5 Imports System.IO
6 Imports System.Windows.Forms
7
8 ' Deitel namespaces
9 Imports BankLibrary

10
11 Public Class FrmWriteRandomAccessFile
12 Inherits FrmBankUI
13
14    ' buttons for opening file and entering data
15    Friend WithEvents cmdOpen As Button
16    Friend WithEvents cmdEnter As Button
17
18    ' Visual Studio .NET generated code
19
20    ' number of CRandomAccessRecords to write to disk
21 Private Const NUMBER_OF_RECORDS As Integer = 100
22
23    ' stream through which data is written to file
24 Private fileOutput As FileStream
25
26    ' stream for writing bytes to file
27 Private binaryOutput As BinaryWriter
28
29    ' invoked when user clicks Open button
30 Public Sub cmdOpen_Click(ByVal sender As System.Object, _
31       ByVal e As System.EventArgs) Handles cmdOpen.Click
32
33       ' create dialog box enabling user to open file
34       Dim fileChooser As OpenFileDialog = New OpenFileDialog()
35       Dim result As DialogResult = fileChooser.ShowDialog()
36
37       ' get file name from user
38       Dim fileName As String = fileChooser.FileName
39
40       ' exit event handler if user clicked Cancel
41       If result = DialogResult.Cancel Then
42          Return
43       End If
44

Fig. 17.16 FrmWriteRandomAccessFile class writes records to random-access 
files (part 1 of 5).



Chapter 17 Files and Streams 799

45       ' show error if user specified invalid file
46       If (fileName = "" OrElse fileName = Nothing) Then
47          MessageBox.Show("Invalid File Name", "Error", _
48             MessageBoxButtons.OK, MessageBoxIcon.Error)
49
50       ' open file if user specified valid file
51       Else
52
53          ' open file if file already exists
54          Try
55
56             ' create FileStream to hold records
57             fileOutput = New FileStream(fileName, FileMode.Open, _
58                FileAccess.Write)
59
60             ' create object for writing bytes to file
61             binaryOutput = New BinaryWriter(fileOutput)
62
63             cmdOpen.Enabled = False ' disable Open button
64             cmdEnter.Enabled = True ' enable Enter button
65
66          ' notify user if file does not exist
67          Catch fileException As IOException
68             MessageBox.Show("File Does Not Exits", "Error", _
69                MessageBoxButtons.OK, MessageBoxIcon.Error)
70
71          End Try
72
73       End If
74
75  End Sub ' cmdOpen_Click
76
77    ' invoked when user clicks Enter button
78 Private Sub cmdEnter_Click(ByVal sender As System.Object, _
79       ByVal e As System.EventArgs) Handles cmdEnter.Click
80
81       ' account-number value from TextBox
82       Dim accountNumber As Integer
83
84       ' TextBox-values String array
85       Dim values As String() = GetTextBoxValues()
86
87       ' determine whether TextBox account field is empty
88       If (values(TextBoxIndices.ACCOUNT) <> "") Then
89
90          ' write record to file at appropriate position
91          Try
92
93             ' get account-number value from TextBox
94             accountNumber = _
95                Convert.ToInt32(values(TextBoxIndices.ACCOUNT))
96

Fig. 17.16 FrmWriteRandomAccessFile class writes records to random-access 
files (part 2 of 5).



800 Files and Streams Chapter 17

97             ' determine whether accountNumber is valid
98             If (accountNumber > 0 AndAlso _
99                accountNumber <= NUMBER_OF_RECORDS) Then
100
101                ' move file-position pointer
102                fileOutput.Seek((accountNumber - 1) * _
103                   CRandomAccessRecord.SIZE, SeekOrigin.Begin)
104
105                ' write data to file
106                binaryOutput.Write(accountNumber)
107                binaryOutput.Write(values(TextBoxIndices.FIRST))
108                binaryOutput.Write(values(TextBoxIndices.LAST))
109                binaryOutput.Write( Convert.ToDouble( _
110                   values(TextBoxIndices.BALANCE)))
111
112             ' notify user if invalid account number
113             Else
114                MessageBox.Show("Invalid Account Number", _
115                   "Error", MessageBoxButtons.OK, _
116                   MessageBoxIcon.Error)
117             End If
118
119             ClearTextBoxes()
120
121          ' notify user if error occurs when formatting numbers
122          Catch formattingException As FormatException
123             MessageBox.Show("Invalid Balance", "Error", _
124                MessageBoxButtons.OK, MessageBoxIcon.Error)
125
126          End Try
127
128       End If
129
130       ClearTextBoxes() ' clear TextBox values
131 End Sub ' cmdEnter_Click
132
133 End Class ' FrmWriteRandomAccessFile

Fig. 17.16 FrmWriteRandomAccessFile class writes records to random-access 
files (part 3 of 5).



Chapter 17 Files and Streams 801

Fig. 17.16 FrmWriteRandomAccessFile class writes records to random-access 
files (part 4 of 5).



802 Files and Streams Chapter 17

Class FrmWriteRandomAccessFile must determine the position in the
FileStream in which to insert the data from the TextBoxes. Lines 102–103 use
method Seek of the FileStream object to locate an exact location in the file. In this
case, method Seek sets the position of the file-position pointer for the FileStream
object to the byte location calculated by (accountNumber - 1) * CRandomAccess-
Record.SIZE. Because the account numbers range from 1 to 100, we subtract 1 from
the account number when calculating the byte location of the record. For example, our use
of method Seek sets the first record’s file-position pointer to byte 0 of the file (the file’s
beginning). The second argument to method Seek is a member of the enumeration Seek-
Origin and specifies the location in which the method should begin seeking. We use
Const SeekOrigin.Begin, because we want the method to seek in relation to the
beginning of the file. After the program determines the file location at which to place the
record, lines 106–110 write the record to the file using the BinaryWriter (discussed in
the previous section).

17.10 Reading Data Sequentially from a Random-Access File
In the previous sections, we created a random-access file and wrote data to that file. Here,
we develop a program (Fig. 17.17) that opens the file, reads records from it and displays
only those records containing data (i.e., those records in which the account number is not
zero). This program also provides an additional benefit. Students should see if they can de-
termine what it is—we will reveal it at the end of this section. 

1 ' Fig 17.17: ReadRandomAccessFile.vb
2 ' Reads and displays random-access file contents.
3
4 ' Visual Basic namespaces
5 Imports System.IO
6 Imports System.Windows.Forms

Fig. 17.17 FrmReadRandomAccessFile class reads records from random-
access files sequentially (part 1 of 5).

Fig. 17.16 FrmWriteRandomAccessFile class writes records to random-access 
files (part 5 of 5).



Chapter 17 Files and Streams 803

7
8 ' Deitel namespaces
9 Imports BankLibrary

10
11 Public Class FrmReadRandomAccessFile
12 Inherits FrmBankUI
13
14    ' buttons for opening file and reading records
15 Friend WithEvents cmdOpen As Button
16 Friend WithEvents cmdNext As Button
17
18    ' Visual Studio .NET generated code
19
20    ' stream through which data is read from file
21 Private fileInput As FileStream
22
23    ' stream for reading bytes from file
24 Private binaryInput As BinaryReader
25
26    ' index of current record to be displayed
27 Private currentRecordIndex As Integer
28
29    ' invoked when user clicks Open button
30 Protected Sub cmdOpen_Click(ByVal sender As System.Object, _
31       ByVal e As System.EventArgs) Handles cmdOpen.Click
32
33       ' create dialog box enabling user to open file
34       Dim fileChooser As OpenFileDialog = New OpenFileDialog()
35       Dim result As DialogResult = fileChooser.ShowDialog()
36
37       ' get file name from user
38       Dim fileName As String = fileChooser.FileName
39
40       ' exit event handler if user clicked Cancel
41       If result = DialogResult.Cancel Then
42          Return
43       End If
44
45       ' show error if user specified invalid file
46       If (fileName = "" OrElse fileName = Nothing) Then
47          MessageBox.Show("Invalid File Name", "Error", _
48             MessageBoxButtons.OK, MessageBoxIcon.Error)
49
50       ' open file if user specified valid file
51       Else
52
53          ' create FileStream to obtain read access to file
54          fileInput = New FileStream(fileName, FileMode.Open, _
55             FileAccess.Read)
56
57          ' use FileStream for BinaryWriter to read bytes from file
58          binaryInput = New BinaryReader(fileInput)

Fig. 17.17 FrmReadRandomAccessFile class reads records from random-
access files sequentially (part 2 of 5).



804 Files and Streams Chapter 17

59
60          cmdOpen.Enabled = False ' disable Open button
61          cmdNext.Enabled = True ' enable Next button
62
63          currentRecordIndex = 0
64          ClearTextBoxes()
65       End If
66
67 End Sub ' cmdOpen_Click
68
69    ' invoked when user clicks Next button
70 Protected Sub cmdNext_Click(ByVal sender As System.Object, _
71       ByVal e As System.EventArgs) Handles cmdNext.Click
72
73       ' record to store file data
74       Dim record As CRandomAccessRecord = _
75          New CRandomAccessRecord()
76
77       ' read record and store data in TextBoxes
78       Try
79          Dim values As String() ' for storing TextBox values
80
81          ' get next record available in file 
82          While (record.Account = 0)
83
84             ' set file-position pointer to next record in file
85             fileInput.Seek( _
86                currentRecordIndex * CRandomAccessRecord.SIZE, 0)
87
88             currentRecordIndex += 1
89
90             ' read data from record
91             record.Account = binaryInput.ReadInt32()
92             record.FirstName = binaryInput.ReadString()
93             record.LastName = binaryInput.ReadString()
94             record.Balance = binaryInput.ReadDouble()
95          End While
96
97          ' store record values in temporary String array
98          values = New String() { _
99             record.Account.ToString(), _
100             record.FirstName.ToString(), _
101             record.LastName.ToString(), _
102             record.Balance.ToString()}
103
104          ' copy String-array values to TextBox values
105          SetTextBoxValues(values)
106
107       ' handle exception when no records in file
108       Catch fileException As IOException
109

Fig. 17.17 FrmReadRandomAccessFile class reads records from random-
access files sequentially (part 3 of 5).



Chapter 17 Files and Streams 805

110          ' close streams if no records in file
111          fileInput.Close()
112          binaryInput.Close()
113
114          cmdOpen.Enabled = True ' enable Open button
115          cmdNext.Enabled = False ' disable Next button
116          ClearTextBoxes()
117
118          ' notify user if no records in file
119          MessageBox.Show("No more records in file", "", _
120             MessageBoxButtons.OK, MessageBoxIcon.Information)
121
122       End Try
123
124 End Sub ' cmdNext_Click
125
126 End Class ' FrmReadRandomAccessFile

Fig. 17.17 FrmReadRandomAccessFile class reads records from random-
access files sequentially (part 4 of 5).



806 Files and Streams Chapter 17

When the user clicks the Open File button, class FrmReadRandomAccessFile
invokes method cmdOpen_Click (lines 30–67), which displays the OpenFileDi-
alog for specifying the file from which to read data. Lines 54–55 instantiate a
FileStream object that opens a file with read-only access. Line 58 creates an instance
of class BinaryReader, which reads bytes from a stream. We pass the FileStream

Fig. 17.17 FrmReadRandomAccessFile class reads records from random-
access files sequentially (part 5 of 5).



Chapter 17 Files and Streams 807

object as an argument to the BinaryReader constructor, thus enabling the Bina-
ryReader to read bytes from the file created by the BinaryWriter in Fig. 17.9.

When the user clicks the Next button, the program calls method cmdNext_Click
(lines 70–124), which reads the next record in the file. Lines 74–75 instantiate a CRan-
domAccessRecord for storing the record data from the file. Lines 82–95 define a While
loop that reads from the file until it reaches a record that has a non-zero account number (0
is the initial value for the account). Lines 85–86 call method Seek of the FileStream
object, which moves the file-position pointer to the appropriate place in the file where the
record must be read. To accomplish this, method Seek uses Integer current-
RecordIndex, which stores the number of records that have been read. Lines 91–94 use
the BinaryReader object to store the file data in the CRandomAccessRecord object.
Recall that class BinaryWriter provides overloaded Write methods for writing data.
However, class BinaryReader does not provide overloaded Read methods to read data.
This means that we must use method ReadInt32 to read an Integer, method Read-
String to read a String and method ReadDouble to read a Double. Note that the
order of these method invocations must correspond to the order in which the Binary-
Writer object wrote each data type. When the BinaryReader reads a valid account
number (i.e., a non-zero value), the loop terminates, and lines 98–105 display the record
values in the TextBoxes. When the program has displayed all records, method Seek
throws an IOException (because method Seek tries to position the file-position pointer
to a location that is beyond the end-of-file marker). The Catch statement (defined in line
108) handles this exception by closing the FileStream and BinaryReader objects
(lines 111–112) and notifying the user that no more records exist (lines 119–120).

What about that additional benefit that we promised? If students examine the GUI as
the program executes, they will notice that the program displays the records in ascending
order by account number! This is a simple consequence of using our direct-access tech-
niques to store these records in the file. Sorting with direct-access techniques is much faster
than sorting with the bubble sort presented in Chapter 7, Arrays. We achieve this speed by
making the file large enough to hold every possible record that a user might create. Of
course, this means that the file could be sparsely occupied most of the time, resulting in a
waste of storage. Here is yet another example of the space/time trade-off: By using large
amounts of space, we are able to develop a faster sorting algorithm.

17.11 Case Study: A Transaction-Processing Program
We now develop a substantial transaction-processing program (Fig. 17.18–Fig. 17.23) us-
ing a random- access file to achieve “instant-access” processing. The program maintains a
bank’s account information. Users of this program can add new accounts, update existing
accounts and delete accounts that are no longer needed. First, we discuss the transaction-
processing behavior (i.e., the class enables the addition, updating and removal of accounts).
We then discuss the GUI, which contains windows that display the account information and
enable the user to invoke the application’s transaction-processing behavior.

Transaction-Processing Behavior
In this case study, we create class CTransaction (Fig. 17.18), which acts as a proxy to
handle all transaction processing. The objects in this application do not provide the transac-
tion-processing behavior—rather, these objects use an instance of CTransaction to pro-



808 Files and Streams Chapter 17

vide this functionality. The use of a proxy enables us to encapsulate transaction-processing
behavior in only one class, enabling various classes in our application to reuse it. Further-
more, if we decide to modify this behavior, we modify only the proxy (i.e., class CTrans-
action), rather than having to modify the behavior of each class that uses the proxy.

1 ' Fig. 17.18: CTransaction.vb
2 ' Handles record transactions.
3
4 ' Visual Basic namespaces
5 Imports System.IO
6 Imports System.Windows.Forms
7
8 ' Deitel namespaces
9 Imports BankLibrary

10
11 Public Class CTransaction
12
13    ' number of records to write to disk
14 Private Const NUMBER_OF_RECORDS As Integer = 100
15
16    ' stream through which data moves to and from file
17 Private file As FileStream
18
19    ' stream for reading bytes from file
20 Private binaryInput As BinaryReader
21
22    ' stream for writing bytes to file
23 Private binaryOutput As BinaryWriter
24
25    ' create/open file containing empty records
26 Public Sub OpenFile(ByVal fileName As String)
27
28       ' write empty records to file
29       Try
30
31          ' create FileStream from new file or existing file
32          file = New FileStream(fileName, FileMode.OpenOrCreate)
33
34          ' use FileStream for BinaryWriter to read bytes from file
35          binaryInput = New BinaryReader(file)
36
37          ' use FileStream for BinaryWriter to write bytes to file
38          binaryOutput = New BinaryWriter(file)
39
40          ' determine whether file has just been created
41          If file.Length = 0 Then
42
43             ' record to be written to file
44             Dim blankRecord As CRandomAccessRecord = _
45                New CRandomAccessRecord()
46

Fig. 17.18 CTransaction class handles record transactions for the transaction-
processor case study (part 1 of 4).



Chapter 17 Files and Streams 809

47             Dim i As Integer ' counter
48
49             ' new record can hold NUMBER_OF_RECORDS records
50             file.SetLength( _
51                CRandomAccessRecord.SIZE * NUMBER_OF_RECORDS)
52
53             ' write blank records to file
54             For i = 0 To NUMBER_OF_RECORDS - 1
55
56                ' move file-position pointer to next position
57                file.Position = i * CRandomAccessRecord.SIZE
58
59                ' write blank record to file
60                binaryOutput.Write(blankRecord.Account)
61                binaryOutput.Write(blankRecord.FirstName)
62                binaryOutput.Write(blankRecord.LastName)
63                binaryOutput.Write(blankRecord.Balance)
64             Next
65
66          End If
67
68       ' notify user of error during writing of blank records
69       Catch fileException As IOException
70          MessageBox.Show("Cannot create file", "Error", _
71              MessageBoxButtons.OK, MessageBoxIcon.Error)
72
73       End Try
74
75 End Sub ' OpenFile
76
77    ' retrieve record depending on whether account is valid
78 Public Function GetRecord(ByVal accountValue As String) _
79       As CRandomAccessRecord
80
81       ' store file data associated with account in record
82       Try
83
84          ' record to store file data
85          Dim record As CRandomAccessRecord = _
86             New CRandomAccessRecord()
87
88          ' get value from TextBox's account field
89          Dim accountNumber As Integer = _
90             Convert.ToInt32(accountValue)
91
92          ' if account is invalid, do not read data
93          If (accountNumber < 1 OrElse _
94             accountNumber > NUMBER_OF_RECORDS) Then
95
96             ' set record's account field with account number
97             record.Account = accountNumber
98

Fig. 17.18 CTransaction class handles record transactions for the transaction-
processor case study (part 2 of 4).



810 Files and Streams Chapter 17

99          ' get data from file if account is valid
100          Else
101
102             ' locate position in file where record exists
103             file.Seek( _
104                (accountNumber - 1) * CRandomAccessRecord.SIZE, 0)
105
106             ' read data from record
107             record.Account = binaryInput.ReadInt32()
108             record.FirstName = binaryInput.ReadString()
109             record.LastName = binaryInput.ReadString()
110             record.Balance = binaryInput.ReadDouble()
111          End If
112
113          Return record
114
115       ' notify user of error during reading
116       Catch fileException As IOException
117          MessageBox.Show("Cannot read file", "Error", _
118             MessageBoxButtons.OK, MessageBoxIcon.Error)
119
120       ' notify user of error in parameter mismatch
121       Catch formattingException As FormatException
122          MessageBox.Show("Invalid Account", "Error", _
123             MessageBoxButtons.OK, MessageBoxIcon.Error)
124
125       End Try
126
127       Return Nothing
128 End Function ' GetRecord
129
130    ' add record to file at position determined by accountNumber
131 Public Function AddRecord(ByVal record As CRandomAccessRecord, _
132       ByVal accountNumber As Integer) As Boolean
133
134       ' write record to file
135       Try
136
137          ' move file-position pointer to appropriate position
138          file.Seek( _
139             (accountNumber - 1) * CRandomAccessRecord.SIZE, 0)
140
141          ' write data to file
142          binaryOutput.Write(record.Account)
143          binaryOutput.Write(record.FirstName)
144          binaryOutput.Write(record.LastName)
145          binaryOutput.Write(record.Balance)
146
147       ' notify user if error occurs during writing
148       Catch fileException As IOException
149          MessageBox.Show("Error Writing To File", "Error", _
150             MessageBoxButtons.OK, MessageBoxIcon.Error)

Fig. 17.18 CTransaction class handles record transactions for the transaction-
processor case study (part 3 of 4).



Chapter 17 Files and Streams 811

Class CTransaction contains methods OpenFile, GetRecord and Add-
Record. Method OpenFile (lines 26–75) uses Const FileMode.OpenOrCreate
(line 32) to create a FileStream object from either an existing file or one not yet created.
Lines 35–38 use this FileStream to create BinaryReader and BinaryWriter
objects for reading and writing bytes to the file. If the file is new, lines 54–64 populate the
FileStream object with empty records. Students might recall that we used these tech-
niques in Section 17.8.

Method GetRecord (lines 78–128) returns the record associated with the account-
number parameter. Lines 85–86 instantiate a CRandomAccessRecord object that will
store the file data. If the account parameter is valid, lines 103–104 call method Seek of the
FileStream object, which uses the parameter to determine the position of the specified
record in the file. Lines 107–110 then call methods ReadInt32, ReadString and
ReadDouble of the BinaryReader object to store the file data in the CRandomAc-
cessRecord object. Line 113 returns the CRandomAccessRecord object. We used
these techniques in Section 17.10.

Method AddRecord (lines 131–156) inserts a record into the file. Lines 138–139 call
method Seek of the FileStream object, which uses the account-number parameter to
locate the position which to insert the record in the file. Lines 142–145 call the overloaded
Write methods of the BinaryWriter object to write the CRandomAccessRecord
object’s data to the file. We used these techniques in Section 17.9. Note that, if an error
occurs when adding the record (i.e., either the FileStream or the BinaryWriter
throws an IOException), lines 149–152 notify the user of the error and return False
(failure).

Transaction-Processor GUI
The GUI for this program consists of a window containing internal frames (an MDI). Class
FrmTransactionProcessor (Fig. 17.19) is the parent window, which acts as the
driver for the application and displays one of its children windows—an object of type
FrmStartDialog (Fig. 17.20), FrmNewDialog (Fig. 17.21), FrmUpdateDialog
(Fig. 17.22) or FrmDeleteDialog (Fig. 17.23). FrmStartDialog allows the user to
open a file containing account information and provides access to the FrmNewDialog,
FrmUpdateDialog and FrmDeleteDialog internal frames. These frames allow us-

151
152          Return False ' failure
153       End Try
154
155       Return True ' success
156 End Sub ' AddRecord
157
158 End Class ' CTransaction

Fig. 17.18 CTransaction class handles record transactions for the transaction-
processor case study (part 4 of 4).



812 Files and Streams Chapter 17

ers to update, create and delete records, respectively (using a reference to the CTransac-
tion object).

Initially, FrmTransactionProcessor displays the FrmStartDialog object,
this window provides the user with various options. It contains four buttons that enable the
user to create or open a file, create a record, update an existing record or delete an existing
record.

Before the user can modify records, the user must either create or open a file. When
the user clicks the New/Open File button, the program calls method cmdOpen_Click
(lines 36–94 of Fig. 17.20), which opens a file that the application uses for modifying
records. Lines 40–48 display the OpenFileDialog for specifying the file from which to
read data and then uses this file to create the FileStream object. Note that line 46 sets
property CheckFileExists of the OpenFileDialog object to False—this enables
the user to create a file if the specified file does not exist. If this property were True (its
default value), the dialog would notify the user that the specified file does not exist, thus
preventing the user from creating a file.

If the user specifies a file name, line 67 instantiates an object of class CTransac-
tion (Fig. 17.18), which acts as the proxy for creating, reading records from and writing
records to random-access files. Line 68 calls its method OpenFile, which either creates
or opens the specified file, depending on whether the file exists.

Class FrmStartDialog also creates internal windows that enable the user to create,
update and delete records. We do not use the default constructor created by Visual Studio
.NET for these classes; instead, we use an overloaded constructor that takes as arguments
the CTransaction object and a delegate object that references method ShowStart-
Dialog (lines 121–123). Each child window uses the second delegate parameter to dis-
play the FrmStartDialog GUI when the user closes a child window. Lines 77–86
instantiate objects of classes FrmUpdateDialog, FrmNewDialog and FrmDelete-
Dialog, which serve as the child windows.

1 ' Fig. 17.19: TransactionProcessor.vb
2 ' MDI parent for transaction-processor application.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmTransactionProcessor
7 Inherits Form
8
9    ' Visual Studio .NET generated code

10
11    ' reference to Multiple-Document-Interface client
12 Private childForm As MdiClient
13
14    ' reference to StartDialog
15 Private startDialog As FrmStartDialog
16
17 End Class ' FrmTransactionProcessor

Fig. 17.19 FrmTransactionProcessor class runs the transaction-processor 
application.



Chapter 17 Files and Streams 813

1 ' Fig. 17.20: StartDialog.vb
2 ' Initial dialog box displayed to user. Provides buttons for 
3 ' creating/opening file and for adding, updating and removing 
4 ' records from file.
5
6 ' Visual Basic namespaces
7 Imports System.Windows.Forms
8
9 ' Deitel namespaces

10 Imports BankLibrary
11
12 Public Class FrmStartDialog
13 Inherits Form
14
15    ' buttons for displaying other dialogs
16    Friend WithEvents cmdOpen As Button
17    Friend WithEvents cmdNew As Button
18    Friend WithEvents cmdUpdate As Button
19    Friend WithEvents cmdDelete As Button
20
21    ' Visual Studio .NET generated code
22
23    ' reference to dialog box for adding record
24 Private newDialog As FrmNewDialog
25
26    ' reference to dialog box for updating record
27 Private updateDialog As FrmUpdateDialog
28
29    ' reference to dialog box for removing record
30 Private deleteDialog As FrmDeleteDialog
31
32    ' reference to object that handles transactions
33 Private transactionProxy As CTransaction
34
35    ' invoked when user clicks New/Open File button
36 Protected Sub cmdOpen_Click(ByVal sender As System.Object, _
37       ByVal e As System.EventArgs) Handles cmdOpen.Click
38
39       ' create dialog box enabling user to create or open file
40       Dim fileChooser As OpenFileDialog = New OpenFileDialog()
41       Dim result As DialogResult
42       Dim fileName As String
43
44       ' enable user to create file if file does not exist
45       fileChooser.Title = "Create File / Open File"
46       fileChooser.CheckFileExists = False
47
48       result = fileChooser.ShowDialog() ' show dialog box to user
49
50       ' exit event handler if user clicked Cancel
51       If result = DialogResult.Cancel Then
52          Return

Fig. 17.20 FrmStartDialog class enables users to access dialog boxes 
associated with various transactions (part 1 of 4).



814 Files and Streams Chapter 17

53       End If
54
55       ' get file name from user
56       fileName = fileChooser.FileName
57
58       ' show error if user specified invalid file
59       If (fileName = "" OrElse fileName = Nothing) Then
60          MessageBox.Show("Invalid File Name", "Error", _
61             MessageBoxButtons.OK, MessageBoxIcon.Error)
62
63       ' open or create file if user specified valid file
64       Else
65
66          ' create CTransaction with specified file
67          transactionProxy = New CTransaction()
68          transactionProxy.OpenFile(fileName)
69
70          ' enable GUI buttons except for New/Open File button
71          cmdNew.Enabled = True
72          cmdUpdate.Enabled = True
73          cmdDelete.Enabled = True
74          cmdOpen.Enabled = False
75
76          ' instantiate dialog box for creating records
77          newDialog = New FrmNewDialog(transactionProxy, _
78             AddressOf ShowStartDialog)
79
80          ' instantiate dialog box for updating records
81          updateDialog = New FrmUpdateDialog(transactionProxy, _
82             AddressOf ShowStartDialog)
83
84          ' instantiate dialog box for removing records
85          deleteDialog = New FrmDeleteDialog(transactionProxy, _
86             AddressOf ShowStartDialog)
87
88          ' set StartDialog as MdiParent for dialog boxes
89          newDialog.MdiParent = Me.MdiParent
90          updateDialog.MdiParent = Me.MdiParent
91          deleteDialog.MdiParent = Me.MdiParent
92       End If
93
94 End Sub ' cmdOpen_Click
95
96    ' invoked when user clicks New Record button
97 Protected Sub cmdNew_Click(ByVal sender As System.Object, _
98       ByVal e As System.EventArgs) Handles cmdNew.Click
99
100       Hide() ' hide StartDialog
101       newDialog.Show() ' show NewDialog
102 End Sub ' cmdNew_Click
103

Fig. 17.20 FrmStartDialog class enables users to access dialog boxes 
associated with various transactions (part 2 of 4).



Chapter 17 Files and Streams 815

104    ' invoked when user clicks Update Record button
105 Protected Sub cmdUpdate_Click(ByVal sender As System.Object, _
106       ByVal e As System.EventArgs) Handles cmdUpdate.Click
107
108       Hide() ' hide StartDialog
109       updateDialog.Show() ' show UpdateDialog
110 End Sub ' cmdUpdate_Click
111
112    ' invoked when user clicks Delete Record button
113 Protected Sub cmdDelete_Click(ByVal sender As System.Object, _
114       ByVal e As System.EventArgs) Handles cmdDelete.Click
115
116       Hide() ' hide StartDialog
117       deleteDialog.Show() ' show DeleteDialog
118 End Sub ' cmdDelete_Click
119
120    ' displays StartDialog
121 Protected Sub ShowStartDialog()
122       Show()
123 End Sub ' ShowStartDialog
124
125 End Class ' FrmStartDialog

Fig. 17.20 FrmStartDialog class enables users to access dialog boxes 
associated with various transactions (part 3 of 4).



816 Files and Streams Chapter 17

When the user clicks the New Record button in the Start Dialog, the program
invokes method cmdNew_Click of class FrmStartDialog (Fig. 17.20, lines 97–
102), which displays the FrmNewDialog internal frame. Class FrmNewDialog
(Fig. 17.21) enables the user to create records in the file that FrmStartDialog opened
(or created). Line 23 defines MyDelegate as a delegate to a method that does not return
a value and has no parameters—method ShowStartDialog of class FrmStartDi-
alog (Fig. 17.20, lines 121–123) conforms to these requirements. Class FrmNewDialog
receives a MyDelegate object, which references this method as a parameter—therefore,
FrmNewDialog can invoke this method to display the start window when the user exits
the FrmNewDialog. Classes FrmUpdateDialog and FrmDeleteDialog also
receive MyDelegate references as arguments, enabling them to display FrmStartDi-
alog after completing their tasks.

After the user enters data in the TextBoxes and clicks the Save Record button, the
program invokes method cmdSave_Click (lines 47–62) to write the record to disk.
Lines 50–52 call method GetRecord of the CTransaction object, which should
return an empty CRandomAccessRecord. If method GetRecord returns a CRan-
domAccessRecord that contains content, the user is attempting to overwrite that
CRandomAccessRecord with a new one. Line 56 calls Private method Insert-
Record (lines 65–108). If the CRandomAccessRecord is empty, method Inser-
tRecord calls method AddRecord of the CTransaction object (lines 93–94), which
inserts the newly created CRandomAccessRecord into the file. If the user is attempting
to overwrite an existing file, lines 76–80 notify the user that the file already exists and
return from the method.

1 ' Fig. 17.21: NewDialog.vb
2 ' Enables user to insert new record into file.
3
4 ' Visual Basic namespaces
5 Imports System.Windows.Forms
6

Fig. 17.21 FrmNewDialog class enables users to create records in transaction-
processor case study (part 1 of 4).

Fig. 17.20 FrmStartDialog class enables users to access dialog boxes 
associated with various transactions (part 4 of 4).



Chapter 17 Files and Streams 817

7 ' Deitel namespaces
8 Imports BankLibrary
9

10 Public Class FrmNewDialog
11 Inherits FrmBankUI
12
13    ' buttons for creating record and canceling action
14    Friend WithEvents cmdSave As Button
15    Friend WithEvents cmdCancel As Button
16
17    ' Windows Form Designer generated code
18
19    ' reference to object that handles transactions
20 Private transactionProxy As CTransaction
21
22    ' delegate for method that displays previous window
23 Delegate Sub MyDelegate()
24 Public showPreviousWindow As MyDelegate
25
26    ' initialize components and set members to parameter values
27 Public Sub New(ByVal transactionProxyValue As CTransaction, _
28       ByVal delegateValue As MyDelegate)
29
30       InitializeComponent()
31       showPreviousWindow = delegateValue
32
33       ' instantiate object that handles transactions
34       transactionProxy = transactionProxyValue
35 End Sub ' New
36
37    ' invoked when user clicks Cancel button
38 Protected Sub cmdCancel_Click(ByVal sender As System.Object, _
39       ByVal e As System.EventArgs) Handles cmdCancel.Click
40
41       Hide()
42       ClearTextBoxes()
43       showPreviousWindow()
44 End Sub ' cmdCancel_Click
45
46    ' invoked when user clicks Save As button
47 Protected Sub cmdSave_Click(ByVal sender As System.Object, _
48       ByVal e As System.EventArgs) Handles cmdSave.Click
49
50       Dim record As CRandomAccessRecord = _
51          transactionProxy.GetRecord( _
52             GetTextBoxValues(TextBoxIndices.ACCOUNT))
53
54       ' if record exists, add it to file
55       If (record Is Nothing) = False Then
56          InsertRecord(record)
57       End If
58

Fig. 17.21 FrmNewDialog class enables users to create records in transaction-
processor case study (part 2 of 4).



818 Files and Streams Chapter 17

59       Hide()
60       ClearTextBoxes()
61       showPreviousWindow()
62 End Sub ' cmdSave_Click
63
64    ' insert record in file at position specified by accountNumber
65 Private Sub InsertRecord(ByVal record As CRandomAccessRecord)
66
67       ' store TextBox values in String array
68       Dim textBoxValues As String() = GetTextBoxValues()
69
70       ' store TextBox account field
71       Dim accountNumber As Integer = _
72          Convert.ToInt32(textBoxValues(TextBoxIndices.ACCOUNT))
73
74       ' notify user and return if record account is not empty
75       If record.Account <> 0 Then
76          MessageBox.Show( _
77             "Record Already Exists or Invalid Number", "Error", _
78             MessageBoxButtons.OK, MessageBoxIcon.Error)
79
80          Return
81       End If
82
83       ' store values in record
84       record.Account = accountNumber
85       record.FirstName = textBoxValues(TextBoxIndices.FIRST)
86       record.LastName = textBoxValues(TextBoxIndices.LAST)
87       record.Balance = Convert.ToDouble( _
88          textBoxValues(TextBoxIndices.BALANCE))
89
90       ' add record to file
91       Try
92
93          If (transactionProxy.AddRecord( _
94             record, accountNumber) = False ) Then
95
96             Return ' if error
97          End If
98
99       ' notify user if error occurs in parameter mismatch
100       Catch formattingException As FormatException
101          MessageBox.Show("Invalid Balance", "Error", _
102             MessageBoxButtons.OK, MessageBoxIcon.Error)
103
104       End Try
105
106       MessageBox.Show("Record Created", "Success", _
107          MessageBoxButtons.OK, MessageBoxIcon.Information)
108 End Sub ' InsertRecord
109
110 End Class ' FrmNewDialog

Fig. 17.21 FrmNewDialog class enables users to create records in transaction-
processor case study (part 3 of 4).



Chapter 17 Files and Streams 819

When the user clicks the Update Record button in the Start Dialog, the program
invokes method cmdUpdate_Click of class FrmStartDialog (Fig. 17.20, lines
105–110), which displays the FrmUpdateDialog internal frame (Fig. 17.22). Class
FrmUpdateDialog enables the user to update existing records in the file. To update a
record, users must enter the account number associated with the record they wish to update.
When the user presses Enter, FrmUpdateDialog calls method txtAccount-
Number_KeyDown (lines 42–82) to display the record contents. This method calls
method GetRecord of the CTransaction object (lines 51–53) to retrieve the specified
CRandomAccessRecord. If the record is not empty, lines 64–67 populate the Text-
Boxes with the CRandomAccessRecord values.

1 ' Fig. 17.22: UpdateDialog.vb
2 ' Enables user to update records in file.
3
4 ' Visual Basic namespaces
5 Imports System.Windows.Forms
6
7 ' Deitel namespaces
8 Imports BankLibrary
9

10 Public Class FrmUpdateDialog
11 Inherits FrmBankUI

Fig. 17.22 FrmUpdateDialog class enables users to update records in transaction-
processor case study (part 1 of 6).

Fig. 17.21 FrmNewDialog class enables users to create records in transaction-
processor case study (part 4 of 4).



820 Files and Streams Chapter 17

12
13    ' label and textbox for user to enter transaction data
14 Friend WithEvents lblTransaction As Label
15 Friend WithEvents txtTransaction As TextBox
16
17    ' buttons for saving data to file and canceling save
18 Friend WithEvents cmdSave As Button
19 Friend WithEvents cmdCancel As Button
20
21    ' Visual Studio .NET generated code
22
23    ' reference to object that handles transactions
24 Private transactionProxy As CTransaction
25
26    ' delegate for method that displays previous window
27 Delegate Sub MyDelegate()
28 Public showPreviousWindow As MyDelegate
29
30    ' initialize components and set members to parameter values
31 Public Sub New(ByVal transactionProxyValue As CTransaction, _
32       ByVal delegateValue As MyDelegate)
33
34       InitializeComponent()
35       showPreviousWindow = delegateValue
36
37       ' instantiate object that handles transactions
38       transactionProxy = transactionProxyValue
39 End Sub ' New
40
41    ' invoked when user enters text in Account TextBox
42 Protected Sub txtAccountNumber_KeyDown( _
43       ByVal sender As System.Object, _
44       ByVal e As System.Windows.Forms.KeyEventArgs) _
45       Handles txtAccount.KeyDown
46
47       ' determine whether user pressed Enter Key
48       If e.KeyCode = Keys.Enter Then
49
50          ' retrieve record associated with account from file
51          Dim record As CRandomAccessRecord = _
52             transactionProxy.GetRecord( _
53                GetTextBoxValues(TextBoxIndices.ACCOUNT))
54
55          ' return if record does not exist
56          If (record Is Nothing) = True Then
57             Return
58          End If
59
60          ' determine whether record is empty
61          If record.Account <> 0 Then
62

Fig. 17.22 FrmUpdateDialog class enables users to update records in transaction-
processor case study (part 2 of 6).



Chapter 17 Files and Streams 821

63             ' store record values in String array
64             Dim values As String() = {record.Account.ToString(), _
65                record.FirstName.ToString(), _
66                record.LastName.ToString(), _
67                record.Balance.ToString()}
68
69             ' copy String-array value to TextBox values
70             SetTextBoxValues(values)
71             txtTransaction.Text = "[Charge or Payment]"
72
73          ' notify user if record does not exist
74          Else
75             MessageBox.Show("Record Does Not Exist", "Error", _
76                MessageBoxButtons.OK, MessageBoxIcon.Error)
77
78          End If
79
80       End If
81
82 End Sub ' txtAccountNumber_KeyDown
83
84    ' invoked when user enters text in Transaction TextBox
85 Protected Sub txtTransactionNumber_KeyDown( _
86       ByVal sender As System.Object, _
87       ByVal e As System.Windows.Forms.KeyEventArgs) _
88       Handles txtTransaction.KeyDown
89
90       ' determine whether user pressed Enter key
91       If e.KeyCode = Keys.Enter Then
92
93          ' calculate balance using Transaction TextBox value
94          Try
95
96             ' retrieve record associated with account from file
97             Dim record As CRandomAccessRecord = _
98                transactionProxy.GetRecord( _
99                   GetTextBoxValues(TextBoxIndices.ACCOUNT))
100
101             ' get Transaction TextBox value
102             Dim transactionValue As Double = _
103                Convert.ToDouble(txtTransaction.Text)
104
105             ' calculate new balance (old balance + transaction)
106             Dim newBalance As Double = _
107                record.Balance + transactionValue
108
109             ' store record values in String array
110             Dim values As String() = {record.Account.ToString(), _
111                record.FirstName.ToString(), _
112                record.LastName.ToString(), newBalance.ToString()}
113

Fig. 17.22 FrmUpdateDialog class enables users to update records in transaction-
processor case study (part 3 of 6).



822 Files and Streams Chapter 17

114             ' copy String-array value to TextBox values
115             SetTextBoxValues(values)
116
117             ' clear txtTransactionNumber
118             txtTransaction.Text = ""
119
120          ' notify user if error occurs in parameter mismatch
121          Catch formattingException As FormatException
122             MessageBox.Show("Invalid Transaction", "Error", _
123                MessageBoxButtons.OK, MessageBoxIcon.Error)
124
125          End Try
126
127       End If
128
129 End Sub ' txtTransactionNumber_KeyDown
130
131    ' invoked when user clicks Save button
132 Protected Sub cmdSave_Click(ByVal sender As System.Object, _
133       ByVal e As System.EventArgs) Handles cmdSave.Click
134
135       Dim record As CRandomAccessRecord = _
136          transactionProxy.GetRecord( _
137             GetTextBoxValues(TextBoxIndices.ACCOUNT))
138
139       ' if record exists, update in file
140       If (record Is Nothing) = False Then
141          UpdateRecord(record)
142       End If
143
144       Hide()
145       ClearTextBoxes()
146       showPreviousWindow()
147 End Sub ' cmdSave_Click
148
149    ' invoked when user clicks Cancel button
150 Protected Sub cmdCancel_Click(ByVal sender As System.Object, _
151       ByVal e As System.EventArgs) Handles cmdCancel.Click
152
153       Hide()
154       ClearTextBoxes()
155       showPreviousWindow()
156 End Sub ' cmdCancel_Click
157
158    ' update record in file at position specified by accountNumber
159 Public Sub UpdateRecord(ByVal record As CRandomAccessRecord)
160
161       ' store TextBox values in record and write record to file
162       Try
163          Dim accountNumber As Integer = record.Account
164          Dim values As String() = GetTextBoxValues()
165

Fig. 17.22 FrmUpdateDialog class enables users to update records in transaction-
processor case study (part 4 of 6).



Chapter 17 Files and Streams 823

166          ' store values in record
167          record.Account = accountNumber
168          record.FirstName = values(TextBoxIndices.FIRST)
169          record.LastName = values(TextBoxIndices.LAST)
170          record.Balance = _
171             Double.Parse(values(TextBoxIndices.BALANCE))
172
173          ' add record to file
174          If (transactionProxy.AddRecord( _
175             record, accountNumber) = False ) Then
176
177             Return ' if error
178          End If
179
180       ' notify user if error occurs in parameter mismatch
181       Catch formattingException As FormatException
182          MessageBox.Show("Invalid Balance", "Error", _
183             MessageBoxButtons.OK, MessageBoxIcon.Error)
184
185          Return
186       End Try
187
188       MessageBox.Show("Record Updated", "Success", _
189          MessageBoxButtons.OK, MessageBoxIcon.Information)
190 End Sub ' UpdateRecord
191
192 End Class ' FrmUpdateDialog

Fig. 17.22 FrmUpdateDialog class enables users to update records in transaction-
processor case study (part 5 of 6).



824 Files and Streams Chapter 17

The Transaction TextBox initially contains the string Charge or Payment. The
user should select this text, type the transaction amount (a positive value for a charge or a
negative value for a payment) and then press Enter. The program calls method
txtTransactionNumber_KeyDown (lines 85–129) to add the user-specified transac-
tion amount to the current balance.

The user clicks the Save Changes button to write the altered contents of the Text-
Boxes to the file. (Note that pressing Save Changes does not update the Balance
field—the user must press Enter to update this field before pressing Save Changes.)
When the user clicks Save Changes, the program invokes method cmdSave_Click
(lines 132–147), which calls Private method UpdateRecord (lines 159–190). This
method calls method AddRecord of the CTransaction object (lines 174–175) to store
the TextBox values in a CRandomAccessRecord and overwrite the existing file
record with the CRandomAccessRecord containing the new data.

When the user clicks the Delete Record button of the Start Dialog, the program
invokes method cmdDelete_Click of class FrmStartDialog (Fig. 17.20, lines

Fig. 17.22 FrmUpdateDialog class enables users to update records in transaction-
processor case study (part 6 of 6).



Chapter 17 Files and Streams 825

113–118), which displays the FrmDeleteDialog internal frame (Fig. 17.23). Class
FrmDeleteDialog enables the user to remove existing records from the file. To remove
a record, users must enter the account number associated with the record they wish to
delete. When the user clicks the Delete Record button (now, from the FrmDeleteDi-
alog internal frame), FrmDeleteDialog calls method cmdDelete_Click (lines
42–55). This method calls method DeleteRecord (lines 66–97), which ensures that the
record to be deleted exists and then calls method AddRecord of the CTransaction
object (lines 83–84) to overwrite the file record with an empty one.

1 ' Fig. 17.23: DeleteDialog.vb
2 ' Enables user to delete records in file.
3
4 ' Visual Basic namespaces
5 Imports System.Windows.Forms
6
7 ' Deitel namespaces
8 Imports BankLibrary
9

10 Public Class FrmDeleteDialog
11 Inherits Form
12
13    ' label and TextBox enabling user to input account number
14 Friend WithEvents lblAccount As Label
15 Friend WithEvents txtAccount As TextBox
16
17    ' buttons for deleting record and canceling action
18 Friend WithEvents cmdDelete As Button
19 Friend WithEvents cmdCancel As Button
20
21    ' Visual Studio .NET generated code
22
23    ' reference to object that handles transactions
24 Private transactionProxy As CTransaction
25
26    ' delegate for method that displays previous window
27 Delegate Sub MyDelegate()
28 Public showPreviousWindow As MyDelegate
29
30    ' initialize components and set members to parameter values
31 Public Sub New(ByVal transactionProxyValue As CTransaction, _
32       ByVal delegateValue As MyDelegate)
33
34       InitializeComponent()
35       showPreviousWindow = delegateValue
36
37       ' instantiate object that handles transactions
38       transactionProxy = transactionProxyValue
39 End Sub ' New
40

Fig. 17.23 FrmDeleteDialog class enables users to remove records from files in 
transaction-processor case study (part 1 of 3).



826 Files and Streams Chapter 17

41    ' invoked when user clicks Delete Record button
42 Protected Sub cmdDelete_Click(ByVal sender As System.Object, _
43       ByVal e As System.EventArgs) Handles cmdDelete.Click
44
45       Dim record As CRandomAccessRecord = _
46          transactionProxy.GetRecord(txtAccount.Text)
47
48       ' if record exists, delete it in file
49       If (record Is Nothing) = False Then
50          DeleteRecord(record)
51       End If
52
53       Me.Hide()
54       showPreviousWindow()
55 End Sub ' cmdDelete_Click
56
57    ' invoked when user clicks Cancel button
58 Protected Sub cmdCancel_Click(ByVal sender As System.Object, _
59       ByVal e As System.EventArgs) Handles cmdCancel.Click
60
61       Me.Hide()
62       showPreviousWindow()
63 End Sub ' cmdCancel_Click
64
65    ' delete record in file at position specified by accountNumber
66 Public Sub DeleteRecord(ByVal record As CRandomAccessRecord)
67
68       Dim accountNumber As Integer = record.Account
69
70       ' display error message if record does not exist
71       If record.Account = 0 Then
72          MessageBox.Show("Record Does Not Exist", "Error", _
73             MessageBoxButtons.OK, MessageBoxIcon.Error)
74          txtAccount.Clear()
75
76          Return
77       End If
78
79       ' create blank record
80       record = New CRandomAccessRecord()
81
82       ' write over file record with empty record
83       If (transactionProxy.AddRecord( _
84          record, accountNumber) = True) Then
85
86          ' notify user of successful deletion
87          MessageBox.Show("Record Deleted", "Success", _
88             MessageBoxButtons.OK, MessageBoxIcon.Information)
89       Else
90
91          ' notify user of failure
92          MessageBox.Show("Record could not be deleted", "Error", _

Fig. 17.23 FrmDeleteDialog class enables users to remove records from files in 
transaction-processor case study (part 2 of 3).



Chapter 17 Files and Streams 827

SUMMARY
• All data items processed by a computer ultimately are reduced to combinations of zeros and ones. 

• The smallest data items that computers support are called bits and can assume either the value 0
or the value 1.

• Digits, letters and special symbols are referred to as characters. The set of all characters used to
write programs and represent data items on a particular computer is called that computer’s char-
acter set. Every character in a computer’s character set is represented as a pattern of 1s and 0s
(characters in Visual Basic are Unicode characters, which are composed of 2 bytes). 

• A field is a group of characters (or bytes) that conveys some meaning. 

• A record is a group of related fields. 

• At least one field in a record is chosen as a record key, which identifies that record as belonging
to a particular person or entity and distinguishes that record from all other records in the file. 

• Files are used for long-term retention of large amounts of data and can store those data even after
the program that created the data terminates.

• A file is a group of related records. 

• Data maintained in files is often called persistent data. 

• Class File enables programs to obtain information about a file.

• Class Directory enables programs to obtain information about a directory.

• Class FileStream provides method Seek for repositioning the file-position pointer (the byte
number of the next byte in the file to be read or written) to any position in the file.

• The most common type of file organization is a sequential file, in which records typically are
stored in order by the record-key field.

• When a file is opened, an object is created, and a stream is associated with the object. 

93             MessageBoxButtons.OK, MessageBoxIcon.Error)
94       End If
95
96       txtAccount.Clear() ' clear text box
97 End Sub ' DeleteRecord
98
99 End Class ' FrmDeleteDialog

Fig. 17.23 FrmDeleteDialog class enables users to remove records from files in 
transaction-processor case study (part 3 of 3).



828 Files and Streams Chapter 17

• Visual Basic imposes no structure on a file. This means that concepts like that of a “record” do not
exist in Visual Basic. The programmer must structure a file appropriately to meet the requirements
of an application.

• A collection of programs designed to create and manage databases is called a database manage-
ment system (DBMS).

• Visual Basic views each file as a sequential stream of bytes.

• Each file ends in some machine-dependent form of end-of-file marker.

• Objects of classes OpenFileDialog and SaveFileDialog are used for selecting files to
open and save, respectively. Method ShowDialog of these classes displays that dialog.

• When displayed, both an OpenFileDialog and a SaveFileDialog prevent the user from
interacting with any other program window until the dialog is closed. Dialogs that behave in this
fashion are called modal dialogs.

• Streams provide communication channels between files and programs.

• To perform file processing in Visual Basic, the namespace System.IO must be referenced. This
namespace includes definitions for stream classes such as StreamReader, StreamWriter
and FileStream. Files are opened by instantiating objects of these classes. 

• To retrieve data sequentially from a file, programs normally start from the beginning of the file,
reading all data consecutively until the desired data are found. 

• With a sequential-access file, each successive input/output request reads or writes the next consec-
utive set of data in the file.

• Instant data access is possible with random-access files. A program can access individual records
of a random-access file directly (and quickly) without searching through other records. Random-
access files sometimes are called direct-access files. 

• With a random-access file, each successive input/output request can be directed to any part of the
file, which can be any distance from the part of the file referenced in the previous request. 

• Programmers can use members of the FileAccess enumeration to control users’ access to files.

• Only classes with the Serializable attribute can be serialized to and deserialized from files.

• There are a variety of techniques for creating random-access files. Perhaps the simplest involves
requiring that all records in a file are of the same fixed length. 

• The use of fixed-length records makes it easy for a program to calculate (as a function of the record
size and the record key) the exact location of any record in relation to the beginning of the file

• A random-access file is like a railroad train with many cars—some empty and some with contents. 

• Data can be inserted into a random-access file without destroying other data in the file. Users can
also update or delete previously stored data without rewriting the entire file.

• BinaryFormatter uses methods Serialize and Deserialize to write and read objects,
respectively. Method Serialize writes the object’s representation to a file. Method Deseri-
alize reads this representation from a file and reconstructs the original object.

• Methods Serialize and Deserialize require Stream objects as parameters, enabling the
BinaryFormatter to access the correct file.

• Class BinaryReader and BinaryWriter provide methods for reading and writing bytes to
streams, respectively. The BinaryReader and BinaryWriter constructors receive as argu-
ments references to instances of class System.IO.Stream.

•  Class FileStream inherits from class Stream, so we can pass the FileStream object as an
argument to either the BinaryReader or BinaryWriter constructor to create object that can
transfer bytes directly to and from a file.



Chapter 17 Files and Streams 829

• Random-access file-processing programs rarely write a single field to a file. Normally, they write
one object at a time. 

• Sorting with direct-access techniques is fast. This speed is achieved by making the file large
enough to hold every possible record that might be created. Of course, this means that the file
could be sparsely occupied most of the time, possibly wasting memory.

TERMINOLOGY
binary digit (bit) GetFiles method of class Directory
BinaryFormatter class GetLastAccessTime method of class  

   DirectoryBinaryReader class 
BinaryWriter class GetLastAccessTime method of class File
BufferedStream class GetLastWriteTime method of class  

   Directorycharacter 
character set GetLastWriteTime method of class File
Close method of class StreamReader In property of class Console
closing a file ”instant-access” application 
Console class IOException
Copy method of class File MemoryStream class 
Create method of class File modal dialog 
CreateDirectory method of class  
   Directory

Move method of class Directory
Move method of class File

CreateText method of class File Open method of class File
data hierarchy OpenFileDialog class 
database OpenRead method of class File
database management system (DBMS) OpenText method of class File
Delete method of class Directory OpenWrite method of class File
Delete method of class File Out property of class Console
Deserialize method of class  
   BinaryFormatter

pattern of 1s and 0s
persistent data 

direct-access files random-access file 
Directory class Read method of class Console
DirectoryInfo class ReadDouble method of class 

   BinaryReaderend-of-file marker 
Error property of class Console ReadInt32 method of class BinaryReader
escape sequence ReadLine method of class Console
Exists method of class Directory ReadLine method of class StreamReader
field ReadString method of class 

   BinaryReaderfile 
File class record 
file-processing programs record key 
FileAccess enumeration regular expression 
file-position pointer SaveFileDialog class 
FileStream class secondary storage devices 
fixed-length records Seek method of class FileStream
GetCreationTime method of class  
   Directory

SeekOrigin enumeration 
separation character

GetCreationTime method of class File sequential-access file 
GetDirectories method of class  
   Directory

Serializable attribute 
SerializationException



830 Files and Streams Chapter 17

SELF-REVIEW EXERCISES
17.1 State whether each of the following is true or false. If false, explain why.

a) Creating instances of classes File and Directory is impossible.
b) Typically, a sequential file stores records in order by the record-key field.
c) Class StreamReader inherits from class Stream.
d) Any class can be serialized to a file.
e) Searching a random-access file sequentially to find a specific record is unnecessary.
f) Method Seek of class FileStream always seeks relative to the beginning of a file.
g) Visual Basic provides class Record to store records for random-access file-processing

applications.
h) Banking systems, point-of-sale systems and automated-teller machines are types of

transaction-processing systems.
i) Classes StreamReader and StreamWriter are used with sequential-access files.
j) Instantiating objects of type Stream is impossible.

17.2 Fill in the blanks in each of the following statements:
a) Ultimately, all data items processed by a computer are reduced to combinations of

 and .
b) The smallest data item a computer can process is called a .
c) A  is a group of related records.
d) Digits, letters and special symbols are referred to as .
e) A group of related files is called a .
f) StreamReader method  reads a line of text from the file.
g) StreamWriter method  writes a line of text to the file.
h) Method Serialize of class BinaryFormatter takes a(n)  and a(n)

 as arguments.
i) The  namespace contains most of Visual Basic’s file-processing classes.
j) The  namespace contains the BinaryFormatter class.

ANSWERS TO SELF-REVIEW EXERCISES
17.1 a) True. b) True. c) False. StreamReader inherits from TextReader. d) False. Only
classes with the Serializable attribute can be serialized. e) True. f) False. It seeks relative to the
SeekOrigin enumeration member that is passed as one of the arguments. g) False. Visual Basic
imposes no structure on a file, so the concept of a “record” does not exist. h.) True. i) True. j) True.

Serialize method of class  
   BinaryFormatter

StreamWriter class 
System.IO namespace 

ShowDialog method of class  
   OpenFileDialog

System.Runtime.Serialization.
   Formatters.Binary namespace 

ShowDialog method of class  
   SaveFileDialog

TextReader class 
TextWriter class 

standard error stream object transaction-processing system 
standard input stream object Windows Control Library project 
standard output stream object Write method of class BinaryWriter
Stream class Write method of class Console
stream of bytes Write method of class StreamWriter
stream processing WriteLine method of class Console
StreamReader class WriteLine method of class StreamWriter



Chapter 17 Files and Streams 831

17.2 a) 1s, 0s. b) bit. c) file. d) characters. e) database. f) ReadLine. g) WriteLine.
h) Stream, Object. i) System.IO. j) System.Runtime.Serialization.Format-
ters.Binary.

EXERCISES
17.3 Create a program that stores student grades in a text file. The file should contain the name,
ID number, class taken and grade of every student. Allow the user to load a grade file and display its
contents in a read-only textbox. The entries should be displayed as follows:

LastName, FirstName:  ID#  Class  Grade

We list some sample data below:

Jones, Bob: 1 "Introduction to Computer Science" "A-"
Johnson, Sarah: 2 "Data Structures" "B+"
Smith, Sam: 3 "Data Structures" "C"

17.4 Modify the previous program to use objects of class that can be serialized to and deserialized
from a file. Ensure fixed-length records by fixing the length of fields LastName, FirstName,
Class and Grade.

17.5 Extend classes StreamReader and StreamWriter. Allow the class that derives from
StreamReader to have methods ReadInteger, ReadBoolean and ReadString. Allow the
class that derives from StreamWriter to have methods WriteInteger, WriteBoolean and
WriteString. Think about how to design the writing methods so that the reading methods will be
able to read what was written. Design WriteInteger and WriteBoolean to write Strings of
uniform size so that ReadInteger and ReadBoolean can read those values accurately. Make
sure ReadString and WriteString use the same character(s) to separate Strings. 

17.6 Create a program that combines the ideas of Fig. 17.9 and Fig. 17.11 to allow the user to
write records to and read records from a file. Add an extra field of type Boolean to the record indi-
cating whether the account has overdraft protection.

17.7 In commercial data processing, it is common to have several files in each application system.
In an accounts-receivable system, for example, there is generally a master file containing detailed in-
formation about each customer, such as the customer’s name, address, telephone number, outstanding
balance, credit limit, discount terms, contract arrangements and possibly a condensed history of re-
cent purchases and cash payments.

As transactions occur (i.e., sales are made and cash payments arrive in the mail), they are en-
tered into a file. At the end of each business period (i.e., a month for some companies, a week for
others and a day in some cases), the file of transactions (trans.dat) is applied to the master file
(oldmast.dat), thus updating each account’s record of purchases and payments. During an updat-
ing run, the master file is rewritten as a new file (newmast.dat), which then is used at the end of
the next business period to begin the updating process again. 

File-matching programs must deal with certain problems that do not exist in single-file pro-
grams. For example, a match does not always occur. A customer on the master file might not have
made any purchases or cash payments in the current business period, and, therefore, no record for this
customer will appear on the transaction file. Similarly, a customer who did make some purchases or
cash payments might have just moved to the community, and the company might not have had a
chance to create a master record for this customer.

When a match occurs (i.e., records with the same account number appear on both the master
file and the transaction file), add the dollar amount on the transaction file to the current balance on
the master file and write the newmast.dat record. (Assume that purchases are indicated by positive



832 Files and Streams Chapter 17

amounts on the transaction file and that payments are indicated by negative amounts.) When there is
a master record for a particular account, but no corresponding transaction record, merely write the
master record to newmast.dat. When there is a transaction record, but no corresponding master
record, print the message “Unmatched transaction record for account number...”
(fill in the account number from the transaction record).

17.8 You are the owner of a hardware store and need to keep an inventory of the different tools
you sell, how many of each are currently in stock and the cost of each. Write a program that initializes
the random-access file hardware.dat to 100 empty records, lets you input the data concerning
each tool, enables you to list all your tools, lets you delete a record for a tool that you no longer have
and lets you update any information in the file. The tool identification number should be the record
number. Use the information in Fig. 17.24 to start your file.

Record # Tool name Quantity Price

3 Electric sander 18 35.99

19 Hammer 128 10.00

26 Jig saw 16 14.25

39 Lawn mower 10 79.50

56 Power saw 8 89.99

76 Screwdriver 236 4.99

81 Sledge hammer 32 19.75

88 Wrench 65 6.48

Fig. 17.24 Inventory of a hardware store.



18
Extensible Markup 
Language (XML)

Objectives
• To be able to mark up data using XML.
• To understand the concept of an XML namespace.
• To understand the relationship between DTDs, 

Schemas and XML.
• To be able to create Schemas.
• To be able to create and use simple XSLT documents.
• To be able to transform XML documents into 

XHTML using class XslTransform.
• To become familiar with BizTalk™.
Knowing trees, I understand the meaning of patience.
Knowing grass, I can appreciate persistence.
Hal Borland

Like everything metaphysical, the harmony between thought 
and reality is to be found in the grammar of the language.
Ludwig Wittgenstein 

I played with an idea, and grew willful; tossed it into the air; 
transformed it; let it escape and recaptured it; made it 
iridescent with fancy, and winged it with paradox.
Oscar Wilde 



834 Extensible Markup Language (XML) Chapter 18

18.1 Introduction
The Extensible Markup Language (XML) was developed in 1996 by the World Wide Web
Consortium’s (W3C’s) XML Working Group. XML is a portable, widely supported, open
technology (i.e., non-proprietary technology) for describing data. XML is becoming the
standard for storing data that exchanged is between applications. Using XML, document
authors can describe any type of data, including mathematical formulas, software-configu-
ration instructions, music, recipes and financial reports. XML documents are readable by
both humans and machines.

The .NET Framework uses XML extensively. The Framework Class Library provides
an extensive set of XML-related classes. Much of Visual Studio’s internal implementation
also employs XML. In this chapter, we introduce XML, XML-related technologies and key
classes for creating and manipulating XML documents.

18.2 XML Documents
In this section, we present our first XML document, which describes an article (Fig. 18.1).
The line numbers shown are not part of the XML document. 

Outline

18.1 Introduction
18.2 XML Documents
18.3 XML Namespaces
18.4 Document Object Model (DOM)
18.5 Document Type Definitions (DTDs), Schemas and Validation

18.5.1 Document Type Definitions
18.5.2 Microsoft XML Schemas

18.6 Extensible Stylesheet Language and XslTransform
18.7 Microsoft BizTalk™
18.8 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.1: article.xml      -->
4 <!-- Article structured with XML -->
5
6 <article>
7
8 <title>Simple XML</title>
9

Fig. 18.1 XML used to mark up an article (part 1 of 2).



Chapter 18 Extensible Markup Language (XML) 835

This document begins with an optional XML declaration (line 1), which identifies the
document as an XML document. The version information parameter specifies the ver-
sion of XML that is used in the document. XML comments (lines 3–4), which begin with
<!-- and end with -->, can be placed almost anywhere in an XML document. As in a
Visual Basic program, comments are used in XML for documentation purposes.

Common Programming Error 18.1
The placement of any characters, including whitespace, before the XML declaration is a syn-
tax error. 18.1

Portability Tip 18.1
Although the XML declaration is optional, documents should include the declaration to iden-
tify the version of XML used. Otherwise, in the future, a document that lacks an XML decla-
ration might be assumed to conform to the latest version of XML, and errors could result. 18.1

In XML, data are marked up using tags, which are names enclosed in angle brackets
(<>). Tags are used in pairs to delimit character data (e.g., Simple XML). A tag that begins
markup (i.e., XML data) is called a start tag, whereas a tag that terminates markup is called
an end tag. Examples of start tags are <article> and <title> (lines 6 and 8, respec-
tively). End tags differ from start tags in that they contain a forward slash (/) character
immediately after the < character. Examples of end tags are </title> and </article>
(lines 8 and 23, respectively). XML documents can contain any number of tags.

Common Programming Error 18.2
Failure to provide a corresponding end tag for a start tag is a syntax error. 18.0

Individual units of markup (i.e., everything included between a start tag and its corre-
sponding end tag) are called elements. An XML document includes one element (called a
root element) that contains every other element. The root element must be the first elemnent
after the XML declaration. In Fig. 18.1, article (line 6) is the root element. Elements
are nested within each other to form hierarchies—with the root element at the top of the
hierarchy. This allows document authors to create explicit relationships between data. For

10 <date>December 6, 2001</date>
11
12 <author>
13       <firstName>John</firstName>
14       <lastName>Doe</lastName>
15  </author>
16
17 <summary>XML is pretty easy.</summary>
18
19 <content>In this chapter, we present a wide variety of examples
20       that use XML.
21 </content>
22
23 </article>

Fig. 18.1 XML used to mark up an article (part 2 of 2).



836 Extensible Markup Language (XML) Chapter 18

example, elements title, date, author, summary and content then are nested
within article. Elements firstName and lastName are nested within author.

Common Programming Error 18.3
Attempting to create more than one root element in an XML document is a syntax error. 18.3

Element title (line 8) contains the title of the article, Simple XML, as character
data. Similarly, date (line 10), summary (line 17) and content (lines 19–21) contain
as character data the date, summary and content, respectively. XML element names can be
of any length and may contain letters, digits, underscores, hyphens and periods—they must
begin with a letter or an underscore.

Common Programming Error 18.4
XML is case sensitive. The use of the wrong case for an XML element name is a syntax error. 18.4

By itself, this document is simply a text file named article.xml. Although it is not
required, most XML documents end in the file extension .xml. The processing of XML
documents requires a program called an XML parser. Parsers are responsible for checking
an XML document’s syntax and making the XML document’s data available to applica-
tions. Often, XML parsers are built into applications such as Visual Studio or available for
download over the Internet. Popular parsers include Microsoft’s msxml, the Apache Soft-
ware Foundation’s Xerces and IBM’s XML4J. In this chapter, we use msxml.

When the user loads article.xml into Internet Explorer (IE),1 msxml parses the
document and passes the parsed data to IE. IE then uses a built-in style sheet to format the
data. Notice that the resulting format of the data (Fig. 18.2) is similar to the format of the
XML document shown in Fig. 18.1. As we soon demonstrate, style sheets play an important
and powerful role in the transformation of XML data into formats suitable for display.

Notice the minus (–) and plus (+) signs in Fig. 18.2. Although these are not part of the
XML document, IE places them next to all container elements (i.e., elements that contain
other elements). Container elements also are called parent elements. A minus sign indicates
that the parent element’s child elements (i.e., nested elements) are being displayed. When
clicked, a minus sign becomes a plus sign (which collapses the container element and hides
all children). Conversely, clicking a plus sign expands the container element and changes
the plus sign to a minus sign. This behavior is similar to the viewing of the directory struc-
ture on a Windows system using Windows Explorer. In fact, a directory structure often is
modeled as a series of tree structures, in which each drive letter (e.g., C:, etc.) represents
the root of a tree. Each folder is a node in the tree. Parsers often place XML data into trees
to facilitate efficient manipulation, as discussed in Section 18.4.

Common Programming Error 18.5
Nesting XML tags improperly is a syntax error. For example, <x><y>hello</x></y> is
an error, because the </y> tag must precede the </x> tag. 18.5

We now present a second XML document (Fig. 18.3), which marks up a business letter.
This document contains significantly more data than did the previous XML document.

1. IE 5 and higher.



Chapter 18 Extensible Markup Language (XML) 837

Fig. 18.2 article.xml displayed by Internet Explorer.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.3: letter.xml              -->
4 <!-- Business letter formatted with XML -->
5
6 <letter>
7    <contact type = "from">
8       <name>Jane Doe</name>
9       <address1>Box 12345</address1>

10       <address2>15 Any Ave.</address2>
11       <city>Othertown</city>
12       <state>Otherstate</state>

Fig. 18.3 XML to mark up a business letter (part 1 of 2).

Plus sign

Minus sign



838 Extensible Markup Language (XML) Chapter 18

Root element letter (lines 6–45) contains the child elements contact (lines 7–16
and 18–27), salutation, paragraph, closing and signature. In addition to
being placed between tags, data also can be placed in attributes, which are name-value pairs
in start tags. Elements can have any number of attributes in their start tags. The first con-
tact element (lines 7–16) has attribute type with attribute value "from", which indi-
cates that this contact element marks up information about the letter’s sender. The second
contact element (lines 18–27) has attribute type with value "to", which indicates that
this contact element marks up information about the letter’s recipient. Like element names,
attribute names are case sensitive, can be any length; may contain letters, digits, under-
scores, hyphens and periods; and must begin with either a letter or underscore character. A
contact element stores a contact’s name, address and phone number. Element salu-
tation (line 29) marks up the letter’s salutation. Lines 31–40 mark up the letter’s body
with paragraph elements. Elements closing (line 42) and signature (line 44)
mark up the closing sentence and the signature of the letter’s author, respectively.

13       <zip>67890</zip>
14       <phone>555-4321</phone>
15       <flag gender = "F" />
16    </contact>
17
18    <contact type = "to">
19       <name>John Doe</name>
20       <address1>123 Main St.</address1>
21       <address2></address2>
22       <city>Anytown</city>
23       <state>Anystate</state>
24       <zip>12345</zip>
25       <phone>555-1234</phone>
26       <flag gender = "M" />
27    </contact>
28
29 <salutation>Dear Sir:</salutation>
30
31       <paragraph>It is our privilege to inform you about our new
32       database managed with <technology>XML</technology>. This
33       new system allows you to reduce the load on
34       your inventory list server by having the client machine
35       perform the work of sorting and filtering the data.
36       </paragraph>
37
38       <paragraph>Please visit our Web site for availability
39       and pricing.
40       </paragraph>
41
42  <closing>Sincerely</closing>
43
44 <signature>Ms. Doe</signature>
45 </letter>

Fig. 18.3 XML to mark up a business letter (part 2 of 2).



Chapter 18 Extensible Markup Language (XML) 839

Common Programming Error 18.6
Failure to enclose attribute values in double ("") or single (’’) quotes is a syntax error. 18.6

In line 15, we introduce empty element flag, which is used to indicate the gender of
the contact. Empty elements do not contain character data (i.e., they do not contain text
between the start and end tags). Such elements are closed either by placing a slash at the
end of the element (as shown in line 15) or by explicitly writing a closing tag, as in

<flag gender = "F"></flag>

18.3 XML Namespaces
Object-oriented programming languages, such as C++ and Visual Basic, provide massive
class libraries that group their features into namespaces. These namespaces prevent naming
collisions between programmer-defined identifiers and identifiers in class libraries. For ex-
ample, we might use class CBook to represent information on one of our publications;
however, a stamp collector might use class CBook to represent a book of stamps. A naming
collision would occur if we use these two classes in the same assembly, without using
namespaces to differentiate them.

Like Visual Basic, XML also provides namespaces, which provide a means of uniquely
identifying XML elements. In addition, XML-based languages—called vocabularies, such as
XML Schema (Section 18.5), Extensible Stylesheet Language (Section 18.6) and BizTalk
(Section 18.7)—often use namespaces to identify their elements.

Elements are differentiated via namespace prefixes, which identify the namespace to
which an element belongs. For example, 

<deitel:book>Visual Basic How to Program</deitel:book>

qualifies element book with namespace prefix deitel. This indicates that element book
is part of namespace deitel. Document authors can use any name for a namespace prefix
except the reserved namespace prefix xml.

Common Programming Error 18.7
Attempting to create a namespace prefix named xml in any mixture of case is a syntax error. 18.7

The mark up in Fig. 18.4 demonstrates the use of namespaces. This XML document
contains two file elements that are differentiated using namespaces. 

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.4: namespace.xml -->
4 <!-- Demonstrating namespaces -->
5
6 <text:directory xmlns:text = "urn:deitel:textInfo"
7    xmlns:image = "urn:deitel:imageInfo">
8

Fig. 18.4 XML namespaces demonstration (part 1 of 2).



840 Extensible Markup Language (XML) Chapter 18

Software Engineering Observation 18.1
Attributes need not be qualified with namespace prefixes, because they always are associated
with elements. 18.1

Lines 6–7 use attribute xmlns to create two namespace prefixes: text and image.
Each namespace prefix is bound to a series of characters called a uniform resource identi-
fier (URI) that uniquely identifies the namespace. Document authors create their own
namespace prefixes and URIs.

To ensure that namespaces are unique, document authors must provide unique URIs.
Here, we use the text urn:deitel:textInfo and urn:deitel:imageInfo as
URIs. A common practice is to use Universal Resource Locators (URLs) for URIs, because
the domain names (such as, www.deitel.com) used in URLs are guaranteed to be
unique. For example, lines 6–7 could have been written as

<text:directory xmlns:text = 
   "http://www.deitel.com/xmlns-text"
   xmlns:image = "http://www.deitel.com/xmlns-image">

In this example, we use URLs related to the Deitel & Associates, Inc, domain name to iden-
tify namespaces. The parser never visits these URLs—they simply represent a series of
characters used to differentiate names. The URLs need not refer to actual Web pages or be
formed properly .

9    <text:file filename = "book.xml">
10       <text:description>A book list</text:description>
11    </text:file>
12
13    <image:file filename = "funny.jpg">
14       <image:description>A funny picture</image:description>
15       <image:size width = "200" height = "100" />
16    </image:file>
17
18 </text:directory>

Fig. 18.4 XML namespaces demonstration (part 2 of 2).



Chapter 18 Extensible Markup Language (XML) 841

Lines 9–11 use the namespace prefix text to describe elements file and descrip-
tion. Notice that the namespace prefix text is applied to the end tags as well. Lines 13–16
apply namespace prefix image to elements file, description and size.

To eliminate the need to precede each element with a namespace prefix, document
authors can specify a default namespace. Figure 18.5 demonstrates the creation and use of
default namespaces.

Line 6 declares a default namespace using attribute xmlns with a URI as its value.
Once we define this default namespace, child elements belonging to the namespace need
not be qualified by a namespace prefix. Element file (line 9–11) is in the namespace cor-
responding to the URI urn:deitel:textInfo. Compare this to Fig. 18.4, where we
prefixed file and description with text (lines 9–11).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.5: defaultnamespace.xml -->
4 <!-- Using default namespaces        -->
5
6 <directory xmlns = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <file filename = "book.xml">

10       <description>A book list</description>
11 </file>
12
13 <image:file filename = "funny.jpg">
14       <image:description>A funny picture</image:description>
15       <image:size width = "200" height = "100" />
16 </image:file>
17
18 </directory>

Fig. 18.5 Default namespaces demonstration.



842 Extensible Markup Language (XML) Chapter 18

The default namespace applies to the directory element and all elements that are
not qualified with a namespace prefix. However, we can use a namespace prefix to specify
a different namespace for particular elements. For example, the file element in line 13 is
prefixed with image to indicate that it is in the namespace corresponding to the URI
urn:deitel:imageInfo, rather than the default namespace.

18.4 Document Object Model (DOM)
Although XML documents are text files, retrieving data from them via sequential-file ac-
cess techniques is neither practical nor efficient, especially in situations where data must be
added or deleted dynamically.

Upon successful parsing of documents, some XML parsers store document data as tree
structures in memory. Figure 18.6 illustrates the tree structure for the document
article.xml discussed in Fig. 18.1. This hierarchical tree structure is called a Docu-
ment Object Model (DOM) tree, and an XML parser that creates this type of structure is
known as a DOM parser. The DOM tree represents each component of the XML document
(e.g., article, date, firstName, etc.) as a node in the tree. Nodes (such as, author)
that contain other nodes (called child nodes) are called parent nodes. Nodes that have the
same parent (such as, firstName and lastName) are called sibling nodes. A node’s
descendant nodes include that node’s children, its children’s children and so on. Similarly,
a node’s ancestor nodes include that node’s parent, its parent’s parent and so on. Every
DOM tree has a single root node that contains all other nodes in the document. 

Classes for creating, reading and manipulating XML documents are located in the
Visual Basic namespace System.Xml. This namespace also contains additional
namespaces that contain other XML-related operations.

In this section, we present several examples that use DOM trees. Our first example, the
program in Fig. 18.7, loads the XML document presented in Fig. 18.1 and displays its data
in a text box. This example uses an XmlReader derived class named XmlNodeReader,
which iterates through each node in the XML document. Class XmlReader is an Must-
Inherit class that defines the interface for reading XML documents.

Fig. 18.6 Tree structure for Fig. 18.1.

article

title

author

summary

contents

lastName

firstName

date



Chapter 18 Extensible Markup Language (XML) 843

Line 4 includes the System.Xml namespace, which contains the XML classes used
in this example. Line 23 creates a reference to an XmlDocument object that conceptually
represents an empty XML document. The XML document article.xml is parsed and
loaded into this XmlDocument object when method Load is invoked in line 24. Once an
XML document is loaded into an XmlDocument, its data can be read and manipulated
programmatically. In this example, we read each node in the XmlDocument, which is the
DOM tree. In successive examples, we demonstrate how to manipulate node values. 

1 ' Fig. 18.7: XmlReaderTest.vb
2 ' Reading an XML document.
3
4 Imports System.Xml
5 Imports System.Windows.Forms
6
7 Public Class FrmXMLReaderTest
8 Inherits Form
9

10    ' TextBox displays XML output
11 Friend WithEvents txtOutput As TextBox
12
13 Public Sub New()
14       MyBase.New()
15
16       ' This call is required by the Windows Form Designer.
17       InitializeComponent()
18
19       ' Add any initialization after the 
20       ' InitializeComponent() call
21
22       ' reference to "XML document"
23       Dim document As XmlDocument = New XmlDocument()
24       document.Load("article.xml")
25
26       ' create XmlNodeReader for document
27       Dim reader As XmlNodeReader = New XmlNodeReader(document)
28
29       ' show form before txtOutput is populated
30       Me.Show()
31
32       ' tree depth is -1, no indentation
33       Dim depth As Integer = -1
34
35       ' display each node's content
36       While reader.Read
37
38          Select Case reader.NodeType
39
40             ' if Element, display its name
41             Case XmlNodeType.Element
42
43                ' increase tab depth
44                depth += 1

Fig. 18.7 XmlNodeReader iterates through an XML document (part 1 of 3).



844 Extensible Markup Language (XML) Chapter 18

45                TabOutput(depth)
46                txtOutput.Text &= "<" & reader.Name & ">" & _
47                   vbCrLf
48
49                ' if empty element, decrease depth
50                If reader.IsEmptyElement Then
51                   depth -= 1
52                End If
53
54             Case XmlNodeType.Comment ' if Comment, display it
55                TabOutput(depth)
56                txtOutput.Text &= "<!--" & reader.Value & _
57                   "-->" & vbCrLf
58
59             Case XmlNodeType.Text ' if Text, display it
60                TabOutput(depth)
61                txtOutput.Text &= vbTab & reader.Value & vbCrLf
62
63             ' if XML declaration, display it
64             Case XmlNodeType.XmlDeclaration
65                TabOutput(depth)
66                txtOutput.Text &= "<?" & reader.Name & " " & _
67                   reader.Value & "?>" & vbCrLf
68
69             ' if EndElement, display it and decrement depth
70             Case XmlNodeType.EndElement
71                TabOutput(depth)
72                txtOutput.Text &= "</" & reader.Name & ">/" & _
73                   vbCrLf
74
75                depth -= 1
76
77          End Select
78
79       End While
80
81 End Sub ' New
82
83    ' Visual Studio .NET generated code
84
85    ' insert tabs
86 Private Sub TabOutput(ByVal number As Integer)
87       Dim i As Integer
88
89       For i = 0 To number - 1
90          txtOutput.Text &= vbTab
91       Next
92
93 End Sub ' TabOutput
94
95 End Class ' FrmXmlReaderTest

Fig. 18.7 XmlNodeReader iterates through an XML document (part 2 of 3).



Chapter 18 Extensible Markup Language (XML) 845

In line 27, we create an XmlNodeReader and assign it to reference reader, which
enables us to read each node sequentially from the XmlDocument. Method Read of
XmlReader reads one node from the DOM tree. By placing this statement in the While
loop (lines 36–79), reader Reads all the document nodes. The Select Case statement
(lines 38–77) processes each node. Either the Name property (line 46), which contains the
node’s name, or the Value property (line 56), which contains the node’s data, is formatted
and concatenated to the String assigned to the text box Text property. The NodeType
property contains the node type (specifying whether the node is an element, comment, text
etc.). Notice that each Case specifies a node type using XmlNodeType enumeration con-
stants. Note that our line breaks use the Visual Basic constant vbCrLf, which denotes a
carriage return followed by a line feed. This is the standard line break for Windows-based
applications and controls.

The displayed output emphasizes the structure of the XML document. Variable
depth (line 33) sets the number of tab characters for indenting each element. The depth is
incremented each time an Element type is encountered and is decremented each time an
EndElement or empty element is encountered. We use a similar technique in the next
example to emphasize the tree structure of the XML document in the display.

The Visual Basic program in Fig. 18.8 demonstrates how to manipulate DOM trees pro-
grammatically. This program loads letter.xml (Fig. 18.3) into the DOM tree and then
creates a second DOM tree that duplicates the DOM tree containing letter.xml’s con-
tents. The GUI for this application contains a text box, a TreeView control and three but-
tons—Build, Print and Reset. When clicked, Build copies letter.xml and displays the
document’s tree structure in the TreeView control, Print displays the XML element values
and names in a text box and Reset clears the TreeView control and text-box content.

Fig. 18.7 XmlNodeReader iterates through an XML document (part 3 of 3).



846 Extensible Markup Language (XML) Chapter 18

1 ' Fig. 18.8: XmlDom.vb
2 ' Demonstrates DOM tree manipulation.
3
4 Imports System.Xml
5 Imports System.Windows.Forms
6 Imports System.CodeDom.Compiler ' contains TempFileCollection
7
8 Public Class FrmXmlDom
9 Inherits Form

10
11    ' TextBox and TreeView for displaying data
12 Friend WithEvents txtConsole As TextBox
13 Friend WithEvents treXml As TreeView
14
15    ' Buttons for building, printing and reseting DOM tree
16 Friend WithEvents cmdBuild As Button
17 Friend WithEvents cmdPrint As Button
18 Friend WithEvents cmdReset As Button
19
20 Private source As XmlDocument ' reference to "XML document"
21
22    ' reference copy of source's "XML document"
23 Private copy As XmlDocument
24
25 Private tree As TreeNode ' TreeNode reference
26
27 Public Sub New()
28       MyBase.New()
29
30       ' This call is required by the Windows Form Designer.
31       InitializeComponent()
32
33       ' Add any initialization after the 
34       ' InitializeComponent() call
35
36       ' create XmlDocument and load letter.xml
37       source = New XmlDocument()
38       source.Load("letter.xml")
39
40       ' initialize references to Nothing
41       copy = Nothing
42       tree = Nothing
43
44 End Sub ' New
45
46    ' Visual Studio .NET generated code
47
48    ' event handler for cmdBuild click event
49 Private Sub cmdBuild_Click(ByVal sender As System.Object, _
50       ByVal e As System.EventArgs) Handles cmdBuild.Click
51
52       ' determine if copy has been built already
53       If Not copy Is Nothing Then

Fig. 18.8 DOM structure of an XML document (part 1 of 5).



Chapter 18 Extensible Markup Language (XML) 847

54          Return ' document already exists
55       End If
56
57       ' instantiate XmlDocument and TreeNode
58       copy = New XmlDocument()
59       tree = New TreeNode()
60
61       ' add root node name to TreeNode and add
62       ' TreeNode to TreeView control
63       tree.Text = source.Name ' assigns #root
64       treXml.Nodes.Add(tree)
65
66       ' build node and tree hierarchy
67       BuildTree(source, copy, tree)
68 End Sub ' cmdBuild_Click
69
70    ' event handler for cmdPrint click event
71 Private Sub cmdPrint_Click(ByVal sender As System.Object, _
72       ByVal e As System.EventArgs) Handles cmdPrint.Click
73
74       ' exit if copy does not reference an XmlDocument
75       If copy Is Nothing Then
76          Return
77       End If
78
79       ' create temporary XML file
80       Dim file As TempFileCollection = New TempFileCollection()
81
82       ' create file that is deleted at program termination
83       file.AddExtension("xml", False)
84       Dim filename As String() = New String(0) {}
85       file.CopyTo(filename, 0)
86
87       ' write XML data to disk
88       Dim writer As XmlTextWriter = _
89         New XmlTextWriter(filename(0), _
90         System.Text.Encoding.UTF8)
91
92       copy.WriteTo(writer)
93       writer.Close()
94
95       ' parse and load temporary XML document
96       Dim reader As XmlTextReader = _
97          New XmlTextReader(filename(0))
98
99       ' read, format and display data
100       While reader.Read
101
102          If reader.NodeType = XmlNodeType.EndElement Then
103             txtConsole.Text &= "/"
104          End If
105

Fig. 18.8 DOM structure of an XML document (part 2 of 5).



848 Extensible Markup Language (XML) Chapter 18

106          If reader.Name <> String.Empty Then
107             txtConsole.Text &= reader.Name & vbCrLf
108          End If
109
110          If reader.Value <> String.Empty Then
111             txtConsole.Text &= vbTab & reader.Value & vbCrLf
112          End If
113
114       End While
115
116       reader.Close()
117 End Sub ' cmdPrint_Click
118
119    ' handle cmdReset click event
120 Private Sub cmdReset_Click(ByVal sender As System.Object, _
121       ByVal e As System.EventArgs) Handles cmdReset.Click
122
123       ' remove TreeView nodes
124       If Not tree Is Nothing Then
125          treXml.Nodes.Remove(tree)
126       End If
127
128       treXml.Refresh() ' force TreeView update
129
130       ' delete XmlDocument and tree
131       copy = Nothing
132       tree = Nothing
133
134       txtConsole.Clear() ' clear text box
135 End Sub ' cmdReset_Click
136
137    ' construct DOM tree
138 Private Sub BuildTree(ByVal xmlSourceNode As XmlNode, _
139       ByVal documentValue As XmlNode, _
140       ByVal treeNode As TreeNode)
141
142       ' create XmlNodeReader to access XML document
143       Dim nodeReader As XmlNodeReader = _
144          New XmlNodeReader(xmlSourceNode)
145
146       ' represents current node in DOM tree
147       Dim currentNode As XmlNode = Nothing
148
149       ' treeNode to add to existing tree
150       Dim newNode As TreeNode = New TreeNode()
151
152       ' references modified node type for CreateNode
153       Dim modifiedNodeType As XmlNodeType
154
155       While nodeReader.Read
156
157          ' get current node type
158          modifiedNodeType = nodeReader.NodeType

Fig. 18.8 DOM structure of an XML document (part 3 of 5).



Chapter 18 Extensible Markup Language (XML) 849

159
160          ' check for EndElement, store as Element
161          If modifiedNodeType = XmlNodeType.EndElement Then
162             modifiedNodeType = XmlNodeType.Element
163          End If
164
165          ' create node copy
166          currentNode = copy.CreateNode(modifiedNodeType, _
167             nodeReader.Name, nodeReader.NamespaceURI)
168
169          ' build tree based on node type
170          Select Case nodeReader.NodeType
171
172             ' if Text node, add its value to tree
173             Case XmlNodeType.Text
174                newNode.Text = nodeReader.Value
175                treeNode.Nodes.Add(newNode)
176
177                ' append Text node value to currentNode data
178                CType(currentNode, XmlText).AppendData _
179                   (nodeReader.Value)
180
181                documentValue.AppendChild(currentNode)
182
183             ' if EndElement, move up tree
184             Case XmlNodeType.EndElement
185                documentValue = documentValue.ParentNode
186                treeNode = treeNode.Parent
187
188                ' if new element, add name and traverse tree
189             Case XmlNodeType.Element
190
191                ' determine if element contains content
192                If Not nodeReader.IsEmptyElement Then
193
194                   ' assign node text, add newNode as child
195                   newNode.Text = nodeReader.Name
196                   treeNode.Nodes.Add(newNode)
197
198                   ' set treeNode to last child
199                   treeNode = newNode
200
201                   documentValue.AppendChild(currentNode)
202                   documentValue = documentValue.LastChild
203
204                Else ' do not traverse empty elements
205
206                   ' assign NodeType string to newNode
207                   newNode.Text = nodeReader.NodeType.ToString
208
209                   treeNode.Nodes.Add(newNode)
210                   documentValue.AppendChild(currentNode)
211                End If

Fig. 18.8 DOM structure of an XML document (part 4 of 5).



850 Extensible Markup Language (XML) Chapter 18

212
213             Case Else ' all other types, display node type
214                newNode.Text = nodeReader.NodeType.ToString
215                treeNode.Nodes.Add(newNode)
216                documentValue.AppendChild(currentNode)
217
218          End Select
219
220          newNode = New TreeNode()
221       End While
222
223       ' update TreeView control
224       treXml.ExpandAll()
225       treXml.Refresh()
226 End Sub ' BuildTree
227
228 End Class ' FrmXmlDom

Fig. 18.8 DOM structure of an XML document (part 5 of 5).



Chapter 18 Extensible Markup Language (XML) 851

Lines 20 and 23 create references to XmlDocuments source and copy. Line 37
assigns a new XmlDocument object to reference source. Line 38 then invokes method
Load to parse and load letter.xml. We discuss reference copy shortly.

Unfortunately, XmlDocuments do not provide any features for displaying their content
graphically. In this example, we display the document’s contents using a TreeView control.
We use class TreeNode to represent each node in the tree. Class TreeView and class
TreeNode are part of the System.Windows.Forms.Form namespace. TreeNodes
are added to the TreeView to emphasize the structure of the XML document.

When clicked, the Build button triggers the event handler cmdBuild_Click (lines
49–68), which creates a copy of letter.xml dynamically. Lines 58–59 create the Xml-
Document and TreeNodes (i.e., the nodes for graphical representation in the Tree-
View). Line 63 retrieves the Name of the node referenced by source (i.e., #root, which
represents the document root) and assigns it to tree’s Text property. This TreeNode
then is inserted into the TreeView control’s node list. Method Add is called to add each
new TreeNode to the TreeView’s Nodes collection. Line 67 calls method Build-
Tree to copy the XMLDocument referenced by source and to update the TreeView.

Method BuildTree (line 138–226) receives an XmlNode representing the source
node, an empty XmlNode and a treeNode to place in the DOM tree. Parameter
treeNode references the current location in the tree (i.e., the TreeNode most recently
added to the TreeView control). Lines 143–144 instantiate an XmlNodeReader for
iterating through the DOM tree. Lines 147–150 declare XmlNode and TreeNode refer-
ences that indicate the next nodes added to document (i.e., the DOM tree referenced by
copy) and treeNode. Lines 155–221 iterate through each node in the tree.

Lines 158–167 create a node containing a copy of the current nodeReader node.
Method CreateNode of XmlDocument takes a NodeType, a Name and a
NamespaceURI as arguments. The NodeType cannot be an EndElement. If the
NodeType is an EndElement type, lines 161–162 assign modifiedNodeType type
Element.

The Select Case statement in lines 170–218 determines the node type, creates and
adds nodes to the TreeView and updates the DOM tree. When a text node is encountered,
the new TreeNode’s newNode’s Text property is assigned the current node’s value.
This TreeNode is added to the TreeView control. In lines 178–179, we downcast cur-
rentNode to XmlText and append the node’s value. The currentNode then is
appended to the document. Lines 184–186 match an EndElement node type. This
case moves up the tree, because the end of an element has been encountered. The
ParentNode and Parent properties retrieve the documentValue’s and
treeNode’s parents, respectively. 

Line 189 matches Element node types. Each non-empty Element NodeType (line
192) increases the depth of the tree; thus, we assign the current nodeReader Name to the
newNode’s Text property and add the newNode to the treeNode node list. Lines 199–
202 reorder the nodes in the node list to ensure that newNode is the last TreeNode in the
node list. XmlNode currentNode is appended to documentValue as the last child,
and document is set to its LastChild, which is the child we just added. If it is an empty
element (line 204), we assign to the newNode’s Text property the String representa-
tion of the NodeType. Next, the newNode is added to the treeNode node list. Line 216
appends the currentNode to the documentValue. The default case assigns the



852 Extensible Markup Language (XML) Chapter 18

String representation of the node type to the NewNode Text property, adds the
newNode to the TreeNode node list and appends the currentNode to the document.

After the DOM trees are built, the TreeNode node list is displayed in the TreeView
control. The clicking of the nodes (i.e., the + or - boxes) in the TreeView either expands
or collapses them. When Print is clicked, the event handler method cmdPrint_Click
(lines 71–117) is invoked. Lines 80–85 create a temporary file for storing the XML. Lines
88–90 create an XmlTextWriter for streaming the XML data to disk. Method
WriteTo is called to write the XML representation to the XmlTextWriter stream (line
92). Lines 96–97 create an XmlTextReader to read from the file. The While loop (line
100–114) reads each node in the DOM tree and writes tag names and character data to the
text box. If it is an end element, a slash is concatenated. If the node has a Name or Value,
that name or value is concatenated to the text box text.

The Reset button’s event handler, cmdReset_Click, deletes both dynamically
generated trees and updates the TreeView control’s display. Reference copy is assigned
Nothing (to allow its tree to be garbage collected in line 131), and the TreeNode node
list reference tree is assigned Nothing.

Although XmlReader includes methods for reading and modifying node values, it is
not the most efficient means of locating data in a DOM tree. Microsoft .NET provides class
XPathNavigator in the System.Xml.XPath namespace for iterating through node
lists that match search criteria, which are written as an XPath expression. XPath (XML Path
Language) provides a syntax for locating specific nodes in XML documents effectively and
efficiently. XPath is a string-based language of expressions used by XML and many of its
related technologies (such as, XSLT, discussed in Section 18.6).

Figure 18.9, demonstrates how to navigate through an XML document using an
XPathNavigator. Like Fig. 18.8, this program uses a TreeView control and
TreeNode objects to display the XML document’s structure. However, instead of dis-
playing the entire DOM tree, the TreeNode node list is updated each time the XPath-
Navigator is positioned to a new node. Nodes are added to and deleted from the
TreeView to reflect the XPathNavigator’s location in the DOM tree. The XML doc-
ument games.xml that we use in this example is presented in Fig. 18.10.

1 ' Fig. 18.9: PathNavigator.vb
2 ' Demonstrates Class XPathNavigator
3
4 Imports System.Windows.Forms
5 Imports System.Xml.XPath ' contains XPathNavigator
6
7 Public Class FrmPathNavigator
8 Inherits Form
9

10    ' GroupBox contains Controls for locating XML file
11 Friend WithEvents locateGroupBox As GroupBox
12 Friend WithEvents cmdSelect As Button
13 Friend WithEvents cboSelect As ComboBox
14 Friend WithEvents txtSelect As TextBox
15

Fig. 18.9 XPathNavigator class navigates selected nodes (part 1 of 7).



Chapter 18 Extensible Markup Language (XML) 853

16    ' GroupBox contains Controls for navigating DOM tree
17 Friend WithEvents navigateGroupBox As GroupBox
18 Friend WithEvents cmdNext As Button
19 Friend WithEvents cmdPrevious As Button
20 Friend WithEvents cmdParent As Button
21 Friend WithEvents cmdFirstChild As Button
22
23    ' TreeView displays DOM-tree results
24 Friend WithEvents trePath As TreeView
25
26    ' navigator to traverse document
27 Private xPath As XPathNavigator
28
29    ' references document for use by XPathNavigator
30 Private document As XPathDocument
31
32    ' references TreeNode list used by TreeView control
33 Private tree As TreeNode
34
35 Public Sub New()
36       MyBase.New()
37
38       ' This call is required by the Windows Form Designer.
39       InitializeComponent()
40
41       ' Add any initialization after the 
42       ' InitializeComponent() call
43
44       ' load in XML document
45       document = New XPathDocument("sports.xml")
46
47       ' create nagivator
48       xPath = document.CreateNavigator
49
50       ' create root node for TreeNodes
51       tree = New TreeNode()
52
53       tree.Text = xPath.NodeType.ToString ' #root
54       trePath.Nodes.Add(tree)             ' add tree
55
56       ' update TreeView control
57       trePath.ExpandAll()
58       trePath.Refresh()
59       trePath.SelectedNode = tree         ' highlight root
60 End Sub ' New
61
62    ' Visual Studio .NET generated code
63
64    ' traverse to first child
65 Private Sub cmdFirstChild_Click( _
66       ByVal sender As System.Object, _
67       ByVal e As System.EventArgs) Handles cmdFirstChild.Click

Fig. 18.9 XPathNavigator class navigates selected nodes (part 2 of 7).



854 Extensible Markup Language (XML) Chapter 18

68
69       Dim newTreeNode As TreeNode
70
71       ' move to first child
72       If xPath.MoveToFirstChild Then
73          newTreeNode = New TreeNode() ' create new node
74
75          ' set node's Text property to either
76          ' navigator's name or value
77          DetermineType(newTreeNode, xPath)
78
79          ' add node to TreeNode node list
80          tree.Nodes.Add(newTreeNode)
81          tree = newTreeNode ' assign tree newTreeNode
82
83          ' update TreeView control
84          trePath.ExpandAll()
85          trePath.Refresh()
86          trePath.SelectedNode = tree
87
88       Else ' node has no children
89          MessageBox.Show("Current Node has no children.", _
90             "", MessageBoxButtons.OK, MessageBoxIcon.Information)
91       End If
92
93 End Sub ' cmdFirstChild_Click
94
95    ' traverse to node's parent on cmdParent_Click event
96 Private Sub cmdParent_Click(ByVal sender As System.Object, _
97       ByVal e As System.EventArgs) Handles cmdParent.Click
98
99       ' move to parent
100       If xPath.MoveToParent Then
101
102          tree = tree.Parent
103
104          ' get number of child nodes, not including sub trees
105          Dim count As Integer = tree.GetNodeCount(False)
106
107          ' remove all children
108          Dim i As Integer
109          For i = 0 To count - 1
110             tree.Nodes.Remove(tree.FirstNode)
111          Next
112
113          ' update TreeView control
114          trePath.ExpandAll()
115          trePath.Refresh()
116          trePath.SelectedNode = tree
117

Fig. 18.9 XPathNavigator class navigates selected nodes (part 3 of 7).



Chapter 18 Extensible Markup Language (XML) 855

118       Else ' if node has no parent (root node)
119          MessageBox.Show("Current node has no parent.", "", _
120             MessageBoxButtons.OK, MessageBoxIcon.Information)
121
122       End If
123
124    End Sub ' cmdParent_Click
125
126    ' find next sibling on cmdNext_Click event
127 Private Sub cmdNext_Click(ByVal sender As System.Object, _
128       ByVal e As System.EventArgs) Handles cmdNext.Click
129
130       Dim newTreeNode As TreeNode = Nothing
131       Dim newNode As TreeNode = Nothing
132
133       ' move to next sibling
134       If xPath.MoveToNext Then
135
136          newTreeNode = tree.Parent ' get parent node
137
138          newNode = New TreeNode() ' create new node
139          DetermineType(newNode, xPath)
140          newTreeNode.Nodes.Add(newNode)
141
142          ' set current position for display
143          tree = newNode
144
145          ' update TreeView control
146          trePath.ExpandAll()
147          trePath.Refresh()
148          trePath.SelectedNode = tree
149
150       Else ' node has no additional siblings
151          MessageBox.Show("Current node is last sibling.", "", _
152             MessageBoxButtons.OK, MessageBoxIcon.Information)
153
154       End If
155
156 End Sub ' cmdNext_Click
157
158    ' get previous sibling on cmdPrevious_Click
159 Private Sub cmdPrevious_Click( _
160       ByVal sender As System.Object, _
161       ByVal e As System.EventArgs) Handles cmdPrevious.Click
162
163       Dim parentTreeNode As TreeNode = Nothing
164
165       ' move to previous sibling
166       If xPath.MoveToPrevious Then
167
168          parentTreeNode = tree.Parent ' get parent node
169

Fig. 18.9 XPathNavigator class navigates selected nodes (part 4 of 7).



856 Extensible Markup Language (XML) Chapter 18

170          ' delete current node
171          parentTreeNode.Nodes.Remove(tree)
172
173          ' move to previous node
174          tree = parentTreeNode.LastNode
175
176          ' update TreeView control
177          trePath.ExpandAll()
178          trePath.Refresh()
179          trePath.SelectedNode = tree
180
181       Else ' if current node has no previous siblings
182          MessageBox.Show("Current node is first sibling.", "", _
183             MessageBoxButtons.OK, MessageBoxIcon.Information)
184
185       End If
186
187 End Sub ' cmdPrevious_Click
188
189    ' process cmdSelect_Click event
190 Private Sub cmdSelect_Click(ByVal sender As System.Object, _
191       ByVal e As System.EventArgs) Handles cmdSelect.Click
192
193       Dim iterator As XPathNodeIterator ' enables node iteration
194
195       ' get specified node from ComboBox
196       Try
197          iterator = xPath.Select(cboSelect.Text)
198          DisplayIterator(iterator) ' print selection
199
200       ' catch invalid expressions
201       Catch argumentException As System.ArgumentException
202          MessageBox.Show(argumentException.Message, "Error", _
203             MessageBoxButtons.OK, MessageBoxIcon.Error)
204
205       End Try
206
207 End Sub ' cmdSelect_Click
208
209    ' print values for XPathNodeIterator
210 Private Sub DisplayIterator( _
211       ByVal iterator As XPathNodeIterator)
212
213       txtSelect.Clear()
214
215       ' prints selected node's values
216       While iterator.MoveNext
217          txtSelect.Text &= iterator.Current.Value.Trim & vbCrLf
218       End While
219
220 End Sub ' DisplayIterator
221

Fig. 18.9 XPathNavigator class navigates selected nodes (part 5 of 7).



Chapter 18 Extensible Markup Language (XML) 857

222    ' determine if TreeNode should display current node
223    ' name or value
224 Private Sub DetermineType(ByVal node As TreeNode, _
225       ByVal xPath As XPathNavigator)
226
227       ' determine NodeType
228       Select Case xPath.NodeType
229
230          Case XPathNodeType.Element ' if Element, get its name
231
232             ' get current node name, and remove whitespaces
233             node.Text = xPath.Name.Trim
234
235          Case Else ' obtain node values
236
237             ' get current node value and remove whitespaces
238             node.Text = xPath.Value.Trim
239
240       End Select
241
242 End Sub ' DetermineType
243
244 End Class ' FrmPathNavigator

Fig. 18.9 XPathNavigator class navigates selected nodes (part 6 of 7).



858 Extensible Markup Language (XML) Chapter 18

This program loads XML document sports.xml into an XPathDocument object
by passing the document’s file name to the XPathDocument constructor (line 45).
Method CreateNavigator (line 48) creates and returns an XPathNavigator refer-
ence to the XPathDocument’s tree structure.

Fig. 18.9 XPathNavigator class navigates selected nodes (part 7 of 7).



Chapter 18 Extensible Markup Language (XML) 859

The navigation methods of XPathNavigator in Fig. 18.9 are MoveToFirst-
Child (line 72), MoveToParent (line 100), MoveToNext (line 134) and MoveTo-
Previous (line 166). Each method performs the action that its name implies. Method
MoveToFirstChild moves to the first child of the node referenced by the XPathNav-
igator, MoveToParent moves to the parent node of the node referenced by the
XPathNavigator, MoveToNext moves to the next sibling of the node referenced by
the XPathNavigator and MoveToPrevious moves to the previous sibling of the
node referenced by the XPathNavigator. Each method returns a Boolean indicating
whether the move was successful. In this example, we display a warning in a Mes-
sageBox, whenever a move operation fails. Furthermore, each method is called in the
event handler of the button that matches its name (e.g., button First Child triggers
cmdFirstChild_Click, which calls MoveToFirstChild).

Whenever we move forward using the XPathNavigator, as with MoveTo-
FirstChild and MoveToNext, nodes are added to the TreeNode node list. Pri-
vate Method DetermineType (lines 224–242) determines whether to assign the
Node’s Name property or Value property to the TreeNode (lines 233 and 238). When-
ever MoveToParent is called, all children of the parent node are removed from the dis-
play. Similarly, a call to MoveToPrevious removes the current sibling node. Note that
the nodes are removed only from the TreeView, not from the tree representation of the
document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.10: games.xml -->
4 <!-- Sports Database       -->
5
6 <sports>
7
8  <game id = "783">
9       <name>Cricket</name>

10
11    <paragraph>
12          More popular among commonwealth nations.
13    </paragraph>
14 </game>
15
16   <game id = "239">
17       <name>Baseball</name>
18
19       <paragraph>
20          More popular in America.
21       </paragraph>
22    </game>
23
24    <game id = "418">
25       <name>Soccer(Futbol)</name>
26       <paragraph>Most popular sport in the world</paragraph>
27 </game>
28 </sports> 

Fig. 18.10 XML document that describes various sports.



860 Extensible Markup Language (XML) Chapter 18

The other event handler corresponds to button Select (line 190–207). Method
Select (line 197) takes search criteria in the form of either an XPathExpression or
a String that represents an XPath expression and returns as an XPathNodeIterator
object any nodes that match the search criteria. Figure 18.11 summarizes the XPath expres-
sions provided by this program’s combo box.

Method DisplayIterator (defined in lines 210–220) appends the node values
from the given XPathNodeIterator to the txtSelect text box. Note that we call
the String method Trim to remove unnecessary whitespace. Method MoveNext (line
216) advances to the next node, which property Current (line 217) can access.

18.5 Document Type Definitions (DTDs),  Schemas and 
Validation
XML documents can reference optional documents that specify how the XML documents
should be structured. These optional documents are called Document Type Definitions
(DTDs) and Schemas. When a DTD or Schema document is provided, some parsers (called
validating parsers) can read the DTD or Schema and check the XML document’s structure
against it. If the XML document conforms to the DTD or Schema, then the XML document
is valid. Parsers that cannot check for document conformity against the DTD or Schema
and are called non-validating parsers. If an XML parser (validating or non-validating) is
able to process an XML document (that does not reference a DTD or Schema), the XML
document is considered to be well formed (i.e., it is syntactically correct). By definition, a
valid XML document is also a well-formed XML document. If a document is not well
formed, parsing halts, and the parser issues an error.

Software Engineering Observation 18.2
DTD and Schema documents are essential components for XML documents used in business-
to-business (B2B) transactions and mission-critical systems. These documents help ensure
that XML documents are valid. 18.2

Expression Description

/sports Matches all sports nodes that are child nodes of 
the document root node.

/sports/game/name Matches all name nodes that are child nodes of 
game. The game is a child of sports, which is a 
child of the document root.

/sports/game/paragraph Matches all paragraph nodes that are child nodes 
of game. The game is a child of sports, which is 
a child of the document root.

/sports/game[name='Cricket'] Matches all game nodes that contain a child element 
name whose name is Cricket. The game is a child 
of sports, which is a child of the document root.

Fig. 18.11 XPath expressions and descriptions.



Chapter 18 Extensible Markup Language (XML) 861

Software Engineering Observation 18.3
Because XML document content can be structured in many different ways, an application
cannot determine whether the document data it receives is complete, missing data or ordered
properly. DTDs and Schemas solve this problem by providing an extensible means of de-
scribing a document’s contents. An application can use a DTD or Schema document to per-
form a validity check on the document’s contents. 18.3

18.5.1 Document Type Definitions

Document type definitions (DTDs) provide a means for type checking XML documents
and thus verifying their validity (confirming that elements contain the proper attributes, el-
ements are in the proper sequence, etc.). DTDs use EBNF (Extended Backus-Naur Form)
grammar to describe an XML document’s content. XML parsers need additional function-
ality to read EBNF grammar, because it is not XML syntax. Although DTDs are optional,
they are recommended to ensure document conformity. The DTD in Fig. 18.12 defines the
set of rules (i.e., the grammar) for structuring the business letter document contained in
Fig. 18.13. 

Portability Tip 18.2
DTDs can ensure consistency among XML documents generated by different programs. 18.2

Line 4 uses the ELEMENT element type declaration to define rules for element
letter. In this case, letter contains one or more contact elements, one saluta-
tion element, one or more paragraph elements, one closing element and one sig-
nature element, in that sequence. The plus sign (+) occurrence indicator specifies that
an element must occur one or more times. Other indicators include the asterisk (*), which
indicates an optional element that can occur any number of times, and the question mark
(?), which indicates an optional element that can occur at most once. If an occurrence indi-
cator is omitted, exactly one occurrence is expected.

1 <!-- Fig. 18.12: letter.dtd      -->
2 <!-- DTD document for letter.xml -->
3
4 <!ELEMENT letter ( contact+, salutation, paragraph+, 
5    closing, signature )>
6
7 <!ELEMENT contact ( name, address1, address2, city, state,
8    zip, phone, flag )>
9 <!ATTLIST contact type CDATA #IMPLIED>

10
11 <!ELEMENT name ( #PCDATA )>
12 <!ELEMENT address1 ( #PCDATA )>
13 <!ELEMENT address2 ( #PCDATA )>
14 <!ELEMENT city ( #PCDATA )>
15 <!ELEMENT state ( #PCDATA )>
16 <!ELEMENT zip ( #PCDATA )>
17 <!ELEMENT phone ( #PCDATA )>
18 <!ELEMENT flag EMPTY>

Fig. 18.12 Document Type Definition (DTD) for a business letter (part 1 of 2).



862 Extensible Markup Language (XML) Chapter 18

The contact element definition (line 7) specifies that it contains the name,
address1, address2, city, state, zip, phone and flag elements—in that order.
Exactly one occurrence of each is expected. 

Line 9 uses the ATTLIST element type declaration to define an attribute (i.e., type)
for the contact element. Keyword #IMPLIED specifies that, if the parser finds a con-
tact element without a type attribute, the application can provide a value or ignore the
missing attribute. The absence of a type attribute cannot invalidate the document. Other
types of default values include #REQUIRED and #FIXED. Keyword #REQUIRED speci-
fies that the attribute must be present in the document and the keyword #FIXED specifies
that the attribute (if present) must always be assigned a specific value. For example,

<!ATTLIST address zip #FIXED "01757">

indicates that the value 01757 must be used for attribute zip; otherwise, the document is
invalid. If the attribute is not present, then the parser, by default, uses the fixed value that is
specified in the ATTLIST declaration. Flag CDATA specifies that attribute type contains a
String that is not processed by the parser, but instead is passed to the application as is.

Software Engineering Observation 18.4
DTD syntax does not provide any mechanism for describing an element’s (or attribute’s)
data type. 18.4

Flag #PCDATA (line 11) specifies that the element can store parsed character data
(i.e., text). Parsed character data cannot contain markup. The characters less than (<) and
ampersand (&) must be replaced by their entities (i.e., &lt; and &amp;). However, the
ampersand character can be inserted when used with entities. See Appendix L (on CD) for
a list of pre-defined entities.

Line 18 defines an empty element named flag. Keyword EMPTY specifies that the ele-
ment cannot contain character data. Empty elements commonly are used for their attributes.

Common Programming Error 18.8
Any element, attribute or relationship not explicitly defined by a DTD results in an invalid
document. 18.8

XML documents must explicitly reference a DTD. Figure 18.13 is an XML document
that conforms to letter.dtd (Fig. 18.12).

This XML document is similar to that in Fig. 18.3. Line 6 references a DTD file. This
markup contains three pieces: The name of the root element (letter in line 8) to which
the DTD is applied, the keyword SYSTEM (which in this case denotes an external DTD—
a DTD defined in a separate file) and the DTD’s name and location (i.e., letter.dtd in
the current directory). Though almost any file extension can be used, DTD documents typ-
ically end with the .dtd extension. 

19 <!ATTLIST flag gender (M | F) "M">
20
21 <!ELEMENT salutation ( #PCDATA )>
22 <!ELEMENT closing ( #PCDATA )>
23 <!ELEMENT paragraph ( #PCDATA )>
24 <!ELEMENT signature ( #PCDATA )>

Fig. 18.12 Document Type Definition (DTD) for a business letter (part 2 of 2).



Chapter 18 Extensible Markup Language (XML) 863

Various tools (many of which are free) check document conformity against DTDs and
Schemas (discussed momentarily). The output in Fig. 18.14 shows the results of the valida-
tion of letter2.xml using Microsoft’s XML Validator. Visit www.w3.org/XML/
Schema.html for a list of validating tools. Microsoft XML Validator is available free for
download from msdn.microsoft.com/downloads/samples/Internet/xml/
xml_validator/sample.asp.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.13: letter2.xml            -->
4 <!-- Business letter formatted with XML -->
5
6 <!DOCTYPE letter SYSTEM "letter.dtd">
7
8 <letter>
9    <contact type = "from">

10       <name>Jane Doe</name>
11       <address1>Box 12345</address1>
12       <address2>15 Any Ave.</address2>
13       <city>Othertown</city>
14       <state>Otherstate</state>
15       <zip>67890</zip>
16       <phone>555-4321</phone>
17       <flag gender = "F" />
18    </contact>
19
20    <contact type = "to">
21       <name>John Doe</name>
22       <address1>123 Main St.</address1>
23       <address2></address2>
24       <city>Anytown</city>
25       <state>Anystate</state>
26       <zip>12345</zip>
27       <phone>555-1234</phone>
28       <flag gender = "M" />
29    </contact>
30
31 <salutation>Dear Sir:</salutation>
32
33       <paragraph>It is our privilege to inform you about our new
34       database managed with XML. This new system
35       allows you to reduce the load on your inventory list
36       server by having the client machine perform the work of
37       sorting and filtering the data.
38       </paragraph>
39
40       <paragraph>Please visit our Web site for availability
41       and pricing.
42       </paragraph>
43  <closing>Sincerely</closing>
44 <signature>Ms. Doe</signature>
45 </letter>

Fig. 18.13 XML document referencing its associated DTD.



864 Extensible Markup Language (XML) Chapter 18

Microsoft XML Validator can validate XML documents against DTDs locally or by
uploading the documents to XML Validator Web site. Here, letter2.xml and
letter.dtd are placed in folder C:\XML\. This XML document (letter2.xml) is
well formed and conforms to letter.dtd.

XML documents that fail validation are still well-formed documents. When a docu-
ment fails to conform to a DTD or Schema, Microsoft XML Validator displays an error
message. For example, the DTD in Fig. 18.12 indicates that the contacts element must
contain child element name. If the document omits this child element, the document is well
formed, but not valid. In such a scenario, Microsoft XML Validator displays the error mes-
sage shown in Fig. 18.15.

Visual Basic programs can use msxml to validate XML documents against DTDs. For
information on how to accomplish this, visit:

msdn.microsoft.com/library/default.asp?
url=/library/en-us/cpguidnf/html/
cpconvalidationagainstdtdwithxmlvalidatingreader.asp 

As mentioned earlier, Schemas are the preferred means of defining structures for
XML documents in .NET. Although, several types of Schemas exist, the two most popular
are Microsoft Schema and W3C Schema. We begin our discussion of Schemas in the next
section. 

Fig. 18.14 XML Validator validates an XML document against a DTD.



Chapter 18 Extensible Markup Language (XML) 865

18.5.2 Microsoft XML Schemas
In this section, we introduce an alternative to DTDs—called Schemas—for defining XML
document structures. Many developers in the XML community feel that DTDs are not flex-
ible enough to meet today’s programming needs. For example, DTDs cannot be manipulat-
ed (e.g., searched, programmatically modified, etc.) in the same manner that XML
documents can, because DTDs are not XML documents. 

Unlike DTDs, Schemas do not use Extended Backus-Naur Form (EBNF) grammar.
Instead, Schemas are XML documents that can be manipulated (e.g., elements can be added
or removed, etc.) like any other XML document. As with DTDs, Schemas require vali-
dating parsers.

In this section, we focus on Microsoft’s XML Schema vocabulary.2 Figure 18.16 pre-
sents an XML document that conforms to the Microsoft Schema document shown in
Figure 18.17. By convention, Microsoft XML Schema documents use the file extension
.xdr. Line 6 (Fig. 18.16) references the Schema document book.xdr.

Fig. 18.15 XML Validator displaying an error message.

2. For those readers who are interested in W3C Schema, we provide such examples on our Web site,
www.deitel.com. We also provide a detailed treatment of W3C Schema in XML How to Pro-
gram, 2/e.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.16: book.xml             -->
4 <!-- XML file that marks up book data -->
5
6 <books xmlns = "x-schema:book.xdr">
7 <book>
8       <title>C# How to Program</title>
9    </book>

10
11    <book>
12       <title>Java How to Program, 4/e</title>
13    </book>

Fig. 18.16 XML document that conforms to a Microsoft Schema document (part 1 of 2).



866 Extensible Markup Language (XML) Chapter 18

Software Engineering Observation 18.5
Schemas are XML documents that conform to DTDs, which define the structure of a Schema.
These DTDs, which are bundled with the parser, are used to validate the Schemas that au-
thors create. 18.5

Software Engineering Observation 18.6
Many organizations and individuals are creating DTDs and Schemas for a broad range of
categories (e.g., financial transactions, medical prescriptions, etc.). Often, these collec-
tions—called repositories—are available free for download from the Web.3 18.6

In line 6, root element Schema begins the Schema markup. Microsoft Schema use the
namespace URI "urn:schemas-microsoft-com:data". Line 7 uses the Ele-
mentType element to define element title. Attribute content specifies that this ele-
ment contains parsed character data (i.e., text only). Element title is not permitted to

14
15    <book>
16       <title>Visual Basic .NET How to Program</title>
17    </book>
18
19    <book>
20       <title>Advanced Java 2 Platform How to Program</title>
21    </book>
22
23    <book>
24       <title>Python How to Program</title>
25    </book>
26 </books>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.17: book.xdr                       -->
4 <!-- Schema document to which book.xml conforms -->
5
6 <Schema xmlns = "urn:schemas-microsoft-com:xml-data">
7    <ElementType name = "title" content = "textOnly"
8       model = "closed" />
9

10    <ElementType name = "book" content = "eltOnly" model = "closed">
11       <element type = "title" minOccurs = "1" maxOccurs = "1" />
12    </ElementType>
13
14    <ElementType name = "books" content = "eltOnly" model = "closed">
15       <element type = "book" minOccurs = "0" maxOccurs = "*" />
16    </ElementType>
17 </Schema>

Fig. 18.17 Schema file that contains structure to which book.xml conforms.

Fig. 18.16 XML document that conforms to a Microsoft Schema document (part 2 of 2).

3. See, for example, opengis.net/schema.htm.



Chapter 18 Extensible Markup Language (XML) 867

contain child elements. Setting the model attribute to "closed" specifies that a con-
forming XML document can contain only elements defined in this Schema. Line 10 defines
element book; this element’s content is “elements only” (i.e., eltOnly). This means
that the element cannot contain mixed content (i.e., text and other elements). Within the Ele-
mentType element named book, the element element indicates that title is a child
element of book. Attributes minOccurs and maxOccurs are set to "1", indicating that
a book element must contain exactly one title element. The asterisk (*) in line 15 indi-
cates that the Schema permits any number of book elements in element books.

Class XmlValidatingReader validates an XML document against a Schema. The
program in Fig. 18.18 validates an XML document that the user provides (such as,
Fig. 18.16 or Fig. 18.19) against a Microsoft Schema document (Fig. 18.17).

Line 17 creates an XmlSchemaCollection reference named schemas. Line 33
calls its Add method to add an XmlSchema object to the Schema collection. Method Add
receives as arguments a name that identifies the Schema (e.g., "book") and the name of
the Schema file (e.g., "book.xdr").

The XML document to be validated against the Schema(s) contained in the
XmlSchemaCollection must be passed to the XmlValidatingReader con-
structor (line 48–49). Lines 44–45 create an XmlReader for the file that the user selected
from filesComboBox. The XmlReader passed to this constructor is created using the
file name selected from cboFiles (lines 44–45).

 Line 52 Adds the Schema collection referenced by Schemas to the Schemas prop-
erty. This property sets the Schema(s) used to validate the document. The Validation-
Type property (line 55) is set to the ValidationType enumeration constant for
Microsoft Schema. Lines 58–59 register method ValidationError with Valida-
tionEventHandler. Method ValidationError (lines 79–84) is called if the doc-
ument is invalid or an error occurs, such as if the document cannot be found. Failure to
register a method with ValidationEventHandler causes an exception to be thrown
when the document is missing or invalid.

1 ' Fig. 18:18: ValidationTest.vb
2 ' Validating XML documents against Schemas.
3
4 Imports System.Windows.Forms
5 Imports System.Xml
6 Imports System.Xml.Schema ' contains Schema classes
7
8 ' determines XML document Schema validity
9 Public Class FrmValidationTest

10 Inherits Form
11
12    ' Controls for validating XML document
13 Friend WithEvents cboFiles As ComboBox
14 Friend WithEvents cmdValidate As Button
15 Friend WithEvents lblConsole As Label
16
17 Private schemas As XmlSchemaCollection ' Schemas
18 Private valid As Boolean ' validation result

Fig. 18.18 Schema-validation example (part 1 of 3).



868 Extensible Markup Language (XML) Chapter 18

19
20 Public Sub New()
21       MyBase.New()
22
23       ' This call is required by the Windows Form Designer.
24       InitializeComponent()
25
26       ' Add any initialization after the 
27       ' InitializeComponent() call
28
29       valid = True ' assume document is valid
30
31       ' get Schema(s) for validation
32       schemas = New XmlSchemaCollection()
33       schemas.Add("book", "book.xdr")
34 End Sub ' New
35
36    ' Visual Studio .NET generated code
37
38    ' handle cmdValidate click event
39 Private Sub cmdValidate_Click( _
40       ByVal sender As System.Object, _
41       ByVal e As System.EventArgs) Handles cmdValidate.Click
42
43       ' get XML document
44       Dim reader As XmlTextReader = _
45          New XmlTextReader(cboFiles.Text)
46
47       ' get validator
48       Dim validator As XmlValidatingReader = _
49          New XmlValidatingReader(reader)
50
51       ' assign Schema(s)
52       validator.Schemas.Add(schemas)
53
54       ' Microsoft XDR validation
55       validator.ValidationType = ValidationType.XDR
56
57       ' register event handler for validation error(s)
58       AddHandler validator.ValidationEventHandler, _
59          AddressOf ValidationError
60
61       ' validate document node-by-node
62       While validator.Read
63
64          ' empty body
65       End While
66
67       ' check validation result
68       If valid Then
69          lblConsole.Text = "Document is valid"
70       End If
71

Fig. 18.18 Schema-validation example (part 2 of 3).



Chapter 18 Extensible Markup Language (XML) 869

Validation is performed node-by-node by calling method Read of the Valida-
tingReader object (line 62). Each call to Read validates the next node in the document.
The loop terminates either when all nodes have been validated successfully or if a node fails
validation. 

When validated against the Schema, the XML document in Fig. 18.16 validates suc-
cessfuly. However, when the XML document of Fig. 18.19 is provided, validation fails,
because the book element defined by lines 19–22 contains more than one title element.

72       valid = True ' reset variable
73
74       ' close reader stream
75       validator.Close()
76 End Sub ' cmdValidate_Click
77
78    ' event handler for validation error
79 Private Sub ValidationError(ByVal sender As Object, _
80       ByVal arguments As ValidationEventArgs)
81
82       lblConsole.Text = arguments.Message
83       valid = False ' validation failed
84 End Sub ' ValidationError
85
86 End Class ' FrmValidationTest

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.19: fail.xml                              -->
4 <!-- XML file that does not conform to Schema book.xdr -->
5
6 <books xmlns = "x-schema:book.xdr">
7    <book>
8       <title>XML How to Program</title>
9    </book>

10
11    <book>
12       <title>Java How to Program, 4/e</title>
13    </book>

Fig. 18.19 XML file that does not conform to the Schema in Fig. 18.17 (part 1 of 2).

Fig. 18.18 Schema-validation example (part 3 of 3).



870 Extensible Markup Language (XML) Chapter 18

18.6 Extensible Stylesheet Language and XslTransform
Extensible Stylesheet Language (XSL) is an XML vocabulary for formatting XML data. In
this section, we discuss the portion of XSL—called XSL Transformations (XSLT)—that
creates formatted text-based documents from XML documents. This process is called a
transformation and involves two tree structures: the source tree, which is the XML docu-
ment being transformed, and the result tree, which is the result (e.g., Extensible Hypertext
Markup Language or XHTML) of the transformation.4 The source tree is not modified
when a transformation occurs.

To perform transformations, an XSLT processor is required. Popular XSLT processors
include Microsoft’s msxml and the Apache Software Foundation’s Xalan 2. The XML doc-
ument, shown in Fig. 18.20, is transformed by msxml into an XHTML document
(Fig. 18.21).     

Line 6 is a processing instruction (PI), which contains application-specific informa-
tion that is embedded into the XML document. In this particular case, the processing
instruction is specific to IE and specifies the location of an XSLT document with which to
transform the XML document. The characters <? and ?> delimit a processing instruction,

14
15    <book>
16       <title>Visual Basic .NET How to Program</title>
17    </book>
18
19    <book>
20       <title>C++ How to Program, 3/e</title>
21       <title>Python How to Program</title>
22    </book>
23
24    <book>
25       <title>C# How to Program</title>
26    </book>
27 </books>

4. XHTML is the W3C technical recommendation that replaces HTML for marking up content for
the Web. For more information on XHTML, see the XHTML Appendices J and K on the CD and
visit www.w3.org.

Fig. 18.19 XML file that does not conform to the Schema in Fig. 18.17 (part 2 of 2).



Chapter 18 Extensible Markup Language (XML) 871

which consists of a PI target (e.g., xml:stylesheet) and PI value (e.g., type =
"text/xsl" href = "sorting.xsl"). The portion of this particular PI value that
follows href specifies the name and location of the style sheet to apply—in this case,
sorting.xsl, which is located in the same directory as this XML document.

Fig. 18.21 presents the XSLT document (sorting.xsl) that transforms
sorting.xml (Fig. 18.20) to XHTML.

Performance Tip 18.1
Using Internet Explorer on the client to process XSLT documents conserves server resources
by using the client’s processing power (instead of having the server process XSLT documents
for multiple clients). 18.1

Line 1 of Fig. 18.21 contains the XML declaration. Recall that an XSL document is an
XML document. Line 6 is the xsl:stylesheet root element. Attribute version
specifies the version of XSLT to which this document conforms. Namespace prefix xsl is
defined and bound to the XSLT URI defined by the W3C. When processed, lines 11–13
write the document type declaration to the result tree. Attribute method is assigned
"xml", which indicates that XML is being output to the result tree. Attribute omit-xml-
declaration is assigned "no", which outputs an XML declaration to the result tree.
Attribute doctype-system and doctype-public write the Doctype DTD infor-
mation to the result tree. 

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.20: sorting.xml                  -->
4 <!-- XML document containing book information -->
5
6 <?xml:stylesheet type = "text/xsl" href = "sorting.xsl"?>
7
8 <book isbn = "999-99999-9-X">
9   <title>Deitel&apos;s XML Primer</title>

10
11 <author>
12       <firstName>Paul</firstName>
13       <lastName>Deitel</lastName>
14    </author>
15
16    <chapters>
17       <frontMatter>
18          <preface pages = "2" />
19          <contents pages = "5" />
20          <illustrations pages = "4" />
21       </frontMatter>
22
23       <chapter number = "3" pages = "44">
24          Advanced XML</chapter>
25       <chapter number = "2" pages = "35">
26          Intermediate XML</chapter>
27       <appendix number = "B" pages = "26">
28          Parsers and Tools</appendix>

Fig. 18.20 XML document containing book information (part 1 of 2).



872 Extensible Markup Language (XML) Chapter 18

29       <appendix number = "A" pages = "7">
30          Entities</appendix>
31       <chapter number = "1" pages = "28">
32          XML Fundamentals</chapter>
33    </chapters>
34
35    <media type = "CD" />
36 </book>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.21 : sorting.xsl                      -->
4 <!-- Transformation of book information into XHTML -->
5
6 <xsl:stylesheet version = "1.0"
7    xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9    <!-- write XML declaration and DOCTYPE DTD information -->

10    <xsl:output method = "xml" omit-xml-declaration = "no"
11       doctype-system = 
12          "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
13       doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
14
15    <!-- match document root -->
16    <xsl:template match = "/">
17       <html xmlns = "http://www.w3.org/1999/xhtml">
18          <xsl:apply-templates/>
19       </html>
20    </xsl:template>
21
22    <!-- match book -->
23    <xsl:template match = "book">
24       <head>
25          <title>ISBN <xsl:value-of select = "@isbn" /> - 
26             <xsl:value-of select = "title" /></title>
27       </head>
28
29       <body>
30          <h1 style = "color: blue">
31             <xsl:value-of select = "title"/></h1>
32
33          <h2 style = "color: blue">by <xsl:value-of 
34             select = "author/lastName" />,
35             <xsl:value-of select = "author/firstName" /></h2>
36
37          <table style =
38             "border-style: groove; background-color: wheat">
39

Fig. 18.21 XSL document that transforms sorting.xml into XHTML (part 1 of 3).

Fig. 18.20 XML document containing book information (part 2 of 2).



Chapter 18 Extensible Markup Language (XML) 873

40             <xsl:for-each select = "chapters/frontMatter/*">
41                <tr>
42                   <td style = "text-align: right">
43                      <xsl:value-of select = "name()" />
44                   </td>
45
46                   <td>
47                     ( <xsl:value-of select = "@pages" /> pages )
48                   </td>
49                </tr>
50             </xsl:for-each>
51
52             <xsl:for-each select = "chapters/chapter">
53                <xsl:sort select = "@number" data-type = "number"
54                     order = "ascending" />
55                <tr>
56                   <td style = "text-align: right">
57                      Chapter <xsl:value-of select = "@number" />
58                   </td>
59
60                   <td>
61                      ( <xsl:value-of select = "@pages" /> pages )
62                   </td>
63                </tr>
64             </xsl:for-each>
65
66             <xsl:for-each select = "chapters/appendix">
67                <xsl:sort select = "@number" data-type = "text"
68                     order = "ascending" />
69                <tr>
70                   <td style = "text-align: right">
71                      Appendix <xsl:value-of select = "@number" />
72                   </td>
73
74                   <td>
75                      ( <xsl:value-of select = "@pages" /> pages )
76                   </td>
77                </tr>
78             </xsl:for-each>
79          </table>
80
81          <br /><p style = "color: blue">Pages: 
82             <xsl:variable name = "pagecount"
83                select = "sum(chapters//*/@pages)" />
84             <xsl:value-of select = "$pagecount" />
85          <br />Media Type:
86             <xsl:value-of select = "media/@type" /></p>
87       </body>
88    </xsl:template>
89
90 </xsl:stylesheet>

Fig. 18.21 XSL document that transforms sorting.xml into XHTML (part 2 of 3).



874 Extensible Markup Language (XML) Chapter 18

XSLT documents contain one or more xsl:template elements that specify which
information is outputted to the result tree. The template on line 16 matches the source
tree’s document root. When the document root is encountered in the transformation, this
template is applied, and any text marked up by this element that is not in the namespace
referenced by xsl is outputted to the result tree. Line 18 calls for all the templates that
match children of the document root to be applied. Line 23 specifies a template that
matches element book.

Lines 25–26 create the title for the XHTML document. We use the ISBN of the book
from attribute isbn and the contents of element title to create the title String ISBN
999-99999-9-X - Deitel’s XML Primer. Element xsl:value-of selects the book
element’s isbn attribute.

Lines 33–35 create a header element that contains the book’s author. Because the con-
text node (i.e., the current node being processed) is book, the XPath expression author/
lastName selects the author’s last name, and the expression author/firstName
selects the author’s first name.

Line 40 selects each element (indicated by an asterisk) that is a child of element
frontMatter. Line 43 calls node-set function name to retrieve the current node’s ele-
ment name (e.g., preface). The current node is the context node specified in the
xsl:for-each (line 40).

Lines 53–54 sort chapters by number in ascending order. Attribute select selects
the value of context node chapter’s attribute number. Attribute data-type with
value "number", specifies a numeric sort and attribute order specifies "ascending"

Fig. 18.21 XSL document that transforms sorting.xml into XHTML (part 3 of 3).



Chapter 18 Extensible Markup Language (XML) 875

order. Attribute data-type also can, be assigned the value "text" (line 67) and
attribute order also may be assigned the value "descending".

Lines 82–83 use an XSL variable to store the value of the book’s page count and output
it to the result tree. Attribute name specifies the variable’s name, and attribute select
assigns it a value. Function sum totals the values for all page attribute values. The two
slashes between chapters and * indicate that all descendent nodes of chapters are
searched for elements that contain an attribute named pages.

Figure 18.22 applies a style sheet (games.xsl) to games.xml (Fig. 18.10). The
transformation result is written to a text box and to a file. We also show the transformation
results rendered in IE.

Line 7 imports the System.Xml.Xsl namespace, which contains classes for
applying XSLT style sheets to XML documents. Specifically, an object of class Xsl-
Transform performs the transformation. 

Line 19 declares XslTransform reference transformer. An object of this type
is necessary to transform the XML data to another format. In line 33, the XML document
is parsed and loaded into memory by calling method Load of the XMLDocument object.
Method CreateNavigator of the XMLDocument object is called in line 36 to create
an XPathNavigator object for navigating the XML document during the transforma-
tion. A call to method Load of the XslTransform object (line 40) parses and loads the
style sheet that this application uses. The argument that is passed contains the name and
location of the style sheet.

Event handler cmdTransform_Click (lines 46–66) calls method Transform of
class XslTransform to apply the style sheet (games.xsl) to games.xml (line 51).
This method takes three arguments: an XPathNavigator (created from games.xml’s
XmlDocument); an instance of class XsltArgumentList, which is a list of String
parameters that can be applied to a style sheet (Nothing in this case); and an instance of
a derived class of TextWriter (in this example, an instance of class StringWriter).
The results of the transformation are stored in the StringWriter object referenced by
output. Lines 57–61 write the transformation results to disk. The third screen shot depicts
the created XHTML document rendered in IE.

1 ' Fig. 18.22: TransformTest.vb
2 ' Applying a sytle to an XML document.
3
4 Imports System.Windows.Forms
5 Imports System.Xml
6 Imports System.Xml.XPath
7 Imports System.Xml.Xsl
8 Imports System.IO
9

10 Public Class FrmTransformTest
11 Inherits Form
12
13    ' Controls for starting and displaying transformation
14 Friend WithEvents cmdTransform As Button
15 Friend WithEvents txtConsole As TextBox
16

Fig. 18.22 XSL style sheet applied to an XML document (part 1 of 3).



876 Extensible Markup Language (XML) Chapter 18

17 Private document As XmlDocument     ' Xml document root
18 Private navigator As XPathNavigator ' navigate document
19 Private transformer As XslTransform ' transform document
20 Private output As StringWriter      ' display document
21
22 Public Sub New()
23       MyBase.New()
24
25       ' This call is required by the Windows Form Designer.
26       InitializeComponent()
27
28       ' Add any initialization after the 
29       ' InitializeComponent() call
30
31       ' load XML data
32       document = New XmlDocument()
33       document.Load("games.xml")
34
35       ' create navigator
36       navigator = document.CreateNavigator
37
38       ' load style sheet
39       transformer = New XslTransform()
40       transformer.Load("games.xsl")
41 End Sub ' New
42
43    ' Visual Studio .NET generated code
44
45    ' cmdTransform click event
46 Private Sub cmdTransform_Click( ByVal sender As System.Object, _
47       ByVal e As System.EventArgs) Handles cmdTransform.Click
48
49       ' transform XML data
50       output = New StringWriter()
51       transformer.Transform(navigator, Nothing, output)
52
53       ' display transformation in text box
54       txtConsole.Text = output.ToString
55
56       ' write transformation result to disk
57       Dim stream As FileStream = _
58          New FileStream("games.html", FileMode.Create)
59
60       Dim writer As StreamWriter = New StreamWriter(stream)
61       writer.Write(output.ToString)
62
63       ' close streams
64       writer.Close()
65       output.Close()
66 End Sub ' cmdTransform_Click
67
68 End Class ' FrmTransformTest

Fig. 18.22 XSL style sheet applied to an XML document (part 2 of 3).



Chapter 18 Extensible Markup Language (XML) 877

18.7 Microsoft BizTalk™
Increasingly, organizations are using the Internet to exchange critical data. However, trans-
fering data between these organizations can become difficult, because organizations often
use different platforms, applications and data specifications that complicate data transfer.
To help resolve this complication, Microsoft developed BizTalk (“business talk”), an XML-
based technology that helps to manage and facilitate business transactions.

BizTalk consists of three parts: The BizTalk Server, the BizTalk Framework and the Biz-
Talk Schema Library. The BizTalk Server (BTS) parses and translates all inbound and out-
bound messages (or documents) that are sent to and from a business. The BizTalk Framework
is a Schema for structuring those messages. The BizTalk Schema Library is a collection of
Framework Schemas. Businesses can design their own Schemas or choose existing Schemas
from the BizTalk Schema Library. Figure 18.23 summarizes BizTalk terminology.  

BizTalk Description

Framework A specification that defines a format for messages.

Schema library A repository of Framework XML Schemas.

Fig. 18.23 BizTalk terminology (part 1 of 2).

Fig. 18.22 XSL style sheet applied to an XML document (part 3 of 3).



878 Extensible Markup Language (XML) Chapter 18

Fig. 18.24 is an example BizTalk message for a product offer from a retail company.
The message Schema (lines 15–46) for this example was developed by Microsoft to facil-
itate online shopping. We use this Schema for a fictitious company, named ExComp.

Server An application that assists vendors in converting their messages to BizTalk for-
mat. For more information, visit www.microsoft.com/biztalkserver

JumpStart Kit A set of tools for developing BizTalk applications.

1 <?xml version = "1.0"?>
2 <BizTalk xmlns =
3 "urn:schemas-biztalk-org:BizTalk/biztalk-0.81.xml">
4
5 <!-- Fig. 18.24: ìbiztalkmarkup.xml      -->
6 <!-- Example of standard BizTalk markup -->
7
8    <Route>
9       <From locationID = "8888888" locationType = "DUNS"

10          handle = "23" />
11      
12       <To locationID = "454545445" locationType = "DUNS"
13          handle = "45" />
14    </Route>
15
16    <Body>
17       <Offers xmlns =
18          "x-schema:http://schemas.biztalk.org/eshop_msn_com/
t7ntoqnq.xml">
19          <Offer>
20             <Model>12-a-3411d</Model>
21             <Manufacturer>ExComp, Inc.</Manufacturer>
22             <ManufacturerModel>DCS-48403</ManufacturerModel>
23
24             <MerchantCategory>
25                Clothes | Sports wear
26             </MerchantCategory>
27
28             <MSNClassId></MSNClassId>
29
30             <StartDate>2001-06-05 T13:12:00</StartDate>
31             <EndDate>2001-12-05T13:12:00</EndDate>
32
33             <RegularPrice>89.99</RegularPrice>
34             <CurrentPrice>25.99</CurrentPrice>
35             <DisplayPrice value = "3" />
36             <InStock value = "15" />

Fig. 18.24 BizTalk markup using an offer Schema (part 1 of 2).

BizTalk Description

Fig. 18.23 BizTalk terminology (part 2 of 2).



Chapter 18 Extensible Markup Language (XML) 879

All Biztalk documents have the root element BizTalk (line 2). Line 3 defines a default
namespace for the BizTalk framework elements. Element Route (lines 8–14) contains the
routing information, which is mandatory for all BizTalk documents. Element Route also
contains elements To and From (lines 9–12), which specify the document’s destination and
source, respectively. This makes it easier for the receiving application to communicate with
the sender. Attribute locationType specifies the type of business that sends or receives
the information, and attribute locationID specifies a business identity (the unique identi-
fier for a business). These attributes facilitate source and destination organization. Attribute
handle provides information to routing applications that handle the document.

Element Body (lines 16–69) contains the actual message, whose Schema is defined by
the businesses themselves. Lines 17–18 specify the default namespace for element
Offers (lines 17–68), which is contained in element Body (note that line 18 wraps—if
we split this line, Internet Explorer cannot locate the namespace). Each offer is marked up
using an Offer element (lines 19–67) that contains elements describing the offer. For
additional information on BizTalk, visit www.biztalk.com.

37
38             <ReferenceImageURL>
39                http://www.Example.com/clothes/index.jpg
40             </ReferenceImageURL>
41
42             <OfferName>Clearance sale</OfferName>
43
44             <OfferDescription>
45                This is a clearance sale
46             </OfferDescription>
47
48             <PromotionalText>Free Shipping</PromotionalText>
49
50             <Comments>
51                Clothes that you would love to wear.
52             </Comments>
53
54             <IconType value = "BuyNow" />
55
56             <ActionURL>
57                http://www.example.com/action.htm
58             </ActionURL>
59
60             <AgeGroup1 value = "Infant" />
61             <AgeGroup2 value = "Adult" />
62
63             <Occasion1 value = "Birthday" />
64             <Occasion2 value = "Anniversary" />
65             <Occasion3 value = "Christmas" />
66
67          </Offer>
68       </Offers>
69    </Body>
70 </BizTalk>

Fig. 18.24 BizTalk markup using an offer Schema (part 2 of 2).



880 Extensible Markup Language (XML) Chapter 18

In this chapter, we studied the Extensible Markup Language and several of its related
technologies. In Chapter 19, we begin our discussion of databases, which are crucial to the
development of multi-tier Web-based applications.

18.8 Internet and World Wide Web Resources
www.w3.org/xml
The W3C (World Wide Web Consortium) facilitates the development of common protocols to ensure
interoperability on the Web. Their XML page includes information about upcoming events, publica-
tions, software and discussion groups. Visit this site to read about the latest developments in XML.

www.xml.org
xml.org is a reference for XML, DTDs, schemas and namespaces.

www.w3.org/style/XSL
This W3C page provides information on XSL, including the topics such as XSL development, learn-
ing XSL, XSL-enabled tools, the XSL specification, FAQs and XSL history.

www.w3.org/TR
This is the W3C technical reports and publications page. It contains links to working drafts, proposed
recommendations and other resources.

www.xmlbooks.com
This site provides a list of XML books recommended by Charles Goldfarb, one of the original design-
ers of GML (General Markup Language), from which SGML was derived.

www.xml-zone.com
The Development Exchange XML Zone is a complete resource for XML information. This site in-
cludes a FAQ, news, articles and links to other XML sites and newsgroups.

wdvl.internet.com/Authoring/Languages/XML
Web Developer's Virtual Library XML site includes tutorials, a FAQ, the latest news and extensive
links to XML sites and software downloads.

www.xml.com
This site provides the latest news and information about XML, conference listings, links to XML Web
resources organized by topic, tools and other resources.

msdn.microsoft.com/xml/default.asp
The MSDN Online XML Development Center features articles on XML, Ask-the-Experts chat ses-
sions, samples, demos, newsgroups and other helpful information.

msdn.microsoft.com/downloads/samples/Internet/xml/xml_validator/
sample.asp
The Microsoft XML validator, which can be downloaded from this site, can validate both online and
offline documents.

www.oasis-open.org/cover/xml.html
The SGML/XML Web Page is an extensive resource that includes links to several FAQs, online re-
sources, industry initiatives, demos, conferences and tutorials.

www.gca.org/whats_xml/default.htm
The GCA site offers an XML glossary, list of books, brief descriptions of the draft standards for XML
and links to online drafts.

www-106.ibm.com/developerworks/xml
The IBM XML Zone site is a great resource for developers. It provides news, tools, a library, case
studies and information about events and standards.



Chapter 18 Extensible Markup Language (XML) 881

developer.netscape.com/tech/xml/index.html
The XML and Metadata Developer Central site has demos, technical notes and news articles related
to XML.

www.projectcool.com/developer/xmlz
The Project Cool Developer Zone site includes several tutorials covering introductory through ad-
vanced XML topics.

www.ucc.ie/xml
This site is a detailed XML FAQ. Developers can check out responses to some popular questions or
submit their own questions through the site.

SUMMARY
• XML is a widely supported, open technology (i.e., non-proprietary technology) for data exchange.

• XML is highly portable. Any text editor that supports ASCII or Unicode characters can render or
display XML documents. Because XML elements describe the data they contain, they are both
machine and human readable. 

• XML permits document authors to create custom markup for virtually any type of information. This
extensibility enables document authors to create entirely new markup languages that describe specif-
ic types of data, including mathematical formulas, chemical molecular structures, music, recipes, etc.

• The processing of XML documents—which programs typically store in files whose names end
with the .xml extension—requires a program called an XML parser. A parser is responsible for
identifying components of XML documents, then storing those components in a data structure for
manipulation.

• An XML document can reference another optional document that defines the XML document’s
structure. Two types of optional structure-defining documents are Document Type Definitions
(DTDs) and schemas.

• An XML document begins with an optional XML declaration, which identifies the document as
an XML document. The version information parameter specifies the version of XML syntax
that is used in the document.

• XML comments begin with <!-- and end with -->. Data is marked up using tags whose names
are enclosed in angle brackets (<>). Tags are used in pairs to delimit markup. A tag that begins
markup is called a start tag, and a tag that terminates markup is called an end tag. End tags differ
from start tags in that they contain a forward slash (/) character.

• Individual units of markup are called elements, which are the most fundamental XML building
blocks. XML documents contain one element called a root element that contains every other ele-
ment in the document. Elements are embedded or nested within each other to form hierarchies,
with the root element at the top of the hierarchy. 

• XML element names can be of any length and can contain letters, digits, underscores, hyphens and
periods. However, they must begin with either a letter or an underscore.

• When a user loads an XML document into Internet Explorer (IE), msxml parses the document and
passes the parsed data to IE. IE then uses a style sheet to format the data.

• IE displays minus (–) and plus (+) signs next to all container elements (i.e., elements that contain
other elements). A minus sign indicates that all child elements (i.e., nested elements) are being dis-
played. When clicked, a minus sign becomes a plus sign (which collapses the container element
and hides all children), and vice versa. 

• In addition to being placed between tags, data also can be placed in attributes, which are name-
value pairs in start tags. Elements can have any number of attributes.



882 Extensible Markup Language (XML) Chapter 18

• Because XML allows document authors to create their own tags, naming collisions (i.e., two dif-
ferent elements that have the same name) can occur. As in Visual Basic, XML namespaces provide
a means for document authors to prevent collisions. 

• Each namespace prefix is bound to a uniform resource identifier (URI) that uniquely identifies the
namespace. A URI is a series of characters that differentiate names. Document authors create their
own namespace prefixes. Virtually any name can be used as a namespace prefix except the re-
served namespace prefix xml.

• To eliminate the need to place a namespace prefix in each element, authors can specify a default
namespace for an element and its children. We declare a default namespace using keyword xmlns
with a URI (Universal Resource Indicator) as its value. 

• When an XML parser successfully parses a document, the parser stores a tree structure containing
the document’s data in memory. This hierarchical tree structure is called a Document Object Model
(DOM) tree. The DOM tree represents each component of the XML document as a node in the tree.
Nodes that contain other nodes (called child nodes) are called parent nodes. Nodes that have the same
parent are called sibling nodes. A node’s descendant nodes include that node’s children, its children’s
children and so on. A node’s ancestor nodes include that node’s parent, its parent’s parent and so on.
The DOM tree has a single root node that contains all other nodes in the document. 

• Namespace System.Xml, contains classes for creating, reading and manipulating XML docu-
ments. 

• XmlReader derived class XmlNodeReader iterates through each node in the XML document. 

• Class XmlReader is an MustInherit class that defines the interface for reading XML docu-
ments.

• A new XmlDocument object conceptually represents an empty XML document. 

• The XML documents are parsed and loaded into an XmlDocument object when method Load
is invoked. Once an XML document is loaded into an XmlDocument, its data can be read and
manipulated programmatically. 

• An XmlNodeReader allows us to read one node at a time from an XmlDocument.

• Method Read of XmlReader reads one node from the DOM tree.

• The Name property contains the node’s name, the Value property contains the node’s data and
the NodeType property contains the node type (i.e., element, comment, text, etc.). 

• Line breaks use the constant vbCrLf, which denotes a carriage return followed by a line feed.
This is the standard line break for Windows-based applications and controls.

• Method CreateNode of XmlDocument takes a NodeType, a Name and a NamespaceURI
as arguments.   

• An XmlTextWriter streams XML data to disk. Method WriteTo writes an XML representa-
tion to an XmlTextWriter stream.

• An XmlTextReader reads XML data from a file.

• Class XPathNavigator in the System.Xml.XPath namespace can iterate through node
lists that match search criteria, written as an XPath expression. 

• XPath (XML Path Language) provides a syntax for locating, specific nodes in XML documents
effectively and efficiently. XPath is a string-based language of expressions used by XML and
many of its related technologies. 

• Navigation methods of XPathNavigator are MoveToFirstChild, MoveToParent,
MoveToNext and MoveToPrevious. Each method performs the action that its name implies. 

• Method MoveToFirstChild moves to the first child of the node referenced by the XPath-
Navigator, MoveToParent moves to the parent node of the node referenced by the XPath-



Chapter 18 Extensible Markup Language (XML) 883

Navigator, MoveToNext moves to the next sibling of the node referenced by the
XPathNavigator and MoveToPrevious moves to the previous sibling of the node refer-
enced by the XPathNavigator.

• Whereas XML contains only data, XSL is capable of converting XML into any text-based docu-
ment. XSL documents have the extension .xsl.

• XSL stylesheets can be connected directly to an XML document by adding an
xml:stylesheet element to the XML document.

• When transforming an XML document using XSLT, two tree structures are involved: The source
tree, which is the XML document being transformed, and the result tree, which is the result (e.g.,
XHTML) of the transformation.

• XSL specifies the use of element value-of to retrieve an attribute’s value. The symbol, @ spec-
ifies an attribute node.

• The  XSL node-set function name retrieves the current node’s element name. 

• Attribute select selects the value of context node’s attribute. 

• XML documents can be transformed programmatically through Visual Basic. The Sys-
tem.Xml.Xsl namespace facilities the application of XSL stylesheets to XML documents. 

• Class XsltArgumentList is a list of String parameters that can be applied to a stylesheet.

• BizTalk consists of three parts: The BizTalk Server, the BizTalk Framework and the BizTalk
Schema Library. 

TERMINOLOGY
@ character EBNF (Extended Backus-Naur Form) grammar
Add method ELEMENT element type declaration
ancestor node empty element 
asterisk (*) occurrence indicator EMPTY keyword
ATTLIST element end tag
attribute Extensible Stylesheet Language (XSL)
attribute node external DTD
attribute value forward slash
BizTalk Framework #IMPLIED flag
BizTalk Schema Library invalid document
BizTalk Server (BTS) IsEmptyElement property
CDATA character data LastChild property
child element Load method
child node match attribute 
container element markup
context node maxOccurs attribute
CreateNavigator method method attribute
CreateNode method minOccurs attribute
Current property MoveToFirstChild property
data-type attribute MoveToNext property
default namespace MoveToParent property
descendent node MoveToPrevious property
doctype-public attribute MoveToRoot property
doctype-system attribute msxml parser
document root name attribute
Document Type Definition (DTD) name node-set function
DOM (Document Object Model) Name property



884 Extensible Markup Language (XML) Chapter 18

SELF-REVIEW EXERCISES
18.1 Which of the following are valid XML element names?

a) yearBorn

namespace prefix ValidationType.XDR constant
node value property
Nodes collection version attribute
node-set function version information parameter
NodeType property well-formed document
nonvalidating XML parser .xdr extension
occurrence indicator XML (Extensible Markup Language) 
omit-xml-declaration attribute XML declaration
order attribute .xml file extension
parent node xml namespace
Parent property XML node
ParentNode property XML processor
parsed character data XML Schema
parser XML Validator
#PCDATA flag XmlDocument class
PI (processing instruction) XmlNodeReader class
PI target XmlNodeType enumeration
PI value XmlNodeType.Comment constant
plus sign (+) occurrence indicator XmlNodeType.Document constant
processing instruction XmlNodeType.DocumentType constant
question mark (?) occurrence indicator XmlNodeType.Element constant
Read method XmlNodeType.EndElement constant
reserved namespace prefix xml XmlNodeType.Text constant
result tree XmlNodeType.XmlDeclaration constant
root element xmlns attribute
root node XmlPathNodeIterator class
Schema element XmlReader class
Schemas property XmlSchema class
select attribute XmlSchemaCollection collection
Select method XmlTextWriter class
sibling node XPathExpression class
single-quote character (') XPathNavigator class
source tree xs:output element
style sheet XSL (Extensible Stylesheet Language) 
sum function .xsl extension 
SYSTEM flag XSL Transformations (XSLT)
System.Xml namespace XSL variable
System.Xml.Schema namespace xsl:apply-templates element
text node xsl:for-each element
Transform method xsl:output element
tree-based model xsl:sort element
type attribute xsl:stylesheet element 
validating XML parser xsl:template element
ValidatingReader class xsl:value-of element 
ValidationEventHandler class XslTransform class
ValidationType property XsltTextWriter class



Chapter 18 Extensible Markup Language (XML) 885

b) year.Born
c) year Born
d) year-Born1
e) 2_year_born
f) --year/born
g) year*born
h) .year_born
i) _year_born_
j) y_e-a_r-b_o-r_n

18.2 State whether the following are true or false. If false, explain why.
a) XML is a technology for creating markup languages.
b) XML markup is delimited by forward and backward slashes (/ and \).
c) All XML start tags must have corresponding end tags.
d) Parsers check an XML document’s syntax.
e) XML does not support namespaces.
f) When creating XML elements, document authors must use the set of XML tags provided

by the W3C.
g) The pound character (#), the dollar sign ($), ampersand (&), greater-than (>) and less-

than (<) are examples of XML reserved characters.

18.3 Fill in the blanks for each of the following:
a)  help prevent naming collisions.
b)  embed application–specific information into an XML document.
c)  is Microsoft’s XML parser.
d) XSL element  writes a DOCTYPE to the result tree.
e) XML Schema documents have root element .
f) XSL element  is the root element in an XSL document.
g) XSL element  selects specific XML elements using repetition.

18.4 State which of the following statements are true and which are false. If false, explain why.
a) XML is not case sensitive.
b) Visual Basic architecture supports W3C Schema.
c) DTDs are a vocabulary of XML.
d) Schema is a technology for locating information in an XML document.

18.5 In Fig. 18.1, we subdivided the author element into more detailed pieces. How might you
subdivide the date element?

18.6 Write a processing instruction that includes stylesheet wap.xsl for use in Internet Explorer.

18.7 Fill in the blanks:
a) Nodes that contain other nodes are called  nodes.
b) Nodes that are peers are called  nodes.
c) Class XmlDocument is analogous to the  of a tree.
d) To add an XmlNode to an XmlTree as a child of the current node, use method

.

18.8 Write an XPath expression that locates contact nodes in letter.xml (Fig. 18.3).

18.9 Describe method Select of class XPathNavigator.

ANSWERS TO SELF-REVIEW EXERCISES
18.1 a, b, d, i, j. [Choice c is incorrect because it contains a space; Choice e is incorrect because
the first character is a number; Choice f is incorrect because it contains a division symbol (/) and does



886 Extensible Markup Language (XML) Chapter 18

not begin with a letter or underscore; Choice g is incorrect because it contains an asterisk (*); Choice
h is incorrect because the first character is a period (.) and does not begin with a letter or underscore.]

18.2 a) True. b) False. In an XML document, markup text is delimited by angle brackets (< and
>) with a forward slash in the end tag. c) True. d) True. e) False. XML does support namespaces.
f) False. When creating tags, document authors can use any valid name except the reserved word xml
(also XML, Xml, etc.). g) False. XML reserved characters include the ampersand (&), the left-angle
bracket (<) and the right-angle bracket (>), but not # and $.

18.3 a) namespaces. b) processing instructions. c) msxml. d) xsl:output. e) Schema.
f) xsl:stylesheet. g) xsl:for-each.

18.4 a) False. XML is case sensitive. b) True. c) False. DTDs use EBNF grammar which is not
XML syntax. d) False. XPath is a technology for locating information in an XML document. 

18.5 <date>
<month>December</month>

       <day>6</day>
     <year>2001</year>

</date>.

18.6 <?xsl:stylesheet type = "text/xsl" href = "wap.xsl"?>

18.7 a) parent. b) sibling. c) root. d) AppendChild.

18.8 /letter/contact.

18.9 Method Select receives as an argument either an XPathExpression or a String con-
taining an XPathExpression to select nodes referenced by the navigator.

EXERCISES
18.10 Create an XML document that marks up the nutrition facts for a package of cookies. A package
of cookies has a serving size of 1 package and the following nutritional value per serving: 260 calories,
100 fat calories, 11 grams of fat, 2 grams of saturated fat, 5 milligrams of cholesterol, 210 milligrams
of sodium, 36 grams of total carbohydrates, 2 grams of fiber, 15 grams of sugars and 5 grams of protein.
Name this document nutrition.xml. Load the XML document into Internet Explorer [Hint: Your
markup should contain elements describing the product name, serving size/amount, calories, sodium,
cholesterol, proteins, etc. Mark up each nutrition fact/ingredient listed above.]

18.11 Write an XSL style sheet for your solution to Exercise 18.10 that displays the nutritional facts
in an XHTML table. Modify Fig. 18.22 (TransformTest.vb) to output an XHTML file, nu-
trition.html. Render nutrition.html in a Web browser. 

18.12 Write a Microsoft Schema for Fig. 18.20. 

18.13 Alter Fig. 18.18 (ValidationTest.vb) to include a list of schema in a drop-down box
along with the list of XML files. Allow the user to test whether any XML file on the list satisfies a
specific schema. Use books.xml, books.xsd, nutrition.xml, nutrition.xsd and
fail.xml.

18.14 Modify XmlReaderTest (Fig. 18.7) to display letter.xml (Fig. 18.3) in a Tree-
View, instead of in a text box.

18.15 Modify Fig. 18.21 (sorting.xsl) to sort by page number, rather than by chapter number.
Save the modified document as sorting_byChapter.xsl.

18.16 Modify TransformTest.vb (Fig. 18.22) to take in sorting.xml (Fig. 18.20), sort-
ing.xsl (Fig. 18.21) and sorting_byChapter.xsl and print the XHTML document result-
ing from the transform of sorting.xml into two XHTML files, sorting_byPage.html and
sorting_byChapter.html.



19
Database, SQL and 

ADO .NET

Objectives
• To understand the relational database model.
• To understand basic database queries written in 

Structured Query Language (SQL).
• To use the classes and interfaces of namespace 
System.Data to manipulate databases.

• To understand and use ADO .NET’s disconnected 
model.

• To use the classes and interfaces of namespace 
System.Data.OleDb.

It is a capital mistake to theorize before one has data.
Arthur Conan Doyle

Now go, write it before them in a table, and note it in a book, 
that it may be for the time to come for ever and ever. 
The Holy Bible: The Old Testament 

Let's look at the record. 
Alfred Emanuel Smith 

Get your facts first, and then you can distort them as much 
as you please.
Mark Twain

I like two kinds of men: domestic and foreign.
Mae West



888 Database, SQL and ADO .NET Chapter 19

19.1 Introduction
A database is an integrated collection of data. Many different strategies exist for organizing
data in databases to facilitate easy access to and manipulation of the data. A database man-
agement system (DBMS) provides mechanisms for storing and organizing data in a manner
that is consistent with the database’s format. Database management systems enable program-
mers to access and store data without worrying about the internal representation of databases.

Today’s most popular database systems are relational databases. Almost universally,
relational databases use a language called Structured Query Language (SQL—pronounced
as its individual letters or as “sequel”) to perform queries (i.e., to request information that
satisfies given criteria) and to manipulate data. [Note: The writing in this chapter assumes
that SQL is pronounced as its individual letters. For this reason, we often precede SQL with
the article “an” as in “an SQL database” or “an SQL statement.”]

Some popular, enterprise-level relational database systems include Microsoft SQL
Server, Oracle™, Sybase™, DB2™, Informix™ and MySQL™. This chapter presents exam-
ples using Microsoft Access—a relational database system that comes with Microsoft Office.

Outline

19.1 Introduction
19.2 Relational Database Model

19.3 Relational Database Overview: Books Database
19.4 Structured Query Language (SQL)

19.4.1 Basic SELECT Query

19.4.2 WHERE Clause

19.4.3 ORDER BY Clause

19.4.4 Merging Data from Multiple Tables: INNER JOIN

19.4.5 Joining Data from Tables Authors, AuthorISBN,
Titles and Publishers

19.4.6 INSERT Statement

19.4.7 UPDATE Statement

19.4.8 DELETE Statement
19.5 ADO .NET Object Model
19.6 Programming with ADO .NET: Extracting Information from a DBMS

19.6.1 Connecting to and Querying an Access Data Source

19.6.2 Querying the Books Database
19.7 Programming with ADO .NET: Modifying a DBMS
19.8 Reading and Writing XML Files

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises • 
Bibliography



Chapter 19 Database, SQL and ADO .NET 889

A programming language connects to, and interacts with, a relational database via an
interface—software that facilitates communication between a database management system
and a program. Visual Basic .NET programmers communicate with databases and manipulate
their data through Microsoft ActiveX Data Objects™ (ADO), ADO .NET.

19.2 Relational Database Model
The relational database model is a logical representation of data that allows relationships
among data to be considered without concern for the physical structure of the data. A rela-
tional database is composed of tables. Figure 19.1 illustrates an example table that might
be used in a personnel system. The table name is Employee, and its primary purpose is to
illustrate the specific attributes of various employees. A particular row of the table is called
a record (or row). This table consists of six records. The number field (or column) of each
record in the table is the primary key for referencing data in the table. A primary key is a
field (or fields) in a table that contain(s) unique data, or data that is not duplicated in other
records of that table. This guarantees that each record can be identified by at least one
unique value. Examples of primary-key fields are columns that contain social security num-
bers, employee IDs and part numbers in an inventory system. The records of Fig. 19.1 are
ordered by primary key. In this case, the records are listed in increasing order (they also
could be in decreasing order).

Each column of the table represents a different field. Records normally are unique (by
primary key) within a table, but particular field values might be duplicated in multiple
records. For example, three different records in the Employee table’s Department field
contain the number 413.

Often, different users of a database are interested in different data and different rela-
tionships among those data. Some users require only subsets of the table columns. To
obtain table subsets, we use SQL statements to specify certain data to select from a table.
SQL provides a complete set of commands (including SELECT) that enable programmers
to define complex queries to select data from a table. The results of a query commonly are
called result sets (or record sets). For example, we might select data from the table in
Fig. 19.1 to create a new result set containing only the location of each department. This
result set appears in Fig. 19.2. SQL queries are discussed in Section 19.4.

Fig. 19.1 Relational-database structure of an Employee table.

number name department salary location

23603 Jones 413 1100 New Jersey

24568 Kerwin 413 2000 New Jersey

34589 Larson 642 1800 Los Angeles

35761 Myers 611 1400 Orlando

47132 Neumann 413 9000 New Jersey

78321 Stephens 611 8500 Orlando

Record/Row

Field/ColumnPrimary key



890 Database, SQL and ADO .NET Chapter 19

19.3 Relational Database Overview: Books Database
This section provides an overview of SQL in the context of a sample Books database we
created for this chapter. Before we discuss SQL, we explain the various tables of the
Books database. We use this database to introduce various database concepts, including
the use of SQL to manipulate and obtain useful information from the database. We provide
a script to create the database, which is located in the Chapter 19 examples directory on the
CD that accompanies this book. Section 19.6 explains how to use this script. 

The database consists of four tables: Authors, Publishers, AuthorISBN and
Titles. The Authors table (described in Fig. 19.3) consists of three fields (or columns)
that maintain each author’s unique ID number, first name and last name. Figure 19.4 con-
tains the data from the Authors table of the Books database.

Fig. 19.2 Result set formed by selecting Department and Location data 
from the Employee table.

Field Description

authorID Author’s ID number in the database. In the Books database, this Integer
field is defined as an auto-incremented field. For each new record inserted in 
this table, the database increments the authorID value, ensuring that each 
record has a unique authorID. This field represents the table’s primary key. 

firstName Author’s first name (a String).

lastName Author’s last name (a String).

Fig. 19.3 Authors table from Books.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

Fig. 19.4 Data from the Authors table of Books (part 1 of 2).

department location

413 New Jersey

642 Los Angeles

611 Orlando



Chapter 19 Database, SQL and ADO .NET 891

The Publishers table (Fig. 19.5) consists of two fields, representing each pub-
lisher’s unique ID and name. Figure 19.6 contains the data from the Publishers table
of the Books database. 

The AuthorISBN table (Fig. 19.7) consists of two fields, which maintain ISBN num-
bers for each book and their corresponding authors’ ID numbers. This table helps associate
the names of the authors with the titles of their books. Figure 19.8 contains the data from
the AuthorISBN table of the Books database. ISBN is an abbreviation for “International
Standard Book Number”—a numbering scheme by which publishers worldwide give every
book a unique identification number. [Note: To save space, we have split the contents of
this figure into two columns, each containing the authorID and isbn fields.] 

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

Field Description

publisherID The publisher’s ID number in the database. This auto-incremented 
Integer field is the table’s primary-key field.

publisherName The name of the publisher (a String).

Fig. 19.5 Publishers table from Books.

publisherID publisherName

1 Prentice Hall

2 Prentice Hall PTG

Fig. 19.6 Data from the Publishers table of Books.

authorID firstName lastName

Fig. 19.4 Data from the Authors table of Books (part 2 of 2).



892 Database, SQL and ADO .NET Chapter 19

The Titles table (Fig. 19.9) consists of seven fields, which maintain general infor-
mation about the books in the database. This information includes each book’s ISBN
number, title, edition number, copyright year and publisher’s ID number, as well as the
name of a file containing an image of the book cover, and finally, each book’s price.
Figure 19.10 contains the data from the Titles table.

Field Description

authorID The author’s ID number, which allows the database to associate each 
book with a specific author. The integer ID number in this field must 
also appear in the Authors table.

isbn The ISBN number for a book (a String).

Fig. 19.7 AuthorISBN table from Books.

authorID isbn authorID isbn

1 0130895725 2 0139163050

1 0132261197 2 013028419x

1 0130895717 2 0130161438

1 0135289106 2 0130856118

1 0139163050 2 0130125075

1 013028419x 2 0138993947

1 0130161438 2 0130852473

1 0130856118 2 0130829277

1 0130125075 2 0134569555

1 0138993947 2 0130829293

1 0130852473 2 0130284173

1 0130829277 2 0130284181

1 0134569555 2 0130895601

1 0130829293 3 013028419x

1 0130284173 3 0130161438

1 0130284181 3 0130856118

1 0130895601 3 0134569555

2 0130895725 3 0130829293

2 0132261197 3 0130284173

2 0130895717 3 0130284181

2 0135289106 4 0130895601

Fig. 19.8 Data from AuthorISBN table in Books.



Chapter 19 Database, SQL and ADO .NET 893

Field Description

isbn ISBN number of the book (a String).

title Title of the book (a String).

editionNumber Edition number of the book (a String).

copyright Copyright year of the book (an Integer).

publisherID Publisher’s ID number (an Integer). This value must correspond to an 
ID number in the Publishers table.

imageFile Name of the file containing the book’s cover image (a String).

price Suggested retail price of the book (a real number). [Note: The prices 
shown in this database are for example purposes only.]

Fig. 19.9 Titles table from Books.

isbn title
edition-
Number

copy-
right

publish-
erID imageFile price

0130923613 Python How to Pro-
gram

1 1 2002 python.jpg $69.95

0130622214 C# How to Program 1 1 2002 cshtp.jpg $69.95

0130341517 Java How to Pro-
gram

4 1 2002 jhtp4.jpg $69.95

0130649341 The Complete Java 
Training Course

4 2 2002 javactc4.jpg $109.95

0130895601 Advanced Java 2 
Platform How to 
Program

1 1 2002 advjhtp1.jpg $69.95

0130308978 Internet and World 
Wide Web How to 
Program

2 1 2002 iw3htp2.jpg $69.95

0130293636 Visual Basic .NET 
How to Program

2 1 2002 vbnet.jpg $69.95

0130895636 The Complete C++ 
Training Course

3 2 2001 cppctc3.jpg $109.95

0130895512 The Complete e-
Business & e-Com-
merce Program-
ming Training 
Course

1 2 2001 ebecctc.jpg $109.95

013089561X The Complete Inter-
net & World Wide 
Web Programming 
Training Course

2 2 2001 iw3ctc2.jpg $109.95

Fig. 19.10 Data from the Titles table of Books (part 1 of 3).



894 Database, SQL and ADO .NET Chapter 19

0130895547 The Complete Perl 
Training Course

1 2 2001 perl.jpg $109.95

0130895563 The Complete 
XML Program-
ming Training 
Course

1 2 2001 xmlctc.jpg $109.95

0130895725 C How to Program 3 1 2001 chtp3.jpg $69.95

0130895717 C++ How to Pro-
gram

3 1 2001 cpphtp3.jpg $69.95

013028419X e-Business and e-
Commerce How to 
Program

1 1 2001 ebechtp1.jpg $69.95

0130622265 Wireless Internet 
and Mobile Busi-
ness How to Pro-
gram

1 1 2001 wireless.jpg $69.95

0130284181 Perl How to Pro-
gram

1 1 2001 perlhtp1.jpg $69.95

0130284173 XML How to Pro-
gram

1 1 2001 xmlhtp1.jpg $69.95

0130856118 The Complete 
Internet and World 
Wide Web Pro-
gramming Training 
Course

1 2 2000 iw3ctc1.jpg $109.95

0130125075 Java How to Pro-
gram (Java 2)

3 1 2000 jhtp3.jpg $69.95

0130852481 The Complete Java 
2 Training Course

3 2 2000 javactc3.jpg $109.95

0130323640 e-Business and e-
Commerce for 
Managers

1 1 2000 ebecm.jpg $69.95

0130161438 Internet and World 
Wide Web How to 
Program

1 1 2000 iw3htp1.jpg $69.95

0130132497 Getting Started 
with Visual C++ 6 
with an Introduc-
tion to MFC

1 1 1999 gsvc.jpg $49.95

0130829293 The Complete 
Visual Basic 6 
Training Course

1 2 1999 vbctc1.jpg $109.95

0134569555 Visual Basic 6 How 
to Program

1 1 1999 vbhtp1.jpg $69.95

isbn title
edition-
Number

copy-
right

publish-
erID imageFile price

Fig. 19.10 Data from the Titles table of Books (part 2 of 3).



Chapter 19 Database, SQL and ADO .NET 895

Figure 19.11 illustrates the relationships among the tables in the Books database. The
first line in each table is the table’s name. The field whose name appears in italics contains
that table’s primary key. A table’s primary key uniquely identifies each record in the table.
Every record must have a value in the primary-key field, and the value must be unique. This
is known as the Rule of Entity Integrity. Note that the AuthorISBN table contains two
fields whose names are italicized. This indicates that these two fields form a compound pri-
mary key—each record in the table must have a unique authorID–isbn combination.
For example, several records might have an authorID of 2, and several records might
have an isbn of 0130895601, but only one record can have both an authorID of 2
and an isbn of 0130895601.

Common Programming Error 19.1
Failure to provide a value for a primary-key field in every record breaks the Rule of Entity
Integrity and causes the DBMS to report an error. 19.1

Common Programming Error 19.2
Providing duplicate values for the primary-key field in multiple records causes the DBMS to
report an error. 19.2

The lines connecting the tables in Fig. 19.11 represent therelationships among the
tables. Consider the line between the Publishers and Titles tables. On the Pub-
lishers end of the line, there is a 1, and on the Titles end, there is an infinity (∞)
symbol. This line indicates a one-to-many relationship, in which every publisher in the

0132719746 Java Multimedia 
Cyber Classroom

1 2 1998 javactc.jpg $109.95

0136325890 Java How to Pro-
gram

1 1 1998 jhtp1.jpg $69.95

0139163050 The Complete C++ 
Training Course

2 2 1998 cppctc2.jpg $109.95

0135289106 C++ How to Pro-
gram

2 1 1998 cpphtp2.jpg $49.95

0137905696 The Complete Java 
Training Course

2 2 1998 javactc2.jpg $109.95

0130829277 The Complete Java 
Training Course 
(Java 1.1)

2 2 1998 javactc2.jpg $99.95

0138993947 Java How to Pro-
gram (Java 1.1)

2 1 1998 jhtp2.jpg $49.95

0131173340 C++ How to Pro-
gram

1 1 1994 cpphtp1.jpg $69.95

0132261197 C How to Program 2 1 1994 chtp2.jpg $49.95

0131180436 C How to Program 1 1 1992 chtp.jpg $69.95

isbn title
edition-
Number

copy-
right

publish-
erID imageFile price

Fig. 19.10 Data from the Titles table of Books (part 3 of 3).



896 Database, SQL and ADO .NET Chapter 19

Publishers table can have an arbitrarily large number of books in the Titles table.
Note that the relationship line links the publisherID field in the Publishers table to
the publisherID field in Titles table. In the Titles table, the publisherID field
is a foreign key—a field for which every entry has a unique value in another table and where
the field in the other table is the primary key for that table (e.g., publisherID in the
Publishers table). Programmers specify foreign keys when creating a table. The for-
eign key helps maintain the Rule of Referential Integrity: Every foreign-key field value
must appear in another table’s primary-key field. Foreign keys enable information from
multiple tables to be joined together for analysis purposes. There is a one-to-many relation-
ship between a primary key and its corresponding foreign key. This means that a foreign-
key field value can appear many times in its own table, but must appear exactly once as the
primary key of another table. The line between the tables represents the link between the
foreign key in one table and the primary key in another table.

Common Programming Error 19.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error. 19.3

The line between the AuthorISBN and Authors tables indicates that, for each
author in the Authors table, there can be an arbitrary number of ISBNs for books written
by that author in the AuthorISBN table. The authorID field in the AuthorISBN table
is a foreign key of the authorID field (the primary key) of the Authors table. Note,
again, that the line between the tables links the foreign key in table AuthorISBN to the
corresponding primary key in table Authors. The AuthorISBN table links information
in the Titles and Authors tables. 

Finally, the line between the Titles and AuthorISBN tables illustrates a one-to-
many relationship; a title can be written by any number of authors. In fact, the sole purpose
of the AuthorISBN table is to represent a many-to-many relationship between the
Authors and Titles tables; an author can write any number of books, and a book can
have any number of authors.

19.4 Structured Query Language (SQL)
In this section, we provide an overview of Structured Query Language (SQL) in the context
of our Books sample database. The SQL queries discussed here form the foundation for
the SQL used in the chapter examples.

Fig. 19.11 Table relationships in Books.

AuthorISBN

authorID

isbn

Authors

authorID

firstName

lastName

Publishers

publisherID

publisherName

Titles

isbn

title

editionNumber

copyright

publisherID

imageFile

price

1 ∞ 1

∞

1
∞



Chapter 19 Database, SQL and ADO .NET 897

Figure 19.12 lists SQL keywords programmers use in the context of complete SQL
queries. In the next several subsections, we discuss these SQL keywords in the context of
complete SQL queries. Other SQL keywords exist, but are beyond the scope of this text.
[Note: To locate additional information on SQL, please refer to the bibliography at the end
of this chapter.]

19.4.1 Basic SELECT Query

Let us consider several SQL queries that extract information from database Books. A typ-
ical SQL query “selects” information from one or more tables in a database. Such selections
are performed by SELECT queries. The simplest format for a SELECT query is:

SELECT * FROM tableName

In this query, the asterisk (*) indicates that all columns from the tableName table of the da-
tabase should be selected. For example, to select the entire contents of the Authors table
(i.e., all the data in Fig. 19.13), use the query:

SELECT * FROM Authors

To select specific fields from a table, replace the asterisk (*) with a comma-separated
list of the field names to select. For example, to select only the fields authorID and
lastName for all rows in the Authors table, use the query

SELECT authorID, lastName FROM Authors

This query only returns the data presented in Fig. 19.13. [Note: If a field name contains
spaces, the entire field name must be enclosed in square brackets ([]) in the query. For ex-
ample, if the field name is first name, it must appear in the query as [first name].]

SQL keyword Description

SELECT Selects (retrieves) fields from one or more tables.

FROM Specifies tables from which to get fields or delete records. Required 
in every SELECT and DELETE statement.

WHERE Specifies criteria that determines the rows to be retrieved.

INNER JOIN Joins records from multiple tables to produce a single set of records.

GROUP BY Specifies criteria for grouping records.

ORDER BY Specifies criteria for ordering records.

INSERT Inserts data into a specified table.

UPDATE Updates data in a specified table.

DELETE Deletes data from a specified table.

Fig. 19.12 SQL query keywords.



898 Database, SQL and ADO .NET Chapter 19

] Common Programming Error 19.4
If a program assumes that an SQL statement using the asterisk (*) to select fields always re-
turns those fields in the same order, the program could process the result set incorrectly. If
the field order in the database table(s) changes, the order of the fields in the result set would
change accordingly. 19.4

Performance Tip 19.1
If a program does not know the order of fields in a result set, the program must process the
fields by name. This could require a linear search of the field names in the result set. If users
specify the field names that they wish to select from a table (or several tables), the application
receiving the result set can know the order of the fields in advance. When this occurs, the
program can process the data more efficiently, because fields can be accessed directly by
column number. 19.1

19.4.2 WHERE Clause

In most cases, users search a database for records that satisfy certain selection criteria. Only
records that match the selection criteria are selected. SQL uses the optional WHERE clause
in a SELECT query to specify the selection criteria for the query. The simplest format of a
SELECT query that includes selection criteria is:

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

For example, to select the title, editionNumber and copyright fields from those
rows of table Titles in which the copyright date is greater than 1999, use the query

SELECT title, editionNumber, copyright 
FROM Titles 
WHERE copyright > 1999

Figure 19.14 shows the result set of the preceding query. [Note: When we construct a query
for use in Visual Basic .NET, we simply create a String containing the entire query.
However, when we display queries in the text, we often use multiple lines and indentation
to enhance readability.]

authorID lastName authorID lastName

1 Deitel 7 Sadhu

2 Deitel 8 McPhie

3 Nieto 9 Yaeger

4 Steinbuhler 10 Zlatkina

5 Santry 11 Wiedermann

6 Lin 12 Liperi

Fig. 19.13 authorID and lastName from the Authors table.



Chapter 19 Database, SQL and ADO .NET 899

Performance Tip 19.2
Using selection criteria improves performance, because queries that involve such criteria
normally select a portion of the database that is smaller than the entire database. Working
with a smaller portion of the data is more efficient than working with the entire set of data
stored in the database. 19.2

The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE.
Operator LIKE is used for pattern matching with wildcard characters asterisk (*) and
question mark (?). Pattern matching allows SQL to search for similar strings that “match
a pattern.” 

Title editionNumber copyright

Internet and World Wide Web How to Program 2 2002

Java How to Program 4 2002

The Complete Java Training Course 4 2002

The Complete e-Business & e-Commerce Program-
ming Training Course

1 2001

The Complete Internet & World Wide Web Program-
ming Training Course

2 2001

The Complete Perl Training Course 1 2001

The Complete XML Programming Training Course 1 2001

C How to Program 3 2001

C++ How to Program 3 2001

The Complete C++ Training Course 3 2001

e-Business and e-Commerce How to Program 1 2001

Internet and World Wide Web How to Program 1 2000

The Complete Internet and World Wide Web Program-
ming Training Course

1 2000

Java How to Program (Java 2) 3 2000

The Complete Java 2 Training Course 3 2000

XML How to Program 1 2001

Perl How to Program 1 2001

Advanced Java 2 Platform How to Program 1 2002

e-Business and e-Commerce for Managers 1 2000

Wireless Internet and Mobile Business How to Program 1 2001

C# How To Program 1 2002

Python How to Program 1 2002

Visual Basic .NET How to Program 2 2002

Fig. 19.14 Titles with copyrights after 1999 from table Titles.



900 Database, SQL and ADO .NET Chapter 19

A pattern that contains an asterisk (*) searches for strings in which zero or more char-
acters take the asterisk character’s place in the pattern. For example, the following query
locates the records of all authors whose last names start with the letter D:

SELECT authorID, firstName, lastName
FROM Authors
WHERE lastName LIKE 'D*'

The preceding query selects the two records shown in Fig. 19.15, because two of the au-
thors in our database have last names that begin with the letter D (followed by zero or more
characters). The * in the WHERE clause’s LIKE pattern indicates that any number of char-
acters can appear after the letter D in the lastName field. Notice that the pattern string is
surrounded by single-quote characters. 

Portability Tip 19.1
Not all database systems support the LIKE operator, so be sure to read the database sys-
tem’s documentation carefully before employing this operator. 19.1

Portability Tip 19.2
Most databases use the % character in place of the * character in LIKE expressions. 19.2

Portability Tip 19.3
In some databases, string data is case sensitive. 19.3

Portability Tip 19.4
In some databases, table names and field names are case sensitive. 19.4

Good Programming Practice 19.1
By convention, SQL keywords should be written entirely in uppercase letters on systems that
are not case sensitive. This emphasizes the SQL keywords in an SQL statement. 19.1

A pattern string including a question mark (?) character searches for strings in which
exactly one character takes the question mark’s place in the pattern. For example, the fol-
lowing query locates the records of all authors whose last names start with any character
(specified with ?), followed by the letter i, followed by any number of additional charac-
ters (specified with *):

SELECT authorID, firstName, lastName
FROM Authors
WHERE lastName LIKE '?i*'

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

Fig. 19.15 Authors from the Authors table whose last names start with D.



Chapter 19 Database, SQL and ADO .NET 901

The preceding query produces the records listed in Fig. 19.16; four authors in our database
have last names that contain the letter i as the second letter.

Portability Tip 19.5
Most databases use the _ character in place of the ? character in LIKE expressions. 19.5

19.4.3 ORDER BY Clause

The results of a query can be arranged in ascending or descending order using the optional
ORDER BY clause. The simplest form of an ORDER BY clause is:

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and field specifies the field that determines the sorting order. 

For example, to obtain the list of authors that is arranged in ascending order by last
name (Fig. 19.17), use the query:

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName ASC

Note that the default sorting order is ascending; therefore ASC is optional.

authorID firstName lastName

3 Tem Nieto

6 Ted Lin

11 Ben Wiedermann

12 Jonathan Liperi

Fig. 19.16 Authors from table Authors whose last names contain i as their 
second letter.

authorID firstName lastName

2 Paul Deitel

1 Harvey Deitel

6 Ted Lin

12 Jonathan Liperi

8 David McPhie

Fig. 19.17 Authors from table Authors in ascending order by lastName (part 1 
of 2).



902 Database, SQL and ADO .NET Chapter 19

To obtain the same list of authors arranged in descending order by last name
(Fig. 19.18), use the query:

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName DESC

The ORDER BY clause also can be used to order records by multiple fields. Such que-
ries are written in the form:

ORDER BY field1 sortingOrder, field2 sortingOrder, …

where sortingOrder is either ASC or DESC. Note that the sortingOrder does not have to be
identical for each field. 

3 Tem Nieto

7 Praveen Sadhu

5 Sean Santry

4 Kate Steinbuhler

11 Ben Wiedermann

9 Cheryl Yaeger

10 Marina Zlatkina

authorID firstName lastName

Fig. 19.17 Authors from table Authors in ascending order by lastName (part 2 
of 2).

authorID firstName lastName

10 Marina Zlatkina

9 Cheryl Yaeger

11 Ben Wiedermann

4 Kate Steinbuhler

5 Sean Santry

7 Praveen Sadhu

3 Tem Nieto

8 David McPhie

12 Jonathan Liperi

6 Ted Lin

2 Paul Deitel

1 Harvey Deitel

Fig. 19.18 Authors from table Authors in descending order by lastName.



Chapter 19 Database, SQL and ADO .NET 903

For example, the query:

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName, firstName

sorts all authors in ascending order by last name, then by first name. This means that, if any
authors have the same last name, their records are returned sorted by first name
(Fig. 19.19).

The WHERE and ORDER BY clauses can be combined in one query. For example, the
query

SELECT isbn, title, editionNumber, copyright, price 
FROM Titles 
WHERE title 
LIKE '*How to Program' ORDER BY title ASC

returns the ISBN, title, edition number, copyright and price of each book in the Titles
table that has a title ending with “How to Program”; it lists these records in ascending
order by title. The results of the query are depicted in Fig. 19.20.

19.4.4 Merging Data from Multiple Tables: INNER JOIN

Database designers often split related data into separate tables to ensure that a database does
not store data redundantly. For example, the Books database has tables Authors and
Titles. We use an AuthorISBN table to provide “links” between authors and titles. If
we did not separate this information into individual tables, we would need to include author
information with each entry in the Titles table. This would result in the database storing
duplicate author information for authors who wrote multiple books. 

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

6 Ted Lin

12 Jonathan Liperi

8 David McPhie

3 Tem Nieto

7 Praveen Sadhu

5 Sean Santry

4 Kate Steinbuhler

11 Ben Wiedermann

9 Cheryl Yaeger

10 Marina Zlatkina

Fig. 19.19 Authors from table Authors in ascending order by lastName and by 
firstName.



904 Database, SQL and ADO .NET Chapter 19

Often, it is necessary for analysis purposes to merge data from multiple tables into a
single set of data. Referred to as joining the tables, this is accomplished via an INNER
JOIN operation in the SELECT query. An INNER JOIN merges records from two or more
tables by testing for matching values in a field that is common to the tables. The simplest
format of an INNER JOIN clause is:

SELECT fieldName1, fieldName2, …
FROM table1
INNER JOIN table2
   ON table1.fieldName = table2.fieldName

isbn title
edition-
Number

copy-
right price

0130895601 Advanced Java 2 Platform 
How to Program

1 2002 $69.95

0131180436 C How to Program 1 1992 $69.95

0130895725 C How to Program 3 2001 $69.95

0132261197 C How to Program 2 1994 $49.95

0130622214 C# How To Program 1 2002 $69.95

0135289106 C++ How to Program 2 1998 $49.95

0131173340 C++ How to Program 1 1994 $69.95

0130895717 C++ How to Program 3 2001 $69.95

013028419X e-Business and e-Commerce 
How to Program

1 2001 $69.95

0130308978 Internet and World Wide 
Web How to Program

2 2002 $69.95

0130161438 Internet and World Wide 
Web How to Program

1 2000 $69.95

0130341517 Java How to Program 4 2002 $69.95

0136325890 Java How to Program 1 1998 $0.00

0130284181 Perl How to Program 1 2001 $69.95

0130923613 Python How to Program 1 2002 $69.95

0130293636 Visual Basic .NET How to 
Program

2 2002 $69.95

0134569555 Visual Basic 6 How to 
Program

1 1999 $69.95

0130622265 Wireless Internet and Mobile 
Business How to Program

1 2001 $69.95

0130284173 XML How to Program 1 2001 $69.95

Fig. 19.20 Books from table Titles whose titles end with How to Program in 
ascending order by title.



Chapter 19 Database, SQL and ADO .NET 905

The ON part of the INNER JOIN clause specifies the fields from each table that are com-
pared to determine which records are joined. For example, the following query produces a
list of authors accompanied by the ISBN numbers for books written by each author:

SELECT firstName, lastName, isbn 
FROM Authors 
INNER JOIN AuthorISBN 

ON Authors.authorID = AuthorISBN.authorID 
ORDER BY lastName, firstName

The query merges the firstName and lastName fields from table Authors and the
isbn field from table AuthorISBN, sorting the results in ascending order by lastName
and firstName. Notice the use of the syntax tableName.fieldName in the ON part of the
INNER JOIN. This syntax (called a fully qualified name) specifies the fields from each ta-
ble that should be compared to join the tables. The “tableName.” syntax is required if the
fields have the same name in both tables. The same syntax can be used in any query to dis-
tinguish among fields in different tables that have the same name. Fully qualified names
that start with the database name can be used to perform cross-database queries. 

Software Engineering Observation 19.1
If an SQL statement includes fields from multiple tables that have the same name, the state-
ment must precede those field names with their table names and the dot operator (e.g., Au-
thors.authorID). 19.1

Common Programming Error 19.5
In a query, failure to provide fully qualified names for fields that have the same name in two
or more tables is an error. 19.1

As always, the query can contain an ORDER BY clause. Figure 19.21 depicts the results
of the preceding query, ordered by lastName and firstName. [Note: To save space,
we split the results of the query into two columns, each containing the firstName,
lastName and isbn fields.]

firstName lastName isbn firstName lastName isbn

Harvey Deitel 0130895601 Harvey Deitel 0130856118

Harvey Deitel 0130284181 Harvey Deitel 0130161438

Harvey Deitel 0130284173 Harvey Deitel 013028419x

Harvey Deitel 0130829293 Harvey Deitel 0139163050

Harvey Deitel 0134569555 Harvey Deitel 0135289106

Harvey Deitel 0130829277 Harvey Deitel 0130895717

Harvey Deitel 0130852473 Harvey Deitel 0132261197

Harvey Deitel 0138993947 Harvey Deitel 0130895725

Harvey Deitel 0130125075 Paul Deitel 0130895601

Fig. 19.21 Authors from table Authors and ISBN numbers of the authors’ books, 
sorted in ascending order by lastName and firstName.



906 Database, SQL and ADO .NET Chapter 19

19.4.5 Joining Data from Tables Authors, AuthorISBN, Titles
and Publishers

The Books database contains one predefined query (TitleAuthor), which selects as its
results the title, ISBN number, author’s first name, author’s last name, copyright year and
publisher’s name for each book in the database. For books that have multiple authors, the
query produces a separate composite record for each author. The TitleAuthor query is
shown in Fig. 19.22. Figure 19.23 contains a portion of the query results.

Paul Deitel 0130284181 Paul Deitel 0135289106

Paul Deitel 0130284173 Paul Deitel 0130895717

Paul Deitel 0130829293 Paul Deitel 0132261197

Paul Deitel 0134569555 Paul Deitel 0130895725

Paul Deitel 0130829277 Tem Nieto 0130284181

Paul Deitel 0130852473 Tem Nieto 0130284173

Paul Deitel 0138993947 Tem Nieto 0130829293

Paul Deitel 0130125075 Tem Nieto 0134569555

Paul Deitel 0130856118 Tem Nieto 0130856118

Paul Deitel 0130161438 Tem Nieto 0130161438

Paul Deitel 013028419x Tem Nieto 013028419x

Paul Deitel 0139163050 Sean Santry 0130895601

1 SELECT Titles.title, Titles.isbn, Authors.firstName, 
2        Authors.lastName, Titles.copyright, 
3        Publishers.publisherName
4 FROM
5    ( Publishers INNER JOIN Titles 
6       ON Publishers.publisherID = Titles.publisherID ) 
7 INNER JOIN
8    ( Authors INNER JOIN AuthorISBN  
9       ON Authors.authorID = AuthorISBN.authorID ) 

10 ON Titles.isbn = AuthorISBN.isbn
11 ORDER BY Titles.title

Fig. 19.22 Joining tables to produce a result set in which each record contains an 
author, title, ISBN number, copyright and publisher name.

firstName lastName isbn firstName lastName isbn

Fig. 19.21 Authors from table Authors and ISBN numbers of the authors’ books, 
sorted in ascending order by lastName and firstName.



Chapter 19 Database, SQL and ADO .NET 907

Title isbn
first-
Name

last-
Name

copy-
right

publisher-
Name

Advanced Java 2 Platform 
How to Program

0130895601 Paul Deitel 2002 Prentice Hall

Advanced Java 2 Platform 
How to Program

0130895601 Harvey Deitel 2002 Prentice Hall

Advanced Java 2 Platform 
How to Program

0130895601 Sean Santry 2002 Prentice Hall

C How to Program 0131180436 Harvey Deitel 1992 Prentice Hall

C How to Program 0131180436 Paul Deitel 1992 Prentice Hall

C How to Program 0132261197 Harvey Deitel 1994 Prentice Hall

C How to Program 0132261197 Paul Deitel 1994 Prentice Hall

C How to Program 0130895725 Harvey Deitel 2001 Prentice Hall

C How to Program 0130895725 Paul Deitel 2001 Prentice Hall

C# How To Program 0130622214 Tem Nieto 2002 Prentice Hall

C# How To Program 0130622214 Paul Deitel 2002 Prentice Hall

C# How To Program 0130622214 Cheryl Yaeger 2002 Prentice Hall

C# How To Program 0130622214 Marina Zlatkina 2002 Prentice Hall

C# How To Program 0130622214 Harvey Deitel 2002 Prentice Hall

C++ How to Program 0130895717 Paul Deitel 2001 Prentice Hall

C++ How to Program 0130895717 Harvey Deitel 2001 Prentice Hall

C++ How to Program 0131173340 Paul Deitel 1994 Prentice Hall

C++ How to Program 0131173340 Harvey Deitel 1994 Prentice Hall

C++ How to Program 0135289106 Harvey Deitel 1998 Prentice Hall

C++ How to Program 0135289106 Paul Deitel 1998 Prentice Hall

e-Business and e-Commerce 
for Managers

0130323640 Harvey Deitel 2000 Prentice Hall

e-Business and e-Commerce 
for Managers

0130323640 Kate Stein-
buhler

2000 Prentice Hall

e-Business and e-Commerce 
for Managers

0130323640 Paul Deitel 2000 Prentice Hall

e-Business and e-Commerce 
How to Program

013028419X Harvey Deitel 2001 Prentice Hall

e-Business and e-Commerce 
How to Program

013028419X Paul Deitel 2001 Prentice Hall

e-Business and e-Commerce 
How to Program

013028419X Tem Nieto 2001 Prentice Hall

Fig. 19.23 Portion of the result set produced by the query in Fig. 19.22.



908 Database, SQL and ADO .NET Chapter 19

We added indentation to the query of Fig. 19.22 to make the query more readable. Let
us now break down the query into its various parts. Lines 1–3 contain a comma-separated
list of the fields that the query returns; the order of the fields from left to right specifies the
fields’ order in the returned table. This query selects fields title and isbn from table
Titles, fields firstName and lastName from table Authors, field copyright
from table Titles and field publisherName from table Publishers. For the pur-
pose of clarity, we fully qualified each field name with its table name (e.g.,
Titles.isbn).

Lines 5–10 specify the INNER JOIN operations used to combine information from the
various tables. There are three INNER JOIN operations. It is important to note that,
although an INNER JOIN is performed on two tables, either of those two tables can be the
result of another query or another INNER JOIN. We use parentheses to nest the INNER
JOIN operations; SQL evaluates the innermost set of parentheses first then moves outward.
We begin with the INNER JOIN:

( Publishers INNER JOIN Titles 
ON Publishers.publisherID = Titles.publisherID )

which joins the Publishers table and the Titles table ON the condition that the pub-
lisherID number in each table matches. The resulting temporary table contains informa-
tion about each book and its publisher. 

The other nested set of parentheses contains the INNER JOIN:

( Authors INNER JOIN AuthorISBN ON
   Authors.AuthorID = AuthorISBN.AuthorID )

which joins the Authors table and the AuthorISBN table ON the condition that the au-
thorID field in each table matches. Remember that the AuthorISBN table has multiple
entries for ISBN numbers of books that have more than one author.

The third INNER JOIN:

( Publishers INNER JOIN Titles 
ON Publishers.publisherID = Titles.publisherID )  

INNER JOIN
( Authors INNER JOIN AuthorISBN  

ON Authors.authorID = AuthorISBN.authorID ) 
ON Titles.isbn = AuthorISBN.isbn

joins the two temporary tables produced by the prior inner joins ON the condition that the
Titles.isbn field for each record in the first temporary table matches the correspond-
ing AuthorISBN.isbn field for each record in the second temporary table. The result
of all these INNER JOIN operations is a temporary table from which the appropriate fields
are selected to produce the results of the query.

Finally, line 11 of the query:

ORDER BY Titles.title

indicates that all the titles should be sorted in ascending order (the default).



Chapter 19 Database, SQL and ADO .NET 909

19.4.6 INSERT Statement
The INSERT statement inserts a new record in a table. The simplest form for this statement is:

INSERT INTO tableName ( fieldName1, fieldName2, …, fieldNameN )
VALUES ( value1, value2, …, valueN )

where tableName is the table in which to insert the record. The tableName is followed by
a comma-separated list of field names in parentheses. The list of field names is followed by
the SQL keyword VALUES and a comma-separated list of values in parentheses. The spec-
ified values in this list must match the field names listed after the table name in both order
and type (for example, if fieldName1 is specified as the firstName field, then value1
should be a string in single quotes representing the first name). The INSERT statement:

INSERT INTO Authors ( firstName, lastName )
VALUES ( 'Sue', 'Smith' )

inserts a record into the Authors table. The first comma-separated list indicates that the
statement provides data for the firstName and lastName fields. The corresponding
values to insert, which are contained in the second comma-separated list, are 'Sue' and
'Smith'. We do not specify an authorID in this example, because authorID is an
auto-increment field in the database. Every new record that we add to this table is assigned
a unique authorID value that is the next value in the auto-increment sequence (i.e., 1, 2,
3, etc.). In this case, Sue Smith would be assigned authorID number 13. Figure 19.24
shows the Authors table after we perform the INSERT operation.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Sue Smith

Fig. 19.24 Table Authors after an INSERT operation to add a record.



910 Database, SQL and ADO .NET Chapter 19

Common Programming Error 19.6
SQL statements use the single-quote (') character as a delimiter for strings. To specify a
string containing a single quote (such as O’Malley) in an SQL statement, the string must in-
clude two single quotes in the position where the single-quote character should appear in the
string (e.g., 'O''Malley'). The first of the two single-quote characters acts as an escape
character for the second. Failure to escape single-quote characters in a string that is part of
an SQL statement is an SQL syntax error. 19.6

19.4.7 UPDATE Statement

An UPDATE statement modifies data in a table. The simplest form for an UPDATE state-
ment is:

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is
followed by keyword SET and a comma-separated list of field name/value pairs written in
the format, fieldName = value. The WHERE clause specifies the criteria used to determine
which record(s) to update. For example, the UPDATE statement: 

UPDATE Authors 
SET lastName = 'Jones'
WHERE lastName = 'Smith' AND firstName = 'Sue'

updates a record in the Authors table. The statement indicates that the lastName will
be assigned the new value Jones for the record in which lastName currently is equal to
Smith and firstName is equal to Sue. If we know the authorID in advance of the
UPDATE operation (possibly because we searched for the record previously), the WHERE
clause could be simplified as follows:

WHERE AuthorID = 13

Figure 19.25 depicts the Authors table after we perform the UPDATE operation.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

Fig. 19.25 Table Authors after an UPDATE operation to change a record (part 
1 of 2).



Chapter 19 Database, SQL and ADO .NET 911

Common Programming Error 19.7
Failure to use a WHERE clause with an UPDATE statement could lead to logic errors. 19.7

19.4.8 DELETE Statement

An SQL DELETE statement removes data from a table. The simplest form for a DELETE
statement is:

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE clause
specifies the criteria used to determine which record(s) to delete. For example, the DELETE
statement: 

DELETE FROM Authors 
WHERE lastName = 'Jones' AND firstName = 'Sue'

deletes the record for Sue Jones from the Authors table. 

Common Programming Error 19.8
WHERE clauses can match multiple records. When deleting records from a database, be sure
to define a WHERE clause that matches only the records to be deleted. 19.8

Figure 19.26 shows the Authors table after we perform the DELETE operation.

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Sue Jones

authorID firstName lastName

Fig. 19.25 Table Authors after an UPDATE operation to change a record (part 
2 of 2).

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

Fig. 19.26 Table Authors after a DELETE operation to remove a record (part 1 
of 2).



912 Database, SQL and ADO .NET Chapter 19

19.5 ADO .NET Object Model
The ADO .NET object model provides an API for accessing database systems programmat-
ically. ADO .NET was created for the .NET framework and is the next generation of Ac-
tiveX Data Objects™ (ADO), which was designed to interact with Microsoft’s Component
Object Model™ (COM) framework. 

The primary namespaces for ADO .NET are System.Data, System.Data.OleDb
and System.Data.SqlClient. These namespaces contain classes for working with
databases and other types of datasources (such as, XML files). Namespace System.Data
is the root namespace for the ADO .NET API. Namespaces System.Data.OleDb and
System.Data.SqlClient contain classes that enable programs to connect with and
modify datasources. Namespace System.Data.OleDb contains classes that are designed
to work with any datasource, whereas the System.Data.SqlClient namespace con-
tains classes that are optimized to work with Microsoft SQL Server 2000 databases.  

Instances of class System.Data.DataSet, which consist of a set of DataT-
ables and relationships among those DataTables, represent a cache of data—data that
a program stores temporarily in local memory. The structure of a DataSet mimics the
structure of a relational database. An advantage of using class DataSet is that it is discon-
nected—the program does not need a persistent connection to the datasource to work with
data in a DataSet. The program connects to the datasource only during the initial popu-
lation of the DataSet initially and then to store any changes made in the DataSet.
Hence, the program does not require any active, permanent connection to the datasource. 

 Instances of class OleDbConnection of namespace System.Data.OleDb rep-
resent a connection to a datasource. Instances of class OleDbDataAdapter connect to
a datasource through an instance of class OleDbConnection and can populate
DataSets with data from a datasource. We discuss the details of creating and populating
DataSets later in this chapter.

Instances of class OleDbCommand of namespace System.Data.OleDb represent
an arbitrary SQL command to be executed on a datasource. A program can use instances of

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

authorID firstName lastName

Fig. 19.26 Table Authors after a DELETE operation to remove a record (part 2 
of 2).



Chapter 19 Database, SQL and ADO .NET 913

class OleDbCommand to manipulate a datasource through an OleDbConnection. The
programmer must close the active connection to the datasource explicitly once no further
changes are to be made. Unlike DataSets, OleDbCommand objects do not cache data in
local memory. 

19.6 Programming with ADO .NET: Extracting Information from 
a DBMS
In this section, we present two examples that introduce how to connect to a database, query
the database and display the results of the query. The database used in these examples is the
Microsoft Access Books database that we have discussed throughout this chapter. It can
be found in the project directory for the application of Fig. 19.27. Every program employ-
ing this database must specify the database’s location on the computer’s hard drive. When
executing these examples, this location must be updated for each program. For example,
before readers can run the application in Fig. 19.27 on their computers, they must change
lines 230–246 so that the code specifies the correct location for the database file.

19.6.1 Connecting to and Querying an Access Data Source

The first example (Fig. 19.27) performs a simple query on the Books database that retrieves
the entire Authors table and displays the data in a DataGrid (a component from
namespace System.Windows.Forms that can display a datasource in a GUI). The pro-
gram illustrates the process of connecting to the database, querying the database and display-
ing the results in a DataGrid. The discussion following the example presents the key
aspects of the program. [Note: We present all of Visual Studio’s auto-generated code in
Fig. 19.27 so that readers are aware of what Visual Studio generates for the example.]

1 ' Fig. 19.27: DisplayTable.vb
2 ' Displaying data from a database table.
3
4 Public Class FrmTableDisplay
5 Inherits System.Windows.Forms.Form
6
7 #Region " Windows Form Designer generated code "
8
9 Public Sub New()

10       MyBase.New()
11
12       ' This call is required by the Windows Form Designer.
13       InitializeComponent()
14
15       ' Add any initialization after the 
16       ' InitializeComponent call
17
18       ' fill DataSet1 with data
19       OleDbDataAdapter1.Fill(DataSet1, "Authors")
20

Fig. 19.27  Database access and information display (part 1 of 7).



914 Database, SQL and ADO .NET Chapter 19

21       ' bind data in Users table in dataSet1 to dgdAuthors
22       dgdAuthors.SetDataBinding(DataSet1, "Authors")
23 End Sub ' New
24
25    ' Form overrides dispose to clean up the component list.
26 Protected Overloads Overrides Sub Dispose( _
27       ByVal disposing As Boolean)
28
29       If disposing Then
30          If Not (components Is Nothing) Then
31             components.Dispose()
32          End If
33       End If
34       MyBase.Dispose(disposing)
35 End Sub ' Dispose
36
37 Friend WithEvents dgdAuthors As System.Windows.Forms.DataGrid
38 Friend WithEvents OleDbSelectCommand1 As _
39       System.Data.OleDb.OleDbCommand
40
41 Friend WithEvents OleDbInsertCommand1 As _
42          System.Data.OleDb.OleDbCommand
43
44 Friend WithEvents OleDbUpdateCommand1 As _
45       System.Data.OleDb.OleDbCommand
46
47 Friend WithEvents OleDbDeleteCommand1 As _
48       System.Data.OleDb.OleDbCommand
49
50 Friend WithEvents OleDbConnection1 As _
51       System.Data.OleDb.OleDbConnection
52
53 Friend WithEvents OleDbDataAdapter1 As _
54       System.Data.OleDb.OleDbDataAdapter
55
56 Friend WithEvents DataSet1 As System.Data.DataSet
57
58    ' Required by the Windows Form Designer
59 Private components As System.ComponentModel.Container
60
61    ' NOTE: The following procedure is required by the 
62    ' Windows Form Designer
63    ' It can be modified using the Windows Form Designer.  
64    ' Do not modify it using the code editor.
65    <System.Diagnostics.DebuggerStepThrough()> _
66    Private Sub InitializeComponent()
67
68       Me.dgdAuthors = New System.Windows.Forms.DataGrid()
69       Me.OleDbSelectCommand1 = _
70          New System.Data.OleDb.OleDbCommand()
71
72       Me.OleDbInsertCommand1 = _
73          New System.Data.OleDb.OleDbCommand()

Fig. 19.27  Database access and information display (part 2 of 7).



Chapter 19 Database, SQL and ADO .NET 915

74
75       Me.OleDbUpdateCommand1 = _
76          New System.Data.OleDb.OleDbCommand()
77
78       Me.OleDbDeleteCommand1 = _
79          New System.Data.OleDb.OleDbCommand()
80
81       Me.OleDbConnection1 = _
82          New System.Data.OleDb.OleDbConnection()
83
84       Me.OleDbDataAdapter1 = _
85          New System.Data.OleDb.OleDbDataAdapter()
86
87       Me.DataSet1 = New System.Data.DataSet()
88       CType(Me.dgdAuthors, _
89          System.ComponentModel.ISupportInitialize).BeginInit()
90
91       CType(Me.DataSet1, _
92          System.ComponentModel.ISupportInitialize).BeginInit()
93
94       Me.SuspendLayout()
95
96       '
97       ' dgdAuthors
98       '
99       Me.dgdAuthors.DataMember = ""
100       Me.dgdAuthors.Location = New System.Drawing.Point(8, 8)
101       Me.dgdAuthors.Name = "dgdAuthors"
102       Me.dgdAuthors.Size = New System.Drawing.Size(304, 256)
103       Me.dgdAuthors.TabIndex = 0
104
105       '
106       ' OleDbSelectCommand1
107       '
108       Me.OleDbSelectCommand1.CommandText = _
109          "SELECT authorID, firstName, lastName FROM Authors"
110
111       Me.OleDbSelectCommand1.Connection = Me.OleDbConnection1
112
113       '
114       ' OleDbInsertCommand1
115       '
116       Me.OleDbInsertCommand1.CommandText = _
117          "INSERT INTO Authors(authorID, firstName, lastName)" & _
118          "VALUES (?, ?, ?)"
119
120       Me.OleDbInsertCommand1.Connection = _
121          Me.OleDbConnection1
122
123       Me.OleDbInsertCommand1.Parameters.Add _
124          (New System.Data.OleDb.OleDbParameter("authorID", _
125          System.Data.OleDb.OleDbType.Numeric, 0, _
126          System.Data.ParameterDirection.Input, False, _

Fig. 19.27  Database access and information display (part 3 of 7).



916 Database, SQL and ADO .NET Chapter 19

127          CType(10, Byte), CType(0, Byte), "authorID", _
128          System.Data.DataRowVersion.Current, Nothing))
129
130       Me.OleDbInsertCommand1.Parameters.Add _
131          (New System.Data.OleDb.OleDbParameter("firstName", _
132          System.Data.OleDb.OleDbType.Char, 50, _
133          System.Data.ParameterDirection.Input, False, _
134          CType(0, Byte), CType(0, Byte), "firstName", _
135          System.Data.DataRowVersion.Current, Nothing))
136
137       Me.OleDbInsertCommand1.Parameters.Add _
138          (New System.Data.OleDb.OleDbParameter("lastName", _
139          System.Data.OleDb.OleDbType.Char, 50, _
140          System.Data.ParameterDirection.Input, False, _
141          CType(0, Byte), CType(0, Byte), "lastName", _
142          System.Data.DataRowVersion.Current, Nothing))
143
144       '
145       ' OleDbUpdateCommand1
146       '
147       Me.OleDbUpdateCommand1.CommandText = _
148          "UPDATE Authors SET authorID = ?, firstName = ?, " & _
149          "lastName = ? WHERE (authorID = ?)" & _
150          " AND (firstName = ?) AND (lastName = ?)"
151
152       Me.OleDbUpdateCommand1.Connection = Me.OleDbConnection1
153       Me.OleDbUpdateCommand1.Parameters.Add ( _
154          New System.Data.OleDb.OleDbParameter("authorID", _
155          System.Data.OleDb.OleDbType.Numeric, 0, _
156          System.Data.ParameterDirection.Input, False, _
157          CType(10, Byte), CType(0, Byte), "authorID", _
158          System.Data.DataRowVersion.Current, Nothing))
159
160       Me.OleDbUpdateCommand1.Parameters.Add _
161          (New System.Data.OleDb.OleDbParameter("firstName", _
162          System.Data.OleDb.OleDbType.Char, 50, _
163          System.Data.ParameterDirection.Input, False, _
164          CType(0, Byte), CType(0, Byte), "firstName", _
165          System.Data.DataRowVersion.Current, Nothing))
166
167       Me.OleDbUpdateCommand1.Parameters.Add _
168          (New System.Data.OleDb.OleDbParameter("lastName", _
169          System.Data.OleDb.OleDbType.Char, 50, _
170          System.Data.ParameterDirection.Input, False, _
171          CType(0, Byte), CType(0, Byte), "lastName", _
172          System.Data.DataRowVersion.Current, Nothing))
173
174       Me.OleDbUpdateCommand1.Parameters.Add _
175          (New System.Data.OleDb.OleDbParameter _
176          ("Original_authorID", _
177          System.Data.OleDb.OleDbType.Numeric, 0, _
178          System.Data.ParameterDirection.Input, False, _

Fig. 19.27  Database access and information display (part 4 of 7).



Chapter 19 Database, SQL and ADO .NET 917

179          CType(10, Byte), CType(0, Byte), "authorID", _
180          System.Data.DataRowVersion.Original, Nothing))
181
182       Me.OleDbUpdateCommand1.Parameters.Add _
183          (New System.Data.OleDb.OleDbParameter _
184          ("Original_firstName", _
185          System.Data.OleDb.OleDbType.Char, 50, _
186          System.Data.ParameterDirection.Input, False, _
187          CType(0, Byte), CType(0, Byte), "firstName", _
188          System.Data.DataRowVersion.Original, Nothing))
189
190       Me.OleDbUpdateCommand1.Parameters.Add _
191          (New System.Data.OleDb.OleDbParameter _
192          ("Original_lastName", _
193          System.Data.OleDb.OleDbType.Char, 50, _
194          System.Data.ParameterDirection.Input, False, _
195          CType(0, Byte), CType(0, Byte), "lastName", _
196          System.Data.DataRowVersion.Original, Nothing))
197
198       '
199       ' OleDbDeleteCommand1
200       '
201       Me.OleDbDeleteCommand1.CommandText = _
202          "DELETE FROM Authors WHERE (authorID = ?) AND " & _
203          "(firstName = ?) AND (lastName = ?)"
204
205       Me.OleDbDeleteCommand1.Connection = Me.OleDbConnection1
206       Me.OleDbDeleteCommand1.Parameters.Add _
207          (New System.Data.OleDb.OleDbParameter("authorID", _
208          System.Data.OleDb.OleDbType.Numeric, 0, _
209          System.Data.ParameterDirection.Input, False, _
210          CType(10, Byte), CType(0, Byte), "authorID", _
211          System.Data.DataRowVersion.Original, Nothing))
212
213       Me.OleDbDeleteCommand1.Parameters.Add _
214          (New System.Data.OleDb.OleDbParameter("firstName", _
215          System.Data.OleDb.OleDbType.Char, 50, _
216          System.Data.ParameterDirection.Input, False, _
217          CType(0, Byte), CType(0, Byte), "firstName", _
218          System.Data.DataRowVersion.Original, Nothing))
219
220       Me.OleDbDeleteCommand1.Parameters.Add _
221          (New System.Data.OleDb.OleDbParameter("lastName", _
222          System.Data.OleDb.OleDbType.Char, 50, _
223          System.Data.ParameterDirection.Input, False, _
224          CType(0, Byte), CType(0, Byte), "lastName", _
225          System.Data.DataRowVersion.Original, Nothing))
226
227       '
228       'OleDbConnection1
229       '
230       Me.OleDbConnection1.ConnectionString = _
231          "Provider=Microsoft.Jet.OLEDB.4.0;Password="""";" & _

Fig. 19.27  Database access and information display (part 5 of 7).



918 Database, SQL and ADO .NET Chapter 19

232          "User ID=Admin;Data Source=C:\Documen" & _
233          "ts and Settings\thiago\Desktop\vbhtp2e\examples\" & _
234          "Ch19\Fig19_27\Books.mdb;Mode=Sha" & _
235          "re Deny None;Extended Properties="""";" & _
236          "Jet OLEDB:System database="""";Jet OLEDB:Regis" & _
237          "try Path="""";Jet OLEDB:Database Password="""";" & _
238          "Jet OLEDB:Engine Type=5;Jet OLEDB:Dat" & _
239          "abase Locking Mode=1;Jet OLEDB:Global Partial " & _
240          "Bulk Ops=2;Jet OLEDB:Global Bulk T" & _
241          "ransactions=1;Jet OLEDB:New Database " & _
242          "Password="""";Jet OLEDB:Create System Databas" & _
243          "e=False;Jet OLEDB:Encrypt Database=False;" & _
244          "Jet OLEDB:Don't Copy Locale on Compact=" & _
245          "False;Jet OLEDB:Compact Without Replica " & _
246          "Repair=False;Jet OLEDB:SFP=False"
247
248       '
249       ' OleDbDataAdapter1
250       '
251       Me.OleDbDataAdapter1.DeleteCommand = _
252          Me.OleDbDeleteCommand1
253
254       Me.OleDbDataAdapter1.InsertCommand = _
255          Me.OleDbInsertCommand1
256
257       Me.OleDbDataAdapter1.SelectCommand = _
258          Me.OleDbSelectCommand1
259
260       Me.OleDbDataAdapter1.TableMappings.AddRange _
261          (New System.Data.Common.DataTableMapping() _
262          {New System.Data.Common.DataTableMapping("Table", _
263          "Authors", New System.Data.Common.DataColumnMapping() _
264          {New System.Data.Common.DataColumnMapping("authorID", _
265          "authorID"), New System.Data.Common.DataColumnMapping _
266          ("firstName", "firstName"), _
267          New System.Data.Common.DataColumnMapping("lastName", _
268          "lastName")})})
269
270       Me.OleDbDataAdapter1.UpdateCommand = _
271          Me.OleDbUpdateCommand1
272
273       '
274       ' DataSet1
275       '
276       Me.DataSet1.DataSetName = "NewDataSet"
277       Me.DataSet1.Locale = _
278          New System.Globalization.CultureInfo("en-US")
279
280       '
281       ' FrmTableDisplay
282       '
283       Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
284       Me.ClientSize = New System.Drawing.Size(320, 273)

Fig. 19.27  Database access and information display (part 6 of 7).



Chapter 19 Database, SQL and ADO .NET 919

This example uses an Access database. To register the Books database as a data-
source, right click the Data Connections node in the Server Explorer and then click
Add Connection. In the Provider tab of the window that appears, choose “Microsoft
Jet 4.0 OLE DB Provider”, which is the driver for Access databases. In the Connec-
tion tab, click the ellipses button (…) to the right of the textbox for the database name; this
opens the Select Access Database window. Go to the appropriate folder, select the
Books database and click OK. Then, click the Add Connection window’s OK button.
Now, the database is listed as a connection in the Server Explorer. Drag the database
node onto the Windows Form. This creates an OleDbConnection to the source, which
the Windows Form designer shows as OleDbConnection1.

Next, drag an OleDbDataAdapter from the Toolbox’s Data subheading onto the
Windows Form designer. This displays the Data Adapter Configuration Wizard,
which configures the OleDbDataAdapter instance with a custom query for populating
a DataSet. Click Next to display a drop-down list of possible connections. Select the
connection created in the previous step from the drop-down list and click Next. The

285       Me.Controls.AddRange(New System.Windows.Forms.Control() _
286          {Me.dgdAuthors})
287
288       Me.Name = "FrmTableDisplay"
289       Me.Text = "Table Display"
290       CType(Me.dgdAuthors, System.ComponentModel. _
291          ISupportInitialize).EndInit()
292
293       CType(Me.DataSet1, System.ComponentModel. _
294          ISupportInitialize).EndInit()
295
296       Me.ResumeLayout(False)
297
298 End Sub ' InitializeComponent
299
300 #End Region
301
302 End Class ' FrmTableDisplay

Fig. 19.27  Database access and information display (part 7 of 7).



920 Database, SQL and ADO .NET Chapter 19

resulting screen allows us to choose how the OleDbDataAdapter should access the
database. Keep the default Use SQL Statement option and click Next. Click the
“Query Builder” button, then select the Authors table from the “Add” menu and
then Close that menu. Place a check mark in the “*All Columns” box from the small
“Authors” window. Note how that particular window lists all columns of the Authors
table. Click OK and then Finish.

Next, we create a DataSet to store the query results. To do so, drag DataSet from
the Data tab in the Toolbox onto the form. This displays the Add DataSet window.
Choose the “Untyped DataSet (no schema)”—the query with which we populate
the DataSet dictates the DataSet’s schema, or structure (i.e., the tables that comprise
the DataSet and the relationships among those tables. Finally, add DataGrid dgdAu-
thors to the Form.

 Figure 19.27 includes all of the auto-generated code. Normally, we omit this code
from examples, because this code consists solely of GUI components. In this case, however,
we must discuss database functionality that is contained in the auto-generated code. Fur-
thermore, we have left Visual Studio’s default naming conventions in this example to show
exactly the code Visual Studio creates. Normally, we would change these names to conform
to our programming conventions and style.

Good Programming Practice 19.2
Use clear, descriptive variable names in code. This makes programs easier to understand. 19.2

Lines 230–246 initialize the OleDbConnection for this program. Property
ConnectionString specifies the path to the database file on the computer’s hard drive.

An instance of class OleDbDataAdapter populates the DataSet in this example
with data from the Books database. The instance properties DeleteCommand (lines
251–252), InsertCommand (lines 254–255), SelectCommand (lines 257–258) and
UpdateCommand (lines 270–271) are OleDbCommand objects that specify how the
OleDbDataAdapter deletes, inserts, selects and updates data in the database.

Each OleDbCommand object must have an OleDbConnection through which the
OleDbCommand can communicate with the database. Property Connection is set to the
OleDbConnection to the Books database. For OleDbUpdateCommand1, line 152
sets the Connection property, and lines 147–150 set the CommandText.

Although Visual Studio .NET generates most of this program’s code, we manually
enter code in the FrmTableDisplay constructor (lines 9–23); this code populates
dataSet1 using an OleDbDataAdapter. Line 19 calls OleDbDataAdapter
method Fill to retrieve information from the database associated with the OleDbCon-
nection, placing this information in the DataSet provided as an argument. The second
argument to method fill is a String specifying the name of the table in the database from
which to Fill the DataSet.

Line 22 invokes DataGrid method SetDataBinding to bind the DataGrid to
a datasource. The first argument is the DataSet—in this case, DataSet1—whose data
the DataGrid should display. The second argument is a String representing the name
of the table within the datasource that we want to bind to the DataGrid. Once this line
executes, the DataGrid is filled with the information in the DataSet. The information
in DataSet1 is used to set the correct number of rows and columns in the DataGrid
and to provide the columns with default names. 



Chapter 19 Database, SQL and ADO .NET 921

19.6.2 Querying the Books Database
The code example in Fig. 19.28 demonstrates how to execute SQL SELECT statements on
a database and display the results. Although Fig. 19.28 uses only SELECT statements to
query the data, the application could be used to execute many different SQL statements
with a few minor modifications. 

1 ' Fig. 19.28: DisplayQueryResults.vb
2 ' Displays the contents of the authors database.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmDisplayQueryResult
7 Inherits Form
8
9    ' SQL query input textbox and submit button

10 Friend WithEvents txtQuery As TextBox
11 Friend WithEvents cmdSubmit As Button
12
13    ' dataset display grid
14 Friend WithEvents dgdResults As DataGrid
15
16    ' database connection 
17 Friend WithEvents BooksConnection As _
18       System.Data.OleDb.OleDbConnection
19
20    ' database adapter 
21 Friend WithEvents BooksDataAdapter As _
22       System.Data.OleDb.OleDbDataAdapter
23
24    ' query dataset 
25 Friend WithEvents BooksDataSet As System.Data.DataSet
26
27    ' Visual Studio .NET generated code
28
29    ' perform SQL query on data
30 Private Sub cmdSubmit_Click(ByVal sender As System.Object, _
31       ByVal e As System.EventArgs) Handles cmdSubmit.Click
32
33       Try
34      
35          ' set text of SQL query to what user typed
36          BooksDataAdapter.SelectCommand.CommandText = _
37             txtQuery.Text
38
39          ' clear DataSet from previous operation
40          BooksDataSet.Clear()
41
42          ' fill data set with information that results
43          ' from SQL query
44          BooksDataAdapter.Fill(BooksDataSet, "Authors")
45

Fig. 19.28 SQL statements executed on a database (part 1 of 2).



922 Database, SQL and ADO .NET Chapter 19

Form FrmDisplayQueryResult (Fig. 19.28) contains TextBox txtQuery
(line 10), in which users input SELECT statements. After entering a query, the user clicks
Button cmdSubmit (line 11), labeled Submit Query, to view the results of the query.
The results then are displayed in DataGrid dgdResults (line 14).

Event handler cmdSubmit_Click (lines 30–56) is the key part of this program.
When the program invokes this event handler in response to a button click, lines 36–37
assign the SELECT query that the user typed in txtQuery as the value of the OleDb-
DataAdapter’s SelectCommand property. This String is parsed into an SQL query
and executed on the database via the OleDbDataAdapter’s method Fill (line 44).
This method, as discussed in the previous section, places the data from the database into
BooksDataSet. Line 40 calls method Clear of class DataSet. Method Clear
removes all previous information contained within a DataSet.

Common Programming Error 19.9
If a DataSet already has been Filled at least once, failure to call the DataSet’sClear
method before calling the Fill method will lead to logic errors. 19.9

To display or redisplay contents in the DataGrid, use method SetDataBinding.
Again, the first argument to this method is the datasource to be displayed in the table—a
DataSet, in this case. The second argument is the String name of the datasource member

46          ' bind DataGrid to contents of DataSet
47          dgdResults.SetDataBinding(BooksDataSet, "Authors")
48
49       ' display database connection message
50       Catch oleDbExceptionParameter As _
51          System.Data.OleDb.OleDbException
52
53          MessageBox.Show("Invalid Query")
54       End Try
55
56 End Sub ' cmdSubmit_Click
57
58 End Class ' FrmDisplayQueryResults

Fig. 19.28 SQL statements executed on a database (part 2 of 2).



Chapter 19 Database, SQL and ADO .NET 923

to be displayed (line 47)—a table name, in this case. Readers can try entering their own que-
ries in the text box and then pressing the Submit Query button to execute the query.

Fig. 19.28 displays the output for FrmDisplayQueryResults. The first screen-
shot demonstrates the query results of retrieving all records from the Authors table. As
the second screen capture demonstrates, clicking any column sorts the rows according to
the contents of that column in either ascending or descending order.

19.7 Programming with ADO .NET: Modifying a DBMS
Our next example implements a simple address-book application that enables users to in-
sert records into, locate records from and update the Microsoft Access database
Addressbook.

The Addressbook application (Fig. 19.29) provides a GUI through which users can
execute SQL statements on the database. Earlier in the chapter, we presented examples
explaining the use of SELECT statements to query a database. This example provides that
same functionality.

Event handler cmdFind_Click (lines 72–119) performs the SELECT query on the
database for the record associated with the String entered in txtLast. This represents
the last name of the person whose record the user wishes to retrieve. Line 81 invokes
method Clear of class DataSet to empty the DataSet of any prior data. Lines 85–87
modify the text of the SQL query to perform the appropriate SELECT operation. The Ole-
DbDataAdaptermethod Fill then executes this statement (line 91). Notice how a dif-
ferent overload of method Fill from the previous example has been used in this situation.
Only the DataSet to be filled is passed as an argument. Finally, the TextBoxes are
updated with a call to method Display (line 94).

Methods cmdAdd_Click (lines 122–173) and cmdUpdate_Click (lines 176–
232) perform INSERT and UPDATE operations, respectively. Each method uses members
of class OleDbCommand to perform operations on a database. The instance properties
InsertCommand and UpdateCommand of class OleDbDataAdapter are instances
of class OleDbCommand.

1 ' Fig. 19.29: AddressBook.vb
2 ' Using SQL statements to manipulate a database.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmAddressBook
7 Inherits Form
8
9    ' top set of command buttons

10 Friend WithEvents cmdFind As Button
11 Friend WithEvents cmdAdd As Button
12 Friend WithEvents cmdUpdate As Button
13 Friend WithEvents cmdClear As Button
14 Friend WithEvents cmdHelp As Button
15
16    ' textbox identifier labels
17 Friend WithEvents lblId As Label

Fig. 19.29  Database modification demonstration (part 1 of 9).



924 Database, SQL and ADO .NET Chapter 19

18 Friend WithEvents lblFirst As Label
19 Friend WithEvents lblLast As Label
20 Friend WithEvents lblAddress As Label
21 Friend WithEvents lblCity As Label
22 Friend WithEvents lblState As Label
23 Friend WithEvents lblZip As Label
24 Friend WithEvents lblCountry As Label
25 Friend WithEvents lblEmail As Label
26 Friend WithEvents lblPhone As Label
27 Friend WithEvents lblFax As Label
28
29    ' input textboxes
30 Friend WithEvents txtId As TextBox
31 Friend WithEvents txtFirst As TextBox
32 Friend WithEvents txtLast As TextBox
33 Friend WithEvents txtAddress As TextBox
34 Friend WithEvents txtCity As TextBox
35 Friend WithEvents txtState As TextBox
36 Friend WithEvents txtZip As TextBox
37 Friend WithEvents txtCountry As TextBox
38 Friend WithEvents txtEmail As TextBox
39 Friend WithEvents txtPhone As TextBox
40 Friend WithEvents txtFax As TextBox
41
42    ' query status display textbox
43 Friend WithEvents txtStatus As TextBox
44
45    ' database connection 
46 Friend WithEvents AddressBookConnection As _
47       System.Data.OleDb.OleDbConnection
48
49    ' database adapter 
50 Friend WithEvents AddressBookDataAdapter As _
51       System.Data.OleDb.OleDbDataAdapter
52
53    ' query dataset 
54 Friend WithEvents AddressBookDataSet As System.Data.DataSet
55
56    ' constructor
57 Public Sub New()
58       MyBase.New()
59
60       ' This call is required by the Windows Form Designer.
61       InitializeComponent()
62
63       ' Add any initialization after the InitializeComponent call
64
65       ' open connection
66       AddressBookConnection.Open()
67    End Sub ' New
68
69    ' Visual Studio .NET generated code
70

Fig. 19.29  Database modification demonstration (part 2 of 9).



Chapter 19 Database, SQL and ADO .NET 925

71    ' finds record in database
72 Private Sub cmdFind_Click(ByVal sender As System.Object, _
73       ByVal e As System.EventArgs) Handles cmdFind.Click
74
75       Try
76
77          ' ensure user input last name
78          If txtLast.Text <> "" Then
79
80             ' clear DataSet from last operation
81             AddressBookDataSet.Clear()
82
83             ' create SQL query to find contact
84             ' with specified last name
85             AddressBookDataAdapter.SelectCommand.CommandText = _
86                "SELECT * FROM addresses WHERE " & _
87                "lastname = '" & txtLast.Text & "' "
88
89             ' fill AddressBookDataSet with the rows resulting 
90             ' from the query
91             AddressBookDataAdapter.Fill(AddressBookDataSet)
92
93             ' display information
94             Display(AddressBookDataSet)
95             txtStatus.Text &= vbCrLf & "Query Successful " & _
96                vbCrLf
97
98          ' prompt user for last name
99          Else
100             txtLast.Text = _
101                "Enter last name here then press Find"
102          End If
103
104       ' display verbose information with database exception
105       Catch oleDbExceptionParameter As _
106          System.Data.OleDb.OleDbException
107
108          Console.WriteLine(oleDbExceptionParameter.StackTrace)
109          txtStatus.Text &= oleDbExceptionParameter.ToString
110
111       ' display message box when invalid operation
112       Catch invalidOperationExceptionParameter As _
113          InvalidOperationException
114
115          MessageBox.Show( _
116             invalidOperationExceptionParameter.Message)
117       End Try
118
119 End Sub ' cmdFind_Click
120

Fig. 19.29  Database modification demonstration (part 3 of 9).



926 Database, SQL and ADO .NET Chapter 19

121    ' adds record to database
122 Private Sub cmdAdd_Click(ByVal sender As System.Object, _
123       ByVal e As System.EventArgs) Handles cmdAdd.Click
124
125       Try
126
127          ' ensure first and last name input
128          If (txtLast.Text <> "" AndAlso txtFirst.Text <> "") Then
129
130             ' create the SQL query to insert a row
131             AddressBookDataAdapter.InsertCommand.CommandText = _
132                "INSERT INTO addresses(firstname, " & _
133                "lastname, address, city, " & _
134                "stateorprovince, postalcode, country, " & _
135                "emailaddress, homephone, faxnumber) " & _
136                "VALUES('" & txtFirst.Text & "' , " & _
137                "'" & txtLast.Text & "' , " & _
138                "'" & txtAddress.Text & "' , " & _
139                "'" & txtCity.Text & "' , " & _
140                "'" & txtState.Text & "' , " & _
141                "'" & txtZip.Text & "' , " & _
142                "'" & txtCountry.Text & "' , " & _
143                "'" & txtEmail.Text & "' , " & _
144                "'" & txtPhone.Text & "' , " & _
145                "'" & txtFax.Text & "')"
146
147             ' notify the user the query is being sent 
148             txtStatus.Text &= vbCrLf & "Sending query: " & _
149                AddressBookDataAdapter.InsertCommand. _ 
150                   CommandText & vbCrLf
151
152             ' send query
153             AddressBookDataAdapter.InsertCommand. _
154                ExecuteNonQuery()
155
156             txtStatus.Text &= vbCrLf & "Query successful"
157
158          ' prompt user to input first and last name
159          Else
160             txtStatus.Text &= vbCrLf & _
161                "Enter at least first and last name then " & _
162                "press Add" & vbCrLf
163          End If
164
165       ' display verbose information when database exception
166       Catch oleDbExceptionParameter As _
167          System.Data.OleDb.OleDbException
168
169          Console.WriteLine(oleDbExceptionParameter.StackTrace)
170          txtStatus.Text &= oleDbExceptionParameter.ToString
171       End Try
172
173 End Sub ' cmdAdd_Click

Fig. 19.29  Database modification demonstration (part 4 of 9).



Chapter 19 Database, SQL and ADO .NET 927

174
175    ' updates entry in database
176 Private Sub cmdUpdate_Click(ByVal sender As System.Object, _
177       ByVal e As System.EventArgs) Handles cmdUpdate.Click
178
179       Try
180
181          ' make sure user has already found 
182          ' record to update
183          If txtId.Text <> "" Then
184
185             ' set SQL query to update all fields in 
186             ' table where id number matches id in 
187             ' idTextBox
188             AddressBookDataAdapter.UpdateCommand.CommandText = _
189                "UPDATE addresses SET firstname=" & _
190                "'" & txtFirst.Text & "' , " & _
191                "lastname = '" & txtLast.Text & "' , " & _
192                "address='" & txtAddress.Text & "' , " & _
193                "city='" & txtCity.Text & "' , " & _
194                "stateorprovince= " & _
195                "'" & txtState.Text & "', " & _
196                "postalcode='" & txtZip.Text & "', " & _
197                "country='" & txtCountry.Text & "' , " & _
198                "emailaddress='" & txtEmail.Text & "' , " & _
199                "homephone='" & txtPhone.Text & "' , " & _
200                "faxnumber='" & txtFax.Text & "' " & _
201                "WHERE id=" & txtId.Text & " ;  "
202
203             ' notify user that query is being sent
204             txtStatus.Text &= vbCrLf & "Sending query: " & _
205                AddressBookDataAdapter.UpdateCommand. _
206                   CommandText & vbCrLf
207
208             ' execute query
209             AddressBookDataAdapter.UpdateCommand. _
210                ExecuteNonQuery()
211
212             txtStatus.Text &= vbCrLf & "Query Successful" & _
213                vbCrLf
214
215          ' prompt user to input existing record
216          Else
217             txtStatus.Text &= vbCrLf & _
218                "You may only update an existing record. " & _
219                "Use Find to locate the record, then " & _
220                "modify the information and press Update." & _
221                vbCrLf
222          End If
223
224       ' display verbose information when database exception
225       Catch oleDbExceptionParameter As _
226          System.Data.OleDb.OleDbException

Fig. 19.29  Database modification demonstration (part 5 of 9).



928 Database, SQL and ADO .NET Chapter 19

227
228          Console.WriteLine(oleDbExceptionParameter.StackTrace)
229          txtStatus.Text &= oleDbExceptionParameter.ToString
230       End Try
231
232 End Sub ' cmdUpdate_Click
233
234 ' clears all information in textboxes
235 Private Sub cmdClear_Click(ByVal sender As System.Object, _
236       ByVal e As System.EventArgs) Handles cmdClear.Click
237
238       txtId.Clear()
239       ClearTextBoxes()
240 End Sub ' cmdClear_Click
241
242    ' displays information on application use
243 Private Sub cmdHelp_Click(ByVal sender As System.Object, _
244       ByVal e As System.EventArgs) Handles cmdHelp.Click
245
246       txtStatus.AppendText(vbCrLf & _
247          "Click Find to locate a record" & vbCrLf & _
248          "Click Add to insert a new record." & vbCrLf & _
249          "Click Update to update the information in a " & _
250          "record " & vbCrLf & "Click Clear to empty the " & _ 
251          "textboxes")
252 End Sub ' cmdHelp_Click
253
254    ' displays data in dataset
255 Private Sub Display(ByVal dataset As DataSet)
256
257       Try
258
259          ' get first DataTable - there will be one
260          Dim dataTable As DataTable = dataset.Tables(0)
261
262          ' ensure dataTable not empty
263          If dataTable.Rows.Count <> 0 Then
264             Dim recordNumber As Integer = _
265                Convert.ToInt32(dataTable.Rows(0)(0))
266
267             txtId.Text = recordNumber.ToString
268             txtFirst.Text = _
269                Convert.ToString(dataTable.Rows(0)(1))
270
271             txtLast.Text = _
272                Convert.ToString(dataTable.Rows(0)(2))
273
274             txtAddress.Text = _
275                Convert.ToString(dataTable.Rows(0)(3))
276
277             txtCity.Text = _
278                Convert.ToString(dataTable.Rows(0)(4))
279

Fig. 19.29  Database modification demonstration (part 6 of 9).



Chapter 19 Database, SQL and ADO .NET 929

280             txtState.Text = _
281                Convert.ToString(dataTable.Rows(0)(5))
282
283             txtZip.Text = _
284                Convert.ToString(dataTable.Rows(0)(6))
285
286             txtCountry.Text = _
287                Convert.ToString(dataTable.Rows(0)(7))
288
289             txtEmail.Text = _
290                Convert.ToString(dataTable.Rows(0)(8))
291
292             txtPhone.Text = _
293                Convert.ToString(dataTable.Rows(0)(9))
294
295             txtFax.Text = _
296                Convert.ToString(dataTable.Rows(0)(10))
297
298          ' display not-found message
299          Else
300             txtStatus.Text &= vbCrLf & "No record found" & vbCrLf
301          End If
302
303       ' display verbose information when database exception
304       Catch oleDbExceptionParameter As _
305          System.Data.OleDb.OleDbException
306
307          Console.WriteLine(oleDbExceptionParameter.StackTrace)
308          txtStatus.Text &= oleDbExceptionParameter.ToString
309       End Try
310
311 End Sub ' Display 
312
313    ' clears text boxes
314 Private Sub ClearTextBoxes()
315       txtFirst.Clear()
316       txtLast.Clear()
317       txtAddress.Clear()
318       txtCity.Clear()
319       txtState.Clear()
320       txtZip.Clear()
321       txtCountry.Clear()
322       txtEmail.Clear()
323       txtPhone.Clear()
324       txtFax.Clear()
325 End Sub ' ClearTextBoxes
326
327 End Class ' FrmAddressBook

Fig. 19.29  Database modification demonstration (part 7 of 9).



930 Database, SQL and ADO .NET Chapter 19

Fig. 19.29  Database modification demonstration (part 8 of 9).



Chapter 19 Database, SQL and ADO .NET 931

Fig. 19.29  Database modification demonstration (part 9 of 9).



932 Database, SQL and ADO .NET Chapter 19

Property CommandText of class OleDbCommand is a String representing the
SQL statement that the OleDbCommand object executes. Event handler cmdAdd_Click
sets property CommandText of the OleDbCommand object (accessed through
AddressBookDataAdapter’s property InsertCommand) to execute the appro-
priate INSERT statement on the database (lines 131–145). Method cmdUpdate_Click
sets this property of UpdateCommand to execute the appropriate UPDATE statement on
the database (lines 188–201).

The ExecuteNonQuery method of class OleDbCommand performs the action
specified by CommandText. Hence, the INSERT statement defined by Address-
BookDataAdapter.InsertCommand.CommandText in the cmdAdd_Click
event handler is executed when lines 153–154 invoke method AddressBookData-
Adapter.InsertCommand.ExecuteNonQuery. Similarly, the UPDATE statement
defined by AddressBookDataAdapter.UpdateCommand.CommandText in the
event handler cmdUpdate_Click is executed by invoking method AddressBook-
DataAdapter.UpdateCommand.ExecuteNonQuery (lines 209–210). 

Method Display (lines 255-311) updates the user interface with data from the newly
retrieved address book record. Line 260 obtains a DataTable from the DataSet's
Tables collection. This DataTable contains the results of our SQL query. Line 263
checks whether the query returned any rows. The Rows property in class DataTable pro-
vides access to all records retrieved by the query. The Rows property is much like a two-
dimensional rectangular array. Lines 264–265 retrieve the field with index 0, 0 (i.e., the
first record’s first column of data) and store the value in variable recordNumber. Lines
267–296 then retrieve the remaining fields of data from the DataTable to populate the
user interface. 

The application’s Help button prints instructions in the console at the bottom of the
application window (lines 246–251). The event handler for this button is
cmdHelp_Click (lines 243–252). The Clear button clears the text from the TextBoxes
using method ClearTextBoxes (line 314).

19.8 Reading and Writing XML Files
A powerful feature of ADO .NET is its ability to convert data stored in a datasource to
XML. Class DataSet of namespace System.Data provides methods WriteXml,
ReadXml and GetXml, which enable developers to create XML documents from data-
sources and to convert data from XML into datasources. The application of Fig. 19.30 pop-
ulates a DataSet with statistics about baseball players and then writes the data to files as
XML. The application also displays the XML in a TextBox.

1 ' Fig. 19.30: XMLWriter.vb
2 ' Demonstrates generating XML from an ADO .NET DataSet.
3
4 Imports System.Windows.Forms
5
6 Public Class FrmXMLWriter
7 Inherits Form
8

Fig. 19.30 XML representation of a DataSet written to a file (part 1 of 3).



Chapter 19 Database, SQL and ADO .NET 933

9    ' constructor
10 Public Sub New()
11       MyBase.New()
12
13       ' This call is required by the Windows Form Designer.
14       InitializeComponent()
15
16       ' Add any initialization after the 
17       ' InitializeComponent() call
18
19       ' open database connection
20       BaseballConnection.Open()
21
22       ' fill DataSet with data from OleDbDataAdapter
23       BaseballDataAdapter.Fill(BaseballDataSet, "Players")
24
25       ' bind DataGrid to DataSet
26       dgdPlayers.SetDataBinding(BaseballDataSet, "Players")
27    End Sub
28
29    ' form controls
30 Friend WithEvents cmdWrite As Button
31 Friend WithEvents dgdPlayers As DataGrid
32 Friend WithEvents txtOutput As TextBox
33
34    ' database connection
35 Friend WithEvents BaseballConnection As _
36       System.Data.OleDb.OleDbConnection
37
38    ' database adapter
39 Friend WithEvents BaseballDataAdapter As _
40       System.Data.OleDb.OleDbDataAdapter
41
42    ' results dataset
43 Friend WithEvents BaseballDataSet As System.Data.DataSet
44
45    ' Visual Studio .NET generated code   
46
47    ' write XML representation of DataSet when button clicked
48 Private Sub cmdWrite_Click(ByVal sender As System.Object, _
49       ByVal e As System.EventArgs) Handles cmdWrite.Click
50       
51       ' write XML representation of DataSet to file
52       BaseballDataSet.WriteXml("Players.xml")
53
54       ' display XML in TextBox
55       txtOutput.Text &= "Writing the following XML:" & _
56          vbCrLf & BaseballDataSet.GetXml() & vbCrLf
57 End Sub ' cmWrite_Click
58
59 End Class ' FrmXMLWriter

Fig. 19.30 XML representation of a DataSet written to a file (part 2 of 3).



934 Database, SQL and ADO .NET Chapter 19

The FrmXMLWriter constructor (lines 10–27) establishes a connection to the
Baseball database in line 20. Line 23 calls method Fill of class OleDbData-
Adapter to populate BaseballDataSet with data from the Players table in the
Baseball database. Line 26 binds the dgdPlayers to BaseballDataSet to dis-
play the information to the user. 

Event handler cmdWrite_Click (lines 48–57) defines the event handler for the
Write to XML button. When the user clicks this button, line 52 invokes DataSet method
WriteXml, which generates an XML representation of the data contained in the
DataSet and then writes the XML to the specified file. Figure 19.31 depicts this XML
representation. Each Players element represents a record in the Players table. The
firstName, lastName, battingAverage and playerID elements correspond to
the fields that have these names in the Players database table.

1 <?xml version="1.0" standalone="yes"?>
2 <NewDataSet>
3    <Players>
4       <firstName>John</firstName>
5       <lastName>Doe</lastName>
6       <battingAverage>0.375</battingAverage>
7       <playerID>1</playerID>
8    </Players>
9

10    <Players>
11      <firstName>Jack</firstName>
12       <lastName>Smith</lastName>
13    <battingAverage>0.223</battingAverage>
14       <playerID>2</playerID>
15    </Players>
16
17    <Players>
18       <firstName>George</firstName>
19       <lastName>O'Malley</lastName>

Fig. 19.31 XML document generated from DataSet in XMLWriter (part 1 of 2).

Fig. 19.30 XML representation of a DataSet written to a file (part 3 of 3).



Chapter 19 Database, SQL and ADO .NET 935

SUMMARY
• A database is an integrated collection of data. A database management system (DBMS) provides

mechanisms for storing and organizing data.

• Today’s most popular database systems are relational databases. 

• A language called Structured Query Language (SQL) is used almost universally with relational-
database systems to perform queries and manipulate data. 

• A programming language connects to, and interacts with, relational databases via an interface—
software that facilitates communications between a database management system and a program. 

• Visual Basic programmers communicate with databases and manipulate their data via ADO .NET. 

• A relational database is composed of tables. A row of a table is called a record. 

• A primary key is a field that contains unique data, or data that is not duplicated in other records of
that table.

• Each column of the table represents a different field (or attribute). 

• The primary key can be composed of more than one column (or field) in the database. 

• SQL provides a complete set of commands enabling programmers to define complex queries to
select data from a table. The results of a query commonly are called result sets (or record sets). 

• A one-to-many relationship between tables indicates that a record in one table can have many cor-
responding records in a separate table. 

• A foreign key is a field for which every entry in one table has a unique value in another table and
where the field in the other table is the primary key for that table. 

• The simplest format for a SELECT query is

SELECT * FROM tableName

where the asterisk (*) indicates that all columns from tableName should be selected, and tableNa-
me specifies the table in the database from which the data will be selected. 

• To select specific fields from a table, replace the asterisk (*) with a comma-separated list of the
field names to select. 

• Programmers process result sets by knowing in advance the order of the fields in the result set.
Specifying the field names to select guarantees that the fields are returned in the specified order,
even if the actual order of the fields in the database table(s) changes.

• The optional WHERE clause in a SELECT query specifies the selection criteria for the query. The
simplest format for a SELECT query with selection criteria is

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

• The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE. Operator LIKE
is used for pattern matching with wildcard characters asterisk (*) and question mark (?). 

• A pattern that contains an asterisk character (*) searches for strings in which zero or more charac-
ters appear in the asterisk character’s location in the pattern. 

20    <battingAverage>0.444</battingAverage>
21       <playerID>3</playerID>
22    </Players>
23 </NewDataSet>

Fig. 19.31 XML document generated from DataSet in XMLWriter (part 2 of 2).



936 Database, SQL and ADO .NET Chapter 19

• A pattern string containing a question mark (?) searches for strings in which exactly one character
appears in the question mark’s position in the pattern. 

• The results of a query can be arranged in ascending or descending order via the optional ORDER
BY clause. The simplest form of an ORDER BY clause is

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order, DESC specifies descending order, and field specifies the
field to be sorted. The default sorting order is ascending, so ASC is optional. 

• An ORDER BY clause also can sort records by multiple fields. Such queries are written in the form:

ORDER BY field1 sortingOrder, field2 sortingOrder, …

• The WHERE and ORDER BY clauses can be combined in one query.

• A join merges records from two or more tables by testing for matching values in a field that is com-
mon to both tables. The simplest format of a join is

SELECT fieldName1, fieldName2, …
   FROM table1, table2
   WHERE table1.fieldName = table2.fieldName

in which the WHERE clause specifies the fields from each table that should be compared to deter-
mine which records are joined. These fields normally represent the primary key in one table and
the corresponding foreign key in the other table. 

• If an SQL statement uses fields that have the same name in multiple tables, the statement must ful-
ly qualify the field name by preceding it with its table name and the dot operator (.).

• An INSERT statement inserts a new record in a table. The simplest form for this statement is:

INSERT INTO tableName ( fieldName1, fieldName2, …, fieldNameN )
VALUES ( value1, value2, …, valueN )

where tableName is the table in which to insert the record. The tableName is followed by a com-
ma-separated list of field names in parentheses. The list of field names is followed by the SQL key-
word VALUES and a comma-separated list of values in parentheses. 

• SQL statements use a single quote (') as a delimiter for strings. To specify a string containing a
single quote in an SQL statement, the single quote must be escaped with another single quote.

• An UPDATE statement modifies data in a table. The simplest form for an UPDATE statement is:

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is followed
by keyword SET and a comma-separated list of field-name/value pairs written in the format
fieldName = value. The WHERE criteria determine the record(s) to update.

• A DELETE statement removes data from a table. The simplest form for a DELETE statement is:

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE criteria de-
termine which record(s) to delete. 



Chapter 19 Database, SQL and ADO .NET 937

• Microsoft Access 2000™ is an easy-to-use Office 2000™ database program.

• System.Data, System.Data.OleDb and System.Data.SqlClient are the three
main namespaces in ADO .NET.

• Class DataSet is from the System.Data namespace. Instances of this class represent in-mem-
ory caches of data.

• The advantage of using class DataSet is that it is a way to modify the contents of a datasource
without having to maintain an active connection.

• One approach to ADO .NET programming uses OleDbCommand of the System.Data.Ole-
Db namespace. In this approach, SQL statements are executed directly on the datasource.

• Use the Add Connection option to create a database connection in the Data Link Properties
window.

• Use the Data Adapter Configuration Wizard to set up an OleDbDataAdapter and gener-
ate queries.

• If a DataSet needs to be named, use the instance property DataSetName.

• OleDbCommands commands are what the OleDbDataAdapter executes on the database in
the form of SQL queries.

• DataColumnMappings  converts data from a database to a DataSet and vice versa.

• Instance property Parameters of class OleDbCommand is a collection of OleDbParame-
ter objects. Adding them to an OleDbCommand is an optional way to add parameters in a com-
mand, instead of creating a lengthy, complex command string.

• OleDbCommand instance property Connection is set to the OleDbConnection that the
command will be executed on, and the instance property CommandText is set to the SQL query
that will be executed on the database.

• OleDbDataAdapter method Fill retrieves information from the database associated with the
OleDbConnection and places this information in the DataSet provided as an argument.

• DataGrid method SetDataBinding binds a DataGrid to a data source.

• Method Clear of class DataSet is called to empty the DataSet of any prior data.

• The instance properties InsertCommand and UpdateCommand of class OleDbData-
Adapter are instances of class OleDbCommand.

• Property CommandText of class OleDbCommand is the String representing the SQL state-
ment to be executed.

• Method ExecuteNonQuery of class OleDbCommand is called to perform the action specified
by CommandText on the database.

• A powerful feature of ADO .NET is its ability to readily convert data stored in a datasource to
XML, and vice versa.

• Method WriteXml of class DataSet writes the XML representation of the DataSet instance
to the first argument passed to it. This method has several overloaded versions that allow program-
mers to specify an output source and a character encoding for the data.

• Method ReadXml of class DataSet reads the XML representation of the first argument passed
to it into its own DataSet. This method has several overloaded versions that allow programmers
to specify an input source and a character encoding for the data.

TERMINOLOGY
% SQL wildcard character * SQL wildcard character 
_ SQL wildcard character ? SQL wildcard character 



938 Database, SQL and ADO .NET Chapter 19

ADO .NET ItemArray property of DataRow
AND joining tables 
Application Programming Interface LIKE
ASC (ascending order) locate records in a database 
asterisk (*) match the selection criteria 
attribute merge records from tables 
cache Microsoft SQL Server 
Clear method of DataSet MySQL 
column OleDbCommand class 
column number OleDbConnection class 
column number in a result set OleDbDataAdapter class 
CommandText method of OleDbCommand Oracle 
CommandText property of OleDbCommand ORDER BY
connect to a database ordered 
data attribute ordering of records 
database Parameters property of OleDbParameter
database management system (DBMS) pattern matching 
database table primary key 
DataColumn class query a database 
DataGrid class ReadXml method of DataSet
DataRow class record 
DataRowCollection class record set 
DataSet class Refresh method of DataGrid
DataSetName property of DataSet relational database 
DataTable class relational database model 
DB2 relational database table 
DELETE result set 
DELETE FROM roll back a transaction 
DeleteCommand property of  
   OleDbAdapter

row 
Rows property of DataTable

DESC rows to be retrieved 
disconnected SELECT
distributed computing system select all fields from a table 
escape character SelectCommand property of  

   OleDbAdapterExecuteNonQuery method of 
   OleDbCommand selecting data from a table 
ExecuteNonQuery property of  
   OleDbCommand

selection criteria 
SET

field SetDataBinding method of DataGrid
Fill method of OleDbAdapter single-quote character 
FROM SQL keyword 
fully qualified name SQL statement 
GetXml method of DataSet SqlConnection class 
GROUP BY square brackets in a query 
Informix Structured Query Language (SQL) 
in-memory cache Sybase 
INSERT INTO System.Data namespace 
InsertCommand property of  
   OleDbAdapter

System.Data.OleDb namespace 
System.Data.Sqlclient namespace 

interface table 



Chapter 19 Database, SQL and ADO .NET 939

SELF-REVIEW EXERCISES
19.1 Fill in the blanks in each of the following statements:

a) The most popular database query language is .
b) A table in a database consists of  and .
c) Databases can be manipulated in Visual Basic as  objects.
d) Use class  to map a DataSet’s data graphically in Visual Basic.
e) SQL keyword(s)  is followed by selection criteria that specify the records to

select in a query.
f) SQL keyword(s)  specifies the order in which records are sorted in a query.
g) Selecting data from multiple database tables is called  the data.
h) A  is an integrated collection of data that is centrally controlled.
i) A  is a field in a table for which every entry has a unique value in another

table and where the field in the other table is the primary key for that table. 
j) Namespace  contains special classes and interfaces for manipulating

SQLServer databases in Visual Basic. 
k) Visual Basic marks up data as  for transmission between datasources.
l) Namespace  is Visual Basic’s general interface to a database. 

19.2 State which of the following are true or false. If false, explain why.
a) In general, ADO .NET is a disconnected model.
b) SQL can implicitly convert fields with the same name from two or mores tables to the

appropriate field.
c) Only the UPDATE SQL statement can commit changes to a database.
d) Providing a foreign-key value that does not appear as a primary-key value in another ta-

ble breaks the Rule of Referential Integrity.
e) The VALUES keyword in an INSERT statement inserts multiple records in a table. 
f) SELECT statements can merge data from multiple tables.
g) The DELETE statement deletes only one record in a table.
h) An OleDbDataAdapter can Fill a DataSet.
i) Class DataSet of namespace System.Data provides methods that enable developers

to create XML documents from datasources.
j) SQLServer is an example of a managed provider.
k) Because Visual Basic uses a disconnected model, OleDbConnections are optional.
l) It is always faster to assign a value to a variable than to instantiate a new Object.

ANSWERS TO SELF-REVIEW EXERCISES
19.3 a) SQL.  b) rows, columns.  c) DataSet.  d) DataGrid.  e) WHERE.  f) ORDER BY.
g) joining.  h) database.  i) foreign key.  j) System.Data.SqlClient.  k) XML.
l) System.Data.OleDb.

19.4 a)  True.  b) False. In a query, failure to provide fully qualified names for fields with the same
name from two or more tables is an error.  c) False. INSERT and DELETE change the database, as

table column UpdateCommand property of  
   OleDbAdaptertable row 

TableMappings property of  
   OleDbAdapter

VALUES
WHERE

Tables property of DataSet WriteXml method of DataSet
UPDATE XML document
Update method of OleDbDataAdapter



940 Database, SQL and ADO .NET Chapter 19

well. Do not confuse the SQL UPDATE statement with method OleDbDataAdapter.Update.
d) True.  e) False. An INSERT statement inserts one record in the table. The VALUES keyword spec-
ifies the comma-separated list of values of which the record is composed. f) True.  g) False. The DE-
LETE statement deletes all records matching its WHERE clause.  h) True.  i) True.  j) True.  k) False.
This class is required to connect to a database.  l) True.

EXERCISES
19.5 Using the techniques shown in this chapter, define a complete query application for the Au-
thors.mdb database. Provide a series of predefined queries with an appropriate name for each que-
ry displayed in a System.Windows.Forms.ComboBox. Also, allow users to supply their own
queries and add them to the ComboBox. Provide any queries you feel are appropriate.

19.6 Using the techniques shown in this chapter, define a complete query application for the
Books.mdb database. Provide a series of predefined queries with an appropriate name for each que-
ry displayed in a System.Windows.Forms.ComboBox. Also, allow users to supply their own
queries and add them to the ComboBox. Provide the following predefined queries:

a) Select all authors from the Authors table.
b) Select all publishers from the Publishers table.
c) Select a specific author and list all books for that author. Include the title, year and ISBN

number. Order the information alphabetically by title.
d) Select a specific publisher and list all books published by that publisher. Include the title,

year and ISBN number. Order the information alphabetically by title.
e) Provide any other queries you feel are appropriate.

19.7 Modify Exercise 19.6 to define a complete database-manipulation application for the
Books.mdb database. In addition to the querying capabilities, the application should enable users
to edit existing data and add new data to the database. Allow the user to edit the database in the fol-
lowing ways:

a) Add a new author.
b) Edit the existing information for an author.
c) Add a new title for an author (remember that the book must have an entry in the

AuthorISBN table). Be sure to specify the publisher of the title.
d) Add a new publisher.
e) Edit the existing information for a publisher.

For each of the preceding database manipulations, design an appropriate GUI to allow the user to
perform the data manipulation.

19.8 Modify the address-book example of Fig. 19.29 to enable each address-book entry to contain
multiple addresses, phone numbers and e-mail addresses. The user should be able to view multiple
addresses, phone numbers and e-mail addresses. [Note: This is a large exercise that requires substan-
tial modifications to the original classes in the address-book example.]

19.9 Write a GUI application that enables users to retrieve records from the Books.mdb data-
base. The application must provide a GUI front-end which allows users to select the fields and criteria
on which to display authors’ titles.

19.10 Write a program that allows the user to modify a database graphically through an XML text
editor. The GUI should be able to display the contents of the database and commit any changes to the
XML text to the database.



20
ASP .NET, Web Forms 

and Web Controls

Objectives
• To become familiar with Web Forms in ASP .NET.
• To be able to create Web Forms.
• To be able to create an ASP .NET application 

consisting of multiple Web Forms.
• To be able to control user access to Web applications 

through forms authentication.
• To be able to use files and databases in an ASP .NET 

application.
• To learn how to use tracing with Web Forms.
If any man will draw up his case, and put his name at the foot 
of the first page, I will give him an immediate reply. Where 
he compels me to turn over the sheet, he must wait my 
leisure.

Lord Sandwich

Rule One: Our client is always right
Rule Two: If you think our client is wrong, see Rule One.
Anonymous

A fair question should be followed by a deed in silence.
Dante Alighieri

You will come here and get books that will open your eyes, 
and your ears, and your curiosity, and turn you inside out or 
outside in.
Ralph Waldo Emerson



942 ASP .NET, Web Forms and Web Controls Chapter 20

20.1 Introduction
In previous chapters, we used Windows Forms and Windows controls to develop Win-
dows applications. In this chapter, we introduce Web-based application development,
which employs Microsoft’s ASP .NET technology. Web-based applications create Web
content for Web browser clients. This Web content includes HyperText Markup Lan-
guage (HTML),1 client-side scripting, images and binary data.

We present several examples that demonstrate Web-based applications development
using Web Forms (also known as Web Form pages), Web controls (also known as ASP
.NET server controls) and Visual Basic programming. Web Form files have the file
extension .aspx and contain the Web page’s GUI. Programmers customize Web Forms
by adding Web controls, which include labels, textboxes, images, buttons and other GUI
components. The Web Form file represents the Web page that is sent to the client
browser. [Note: From this point onward, we refer to Web Form files as ASPX files.]

Every ASPX file created in Visual Studio has a corresponding class written in a
.NET language, such as Visual Basic; this class includes event handlers, initialization
code, utility methods and other supporting code. The Visual Basic file that contains this
class is called the code-behind file and provides the ASPX file’s programmatic imple-
mentation.

Outline

20.1 Introduction
20.2 Simple HTTP Transaction
20.3 System Architecture
20.4 Creating and Running a Simple Web-Form Example
20.5 Web Controls

20.5.1 Text and Graphics Controls

20.5.2 AdRotator Control
20.5.3 Validation Controls

20.6 Session Tracking
20.6.1 Cookies

20.6.2 Session Tracking with HttpSessionState
20.7 Case Study: Online Guest book
20.8 Case Study: Connecting to a Database in ASP .NET
20.9 Tracing
20.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Readers not familiar with HTML should first read Appendices H–I before studying this chapter.



Chapter 20 ASP .NET, Web Forms and Web Controls 943

20.2 Simple HTTP Transaction
Before exploring Web-based applications development further, a basic understanding of net-
working and the World Wide Web is necessary. In this section, we examine the inner work-
ings of the HyperText Transfer Protocol (HTTP) and discuss what occurs behind the scenes
when a browser displays a Web page. HTTP specifies a set of methods and headers that allow
clients and servers to interact and exchange information in a uniform and predictable way.

In its simplest form, a Web page is nothing more than a HTML document. This docu-
ment is a plain text file containing markings (markup or tags) that describe to a Web browser
how to display and format the document’s information. For example, the HTML markup

<title>My Web Page</title>

indicates to the browser that the text contained between the <title> start tag and the
</title> end tag is the Web page’s title. HTML documents also can contain hypertext
data (usually called hyperlinks), which create links to different pages or to other parts of the
same page. When the user activates a hyperlink (usually by clicking it with the mouse), the
requested Web page (or different part of the same Web page) is loaded into the user’s
browser window.

Any HTML document available for viewing over the Web has a corresponding Uni-
form Resource Locator (URL), which is an address indicating the location of a resource.
The URL contains information that directs a browser to the resource document that the user
wishes to access. Computers that run Web server software provide such resources. When
developing ASP .NET Web applications, Micorsoft Internet Information Services (IIS) is
the Web server.

Let us examine the components of the URL

http://www.deitel.com/books/downloads.htm

The http:// indicates that the resource is to be obtained using HTTP. The middle por-
tion, www.deitel.com, is the fully qualified hostname of the server. The hostname is
the name of the computer on which the resource resides. This computer usually is referred
to as the host, because it houses and maintains resources. The hostname www.dei-
tel.com is translated into an IP address (207.60.134.230), which identifies the
server in a manner similar to that in which a telephone number uniquely defines a particular
phone line. The translation of the hostname into an IP address normally is performed by a
domain name server (DNS), a computer that maintains a database of hostnames and their
corresponding IP addresses. This translation operation is called a DNS lookup.

The remainder of the URL provides the name of the requested resource, /books/
downloads.htm (an HTML document). This portion of the URL specifies both the
name of the resource (downloads.htm) and its path, or location (/books), on the Web
server. The path could specify the location of an actual directory on the Web server’s file
system. However, for security reasons, the path often specifies the location of a virtual
directory. In such systems, the server translates the virtual directory into a real location on
the server (or on another computer on the server’s network), thus hiding the true location
of the resource. Furthermore, some resources are created dynamically and do not reside
anywhere on the server computer. The hostname in the URL for such a resource specifies
the correct server, and the path and resource information identify the location of the
resource with which to respond to the client’s request.



944 ASP .NET, Web Forms and Web Controls Chapter 20

When given a URL, a browser performs a simple HTTP transaction to retrieve and dis-
play a Web page. Figure 20.1 illustrates the transaction in detail. This transaction consists
of interaction between the Web browser (the client side) and the Web-server application
(the server side).

In Fig. 20.1, the Web browser sends an HTTP request to the server. The request (in its
simplest form) is

GET /books/downloads.htm HTTP/1.1

The word GET is an HTTP method indicating that the client wishes to obtain a resource
from the server. The remainder of the request provides the path name of the resource (an
HTML document) and the protocol’s name and version number (HTTP/1.1).

Any server that understands HTTP (version 1.1) can translate this request and respond
appropriately. Figure 20.2 depicts the results of a successful request. The server first
responds by sending a line of text that indicates the HTTP version, followed by a numeric
code and phrase describing the status of the transaction. For example,

HTTP/1.1 200 OK

indicates success, whereas

HTTP/1.1 404 Not found

informs the client that the Web server could not locate the requested resource.

Fig. 20.1 Client interacting with Web server. Step 1: The GET request, 
GET /books/downloads.htm HTTP/1.1.

Fig. 20.2 Client interacting with Web server. Step 2: The HTTP response, 
HTTP/1.1 200 OK.



Chapter 20 ASP .NET, Web Forms and Web Controls 945

The server then sends one or more HTTP headers, which provide additional informa-
tion about the data that will be sent. In this case, the server is sending an HTML text doc-
ument, so the HTTP header for this example reads:

Content-type: text/html

The information provided in this header specifies the Multipurpose Internet Mail Exten-
sions (MIME) type of the content that the server is transmitting to the browser. MIME is an
Internet standard that specifies the way in which certain data must be formatted so that pro-
grams can interpret the data correctly. For example, the MIME type text/plain indi-
cates that the sent information is text that can be displayed directly, without any
interpretation of the content as HTML markup. Similarly, the MIME type image/gif in-
dicates that the content is a GIF image. When the browser receives this MIME type, it at-
tempts to display the image.

The header or set of headers is followed by a blank line, which indicates to the client
that the server is finished sending HTTP headers. The server then sends the contents of the
requested HTML document (downloads.htm). The server terminates the connection
when the transfer of the resource is complete. At this point, the client-side browser parses
the HTML it has received and renders (or displays) the results.

20.3 System Architecture
Web-based applications are multi-tier applications, which sometimes are referred to as n-
tier applications. Multi-tier applications divide functionality into separate tiers (i.e., logical
groupings of functionality). Although tiers can be located on the same computer, the tiers
of Web-based applications typically reside on separate computers. Figure 20.3 presents the
basic structure of a three-tier Web-based application.

The information tier (also called the data tier or the bottom tier) maintains data per-
taining to the application. This tier typically stores data in a relational database manage-
ment system (RDBMS). We discussed RDBMSs in Chapter 19. For example, a retail store
might have a database for storing product information, such as descriptions, prices and
quantities in stock. The same database also might contain customer information, such as
user names, billing addresses and credit-card numbers. This tier can be comprised of mul-
tiple databases, which together contain the data needed for our application.

Fig. 20.3 Three-tier architecture.



946 ASP .NET, Web Forms and Web Controls Chapter 20

The middle tier implements business logic, controller logic and presentation logic to
control interactions between application clients and application data. The middle tier acts
as an intermediary between data in the information tier and the application’s clients. The
middle-tier controller logic processes client requests (such as requests to view a product
catalog) and retrieves data from the database. The middle-tier presentation logic then pro-
cesses data from the information tier and presents the content to the client. Web applica-
tions typically present data to clients in the form of HTML documents.

Business logic in the middle tier enforces business rules and ensures that data are reli-
able before the server application updates the database or presents data to users. Business
rules dictate how clients can and cannot access application data and how applications pro-
cess data.

The client tier, or top tier, is the application’s user interface, which is typically a Web
browser. Users interact directly with the application through the user interface. The client
tier interacts with the middle tier to make requests and to retrieve data from the information
tier. The client tier then displays to the user the data retrieved from the middle tier.

20.4 Creating and Running a Simple Web-Form Example
In this section, we present our first example, which displays the time of day as maintained
on the Web server in a browser window. When run, this program displays the text A Sim-
ple Web Form Example, followed by the Web server’s time. As mentioned previously,
the program consists of two related files—an ASPX file (Fig. 20.4) and a Visual Basic
code-behind file (Fig. 20.5). We display the markup, code and output first; then, we care-
fully guide the reader through the step-by-step process of creating this program. [Note: The
markup in Fig. 20.4 and other ASPX file listings in this chapter have been reformatted for
presentation purposes.]

1 <%-- Fig. 20.4: WebTime.aspx          --%>
2 <%-- A page that contains two labels. --%>
3
4 <%@ Page Language="vb" AutoEventWireup="false"
5    Codebehind="WebTime.aspx.vb" Inherits="WebTime.WebTimer"
6 enableViewState="False" EnableSessionState="False" %>
7
8 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
9 <HTML>

10    <HEAD>
11       <title>WebTime</title>
12       <meta name="GENERATOR"
13          content="Microsoft Visual Studio.NET 7.0">
14       <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
15       <meta name="vs_defaultClientScript" content="JavaScript">
16       <meta name="vs_targetSchema"
17          content="http://schemas.microsoft.com/intellisense/ie5">
18    </HEAD>
19    <body MS_POSITIONING="GridLayout">
20       <form id="Form1" method="post" runat="server">
21

Fig. 20.4 ASPX page that displays the Web server’s time (part 1 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 947

Visual Studio generates the markup shown in Fig. 20.4 when the programmer drags
two Labels onto the Web Form and sets their properties. Notice that the ASPX file con-
tains other information in addition to HTML.

Lines 1–2 of Fig. 20.4 are ASP .NET comments that indicate the figure number, the file
name and the purpose of the file. ASP.NET comments begin with <%-- and terminate with
--%>. We added these comments to the file. Lines 4–5 use a <%@ Page…%> directive to
specify information needed by the Common Language Runtime (CLR) to process this file.
The language of the code-behind file is specified as vb; the code-behind file is named
WebTime.aspx.vb.

The AutoEventWireup attribute determines how Web Form events are handled.
When the AutoEventWireup is set to true, ASP .NET determines which methods in
the class are called in response to an event generated by the Page. For example, ASP .NET
will call methods Page_Load and Page_Init in the code-behind file to handle the
Page’s Load and Init events respectively, without the use of the Handles keyword.
When Visual Studio .NET generates an aspx file it sets AutoEventWireup to false.
This is because Visual Studio .NET generates the Page_Load and Page_Init event
handlers using the Handles keyword when the project is created. For this reason, always
set AutoEventWireup false when using Visual Studio.

The Inherits attribute specifies the class in the code-behind file from which this
ASP .NET class inherits—in this case, WebTimer. We say more about Inherits
momemtarily. [Note: We explicitly set the EnableViewState attribute and the
EnableSessionState attribute to false. We explain the significance of these
attributes later in the chapter.]

For this first ASPX file, we provide a brief discussion of the HTML markup. We do
not discuss the HTML contained in subsequent ASPX files. Line 7 is called the document
type declaration, which specifies the document element name (HTML) and the PUBLIC
Uniform Resource Identifier (URI) for the DTD.

Lines 8–9 contain the <HTML> and <HEAD> start tags, respectively. HTML documents
have root element HTML and mark up information about the document in the HEAD ele-
ment. Line 10 sets the title for this Web page. Lines 11–16 are a series of meta elements,

22          <asp:Label id="displayLabel" style="Z-INDEX: 101;
23             LEFT: 42px; POSITION: absolute; TOP: 36px"
24             runat="server" Width="186px">
25             A Simple Web Form Example
26          </asp:Label>
27
28          <asp:Label id="timeLabel" style="Z-INDEX: 102;
29             LEFT: 33px; POSITION: absolute; TOP: 84px"
30             runat="server" Width="225px" Height="55px"
31             ForeColor="#C0FFC0" BackColor="Black"
32             Font-Size="XX-Large">
33          </asp:Label>
34
35       </form>
36    </body>
37 </HTML>

Fig. 20.4 ASPX page that displays the Web server’s time (part 2 of 2).



948 ASP .NET, Web Forms and Web Controls Chapter 20

which contain information about the document. Two important meta-element attributes
are name, which identifies the meta element, and content, which stores the meta ele-
ment’s data. Visual Studio generates these meta elements when an ASPX file is created.

Line 18 contains the <body> start tag, which begins the HTML body; the body con-
tains the main content that the browser displays. The Form that contains our controls is
defined in lines 19–34. Notice the runat attribute in line 19, which is set to "server".
This attribute indicates that the form executes on the server. The corresponding HTML
will be generated and sent to the client.

Lines 21–25 and 27–32 mark up two label Web controls. The properties that we set in
the Properties window, such as Font-Size and Text, are attributes here. The asp:
tag prefix in the declaration of the Label tag indicates that the label is an ASP .NET Web
control. Each Web control maps to a corresponding HTML element.

Portability Tip 20.1
The same Web control can map to different HTML elements, depending on the client browser
and the Web control’s property settings. 20.1

In this example, the asp:Label control maps to the HTML span element. A span
element contains text that is displayed in a Web page. This particular element is used
because span elements facilitate the application of styles to text. Several of the property
values that were applied to our labels are represented as part of the style of the span
element. Soon we will see the span elements that are created.

Each of the Web controls in our example contains the runat="server" attribute-
value pair, because these controls must be processed on the server. If this attribute pair is
not present, the asp:Label element is written as text to the client (i.e., the control would
not be converted into a span element and would not be rendered properly).

Figure 20.5 presents the code-behind file. Recall that the ASPX file in Fig. 20.4 refer-
ences this file in line 4. To explain the code, we present the entire code-behind file for this
example.

1 ' Fig. 20.5: WebTime.aspx.vb
2 ' The code-behind file for a page
3 ' that displays the current time.
4
5 Imports System
6 Imports System.Web
7 Imports System.Web.UI
8 Imports System.Web.UI.WebControls
9

10 Public Class WebTimer
11 Inherits System.Web.UI.Page
12
13 Protected WithEvents displayLabel As _
14       System.Web.UI.WebControls.Label
15
16 Protected WithEvents timeLabel As _
17       System.Web.UI.WebControls.Label
18

Fig. 20.5 Code-behind file for a page that displays the Web server’s time (part 1 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 949

Notice the Imports statements in lines 5–8. These statements specify namespaces
that contain classes for developing Web-based applications. The key namespace on which
we initially focus is System.Web, which contains classes that manage client requests and
server responses. The other namespaces define the controls available and how they can be
manipulated; these are discussed throughout the chapter as they become more relevant.

Line 10 begins the class definition for WebTimer, which inherits from class Page.
This class defines the requested Web page and is located in the System.Web.UI
namespace (line 7), which contains classes pertinent to the creation of Web-based applica-
tions and controls. Class Page also provides event handlers and objects necessary for cre-
ating Web-based applications. In addition to the Page class (from which all Web
applications directly or indirectly inherit), System.Web.UI also includes the Control
class. This class is the base class that provides common functionality for all Web controls.

19   ' This call is required by the Web Form Designer
20 Private Sub InitializeComponent()
21 End Sub
22
23 Private Sub Page_Init(ByVal sender As System.Object, _
24       ByVal e As System.EventArgs) Handles MyBase.Init
25
26       InitializeComponent()
27
28       timeLabel.Text = _
29          String.Format("{0:D2}:{1:D2}:{2:D2}", _
30          DateTime.Now.Hour, DateTime.Now.Minute, _
31          DateTime.Now.Second)
32 End Sub ' Page_Init
33
34    Private Sub Page_Load(ByVal sender As System.Object, _
35       ByVal e As System.EventArgs) Handles MyBase.Load
36      ' Put user code to initialize the page here
37 End Sub ' Page_Load
38 End Class ' WebTimer

Fig. 20.5 Code-behind file for a page that displays the Web server’s time (part 2 of 2).



950 ASP .NET, Web Forms and Web Controls Chapter 20

Lines 13–17 declare references to two Labels. These Labels are Web controls,
defined in namespace System.Web.UI.WebControls (line 8). This namespace con-
tains Web controls employed in the design of the page’s user interface. Web controls in this
namespace derive from class WebControl.

Lines 23–32 define method Page_Init, which handles the page’s Init event. This
event, which is the first event raised, indicates that the page is ready to be initialized.
Method Page_Init calls method InitializeComponent (line 20–21). Like Win-
dows Forms, this method is used to programmatically set some initial properties of the
application’s components.  After this call, timeLabel’s Text property is set to the Web
server’s time (lines 28–31).

How are the ASPX file and the code-behind file used to create the Web page that is
sent to the client? First, recall that class WebTimer is the base class specified in line 5 of
the ASPX file (Fig. 20.4). This class inherits from Page, which defines the general func-
tionality of a Web page. Class WebTimer inherits this functionality and defines some of
its own (i.e., displaying the current time). The code-behind file is the file that defines this
functionality, whereas the ASPX file defines the GUI. When a client requests an ASPX file,
a class is created behind the scenes that contains both the visual aspect of our page (defined
in the ASPX file) and the logic of our page (defined in the code-behind file). This new class
inherits from Page. The first time that our Web page is requested, this class is compiled,
and an instance is created. This instance represents our page—it creates the HTML that is
sent to the client. The assembly created from our compiled class is placed in the project’s
bin directory.

Performance Tip 20.1
Once an instance of the Web page has been created, multiple clients can use it to access the
page—no recompilation is necessary. The project will be recompiled only when a program-
mer modifies the application; changes are detected by the runtime environment, and the
project is recompiled to reflect the altered content. 20.1

Let us look briefly at how the code in our Web page executes. When an instance of our
page is created, the Init event occurs first, invoking method Page_Init. This method
calls InitializeComponent. In addition to this call, method Page_Init might con-
tain code needed to initialize objects. After this occurs, the Load event is generated and the
Page_Load event handler executes any processing that is necessary to restore data from
previous requests. After this event handler has finished executing, the page processes any
events raised by the page’s controls. This includes the handling of any events generated by
the user, such as button clicks. When the Web-Form object is ready for garbage collection,
an Unload event is generated. Although not present, event handler Page_Unload is
inherited from class Page. This event handler contains any code that releases resources,
especially any unmanaged resources (i.e., resources not managed by the CLR).

Figure 20.6 shows the HTML generated by the ASP .NET application. To view this
HTML, select View > Source in Internet Explorer.

The contents of this page are similar to those of the ASPX file. Lines 7–15 define a
document header comparable to that in Fig. 20.4. Lines 17–35 define the body of the doc-
ument. Line 18 begins the form, which is a mechanism for collecting user information and
sending it to the Web server. In this particular program, the user does not submit data to the
Web server for processing; however, this is a crucial part of many applications and is facil-
itated by the form.



Chapter 20 ASP .NET, Web Forms and Web Controls 951

HTML forms can contain visual and nonvisual components. Visual components
include clickable buttons and other GUI components with which users interact. Nonvisual
components, called hidden inputs, store any data that the document author specifies, such
as e-mail addresses. One of these hidden inputs is defined in lines 20–21. We discuss the
precise meaning of this hidden input later in the chapter. Attribute method specifies the
method by which the Web browser submits the form to the server. The action attribute
in the <form> tag identifies the name and location of the resource that will be requested
when this form is submitted; in this case, WebTime.aspx. Recall that the ASPX file’s
form elements contained the runat="server" attribute-value pair. When the form is
processed on the server, the name="Form1" and action="WebTime.aspx"
attribute-value pairs are added to the HTML form sent to the client browser.

In the ASPX file, the form’s labels were Web controls. Here, we are viewing the
HTML created by our application, so the form contains span elements to represent the

1 <!-- Fig. 20.6: WebTime.html                    -->
2 <!-- The HTML generated when WebTime is loaded. -->
3
4 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
5
6 <HTML>
7    <HEAD>
8       <title>WebTime</title>
9   <meta name="GENERATOR" 

10          Content="Microsoft Visual Studio 7.0">
11       <meta name="CODE_LANGUAGE" Content="Visual Basic 7.0">
12     <meta name="vs_defaultClientScript" content="JavaScript">
13   <meta name="vs_targetSchema"
14          content="http://schemas.microsoft.com/intellisense/ie5">
15  </HEAD>
16
17  <body MS_POSITIONING="GridLayout">
18   <form name="Form1" method="post"
19          action="WebTime.aspx" id="Form1">
20          <input type="hidden" name="__VIEWSTATE"
21             value="dDw1OTc3ODM2Mzk7Oz4=" />
22
23          <span id="displayLabel"
24             style="width:186px;Z-INDEX: 101;
25             LEFT: 42px; POSITION: absolute; TOP: 36px">
26             A Simple Web Form Example
27          </span>
28          <span id="timeLabel" style="color:#C0FFC0;
29             background-color:Black;font-size:XX-Large; 
30             height:55px;width:225px;Z-INDEX: 102; 
31             LEFT: 33px; POSITION: absolute; TOP: 84px">
32             10:39:35
33          </span>
34       </form>
35    </body>
36 </HTML>

Fig. 20.6 HTML response when the browser requests WebTime.aspx .



952 ASP .NET, Web Forms and Web Controls Chapter 20

text in our labels. In this particular case, ASP .NET maps the label Web controls to HTML
span elements. Each span element contains formatting information, such as size and
placement, for the text being displayed. Most of the information specified as properties for
timeLabel and displayLabel are specified by the style attribute of each span.

Now that we have presented the ASPX file and the code-behind file2, we outline the
process by which we created this application. To create the application, perform the fol-
lowing steps:

1. Create the project. Select File > New > Project... to display the New Project
dialog (Fig. 20.7). In this dialog, select Visual Basic Projects in the left pane
and then ASP.NET Web Application in the right pane. Notice that the field for
the project name is grayed out. Rather than using this field, we specify the name
and location of the project in the Location field. We want our project to be locat-
ed in http://localhost, which is the URL for IIS’ root directory (typically
C:\InetPub\wwwroot). The name localhost indicates that the client and serv-
er reside on the same machine. If the Web server were located on a different ma-
chine, localhost would be replaced with the appropriate IP address or hostname.
By default, Visual Studio assigns the project name WebApplication1, which we
change to WebTime. IIS must be running for this project to be created successful-
ly. IIS can be started by executing inetmgr.exe, right-clicking Default Web
Site and selecting Start. [Note: You might need to expand the node representing
your computer to display the Default Web Site.] Below the Location textbox,
the text “Project will be created at http://localhost/VB/WebTime” ap-
pears. This indicates that the project’s folder is located in the root directory on the
Web server. When the developer clicks OK, the project is created; this action also
produces a virtual directory, which is linked to the project folder. The Create
New Web dialog is displayed next, while Visual Studio is creating the Web site
on the server (Fig. 20.8).

2. Examine the newly created project. The next several figures describe the new
project’s content; we begin with the Solution Explorer shown in Fig. 20.9. As
occurs with Windows applications, Visual Studio creates several files when a new
project is created. WebForm1.aspx is the Web Form (WebForm1 is the default
name for this file). As mentioned previously, a code-behind file is included as part
of the project. To view the ASPX file’s code-behind file, right click the ASPX file,
and select View Code. Alternatively, the programmer can click an icon to display
all files, then expand the node for our ASPX page (see Fig. 20.9.)

Figure 20.10, shows the Web Forms controls listed in the Toolbox. The
left figure displays the beginning of the Web controls list, and the right figure dis-
plays the remaining Web controls. Notice that some controls are similar to the
Windows controls presented earlier in the book.

Figure 20.11 shows the Web Form designer for WebForm1.aspx. It con-
sists of a grid on which users drag and drop components, such as buttons and la-
bels, from the Toolbox.

2. To run the examples included on this book’s, CD you must create a virtual directory in Microsoft
Internet Information Services. For instructions visit the Downloads/Resources link at
www.deitel.com.



Chapter 20 ASP .NET, Web Forms and Web Controls 953

Fig. 20.7 Creating an ASP.NET Web Application in Visual Studio.

Fig. 20.8 Visual Studio creating and linking a virtual directory for the WebTime
project folder.

Fig. 20.9 Solution Explorer window for project WebTime.

Code-behind file

Display all files

ASPX file



954 ASP .NET, Web Forms and Web Controls Chapter 20

Figure 20.12 portrays the Web Form designer in HTML mode, which allows
the programmer to view the markup that represents the user interface shown in de-
sign mode. When a developer clicks the HTML button in the lower-left corner of
the Web Form designer, the Web Form designer switches to HTML mode. Simi-
larly, the clicking of the Design button (to the left of the HTML button) returns
the Web Form designer to design mode.

The next figure (Fig. 20.13) displays WebForm1.aspx.vb—the code-be-
hind file for WebForm1.aspx. Recall that Visual Studio .NET generates this
code-behind file when the project is created; it has been reformatted for presenta-
tion.

Fig. 20.10 Web Forms menu in the Toolbox.

Fig. 20.11 Design mode of Web Form designer.

grid



Chapter 20 ASP .NET, Web Forms and Web Controls 955

3. Rename the ASPX file. We have displayed the contents of the default ASPX and
code-behind files. We now rename these files. Right click the ASPX file in the
Solution Explorer and select Rename. Enter the new file name and hit Enter.
This updates the name of both the ASPX file and the code-behind file. In this ex-
ample, we use the name WebTime.aspx.

4. Design the page. Designing a Web Form is as simple as designing a Windows
Form. To add controls to the page, drag and drop them from the Toolbox onto
the Web Form. Like the Web Form itself, each control is an object that has prop-
erties, methods and events. Developers can set these properties and events, using
the Properties window.

The PageLayout property determines how controls are arranged on the
form (Fig. 20.15). By default, property PageLayout is set to GridLayout,
which specifies that all controls are located exactly where they are dropped on the
Web Form. This is called absolute positioning. Alternatively, the developer can set
the Web Form’s PageLayout property to FlowLayout, which causes controls
to be placed sequentially on the Web Form. To view the Web Form’s properties,
select Document from the drop-down list in the Properties window; Docu-
ment is the name used to represent the Web Form in the Properties window.
This is called relative positioning, because the controls’ positions are relative to the
Web Form’s upper-left corner. We use GridLayout for many of our examples.

Fig. 20.12 HTML mode of Web-Form designer.



956 ASP .NET, Web Forms and Web Controls Chapter 20

Fig. 20.13 Code-behind file for WebForm1.aspx generated by Visual Studio .NET.

Fig. 20.14 FlowLayout and GridLayout illustration.

FlowLayout—
Controls are placed 
one after the other

GridLayout—Controls 
are placed where they 
are dropped on the page

cursor indicates 
where next 
control will be 
located



Chapter 20 ASP .NET, Web Forms and Web Controls 957

In this example, we use two Labels, which developers can place on the Web
Form either by drag-and-drop or by double-clicking the Toolbox’s Label con-
trol. Name the first Label displayLabel and the second timeLabel. We
delete timeLabel’s text, because this text is set in the code-behind file. When a
Label does not contain text, the name is displayed in square brackets in the Web
Form designer, but is not displayed at run time (Fig. 20.15). We set the text for
promptLabel to A Simple Web Form Example.

We set timeLabel’s BackColor, ForeColor and Font-Size prop-
erties to Black, LimeGreen and XX-Large, respectively. To change font
properties, the programmer must expand the Font node in the Properties win-
dow, then change each relevant property individually. We also set the labels’ lo-
cations and sizes by dragging the controls. Finally, we set the Web Form’s
EnableSessionState and EnableViewState properties to false (we
discuss these properties later in the chapter). Once the Labels’ properties are set
in the Properties window, Visual Studio updates the ASPX file’s contents.
Figure 20.15 shows the IDE after these properties are set.

5. Add page logic. Once the user interface has been designed, Visual Basic code
must be added to the code-behind file. In this example, lines 28–31 of Fig. 20.5
are added to the code-behind file. The statement retrieves the current time and for-
mats it so that the time is in the format HH:MM:SS. For example, 9 a.m. is format-
ted as 09:00:00.

Fig. 20.15 WebForm.aspx after adding two Labels and setting their properties.

Labels Web Form



958 ASP .NET, Web Forms and Web Controls Chapter 20

6. Run the program. Select Start > Debug. An Internet Explorer window opens and
loads the Web page (the ASPX file). Notice that the URL is http://local-
host/VB/WebTime/WebTime.aspx (Fig. 20.4), indicating that our ASPX
file is located within the directory WebTime, which is located in the Web server’s
VB directory.

After the Web Form is created, the programmer can view it four different
ways. First, the programmer can select Start > Debug (as described previously),
which runs the application by opening a browser window. The IDE exits Run or
Debug mode when the browser is closed.

The programmer also can right-click either the Web Form designer or the
ASPX file name (in the Solution Explorer) and select Build and Browse or
View In Browser. These each open a browser window within Visual Studio and
displays preview of the page. This preview shows the user what the page would
look like when requested by a client. The third way to run an ASP .NET application
is to open a browser window and type in the Web page’s URL. When testing an
ASP .NET application on the same computer, type http://localhost/Pro-
jectFolder/PageName.aspx, where ProjectFolder is the folder in which the
page resides (usually the name of the project), and PageName is the name of the
ASP .NET page. The first two methods of running the application compile the
project for the programmer. The third and fourth methods require that the program-
mer compile the project by selecting Build > Build Solution in Visual Studio.

20.5 Web Controls
This section introduces some of the Web controls located on the Web Form tab in the
Toolbox (Fig. 20.10). Figure 20.16 summarizes some of the Web controls used in the
chapter examples.

20.5.1 Text and Graphics Controls

Figure 20.17 depicts a simple form for gathering user input. This example uses all the con-
trols listed in Fig. 20.16. [Note: This example does not contain any functionality (i.e., no
action occurs when the user clicks Register). We ask the reader to provide the function-
ality as an exercise. In successive examples, we demonstrate how to add functionality to
many of these Web controls.]

Web Control Description

Label Displays text that the user cannot edit.

Button Triggers an event when clicked.

TextBox Gathers user input and displays text.

Image Displays images (e.g., GIF and JPG).

Fig. 20.16 Commonly used Web controls (part 1 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 959

Lines 50–54 define an Image control, which inserts an image into a Web page, the
image is located in the Chapter 20 examples directory on the CD that accompanies this
book. The ImageUrl property (line 53) specifies the file location of the image to display.
To specify an image, click the ellipsis next to the ImageUrl property and use the resulting
dialog to browse for the desired image. The top of this dialog displays the contents of this
application. If the image is not explicitly part of the project, the programmer will need to
use the Browse button. When the programmer right-clicks the image in the Solution
Explorer and selects Include in Project, this image will be displayed in the top portion
of the dialog.

RadioButtonList Groups radio buttons.

DropDownList Displays a drop-down list of choices from which a user can select one 
item.

1 <%-- Fig. 20.17: Controls.aspx  --%>
2 <%-- Demonstrates web controls. --%>
3
4 <%@ Page Language="vb" AutoEventWireup="false"
5    Codebehind="Controls.aspx.vb"
6    Inherits="Controls.WebForm1"
7 enableViewState="False" EnableSessionState="False" %>
8
9 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

10 <HTML>
11    <HEAD>
12       <title>WebForm1</title>
13       <meta name="GENERATOR"
14          content="Microsoft Visual Studio.NET 7.0">
15       <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
16       <meta name="vs_defaultClientScript" content="JavaScript">
17       <meta name="vs_targetSchema"
18          content="http://schemas.microsoft.com/intellisense/ie5">
19    </HEAD>
20    <body MS_POSITIONING="GridLayout">
21       <form id="Form1" method="post" runat="server">
22
23          <asp:Label id="WelcomeLabel" style="Z-INDEX: 101; 
24             LEFT: 44px; POSITION: absolute; TOP: 27px"
25             runat="server" Width="451px" Height="28px"
26             Font-Size="X-Large">
27             This is a simple registration form.
28          </asp:Label>
29

Fig. 20.17 Web-controls demonstration (part 1 of 5).

Web Control Description

Fig. 20.16 Commonly used Web controls (part 2 of 2).



960 ASP .NET, Web Forms and Web Controls Chapter 20

30          <asp:Label id="RegisterLabel" style="Z-INDEX: 102; 
31             LEFT: 48px; POSITION: absolute; TOP: 71px" 
32             runat="server" Width="376px" Height="26px"
33             Font-Italic="True" Font-Size="Medium">
34             Please fill in all fields and click Register.
35          </asp:Label>
36
37          <asp:Image id="UserLabel" style="Z-INDEX: 103; 
38             LEFT: 42px; POSITION: absolute; TOP: 135px" 
39             runat="server" Width="439px" Height="28px"
40             ImageUrl="images/user.png">
41          </asp:Image>
42
43          <asp:Label id="FillLabel" style="Z-INDEX: 104; 
44             LEFT: 50px; POSITION: absolute; TOP: 189px"
45             runat="server" Width="225px" ForeColor="Lime"
46             Font-Size="Medium">
47             Please fill out the fields below.
48          </asp:Label>
49
50          <asp:Image id="FirstImage" style="Z-INDEX: 105; 
51             LEFT: 49px; POSITION: absolute; TOP: 224px" 
52             runat="server" Width="84px" Height="36px"
53             ImageUrl="images/fname.png">
54          </asp:Image>
55
56          <asp:Image id="EmailImage" style="Z-INDEX: 106; 
57             LEFT: 49px; POSITION: absolute; TOP: 280px"
58             runat="server" Width="86px" Height="29px"
59             ImageUrl="images/email.png">
60          </asp:Image>
61
62          <asp:TextBox id="FirstTextBox" style="Z-INDEX: 107; 
63             LEFT: 145px; POSITION: absolute; TOP: 231px"
64             runat="server" Width="115px" Height="20px">
65          </asp:TextBox>
66
67          <asp:TextBox id="EmailTextBox" style="Z-INDEX: 108; 
68             LEFT: 147px; POSITION: absolute; TOP: 284px"
69             runat="server" Width="112px" Height="18px">
70          </asp:TextBox>
71
72          <asp:Image id="LastImage" style="Z-INDEX: 109;
73             LEFT: 292px; POSITION: absolute; TOP: 227px"
74             runat="server" Width="77px" Height="33px"
75             ImageUrl="images/lname.png">
76          </asp:Image>
77
78          <asp:Image id="PhoneImage" style="Z-INDEX: 110; 
79             LEFT: 292px; POSITION: absolute; TOP: 273px"
80             runat="server" Width="80px" Height="30px"
81             ImageUrl="images/phone.png">
82          </asp:Image>

Fig. 20.17 Web-controls demonstration (part 2 of 5).



Chapter 20 ASP .NET, Web Forms and Web Controls 961

83
84          <asp:TextBox id="LastTextBox" style="Z-INDEX: 111; 
85             LEFT: 400px; POSITION: absolute; TOP: 232px"
86             runat="server" Width="109px" Height="20px">
87          </asp:TextBox>
88
89          <asp:TextBox id="PhoneTextBox" style="Z-INDEX: 112;
90             LEFT: 399px; POSITION: absolute; TOP: 277px"
91             runat="server" Width="108px" Height="18px">
92          </asp:TextBox>
93
94          <asp:Label id="PhoneLabel" style="Z-INDEX: 113; 
95             LEFT: 309px; POSITION: absolute; TOP: 318px"
96             runat="server" Width="223px" Height="18px">
97             Must be in the form (555)555-5555.
98          </asp:Label>
99
100          <asp:Image id="PublicationImage" style="Z-INDEX: 114;
101             LEFT: 50px; POSITION: absolute; TOP: 356px"
102             runat="server" Width="435px" Height="27px"
103             ImageUrl="images/downloads.png">
104          </asp:Image>
105
106          <asp:Label id="Booklabel" style="Z-INDEX: 115;
107             LEFT: 54px; POSITION: absolute; TOP: 411px"
108             runat="server" Width="348px" Height="23px"
109             ForeColor="Lime" Font-Size="Medium">
110             Which book would you like information about?
111          </asp:Label>
112
113          <asp:DropDownList id="BookDropDownList"
114             style="Z-INDEX: 116; LEFT: 60px; POSITION:
115             absolute; TOP: 448px" runat="server"
116             Width="326px" Height="29px">
117
118             <asp:ListItem Value="XML How to Program 1e">
119                XML How to Program 1e
120             </asp:ListItem>
121             <asp:ListItem Value="C# How to Program 1e">
122            C# How to Program 1e
123             </asp:ListItem>
124             <asp:ListItem Value="Java How to Program 4e">
125                Java How to Program 4e
126             </asp:ListItem>
127             <asp:ListItem Value=
128                "Advanced Java How to Program 1e">
129                 Advanced Java How to Program 1e
130             </asp:ListItem>
131             <asp:ListItem Value=
132                "Visual Basic .NET How to Program 2e">
133                 Visual Basic .NET How to Program 2e
134             </asp:ListItem>

Fig. 20.17 Web-controls demonstration (part 3 of 5).



962 ASP .NET, Web Forms and Web Controls Chapter 20

135             <asp:ListItem Value="C++ How to Program 3e">
136                C++ How to Program 3e
137             </asp:ListItem>
138          </asp:DropDownList>
139
140          <asp:HyperLink id="BooksHyperLink"
141             style="Z-INDEX: 117; LEFT: 64px; POSITION: 
142             absolute; TOP: 486px" runat="server"
143             Width="385px" Height="22px"
144             NavigateUrl="http://www.deitel.com">
145             Click here to view more information about our books.
146          </asp:HyperLink>
147
148          <asp:Image id="OperatingImage" style="Z-INDEX: 118;
149             LEFT: 53px; POSITION: absolute; TOP: 543px"
150             runat="server" Width="431px" Height="32px"
151             ImageUrl="images/os.png">
152          </asp:Image>
153
154          <asp:Label id="OperatingLabel" style="Z-INDEX: 119; 
155             LEFT: 63px; POSITION: absolute; TOP: 591px"
156             runat="server" Width="328px" Height="29px"
157             ForeColor="Lime" Font-Size="Medium">
158             Which operating system are you using?
159          </asp:Label>
160
161          <asp:Button id="RegisterButton" style="Z-INDEX: 124; 
162             LEFT: 69px; POSITION: absolute; TOP: 760px"
163             runat="server" Width="120px" Height="33px"
164             Text="Register">
165          </asp:Button>
166
167          <asp:RadioButtonList id="OperatingRadioButtonList"
168             style="Z-INDEX: 125; LEFT: 65px; POSITION:
169             absolute; TOP: 624px" runat="server"
170             Height="122px" Width="155px">
171
172             <asp:ListItem Value="Windows NT">
173               Windows NT
174             </asp:ListItem>
175             <asp:ListItem Value="Windows 2000">
176                Windows 2000
177             </asp:ListItem>
178             <asp:ListItem Value="Windows XP">
179                Windows XP
180             </asp:ListItem>
181             <asp:ListItem Value="Linux">
182                Linux
183             </asp:ListItem>
184             <asp:ListItem Value="Other">
185                Other
186             </asp:ListItem>
187          </asp:RadioButtonList>

Fig. 20.17 Web-controls demonstration (part 4 of 5).



Chapter 20 ASP .NET, Web Forms and Web Controls 963

Lines 62–65 define a TextBox control, which allows the programmer to read and dis-
play text. Lines 167–187 define a RadioButtonList control, which provides a series
of radio buttons from which the user can select only one. Each radio button is defined by a
ListItem element (lines 172–186). The HyperLink control (lines 140–146) adds a
hyperlink to a Web page. The NavigateUrl property (line 144) of this control specifies
the resource that is requested (i.e., http://www.deitel.com) when a user clicks the
hyperlink. Lines 113–138 define a DropDownList. This control is similar to a
RadioButtonList, in that it allows the user to select exactly one option. When a user
clicks the drop-down list, it expands and displays a list from which the user can make a
selection. Lines 118–137 define the ListItems that display when the drop-down list is

188
189       </form>
190    </body>
191 </HTML>

Fig. 20.17 Web-controls demonstration (part 5 of 5).

Image control

DropDownList
control

RadioButtonList
control

Button control

TextBox control

HyperLink
control



964 ASP .NET, Web Forms and Web Controls Chapter 20

expanded. Like the Button Windows control, the Button Web control (lines 161–165)
represents a button; a button Web control typically maps to an input HTML element that
has attribute type and value "button".

20.5.2 AdRotator Control

Web pages often contain product or service advertisements, and these advertisements usu-
ally consist of images. Although Web site authors want to include as many sponsors as pos-
sible, Web pages can display only a limited number of advertisements. To address this
problem, ASP .NET provides the AdRotator Web control for displaying advertisements.
Using advertisement data located in an XML file, the AdRotator control randomly se-
lects an image to display and then generates a hyperlink to the Web page associated with
that image. Browsers that do not support images instead display alternate text that is spec-
ified in the XML document. If a user clicks the image or substituted text, the browser loads
the Web page associated with that image.

Figure 20.18 demonstrates the AdRotator Web control. In this example, our adver-
tisements that we rotate are the flags of eleven countries. When a user clicks the displayed
flag image, the browser is redirected to a Web page containing information about the
country that the flag represents. If a user clicks refresh or re-requests the page, one of the
eleven flags is again chosen at random and displayed.

1 <%-- Fig 20.18: CountryRotator.aspx                --%>
2 <%-- A Web Form that demonstrates class AdRotator. --%>
3
4 <%@ Page Language="vb" AutoEventWireup="false"
5    Codebehind="CountryRotator.aspx.vb"
6    Inherits="AdRotator.AdRotator"
7 enableViewState="False" EnableSessionState="False" %>
8
9 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

10 <HTML>
11    <HEAD>
12       <title>WebForm1</title>
13       <meta content="Microsoft Visual Studio.NET 7.0"
14          name="GENERATOR">
15       <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
16       <meta content="JavaScript" name="vs_defaultClientScript">
17       <meta name="vs_targetSchema"
18          content="http://schemas.microsoft.com/intellisense/ie5">
19    </HEAD>
20    <body background=
21       "images/background.png"
22       MS_POSITIONING="GridLayout">
23       <form id="Form1" method="post" runat="server">
24
25          <asp:label id="displayLabel" style="Z-INDEX: 101;
26             LEFT: 36px; POSITION: absolute; TOP: 22px" 
27             runat="server" Font-Size="Medium" Height="28px" 
28             Width="268px">AdRotator Example
29          </asp:label>

Fig. 20.18 AdRotator class demonstrated on a Web form (part 1 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 965

The ASPX file in Fig. 20.18 is similar to that in Fig. 20.4. However, instead of two
Labels, this page contains one Label and one AdRotator control named country-
Rotator. The background property for our page is set to display the image back-
ground.png. To specify this file, click the ellipsis provided next to the Background
property and use the resulting dialog to browse for background.png.

In the Properties window, we set the AdRotator control’s Advertisement-
File property to AdRotatorInformation.xml (line 33). The Web control deter-
mines which advertisement to display from this file. We present the contents of this XML
file momentarily. As illustrated in Fig. 20.19, the programmer does not need to add any
additional code to the code-behind file, because the adRotator control does “all the
work.” The output depicts two different requests—the first time the page is requested, the
American flag is shown, and, in the second request, the Latvian flag is displayed. The last
image depicts the Web page that loads when the Latvian flag is clicked.

30
31          <asp:adrotator id="countryRotator" style="Z-INDEX: 102; 
32             LEFT: 36px; POSITION: absolute; TOP: 47px"
33             runat="server" Height="72px" Width="108px"
34             AdvertisementFile="AdRotatorInformation.xml">
35          </asp:adrotator>
36
37       </form>
38    </body>
39 </HTML>

1 ' Fig. 20.19: CountryRotator.aspx.vb
2 ' The code-behind file for a page that
3 ' demonstrates the AdRotator class.
4
5 Public Class AdRotator
6 Inherits System.Web.UI.Page
7
8 Protected WithEvents displayLabel As _
9       System.Web.UI.WebControls.Label

10
11 Protected WithEvents countryRotator As _
12       System.Web.UI.WebControls.AdRotator
13
14    ' This call is required by the Web Form Designer.
15 Private Sub InitializeComponent()
16 End Sub
17
18 Private Sub Page_Init(ByVal sender As System.Object, _
19       ByVal e As System.EventArgs) Handles MyBase.Init
20

Fig. 20.19 Code-behind file for page demonstrating the AdRotator class (part 1 
of 2).

Fig. 20.18 AdRotator class demonstrated on a Web form (part 2 of 2).



966 ASP .NET, Web Forms and Web Controls Chapter 20

21       ' CODEGEN: This method call is required by the Web Form Designer
22       ' Do not modify it using the code editor.
23       InitializeComponent()
24 End Sub ' Page_Init
25
26 Private Sub Page_Load(ByVal sender As System.Object, _
27       ByVal e As System.EventArgs) Handles MyBase.Load
28       ' Put user code to initialize the page here
29 End Sub
30 End Class ' AdRotator

Fig. 20.19 Code-behind file for page demonstrating the AdRotator class (part 2 
of 2).

AlternateText

AdRotator
image



Chapter 20 ASP .NET, Web Forms and Web Controls 967

XML document AdRotatorInformation.xml (Fig. 20.20) contains several Ad
elements, each of which provides information about a different advertisement. Element
ImageUrl specifies the path (location) of the advertisement’s image, and element Nav-
igateUrl specifies the URL for the web page that loads when a user clicks the advertise-
ment. The AlternateText element contains text that displays in place of the image
when the browser cannot locate or render the image for some reason (i.e., because the file
is missing, or the browser is not capable of displaying it). The AlternateText ele-
ment’s text is also a tooltip that Internet Explorer displays when a user places the mouse
pointer over the image (Fig. 20.19). A tooltip is a caption that appears when the mouse
hovers over a control and provides the user with information about that control. The
Impressions element specifies how often a particular image appears, relative to the
other images. An advertisement that has a higher Impressions value displays more fre-
quently than an advertisement with a lower value. In our example, the advertisements dis-
play with equal probability, because each Impressions’ value is set to 1.

1 <?xml version="1.0" encoding="utf-8"?>
2
3 <!-- Fig. 20.20: AdRotatorInformation.xml           -->
4 <!-- XML file containing advertisement information. -->
5
6 <Advertisements>
7    <Ad>
8       <ImageUrl>images/us.png</ImageUrl>
9       <NavigateUrl>

10         http://www.odci.gov/cia/publications/factbook/geos/us.html
11       </NavigateUrl>
12       <AlternateText>United States Information</AlternateText>
13       <Impressions>1</Impressions>
14    </Ad>
15
16    <Ad>
17       <ImageUrl>images/france.png</ImageUrl>
18       <NavigateUrl>
19          http://www.odci.gov/cia/publications/factbook/geos/fr.html
20       </NavigateUrl>
21       <AlternateText>France Information</AlternateText>
22       <Impressions>1</Impressions>
23    </Ad>
24
25    <Ad>
26       <ImageUrl>images/germany.png</ImageUrl>
27       <NavigateUrl>
28          http://www.odci.gov/cia/publications/factbook/geos/gm.html
29       </NavigateUrl>
30       <AlternateText>Germany Information</AlternateText>
31       <Impressions>1</Impressions>
32    </Ad>
33
34    <Ad>
35       <ImageUrl>images/italy.png</ImageUrl>

Fig. 20.20 AdvertisementFile used in AdRotator example (part 1 of 3).



968 ASP .NET, Web Forms and Web Controls Chapter 20

36       <NavigateUrl>
37          http://www.odci.gov/cia/publications/factbook/geos/it.html
38       </NavigateUrl>
39       <AlternateText>Italy Information</AlternateText>
40       <Impressions>1</Impressions>
41    </Ad>
42
43    <Ad>
44       <ImageUrl>images/spain.png</ImageUrl>
45       <NavigateUrl>
46         http://www.odci.gov/cia/publications/factbook/geos/sp.html
47       </NavigateUrl>
48       <AlternateText>Spain Information</AlternateText>
49       <Impressions>1</Impressions>
50    </Ad>
51
52    <Ad>
53       <ImageUrl>images/latvia.png</ImageUrl>
54       <NavigateUrl>
55       http://www.odci.gov/cia/publications/factbook/geos/lg.html
56       </NavigateUrl>
57       <AlternateText>Latvia Information</AlternateText>
58       <Impressions>1</Impressions>
59    </Ad>
60
61    <Ad>
62       <ImageUrl>images/peru.png</ImageUrl>
63       <NavigateUrl>
64        http://www.odci.gov/cia/publications/factbook/geos/pe.html
65       </NavigateUrl>
66       <AlternateText>Peru Information</AlternateText>
67       <Impressions>1</Impressions>
68    </Ad>
69
70    <Ad>
71       <ImageUrl>images/senegal.png</ImageUrl>
72       <NavigateUrl>
73          http://www.odci.gov/cia/publications/factbook/geos/sg.html
74       </NavigateUrl>
75       <AlternateText>Senegal Information</AlternateText>
76       <Impressions>1</Impressions>
77    </Ad>
78
79    <Ad>
80       <ImageUrl>images/sweden.png</ImageUrl>
81       <NavigateUrl>
82          http://www.odci.gov/cia/publications/factbook/geos/sw.html
83       </NavigateUrl>
84       <AlternateText>Sweden Information</AlternateText>
85       <Impressions>1</Impressions>
86    </Ad>
87

Fig. 20.20 AdvertisementFile used in AdRotator example (part 2 of 3).



Chapter 20 ASP .NET, Web Forms and Web Controls 969

20.5.3 Validation Controls

This section introduces a different type of Web control, called a validation control (or val-
idator), which detremines whether the data in another Web control are in the proper format.
For example, validators could determine whether a user has provided information in a re-
quired field or whether a ZIP-code field contains exactly five digits. Validators provide a
mechanism for validating user input on the client. When the HTML for our page is created,
the validator is converted into ECMAScript3 that performs the validation. ECMAScript is
a scripting language that enhances the functionality and appearance of Web pages. ECMA-
Script is typically executed on the client. However, if the client does not support scripting
or scripting is disabled, validation is performed on the server.

The example in this section prompts the user to input a phone number, in the form 555–
4567. After the user enters a number, validators ensure that the phone-number field is filled
and that the number is in the correct format before the program sends the number to the
Web server. Once the phone number is submitted, the Web Server responds by sending an
HTML page containing all possible letter combinations that represent the phone number.
The letters used for each digit are the letters found on a phone’s key pad. For instance, the
5-button displays the letters j, k and l. For the position in the phone number where there is
a 5, we can substitute one of these three letters. Businesses often use this technique to make
their phone numbers easy to remember. Figure 20.21 presents the ASPX file.

The HTML page sent to the client browser accepts a phone number in the form 555–
4567 and then lists all the possible words that can be generated from both the first three
digits and the last four digits. This example uses a RegularExpressionValidator

88    <Ad>
89       <ImageUrl>images/thailand.png</ImageUrl>
90       <NavigateUrl>
91          http://www.odci.gov/cia/publications/factbook/geos/th.html
92       </NavigateUrl>
93       <AlternateText>Thailand Information</AlternateText>
94       <Impressions>1</Impressions>
95    </Ad>
96
97    <Ad>
98       <ImageUrl>images/unitedstates.png</ImageUrl>
99       <NavigateUrl>
100          http://www.odci.gov/cia/publications/factbook/geos/us.html
101       </NavigateUrl>
102       <AlternateText>United States Information</AlternateText>
103       <Impressions>1</Impressions>
104    </Ad>
105 </Advertisements>

3. ECMAScript (commonly known as JavaScript) is a scripting standard created by the ECMA (Eu-
ropean Computer Manufacturer’s Association). Both Netscape’s JavaScript and Microsoft’s
JScript implement the ECMAScript standard, but each provides additional features beyond the
specification. For information on the current ECMAScript standard, visit www.ecma.ch/
stand/ecma-262.htm.

Fig. 20.20 AdvertisementFile used in AdRotator example (part 3 of 3).



970 ASP .NET, Web Forms and Web Controls Chapter 20

1 <%-- Fig. 20.21: Generator.aspx                      --%>
2 <%-- A Web Form demonstrating the use of validators. --%>
3
4 <%@ Page Language="vb" AutoEventWireup="false"
5    Codebehind="Generator.aspx.vb"
6    Inherits="WordGenerator.Generator"
7 enableViewState="False" EnableSessionState="False" %>
8
9 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

10 <HTML>
11    <HEAD>
12       <title>WebForm1</title>
13       <meta name="GENERATOR"
14          content="Microsoft Visual Studio.NET 7.0">
15       <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
16       <meta name="vs_defaultClientScript" content="JavaScript">
17       <meta name="vs_targetSchema"
18          content="http://schemas.microsoft.com/intellisense/ie5">
19    </HEAD>
20    <body MS_POSITIONING="GridLayout">
21       <form id="Form1" method="post" runat="server">
22
23          <asp:Label id="promptLabel" style="Z-INDEX: 101;
24             LEFT: 32px; POSITION: absolute; TOP: 17px"
25             runat="server">
26             Please enter a phone number in the form 555-4567.
27          </asp:Label>
28
29          <asp:TextBox id="outputTextBox" style="Z-INDEX: 106; 
30             LEFT: 40px; POSITION: absolute; TOP: 118px"
31             runat="server" Width="451px" Height="342px"
32             TextMode="MultiLine" Visible="False">
33          </asp:TextBox>
34
35          <asp:RegularExpressionValidator id="phoneNumberValidator"
36             style="Z-INDEX: 105; LEFT: 204px; POSITION: absolute; 
37             TOP: 44px" runat="server" ErrorMessage=
38             "The phone number must be in the form 555-4567."
39             ControlToValidate="phoneTextBox"
40             ValidationExpression="^\d{3}-\d{4}$">
41          </asp:RegularExpressionValidator>
42
43          <asp:RequiredFieldValidator id="phoneInputValidator" 
44             style="Z-INDEX: 104; LEFT: 207px; POSITION:
45             absolute; TOP: 81px" runat="server" 
46             ErrorMessage=
47                "Please enter a phone number." 
48             ControlToValidate="phoneTextBox">
49          </asp:RequiredFieldValidator>
50

Fig. 20.21 Validators used in a Web Form that generates possible letter combinations 
from a phone number (part 1 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 971

to match another Web control’s content against a regular expression. (The use of regular
expressions is introduced in Chapter 15, Strings, Characters and Regular Expressions.)
Lines 35–41 create a RegularExpressionValidator named phoneNumber-
Validator. Property ErrorMessage’s text (lines 37–38) is displayed on the Web Form
if the validation fails. The regular expression that validates the input is assigned to property
ValidationExpression in line 38. The input is valid if it matches the regular expres-
sion ^\d{3}-\d{4}$ (i.e., if exactly 3 digits are followed by a hyphen and exactly 4
digits, where the 3 digits are at the beginning of the string and the 4 digits are at the end of
the string). 

The clicking of property ValidationExpression in the Properties window
displays a dialog that contains a list of common regular expressions for phone numbers, ZIP
codes and other formatted information. However, we write our own regular expression in
this example, because the phone number input should not contain an area code. Line 39
associates phoneTextBox with phoneNumberValidator by setting property
ControlToValidate to phoneTextBox. This indicates that phoneNumber-
Validator verifies the phoneTextBox’s contents. If the user inputs text that does not
have the correct format and attempts to submit the form, the ErrorMessage text is dis-
played in red. 

This example also uses a RequiredFieldValidator to ensure that the text box
is not empty when the HTML form is submitted. Lines 43–49 define RequiredField-
Validator phoneInputValidator, which confirms that phoneTextBox’s con-
tent is not empty. If the user does not input any data in phoneTextBox and attempts to
submit the form, validation fails, and the ErrorMessage for this validator is displayed
in red. If the validator is successful, a multiline TextBox named outputTextBox (lines
29–33) displays the words generated from the phone number. Notice that the Visible
property initially is set to False when the server returns its HTML response.

Figure 20.22 depicts the code-behind file for the ASPX file in Fig. 20.21. Notice that
this code-behind file does not contain any implementation related to the validators. We say
more about this soon.

51          <asp:Button id="submitButton" style="Z-INDEX: 103;
52             LEFT: 38px; POSITION: absolute; TOP: 77px" 
53             runat="server" Text="Submit">
54          </asp:Button>
55
56          <asp:TextBox id="phoneTextBox" style="Z-INDEX: 102; 
57             LEFT: 34px; POSITION: absolute; TOP: 42px" 
58             runat="server">
59          </asp:TextBox>
60
61       </form>
62    </body>
63 </HTML>

Fig. 20.21 Validators used in a Web Form that generates possible letter combinations 
from a phone number (part 2 of 2).



972 ASP .NET, Web Forms and Web Controls Chapter 20

1 ' Fig. 20.22: Generator.aspx.vb
2 ' The code-behind file for a page that
3 ' generates words when given a phone number.
4
5 Imports System.Web.UI.WebControls
6
7 Public Class Generator
8 Inherits System.Web.UI.Page
9

10 Protected WithEvents phoneInputValidator As _ 
11       RequiredFieldValidator
12
13 Protected WithEvents phoneNumberValidator As _ 
14       RegularExpressionValidator
15
16 Protected WithEvents promptLabel As Label
17 Protected WithEvents outputTextBox As TextBox
18 Protected WithEvents submitButton As Button
19 Protected WithEvents phoneTextBox As TextBox
20
21 ' Web Form Designer generated code
22
23 Private Sub Page_Load(ByVal sender As System.Object, _
24       ByVal e As System.EventArgs) Handles MyBase.Load
25
26       ' if not first time page loads
27       If IsPostBack Then
28          Dim number As String
29
30          outputTextBox.Text() = ""
31
32          ' retrieve number and remove "-"
33          number = Request.Form("phoneTextBox")
34          number = number.Remove(3, 1)
35
36          ' generate words for first 3 digits
37          outputTextBox.Text &= "Here are the words for the " & _
38             "first three digits" & vbCrLf
39
40          ComputeWords(number.Substring(0, 3), "")
41          outputTextBox.Text &= vbCrLf
42
43          ' generate words for last 4 digits
44          outputTextBox.Text &= "Here are the words for the " & _
45             "last 4 digits" & vbCrLf
46
47          ComputeWords(number.Substring(3), "")
48
49          outputTextBox.Visible = True
50       End If
51
52  End Sub ' Page_Load
53

Fig. 20.22 Code-behind file for the word-generator page (part 1 of 4).



Chapter 20 ASP .NET, Web Forms and Web Controls 973

54 Private Sub ComputeWords(ByVal number As String, _
55       ByVal temporaryWord As String)
56
57       Dim current As Integer
58
59       ' if number is empty, print word
60       If number = "" Then
61          outputTextBox.Text &= temporaryWord & vbCrLf
62          Return
63       End If
64
65       ' retrieve first number and convert to Integer
66       current = Convert.ToInt32(number.Substring(0, 1))
67
68       ' delete first number
69       number = number.Remove(0, 1)
70
71       ' determine number, call ComputeWord recursively
72       Select Case current
73
74          ' 0 can be q or z
75          Case 0
76             ComputeWords(number, temporaryWord & "q")
77             ComputeWords(number, temporaryWord & "z")
78
79             ' 1 has no letter associated with it
80          Case 1
81             ComputeWords(number, temporaryWord & "")
82
83             ' 2 can be a, b or c
84          Case 2
85             ComputeWords(number, temporaryWord & "a")
86             ComputeWords(number, temporaryWord & "b")
87             ComputeWords(number, temporaryWord & "c")
88
89             ' 3 can be d, e or f
90          Case 3
91             ComputeWords(number, temporaryWord & "d")
92             ComputeWords(number, temporaryWord & "e")
93             ComputeWords(number, temporaryWord & "f")
94
95             ' 4 can be g, h or i
96          Case 4
97             ComputeWords(number, temporaryWord & "g")
98             ComputeWords(number, temporaryWord & "h")
99             ComputeWords(number, temporaryWord & "i")
100
101             ' 5 can be j, k or l
102          Case 5
103             ComputeWords(number, temporaryWord & "j")
104             ComputeWords(number, temporaryWord & "k")
105             ComputeWords(number, temporaryWord & "l")
106

Fig. 20.22 Code-behind file for the word-generator page (part 2 of 4).



974 ASP .NET, Web Forms and Web Controls Chapter 20

107             ' 6 can be m, n or o
108          Case 6
109             ComputeWords(number, temporaryWord & "m")
110             ComputeWords(number, temporaryWord & "n")
111             ComputeWords(number, temporaryWord & "o")
112
113             ' 7 can be p, r or s
114          Case 7
115             ComputeWords(number, temporaryWord & "p")
116             ComputeWords(number, temporaryWord & "r")
117             ComputeWords(number, temporaryWord & "s")
118
119             ' 8 can be t, u or v
120          Case 8
121             ComputeWords(number, temporaryWord & "t")
122             ComputeWords(number, temporaryWord & "u")
123             ComputeWords(number, temporaryWord & "v")
124
125             ' 9 can be w, x or y
126          Case 9
127             ComputeWords(number, temporaryWord & "w")
128             ComputeWords(number, temporaryWord & "x")
129             ComputeWords(number, temporaryWord & "y")
130       End Select
131
132 End Sub ' ComputeWords
133 End Class ' Generator

Fig. 20.22 Code-behind file for the word-generator page (part 3 of 4).



Chapter 20 ASP .NET, Web Forms and Web Controls 975

Web programmers using ASP .NET often design their Web pages so that the current
page reloads when the user submits the form; this enables the program to receive input, pro-
cess it as necessary and display the results in the same page when it is reloaded. These pages
usually contain a form that, when submitted, causes the current page to be requested again.
This event is known as a postback. Line 27 uses the IsPostBack property of class Page
to determine whether the page is being loaded due to a postback. The first time that the Web
page is requested, IsPostBack is False. When the postback occurs (from the users
clicking of Submit), IsPostBack is True. To prepare the outputTextBox for dis-
play, its Text property is set to an empty string ("") in line 30. Line 33 then uses the
Request object to retrieve phoneTextBox’s value from the Form array. When data is
posted to the Web server, the HTML form’s data is accessible to the Web application
through the Request object’s Form array. The hyphen is Removed from the phone
number string in line 34. Method ComputeWords is passed a substring containing the
first three numbers and an empty String (line 40). Line 49 sets the outputTextBox’s
Visible property to True.

Method ComputeWords, defined in lines 54–132, is a recursive method that gener-
ates the list of words from the String containing the digits of the phone number, minus
the hyphen. The first argument, number, contains the digits that are being converted to let-
ters. The first call to this method (line 40) passes in the first three digits, and the second call
(line 47) passes in the last four digits. The second argument, temporaryWord, builds up
the list that is displayed by the program. Each time this method is called, as we will see
shortly, number contains one character fewer than on the previous call and temporary-
Word contains one character more than on the previous call. Lines 60–63 define the base

Fig. 20.22 Code-behind file for the word-generator page (part 4 of 4).



976 ASP .NET, Web Forms and Web Controls Chapter 20

case, which occurs when number equals the empty string. When this occurs, the tempo-
raryWord that has been built up from the previous calls is added to outputTextBox,
and the method returns.

Let us discuss how ComputeWords works when we do not have the base case. On
line 57, we declare variable current and initialize its value to the first character in
number. We then remove this character from number. The remainder of the method uses
a Select Case structure (lines 72–130) to make the correct recursive calls based on the
number in current. For each digit, we wish to add the appropriate letter to
temporaryWord. For most of the digits, there are two or three letters that can be repre-
sented by the number in current. The keypad button for the number 3, for instance, also
represents the letters d, e or f. In this example we want to exhaust all possible letter combi-
nations, so we make a recursive call to ComputeWords for each option (lines 91–93).
Each call passes number as the first argument (which contains one digit fewer, as a result
of the call to method Remove on line 69). The second argument contains temporary-
Word, concatenated with the new letter. Each call continues to add a letter for the current
number, until all the numbers have been processed. At this point we reach the base case,
and temporaryWord is appended to outputTextBox.

Figure 20.23 shows the HTML sent to the client browser. Notice that lines 25–28 and
lines 71–113 contain ECMAScript, which provides the implementation for the validation
controls. Visual Studio generates this ECMAScript. The programmer does not need to be
able to create or even understand ECMAScript—the functionality defined for the controls
in our application is converted to working ECMAScript for us. 

1 <!-- Fig. 20.23: Generator.html                        -->
2 <!-- The HTML page that is sent to the client browser. -->
3
4 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
5 <HTML>
6    <HEAD>
7      <title>WebForm1</title>
8       <meta name="GENERATOR" 
9          content="Microsoft Visual Studio 7.0">

10       <meta name="CODE_LANGUAGE" content="Visual Basic 7.0" >
11       <meta name="vs_defaultClientScript"
12          content="JavaScript">
13       <meta name="vs_targetSchema"
14          content="http://schemas.microsoft.com/intellisense/ie5">
15    </HEAD>
16
17    <body MS_POSITIONING="GridLayout">
18
19       <form name="Form1" method="post"
20          action="Generator.aspx" language="javascript"
21          onsubmit="ValidatorOnSubmit();" id="FORM1">
22          <input type="hidden" name="__VIEWSTATE" 
23             value="dDwxMjgyMzM3ozs+" />
24
25          <script language="javascript" 

Fig. 20.23 HTML and JavaScript sent to the client browser (part 1 of 3).



Chapter 20 ASP .NET, Web Forms and Web Controls 977

26             src=
27          "/aspnet_client/system_web/1_0_3215_11/WebUIValidation.js">
28          </script>
29
30          <span id="phoneNumberValidator" 
31             controltovalidate="phoneTextBox"
32             errormessage=
33                "The phone number must be in the form 555-4567."
34             evaluationfunction=
35                "RegularExpressionValidatorEvaluateIsValid"
36             validationexpression="^\d{3}-\d{4}$"
37             style="color:Red;Z-INDEX:106;LEFT:217px;
38                POSITION:absolute;TOP:73px;visibility:hidden;">
39                The phone number must be in the form 555-4567.
40          </span>
41
42          <input name="phoneTextBox" type="text" 
43             id="phoneTextBox" 
44             style="Z-INDEX: 102; LEFT: 16px;
45             POSITION: absolute; TOP: 52px" />
46
47          <input type="submit" name="submitButton"
48             value="Submit" 
49             onclick= "if ( " +
50                "typeof(Page_ClientValidate) == 'function') " +
51                "Page_ClientValidate(); " language="javascript"
52                id="submitButton" style="Z-INDEX: 103; 
53             LEFT: 16px; 
54             POSITION: absolute; 
55             TOP: 86px" />
56
57          <span id="phoneInputValidator" 
58             controltovalidate="phoneTextBox"
59             errormessage="Please enter a phone number."
60             evaluationfunction=
61                "RequiredFieldValidatorEvaluateIsValid" 
62             initialvalue="" style="color:Red;Z-INDEX:105;
63                LEFT:217px;POSITION:absolute;TOP:47px;
64                visibility:hidden;">Please enter a phone number.
65          </span>
66
67          <span id="promptLabel" style="Z-INDEX: 101; 
68             LEFT: 16px; POSITION: absolute; TOP: 23px">
69             Please enter a phone number in the form 555-4567:
70          </span>
71
72          <script language="javascript">
73          <!--
74             var Page_Validators = new Array(
75                document.all["phoneNumberValidator"],
76                document.all["phoneInputValidator"] );
77          // -->
78          </script>

Fig. 20.23 HTML and JavaScript sent to the client browser (part 2 of 3).



978 ASP .NET, Web Forms and Web Controls Chapter 20

In earlier ASPX files, we explicitly set the EnableViewState attribute to false.
This attribute determines whether a Web control’s value persists (i.e., is retained) when a
postback occurs. By default, this attribute is true, which indicates that control values per-
sist. In the screen shots (Fig. 20.22), notice that the phone number input still appears in the
text box after the postback occurs. A hidden input in the HTML document (line 22–23)
contains the data of the controls on this page. This element is always named
__VIEWSTATE and stores the controls’ data as an encoded string.

Performance Tip 20.2
The setting of EnabledViewState to false reduces the amount of data passed to the
Web server. 20.2

79
80          <script language="javascript">
81          <!--
82             var Page_ValidationActive = false;
83
84             if (
85                typeof(clientInformation) != "undefined" && 
86                clientInformation.appName.indexOf("Explorer")
87                != -1 ) {
88
89                if ( typeof(Page_ValidationVer) == "undefined" )
90                   alert(
91                      "Unable to find script library " + 
92                      "'/aspnet_client/system_web/'"+
93                      "'1_0_3215_11/WebUIValidation.js'. " + 
94                      "Try placing this file manually, or " + 
95                      "reinstall by running 'aspnet_regiis -c'.");
96                else if ( Page_ValidationVer != "125" )
97                   alert(
98                      "This page uses an incorrect version " + 
99                      "of WebUIValidation.js. The page " + 
100                      "expects version 125. " +
101                      "The script library is " + 
102                      Page_ValidationVer + ".");
103                else
104                   ValidatorOnLoad();
105             }
106
107             function ValidatorOnSubmit() {
108                if (Page_ValidationActive) {
109                   ValidatorCommonOnSubmit();
110             }
111          }
112      // -->
113          </script>
114       </form>
115    </body>
116 </HTML>

Fig. 20.23 HTML and JavaScript sent to the client browser (part 3 of 3).



Chapter 20 ASP .NET, Web Forms and Web Controls 979

20.6 Session Tracking
Originally, critics accused the Internet and e-business of failing to provide the kind of cus-
tomized service typically experienced in bricks-and-mortar stores. To address this problem,
e-businesses began to establish mechanisms by which they could personalize users’ brows-
ing experiences, tailoring content to individual users while enabling them to bypass irrele-
vant information. Businesses achieve this level of service by tracking each customer’s
movement through the Internet and combining the collected data with information provided
by the consumer, including billing information, personal preferences, interests and hobbies.

Personalization makes it possible for e-businesses to communicate effectively with
their customers and also improves users’ ability to locate desired products and services.
Companies that provide content of particular interest to users can establish relationships with
customers and build on those relationships over time. Furthermore, by targeting consumers
with personal offers, advertisements, promotions and services, e-businesses create customer
loyalty. At such Web sites as MSN.com and CNN.com, sophisticated technology allows
visitors to customize home pages to suit their individual needs and preferences. Similarly,
online shopping sites often store personal information for customers and target them with
notifications and special offers tailored to their interests. Such services can create customer
bases that visit sites more frequently and make purchases from those sites more regularly.

A trade-off exists, however, between personalized e-business service and protection of
privacy. Whereas some consumers embrace the idea of tailored content, others fear that the
release of information that they provide to e-business or that is collected about them by
tracking technologies will have adverse consequences on their lives. Consumers and pri-
vacy advocates ask: What if the e-business to which we give personal data sells or gives
that information to another organization without our knowledge? What if we do not want
our actions on the Internet—a supposedly anonymous medium—to be tracked and recorded
by unknown parties? What if unauthorized parties gain access to sensitive private data, such
as credit-card numbers or medical history? All of these are questions that must be debated
and addressed by consumers, e-businesses and lawmakers alike.

To provide personalized services to consumers, e-businesses must be able to recognize
clients when they request information from a site. As we have discussed, the request/
response system on which the Web operates is facilitated by HTTP. Unfortunately, HTTP
is a stateless protocol—it does not support persistent connections that would enable Web
servers to maintain state information regarding particular clients. This means that Web
servers have no capacity to determine whether a request comes from a particular client or
whether the same or different clients generate a series of requests. To circumvent this
problem, sites such as MSN.com and CNN.com provide mechanisms by which they iden-
tify individual clients. A session represents a unique client on the Internet. If the client
leaves a site and then returns later, the client will still be recognized as the same user. To
help the server distinguish among clients, each client must identify itself to the server. The
tracking of individual clients, known as session tracking, can be achieved in a number of
ways. One popular technique involves the use of cookies (Section 20.6.1); another employs
.NET’s HttpSessionState object (Section 20.6.2). Additional session-tracking tech-
niques include the use of input form elements of type "hidden" and URL rewriting.
Using "hidden" form elements, a Web Form can write session-tracking data into a form
in the Web page that it returns to the client in response to a prior request. When the user
submits the form in the new Web page, all the form data, including the "hidden" fields,



980 ASP .NET, Web Forms and Web Controls Chapter 20

are sent to the form handler on the Web server. When a Web site employs URL rewriting,
the Web Form embeds session-tracking information directly in the URLs of hyperlinks that
the user clicks to send subsequent requests to the Web server.

The reader should note that, in previous examples, we usually set the Web Form’s
EnableSessionState property to false. However, because we wish to use session
tracking in the following examples, we leave this property in its default mode, which is true.

20.6.1 Cookies
A popular way to customize interactions with Web pages is via cookies. A cookie is a text
file stored by a Web site on an individual’s computer that allows the site to track the actions
of the visitor. The first time that a user visits the Web site, the user’s computer might re-
ceive a cookie; this cookie is then reactivated each time the user revisits that site. The col-
lected information is intended to be an anonymous record containing data that are used to
personalize the user’s future visits to the site. For example, cookies in a shopping applica-
tion might store unique identifiers for users. When a user adds items to an on-line shopping
cart or performs another task resulting in a request to the Web server, the server receives a
cookie containing the user’s unique identifier. The server then uses the unique identifier to
locate the shopping cart and perform any necessary processing. 

In addition to identifying users, cookies also can indicate clients’ shopping prefer-
ences. When a Web Form receives a request from a client, the Web Form could examine
the cookie(s) it sent to the client during previous communications, identify the client’s pref-
erences and immediately display products that are of interest to the client.

Every HTTP-based interaction between a client and a server includes a header con-
taining information either about the request (when the communication is from the client to
the server) or about the response (when the communication is from the server to the client).
When a Web Form receives a request, the header includes information such as the request
type (e.g., Get) and any cookies that have been sent previously from the server to be stored
on the client machine. When the server formulates its response, the header information
includes any cookies the server wants to store on the client computer and other information,
such as the MIME type of the response.

If the programmer of a cookie does not set an expiration date, the Web browser main-
tains the cookie for the duration of the browsing session. Otherwise, the Web browser
maintains the cookie until the expiration date occurs. When the browser requests a resource
from a Web server, cookies previously sent to the client by that Web server are returned to
the Web server as part of the request formulated by the browser. Cookies are deleted when
they expire. The expiration date of a cookie can be set in that cookie’s Expires property.

The next Web application demonstrates the use of cookies. The example contains two
pages. In the first page (Fig. 20.24 and Fig. 20.25), users select a favorite programming lan-
guage from a group of radio buttons and then submit the HTML form to the Web server
for processing. The Web server responds by creating a cookie that stores a record of the
chosen language, as well as the ISBN number for a book on that topic. The server then
returns an HTML document to the browser, allowing the user either to select another
favorite programming language or to view the second page in our application (Fig. 20.26
and Fig. 20.27), which lists recommended books pertaining to the programming language
that the user selected previously. When the user clicks the hyperlink, the cookies previously
stored on the client are read and used to form the list of book recommendations.



Chapter 20 ASP .NET, Web Forms and Web Controls 981

1 <%-- Fig 20.24: OptionsPage.aspx                     --%>
2 <%-- allows clients to select a programming language --%>
3 <%-- to get recommendations.                         --%>
4
5 <%@ Page Language="vb" AutoEventWireup="false"
6    Codebehind="OptionsPage.aspx.vb"
7    Inherits="Cookies.Cookie"%>
8
9 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

10 <HTML>
11    <HEAD>
12       <title>Cookies</title>
13       <meta content="Microsoft Visual Studio.NET 7.0"
14          name="GENERATOR">
15       <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
16       <meta content="JavaScript" name="vs_defaultClientScript">
17       <meta name="vs_targetSchema"
18          content="http://schemas.microsoft.com/intellisense/ie5">
19    </HEAD>
20    <body MS_POSITIONING="GridLayout">
21       <form id="Form1" method="post" runat="server">
22
23          <asp:label id="promptLabel" style="Z-INDEX: 101; 
24             LEFT: 42px; POSITION: absolute; TOP: 22px" 
25             runat="server" Font-Bold="True" Font-Size="Large">
26             Select a programming language.
27          </asp:label>
28         
29          <asp:radiobuttonlist id="LanguageList"
30             style="Z-INDEX: 111; LEFT: 42px; POSITION: 
31             absolute; TOP: 52px" runat="server">
32
33             <asp:ListItem Value="Visual Basic .NET"
34                >Visual Basic .NET</asp:ListItem>
35             
36             <asp:ListItem Value="C#">C#</asp:ListItem>
37             <asp:ListItem Value="C">C</asp:ListItem>
38             <asp:ListItem Value="C++">C++</asp:ListItem>
39             <asp:ListItem Value="Python">Python</asp:ListItem>
40          </asp:radiobuttonlist>
41
42          <asp:hyperlink id="recommendationsLink"
43             style="Z-INDEX: 110; LEFT: 42px; POSITION: 
44             absolute; TOP: 90px" runat="server" 
45             Visible="False" NavigateUrl=
46             "RecommendationPage.aspx">
47             Click here to get book recommendations
48          </asp:hyperlink>
49        
50          <asp:hyperlink id="languageLink" style="Z-INDEX: 
51             109; LEFT: 42px; POSITION: absolute; 
52             TOP: 55px" runat="server" Visible="False" 
53             NavigateUrl="OptionsPage.aspx">

Fig. 20.24 ASPX file that presents a list of programming languages (part 1 of 2)x.



982 ASP .NET, Web Forms and Web Controls Chapter 20

The ASPX file in Fig. 20.24 contains five radio buttons (lines 29–40), having the
values Visual Basic .NET, C#, C, C++, and Python. A programmer sets these values
by clicking the Items property in the Properties window and then adding items via the
List Item Collection Editor. This process is similar to the customizing of a ListBox
in a Windows application. The user selects a programming language by clicking one of the
radio buttons. The page contains a Submit button, which, when clicked, creates a cookie
containing a record of the selected language. Once created, this cookie is added to the
HTTP response header, and a postback occurs. Each time the user chooses a language and
clicks Submit, a cookie is written to the client.

When the postback occurs, certain components are hidden and others are displayed.
Towards the bottom of the page, two hyperlinks are displayed: One that requests this page
(lines 50–55), and one that requests Recommendations.aspx (lines 42–48). Notice that
clicking the first hyperlink (the one that requests the current page) does not cause a postback
to occur. The file OptionsPage.aspx is specified in the NavigateUrl property of the
hyperlink. When the hyperlink is clicked, this page is requested as a completely new request.

Figure 20.25 presents the code-behind file. Line 14 defines books as a Hashtable
(namespace System.Collections), which is a data structure that stores key–value
pairs (we introduced hash tables briefly in Chapter 15, String, Characters and Regular
Expressions). The program uses the key to store and retrieve the associated value in the
Hashtable. In this example, the keys are Strings containing the programming lan-
guage name’s and the values are Strings containing the ISBN numbers for the recom-
mended books. Class Hashtable provides method Add, which takes as arguments a key
and a value. A value that is added via method Add is placed in the Hashtable at a loca-
tion determined by the key. The value for a specific Hashtable entry can be determined
by indexing the hash table with that value’s key. For instance, 

HashtableName( keyName )

returns the value in the key-value pair in which keyName is the key. An example of this
is shown in line 65; books(language) returns the value that corresponds to the key

54             Click here to choose another language
55          </asp:hyperlink>
56
57          <asp:label id="welcomeLabel" style="Z-INDEX: 108; 
58             LEFT: 42px; POSITION: absolute; TOP: 23px"
59             runat="server" Visible="False" Font-Bold="True"
60             Font-Size="Large">Welcome to cookies! You selected
61          </asp:label>
62
63          <asp:button id="submitButton" style="Z-INDEX: 107; 
64             LEFT: 42px; POSITION: absolute; TOP: 196px" 
65             runat="server" Text="Submit">
66          </asp:button>
67
68       </form>
69    </body>
70 </HTML>

Fig. 20.24 ASPX file that presents a list of programming languages (part 2 of 2)x.



Chapter 20 ASP .NET, Web Forms and Web Controls 983

contained in language. Class Hashtable is discussed in detail in Chapter 23, Data
Structures.

1 ' Fig. 20.25: OptionsPage.aspx.vb
2 ' Page that allows the user to choose a different language.
3
4 Imports System.Web.UI.WebControls
5
6 Public Class Cookie
7 Inherits System.Web.UI.Page
8 Protected WithEvents languageLink As HyperLink
9 Protected WithEvents recommendationsLink As HyperLink

10 Protected WithEvents promptLabel As Label
11 Protected WithEvents LanguageList As RadioButtonList
12 Protected WithEvents welcomeLabel As Label
13 Protected WithEvents submitButton As Button
14 Private books = New Hashtable()
15
16  ' Visual Studio .NET generated code
17
18 Private Sub Page_Init(ByVal sender As System.Object, _
19       ByVal e As System.EventArgs) Handles MyBase.Init
20
21       InitializeComponent()
22
23   ' add values to Hastable
24       books.Add("Visual Basic .NET", "0-13-456955-5")
25       books.Add("C#", "0-13-062221-4")
26       books.Add("C", "0-13-089572-5")
27       books.Add("C++", "0-13-089571-7")
28       books.Add("Python", "0-13-092361-3")
29 End Sub ' Page_Init
30
31 Private Sub Page_Load(ByVal sender As System.Object, _
32       ByVal e As System.EventArgs) Handles MyBase.Load
33
34       If IsPostBack Then
35
36          ' if postback is True, user has submitted information
37          ' display welcome message and appropriate hyperlinks
38          welcomeLabel.Visible = True
39          languageLink.Visible = True
40          recommendationsLink.Visible = True
41
42          ' hide option information
43          submitButton.Visible = False
44          promptLabel.Visible = False
45          LanguageList.Visible = False
46
47          If (LanguageList.SelectedItem Is Nothing) = False Then
48             welcomeLabel.Text &= " " & _
49                LanguageList.SelectedItem.Text.ToString & "."

Fig. 20.25 Code-behind file that writes cookies to the client (part 1 of 3).



984 ASP .NET, Web Forms and Web Controls Chapter 20

50          Else
51             welcomeLabel.Text &= "no language."
52          End If
53       End If
54 End Sub ' Page_Load
55
56 Private Sub submitButton_Click(ByVal sender As System.Object, _
57       ByVal e As System.EventArgs) Handles submitButton.Click
58
59       Dim language, ISBN As String
60       Dim cookie As HttpCookie
61
62     ' if choice was made by user
63       If (LanguageList.SelectedItem Is Nothing) = False Then
64          language = LanguageList.SelectedItem.ToString()
65          ISBN = books(language).ToString()
66
67          ' create cookie, name/value pair is
68          ' language chosen and ISBN number from Hashtable
69          cookie = New HttpCookie(language, ISBN)
70
71          ' add cookie to response,
72          ' thus placing it on user's machine
73          Response.Cookies.Add(cookie)
74       End If
75
76    End Sub ' submitButton_Click
77 End Class ' Cookie

Fig. 20.25 Code-behind file that writes cookies to the client (part 2 of 3).



Chapter 20 ASP .NET, Web Forms and Web Controls 985

Fig. 20.25 Code-behind file that writes cookies to the client (part 3 of 3).



986 ASP .NET, Web Forms and Web Controls Chapter 20

Clicking the Submit button creates a cookie if a language is selected and causes a
postback to occur. A new cookie object (of type HttpCookie) is created to store the
language and its corresponding ISBN number (line 69). This cookie is then Added to
the Cookies collection sent as part of the HTTP response header (line 73). The postback
causes the condition in the If structure of Page_Load (line 34) to evaluate to True, and
lines 38–53 execute. Line 47 determines whether the user selected a language. If so, that
language is displayed in welcomeLabel (lines 48–49). Otherwise, text indicating that a
language was not selected is displayed in welcomeLabel (line 51). The two hyperlinks
are made visible on lines 38–39.

After the postback request, the user may request a book recommendation. The book rec-
ommendation hyperlink forwards the user to RecomendationPage.aspx (Fig. 20.26) to
display a recommendation. 

1 <%-- Fig 20.26: RecommendationPage.aspx           --%>
2 <%-- Displays book recommendations using cookies. --%>
3
4 <%@ Page Language="vb" AutoEventWireup="false"
5    Codebehind="RecommendationPage.aspx.vb"
6    Inherits="Cookies.Recommendations"%>
7
8 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
9 <HTML>

10    <HEAD>
11       <title>Book recommendations</title>
12       <meta content="Microsoft Visual Studio.NET 7.0"
13          name="GENERATOR">
14       <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
15       <meta content="JavaScript" name="vs_defaultClientScript">
16       <meta name="vs_targetSchema"
17          content="http://schemas.microsoft.com/intellisense/ie5">
18    </HEAD>
19    <body MS_POSITIONING="GridLayout">
20       <form id="Form1" method="post" runat="server">
21
22          <asp:label id="recommendationsLabel"
23             style="Z-INDEX: 101; LEFT: 55px; POSITION: 
24             absolute; TOP: 38px" runat="server" 
25             Font-Size="X-Large">Recommendations
26          </asp:label>
27
28          <asp:listbox id="booksListBox" style="Z-INDEX: 102;
29             LEFT: 50px; POSITION: absolute; TOP: 80px"
30             runat="server" Width="442px" Height="125px">
31          </asp:listbox>
32
33       </form>
34    </body>
35 </HTML>

Fig. 20.26 ASPX page that displays book information.



Chapter 20 ASP .NET, Web Forms and Web Controls 987

RecommendationsPage.aspx contains a label (lines 22–26) and a list box (lines
28–31). The label displays the text Recommendations if the user has selected one or
more languages; otherwise, it displays No Recommendations. The list box displays the
recommendations created by the code-behind file, which is shown in Fig. 20.27.

Method Page_Init (lines 13–43) retrieves the cookies from the client, using the
Request object’s Cookies property (line 22). This returns a collection of type Http-
CookieCollection, containing cookies that have previously been written to the client.
Cookies can be read by an application only if they were created in the domain in which our
application is running—a Web server can never access cookies created outside the domain
associated with that server. For example, a cookie created by a Web server in the
deitel.com domain cannot be downloaded by a Web server in the bug2bug.com
domain.

1 ' Fig. 20.27: RecommendationsPage.aspx.vb
2 ' Reading cookie data from the client.
3
4 Imports System.Web.UI.WebControls
5
6 Public Class Recommendations
7 Inherits Page
8 Protected WithEvents recommendationsLabel As Label
9 Protected WithEvents booksListBox As ListBox

10
11 ' Visual Studio .NET generated code
12
13 Private Sub Page_Init(ByVal sender As System.Object, _
14       ByVal e As System.EventArgs) Handles MyBase.Init
15
16       InitializeComponent()
17
18       ' retrieve client's cookies
19       Dim cookies As HttpCookieCollection
20       Dim i As Integer
21
22       cookies = Request.Cookies
23
24       ' if there are cookies besides the ID cookie,
25       ' list appropriate books and ISBN numbers
26       If (((cookies Is Nothing) = False) _
27          AndAlso cookies.Count <> 1) Then
28
29          For i = 1 To cookies.Count - 1
30             booksListBox.Items.Add(cookies(i).Name & _
31                " How to Program. ISBN#: " & _
32                cookies(i).Value)
33          Next
34
35          ' if no cookies besides ID, no options were
36          ' chosen. no recommendations made

Fig. 20.27 Cookies being read from a client in an ASP .NET application (part 1 of 2).



988 ASP .NET, Web Forms and Web Controls Chapter 20

Lines 26–27 determines whether at least two cookies exist. ASP .NET always adds
a cookie named ASP.NET_SessionId to the response, so lines 26–27 ensure that
there is at least one cookie besides the ASP.NET_SessionId cookie. Lines 29–33 add
the information in the other cookie(s) to our list box. The For structure iterates through
all the cookies except for the first one, the ASP.NET_SessionID cookie. The appli-
cation retrieves the name and value of each cookie by using i, the control variable in our
For structure, to determine the current value in our cookie collection. The Name and
Value properties of class HttpCookie contain the language and corresponding ISBN,
respectively, are concatenated with " How to Program. ISBN# " and added to the
ListBox. The list box displays a maximum of five books. Lines 38–40 execute if no
language was selected. We summarize some commonly used HttpCookie properties
in Fig. 20.28.

37       Else
38          recommendationsLabel.Text = "No Recommendations"
39          booksListBox.Items.Clear()
40          booksListBox.Visible = False
41       End If
42
43 End Sub ' Page_Init
44
45 Private Sub Page_Load(ByVal sender As System.Object, _
46       ByVal e As System.EventArgs) Handles MyBase.Load
47
48       ' Put user code to initialize the page here
49 End Sub ' Page_Load
50 End Class ' Recommendations

Fig. 20.27 Cookies being read from a client in an ASP .NET application (part 2 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 989

20.6.2 Session Tracking with HttpSessionState

Visual Basic provides session-tracking capabilities in the Framework Class Library’s Ht-
tpSessionState class. To demonstrate basic session-tracking techniques, we modified
Fig. 20.27 so that it employs HttpSessionState objects. Figure 20.29 presents the
ASPX file, and Fig. 20.30 presents the code-behind file. The ASPX file is similar to that
presented in Fig. 20.24.

Properties Description

Domain Returns a String containing the cookie’s domain (i.e., the domain of the Web 
server from which the cookie was downloaded). This determines which Web 
servers can receive the cookie. By default, cookies are sent to the Web server 
that originally sent the cookie to the client. 

Expires Returns a DateTime object indicating when the browser can delete the cookie.

Name Returns a String containing the cookie’s name.

Path Returns a String containing the URL prefix for the cookie. Cookies can be 
“targeted” to specific URLs that include directories on the Web server, enabling 
the programmer to specify the location of the cookie. By default, a cookie is 
returned to services operating in the same directory as the service that sent the 
cookie or a subdirectory of that directory.

Secure Returns a Boolean value indicating whether the cookie should be transmitted 
through a secure protocol. The value True causes a secure protocol to be used.

Value Returns a String containing the cookie’s value.

Fig. 20.28 HttpCookie properties.

1 <%-- Fig. 20.29: OptionsPage.aspx    --%>
2 <%-- displays a list of book options --%>
3
4 <%@ Page Language="vb" AutoEventWireup="false"
5    Codebehind="OptionsPage.aspx.vb"
6    Inherits="Sessions.Options2"%>
7
8 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
9 <HTML>

10    <HEAD>
11       <title>Session Tracking</title>
12       <meta name="GENERATOR" 
13          content="Microsoft Visual Studio.NET 7.0">
14       <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
15       <meta name="vs_defaultClientScript" content="JavaScript">
16       <meta name="vs_targetSchema"
17          content="http://schemas.microsoft.com/intellisense/ie5">
18    </HEAD>

Fig. 20.29 Options supplied on an ASPX page (part 1 of 3).



990 ASP .NET, Web Forms and Web Controls Chapter 20

19    <body MS_POSITIONING="GridLayout">
20       <form id="Form1" method="post" runat="server">
21
22          <asp:label id="promptLabel" style="Z-INDEX: 106;
23             LEFT: 43px; POSITION: absolute; TOP: 32px"
24             runat="server" Font-Bold="True" Font-Size="Large">
25             Select a programming language.
26          </asp:label>
27
28          <asp:Label id="timeOutLabel" style="Z-INDEX: 108; 
29             LEFT: 42px; POSITION: absolute; TOP: 100px"
30             runat="server">
31          </asp:Label>
32
33          <asp:Label id="idLabel" style="Z-INDEX: 107; 
34             LEFT: 42px; POSITION: absolute; TOP: 66px"
35             runat="server">
36          </asp:Label>
37
38          <asp:radiobuttonlist id="LanguageList" style="Z-INDEX: 105; 
39             LEFT: 43px; POSITION: absolute; TOP: 69px" runat="server">
40
41             <asp:ListItem Value="Visual Basic .NET"
42                Selected="True">Visual Basic .NET</asp:ListItem>
43             
44             <asp:ListItem Value="C#">C#</asp:ListItem>
45             <asp:ListItem Value="C">C</asp:ListItem>
46             <asp:ListItem Value="C++">C++</asp:ListItem>
47             <asp:ListItem Value="Python">Python</asp:ListItem>
48          </asp:radiobuttonlist>
49
50          <asp:hyperlink id="recommendationsLink" style="Z-INDEX: 104;
51             LEFT: 42px; POSITION: absolute; TOP: 172px"
52             runat="server" NavigateUrl="RecommendationPage.aspx" 
53             Visible="False">
54             Click here to get book recommendations
55          </asp:hyperlink>
56
57          <asp:hyperlink id="languageLink" style="Z-INDEX: 103; 
58             LEFT: 42px; POSITION: absolute; TOP: 137px"
59             runat="server" NavigateUrl="OptionsPage.aspx" 
60             Visible="False">
61             Click here to choose another language
62          </asp:hyperlink>
63
64          <asp:label id="welcomeLabel" style="Z-INDEX: 102; 
65             LEFT: 42px; POSITION: absolute; TOP: 32px"
66             runat="server" Visible="False" Font-Bold="True"
67          Font-Size="Large">Welcome to sessions! You selected
68          </asp:label>
69

Fig. 20.29 Options supplied on an ASPX page (part 2 of 3).



Chapter 20 ASP .NET, Web Forms and Web Controls 991

Every Web Form includes an HttpSessionState object, which is accessible
through property Session of class Page. Throughout this section, we use property Ses-
sion to manipulate our page’s HttpSessionState object. When the Web page is
requested, an HttpSessionState object is created and assigned to the Page’s Ses-
sion property. As a result, we often refer to property Session as the Session object.
When the user presses Submit, submitButton_Click is invoked in the code-behind
file (Fig. 20.30). Method submitButton_Click responds by adding a key-value pair
to our Session object, specifying the language chosen and the ISBN number for a book
on that language. These key-value pairs are often referred to as session items. Next, a post-
back occurs. Each time the user clicks Submit, submitButton_Click adds a new ses-
sion item to the HttpSessionState object. Because much of this example is identical
to the last example, we concentrate on the new features.

70          <asp:button id="submitButton" style="Z-INDEX: 101; 
71             LEFT: 42px; POSITION: absolute; TOP: 207px"
72             runat="server" Text="Submit">
73          </asp:button>
74
75       </form>
76    </body>
77 </HTML>

1 ' Fig. 20.30: OptionsPge2.aspx.vb
2 ' A listing of programming languages,
3 ' cookie is created based on choice made.
4
5 Imports System.Web.UI.WebControls
6
7 Public Class Options2
8 Inherits System.Web.UI.Page
9 Protected WithEvents languageLink As HyperLink

10 Protected WithEvents recommendationsLink As HyperLink
11 Protected WithEvents LanguageList As RadioButtonList
12 Protected WithEvents idLabel As Label
13 Protected WithEvents timeOutLabel As Label
14 Protected WithEvents promptLabel As Label
15 Protected WithEvents welcomeLabel As Label
16 Protected WithEvents submitButton As Button
17 Private books = New Hashtable()
18
19 ' Visual Studio .NET generated code
20
21 Private Sub Page_Init(ByVal sender As System.Object, _
22       ByVal e As System.EventArgs) Handles MyBase.Init
23
24       InitializeComponent()
25

Fig. 20.30 Sessions are created for each user in an ASP .NET Web application (part 1 
of 4).

Fig. 20.29 Options supplied on an ASPX page (part 3 of 3).



992 ASP .NET, Web Forms and Web Controls Chapter 20

26       ' add values to Hastable
27       books.Add("Visual Basic .NET", "0-13-456955-5")
28       books.Add("C#", "0-13-062221-4")
29       books.Add("C", "0-13-089572-5")
30       books.Add("C++", "0-13-089571-7")
31       books.Add("Python", "0-13-092361-3")
32 End Sub ' Page_Init
33
34 Private Sub Page_Load(ByVal sender As System.Object, _
35          ByVal e As System.EventArgs) Handles MyBase.Load
36
37       If IsPostBack Then
38
39          ' if postback is True, user has submitted information
40          ' display welcome message and appropriate hyperlinks
41          welcomeLabel.Visible = True
42          languageLink.Visible = True
43          recommendationsLink.Visible = True
44
45          ' hide option information
46          submitButton.Visible = False
47          promptLabel.Visible = False
48          LanguageList.Visible = False
49
50          If (LanguageList.SelectedItem Is Nothing) = False Then
51             welcomeLabel.Text &= " " & _
52                LanguageList.SelectedItem.Text.ToString & "."
53          Else
54             welcomeLabel.Text &= "no language."
55          End If
56
57          idLabel.Text = "Your unique session ID is: " & _
58             Session.SessionID
59
60          timeOutLabel.Text = "Timeout: " & Session.Timeout & _
61             " minutes."
62
63       End If
64
65 End Sub ' Page_Load
66
67 Private Sub submitButton_Click(ByVal sender As System.Object, _
68       ByVal e As System.EventArgs) Handles submitButton.Click
69
70       Dim language, ISBN As String
71
72       ' if choice was made by user
73       If (LanguageList.SelectedItem Is Nothing) = False Then
74          language = LanguageList.SelectedItem.ToString()
75          ISBN = books(language).ToString()
76

Fig. 20.30 Sessions are created for each user in an ASP .NET Web application (part 2 
of 4).



Chapter 20 ASP .NET, Web Forms and Web Controls 993

77          ' add name/value pair to Session
78          Session.Add(language, ISBN)
79       End If
80
81 End Sub ' submitButton_Click
82 End Class ' Options2

Fig. 20.30 Sessions are created for each user in an ASP .NET Web application (part 3 
of 4).



994 ASP .NET, Web Forms and Web Controls Chapter 20

Software Engineering Observation 20.1
A Web Form should not use instance variables to maintain client state information, because
clients accessing that Web Form in parallel might overwrite the shared instance variables.
Web Forms should maintain client state information in HttpSessionState objects, be-
cause such objects are specific to each client. 20.1

Like a cookie, an HttpSessionState object can store name-value pairs. These
session items are placed into an HttpSessionState object by calling method Add.
Line 78 calls Add to place the language and its corresponding recommended book’s ISBN
number into the HttpSessionState object. One of the primary benefits of using
HttpSessionState objects (rather than cookies) is that HttpSessionState
objects can store any type of object (not just Strings) as attribute values. This provides
Visual Basic programmers with increased flexibility in determining the type of state infor-

Fig. 20.30 Sessions are created for each user in an ASP .NET Web application (part 4 
of 4).



Chapter 20 ASP .NET, Web Forms and Web Controls 995

mation they wish to maintain for their clients. If the application calls method Add to add
an attribute that has the same name as an attribute previously stored in a session, the object
associated with that attribute is replaced.

After the values are added to the HttpSessionState object, the application han-
dles the postback event (lines 37–63) in method Page_Load. Here, we retrieve informa-
tion about the current client’s session from the Session object’s properties and display
this information in the Web page. The ASP .NET application contains information about
the HttpSessionState object for the current client. Property SessionID (lines 57–
58) contains the session’s unique ID. The first time a client connects to the Web server, a
unique session ID is created for that client. When the client makes additional requests, the
client’s session ID is compared with the session IDs stored in the Web server’s memory.
Property Timeout (line 60) specifies the maximum amount of time that an Http-
SessionState object can be inactive before it is discarded. Figure 20.31 lists some
common HttpSessionState properties.

As in the cookies example, this application provides a link to Recommendations-
Page.aspx (Fig. 20.32), which displays a list of book recommendations that is based on
the user’s language selections. Lines 28–31 define a ListBox Web control that is used to
present the recommendations to the user. Figure 20.33 presents the code-behind file for this
ASPX file.

Properties Description

Count Specifies the number of key-value pairs in the Session object.

IsNewSession Indicates whether this is a new session (i.e., whether the session was cre-
ated during loading of this page).

IsReadOnly Indicates whether the Session object is read only.

Keys Returns a collection containing the Session object’s keys.

SessionID Returns the session’s unique ID.

Timeout Specifies the maximum number of minutes during which a session can be 
inactive (i.e., no requests are made) before the session expires. By default, 
this property is set to 20 minutes.

Fig. 20.31 HttpSessionState properties.

1 <%-- Fig. 20.32: RecommendationPage.aspx            --%>
2 <%-- Displays book recommendations based on session --%>
3 <%-- information     .                              --%>
4
5 <%@ Page Language="vb" AutoEventWireup="false"
6    Codebehind="RecommendationPage.aspx.vb"
7    Inherits="Sessions.Recommendations" %>
8
9 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

Fig. 20.32 Session information displayed in a ListBox (part 1 of 2).



996 ASP .NET, Web Forms and Web Controls Chapter 20

10 <HTML>
11    <HEAD>
12       <meta content="Microsoft Visual Studio.NET 7.0"
13          name="GENERATOR">
14       <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
15       <meta content="JavaScript" name="vs_defaultClientScript">
16       <meta name="vs_targetSchema"
17          content="http://schemas.microsoft.com/intellisense/ie5">
18    </HEAD>
19    <body MS_POSITIONING="GridLayout">
20       <form id="Form1" method="post" runat="server">
21
22          <asp:label id="recommendationLabel"
23             style="Z-INDEX: 101; LEFT: 55px;
24             POSITION: absolute; TOP: 38px" runat="server"
25             Font-Size="X-Large">Recommendations
26          </asp:label>
27
28          <asp:listbox id="booksListBox" style="Z-INDEX: 102; 
29             LEFT: 50px; POSITION: absolute; TOP: 80px" 
30             runat="server" Width="442px" Height="125px">
31          </asp:listbox>
32
33       </form>
34    </body>
35 </HTML>

1 ' Fig. 20.33: RecommendationPage.aspx.vb
2 ' Reading cookie data from the client
3
4 Imports System.Web.UI.WebControls
5
6 Public Class Recommendations
7 Inherits Page
8 Protected WithEvents recommendationLabel As Label
9 Protected WithEvents booksListBox As ListBox

10
11 ' Visual Studio .NET generated code
12
13 Private Sub Page_Init(ByVal sender As System.Object, _
14       ByVal e As System.EventArgs) Handles MyBase.Init
15
16       InitializeComponent()
17
18       Dim i As Integer
19       Dim keyName As String
20

Fig. 20.33 Session data read by an ASP .NET Web application to provide 
recommendations for the user (part 1 of 2).

Fig. 20.32 Session information displayed in a ListBox (part 2 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 997

Event handler Page_Init (lines 13–41) retrieves the session information. If a user
has not selected any language during any visit to this site, our Session object’s Count
property will be zero. This property provides the number of session items contained in a
Session object. If Session object’s Count property is zero (i.e., no language was ever
selected) then we display the text No Recommendations.

21       ' determine if Session contains information
22       If Session.Count <> 0 Then
23
24          ' iterate through Session values,
25          ' display in ListBox
26          For i = 0 To Session.Count - 1
27
28             ' store current key in sessionName
29             keyName = Session.Keys(i)
30
31             ' use current key to display
32             ' Session's name/value pairs
33             booksListBox.Items.Add(keyName & _
34                " How to Program. ISBN#: " & _
35                Session(keyName))
36          Next
37       Else
38          recommendationLabel.Text = "No Recommendations"
39          booksListBox.Visible = False
40       End If
41 End Sub ' Page_Init
42
43 Private Sub Page_Load(ByVal sender As System.Object, _
44       ByVal e As System.EventArgs) Handles MyBase.Load
45
46       ' Put user code to initialize the page here
47 End Sub ' Page_Load
48 End Class ' Recommendations

Fig. 20.33 Session data read by an ASP .NET Web application to provide 
recommendations for the user (part 2 of 2).



998 ASP .NET, Web Forms and Web Controls Chapter 20

If the user has chosen a language, the For structure (lines 26–36) iterates through our
Session object’s session items (line 29). The value in a key-value pair is retrieved from
the Session object by indexing the Session object with the key name, using the same
process by which we retrieved a value from our hash table in the last section.

We then access the Keys property of class HttpSessionState (line 29), which
returns a collection containing all the keys inthe session. Line 29 indexes our collection to
retrieve the current key. Lines 33–35 concatenate keyName’s value to the String " How
to Program. ISBN#: " and to the value from the session object for which keyName
is the key. This String is the recommendation that appears in the ListBox.

20.7 Case Study: Online Guest book
Many Web sites allow users to provide feedback about the Web site in a guest book. Typ-
ically, users click a link on the Web site’s home page to request the guest-book page. This
page usually consists of an HTML form that contains fields for the user’s name, e-mail
address, message/feedback and so on. Data submitted on the guest-book form often are
stored in a database located on the Web server’s machine. In this section, we create a guest-
book Web Form application. The GUI is slightly more complex, containing a DataGrid,
as shown in Fig. 20.34.

The HTML form presented to the user consists of a user-name field, an e-mail address
field and a message field. Figure 20.35 presents the ASPX file and Fig. 20.36 presents the
code–behind file for the guest-book application. For the sake of simplicity, we write the
guest-book information to a text file. However, in the exercises, we ask the reader to modify
this example so that the application stores the guest-book information in a database.

Fig. 20.34 Guest-book application GUI.



Chapter 20 ASP .NET, Web Forms and Web Controls 999

1 <%-- Fig. 20.35: GuestbookPage.aspx                 --%>
2 <%-- Controls and layout for guestbook application. --%>
3
4 <%@ Page Language="vb" AutoEventWireup="false"
5    Codebehind="GuestbookPage.aspx.vb"
6    Inherits="Guestbook.Guestbook"%>
7
8 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
9 <HTML>

10    <HEAD>
11       <title>GuestBook</title>
12       <meta content="Microsoft Visual Studio.NET 7.0"
13          name="GENERATOR">
14       <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
15       <meta content="JavaScript" name="vs_defaultClientScript">
16       <meta content=
17          "http://schemas.microsoft.com/intellisense/ie5"
18          name="vs_targetSchema">
19    </HEAD>
20    <body MS_POSITIONING="GridLayout">
21       <form id="Form1" method="post" runat="server">
22
23          <asp:Label id="promptLabel" style="Z-INDEX: 101;
24             LEFT: 39px; POSITION: absolute; TOP: 20px"
25             runat="server" Font-Size="X-Large"
26             ForeColor="Blue">
27             Please leave a message in our guestbook:
28          </asp:Label>
29
30          <asp:Button id="clearButton" style="Z-INDEX: 110; 
31             LEFT: 383px; POSITION: absolute; TOP: 318px" 
32             runat="server" Width="56px" Text="Clear">
33          </asp:Button>
34
35          <asp:Button id="submitButton" style="Z-INDEX: 109; 
36             LEFT: 187px; POSITION: absolute; TOP: 319px"
37             runat="server" Text="Submit">
38          </asp:Button>
39
40          <asp:DataGrid id="DataGrid1" style="Z-INDEX: 108;
41             LEFT: 39px; POSITION: absolute; TOP: 372px"
42             runat="server" Width="541px" Height="95px"
43             HorizontalAlign="Left" BorderColor="#E7E7FF"
44             BorderWidth="1px" GridLines="None" CellPadding="3"
45             PageSize="5">
46             
47             <SelectedItemStyle ForeColor="#F7F7F7"
48                BackColor="#738A9C">
49             </SelectedItemStyle>
50             <AlternatingItemStyle BackColor="#F7F7F7">
51             </AlternatingItemStyle>

Fig. 20.35 ASPX file for the guest-book application (part 1 of 2).



1000 ASP .NET, Web Forms and Web Controls Chapter 20

The ASPX file generated by the GUI is shown in Fig. 20.35. After dragging the two
buttons onto the form, double-click each button to create its corresponding event handler.

52             <ItemStyle HorizontalAlign="Left" Width="100px"
53                ForeColor="#4A3C8C" BackColor="#E7E7FF">
54             </ItemStyle>
55             <HeaderStyle ForeColor="#F7F7F7"
56                BackColor="#4A3C8C">
57             </HeaderStyle>
58             <FooterStyle ForeColor="#4A3C8C" 
59                BorderColor="#B5C7DE">
60             </FooterStyle>
61             <PagerStyle HorizontalAlign="Right"
62                ForeColor="#4A3C8C" BackColor="#E7E7FF"
63                Mode="NumericPages">
64             </PagerStyle>
65          </asp:DataGrid>
66
67          <asp:TextBox id="messageTextBox" style="Z-INDEX: 107; 
68             LEFT: 135px; POSITION: absolute; TOP: 181px"
69             runat="server" Width="449px" Height="113px"
70             TextMode="MultiLine">
71          </asp:TextBox>
72
73          <asp:TextBox id="emailTextBox" style="Z-INDEX: 106; 
74             LEFT: 135px; POSITION: absolute; TOP: 132px"
75             runat="server" Width="449px">
76          </asp:TextBox>
77
78          <asp:TextBox id="nameTextBox" style="Z-INDEX: 105; 
79             LEFT: 135px; POSITION: absolute; TOP: 85px"
80             runat="server" Width="449px">
81          </asp:TextBox>
82
83          <asp:Label id="messageLabel" style="Z-INDEX: 104; 
84             LEFT: 39px; POSITION: absolute; TOP: 167px"
85             runat="server" Width="51px">Tell the world:
86          </asp:Label>
87
88          <asp:Label id="emailLabel" style="Z-INDEX: 103; 
89             LEFT: 39px; POSITION: absolute; TOP: 118px" 
90             runat="server" Width="69px">Your email address:
91          </asp:Label>
92
93          <asp:Label id="nameLabel" style="Z-INDEX: 102; 
94             LEFT: 39px; POSITION: absolute; TOP: 90px" 
95             runat="server">Your name:
96          </asp:Label>
97
98       </form>
99    </body>
100 </HTML>

Fig. 20.35 ASPX file for the guest-book application (part 2 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 1001

Visual Studio adds the event handlers to the code-behind file (Fig. 20.36). A DataGrid
named dataGrid displays all guest-book entries. This control can be added from the
Toolbox, just as could a button or label. The colors for the DataGrid are specified
through the Auto Format... link that is located near the bottom of the Properties
window when we are looking at the properties of our DataGrid. A dialog will open with
several choices. In this example, we chose Colorful 4. We discuss adding information to
this DataGrid shortly.

The event handler for clearButton (lines 35–41) clears each TextBox by setting
its Text property to an empty string. Lines 84–107 contain the event-handling code for
submitButton, which will add the user’s information to guestbook.txt, a text file
stored in our project. The various entries in this file will be displayed in the DataGrid,
including the newest entry. Let us look at how this is done in the code.

Lines 90–92 create a StreamWriter that references the file containing the guest-
book entries. We use the Request object’s PhysicalApplicationPath property to
retrieve the path of the application’s root directory (this will be the path of the project folder
for the current application) and then concatenate to it the file name (i.e., guest-
book.txt). The second argument (True) specifies that new information will be
appended to the file (i.e., added at the end). Lines 95–98 append the appropriate message
to the guest-book file. Before the event handler exits, it calls method FillMessage-
Table (line 106).

1 ' Fig. 20.36: GuestbookPage.aspx
2 ' The code-behind file for the guest book page.
3
4 Imports System.Web.UI.WebControls
5 Imports System.Data
6 Imports System.IO
7
8 ' allows users to leave message
9 Public Class Guestbook

10 Inherits System.Web.UI.Page
11
12 Protected WithEvents promptLabel As Label
13 Protected WithEvents nameLabel As Label
14 Protected WithEvents emailLabel As Label
15 Protected WithEvents messageLabel As Label
16 Protected WithEvents dataGrid As DataGrid
17 Protected WithEvents submitButton As Button
18 Protected WithEvents messageTextBox As TextBox
19 Protected WithEvents emailTextBox As TextBox
20 Protected WithEvents nameTextBox As TextBox
21 Protected WithEvents clearButton As Button
22 Protected WithEvents dataView As System.Data.DataView
23
24    ' Visual Studio .NET generated code
25
26 Private Sub Page_Load(ByVal sender As System.Object, _
27       ByVal e As System.EventArgs) Handles MyBase.Load
28

Fig. 20.36 Code-behind file for the guest-book application (part 1 of 4).



1002 ASP .NET, Web Forms and Web Controls Chapter 20

29       'Put user code to initialize the page here
30       dataView = New DataView(New DataTable())
31
32 End Sub
33
34    ' clear text boxes; user can enter new input
35 Private Sub clearButton_Click(ByVal sender As System.Object, _
36       ByVal e As System.EventArgs) Handles clearButton.Click
37
38       nameTextBox.Text = ""
39       emailTextBox.Text = ""
40       messageTextBox.Text = ""
41 End Sub ' clearButton_Click
42
43 Public Sub FillMessageTable()
44       Dim table As New DataTable()
45       Dim reader As StreamReader
46       Dim separator As Char()
47       Dim message As String
48       Dim parts As String()
49
50       table = dataView.Table
51
52       table.Columns.Add("Date")
53       table.Columns.Add("FirstName")
54       table.Columns.Add("email")
55       table.Columns.Add("Message")
56
57       ' open guestbook file for reading
58       reader = New StreamReader( _
59          Request.PhysicalApplicationPath & "guestbook.txt")
60
61       separator = New Char() {vbTab}
62
63      ' read one line from file
64       message = reader.ReadLine()
65
66       While message <> ""
67
68      ' split String into four parts
69          parts = message.Split(separator)
70
71          ' load data into table
72          table.LoadDataRow(parts, True)
73
74          ' read one line from file
75          message = reader.ReadLine()
76       End While
77
78       dataGrid.DataBind() ' update grid
79
80       reader.Close()
81 End Sub ' FillMessageTable

Fig. 20.36 Code-behind file for the guest-book application (part 2 of 4).



Chapter 20 ASP .NET, Web Forms and Web Controls 1003

82
83  ' add user's entry to guestbook
84 Private Sub submitButton_Click(ByVal sender As System.Object, _
85       ByVal e As System.EventArgs) Handles submitButton.Click
86
87       Dim guestbook As StreamWriter
88
89       ' open stream for appending to file
90       guestbook = New StreamWriter( _
91          Request.PhysicalApplicationPath & _
92          "guestbook.txt", True)
93
94       ' write new message to file
95       guestbook.WriteLine( _
96          DateTime.Now.Date.ToString().Substring(0, 10) & _
97          vbTab & nameTextBox.Text & vbTab & emailTextBox.Text & _
98          vbTab & messageTextBox.Text)
99
100       ' clear textboxes and close stream
101       nameTextBox.Text = ""
102       emailTextBox.Text = ""
103       messageTextBox.Text = ""
104       guestbook.Close()
105
106       FillMessageTable()
107 End Sub ' submitButton_Click
108 End Class ' Guestbook

Fig. 20.36 Code-behind file for the guest-book application (part 3 of 4).



1004 ASP .NET, Web Forms and Web Controls Chapter 20

Method FillMessageTable (lines 43–81) places the guest-book entries in
DataTable table. Lines 50–55 create a DataTable object from our DataView’s
Table property and then form the necessary columns, using the Columns collection’s
Add method. Lines 66–76 read each line in the text file. Method Split breaks each line
read from the file into four tokens, which are added to the table by calling method
LoadDataRow (line 72). The second argument to method LoadDataRow is True, indi-
cating that any changes resulting from the addition will be accepted. The DataTable
places one piece of data in each column. After the DataTable is populated, the data are
bound to the DataGrid. Method DataBind is called to refresh the DataView. [Note:
DataView dataView was assigned to the DataSource property of the DataGrid in
the Web Form designer, after it was declared in the code.]

20.8 Case Study: Connecting to a Database in ASP .NET
This case study presents a Web-based application in which a user can view a list of publica-
tions by an author. This program consists of two Web Forms. The first page that a user re-
quests is Login.aspx (Fig. 20.37). After accessing this page, users select their names
from the drop-down list and then enter their passwords. If their passwords are valid, they are
redirected to Authors.aspx (Fig. 20.40), which provides a list of authors. When the user

Fig. 20.36 Code-behind file for the guest-book application (part 4 of 4).



Chapter 20 ASP .NET, Web Forms and Web Controls 1005

chooses an author and clicks the Select button, a postback occurs, and the updated page dis-
plays a table containing the titles, ISBNs and publishers of books by the selected author.

Much of the information provided by this Web page is accessed through databases
stored in our project. Login.aspx retrieves valid user names for this site through
Login.mdb, and all the author information is retrieved from the Books.mdb database.
The reader can view these databases by opening the Database project for this chapter.

1 <%-- Fig. 20.37: login.aspx                  --%>
2 <%-- Controls and formatting for login page. --%>
3
4 <%@ Register TagPrefix="Header" TagName="ImageHeader"
5    Src="ImageHeader.ascx" %>
6
7 <%@ Page Language="vb" AutoEventWireup="false"
8    Codebehind="login.aspx.vb"
9    Inherits="Database.Login"%>

10
11 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
12 <HTML>
13    <HEAD>
14       <title></title>
15       <meta content="Microsoft Visual Studio.NET 7.0"
16          name="GENERATOR">
17       <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
18       <meta content="JavaScript" name="vs_defaultClientScript">
19       <meta name="vs_targetSchema"
20          content="http://schemas.microsoft.com/intellisense/ie5">
21    </HEAD>
22    <body bgColor="#ffebff" MS_POSITIONING="GridLayout">
23       <form id="Form1" method="post" runat="server">
24
25          <asp:label id="promptLabel" style="Z-INDEX: 108; 
26             LEFT: 20px; POSITION: absolute; TOP: 144px"
27             runat="server">Please select your name and enter 
28                your password to log in:
29          </asp:label>
30
31          <asp:label id="nameLabel" style="Z-INDEX: 101; 
32             LEFT: 15px; POSITION: absolute; TOP: 188px"
33             runat="server">Name
34          </asp:label>
35
36          <asp:dropdownlist id="nameList" style="Z-INDEX: 105;
37             LEFT: 92px; POSITION: absolute; TOP: 185px"
38             runat="server" Width="154px">
39          </asp:dropdownlist>
40
41          <asp:label id="passwordLabel" style="Z-INDEX: 102;
42             LEFT: 15px; POSITION: absolute; TOP: 220px"
43             runat="server">Password
44          </asp:label>
45

Fig. 20.37 Login Web Form (part 1 of 2).



1006 ASP .NET, Web Forms and Web Controls Chapter 20

Lines 4–5 add one Web user control to the ASPX file. Readers might recall that we
covered the definition of user controls for Windows applications in Chapter 13, Graphical
User Interface: Part 2; we can define user controls for Web Forms by a similar technique.
Because the ASPX files that users request do not define user controls for Web Forms, such
controls do not have HTML or BODY elements. Rather, programmers specify these controls
via the <%@ Register…%> directive. For example, a programmer might want to include
a navigation bar (i.e., a series of buttons for navigating a Web site) on every page of a site.
If the site encompasses a large number of pages, the addition of markup to create the nav-
igation bar for each page can be time consuming. Moreover, if the programmer subse-
quently modifies the navigation bar, every page on the site that uses it must be updated. By
creating a user control, the programmer can specify where on each page the navigation bar
is placed with only a few lines of markup. If the navigation bar changes, the pages that use
it are updated the next time the page is requested.

Like Web Forms, most Web user controls consist of two pages: An ASCX file and a
code-behind file. Lines 4–5 define the user control’s tag name (the name of this instance of
the control) and tag prefix, which are ImageHeader and Header, respectively. The
ImageHeader element is added to the file in lines 71–72. The tag definition is located in

46          <asp:textbox id="passwordTextBox" style="Z-INDEX: 103; 
47             LEFT: 92px; POSITION: absolute; TOP: 221px"
48             runat="server" TextMode="Password">
49          </asp:textbox>
50
51          <asp:customvalidator id="invalidPasswordValidator"
52             style="Z-INDEX: 107; LEFT: 262px; POSITION: 
53             absolute; TOP: 221px" runat="server"
54             ControlToValidate="passwordTextBox" Font-Bold="True"
55             ForeColor="DarkCyan" ErrorMessage="Invalid password!">
56          </asp:customvalidator>
57
58          <asp:requiredfieldvalidator id= 
59             "requiredPasswordValidator" style="Z-INDEX: 106;
60             LEFT: 262px; POSITION: absolute; TOP: 221px"
61             runat="server" ControlToValidate="passwordTextBox"
62             Font-Bold="True" ForeColor="DarkCyan" 
63             ErrorMessage="Please enter a password!">
64          </asp:requiredfieldvalidator>
65
66          <asp:button id="submitButton" style="Z-INDEX: 104; 
67             LEFT: 92px; POSITION: absolute; TOP: 263px"
68             runat="server" Text="Submit">
69          </asp:button>
70
71          <Header:ImageHeader id="ImageHeader1" runat="server">
72          </Header:ImageHeader>
73
74       </form>
75    </body>
76 </HTML>

Fig. 20.37 Login Web Form (part 2 of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 1007

the Src file HeaderImage.ascx (Fig. 20.38). The programmer can create this file by
right clicking the project name in the Solution Explorer and selecting Add > Add New
Item.... From the dialog that opens, select Web User Control, and a new ASCX file will
be added to the solution. At this point, the programmer can add items to this file as if it were
an ASPX document, defining any functionality in the Web user control’s code-behind file.
After creating the user control, the programmer can drag it from the Solution Explorer
directly onto an open ASPX file. An instance of the control then will be created and added
to the Web Form.

The form (Fig. 20.37) includes several Labels, a TextBox (passwordTextbox)
and a DropDownList (nameList), which is populated in the code-behind file,
Login.aspx.vb (Fig. 20.39), with user names retrieved from a database. We also
include two validators: A RequiredFieldValidator, and a CustomValidator.
A CustomValidator allows us to specify the circumstances under which a field is
valid. We define these circumstances in the event handler for the ServerValidate
event of the CustomValidator. The event-handling code is placed in the code-behind
file for Login.aspx.vb and is discussed shortly. Both validators’ ControlToVali-
date properties are set to passwordTextbox.

1 <%-- Fig. 20.38: ImageHeader.ascx         --%>
2 <%-- Listing for the header user control. --%>
3
4 <%@ Control Language="vb" AutoEventWireup="false"
5    Codebehind="ImageHeader.ascx.vb"
6    Inherits="Database.ImageHeader"
7    TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>
8
9 <asp:Image id="Image1" runat="server"

10    ImageUrl="http://localhost/VB/Database/bug2bug.png">
11 </asp:Image>

Fig. 20.38 ASCX code for the header.

1 ' Fig. 20.39: Login.aspx.vb
2 ' The code-behind file for the page that logs the user in.
3
4 Imports System
5 Imports System.Collections
6 Imports System.ComponentModel
7 Imports System.Data
8 Imports System.Data.OleDb
9 Imports System.Drawing

10 Imports System.Web
11 Imports System.Web.SessionState
12 Imports System.Web.UI
13 Imports System.Web.UI.WebControls
14 Imports System.Web.UI.HtmlControls
15 Imports System.Web.Security
16

Fig. 20.39 Code-behind file for the login page for authors application (part 1 of 5).



1008 ASP .NET, Web Forms and Web Controls Chapter 20

17 Public Class Login
18 Inherits System.Web.UI.Page
19
20 Protected WithEvents requiredPasswordValidator As _
21    RequiredFieldValidator
22
23 Protected WithEvents invalidPasswordValidator As _
24       CustomValidator
25
26 Protected WithEvents submitButton As Button
27 Protected WithEvents passwordTextBox As TextBox
28 Protected WithEvents passwordLabel As Label
29 Protected WithEvents nameList As DropDownList
30 Protected WithEvents nameLabel As Label
31 Protected WithEvents OleDbDataAdapter1 As OleDbDataAdapter
32 Protected WithEvents OleDbSelectCommand1 As OleDbCommand
33 Protected WithEvents OleDbInsertCommand1 As OleDbCommand
34 Protected WithEvents OleDbUpdateCommand1 As OleDbCommand
35 Protected WithEvents OleDbDeleteCommand1 As OleDbCommand
36 Protected WithEvents OleDbConnection1 As OleDbConnection
37 Protected WithEvents promptLabel As Label
38 Protected dataReader As OleDbDataReader
39
40 ' Visual Studio .NET generated code
41
42 Private Sub Page_Init(ByVal sender As System.Object, _ 
43       ByVal e As System.EventArgs) Handles MyBase.Init
44
45       InitializeComponent()
46
47       ' if page loads due to postback, process information
48       ' otherwise, page is loading for first time, so
49       ' do nothing
50       If Not IsPostBack Then
51
52          ' open database and read data
53          Try
54             ' open database connection
55             OleDbConnection1.Open()
56
57             ' execute query
58             dataReader = _   
59                OleDbDataAdapter1.SelectCommand.ExecuteReader()
60
61             ' while we can read row from query result,
62             ' add first item to drop-down list
63             While (dataReader.Read())
64                nameList.Items.Add(dataReader.GetString(0))
65             End While
66
67          ' catch error if database cannot be opened
68          Catch exception As OleDbException
69             Response.Write("Unable to open database!")

Fig. 20.39 Code-behind file for the login page for authors application (part 2 of 5).



Chapter 20 ASP .NET, Web Forms and Web Controls 1009

70
71          ' close database
72          Finally
73            ' close database connection
74             OleDbConnection1.Close()
75          End Try
76       End If
77 End Sub ' Page_Init
78
79  ' validate user name and password
80 Private Sub invalidPasswordValidator_ServerValidate( _
81       ByVal source As Object, _
82       ByVal args As ServerValidateEventArgs) _
83       Handles invalidPasswordValidator.ServerValidate
84
85       ' open database and check password
86       Try
87          ' open database connection
88          OleDbConnection1.Open()
89
90          ' set select command to find password of username 
91          ' from drop-down list
92          OleDbDataAdapter1.SelectCommand.CommandText = _
93             "SELECT * FROM Users WHERE loginID = '" & _
94             Request.Form("nameList").ToString() & "'"
95
96          dataReader = _
97             OleDbDataAdapter1.SelectCommand.ExecuteReader()
98
99          dataReader.Read()
100
101          ' if password user provided is correct create
102          ' authentication ticket for user and redirect
103          ' user to Authors.aspx; otherwise set IsValid to false
104          If args.Value = dataReader.GetString(1) Then
105             FormsAuthentication.SetAuthCookie( _
106                Request.Form("namelist"), False)
107             Session.Add("name", _
108                    Request.Form("nameList").ToString())
109             Response.Redirect("Authors.aspx")
110          Else
111             args.IsValid = False
112
113          End If
114
115       ' display error if unable to open database
116       Catch exception As OleDbException
117          Response.Write("Unable to open database!")
118
119     ' close database
120       Finally
121          ' close database connection
122          OleDbConnection1.Close()

Fig. 20.39 Code-behind file for the login page for authors application (part 3 of 5).



1010 ASP .NET, Web Forms and Web Controls Chapter 20

123       End Try
124 End Sub ' InvalidPasswordValidator_ServerValidate
125 End Class ' Login

Fig. 20.39 Code-behind file for the login page for authors application (part 4 of 5).



Chapter 20 ASP .NET, Web Forms and Web Controls 1011

In Fig. 20.39, the Page_Init event handler is defined in lines 42–77. If the page is
being loaded for the first time, lines 50–76 execute. The database code is contained within
a Try/Catch/Finally block (lines 53–74) to handle any database connectivity excep-
tions and to ensure that the database is closed. Lines 58–59 execute the SQL query that
Visual Studio generates at design time—this query simply retrieves all the rows from the
Authors table of the Books database. Lines 63–65 iterate through the rows, placing the
item in the first column of each row (the author name) into nameList.

The reader might notice that we use an OleDbDataReader, an object that reads data
from a database. We did not use an object of this type before, because the OleDbDataR-
eader is not as flexible as other readers we discussed in Chapter 19. The object can read
data, but cannot update it. However, we use OleDbDataReader in this example because
we need only read the authors’ names; this object provides a fast and simple way to do so.

In this example, we use a CustomValidator to validate the user’s password. We
define a handler (lines 80–124) for the ServerValidate event of the CustomVali-
dator, which executes every time the user clicks Submit. This event handler contains
a ServerValidateEventArgs parameter called args. The object referenced by
args has two important properties: Value, which contains the value of the control that
the CustomValidator is validating, and IsValid, which contains a Boolean rep-
resenting the validation result. Once the event handler completes, if IsValid is True,
the HTML form is submitted to the Web server; if IsValid is False, the Custom-
Validator’s ErrorMessage is displayed, and the HTML form is not submitted to
the Web server.

To create and attach an event handler for the ServerValidate event, double-click
CustomValidator. The definition for this event handler (lines 80–124) tests the
selected user name against the password provided by the user. If they match, the user is

Fig. 20.39 Code-behind file for the login page for authors application (part 5 of 5).



1012 ASP .NET, Web Forms and Web Controls Chapter 20

authenticated (i.e., the user’s identity is confirmed), and the browser is redirected to
Authors.aspx (Fig. 20.40). Lines 104–110 authenticate the user and provide access to
Authors.aspx by calling method SetAuthCookie of class FormsAuthentica-
tion. This class is in the System.Web.Security namespace (line 15). Method Set-
AuthCookie writes to the client an encrypted cookie containing information necessary
to authenticate the user. Encrypted data is data translated into a code that only the sender
and receiver can understand thereby keeping it private. Method SetAuthCookie takes
two arguments: A String containing the user name, and a Boolean value that specifies
whether this cookie should persist (i.e., remain on the client’s computer) beyond the current
session. Because we want the application to authenticate the user only for the current ses-
sion, we set this value to False. After the user is authenticated, the user’s Web browser is
redirected to Authors.aspx. If the database query did not verify the user’s identity,
property IsValid of the CustomValidator is set to False; the ErrorMessage is
displayed, and the user can attempt to log in again.

This example uses a technique known as forms authentication, which protects a page
so that only authenticated users can access it. Authentication is a crucial tool for sites that
allow only members to enter the site or a portion of the site. Authentication and denial of
access to unauthorized users involves the placement of several lines in Web.config (a
file used for application configuration). This XML file is a part of every ASP .NET appli-
cation created in Visual Studio. If readers open this file, they will see the default authenti-
cation element, which is only one line and appears as follows:

<authentication mode="None" />

To deny access to unauthorized users, replace this line with

<authentication mode="Forms">
<forms name="DatabaseCookie"

      loginUrl="Login.aspx" protection="Encryption" />
</authentication>

<authorization>
  <deny users="?" />

</authorization>

This replacement alters the value of the mode attribute in the authentication ele-
ment from "None" to "Forms", specifying that we want to use forms authentication. The
forms element defines the way in which users are validated. Inside the forms element,
name attribute sets the name of the cookie that is created on the user’s machine—in this
case, we named it DatabaseCookie. Attribute loginUrl specifies the login page for
our application; users who attempt to access any page in our application without logging in
are redirected to this page. Attribute protection specifies whether the value of the
cookie is encrypted. In this case, we set the value of protection to "Encryption" to
encrypt the cookie’s data.

Element authorization indicates the type of access that specific users can have.
In this application, we want to allow authenticated users access to all pages on the site. We
place the deny element inside the authorization element to specify to what users we
wish to deny access. When we set this attribute’s value to "?", all anonymous (i.e., unau-
thenticated) users are denied access to the site.



Chapter 20 ASP .NET, Web Forms and Web Controls 1013

A user who has been authenticated will be redirected to Authors.aspx
(Fig. 20.40). This page provides a list of authors, from which the user can choose one. After
a choice has been made, a table is displayed with information about books that author has
written.

1 <%-- Fig. 20.40: Authors.aspx                  --%>
2 <%-- Displays book titles based on author name --%>
3 <%-- from database.                            --%>
4
5 <%@ Page Language="vb" AutoEventWireup="false"
6    Codebehind="Authors.aspx.vb"
7    Inherits="Database.Authors"%>
8
9 <%@ Register TagPrefix="Header" TagName="ImageHeader"

10    Src="ImageHeader.ascx" %>
11
12 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
13 <HTML>
14    <HEAD>
15       <title>Authors</title>
16       <meta name="GENERATOR"
17          content="Microsoft Visual Studio.NET 7.0">
18       <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
19       <meta name="vs_defaultClientScript" content="JavaScript">
20       <meta name="vs_targetSchema"
21          content="http://schemas.microsoft.com/intellisense/ie5">
22    </HEAD>
23    <body MS_POSITIONING="GridLayout" bgColor="#ffebff">
24       <form id="Form1" method="post" runat="server">
25
26          <asp:DataGrid id="dataGrid" style="Z-INDEX: 106; 
27             LEFT: 15px; POSITION: absolute; TOP: 131px"
28             runat="server" ForeColor="Black" AllowPaging="True" 
29             DataSource="<%# dataView %>" AllowSorting="True"
30             Visible="False" Width="700px" Height="23px">
31
32             <EditItemStyle BackColor="White"></EditItemStyle>
33             <AlternatingItemStyle ForeColor="Black"
34                BackColor="LightGoldenrodYellow">
35             </AlternatingItemStyle>
36             <ItemStyle BackColor="White"></ItemStyle>
37             <HeaderStyle BackColor="LightGreen"></HeaderStyle>
38             <PagerStyle NextPageText="Next &amp;gt;" 
39                PrevPageText="&amp;lt; Previous">
40             </PagerStyle>
41          </asp:DataGrid>
42
43          <asp:Button id="Button1" style="Z-INDEX: 104;
44             LEFT: 29px; POSITION: absolute; TOP: 188px"
45             runat="server" Width="78px" Text="Select">
46          </asp:Button>

Fig. 20.40 ASPX file that allows a user to select an author from a drop-down list (part 1 
of 2).



1014 ASP .NET, Web Forms and Web Controls Chapter 20

The ASPX file for this page creates a number of controls: A DropDownList, three
Labels, a Button and a DataGrid. Notice that some of the controls—one of the
Labels and the DataGrid—have their Visible properties set to false (line 30 and
line 61). This means that the controls are not visible when the page first loads, because there
is no author information to display because the user has not yet chosen an author. Users
select an author from the DropDownList and click Submit, causing a postback to occur.
When the postback is handled, the DataGrid is filled and displayed. Figure 20.41 lists
the code-behind file for this ASPX file.

Method Page_Load (lines 34–106) contains most of the code for this example. The
condition (line 38) determines whether the page was loaded as a result of a postback event.
If it is not a postback, line 41 adds a session item to the Session object to help us sort the
data. Line 45 then opens the database connection, and lines 48–49 execute the database
command, which retrieves all the authors’ first and last names from the database. Lines 53–
56 iterate through the result set and add the authors’ first and last names to nameList.

47
48          <asp:DropDownList id="nameList" style="Z-INDEX: 103;
49             LEFT: 90px; POSITION: absolute; TOP: 157px"
50             runat="server" Width="158px" Height="22px">
51          </asp:DropDownList>
52
53          <asp:Label id="Label2" style="Z-INDEX: 102; 
54             LEFT: 28px; POSITION: absolute; TOP: 157px"
55             runat="server" Width="48px" Height="22px">
56             Authors:
57          </asp:Label>
58
59          <asp:Label id="Label3" style="Z-INDEX: 105;
60             LEFT: 19px; POSITION: absolute; TOP: 127px"
61             runat="server" Visible="False" Width="210px">
62             You chose 
63          </asp:Label>
64
65          <Header:ImageHeader id="ImageHeader1" runat="server">
66          </Header:ImageHeader>
67
68       </form>
69    </body>
70 </HTML>

1 ' Fig. 20.41: Authors.aspx.cs
2 ' The code-behind file for a page that allows a user to choose 
3 ' an author and then view that author's books.
4
5 Imports System
6 Imports System.Data.OleDb

Fig. 20.41 Database information being inputted into a DataGrid (part 1 of 5).

Fig. 20.40 ASPX file that allows a user to select an author from a drop-down list (part 2 
of 2).



Chapter 20 ASP .NET, Web Forms and Web Controls 1015

7 Imports System.Collections
8 Imports System.ComponentModel
9 Imports System.Data

10 Imports System.Drawing
11 Imports System.Web
12 Imports System.Web.SessionState
13 Imports System.Web.UI
14 Imports System.Web.UI.WebControls
15 Imports System.Web.UI.HtmlControls
16
17 Public Class Authors
18 Inherits System.Web.UI.Page
19
20 Protected WithEvents Label3 As Label
21 Protected WithEvents Label2 As Label
22 Protected WithEvents nameList As DropDownList
23 Protected WithEvents Button1 As Button
24 Protected WithEvents dataGrid As dataGrid
25 Protected WithEvents OleDbDataAdapter1 As OleDbDataAdapter
26 Protected WithEvents OleDbSelectCommand1 As OleDbCommand
27 Protected WithEvents OleDbConnection1 As OleDbConnection
28 Protected WithEvents dataView As DataView
29 Protected dataTable As New DataTable()
30 Protected dataReader As OleDbDataReader
31
32    ' Visual Studio .NET generated code
33
34 Private Sub Page_Load(ByVal sender As System.Object, _
35       ByVal e As System.EventArgs) Handles MyBase.Load
36
37       ' test if the page was loaded due to a post back
38       If Not IsPostBack Then
39
40          ' add data sort string
41          Session.Add("sortString", "Title")
42
43          ' open database connection
44          Try
45             OleDbConnection1.Open()
46
47             ' execute query
48             dataReader = _
49                OleDbDataAdapter1.SelectCommand.ExecuteReader()
50
51             ' while we can read a row from the result of the 
52             ' query, add the first item to the dropdown list
53             While (dataReader.Read())
54                nameList.Items.Add(dataReader.GetString(0) & _
55                   " " & dataReader.GetString(1))
56             End While
57

Fig. 20.41 Database information being inputted into a DataGrid (part 2 of 5).



1016 ASP .NET, Web Forms and Web Controls Chapter 20

58          ' if database cannot be found
59          Catch exception As System.Data.OleDb.OleDbException
60             Label3.Text = "Server Error: Unable to load database!"
61
62          Finally ' close database connection 
63             OleDbConnection1.Close()
64          End Try
65       Else
66          ' set some controls to be invisible
67          nameList.Visible = False
68          Button1.Visible = False
69          Label2.Visible = False
70
71          ' set other controls to be visible
72          Label3.Visible = True
73          dataGrid.Visible = True
74
75          ' add author name to label
76          Label3.Text = "You Chose " & nameList.SelectedItem.Text _
77             & "."
78          Dim authorID As Integer = nameList.SelectedIndex + 1
79
80          Try
81             ' open database connection
82             OleDbConnection1.Open()
83
84             ' grab the title, ISBN and publisher name for each book
85             OleDbDataAdapter1.SelectCommand.CommandText = _
86                "SELECT Titles.Title, Titles.ISBN, " & _
87                "Publishers.PublisherName FROM AuthorISBN " & _
88                "INNER JOIN Titles ON AuthorISBN.ISBN = " & _
89                "Titles.ISBN, Publishers WHERE " & _
90                "(AuthorISBN.AuthorID = " & authorID & ")"
91
92             ' fill dataset with results
93             OleDbDataAdapter1.Fill(dataTable)
94             dataView = New DataView(dataTable)
95             dataView.Sort = Session("sortString")
96             dataGrid.DataBind() ' bind grid to data source
97
98          ' if database cannot be found
99          Catch exception As System.Data.OleDb.OleDbException
100
101             Label3.Text = "Server Error: Unable to load database!"
102          Finally ' close database connection 
103             OleDbConnection1.Close()
104          End Try
105       End If
106 End Sub ' Page_Load
107

Fig. 20.41 Database information being inputted into a DataGrid (part 3 of 5).



Chapter 20 ASP .NET, Web Forms and Web Controls 1017

108    ' handles DataGrid page changed event
109 Private Sub OnNewPage(ByVal sender As Object, _
110       ByVal e As DataGridPageChangedEventArgs) _
111       Handles dataGrid.PageIndexChanged
112
113    ' set current page to next page
114       dataGrid.CurrentPageIndex = e.NewPageIndex
115
116       dataView.Sort = Session("sortString")
117       dataGrid.DataBind() ' rebind data
118
119 End Sub ' OnNewPage
120
121  ' handles Sort event
122 Private Sub dataGrid_SortCommand(ByVal source As Object, _
123       ByVal e As DataGridSortCommandEventArgs) _
124       Handles dataGrid.SortCommand
125
126   ' get table to sort
127       Session.Add("sortString", e.SortExpression.ToString())
128       dataView.Sort = Session("sortString") ' sort
129       dataGrid.DataBind() ' rebind data
130
131 End Sub ' dataGrid_SortCommand
132 End Class ' Authors

Fig. 20.41 Database information being inputted into a DataGrid (part 4 of 5).



1018 ASP .NET, Web Forms and Web Controls Chapter 20

Once the user has selected an author and submitted the form, the condition (line 38) is
False, which causes lines 65–105 to execute. The initial set of controls displayed to the
user (i.e., the label, drop-down list and button) are hidden in the postback. However, the
label and the data grid that previously were invisible are made visible. Line 76 adds the
selected author’s name to the label control. 

Lines 85–90 create a database query to retrieve the title, ISBN and publisher name for
each of the author’s books and assign them to the command’s CommandText property.
Method Fill (line 93) populates its DataTable argument with the rows returned by
our query on 85–90. The DataView class’s Sort property sorts its data by the String
assigned to it (this value is stored in the Session object with key value sortString).
This value is set initially to "Title" on line 41, indicating that rows in our table are to
be sorted by title, in ascending order. Ascending order is the default. If the session value
were "TitleDESC", the rows in our table would also be sorted by title, but in
descending order.

Method OnNewPage (lines 109–119) handles the DataGrid’s PageIndex-
Changed event, which is fired when the user clicks the Next link at the bottom of the
DataGrid control to display the next page of data. To enable paging, the AllowPaging
property of the DataGrid is set to True in the Web-Form designer. DataGrid’s
PageSize property determines the number of entries per page, and its PagerStyle

Fig. 20.41 Database information being inputted into a DataGrid (part 5 of 5).



Chapter 20 ASP .NET, Web Forms and Web Controls 1019

property customizes the display of our DataGrid during paging. This DataGrid control
displays ten books per page. After the DataGrid’s CurrentPageIndex property is
assigned the event argument NewPageIndex (line 114), we sort the data and rebind it, so
that the next page of data can be displayed (lines 116–117). This technique for displaying
data makes the site more readable and enables pages to load more quickly (because less
data is displayed at one time).

Method dataGrid_SortCommand (lines 122–131) handles the Sort event of the
DataGrid control. When the AllowSorting property in the Web-Form designer is
enabled, the DataGrid displays all table headings as LinkButton controls (i.e., but-
tons that act as hyperlinks). The SortCommand event is raised when the user clicks a
column header name. On line 127, we use the SortExpression property of e. This
property indicates the column by which the data is sorted. This value is added to the current
Session object’s sortString key, which is then assigned to our DataView’s Sort
property on line 128. On line 129, we rebind the sorted data to our DataGrid.

20.9 Tracing
ASP .NET provides a tracing feature for the debugging of Web-based applications. Tracing
is the process of placing statements throughout the code-behind file that output information
during execution about the program’s status.

In Windows applications, message boxes can be used as an aid in debugging; in Web
Forms, a programmer might use Response.Write for this purpose. However, the
employment of Response.Write for tracing in ASP .NET has several drawbacks.

One of these drawbacks is that, once an application is executing correctly, the pro-
grammer must remove all Response.Write statements from the program. This is time-
consuming and can introduce errors, because the programmer must differentiate between
statements that are part of the program’s logic and statements that are used for testing pur-
poses. ASP .NET provides the programmer with two forms of built-in tracing: page tracing
and application tracing.

Page tracing involves the tracing of the actions of an individual page. Setting the
Trace property of the page to True in the Properties window enables tracing for that
page. Instead of calling the Response object’s Write method, we call the Trace
object’s Write method. Object Trace is an instance of the TraceContext class and
provides tracing capabilities. In addition to method Write, the Trace object includes
method Warn, which prints warning statements in red. When tracing is disabled by setting
the Trace property to False, Trace statements are not executed.

Figure 20.42 depicts a simple page that displays a sentence (we do not show the code
for this page, as it is quite simplistic). The Page_Load event for this page includes the
statement Trace.Warn( "Using warnings" ). Notice that "Using warnings" is
not displayed on the page; we will see shortly when and where trace statements are dis-
played.

Figure 20.43 displays the same page when the Trace property is set to True. The top
of the figure depicts the original page, and the tracing information generated by ASP .NET
appears below. The Request Details section provides information about the request. The
Trace Information section contains the information output by calling the Write and
Warn methods. The second row contains the message, which displays in red.  



1020 ASP .NET, Web Forms and Web Controls Chapter 20

The Control Tree section lists all the controls contained on the page. Several addi-
tional tables also appear in this page. The Cookies Collection section contains informa-
tion about the program’s cookies, the Headers Collection section catalogs the HTTP
headers for the page and the Server Variables section provides a list of server variables
(i.e., information sent by the browser with each request) and their values.

Tracing for the entire project is also available. To turn on application-level tracing,
open the Web.config file for the project. Set the Enabled property to True in the
trace element. To view the project’s tracing information, navigate the browser to the

Fig. 20.42 ASPX page with tracing turned off.

Fig. 20.43 Tracing enabled on a page.

page
contents



Chapter 20 ASP .NET, Web Forms and Web Controls 1021

trace.axd file in the project folder. This file does not actually exist on the hard drive; it
is generated when the user requests trace.axd. Figure 20.44 shows the Web page that
is generated when the programmer views the trace.axd file.

This page lists all the requests made to this application and the times when the pages
were accessed. The clicking of one of the View Details links directs the browser to a page
similar to the one portrayed in Fig. 20.43.

20.10 Internet and World Wide Web Resources
www.asp.net

The Microsoft site overviews ASP .NET and provides a link for downloading ASP .NET. This site 
includes the IBuy Spy e-commerce storefront example that uses ASP .NET. Links to the Amazon and 
Barnes & Noble Web sites where the user can purchase books also are included.

www.asp101.com/aspplus
This site overviews ASP .NET, and includes articles, code examples and links to ASP .NET resources.
The code samples demonstrate the use of cookies in an ASP .NET application and show how to es-
tablish a connection to a database—two key capabilities of multi-tier applications.

www.411asp.net
This resource site provides programmers with ASP .NET tutorials and code samples. The community
pages allows programmers to ask questions, answer questions and post messages.

www.aspfree.com
This site provides free ASP .NET demos and source code. The site also provides a list of articles for
various topics and a frequently asked questions (FAQs) page.

www.aspng.com
This site offers tutorials, links and recommendations for books on ASP.NET. Links to different mail-
ing lists are also provides. These links are organized by topic. This site also contains articles related
to many ASP.NET topics, such as “Performance Tips and Tricks.”

Fig. 20.44 Tracing information for a project.



1022 ASP .NET, Web Forms and Web Controls Chapter 20

www.aspnetfaq.com
This site provides answers to frequently asked questions (FAQs) about ASP.NET.

www.123aspx.com
This site offers a directory of links to ASP .NET resources. The site also includes daily and weekly
newsletters.

SUMMARY
• Microsoft’s ASP .NET technology is used for Web-based application development.

• Web-based applications are used to create Web content for Web browsers.

• The Web-Form file represents the Web page that is sent to the client browser.

• Web-Form files have the file extension .aspx and contain the GUI of the Web page currently
being developed.

• Programmers customize Web Forms by adding Web controls, which include labels, text boxes,
images and buttons.

• Every ASPX file created in Visual Studio has a corresponding class written in a .NET-compliant
language. The file that contains this class is called the code-behind file and provides the ASPX
file’s programmatic implementation.

• HTTP specifies a set of methods and headers that allow clients and servers to interact and ex-
change information in a uniform and predictable way.

• In its simplest form, a Web page is nothing more than a HTML document. This document is a plain
text file containing markings (markup or tags) that describe to a Web browser how to display and
format the document’s information.

• Any HTML document available for viewing over the Web has a corresponding Uniform Resource
Locator (URL), which is an address indicating the location of a resource.

• Computers that run Web-server software provide resources for download over the Internet.

• The hostname is the name of the computer on which the resource resides. This computer usually
is referred to as the host, because it houses and maintains resources.

• An IP address identifies a server in a manner similar to that by which a telephone number uniquely
defines a particular phone line.

• MIME is an Internet standard that specifies the way in which certain data must be formatted so
that programs can interpret the data correctly.

• Web-based applications are multi-tier applications, which sometimes are referred to as n-tier ap-
plications. Multi-tier applications divide functionality into separate tiers (i.e., logical groupings of
functionality).

• The information tier maintains data pertaining to the application.

• The middle tier implements business logic, controller logic and presentation logic to control inter-
actions between application clients and application data.

• The client tier, or top tier, is the application’s user interface, which is typically a Web browser. 

• Visual Studio generates the markup in our ASPX page when controls are dragged onto the Web
Form.

• A <%@ Page…%> directive specifies information needed by the CLR to process this file.

• The Inherits attribute specifies the class in the code-behind file from which this ASP .NET
class inherits.

• When a control’s runat attribute is set to "server", we are indicating that this control is exe-
cuted on a server, generating an HTML equivalent.



Chapter 20 ASP .NET, Web Forms and Web Controls 1023

• The asp: tag prefix in the declaration of a control indicates that the control is an ASP .NET Web
control.

• Each Web control maps to a corresponding HTML element.

• The same Web control can map to different HTML elements, depending on the client browser and
the Web control’s property settings.

• Namespace System.Web contains classes that manage client requests and server responses.

• Namespace System.Web.UI contains classes for the creation of Web-based applications and
controls.

• Class Page defines a standard Web page, providing event handlers and objects necessary for cre-
ating Web-based applications. All code-behind classes for ASPX forms inherit from class Page.

• Class Control is the base class that provides common functionality for all Web controls.

• Namespace System.Web.UI.WebControls contains Web controls employed in the design
of the page’s user interface.

• Method Page_Init is called when the Init event is raised. This event indicates that the page
is ready to be initialized. 

• The Load event is raised when the page loads. (This event occurs after all the Web controls on
the page have been initialized and loaded.)

• When a client requests an ASPX file, a class is created behind the scenes that contains both the
visual aspect of our page (defined in the ASPX file) and the logic of our page (defined in the code-
behind file). This new class inherits from Page. The first time that our Web page is requested, this
class will be compiled, and an instance will be created. This instance represents our page—it will
create the HTML that is sent to the client. The assembly created from our compiled class will be
placed in the project’s bin directory.

• Changes to the Web application can be detected by the runtime, and the project is recompiled to
reflect the altered content. 

• The Page_Load event handler is usually used to execute any processing that is necessary to re-
store data from previous requests. 

• After Page_Load has finished executing, the page processes any events raised by the page’s con-
trols.

• When a Web Form object is ready for garbage collection, an Unload event is raised. Event han-
dler Page_Unload is inherited from class Page and contains any code that releases resources.

• A form is a mechanism for collecting user information and sending it to the Web server.

• HTML forms can contain visual and nonvisual components. Visual components include clickable
buttons and other graphical user interface components with which users interact. 

• Nonvisual components in an HTML form, called hidden inputs, store any data that the document
author specifies.

• The name localhost indicates that the client and server reside on the same machine. If the Web
server were located on a different machine, localhost would be replaced with the appropriate
IP address or hostname.

• The Web-Form designer can display HTML mode, allowing the programmer to view the markup
that represents the user interface of this page. The Design mode allows the programmer to view
the page as it will look and modify it using the drag-and-drop technique.

• The PageLayout property determines how controls are arranged on the form. 

• By default, property PageLayout is set to GridLayout, which means that all controls remain
exactly where they are dropped on the Web Form. This is called absolute positioning. 



1024 ASP .NET, Web Forms and Web Controls Chapter 20

• Alternatively, the developer can set the Web Form’s PageLayout property to FlowLayout,
which causes controls to be placed sequentially on the Web Form. This is called relative position-
ing, because the controls’ positions are relative to the Web Form’s upper-left corner.

• Image controls insert an image into a Web page. The ImageUrl property specifies the file lo-
cation of the image to display.

• A TextBox control allows the programmer to read and display text. 

• A RadioButtonList control provides a series of radio buttons for the user.

• A DropDownList control provides a list of options to the user.

• The HyperLink control adds a hyperlink to a Web page. The NavigateUrl property of this
control specifies the resource that is requested when a user clicks the hyperlink.

• ASP .NET provides the AdRotator Web control for displaying advertisements. One advertise-
ment is chosen at random from the advertisements stored in an XML file, specified by property
AdvertisementFile.

• The advertisement file used for an AdRotator control contains Ad elements, each of which pro-
vides information about a different advertisement.

• Element ImageUrl in an advertisement file specifies the path (location) of the advertisement’s
image, and element NavigateUrl specifies the URL for the Web page that loads when a user
clicks the advertisement.

• The AlternateText element contains text that displays in place of the image when the browser
cannot locate or render the image for some reason.

• Element Impressions specifies how often an image appears, relative to the other images.

• A validation control checks whether the data in another Web control is in the proper format. 

• When the HTML for our page is created, a validator is converted into ECMAScript.

• ECMAScript is a scripting language that facilitates a disciplined approach to designing computer
programs that enhance the functionality and appearance of Web pages.

• A RegularExpressionValidator matches a Web control’s content against a regular ex-
pression. The regular expression that validates the input is assigned to property Validation-
Expression.

• A validator’s ControlToValidate property indicates which control will be validated.

• A RequiredFieldValidator is used to ensure that a control receives input from the user
when the form is submitted.

• Web programmers using ASP .NET often design their Web pages so that, when submitted, the cur-
rent page is requested again. This event is known as a postback.

• The Page’s IsPostBack property can be used to determine whether the page is being loaded
as a result of a postback.

• The EnableViewState attribute determines whether a Web control’s state persists (i.e., is re-
tained) when a postback occurs. 

• Personalization makes it possible for e-businesses to communicate effectively with their custom-
ers and also improves users’ ability to locate desired products and services. 

• To provide personalized services to consumers, e-businesses must be able to recognize clients
when they request information from a site. 

• The request/response system on which the Web operates is facilitated by HTTP. Unfortunately,
HTTP is a stateless protocol—it does not support persistent connections that would enable Web
servers to maintain state information regarding particular clients. 



Chapter 20 ASP .NET, Web Forms and Web Controls 1025

• A session represents a unique client on the Internet. If the client leaves a site and then returns later,
the client should still be recognized as the same user. To help the server distinguish among clients,
each client must identify itself to the server.

• The tracking of individual clients is known as session tracking.

• A cookie is a text file stored by a Web site on an individual’s computer that allows the site to track
the actions of the visitor.

• When a Web Form receives a request, the header includes such information as the request type and
any cookies that have been sent previously from the server to be stored on the client machine. 

• When the server formulates its response, the header information includes any cookies the server
wants to store on the client computer and other information, such as the MIME type of the re-
sponse.

• The expiration date of a cookie can be set using in cookie’s Expires property. Cookies are de-
leted when they expire.

• If the programmer of a cookie does not set an expiration date, the Web browser maintains the cook-
ie for the duration of the browsing session.

• A cookie object is of type HttpCookie.

• Cookies are sent and received in the form of a collection of cookies, of type HttpCookieCol-
lection.

• Cookies can be read by an application only if they were created in the domain in which the appli-
cation is running—a Web server can never access cookies created outside the domain associated
with that server.

• The Name and Value properties of class HttpCookie can be used to retrieve the key and value
of the key-value pair in a cookie.

• Visual Basic provides session-tracking capabilities in the Framework Class Library’s HttpSes-
sionState class.

• Every Web Form includes an HttpSessionState object, which is accessible through property
Session of class Page.

• When the Web page is requested, an HttpSessionState object is created and is assigned to
the Page’s Session property. 

• Page property Session is known as the Session object. 

• Session object key-value pairs are often referred to as session items. 

• A Web Form should not use shared instance variables to maintain client state information, because
clients accessing that Web Form in parallel might overwrite the shared instance variables. 

• Web Forms should maintain client state information in HttpSessionState objects, because
such objects are specific to each client.

• Like a cookie, an HttpSessionState object can store name-value pairs. These session items
are placed into an HttpSessionState object via a call to method Add.

• HttpSessionState objects can store any type of object (not just Strings) as attribute val-
ues. This provides Visual Basic programmers with increased flexibility in determining the type of
state information they wish to maintain for their clients. 

• If the application calls method Add to add an attribute that has the same name as an attribute pre-
viously stored in a session, the object associated with that attribute is replaced.

• Property SessionID contains the session’s unique ID. The first time a client connects to the Web
server, a unique session ID is created for that client. When the client makes additional requests,
the client’s session ID is compared with the session IDs stored in the Web server’s memory. 



1026 ASP .NET, Web Forms and Web Controls Chapter 20

• Property Timeout specifies the maximum amount of time that an HttpSessionState object
can be inactive before it is discarded. 

• Session object’s Count property provides the number of session items contained in a Ses-
sion object.

• A value in a key-value pair is retrieved from the Session object by indexing the Session ob-
ject with the key name, using the same process by which a value can be retrieved from a hash table.

• The Keys property of class HttpSessionState returns a collection containing all the keys in
the session. 

• The colors for a DataGrid can be specified through the Auto Format... link that is located near
the bottom of the Properties window when we are looking at the properties of our DataGrid.
A dialog will open with several choices.

• The Request object’s PhysicalApplicationPath property retrieves the path of the ap-
plication’s root directory.

• Columns can be added to a DataTable object via the Columns collection’s Add method.

• Information can be added to a DataTable via method LoadDataRow.

• Method DataBind is called to refresh the information in a DataView.

• Programmers can define their own Web control, known as a Web user control.

• Web user controls usually consist of two pages: An ASCX file, and a code-behind file.

• A CustomValidator allows us to specify the circumstances under which a field is valid. We
define these circumstances in the event handler for the ServerValidate event of the Cus-
tomValidator.

• An OleDbDataReader is an object that can be used to read data from a database.

• When a user’s identity is confirmed, we say that the user has been authenticated.

• Method SetAuthCookie writes to the client an encrypted cookie containing information nec-
essary to authenticate the user.

• Encrypted data is data translated into a code that only the sender and receiver can understand.

• A technique known as forms authentication protects a page so that only authenticated users can
access it. 

• Authentication and denial of access to unauthorized users involves the placement of several lines
in Web.config (a file used for application configuration). This file is a part of every ASP .NET
application created in Visual Studio.

• We can modify this file so that a user who is not authenticated will not be allowed to view any of the
pages in the application. One who attempts to view a later page will be forced back to the login page.

• The DataView class’s Sort property sorts its data by the String assigned it.

• To enable paging, the AllowPaging property of a DataGrid is set to True.

• When the AllowSorting property in the Web Form designer is enabled, a DataGrid displays
all table headings as LinkButton controls (i.e., buttons that act as hyperlinks). The SortCom-
mand event is raised when the user clicks a column header name. 

• ASP .NET provides a tracing feature for the debugging of Web-based applications. Tracing is the
process of placing statements throughout the code-behind file that output information during exe-
cution about the program’s status.

• ASP .NET provides the programmer with two forms of built-in tracing: Page tracing, and applica-
tion tracing.

• Page tracing involves the tracing of the actions of an individual page. Setting the Trace property
of the page to True in the Properties window enables tracing for that page.



Chapter 20 ASP .NET, Web Forms and Web Controls 1027

• Object Trace is an instance of the TraceContext class and provides tracing capabilities. 

• In addition to method Write, the Trace object includes method Warn, which prints warning
statements in red. 

• When tracing is disabled by setting the Trace property to False, Trace statements are not ex-
ecuted.

• The Request Details section that appears when tracing information is displayed in an ASPX
page provides information about the request. 

• The Trace Information section contains the information output by calling the Write and Warn
methods.

• The Control Tree section lists all the controls contained on the page.

• The Cookies Collection section contains information about the program’s cookies, the Head-
ers Collection section catalogs the HTTP headers for the page and the Server Variables sec-
tion provides a list of server variables and their values.

• Tracing for an entire project is also available. To turn on application-level tracing, open file
Web.config for the project. Set the Enabled property to true in the trace element. To view
the project’s tracing information, navigate the browser to the trace.axd file in the project folder.

TERMINOLOGY
%> tag enabling application tracing 
<% tag FlowLayout
Ad attribute in XML file forms authentication 
AdRotator class forms element in Web.config
AdRotatorInformation.xml FormsAuthentication class 
AdvertisementFile property of class  
   AdRotator

GridLayout
host 

AlternateText attribute in XML file hostname 
application tracing HTML 
ASCX file HTML tag 
ASP .NET HTTP 
ASP .NET Web Application project HTTP header 
ASPX file HTTP method 
authentication element in Web.config HTTP request type 
authorization element in Web.config HTTP transaction 
AutoEventWireup attribute of 
   ASP .NET page

HttpRequest class 
HttpResponse class 

HTTP response HttpSessionState class 
code-behind file hyperlink 
CompareValidator class HyperLink class 
ControlToValidate property of class  
   RegularExpressionValidator

hypertext 
IIS Web server 

cookie ImageUrl attribute in XML file 
CustomValidator class Impressions attribute in XML file 
deny element in Web.config Inherits attribute of ASP .NET page 
DNS Init event of class Page
Document IP address 
domain-name server IsValid property of class  

   ServerValidateEventArgsDropDownList class 
dynamic Web content LinkButton class 



1028 ASP .NET, Web Forms and Web Controls Chapter 20

SELF-REVIEW EXERCISES
20.1  State whether each of the following is true or false. If false, explain why.

a) FlowLayout is the default setting of the PageLayout property. 
b) It is possible to enable tracing in an individual page or in an entire application in ASP .NET.
c) Web Form file names typically end in .aspx.
d) If no expiration data is set for a cookie, that cookie will be destroyed at the end of the

session.
e) A maximum of one validator control can be placed on a Web Form.
f) The TextBox Web control is not the same TextBox Windows control.
g) An AdRotator always displays all ads with equal frequency.
h) The file that contains image information for an AdRotator can be in a format other

than XML.
i) HttpResponse method Redirect can redirect the browser only to an ASP .NET

page within the same folder.

LiteralControl class StreamReader class 
Load event of class Page StreamWriter class 
loginUrl attribute of forms element in System.Web.Security namespace 
   Web.config System.Web.UI
MIME type System.Web.UI.WebControls namespace 
mode attribute of forms element in 
   Web.config

System.Windows.Forms namespace 
tag 

name attribute of forms element in
   Web.config

Text property of class HyperLink
TextBox class of namespace  
   System.Web.UI.WebControlsNavigateUrl attribute in XML file 

NavigateUrl property of class HyperLink title HTML element 
.NET Framework Toolbox
Page class trace element in Web.config
page tracing trace property of an ASP .NET page 
pageLayout property of ASP .NET page trace property of class Page
path to a resource trace.axd file 
PhysicalApplicationPath property of 
   class HttpRequest

TraceContext class 
tracing 

postback Uniform Resource Locator (URL)
processing directives in ASP .NET page user control 
protection attribute in forms element in 
   Web.config

users attribute of deny element in
   Web.config

RegularExpressionValidator class validating information 
request method ValidationExpression property of class  

   RegularExpressionValidatorRequest property of class Page
RequiredFieldValidator class validator 
Response property of class Page Value property of class  

   ServerValidateEventArgsServerValidate event of class  
   CustomValidator viewing a page with tracing enabled 
ServerValidateEventArgs class viewing the tracing information for a project 
Session property of class Page virtual directory 
session variable Warn method of class TraceContext
sessionState element of Web.config Web Form 
SetAuthCookie method of class  
   FormsAuthentication

Web.config file 



Chapter 20 ASP .NET, Web Forms and Web Controls 1029

j) Changes made to properties of controls in the Properties window are reflected in the
InitializeComponent method in the code-behind file.

20.2 Fill in the blanks in each of the following statements:
a) Web applications contain three basic tiers: , , and .
b) A control that validates the data format in another control is called a .
c) A  occurs when a page requests itself.
d) Every ASP .NET page inherits from class  .
e) When a page loads, the  event occurs first, followed by the  event.
f) The  file contains the functionality for an ASP.NET page.
g) Method  of the  object of class Page outputs HTML to a client.
h) AdRotator’s  property points to the file containing information in

 format about all the ads that will be displayed.
i) The  property in the Web Form designer organizes controls either by lining

them up or by placing them on a grid.
j) Code generated by Visual Studio during the design of an ASP .NET page is placed in the

 method.

ANSWERS TO SELF-REVIEW EXERCISES
20.1 a) False. GridLayout is the default setting of the PageLayout property. b) True. c) True.
d) True. e) False. An unlimited number of validation controls can be placed on one control. f) True.
g) False. The frequency with which the AdRotator displays ads is specified in the Advertise-
mentFile. h) False. The AdvertisementFile must be an XML file. i) False. Redirect can
redirect the user to any page. j) False. Changes to properties of controls can be seen in the ASPX file.

20.2 a) information, middle, client. b) validator. c) postback. d) Page. e) Init, Load. f) code-
behind. g) Write, Response. h) AdvertisementFile, XML. i) PageLayout. j) Initial-
izeComponent.

EXERCISES
20.3 Modify the WebTime example so that it allows a user to select a time zone from a Drop-
DownList. The Web Form then should redirect the user to a page that displays the time in the se-
lected zone. Update the time every thirty seconds.

20.4 Modify the first exercise to contain drop-down lists for such Label properties as BgColor,
ForeColor and Font. Allow the user to select from these lists and submit the selections; then, reload
the page so that it reflects the specified changes to the properties of the Label displaying the time.

20.5 Create an ASP .NET page that uses a file on disk to keep track of how many hits the page has
received. Display the number of hits every time the page loads.

20.6 Provide functionality for the example in Section 20.5.1. When users click Submit, store
their information in a file. On postback, thank the user for providing the information.

20.7 Using the same techniques as those covered in the guest-book case study in Section 20.7, de-
velop an ASP .NET application for a discussion group. Allow new links to be created for new topics.

20.8 Create a set of ASP .NET pages that allows users to manipulate a database. Create a database
for a book seller with the following fields: BookName, Price, Quantity. The main ASP .NET
page should allow users to select from a drop-down list, which will contain options to enter more in-
formation into the database, view the entire database, update a row from the database, and delete an
item from the database. After completing an operation, the user should be able to return to the main
page via a link to begin another operation.



21
ASP .NET and Web 

Services

Objectives
• To understand what a Web service is.
• To be able to create Web services.
• To understand the elements that compose a Web 

service, such as service descriptions and discovery 
files.

• To be able to create a client that uses a Web service.
• To be able to use Web services with Windows and 

Web applications.
• To understand session tracking in Web services.
• To be able to pass user-defined data types to a Web 

service.
A client is to me a mere unit, a factor in a problem.
Sir Arthur Conan Doyle

...if the simplest things of nature have a message that you 
understand, rejoice, for your soul is alive.
Eleonora Duse

Protocol is everything.
Francoise Giuliani

They also serve who only stand and wait.
John Milton



Chapter 21 ASP .NET and Web Services 1031

21.1 Introduction1

Throughout this book, we have created dynamic link libraries (DLLs) to facilitate software
reusability and modularity—the cornerstones of good object-oriented programming. Howev-
er, the use of DLLs is limited, because a DLL must reside on the same machine as the program
that uses it. This chapter introduces the use of Web services (sometimes called XML Web ser-
vices) to promote software reusability over distributed systems. Distributed-systems technol-
ogies allow applications to execute across multiple computers on a network. A Web service
is a class that enables distributed computing by allowing one machine to call methods on other
machines via common data formats and protocols, such as XML and HTTP. In .NET, the
method calls are implemented through The Simple Object Access Protocol (SOAP), an
XML-based protocol describing how to mark up requests and responses so that they can be
transferred via protocols such as HTTP. Using SOAP, applications represent and transmit
data in a standardized format—XML. The underlying implementation of the Web service is
usually not relevant to the client using the Web service.

Microsoft is encouraging software vendors and e-businesses toward the deployment of
Web services. As larger numbers of people worldwide connect to the Internet, the concept
of applications that call methods across a network becomes more practical. Earlier in this
text, we delineated the merits of object-oriented programming. Web services represents the
next step in object-oriented programming: Instead of developing software from a small
number of class libraries provided at one location, programmers can access countless
libraries in multiple locations. This technology also makes it easier for businesses to col-
laborate and grow together. By purchasing Web services that are relevant to their busi-
nesses, companies that create applications can spend less time coding and more time
developing new products. In addition, e-businesses can employ Web services to provide
their customers with an enhanced shopping experience. Let us look at an online music store
as a simple example. The store’s Web site provides links to various CDs, enabling users to
purchase the CDs or to obtain information about the artists. Another company that sells
concert tickets provides a Web service that displays the dates of upcoming concerts by var-

Outline

21.1 Introduction
21.2 Web Services
21.3 Simple Object Access Protocol (SOAP) and Web Services
21.4 Publishing and Consuming Web Services
21.5 Session Tracking in Web Services
21.6 Using Web Forms and Web Services
21.7 Case Study: Temperature Information Application
21.8 User-Defined Types in Web Services
21.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. IIS must be running in order to create a Web service in Visual Studio.



1032 ASP .NET and Web Services Chapter 21

ious artists then allows users to buy concert tickets. By deploying the concert-ticket Web
service on its site, the online music store can provide an additional service to its customers
that will likely result in increased traffic to its site. The company that sells concert tickets
also benefits from the business relationship. In addition to selling more tickets, it receives
revenue from the online music store for the use of its Web service.

Visual Studio and the .NET framework provide a simple, user-friendly way to create
Web services like the one discussed in this example. In this chapter, we explore the steps
involved in both the creation and the use of Web services. For each example, we provide
the code for the Web service, then give an example of an application that might use the Web
service. Our first examples are designed to offer an in-depth analysis of Web services and
how they work in Visual Studio. Then, we move on to demonstrate more sophisticated Web
services that use session tracking and complex data types.

21.2 Web Services
A Web service is a class stored on one machine that can be accessed on another machine
over a network. Because of this relationship, the machine on which the Web service resides
commonly is referred to as a remote machine. The application that desires access to the
Web service sends a method call and its arguments to the remote machine, which processes
the call and sends a response to the caller. This kind of distributed computing can benefit
various systems, including slow systems, those with limited amounts of memory or re-
sources, those without access to certain data and those lacking the code necessary to per-
form specific computations. Another advantage of Web services is that code and data can
be stored on another computer. For instance, a Web service can be defined at one location
to execute several common queries to a database. Not only does the Web service define the
necessary code for the client, but the database is stored on the same machine as is the Web
service. The client does not need to access or store the database on its machine.

A Web service is, in its simplest form, a class. In previous chapters, when we wanted
to include a class in a project, we would have to either define the class in our project or add
a reference to the compiled DLL. This compiled DLL is placed in the bin directory of our
application by default. As a result, all pieces of our application reside on one machine.
When we are using Web services, the class we wish to include in our project is instead
stored on a remote machine—a compiled version of this class will not be placed in the cur-
rent application. What actually does happen is discussed shortly.

Methods in a Web service are executed through a Remote Procedure Call (RPC).
These methods, which are marked with the WebMethod attribute, are often referred to as
Web-service methods. Declaring a method with this attribute makes the method accessible
to other classes through an RPC. The declaration of a Web-service method with attribute
WebMethod is known as exposing a Web-service method.

Common Programming Error 21.1
Trying to call a remote method in a Web service where the method is not declared with the
WebMethod attribute is a compile-time error. 21.1

Method calls to and responses from Web services are transmitted via SOAP. This
means that any client capable of generating and processing SOAP messages can use a Web
service, regardless of the language in which the Web service is written.



Chapter 21 ASP .NET and Web Services 1033

Web services have important implications for business-to-business (B2B) transac-
tions—ones that occur between two or more businesses. Now, businesses are able to con-
duct their transactions via Web services, rather than via custom-created applications—a
much simpler and more efficient means of conducting business. Because Web services and
SOAP are platform independent, companies can collaborate and use each others’ Web ser-
vices without worrying about the compatibility of technologies or programming languages.
In this way, Web services are an inexpensive, readily-available solution to facilitate B2B
transactions.

A Web service in .NET has two parts: An ASMX file, and a code-behind file. The
ASMX file can be viewed in any Web browser and contains valuable information about the
Web service, such as descriptions of Web-service methods and ways to test these methods.
The code-behind file provides the implementation for the methods that the Web service
encompasses. Figure 21.1 depicts Internet Explorer rendering an ASMX file.

The top of the page provides a link to the Web service’s Service Description. A ser-
vice description is an XML document that conforms to the Web Service Description Lan-
guage (WSDL), an XML vocabulary that describes how a Web service behaves. A WSDL
document defines the methods that the Web service makes available and the ways in which
clients can interact with those methods. The document also specifies lower-level informa-
tion that clients might need, such as the required format in which to send requests to the
Web service and the format of the Web service’s response. Visual Studio .NET generates
the WSDL service description. Client programs can use the service description to confirm
the correctness of method calls when those client programs are compiled. 

Fig. 21.1 ASMX file rendered in Internet Explorer.



1034 ASP .NET and Web Services Chapter 21

The programmer should not alter this document, for it defines how a Web service
works. When a user clicks the Service Description link at the top of the ASMX page,
WSDL is displayed that defines the service description for this Web service (Fig. 21.2).

Below the Service Description link, the Web page shown in Fig. 21.1 lists the
methods that the Web service provides (i.e., all methods in the application that are declared
with WebMethod attributes). Clicking any method name requests a test page that describes
the method (Fig. 21.3). After explaining the method’s arguments, the page allows users to
execute a test run of the method by entering the proper parameters and clicking Invoke.
(We discuss the process of testing a Web-service method shortly.) Below the Invoke
button, the page displays sample request and response messages, using SOAP, HTTP GET
and HTTP POST. These protocols are the three options for sending and receiving messages
in Web services. The protocol used for request and response messages is sometimes known
as the Web service’s wire protocol or wire format, because the wire format specifies how
information is sent “along the wire.” Notice that Fig. 21.3 uses the HTTP GET protocol to
test a method. Later in this chapter, when we use Web services in our Visual Basic pro-
grams, we instead employ SOAP, because SOAP is the default protocol for Web services
in Visual Studio. As we will demonstrate, the use of SOAP to execute calls to Web-service
methods can be quite advantageous. 

Fig. 21.2 Service description for a Web service.



Chapter 21 ASP .NET and Web Services 1035

Users can test the method above by entering Values in the first: and second: fields
and then clicking Invoke. The method executes, and a new Web-browser window opens
to display an XML document containing the result (Fig. 21.4). Now that we have intro-
duced a simple example using a Web service, the next several sections explore the role of
XML in Web services, as well as other aspects of Web services’ functionality.

Fig. 21.3 Invoking a method of a Web service from a Web browser.

Fig. 21.4 Results of invoking a Web-service method from a Web browser.



1036 ASP .NET and Web Services Chapter 21

Testing and Debugging Tip 21.1
Using the ASMX page of a Web service to test and debug methods makes that Web service
more reliable and robust; it also reduces the likelihood that others who use the Web service
will encounter errors. 21.1

21.3 Simple Object Access Protocol (SOAP) and Web Services
Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses XML to
make remote procedure calls over HTTP. Each call and response is packaged in a SOAP
message—an XML message containing all the information necessary to process its con-
tents. SOAP messages are quite popular, because they are written in the easy-to-understand
and platform-independent XML. Similarly, HTTP was chosen to transmit SOAP messages
because HTTP is a standard protocol for sending information across the Internet. The use
of XML and HTTP enables different operating systems to send and receive SOAP messag-
es. Another benefit of HTTP is that it can be used with networks that contain firewalls—
security barriers that restrict communication among networks.

Another reason that programmers creating Web services use SOAP is its extensive
set of supported data types. Readers should note that the wire format used to transmit
requests and responses must support all data types passed between the applications. Web
services that use SOAP support a wider variety of data types than do Web services that
employ other wire formats. The data types supported by SOAP include the basic data
types, DataSet, DateTime, XmlNode and several others. SOAP also permits trans-
mission of arrays of all these types. In addition, user-defined types can be used; we dem-
onstrate how to do this in Section 21.8.

ASP .NET Web services send requests and responses to and from Web services via
SOAP. When a program invokes a Web-service method, the request and all relevant infor-
mation is packaged in a SOAP request message and sent to the appropriate destination.
When the Web service receives this SOAP message, it begins to process the contents called
the SOAP envelope, which specifies the method that the client wishes to execute and the
arguments the client is passing to that method. After the Web service receives this request
and parses it, the proper method is called with the specified arguments (if there are any),
and the response is sent back to the client in a SOAP response message. The client parses
the response to retrieve the result of the method call.

The SOAP response message portrayed in Fig. 21.5 was taken directly from the
Bigger method of the HugeInteger Web service (Fig. 21.3). This Web service pro-
vides programmers with several methods that manipulate integers larger than those that can
be stored as a Long variable. Most programmers do not manipulate SOAP messages,
allowing the Web service to handle the details of transmission. 

1 POST /HugeInteger/HugeInteger.asmx HTTP/1.1
2 Host: localhost
3 Content-Type: text/xml; charset=utf-8
4 Content-Length: length
5 SOAPAction: "http://www.deitel.com/Bigger"
6

Fig. 21.5 SOAP request message for the HugeInteger Web service (part 1 of 2).



Chapter 21 ASP .NET and Web Services 1037

Figure 21.5 displays a standard SOAP request message, which is created when a client
wishes to execute the HugeInteger Web service’s method Bigger. When a request to
a Web service causes such a SOAP request message to be created, the MIME content-
length’s value (length) and elements first and second’s character data
(Strings) would contain the actual values entered by the user (line 4 and lines 16–17,
respectively). If this envelope were transmitting the request from Fig. 21.3, element
first and element second instead would be the numbers represented in the figure.
Placeholder “length” would contain the length of this SOAP request message.

21.4 Publishing and Consuming Web Services
This section presents several examples of creating (also known as publishing) and using
(also known as consuming) a Web service. An application that consumes a Web service ac-
tually consists of two parts: A proxy class representing the Web service and a client appli-
cation that accesses the Web service via an instance of the proxy class. A proxy class
handles the transferal of the arguments for a Web-service method from the client applica-
tion to the Web service and the transferal of the result from the Web-service method back
to the client application. Visual Studio can generate a proxy class—we demonstrate how to
do this momentarily.

Figure 21.6 presents the code-behind file for the HugeInteger Web service
(Fig. 21.1). This Web service is designed to perform calculations with integers that contain a
maximum of 100 digits. As we mentioned earlier, Long variables cannot handle integers of
this size (i.e., an overflow occurs). The Web service provides a client with methods that take
two “huge integers” and immediately determines which one is larger or smaller, whether the
two numbers are equal, their sum and their difference. The reader can think of these methods
as services that one application provides for the programmers of other applications (hence the
term, Web services). Any programmer can access this Web service, use the methods and thus
avoid writing over 200 lines of code. We hide portions of the Visual Studio generated code
in the code-behind files. We do this for both brevity and presentation purposes.

Line 14 assigns the Web service namespace to www.deitel.com to uniquely iden-
tify this Web service. This namespace is specified in the Namespace property of a Web-
Service attribute. In lines 15–16, we use property Description to provide

7 <?xml version="1.0" encoding="utf-8"?>
8
9 <soap:Envelope 

10    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
11    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
12    xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
13
14   <soap:Body>
15     <Bigger xmlns="http://www.deitel.com">
16       <first>string</first>
17       <second>string</second>
18     </Bigger>
19   </soap:Body>
20 </soap:Envelope>

Fig. 21.5 SOAP request message for the HugeInteger Web service (part 2 of 2).



1038 ASP .NET and Web Services Chapter 21

information about our Web service that appears in the ASMX file. In line 18, notice that
our class derives from System.Web.Services.WebService—by default, Visual
Studio defines our Web service so that it inherits from the WebService class. Although
a Web service is not required to derive from WebService, this class provides members
that are useful in determining information about the client and the Web service itself. Sev-
eral methods in class HugeInteger are tagged with the WebMethod attribute, which
exposes a method so that it can be called remotely. When this attribute is absent, the method
is not accessible through the Web service. Notice that this attribute, like the WebService
attribute, contains a Description property, which provides information about the
method to our ASMX page. Readers can see these descriptions in the output of Fig. 21.6.

1 ' Fig. 21.6: HugeInteger.asmx.vb
2 ' HugeInteger WebService.
3
4 Imports System
5 Imports System.Collections
6 Imports System.ComponentModel
7 Imports System.Data
8 Imports System.Diagnostics
9 Imports System.Web

10 Imports System.Web.Services ' contains Web service classes
11
12 ' performs operation on large integers
13
14 <WebService(Namespace:="http://www.deitel.com", _
15    Description := "A Web service that provides methods that" _
16    & " can manipulate large integer values." ) > _
17 Public Class HugeInteger
18 Inherits System.Web.Services.WebService
19
20 Private Const MAXIMUM As Integer = 100
21 Public number() As Integer
22
23 ' default constructor
24 Public Sub New()
25
26       ' CODEGEN: This call is required by the ASP.NET Web 
27       ' Services Designer
28       InitializeComponent()
29
30       number = New Integer(MAXIMUM) {}
31  End Sub ' New
32
33 ' Visual Studio .NET generated code
34
35    ' property that accepts an integer parameter
36 Public Property Digits(ByVal index As Integer) As Integer
37       Get
38          Return number(index)
39       End Get
40

Fig. 21.6 HugeInteger Web service (part 1 of 5).



Chapter 21 ASP .NET and Web Services 1039

41       Set(ByVal Value As Integer)
42          number(index) = Value
43       End Set
44
45 End Property ' Property
46
47  ' returns String representation of HugeInteger
48 Public Overrides Function ToString() As String
49       Dim returnString As String = ""
50
51       Dim digit As Integer
52       For Each digit In number
53          returnString = digit & returnString
54       Next
55
56       Return returnString
57 End Function
58
59
60  ' creates HugeInteger based on argument
61 Public Shared Function FromString(ByVal value As String) _
62       As HugeInteger
63
64       Dim parsedInteger As New HugeInteger()
65       Dim i As Integer
66
67       For i = 0 To value.Length - 1
68          parsedInteger.Digits(i) = Int32.Parse( _
69             value.Chars(value.Length - i - 1).ToString())
70       Next
71
72
73       Return parsedInteger
74    End Function
75
76    ' WebMethod that performs the addition of integers
77    'represented by the string arguments
78    <WebMethod( Description := "Adds two huge integers." )> _
79 Public Function Add(ByVal first As String, _
80       ByVal second As String) As String
81
82       Dim carry As Integer = 0
83       Dim i As Integer
84
85       Dim operand1 As HugeInteger = _
86          HugeInteger.FromString(first)
87
88       Dim operand2 As HugeInteger = _
89          HugeInteger.FromString(second)
90
91       ' store result of addition
92       Dim result As New HugeInteger()
93

Fig. 21.6 HugeInteger Web service (part 2 of 5).



1040 ASP .NET and Web Services Chapter 21

94       ' perform addition algorithm for each digit
95       For i = 0 To MAXIMUM
96
97          ' add two digits in same column
98          ' result is their sum, plus carry from 
99          ' previous operation modulo 10
100          result.Digits(i) = _
101             (operand1.Digits(i) + operand2.Digits(i)) _
102                Mod 10 + carry
103
104          ' set carry to remainder of dividing
105          ' sums of two digits by 10
106          carry = (operand1.Digits(i) + operand2.Digits(i)) \ 10
107       Next
108
109       Return result.ToString()
110
111 End Function ' Add
112
113    ' WebMethod that performs the subtraction of integers 
114    ' represented by the String arguments
115    <WebMethod( Description := "Subtracts two huge integers." )> _
116 Public Function Subtract(ByVal first As String, _
117       ByVal second As String) As String
118
119       Dim i As Integer
120       Dim operand1 As HugeInteger = _
121          HugeInteger.FromString(first)
122
123       Dim operand2 As HugeInteger = _
124          HugeInteger.FromString(second)
125
126       Dim result As New HugeInteger()
127
128       ' subtract top digit from bottom digit
129       For i = 0 To MAXIMUM
130          ' if top digit is smaller than bottom
131          ' digit we need to borrow
132          If operand1.Digits(i) < operand2.Digits(i) Then
133             Borrow(operand1, i)
134          End If
135
136          ' subtract bottom from top
137          result.Digits(i) = operand1.Digits(i) - _
138             operand2.Digits(i)
139       Next
140
141       Return result.ToString()
142 End Function ' Subtract
143

Fig. 21.6 HugeInteger Web service (part 3 of 5).



Chapter 21 ASP .NET and Web Services 1041

144 ' borrows 1 from next digit
145 Private Sub Borrow(ByVal hugeInteger As HugeInteger, _
146       ByVal place As Integer)
147
148    ' if no place to borrow from, signal problem
149       If place >= MAXIMUM - 1 Then
150          Throw New ArgumentException()
151
152       ' otherwise if next digit is zero, 
153       ' borrow from digit to left
154       ElseIf hugeInteger.Digits(place + 1) = 0 Then
155          Borrow(hugeInteger, place + 1)
156       End If
157
158       ' add ten to current place because we borrowed
159       ' and subtract one from previous digit - 
160       ' this is digit borrowed from
161       hugeInteger.Digits(place) += 10
162       hugeInteger.Digits(place + 1) -= 1
163
164 End Sub ' Borrow
165
166    ' WebMethod that returns true if first integer is 
167    ' bigger than second
168    <WebMethod( Description := "Determines if first integer is " & _
169       "larger than the second integer." )> _
170    Public Function Bigger(ByVal first As String, _
171       ByVal second As String) As Boolean
172
173       Dim zeroes As Char() = {"0"}
174
175       Try
176          ' if elimination of all zeroes from result
177          ' of subtraction is an empty string,
178          ' numbers are equal, so return false, 
179          ' otherwise return true
180          If Subtract(first, second).Trim(zeroes) = "" Then
181             Return False
182          Else
183             Return True
184          End If
185
186          ' if ArgumentException occurs, first number
187          ' was smaller, so return False
188       Catch exception As ArgumentException
189          Return False
190       End Try
191 End Function ' Bigger
192

Fig. 21.6 HugeInteger Web service (part 4 of 5).



1042 ASP .NET and Web Services Chapter 21

193    ' WebMethod returns True if first integer is 
194    ' smaller than second
195    <WebMethod( Description := "Determines if the first integer " & _
196       "is smaller than the second integer.")> _
197 Public Function Smaller(ByVal first As String, _
198       ByVal second As String) As Boolean
199
200       ' if second is bigger than first, then first is 
201       ' smaller than second
202       Return Bigger(second, first)
203 End Function
204
205  ' WebMethod that returns true if two integers are equal
206    <WebMethod( Description := "Determines if the first integer " & _
207       "is equal to the second integer" )> _
208 Public Function EqualTo(ByVal first As String, _
209       ByVal second As String) As Boolean
210
211       ' if either first is bigger than second, or first is 
212       ' smaller than second, they are not equal
213       If (Bigger(first, second) OrElse _
214          Smaller(first, second)) Then
215          Return False
216       Else
217          Return True
218       End If
219  End Function ' EqualTo
220 End Class ' HugeInteger

Fig. 21.6 HugeInteger Web service (part 5 of 5).



Chapter 21 ASP .NET and Web Services 1043

Good Programming Practice 21.1
Specify a namespace for each Web service so that it can be uniquely identified. 21.1

Good Programming Practice 21.2
Specify descriptions for all Web services and Web-service methods so that clients can obtain
additional information about the Web service and its contents. 21.2

Common Programming Error 21.2
No method with the WebMethod attribute can be declared Shared—for a client to access
a Web-service method, an instance of that Web service must exist. 21.2

Lines 36–45 define a Property that enables us to access any digit in a HugeIn-
teger through property Digits. Lines 78 and 115 define WebMethods Add and Sub-
tract, which perform addition and subtraction, respectively. Method Borrow (defined
in lines 145–162) handles the case in which the digit that we are currently looking at in the
left operand is smaller than the corresponding digit in the right operand. For instance, when
we subtract 19 from 32, we usually go digit by digit, starting from the right. The number 2
is smaller than 9, so we add 10 to 2 (resulting in 12), which subtracts 9, resulting in 3 for
the right most digit in the solution. We then subtract 1 from the next digit over (3), making
it 2. The corresponding digit in the right operand is now the “1” in 19. The subtraction of 1
from 2 is 1, making the corresponding digit in the result 1. The final result, when the
resulting digits are put together, is 13. Method Borrow is the method that adds ten to the
appropriate digits and subtracts 1 from the digits to the left. Because this is a utility method
that is not intended to be called remotely, it is not qualified with attribute WebMethod.

The screen capture in Fig. 21.6 is identical to the one in Fig. 21.1. A client application
can invoke only the five methods listed in the screen shot (i.e., the methods qualified with
the WebMethod attribute).

Let us demonstrate how to create this.2 To begin, we must create a project of type
ASP.NET Web Service. Like Web Forms, Web services are stored in the Web server’s
wwwroot directory on the server (e.g., localhost). By default, Visual Studio places the
solution file (.sln) in the Visual Studio Projects folder.

Notice that, when the project is created, the code-behind file is displayed by default in
design view (Fig. 21.7). If this file is not open, it can be opened by double-clicking
Service1.asmx. The file that will be opened, however, is Service1.asmx.vb (the
code-behind file for our Web service). This is because, when creating Web services in
Visual Studio, programmers work almost exclusively in the code-behind file. In fact, if a
programmer were to open the ASMX file, it would contain only the lines

<%@ WebService Language="vb" Codebehind="Service1.asmx.vb"
    Class="WebService1.Service1" %>

indicating the name of the code-behind file, the programming language in which the code-
behind file is written and the class that defines our Web service. This is the extent of the
information that this file must contain. [Note: By default, the code-behind file is not listed

2. Visit the Downloads/Resources link at www.deitel.com for step-by-step configuration in-
structions for the Web Services included on this book’s CD.



1044 ASP .NET and Web Services Chapter 21

in the Solution Explorer. It is displayed when the ASMX file is double clicked. It can be
listed in the Solution Explorer if the icon to show all files is clicked.]

It may seem strange that there is a design view for a Web service, when a Web service
does not have a graphical user interface. The answer is that more sophisticated Web ser-
vices contain methods that manipulate more than just strings or numbers. For example, a
Web-service method could manipulate a database. Instead of typing all the code necessary
to create a database connection, we simply drop the proper ADO .NET components into the
design view and manipulate them as we would in a Windows or Web application. We will
see an example of this in Section 21.6.

Now that we have defined our Web service, we demonstrate how to use it. First, a client
application must be created. In this first example, we create a Windows application as our
client. Once this application has been created, the client must add a proxy class that can be
used to access the Web service. A proxy class (or proxy) is a class created from the Web ser-
vice’s WSDL file that enables the client to call Web-service methods over the Internet. The
proxy class handles all the “plumbing” required for method calls to Web-service methods.
Whenever a call is made in the client application to a Web-service method, the application
actually calls a corresponding method in the proxy class. This method takes the method name
and arguments and then formats them so that they can be sent as a request in a SOAP enve-
lope. The Web service receives this request and executes the method call, sending back the
result in another SOAP envelope. When the client application receives the SOAP envelope
containing the response, the proxy class decodes it and formats the results so that they are
understandable to the client. This information then is returned to the client. It is important to
note that the proxy class essentially is hidden from the program. We cannot, in fact, view it
in the Solution Explorer unless we choose to show all the files. The purpose of the proxy
class is to make it seem to clients as if they are calling the Web-service methods directly—
the client should have no need to view or manipulate the proxy class.

Fig. 21.7 Design view of a Web service.



Chapter 21 ASP .NET and Web Services 1045

The next example demonstrates how to create a Web-service client and its corre-
sponding proxy class. We must begin by creating a project and then adding a Web reference
to the project. When we add a Web reference to a client application, the proxy class is cre-
ated. The client then creates an instance of the proxy class, which is in turn used to call
methods included in the Web service.

To create a proxy in Visual Studio, right click the References folder in Solution
Explorer, and select Add Web Reference (Fig. 21.8). In the Add Web Reference
dialog that appears (Fig. 21.9), enter the Web address of the Web service, and press Enter.
In this chapter, we store the Web service in the root directory of our local Web server
(http://localhost, whose physical location is C:\Inetpub\wwwroot). We do
not store the services in the VB directory used in the previous chapter. For simplicity, we
have instead stored them directly in the root of our Web server. This allows us to add a Web
reference without typing in the whole address, by clicking the link Web References on
Local Web Server (Fig. 21.9). Next, we select the appropriate Web service from the list
of Web services located on localhost (Fig. 21.10). Notice that each Web service is
listed as a file with the extension .vsdisco, located in the directory for the Web service
project. Files with the extension .disco and .vsdisco are known as discovery files.
We discuss discovery files, as well as the distinction between discovery files with the
.disco and .vsdisco extension later in this section. When the description of the Web
service appears, click Add Reference (Fig. 21.11). This adds to the Solution Explorer
(Fig. 21.12) a Web References folder with a node named after the domain name where
the Web service is located. In this case, the name is localhost, because we are using the
local Web server. This means that, when we reference class HugeInteger, we will be
doing so through class HugeInteger in namespace localhost (the Web service class
and proxy class have the same name). Visual Studio generates a proxy for the Web service
and adds it as a reference (Fig. 21.12).

Fig. 21.8 Adding a Web service reference to a project.



1046 ASP .NET and Web Services Chapter 21

Fig. 21.9 Add Web Reference dialog.

Fig. 21.10 Web services located on localhost.

Link to root directory 
of local Web server

.vsdisco files help us locate Web Services



Chapter 21 ASP .NET and Web Services 1047

Fig. 21.11 Web reference selection and description.

Fig. 21.12 Solution Explorer after adding a Web reference to a project.

Web service 
discovery fileService description

Proxy class



1048 ASP .NET and Web Services Chapter 21

Good Programming Practice 21.3
When creating a program that uses Web services, add the Web reference first. This enables
Visual Studio to recognize an instance of the Web-service class, allowing Intellisense to help
developers use the Web service. 21.3

The steps that we described previously work well if the programmer knows the appro-
priate Web-services reference. However, what if we are trying to locate a new Web service?
There are two technologies that can facilitate this process: Universal Description, Dis-
covery and Integration (UDDI) and Discovery files (DISCO). UDDI is a project for devel-
oping a set of specifications that define how Web services should be exposed, so that
programmers searching for Web services can find them. Microsoft began an ongoing
project to facilitate the locating of Web services that conform to certain specifications,
allowing programmers to find different Web services through search engines. UDDI orga-
nizes and describes Web services and then places this information in a central location.
Although UDDI is beyond the scope of what we are teaching, the reader can learn more
about this project and view a demonstration by visiting www.uddi.org and
uddi.microsoft.com. Both of these sites contain search tools that make finding Web
services fast and easy.

A DISCO file catalogs any Web services that are available in the current directory.
There are two types of discovery files: Dynamic discovery files (.vsdisco extension)
and static discovery files (.disco extension). These files indicate both the location of the
ASMX file and the service description (a WSDL file) for each Web service in the current
directory. When a programmer creates a Web service, Visual Studio generates a dynamic
discovery file for that Web service. When a client is adding a Web reference, the dynamic
discovery file is then used to point out the Web service, as was demonstrated in Fig. 21.10.
Once the Web reference is created, a static discovery file is placed in the client’s project.
The static discovery file hard-codes the location for the ASMX and WSDL files (by “hard
code,” we mean that the location is entered directly into the file). Dynamic discovery files,
on the other hand, are created such that the list of Web services are created dynamically on
the server when a client is searching for Web services. The use of dynamic discovery
enables certain extra options, such as the hiding of certain Web services in subdirectories.
Discovery files are a Microsoft-specific technology, whereas UDDI is not. The two can
work together, though, to enable a client to find a Web service. Using both technologies,
the client can use a search engine to find a location with various Web services on a topic,
and then use discovery files to view all the Web services in that location.

Once the Web reference is added, the client can access the Web service through a proxy.
Because HugeInteger is located as a proxy class in namespace localhost, we must
use localhost.HugeInteger to reference this class. The Windows Form in
Fig. 21.13 uses the HugeInteger Web service to perform computations with positive
integers that are up to 100 digits long. 

The user inputs two integers, each up to 100 digits long. Clicking any button invokes
a remote method to perform the appropriate calculation and return the result. The return
value of each operation is displayed, and all leading zeroes are eliminated by String
method TrimStart. Note that UsingHugeInteger does not have the capability to
perform operations with 100-digit numbers. It instead creates String representations of
these numbers and passes them as arguments to Web-service methods that handle such
tasks for us. 



Chapter 21 ASP .NET and Web Services 1049

1 ' Fig. 21.13: UsingHugeIntegerService.vb
2 ' Using the HugeInteger Web Service.
3
4 Imports System
5 Imports System.Drawing
6 Imports System.Collections
7 Imports System.ComponentModel
8 Imports System.Windows.Forms
9 Imports System.Web.Services.Protocols

10
11 ' allows user to perform operations on large integers
12 Public Class FrmUsingHugeInteger
13 Inherits Windows.Forms.Form
14
15  ' declare a reference Web service
16 Private remoteInteger As localhost.HugeInteger
17
18  ' HugeInteger operation buttons
19 Friend WithEvents cmdAdd As Button
20 Friend WithEvents cmdEqual As Button
21 Friend WithEvents cmdSmaller As Button
22 Friend WithEvents cmdLarger As Button
23 Friend WithEvents cmdSubtract As Button
24
25 ' input text boxes
26 Friend WithEvents txtSecond As TextBox
27 Friend WithEvents txtFirst As TextBox
28
29  ' question and answer labels
30 Friend WithEvents lblPrompt As Label
31 Friend WithEvents lblResult As Label
32
33 Private zeroes() As Char = {"0"}
34
35    ' default constructor
36 Public Sub New()
37       MyBase.New()
38
39       InitializeComponent()
40
41       ' instantiate remoteInteger
42       remoteInteger = New localhost.HugeInteger()
43  End Sub
44
45  ' Visual Studio .NET generated code
46
47 Public Shared Sub Main()
48       Application.Run(New FrmUsingHugeInteger())
49 End Sub ' Main
50

Fig. 21.13 Using the HugeInteger Web service (part 1 of 5).



1050 ASP .NET and Web Services Chapter 21

51   ' checks if two numbers user input are equal
52 Private Sub cmdEqual_Click(ByVal sender As System.Object, _
53       ByVal e As System.EventArgs) Handles cmdEqual.Click
54
55       ' make sure HugeIntegers do not exceed 100 digits
56       If SizeCheck(txtFirst, txtSecond) Then
57          Return
58       End If
59
60       ' call Web-service method to determine if integers are equal
61       If remoteInteger.EqualTo( _
62          txtFirst.Text, txtSecond.Text) Then
63
64          lblResult.Text = _
65             txtFirst.Text.TrimStart(zeroes) & _
66             " is equal to " & _
67             txtSecond.Text.TrimStart(zeroes)
68       Else
69          lblResult.Text = _
70             txtFirst.Text.TrimStart(zeroes) & _
71             " is NOT equal to " & _
72             txtSecond.Text.TrimStart(zeroes)
73       End If
74
75 End Sub ' cmdEqual_Click
76
77    ' checks if first integer input
78    ' by user is smaller than second
79 Private Sub cmdSmaller_Click(ByVal sender As System.Object, _
80       ByVal e As System.EventArgs) Handles cmdSmaller.Click
81
82       ' make sure HugeIntegers do not exceed 100 digits
83       If SizeCheck(txtFirst, txtSecond) Then
84          Return
85       End If
86
87       ' call Web-service method to determine if first
88       ' integer is smaller than second
89       If remoteInteger.Smaller( _
90          txtFirst.Text, txtSecond.Text) Then
91
92          lblResult.Text = _
93             txtFirst.Text.TrimStart(zeroes) & _
94             " is smaller than " & _
95             txtSecond.Text.TrimStart(zeroes)
96       Else
97          lblResult.Text = _
98             txtFirst.Text.TrimStart(zeroes) & _
99             " is NOT smaller than " & _
100             txtSecond.Text.TrimStart(zeroes)
101       End If
102
103 End Sub ' cmdSmaller_Click

Fig. 21.13 Using the HugeInteger Web service (part 2 of 5).



Chapter 21 ASP .NET and Web Services 1051

104
105    ' checks if first integer input 
106    ' by user is bigger than second
107 Private Sub cmdLarger_Click(ByVal sender As System.Object, _
108       ByVal e As System.EventArgs) Handles cmdLarger.Click
109
110       ' make sure HugeIntegers do not exceed 100 digits
111       If SizeCheck(txtFirst, txtSecond) Then
112          Return
113       End If
114
115       ' call Web-service method to determine if first
116       ' integer is larger than the second
117       If remoteInteger.Bigger(txtFirst.Text, _
118          txtSecond.Text) Then
119
120          lblResult.Text = _
121             txtFirst.Text.TrimStart(zeroes) & _
122             " is larger than " & _
123             txtSecond.Text.TrimStart(zeroes)
124       Else
125          lblResult.Text = _
126             txtFirst.Text.TrimStart(zeroes) & _
127             " is NOT larger than " & _
128             txtSecond.Text.TrimStart(zeroes)
129       End If
130
131 End Sub ' cmdLarger_Click
132
133  ' subtract second integer from first
134 Private Sub cmdSubtract_Click(ByVal sender As System.Object, _
135       ByVal e As System.EventArgs) Handles cmdSubtract.Click
136
137   ' make sure HugeIntegers do not exceed 100 digits
138       If SizeCheck(txtFirst, txtSecond) Then
139          Return
140       End If
141
142       ' perform subtraction
143    Try
144          Dim result As String = remoteInteger.Subtract( _
145             txtFirst.Text, txtSecond.Text).TrimStart(zeroes)
146
147          If result = "" Then
148             lblResult.Text = "0"
149      Else
150             lblResult.Text = result
151          End If
152
153       ' if WebMethod throws an exception, then first
154       ' argument was smaller than second

Fig. 21.13 Using the HugeInteger Web service (part 3 of 5).



1052 ASP .NET and Web Services Chapter 21

155       Catch exception As SoapException
156          MessageBox.Show( _
157             "First argument was smaller than the second")
158       End Try
159
160 End Sub ' cmdSubtract_Click
161
162 ' adds two integers input by user
163 Private Sub cmdAdd_Click(ByVal sender As System.Object, _
164       ByVal e As System.EventArgs) Handles cmdAdd.Click
165
166       ' make sure HugeInteger does not exceed 100 digits
167       ' and be sure both are not 100 digits long
168       ' which would result in overflow
169
170       If txtFirst.Text.Length > 100 OrElse _
171          txtSecond.Text.Length > 100 OrElse _
172          (txtFirst.Text.Length = 100 AndAlso _
173          txtSecond.Text.Length = 100) Then
174
175          MessageBox.Show("HugeIntegers must not be more " _
176             & "than 100 digits" & vbCrLf & "Both integers " _
177             & "cannot be of length 100: this causes an overflow", _
178             "Error", MessageBoxButtons.OK, _
179             MessageBoxIcon.Information)
180          Return
181       End If
182
183       ' perform addition
184       lblResult.Text = _
185          remoteInteger.Add(txtFirst.Text, _
186          txtSecond.Text).TrimStart(zeroes)
187
188 End Sub ' cmdAdd_Click
189
190 ' determines if size of integers are too big
191 Private Function SizeCheck(ByVal first As TextBox, _
192       ByVal second As TextBox) As Boolean
193
194       If first.Text.Length > 100 OrElse _
195          second.Text.Length > 100 Then
196
197          MessageBox.Show("HugeIntegers must be less than 100" _
198             & " digits", "Error", MessageBoxButtons.OK, _
199             MessageBoxIcon.Information)
200
201          Return True
202       End If
203
204   Return False
205 End Function ' SizeCheck
206 End Class ' FrmUsingHugeInteger

Fig. 21.13 Using the HugeInteger Web service (part 4 of 5).



Chapter 21 ASP .NET and Web Services 1053

21.5 Session Tracking in Web Services
In Chapter 20, we described the importance of maintaining information about users to per-
sonalize their experiences. In the context of that discussion, we explored session tracking
using cookies and sessions. In this section, we incorporate session tracking into a Web ser-
vice. Sometimes, it makes sense that a client application would call several methods from
the same Web service, and it might call some methods possibly several times. It would be
beneficial for such a Web service to maintain state information for the client. Using session
tracking can be beneficial because information that is stored as part of the session will not
need to be passed back and forth between the Web service and the client. This will not only
cause the client application to run faster, but also require less effort on the part of the pro-
grammer (who likely will have to pass less information to a method).

Storing session information also can provide for a more intuitive Web service. In the
following example, we create a Web service designed to assist with the computations
involved in playing a game of Blackjack (Fig. 21.14). We will then use this Web service to
create a dealer for a game of Blackjack. This dealer handles the details for our deck of cards.
The information is stored as part of the session, so that one deck of cards does not get mixed
up with another deck being used by another client application. Our example uses casino
Blackjack rules:

Fig. 21.13 Using the HugeInteger Web service (part 5 of 5).



1054 ASP .NET and Web Services Chapter 21

Two cards each are dealt to the dealer and the player. The player’s cards are dealt face up.
Only one of the dealer’s cards is dealt face up. Then, the player can begin taking additional
cards one at a time. These cards are dealt face up, and the player decides when to stop tak-
ing cards. If the sum of the player’s cards exceeds 21, the game is over, and the player loses.
When the player is satisfied with the current set of cards, the player “stays” (i.e., stops tak-
ing cards) and the dealer’s hidden card is revealed. If the dealer’s total is less than 17, the
dealer must take another card; otherwise, the dealer must stay. The dealer must continue to
take cards until the sum of the dealer’s cards is greater than or equal to 17. If the dealer
exceeds 21, the player wins. Otherwise, the hand with the higher point total wins. If both
sets of cards have the same point total, the game is a push (i.e., a tie) and no one wins.

The Web service that we create provides methods to deal a card and to count cards in
a hand, determining a value for a specific hand. Each card is represented by a String in
the form “face suit” where face is a digit representing the face of the card, and suit
is a digit representing the suit of the card. After the Web service is created, we create a Win-
dows application that uses these methods to implement a game of Blackjack.

1 ' Fig. 21.15: BlackjackService.asmx.vb
2 ' Blackjack Web Service which deals and counts cards.
3
4 Imports System
5 Imports System.Collections
6 Imports System.ComponentModel
7 Imports System.Data
8 Imports System.Diagnostics
9 Imports System.Web

10 Imports System.Web.Services
11
12 <WebService(Namespace:="http://www.deitel.com", Description := _
13 "A Web service that provides methods to manipulate a deck " _
14    & "of cards" )> _
15 Public Class BlackjackService
16 Inherits System.Web.Services.WebService
17
18 ' Visual Studio .NET generated code
19
20    ' deals card that has not yet been dealt
21    <WebMethod(EnableSession:=True, Description := "Deal a new " _
22       & "card from the deck." )> _
23    Public Function DealCard() As String
24
25       Dim card As String = "2 2"
26
27       ' get client's deck
28       Dim deck As ArrayList = CType(Session("deck"), ArrayList)
29       card = Convert.ToString(deck(0))
30       deck.RemoveAt(0)
31       Return card
32
33 End Function ' DealCard
34

Fig. 21.14 Blackjack Web service (part 1 of 3).



Chapter 21 ASP .NET and Web Services 1055

35    <WebMethod(EnableSession:=True, Description := "Create and " _
36       & "shuffle a deck of cards." )> _
37 Public Sub Shuffle()
38
39       Dim temporary As Object
40       Dim randomObject As New Random()
41       Dim newIndex As Integer
42       Dim i, j As Integer
43
44       Dim deck As New ArrayList()
45
46       ' generate all possible cards
47       For i = 1 To 13
48          For j = 0 To 3
49             deck.Add(i & " " & j)
50          Next
51       Next
52
53       ' swap each card with another card randomly
54       For i = 0 To deck.Count - 1
55
56          newIndex = randomObject.Next(deck.Count - 1)
57          temporary = deck(i)
58          deck(i) = deck(newIndex)
59          deck(newIndex) = temporary
60       Next
61
62       ' add this deck to user's session state
63       Session.Add("deck", deck)
64 End Sub ' Shuffle
65
66  ' computes value of hand
67    <WebMethod( Description := "Compute a numerical value" _ 
68       & " for the current hand." )> _
69 Public Function CountCards(ByVal dealt As String) As Integer
70
71       ' split string containing all cards
72       Dim tab As Char() = {vbTab}
73       Dim cards As String() = dealt.Split(tab)
74       Dim drawn As String
75       Dim total As Integer = 0
76       Dim face, numAces As Integer
77       numAces = 0
78
79       For Each drawn In cards
80
81          ' get face of card
82          face = Int32.Parse( _
83             drawn.Substring(0, drawn.IndexOf(" ")))
84
85          Select Case face
86             Case 1 ' if ace, increment numAces
87                numAces += 1

Fig. 21.14 Blackjack Web service (part 2 of 3).



1056 ASP .NET and Web Services Chapter 21

Lines 21–23 define method DealCard as a WebMethod, with property
EnableSession set to True. This property needs to be set to True for session informa-
tion to be maintained. This simple step provides an important advantage to our Web service.
The Web service can now use an HttpSessionState object (called Session) to main-
tain the deck of cards for each client application that wishes to use this Web service (line 28).
We can use Session to store objects for a specific client between method calls. We dis-
cussed session state in detail in Chapter 20, ASP .NET, Web Forms and Web Controls.

As we discuss shortly, method DealCard removes a card from the deck and returns
it to the client. Without using a session variable, the deck of cards would need to be passed
back and forth with each method call. Not only does the use of session state make the
method easy to call (it requires no arguments), but we avoid the overhead that would occur
from sending this information back and forth. This makes our Web service faster.

Right now, we simply have methods that use session variables. The Web service, how-
ever, still cannot determine which session variables belong to which user. This is an impor-
tant point—if the Web service cannot uniquely identify a user, it has failed to perform
session tracking properly. If two clients successfully call the DealCard method, the same
deck would be manipulated. In order to identify various users, the Web service creates a
cookie for each user. A client application that wishes to use this Web service will need to
accept this cookie in a CookieContainer object. We discuss this in more detail shortly,
when we look into the client application that uses the Blackjack Web service.

Method DealCard (lines 21–33) obtains the current user’s deck as an ArrayList
from the Web service’s Session object (line 28). You can think of an ArrayList as a

88             Case 11 To 13 ' if jack, queen or king, add 10
89                total += 10
90             Case Else ' otherwise, add value of face 
91                total += face
92          End Select
93       Next
94
95   ' if there are any aces, calculate optimum total
96       If numAces > 0 Then
97
98          ' if it is possible to count one Ace as 11, and rest
99          ' 1 each, do so; otherwise, count all Aces as 1 each
100          If (total + 11 + numAces - 1 <= 21) Then
101             total += 11 + numAces - 1
102          Else
103             total += numAces
104          End If
105       End If
106
107       Return total
108
109 End Function ' CountCards
110
111 End Class ' BlackjackService

Fig. 21.14 Blackjack Web service (part 3 of 3).



Chapter 21 ASP .NET and Web Services 1057

dynamic array (i.e., its size can change at runtime). Class ArrayList is discussed in
greater detail in Chapter 24, Data Structures. The class’ method Add places an Object in
the ArrayList. Method DealCard then removes the top card from the deck (line 30)
and returns the card’s value as a String (line 31).

Method Shuffle (lines 35–64) generates an ArrayList representing a card deck,
shuffles it and stores the shuffled cards in the client’s Session object. Lines 47–51
include For loops to generate Strings in the form “face suit” to represent each pos-
sible card in a deck. Lines 54–60 shuffle the recreated deck by swapping each card with
another random card in the deck. Line 63 adds the ArrayList to the Session object to
maintain the deck between method calls. 

Method CountCards (lines 67–109) counts the values of the cards in a hand by
trying to attain the highest score possible without going over 21. Precautions need to be
taken when calculating the value of the cards, because an ace can be counted as either 1 or
11, and all face cards count as 10.

The String dealt is tokenized into its individual cards by calling String method
Split and passing it an array containing the tab character. The For Each loop (line 79)
counts the value of each card. Lines 82–83 retrieve the first integer—the face—and uses
that value as input to the Select Case statement in line 85. If the card is 1 (an ace), the
program increments variable aceCount. Because an ace can have two values, additional
logic is required to process aces. If the card is an 13, 12 or 11 (King, Queen or Jack), the
program adds 10 to the total. If the card is anything else, the program increases the total by
that value.

In lines 96–104, the aces are counted after all the other cards. If several aces are
included in a hand, only one can be counted as 11 (e.g., if two were counted as 11 we would
already have a hand value of 22, which is a losing hand). We then determine whether
counting one ace as 11 and the rest as 1will result in a total that does not exceed 21. If this
is possible, line 101 adjusts the total accordingly. Otherwise, line 103 adjusts the total,
counting each ace as 1 point.

CountCards attempts to maximize the value of the current cards without exceeding
21. Imagine, for example, that the dealer has a 7 and then receives an ace. The new total
could be either 8 or 18. However, CountCards always tries the maximize the value of
the cards without going over 21, so the new total is 18.

Now, we use the Blackjack Web service in a Windows application called Game
(Fig. 21.15). This program uses an instance of BlackjackWebService to represent the
dealer, calling its DealCard and CountCards methods. The Web service keeps track
of both the player’s and the dealer’s cards (i.e., all the cards that have been dealt).

Each player has eleven PictureBoxes—the maximum number of cards that can be
dealt without automatically exceeding 21. These PictureBoxes are placed in an
ArrayList, allowing us to index the ArrayList to determine which PictureBox
will display the card image.

1 ' Fig. 21.16: Blackjack.vb
2 ' Blackjack game that uses the Blackjack Web service.
3

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 1 of 9).



1058 ASP .NET and Web Services Chapter 21

4 Imports System
5 Imports System.Drawing
6 Imports System.Collections
7 Imports System.ComponentModel
8 Imports System.Windows.Forms
9 Imports System.Data

10 Imports System.Net ' for cookieContainer
11
12 ' game that uses Blackjack Web Service
13 Public Class FrmBlackJack
14 Inherits System.Windows.Forms.Form
15
16 Private dealer As localhost.BlackjackService
17 Private dealersCards, playersCards As String
18 Private cardBoxes As ArrayList
19   Private playerCard, dealerCard As Integer
20 Friend WithEvents pbStatus As System.Windows.Forms.PictureBox
21
22 Friend WithEvents cmdStay As System.Windows.Forms.Button
23 Friend WithEvents cmdHit As System.Windows.Forms.Button
24 Friend WithEvents cmdDeal As System.Windows.Forms.Button
25
26 Friend WithEvents lblDealer As System.Windows.Forms.Label
27 Friend WithEvents lblPlayer As System.Windows.Forms.Label
28
29 Public Enum GameStatus
30       PUSH
31       LOSE
32       WIN
33       BLACKJACK
34 End Enum
35
36
37 Public Sub New()
38
39       InitializeComponent()
40
41       dealer = New localhost.BlackjackService()
42
43       ' allow session state
44       dealer.CookieContainer = New CookieContainer()
45
46       cardBoxes = New ArrayList()
47
48       ' put PictureBoxes into ArrayList
49       cardBoxes.Add(pictureBox1)
50       cardBoxes.Add(pictureBox2)
51       cardBoxes.Add(pictureBox3)
52       cardBoxes.Add(pictureBox4)
53       cardBoxes.Add(pictureBox5)
54       cardBoxes.Add(pictureBox6)
55       cardBoxes.Add(pictureBox7)
56       cardBoxes.Add(pictureBox8)

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 2 of 9).



Chapter 21 ASP .NET and Web Services 1059

57       cardBoxes.Add(pictureBox9)
58       cardBoxes.Add(pictureBox10)
59       cardBoxes.Add(pictureBox11)
60       cardBoxes.Add(pictureBox12)
61       cardBoxes.Add(pictureBox13)
62       cardBoxes.Add(pictureBox14)
63       cardBoxes.Add(pictureBox15)
64       cardBoxes.Add(pictureBox16)
65       cardBoxes.Add(pictureBox17)
66       cardBoxes.Add(pictureBox18)
67       cardBoxes.Add(pictureBox19)
68       cardBoxes.Add(pictureBox20)
69       cardBoxes.Add(pictureBox21)
70       cardBoxes.Add(pictureBox22)
71 End Sub ' New
72
73 ' Visual Studio .NET generated code   
74
75    ' deals cards to dealer while dealer's total is 
76    ' less than 17, then computes value of each hand 
77    ' and determines winner
78 Private Sub cmdStay_Click(ByVal sender As System.Object, _
79       ByVal e As System.EventArgs) Handles cmdStay.Click
80       cmdStay.Enabled = False
81       cmdHit.Enabled = False
82       cmdDeal.Enabled = True
83       DealerPlay()
84 End Sub ' cmdStay_Click
85
86 ' process dealers turn
87 Private Sub DealerPlay()
88
89       ' while value of dealer's hand is below 17,
90       ' dealer must take cards
91       While dealer.CountCards(dealersCards) < 17
92          dealersCards &= vbTab & dealer.DealCard()
93          DisplayCard(dealerCard, "")
94          dealerCard += 1
95          MessageBox.Show("Dealer takes a card")
96       End While
97
98
99       Dim dealersTotal As Integer = _
100          dealer.CountCards(dealersCards)
101       Dim playersTotal As Integer = _
102          dealer.CountCards(playersCards)
103
104       ' if dealer busted, player wins
105       If dealersTotal > 21 Then        
106          GameOver(GameStatus.WIN)
107          Return
108       End If
109

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 3 of 9).



1060 ASP .NET and Web Services Chapter 21

110       ' if dealer and player have not exceeded 21,
111       ' higher score wins; equal scores is a push
112       If dealersTotal > playersTotal Then
113          GameOver(GameStatus.LOSE)
114       ElseIf playersTotal > dealersTotal Then
115          GameOver(GameStatus.WIN)
116       Else
117          GameOver(GameStatus.PUSH)
118       End If
119
120 End Sub 'DealerPlay
121
122 ' deal another card to player
123 Private Sub cmdHit_Click(ByVal sender As System.Object, _
124       ByVal e As System.EventArgs) Handles cmdHit.Click
125
126   ' get player another card
127       Dim card As String = dealer.DealCard()
128       playersCards &= vbTab & card
129       DisplayCard(playerCard, card)
130       playerCard += 1
131
132       Dim total As Integer = _
133          dealer.CountCards(playersCards)
134
135       ' if player exceeds 21, house wins
136       If total > 21 Then
137          GameOver(GameStatus.LOSE)
138
139          ' if player has 21, they cannot take more cards
140          ' the dealer plays
141          If total = 21 Then
142             cmdHit.Enabled = False
143             DealerPlay()
144          End If
145       End If
146
147 End Sub ' cmdHit_Click
148
149  ' deal two cards each to dealer and player
150 Private Sub cmdDeal_Click(ByVal sender As System.Object, _
151       ByVal e As System.EventArgs) Handles cmdDeal.Click
152
153       Dim card As String
154       Dim cardImage As PictureBox
155
156    ' clear card images
157       For Each cardImage In cardBoxes
158          cardImage.Image = Nothing
159       Next
160
161       pbStatus.Image = Nothing
162

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 4 of 9).



Chapter 21 ASP .NET and Web Services 1061

163       dealer.Shuffle()
164
165       ' deal two cards to player
166       playersCards = dealer.DealCard()
167       DisplayCard(0, playersCards)
168       card = dealer.DealCard()
169       DisplayCard(1, card)
170       playersCards &= vbTab & card
171
172       ' deal two cards to dealer, only display face
173       ' of first card
174       dealersCards = dealer.DealCard()
175       DisplayCard(11, dealersCards)
176       card = dealer.DealCard()
177       DisplayCard(12, "")
178       dealersCards &= vbTab & card
179
180       cmdStay.Enabled = True
181       cmdHit.Enabled = True
182       cmdDeal.Enabled = False
183
184       Dim dealersTotal As Integer = _
185          dealer.CountCards(dealersCards)
186
187       Dim playersTotal As Integer = _
188          dealer.CountCards(playersCards)
189
190       ' if hands equal 21, it is a push
191       If dealersTotal = playersTotal AndAlso _
192          dealersTotal = 21 Then
193          GameOver(GameStatus.PUSH)
194
195       ' if dealer has 21, dealer wins
196       ElseIf dealersTotal = 21 Then
197          GameOver(GameStatus.LOSE)
198
199       ' if player has 21, the player has blackjack
200       ElseIf playersTotal = 21 Then
201          GameOver(GameStatus.BLACKJACK)
202       End If
203
204       playerCard = 2
205       dealerCard = 13
206
207 End Sub ' cmdDeal_Click
208
209    ' displays card represented by card value in
210    ' PictureBox with number card
211 Public Sub DisplayCard(ByVal card As Integer, _
212       ByVal cardValue As String)
213

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 5 of 9).



1062 ASP .NET and Web Services Chapter 21

214   ' retrieve appropriate PictureBox from ArrayList
215       Dim displayBox As PictureBox = _
216          CType(cardBoxes(card), PictureBox)
217
218       ' if String representing card is empty,
219       ' set displayBox to display back of card
220       If cardValue = "" Then        
221          displayBox.Image = _
222             Image.FromFile("blackjack_images\\cardback.png")
223          Return
224       End If
225
226       ' retrieve face value of card from cardValue
227       Dim faceNumber As Integer = Int32.Parse( _
228          cardValue.Substring(0, cardValue.IndexOf(" ")))
229
230       Dim face As String = faceNumber.ToString()
231
232       ' retrieve the suit of the card from cardValue
233       Dim suit As String = cardValue.Substring( _
234          cardValue.IndexOf(" ") + 1)
235
236       Dim suitLetter As Char
237
238   ' determine if suit is other then clubs
239       Select Case (Convert.ToInt32(suit))
240          Case 0 ' suit is clubs
241             suitLetter = "c"
242          Case 1 ' suit is diamonds
243             suitLetter = "d"
244          Case 2 ' suit is hearts
245             suitLetter = "h"
246          Case Else 'suit is spades 
247             suitLetter = "s"
248       End Select
249
250       ' set displayBox to display appropriate image
251       displayBox.Image = Image.FromFile( _
252          "blackjack_images\\" & face & suitLetter & ".png")
253
254 End Sub ' DisplayCard
255
256    ' displays all player cards and shows 
257    ' appropriate game status message
258 Public Sub GameOver(ByVal winner As GameStatus)
259
260       Dim tab As Char() = {vbTab}
261       Dim cards As String() = dealersCards.Split(tab)
262       Dim i As Integer
263
264       For i = 0 To cards.Length - 1
265          DisplayCard(i + 11, cards(i))
266       Next

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 6 of 9).



Chapter 21 ASP .NET and Web Services 1063

267
268       ' push
269       If winner = GameStatus.PUSH Then
270          pbStatus.Image = _
271             Image.FromFile("blackjack_images\\tie.png")
272
273       ' player loses
274       ElseIf winner = GameStatus.LOSE Then
275          pbStatus.Image = _
276             Image.FromFile("blackjack_images\\lose.png")
277
278       ' player has blackjack
279       ElseIf winner = GameStatus.BLACKJACK Then
280          pbStatus.Image = _
281             Image.FromFile("blackjack_images\\blackjack.png")
282
283       ' player wins
284       Else
285          pbStatus.Image = _
286             Image.FromFile("blackjack_images\\win.png")
287       End If
288
289       cmdStay.Enabled = False
290       cmdHit.Enabled = False
291       cmdDeal.Enabled = True
292
293  End Sub ' GameOver
294
295 End Class ' Blackjack

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 7 of 9).



1064 ASP .NET and Web Services Chapter 21

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 8 of 9).



Chapter 21 ASP .NET and Web Services 1065

Previously we mentioned that the client must provide a way to accept any cookies cre-
ated by the Web service to identify users. Line 44 in the constructor creates a new Cook-
ieContainer object for the CookieContainer property of dealer. Class
CookieContainer (defined in namespace System.Net) acts as a storage space for
an object of the HttpCookie class. Creating the CookieContainer allows the Web
service to maintain a session state for this client. This CookieContainer contains a
Cookie with a unique identifier that the server can use to recognize the client when the
client makes future requests. By default, the CookieContainer is Nothing, and a
new Session object is created by the Web Service for each request.

Method GameOver (line 258–293) displays all the dealer’s cards (many of which are
face-down during the game) and shows the appropriate message in the status Pic-
tureBox. Method GameOver receives as an argument a member of the GameStatus
enumeration (defined in lines 29–34). The enumeration represents whether the player tied,
lost or won the game; its four members are: PUSH, LOSE, WIN and BLACKJACK.

When the player clicks the Deal button (event handler on lines 150–207), all the Pic-
tureBoxes are cleared, the deck is shuffled and the player and dealer receive two cards
each. If both obtain scores of 21, method GameOver is called and is passed
GameStatus.PUSH. If only the player has 21 after the first two cards are dealt,
GameOver is called and is passed GameStatus.BLACKJACK. If only the dealer has 21,
method GameOver is called and is passed GameStatus.LOSE.

Fig. 21.15 Blackjack game that uses the Blackjack Web service (part 9 of 9).



1066 ASP .NET and Web Services Chapter 21

If GameOver is not called, the player can take additional cards by clicking the Hit
button (event handler on line 123–147). Each time a player clicks HIT, the player is dealt
one card, which is displayed in the GUI. If the player exceeds 21, the game is over, and the
player loses. If the player has exactly 21, the player is not allowed to take any more cards.

Players can click the Stay button to indicate that they do not want to risk being dealt
another card. In the event handler for this event (lines 78–84), all the Hit and Stay buttons
are disabled, and method DealerPlay is called. This method (lines 87–120) causes the
dealer to keep taking cards until the dealer’s hand is worth 17 or more. If the dealer exceeds
21, the player wins; otherwise, the values of the hands are compared, and GameOver is
called with the appropriate argument.

Method DisplayCard (lines 211–254) retrieves the appropriate card image. It takes
as arguments an integer representing the index of the PictureBox in the ArrayList
that must have its image set and a String representing the card. An empty String indi-
cates that we wish to display the back of a card; otherwise, the program extracts the face
and suit from the String and uses this information to find the correct image. The
Select Case statement (lines 239–248) converts the number representing the suit into
an integer and assigns the appropriate character to suitLetter (c for Clubs, d for Dia-
monds, h for Hearts and s for Spades). The character suitLetter is used to complete
the image’s file name.

21.6 Using Web Forms and Web Services
In the previous examples, we have accessed Web services from Windows applications.
However, we can just as easily use them in Web applications. Because Web-based busi-
nesses are becoming more and more prevalent, it often is more practical for programmers
to design Web services as part of Web applications. Figure 21.16 presents an airline reser-
vation Web service that receives information regarding the type of seat the customer wishes
to reserve and then makes a reservation if such a seat is available.

1 ' Fig. 21.16: Reservation.asmx.vb
2 ' Airline reservation Web Service.
3
4 Imports System
5 Imports System.Data
6 Imports System.Diagnostics
7 Imports System.Web
8 Imports System.Web.Services
9 Imports System.Data.OleDb

10
11 ' performs reservation of a seat
12 <WebService(Namespace:="http://www.deitel.com/", Description := _
13 "Service that enables a user to reserve a seat on a plane.")> _
14 Public Class Reservation
15 Inherits System.Web.Services.WebService
16
17 Friend WithEvents oleDbDataAdapter1 As _
18       System.Data.OleDb.OleDbDataAdapter

Fig. 21.16 Airline reservation Web service (part 1 of 3).



Chapter 21 ASP .NET and Web Services 1067

19
20 Friend WithEvents oleDbDeleteCommand1 As _
21       System.Data.OleDb.OleDbCommand
22
23 Friend WithEvents oleDbConnection1 As _
24       System.Data.OleDb.OleDbConnection
25
26    Friend WithEvents oleDbInsertCommand1 As _
27       System.Data.OleDb.OleDbCommand
28
29  Friend WithEvents oleDbSelectCommand1 As _
30       System.Data.OleDb.OleDbCommand
31
32   Friend WithEvents oleDbUpdateCommand1 As _
33       System.Data.OleDb.OleDbCommand
34
35    ' Visual Studio .NET generated code
36
37 ' checks database to determine if matching seat is available
38    <WebMethod(Description := "Method to reserve a seat.")> _
39    Public Function Reserve(ByVal seatType As String, _
40       ByVal classType As String) As Boolean
41
42       ' try database connection
43       Try
44          Dim dataReader As OleDbDataReader
45
46          ' open database connection
47          oleDbConnection1.Open()
48
49          ' set and execute SQL query
50          oleDbDataAdapter1.SelectCommand.CommandText = _
51             "SELECT Number FROM Seats WHERE Type = '" & _
52             seatType & "' AND Class = '" & classType & _
53             "' AND Taken = '0'"
54          dataReader = _
55             oleDbDataAdapter1.SelectCommand.ExecuteReader()
56
57       ' if there were results, seat is available
58          If dataReader.Read() Then
59
60             Dim seatNumber As String = dataReader.GetString(0)
61             dataReader.Close()
62
63             ' update the first available seat to be taken
64             oleDbDataAdapter1.UpdateCommand.CommandText = _
65                "Update Seats Set Taken = '1' WHERE Number = '" _
66                & seatNumber & "'"
67
68             oleDbDataAdapter1.UpdateCommand.ExecuteNonQuery()
69
70             Return True
71          End If

Fig. 21.16 Airline reservation Web service (part 2 of 3).



1068 ASP .NET and Web Services Chapter 21

The airline reservation Web service has a single WebMethod—Reserve (line 38–
85)—which searches its seat database to locate a seat matching a user’s request. If it finds
an appropriate seat, Reserve updates the database, makes the reservation, and returns
True; otherwise, no reservation is made, and the method returns False.

Reserve takes two arguments—a String representing the desired seat type (the
choices are window, middle and aisle) and a String representing the desired class type
(the choices are economy and first class). Our database contains four columns: The seat
number, the seat type, the class type and a column containing either 0 or 1 to indicate
whether the seat is taken. Lines 50–53 define an SQL command that retrieves the number
of available seats matching the requested seat and class type. The statement in lines 54–55
executes the query. If the result of the query is not empty, the application reserves the first
seat number that the query returns. The database is updated with an UPDATE command,
and Reserve returns True, indicating that the reservation was successful. If the result of
the SELECT query is not successful, Reserve returns False, indicating that no seats
available matched the request.

Earlier in the chapter, we displayed a Web service in design view (Fig. 21.7), and we
explained that design view allows the programmer to add components to a Web service in
a visual manner. In our airline reservation Web service (Fig. 21.16), we used various data
components. Figure 21.17 shows these components in design view. Notice that it is easier
to drop these components into our Web service using the Toolbox rather than typing the
equivalent code.

Figure 21.18 presents the ASPX listing for the Web Form through which users can
select seat types. This page allows users to reserve a seat on the basis of its class and loca-
tion in a row of seats. The page then uses the airline-reservation Web service to carry out
users’ requests. If the database request is not successful, the user is instructed to modify the
request and try again.

72
73          dataReader.Close()
74
75       Catch exception As OleDbException ' if connection problem
76          Return False
77
78       Finally
79          oleDbConnection1.Close()
80       End Try
81
82       ' no seat was reserved
83       Return False
84
85 End Function ' Reserve
86
87 End Class ' Reservation

Fig. 21.16 Airline reservation Web service (part 3 of 3).



Chapter 21 ASP .NET and Web Services 1069

Fig. 21.17 Airline Web Service in design view.

1 <%-- Fig. 21.18: TicketReservation.aspx                   --%>
2 <%-- A Web Form to allow users to select the kind of seat --%>
3 <%-- they wish to reserve.                                --%>
4
5 <%@ Page Language="vb" AutoEventWireup="false"
6    Codebehind="TicketReservation.aspx.vb"
7    Inherits="MakeReservation.TicketReservation"%>
8
9 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

10 <HTML>
11    <HEAD>
12      <title>Ticket Reservation</title>
13      <meta content="Microsoft Visual Studio.NET 7.0" name=GENERATOR>
14      <meta content="Visual Basic 7.0" name=CODE_LANGUAGE>
15      <meta content=JavaScript name=vs_defaultClientScript>
16      <meta name=vs_targetSchema content=
17         http://schemas.microsoft.com/intellisense/ie5>
18    </HEAD>
19    <body MS_POSITIONING="GridLayout">
20      
21       <form id=Form1 method=post runat="server">
22
23          <asp:DropDownList id=seatList style="Z-INDEX: 105; 
24            LEFT: 23px; POSITION: absolute; TOP: 43px" 
25             runat="server" Width="105px" Height="22px">
26              
27             <asp:ListItem Value="Aisle">Aisle</asp:ListItem>
28             <asp:ListItem Value="Middle">Middle</asp:ListItem>
29             <asp:ListItem Value="Window">Window</asp:ListItem>
30
31          </asp:DropDownList>
32
33          <asp:DropDownList id=classList style="Z-INDEX: 102; 
34             LEFT: 145px; POSITION: absolute; TOP: 43px" 
35             runat="server" Width="98px" Height="22px">
36              

Fig. 21.18 ASPX file that takes reservation information (part 1 of 2).



1070 ASP .NET and Web Services Chapter 21

This page defines two DropDownList objects and a Button. One DropDown-
List displays all the seat types from which users can select. The second lists choices for
the class type. Users click the Button, named reserveButton, to submit requests after
making selections from the DropDownLists. The code-behind file (Fig. 21.19) attaches
an event handler for this button.

37            <asp:ListItem Value="Economy">Economy</asp:ListItem>
38            <asp:ListItem Value="First">First</asp:ListItem>
39
40          </asp:DropDownList>
41
42          <asp:Button id=reserveButton style="Z-INDEX: 103; 
43             LEFT: 21px; POSITION: absolute; TOP: 83px"
44             runat="server" Text="Reserve">
45          </asp:Button>
46
47          <asp:Label id=Label1 style="Z-INDEX: 104; 
48             LEFT: 17px; POSITION: absolute; TOP: 13px"
49             runat="server">Please select the type of seat and 
50             class you wish to reserve:
51          </asp:Label>
52
53       </form>
54    </body>
55 </HTML>

1 ' Fig. 21.19: TicketReservation.aspx.vb
2 ' Making a reservation using a Web Service.
3
4 Imports System
5 Imports System.Collections
6 Imports System.ComponentModel
7 Imports System.Data
8 Imports System.Drawing
9 Imports System.Web

10 Imports System.Web.SessionState
11 Imports System.Web.UI
12 Imports System.Web.UI.WebControls
13 Imports System.Web.UI.HtmlControls
14
15 ' allows visitors to select seat type to reserve, and
16 ' then make the reservation
17 Public Class TicketReservation
18 Inherits System.Web.UI.Page
19
20 Protected WithEvents Label1 As Label
21 Protected WithEvents reserveButton As Button
22   Protected WithEvents classList As DropDownList
23    Protected WithEvents seatList As DropDownList

Fig. 21.19 Code-behind file for the reservation page (part 1 of 3).

Fig. 21.18 ASPX file that takes reservation information (part 2 of 2).



Chapter 21 ASP .NET and Web Services 1071

24    Private Agent As New localhost.Reservation()
25
26  ' Visual Studio .NET generated code
27
28 Private Sub Page_Load(ByVal sender As System.Object, _
29       ByVal e As System.EventArgs) Handles MyBase.Load
30      
31       If IsPostBack
32          classList.Visible = False
33          seatList.Visible = False
34          reserveButton.Visible = False
35          Label1.Visible = False
36       End If
37 End Sub
38
39    ' calls Web Service to try to reserve the specified seat
40 Private Sub reserveButton_Click(ByVal sender As _
41       System.Object, ByVal e As System.EventArgs) _
42       Handles reserveButton.Click
43
44       ' if WebMethod returned true, signal success
45       If Agent.Reserve(seatList.SelectedItem.Text, _
46          classList.SelectedItem.Text.ToString) Then
47
48          Response.Write("Your reservation has been made." _
49             & "  Thank you.")
50
51          ' WebMethod returned False, so signal failure
52       Else
53          Response.Write("This seat is not available, " & _
54             "please hit the back button on your browser " & _
55             "and try again.")
56       End If
57
58 End Sub ' reserveButton_Click
59
60 End Class ' TicketReservation

Fig. 21.19 Code-behind file for the reservation page (part 2 of 3).



1072 ASP .NET and Web Services Chapter 21

Line 24 creates a Reservation object. When the user clicks Reserve, the
reserveButton_Click event handler executes, and the page reloads. The event han-
dler (lines 46–56) calls the Web service’s Reserve method and passes it the selected seat
and class type as arguments. If Reserve returns True, the application displays a message
thanking the user for making a reservation; otherwise, the user is notified that the type of
seat requested is not available, and the user is instructed to try again. 

21.7 Case Study: Temperature Information Application
This case study discusses both a Web service that presents weather forecasts for various cit-
ies around the United States and a Windows application that employs the Web service. The
Web service uses networking capabilities to display the forecasts; it parses a Web page con-
taining the required information and then extracts weather forecast information.

First, we present Web service TemperatureServer, in Fig. 21.20. This Web ser-
vice reads a Web page and collects information about the temperature and weather condi-
tions in an assortment of American cities. [Note: At the time of publication, this program
runs in the manner that we depict. However, if changes are made to the Web page from

Fig. 21.19 Code-behind file for the reservation page (part 3 of 3).



Chapter 21 ASP .NET and Web Services 1073

which the program retrieves data, the program might work differently or not at all. Please
check our Web site at www.deitel.com for updates.]

1 ' Fig. 21.20: TemperatureServer.asmx.vb
2 ' TemperatureServer Web Service that extract weather 
3 ' information from a Web page.
4
5 Imports System
6 Imports System.Collections
7 Imports System.ComponentModel
8 Imports System.Data
9 Imports System.Diagnostics

10 Imports System.Web
11 Imports System.Web.Services
12 Imports System.IO
13 Imports System.Net
14
15 <WebService(Namespace:="http://www.deitel.com", Description := _
16 "A Web service that provides information from the " _
17    & "National Weather Service.")> _
18 Public Class TemperatureServer
19 Inherits System.Web.Services.WebService
20
21 Dim cityList As ArrayList
22
23  Public Sub New()
24       MyBase.New()
25
26       'This call is required by the Web Services Designer.
27       InitializeComponent()
28 End Sub
29
30    ' Visual Studio .Net generated code
31
32    <WebMethod(EnableSession := true, Description := "Method to " _
33       & "read information from the National Weather Service.")> _
34 Public Sub UpdateWeatherConditions()
35       ' create a WebClient to get access to the web 
36       ' page
37       Dim myClient As New WebClient()
38       Dim cityList As New ArrayList()
39
40       ' get a StreamReader for response so we can read
41       ' the page
42       Dim input As New StreamReader( _
43          myClient.OpenRead( _
44          "http://iwin.nws.noaa.gov/iwin/us/" & _
45          "traveler.html"))
46
47       Dim separator As String = "TAV12"
48
49       'locate first horizontal line on Web page

Fig. 21.20 TemperatureServer Web service (part 1 of 3).



1074 ASP .NET and Web Services Chapter 21

50       While Not input.ReadLine().StartsWith( _
51          separator)
52          ' do nothing
53       End While
54
55       ' s1 is the day format and s2 is the night format
56       Dim dayFormat As String = _
57          "CITY            WEA     HI/LO   WEA     HI/LO"
58       Dim nightFormat As String = _
59          "CITY            WEA     LO/HI   WEA     LO/HI"
60
61       Dim inputLine As String = ""
62
63     ' locate header that begins weather information
64       Do
65          inputLine = input.ReadLine()
66       Loop While (Not inputLine.Equals(dayFormat)) AndAlso _
67          (Not inputLine.Equals(nightFormat))
68
69     ' get first city's info
70       inputLine = input.ReadLine()
71
72       While inputLine.Length > 28
73
74          ' create WeatherInfo object for city
75          Dim cityWeather As New CityWeather( _
76                inputLine.Substring(0, 16), _
77                inputLine.Substring(16, 7), _
78                inputLine.Substring(23, 7))
79
80          ' add to List
81          cityList.Add(cityWeather)
82
83          ' get next city's info
84          inputLine = input.ReadLine()
85       End While
86
87       ' close connection to NWS server
88       input.Close()
89
90       ' add city list to user session
91       Session.Add("cityList", cityList)
92
93 End Sub 'UpdateWeatherConditions
94
95    <WebMethod(EnableSession := true, Description := "Method to " _
96        & "retrieve a list of cities.")> _
97    Public Function Cities() As String()
98
99       Dim cityList As ArrayList = _ 
100          Ctype(Session("cityList"), ArrayList)
101
102       Dim currentCities(cityList.Count-1) As String

Fig. 21.20 TemperatureServer Web service (part 2 of 3).



Chapter 21 ASP .NET and Web Services 1075

103       Dim i As Integer
104
105       ' retrieve the names of all cities
106       For i = 0 To cityList.Count - 1
107          Dim weather As CityWeather = _
108             CType(cityList(i), CityWeather)
109          currentCities(i) = weather.CityName
110       Next
111
112       Return currentCities
113  End Function ' Cities
114
115    <WebMethod(EnableSession := true, Description := "Method to " _
116        & "retrieve a list of weather descriptions for cities.")> _
117    Public Function Descriptions() As String()
118
119       Dim cityList As ArrayList = _ 
120          Ctype(Session("cityList"), ArrayList)
121
122       Dim cityDescriptions(cityList.Count-1) As String
123       Dim i As Integer
124      ' retrieve weather descriptions of all cities
125       For i = 0 To cityList.Count - 1
126
127          Dim weather As CityWeather = _
128             CType(cityList(i), CityWeather)
129          cityDescriptions(i) = weather.Description
130       Next
131
132       Return cityDescriptions
133 End Function ' Descriptions
134
135    <WebMethod(EnableSession := true, Description := "Method to " _
136        & "retrieve a list of temperatures for a list of cities.")> _
137 Public Function Temperatures() As String()
138
139       Dim cityList As ArrayList = _ 
140          Ctype(Session("cityList"), ArrayList)
141
142       Dim cityTemperatures(cityList.Count-1) As String
143       Dim i As Integer
144
145   ' retrieve temperatures for all cities
146       For i = 0 To cityList.Count - 1
147
148          Dim weather As CityWeather = _
149             CType(cityList(i), CityWeather)
150          cityTemperatures(i) = weather.Temperature
151       Next
152
153       Return cityTemperatures
154  End Function ' Temperatures
155 End Class ' TemperatureServer

Fig. 21.20 TemperatureServer Web service (part 3 of 3).



1076 ASP .NET and Web Services Chapter 21

Method UpdateWeatherConditions, which gathers weather data from a Web
page, is the first WebMethod that a client must call from the Web service. The service also
provides the WebMethods Cities, Descriptions and Temperatures, which
return different kinds of forecast-related information.

When UpdateWeatherConditions (line 32–93) is invoked, the method connects
to a Web site containing the traveler’s forecasts from the National Weather Service (NWS).
Line 37 creates a WebClient object, which we use because the WebClient class is
designed for interaction with a source specified by a URL. In this case, the URL for the
NWS page is http://iwin.nws.noaa.gov/iwin/us/traveler.html. Lines
43–54 call WebClient method OpenRead; the method retrieves a Stream from the
URL containing the weather information and then uses this Stream to create a Stream-
Reader object. Using a StreamReader object, the program can read the Web page’s
HTML markup line-by-line.

The section of the Web page in which we are interested starts with the String
“TAV12.” Therefore, lines 50–53 read the HTML markup one line at a time until this
String is encountered. Once the string “TAV12” is reached, the Do/Loop While struc-
ture (lines 64–67) continues to read the page one line at a time until it finds the header line
(i.e., the line at the beginning of the forecast table). This line starts with either day-
Format, indicating day format, or nightFormat, indicating night format. Because the
line could be in either format, the structure checks for both. Line 70 reads the next line from
the page, which is the first line containing temperature information.

The While structure (lines 72–85) creates a new CityWeather object to represent
the current city. It parses the String containing the current weather data, separating the
city name, the weather condition and the temperature. The CityWeather object is added
to cityList (an ArrayList that contains a list of the cities, their descriptions and their
current temperatures); then, the next line from the page is read and is stored in inputLine
for the next iteration. This process continues until the length of the String read from the
Web page is less than or equal to 28. This signals the end of the temperature section. Line
91 adds the ArrayList cityList to the Session object so that the values are main-
tained between method calls.

Method Cities (line 95–113) creates an array of Strings that can contain as many
Strings as there are elements in cityList. Lines 99–100 obtain the list of cities from
the Session object. Lines 106–110 iterate through each CityWeather object in cit-
yList and insert the city name into the array that is returned in line 109. Methods
Descriptions (lines 115–133) and Temperatures (lines 135–154) behave simi-
larly, except that they return weather descriptions and temperatures, respectively.

Figure 21.21 contains the code listing for the CityWeather class. The constructor
takes three arguments: The city’s name, the weather description and the current tempera-
ture. The class provides the properties CityName, Temperature and Description,
so that these values can be retrieved by the Web service.

1 ' Fig. 21.21: CityWeather.vb
2 ' Class representing the weather information for one city.
3
4 Imports System

Fig. 21.21 Class that stores weather information about a city (part 1 of 2).



Chapter 21 ASP .NET and Web Services 1077

The Windows application in Fig. 21.22 uses the TemperatureServer Web service
to display weather information in a user-friendly format.

5
6 Public Class CityWeather
7
8 Private mCityName, mTemperature, mDescription As String
9

10 Public Sub New(ByVal city As String, ByVal description _
11       As String, ByVal temperature As String)
12       mCityName = city
13       mDescription = description
14       mTemperature = temperature
15 End Sub
16
17    ' name of city
18 Public ReadOnly Property CityName() As String
19       Get
20          Return mCityName
21       End Get
22 End Property
23
24    ' temperature of city
25 Public ReadOnly Property Temperature() As String
26       Get
27          Return mTemperature
28       End Get
29 End Property
30
31    ' description of forecast
32 Public ReadOnly Property Description() As String
33       Get
34          Return mDescription
35       End Get
36 End Property
37 End Class

1 ' Fig. 21.22: Client.vb
2 ' Class that displays weather information which it receives
3 ' from a Web Service.
4
5 Imports System
6 Imports System.Drawing
7 Imports System.Collections
8 Imports System.ComponentModel
9 Imports System.Windows.Forms

10 Imports System.Net
11
12 Public Class FrmClient
13 Inherits System.Windows.Forms.Form

Fig. 21.22 Receiving temperature and weather data from a Web service (part 1 of 4).

Fig. 21.21 Class that stores weather information about a city (part 2 of 2).



1078 ASP .NET and Web Services Chapter 21

14
15 Public Sub New()
16       MyBase.New()
17
18       ' This call is required by the Windows Form Designer.
19       InitializeComponent()
20
21       Dim client As New localhost.TemperatureServer()
22       client.CookieContainer = New CookieContainer()
23       client.UpdateWeatherConditions()
24
25       Dim cities As String() = client.Cities()
26       Dim descriptions As String() = client.Descriptions()
27       Dim temperatures As String() = client.Temperatures()
28
29       label35.BackgroundImage = New Bitmap( _
30          "images/header.jpg")
31       label36.BackgroundImage = New Bitmap( _
32          "images/header.jpg")
33
34    ' create Hashtable and populate with every label
35       Dim cityLabels As New Hashtable()
36       cityLabels.Add(1, label1)
37       cityLabels.Add(2, label2)
38       cityLabels.Add(3, label3)
39       cityLabels.Add(4, label4)
40       cityLabels.Add(5, label5)
41       cityLabels.Add(6, label6)
42       cityLabels.Add(7, label7)
43       cityLabels.Add(8, label8)
44       cityLabels.Add(9, label9)
45       cityLabels.Add(10, label10)
46       cityLabels.Add(11, label11)
47       cityLabels.Add(12, label12)
48       cityLabels.Add(13, label13)
49       cityLabels.Add(14, label14)
50       cityLabels.Add(15, label15)
51       cityLabels.Add(16, label16)
52       cityLabels.Add(17, label17)
53       cityLabels.Add(18, label18)
54       cityLabels.Add(19, label19)
55       cityLabels.Add(20, label20)
56       cityLabels.Add(21, label21)
57       cityLabels.Add(22, label22)
58       cityLabels.Add(23, label23)
59       cityLabels.Add(24, label24)
60       cityLabels.Add(25, label25)
61       cityLabels.Add(26, label26)
62       cityLabels.Add(27, label27)
63       cityLabels.Add(28, label28)
64       cityLabels.Add(29, label29)
65       cityLabels.Add(30, label30)
66       cityLabels.Add(31, label31)

Fig. 21.22 Receiving temperature and weather data from a Web service (part 2 of 4).



Chapter 21 ASP .NET and Web Services 1079

67       cityLabels.Add(32, label32)
68       cityLabels.Add(33, label33)
69       cityLabels.Add(34, label34)
70
71       ' create Hashtable and populate with all weather 
72       ' conditions
73       Dim weather As New Hashtable()
74       weather.Add("SUNNY", "sunny")
75       weather.Add("PTCLDY", "pcloudy")
76       weather.Add("CLOUDY", "mcloudy")
77       weather.Add("MOCLDY", "mcloudy")
78       weather.Add("TSTRMS", "rain")
79       weather.Add("RAIN", "rain")
80       weather.Add("SNOW", "snow")
81       weather.Add("VRYHOT", "vryhot")
82       weather.Add("FAIR", "fair")
83       weather.Add("RNSNOW", "rnsnow")
84       weather.Add("SHWRS", "showers")
85       weather.Add("WINDY", "windy")
86       weather.Add("NOINFO", "noinfo")
87       weather.Add("MISG", "noinfo")
88       weather.Add("DRZL", "rain")
89       weather.Add("HAZE", "noinfo")
90       weather.Add("SMOKE", "mcloudy")
91       weather.Add("FOG", "mcloudy")
92
93       Dim i As Integer
94       Dim background As New Bitmap("images/back.jpg")
95       Dim font As New Font("Courier New", 8, _
96          FontStyle.Bold)
97
98    ' for every city
99       For i = 0 To cities.Length - 1
100
101          ' use Hashtable to find the next Label
102          Dim currentCity As Label = _
103             CType(cityLabels(i + 1), Label)
104
105          ' set current Label's image to the image 
106          ' corresponding to its weather condition - 
107          ' find correct image name in Hashtable weather
108          currentCity.Image = New Bitmap("images/" & _
109             weather(descriptions(i).Trim()).ToString & ".jpg")
110
111          ' set background image, font and forecolor 
112          ' of Label
113          currentCity.BackgroundImage = background
114          currentCity.Font = font
115          currentCity.ForeColor = Color.White
116

Fig. 21.22 Receiving temperature and weather data from a Web service (part 3 of 4).



1080 ASP .NET and Web Services Chapter 21

TemperatureClient (Fig. 21.22) is a Windows application that uses the Tem-
peratureServer Web service to display weather information in a graphical and easy-
to-read manner. This application consists of 36 Labels, placed in two columns. Each
Label displays the weather information for a different city.

117          ' set label's text to city name
118          currentCity.Text = vbCrLf & cities(i) & " " & _
119             temperatures(i)
120       Next
121
122 End Sub ' New
123
124 ' Visual Studio .NET generated code
125 End Class ' Client

Fig. 21.22 Receiving temperature and weather data from a Web service (part 4 of 4).



Chapter 21 ASP .NET and Web Services 1081

Lines 21–23 of the constructor instantiate a TemperatureServer object, create a
new CookieContainer object and update the weather data by calling method
UpdateWeatherConditions. Lines 25–27 call TemperatureServer methods
Cities, Descriptions and Temperatures to retrieve the city’s weather and
description information. Because the application presents weather data for so many cities,
we must establish a way to organize the information in the Labels and to ensure that each
weather description is accompanied by an appropriate image. To address these concerns,
the program uses class Hashtable (discussed further in Chapter 24, Data Structures and
Collections) to store all the Labels, the weather descriptions and the names of their cor-
responding images. A Hashtable stores key–value pairs, in which both the key and the
value can be any type of object. Method Add adds key-value pairs to a Hashtable. The
class also provides an indexer to return the key value on which the Hashtable is indexed.
Line 35 creates a Hashtable object, and lines 36–69 add the Labels to the Hash-
table, using the numbers 1 through 36 as keys. Then, line 73 creates a second Hash-
table object (weather) to contain pairs of weather conditions and the images associated
with those conditions. Note that a given weather description does not necessarily corre-
spond to the name of the PNG file containing the correct image. For example, both
“TSTRMS” and “RAIN” weather conditions use the rain.png file.

Lines 74–91 set each Label so that it contains a city name, the current temperature in
the city and an image corresponding to the weather condition for that city. Line 103 uses
the Hashtable indexer to retrieve the next Label by passing as an argument the current
value of i plus 1. We do this because the Hashtable indexer begins at 0, despite the fact
that both the labels and the Hashtable keys are numbered from 1–36.

Lines 108–109 set the Label’s image to the PNG image that corresponds to the city’s
weather condition. The application does this by retrieving the name of the PNG image from
the weather Hashtable. The program eliminates any spaces in the description
String by calling String method Trim. Lines 113–119 set several Labels’ proper-
ties to achieve the visual effect seen in the output. For each label, we specify a blue-and-
black background image (line 113). Lines 118–119 set each label’s text so that it displays
the correct information for each city (i.e., the city name and temperature information).

21.8 User-Defined Types in Web Services
Notice that the Web service discussed in the previous section returns arrays of Strings.
It would be much more convenient if TemperatureServer could return an array of
CityWeather objects, instead of an array of Strings. Fortunately, it is possible to de-
fine and use user-defined types in a Web service. These types can be passed into or returned
from Web-service methods. Web-service clients also can use user-defined types, because
the proxy class created for the client contains these type definitions. There are, however,
some subtleties to keep in mind when using user-defined types in Web services; we point
these out as we encounter them in the next example.

The case study in this section presents a math tutoring program. The Web service gen-
erates random equations of type Equation. The client inputs information about the kind
of mathematical example that the user wants (addition, subtraction or multiplication) and
the skill level of the user (1 creates equations using 1-digit numbers, 2 for more difficult
equations, involving 2 digits, and 3 for the most difficult equations, containing 3-digit num-
bers); it then generates an equation consisting of random numbers that have the proper



1082 ASP .NET and Web Services Chapter 21

number of digits. The client receives the Equation and uses a Windows form to display
the sample questions to the user.

We mentioned earlier that all data types passed to and from Web services must be sup-
ported by SOAP. How, then, can SOAP support a type that is not even created yet? In Chapter
17, Files and Streams, we discussed the serializing of data types, which enables them to be
written to files. Similarly, custom types that are sent to or from a Web service are serialized,
so that they can be passed in XML format. This process is referred to as XML serialization.

In this example, we define class Equation (Fig. 21.23). This class is included in the
Web-service project and contains fields, properties and methods. Before explaining class
Equation, we briefly discuss the process of returning objects from Web-service
methods. Any object returned by a Web-service method must have a default constructor.
Although all objects can be instantiated by a default Public constructor (even if this con-
structor is not defined explicitly), a class returned from a Web service must have an explic-
itly defined constructor, even if its body is empty.

1 ' Fig. 21.23: Equation.vb
2 ' Class Equation that contains
3 ' information about an equation.
4
5 Imports System
6
7 Public Class Equation
8
9 Private mLeft, mRight, mResult As Integer

10 Private mOperation As String
11
12  ' required default constructor
13 Public Sub New()
14       Me.New(0, 0, "+")
15 End Sub ' New
16
17  ' constructor for class Equation
18 Public Sub New(ByVal leftValue As Integer, _
19       ByVal rightValue As Integer, _
20       ByVal operationType As String)
21
22       mLeft = leftValue
23       mRight = rightValue
24       mOperation = operationType
25
26       Select Case operationType
27
28          Case "+" ' addition operator
29             mResult = mLeft + mRight
30          Case "-" ' subtraction operator
31             mResult = mLeft - mRight
32          Case "*" ' multiplication operator
33             mResult = mLeft * mRight
34       End Select
35 End Sub ' New

Fig. 21.23 Class that stores equation information (part 1 of 3).



Chapter 21 ASP .NET and Web Services 1083

36
37 Public Overrides Function ToString() As String
38
39       Return Left.ToString() & " " & mOperation & " " & _
40          mRight.ToString() & " = " & mResult.ToString()
41 End Function ' ToString
42
43    ' readonly property returning a string representing
44    ' left-hand side
45 Public Property LeftHandSide() As String
46       Get
47          Return mLeft.ToString() & " " & mOperation & " " & _
48             mRight.ToString()
49       End Get
50       Set(ByVal Value As String)
51       End Set
52    End Property
53
54    ' readonly property returning a string representing
55    ' the right hand side
56 Public Property RightHandSide() As String
57       Get
58          Return mResult.ToString()
59       End Get
60       Set(ByVal Value As String)
61       End Set
62    End Property
63
64   ' left operand get and set property
65 Public Property Left() As Integer
66       Get
67          Return mLeft
68       End Get
69       Set(ByVal value As Integer)
70
71          mLeft = value
72       End Set
73 End Property
74
75  ' right operand get and set property
76 Public Property Right() As Integer
77       Get
78          Return mRight
79       End Get
80
81       Set(ByVal Value As Integer)
82          mRight = Value
83       End Set
84 End Property
85

Fig. 21.23 Class that stores equation information (part 2 of 3).



1084 ASP .NET and Web Services Chapter 21

Common Programming Error 21.3
Failure to define explicitly a Public constructor for a type being used in a Web service re-
sults in a runtime error. 21.3

A few additional requirements apply to custom types in Web services. Any variables
of our custom type that we wish to access during runtime must be declared Public. We
also must define both the Get and Set accessors of any properties that we wish to access
at run time. The Web service needs to have a way both to retrieve and to manipulate such
properties, because objects of the custom type will be converted into XML (when the
objects are serialized) then converted back to objects (when they are deserialized). During
serialization, the property value must be read (through the Get accessor); during deserial-
ization, the property value of the new object must be set (through the Set accessor). If only
one of the accessors is present, the client application will not have access to the property.

Common Programming Error 21.4
Defining only the Get or Set accessor of a property for a custom type being used in a Web
service results in a property that is inaccessible to the client. 21.4

Common Programming Error 21.5
Clients of a Web service can access only that service’s Public members. To allow access
to Private data, the programmer should provide Public properties. 21.5

Now, let us discuss class Equation (Fig. 21.23). Lines 18–35 define a constructor
that takes three arguments—two Integers representing the left and right operands and a
String that represents the algebraic operation to carry out. The constructor sets the
mLeft, mRight and mOperation fields, then calculates the appropriate result. The
default constructor (line 13–15) calls the other constructor and passes some default values.
We do not use the default constructor, but it must be defined in the program.

86    ' get and set property of result of applying
87    ' operation to left and right operands
88 Public Property Result() As Integer
89       Get
90          Return mResult
91       End Get
92       Set(ByVal Value As Integer)
93          mResult = Value
94       End Set
95    End Property
96
97    ' get and set property for the operation
98 Public Property Operation() As String
99       Get
100          Return mOperation
101       End Get
102       Set(ByVal Value As String)
103          Operation = Value
104       End Set
105    End Property
106 End Class 'Equation

Fig. 21.23 Class that stores equation information (part 3 of 3).



Chapter 21 ASP .NET and Web Services 1085

Class Equation defines properties LeftHandSide, RightHandSide, Left,
Right, Operation and Result. The program does not need to modify the values of
these properties, but an implementation for the Set accessor must be provided.
LeftHandSide returns a String representing everything to the left of the “=” sign, and
RightHandSide returns a String representing everything to the right of the “=” sign.
Left returns the Integer to the left of the operator (known as the left operand), and
Right returns the Integer to the right of the operator (known as the right operand).
Result returns the answer to the equation, and Operation returns the operator. The
program does not actually need the RightHandSide property, but we have chosen to
include it in case other clients choose to use it. Figure 21.24 presents the Equation-
Generator Web service that creates random, customized Equations.

1 ' Fig. 21.24: Generator.asmx.vb
2 ' Web Service to generate random equations based on the
3 ' operation and difficulty level.
4
5 Imports System
6 Imports System.Collections
7 Imports System.ComponentModel
8 Imports System.Data
9 Imports System.Diagnostics

10 Imports System.Web
11 Imports System.Web.Services
12
13 <WebService(Namespace:="http://www.deitel.com/", Description:= _
14 "Web service that generates a math equation.")> _
15 Public Class Generator
16 Inherits System.Web.Services.WebService
17
18 ' Visual Studio .NET generated code
19
20    <WebMethod(Description:="Method to generate a " _
21       & "math equation.")> _
22 Public Function GenerateEquation(ByVal operation As String, _
23       ByVal level As Integer) As Equation
24
25       ' find maximum and minimum number to be used
26       Dim maximum As Integer = Convert.ToInt32( _
27          Math.Pow(10, level))
28
29       Dim minimum As Integer = Convert.ToInt32( _
30          Math.Pow(10, level - 1))
31
32       Dim randomObject As New Random()
33
34       ' create equation consisting of two random numbers
35       ' between minimum and maximum parameters
36       Dim equation As New Equation( _
37          randomObject.Next(minimum, maximum), _
38          randomObject.Next(minimum, maximum), operation)
39

Fig. 21.24 Web service that generates random equations (part 1 of 2).



1086 ASP .NET and Web Services Chapter 21

Web service Generator contains only one method, GenerateEquation. This
method takes as arguments a String representing the operation we wish to perform and
an Integer representing the difficulty level. Figure 21.25 demonstrates the result of exe-
cuting a test call of this Web service. Notice that the return value from our Web service
method is XML. However, this example differs from previous ones in that the XML spec-
ifies the values for all Public properties and fields of the object that is being returned.
The return object has been serialized into XML. Our proxy class takes this return value and
deserializes it into an object that then is passed back to the client.

40       Return equation
41 End Function ' Generate Equation
42 End Class ' Generator

Fig. 21.25 Returning an object from a Web-service method.

Fig. 21.24 Web service that generates random equations (part 2 of 2).



Chapter 21 ASP .NET and Web Services 1087

Lines 26–30 define the lower and upper bounds for the random numbers that the
method generates. To set these limits, the program first calls Shared method Pow of class
Math—this method raises its first argument to the power of its second argument.
Integer maximum represents the upper bound for a randomly generated number. The
program raises 10 to the power of the specified level argument and then passes this value
as the upper bound. For instance, if level is 1, maximum is 10; if level is 2, minimum
is 100; and so on. Variable minimum’s value is determined by raising 10 to a power one
less than level. This calculates the smallest number with level digits. If level is 2,
min is 10; if level is 3, minimum is 100; and so on.

Lines 36–38 create a new Equation object. The program calls Random method
Next, which returns an Integer that is greater than or equal to a specified lower bound,
but less than a specified upper bound. This method generates a left operand value that is
greater than or equal to minimum but less than maximum (i.e., a number with level
digits). The right operand is another random number with the same characteristics. The
operation passed to the Equation constructor is the String operation that was
received by GenerateEquation. The new Equation object is returned.

Figure 21.26 lists the math-tutoring application that uses the Generator Web ser-
vice. The application calls Generator’s GenerateEquation method to create an
Equation object. The tutor then displays the left-hand side of the Equation and waits
for user input. In this example, the program accesses both class Generator and class
Equation from within the localhost namespace—both are placed in this namespace
when the proxy is generated.

The math-tutor application displays a question and waits for input. The default setting
for the difficulty level is 1, but the user can change this at any time by choosing a level from
among the bottom row of RadioButtons. Clicking any of the levels invokes its click
event handler (lines 78–94), which sets integer level to the level selected by the user.
Although the default setting for the question type is Addition, the user also can change this
at any time by selecting one of the top-row RadioButtons. Doing so invokes the radio-
button event handlers on lines 97–121, which set String operation so that it contains
the symbol corresponding to the user’s selection.

1 ' Fig. 21.26: Tutor.vb
2 ' Math Tutor program.
3
4 Public Class FrmTutor
5 Inherits System.Windows.Forms.Form
6
7 Friend WithEvents cmdGenerate As Button
8 Friend WithEvents cmdOk As Button
9

10 Friend WithEvents txtAnswer As TextBox
11 Friend WithEvents lblQuestion As Label
12
13 Friend WithEvents pnlOperations As Panel
14 Friend WithEvents pnlLevel As Panel

Fig. 21.26 Math-tutor application (part 1 of 4).



1088 ASP .NET and Web Services Chapter 21

15
16 ' select math operation
17 Friend WithEvents subtractRadio As RadioButton
18 Friend WithEvents addRadio As RadioButton
19 Friend WithEvents multiplyRadio As RadioButton
20
21    ' select question level radio buttons
22 Friend WithEvents levelOne As RadioButton
23 Friend WithEvents levelTwo As RadioButton
24 Friend WithEvents levelThree As RadioButton
25
26 Private operation As String = "+"
27 Private level As Integer = 1
28 Private equation As localhost.Equation
29 Private generator As New localhost.Generator()
30
31    ' Visual Studio .NET generated code
32
33    ' generates new equation on click event
34 Private Sub cmdGenerate_Click(ByVal sender As _
35       System.Object, ByVal e As System.EventArgs) _
36       Handles cmdGenerate.Click
37
38       ' generate equation using current operation
39       ' and level
40       equation = generator.GenerateEquation(operation, _
41          level)
42
43       ' display left-hand side of equation
44       lblQuestion.Text = equation.LeftHandSide
45
46       cmdOk.Enabled = True
47       txtAnswer.Enabled = True
48   End Sub ' cmdGenerate_Click
49
50  ' check user's answer
51 Private Sub cmdOk_Click(ByVal sender As _
52       System.Object, ByVal e As System.EventArgs) _
53       Handles cmdOk.Click
54
55       ' determine correct result from Equation object
56       Dim answer As Integer = equation.Result
57
58       If txtAnswer.Text = "" Then
59          Return
60       End If
61
62       ' get user's answer
63       Dim myAnswer As Integer = Int32.Parse( _
64          txtAnswer.Text)
65

Fig. 21.26 Math-tutor application (part 2 of 4).



Chapter 21 ASP .NET and Web Services 1089

66       ' test if user's answer is correct
67       If answer = myAnswer Then
68
69          lblQuestion.Text = ""
70          txtAnswer.Text = ""
71          cmdOk.Enabled = False
72          MessageBox.Show("Correct! Good job!")
73       Else
74          MessageBox.Show("Incorrect. Try again.")
75       End If
76 End Sub ' cmdOk_Click
77
78 Private Sub levelOne_Click(ByVal sender As Object, _
79       ByVal e As System.EventArgs) Handles levelOne.Click
80
81       level = 1
82 End Sub ' levelOne_Click
83
84 Private Sub levelTwo_Click(ByVal sender As Object, _
85       ByVal e As System.EventArgs) Handles levelTwo.Click
86
87       level = 2
88 End Sub ' levelTwo_Click
89
90 Private Sub levelThree_Click(ByVal sender As Object, _
91       ByVal e As System.EventArgs) Handles levelThree.Click
92
93       level = 3
94  End Sub ' levelThree_Click
95
96    ' set the add operation
97 Private Sub addRadio_Click(ByVal sender As Object, _
98       ByVal e As System.EventArgs) Handles addRadio.Click
99
100       operation = "+"
101       cmdGenerate.Text = "Generate " & addRadio.Text & _
102          " Example"
103 End Sub ' addRadio_Click
104
105 ' set the subtract operation
106 Private Sub subtractRadio_Click(ByVal sender As Object, _
107       ByVal e As System.EventArgs) Handles subtractRadio.Click
108
109       operation = "-"
110       cmdGenerate.Text = "Generate " & subtractRadio.Text & _
111          " Example"
112  End Sub ' subtractRadio_Click
113
114    ' set the multiply operation
115 Private Sub multiplyRadio_Click(ByVal sender As Object, _
116       ByVal e As System.EventArgs) Handles multiplyRadio.Click
117
118       operation = "*"

Fig. 21.26 Math-tutor application (part 3 of 4).



1090 ASP .NET and Web Services Chapter 21

Event handler cmdGenerate_Click (line 34–48) invokes Generator method
GenerateEquation. The left-hand side of the equation is displayed in lblQuestion
(line 44), and cmdOk is enabled so that the user can enter an answer.When the user clicks
OK, cmdOk_Click (line 51–76) checks whether the user provided the correct answer.

The last two chapters familiarized the user with the creation of Web applications and
Web services, both of which enable users to request and receive data via the Internet. In the

119       cmdGenerate.Text = "Generate " & multiplyRadio.Text & _
120          " Example"
121 End Sub ' multiplyRadio_Click
122 End Class ' FrmTutor

Fig. 21.26 Math-tutor application (part 4 of 4).



Chapter 21 ASP .NET and Web Services 1091

next chapter, we discuss the low-level details of how data is sent from one location to
another (networking). Topics discussed in the next chapter include the implementation of
servers and clients and the sending of data via sockets.

21.9 Internet and World Wide Web Resources
msdn.microsoft.com/webservices
This Microsoft site includes .NET Web service technology specifications and white papers with
XML/SOAP articles, columns and links.

www.webservices.org
This site provides industry related news, articles, resources and links.

www.w3.org/TR/wsdl
This site provides extensive documentation on WSDL. It provides a thorough discussion of Web Ser-
vice related technologies such as XML, SOAP, HTTP and MIME types in the context of WSDL.

www-106.ibm.com/developerworks/library/w-wsdl.html
This IBM site discusses WSDL. The page demonstrates the current WSDL XML Web Service spec-
ification with XML examples. 

www.devxpert.com/tutors/wsdl/wsdl.asp
This site presents a high-level introduction to Web Services. The discussion includes several diagrams
and examples.

msdn.microsoft.com/soap
This Microsoft site includes documentation, headlines and overviews SOAP. ASP .NET examples
that use SOAP are available at this site.

www.w3.org/TR/SOAP
This site provides extensive SOAP documentation. The site describes SOAP messages, us-
ing SOAP with HTTP and SOAP security issues.

www.uddi.com
The Universal Description, Discovery and Integration site provides discussions, specifications, white
pages and general information on UDDI.

SUMMARY
• A Web service is a class that is stored on a remote machine and accessed through a remote proce-

dure call.

• Web-services method calls are implemented through Simple Object Access Protocol (SOAP)—an
XML-based protocol describing how requests and responses are marked up so that they can be
transferred via protocols such as HTTP.

• Methods are executed through a Remote Procedure Call (RPC). These methods are marked with
the WebMethod attribute and are often referred to as Web-service methods.

• Method calls and responses sent to and from Web services use SOAP by default. As long as a cli-
ent can create and understand SOAP messages, the client can use Web services, regardless of the
programming languages in which the Web services are written.

• A Web service in .NET has two parts: An ASMX file, and a code-behind file. 

• The ASMX file can be viewed in any Web browser and displays information about the Web ser-
vice.

• The code-behind file contains the definition for the methods in the Web service.



1092 ASP .NET and Web Services Chapter 21

• A service description is an XML document that conforms to the Web Service Description Lan-
guage (WSDL). 

• WSDL is an XML vocabulary that describes how Web services behave.

• The service description can be used by a client program to confirm the correctness of method calls
at compile time.

• The ASMX file also provides a way for clients to execute test runs of the Web-service methods.

• SOAP, HTTP GET and HTTP POST are the three different ways of sending and receiving mes-
sages in Web services. The format used for these request and response messages is sometimes
known as the wire protocol or wire format, because the format defines how information is sent
“along the wire.”

• The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses XML to
make remote-procedure calls over HTTP. 

• Requests to and responses from a Web-service method are packaged by default in a SOAP enve-
lope—an XML message containing all the information necessary to process its contents.

• SOAP allows Web services to use a variety of data types, including user-defined data types.

• When a program invokes a Web service method, the request and all relevant information is pack-
aged in a SOAP envelope and sent to the appropriate destination.

• When a Web service receives a SOAP message, it processes the message’s contents, which specify
the method that the client wishes to execute and the arguments the client is passing to that method.

• When the Web service receives a request this request is parsed, and the proper method is called
with the specified arguments (if there are any). The response is sent back to the client as another
SOAP message.

• An application that uses a Web service consists of two parts: A proxy class for the Web service,
and a client application that accesses the Web service via the proxy.

• A proxy class handles the task of transferring the arguments passed from the client into a SOAP
message, which is sent to the Web service. The proxy likewise handles the transferring of infor-
mation in the response back to the client.

• The Namespace property of a WebService attribute uniquely identifies a Web service.

• The Description property of a WebService attribute adds a description of the Web service
when the Web service is displayed in a browser.

• Class WebService provides members that determine information about the user, the application
and other topics relevant to the Web service.

• A Web service is not required to inherit from class WebService.

• A programmer specifies a method as a Web-service method by tagging it with a WebMethod at-
tribute.

• Visual Studio provides a design view for each Web service, which allows the programmer to add
components to the application.

• A proxy class is created from the Web service’s WSDL file that enables the client to call Web-
service methods over the Internet.

• Whenever a call is made in a client application to a Web-service method, a method in the proxy
class is called. This method takes the method name and arguments passed by the client and formats
them so that they can be sent as a request in a SOAP message.

• A Web-service method that is called sends the result back to the client in a SOAP message.

• By default, the namespace of a proxy class is the name of the domain in which the Web service
resides.



Chapter 21 ASP .NET and Web Services 1093

• UDDI is a project for developing a set of specifications that define how Web services should be
exposed, so that programmers searching for Web services can find them.

• A DISCO file is a file that specifies any Web services that are available in the current directory.

• There are two types of discovery files: Dynamic discovery files (.vsdisco extension) and static
discovery files (.disco extension).

• Once a Web reference is created, a static discovery file is placed in the client’s project. The static
discovery file hard-codes the location for the ASMX and WSDL files (by “hard code,” we mean
that the location is entered directly into the file).

• Dynamic discovery files are created such that the list of Web services is created dynamically on
the server when a client is searching for Web services.

• The reader should note that, to store session information, we must set the EnableSession prop-
erty of the WebMethod attribute to True.

• The use of session state in a Web service can make coding easier and reduce overhead.

• When storing session information, a Web service must have a way of identifying users between
method calls. This is implemented by cookies, which are stored in a CookieContainer.

• We can use Web services in Web applications and in Windows applications.

• User-defined types can be defined and used in a Web service. These types can be passed into or
returned from Web-service methods.

• User-defined types can be sent to or returned from Web-service methods, because the types are
defined in the proxy class created for the client.

• Custom types that are sent to or from a Web service are serialized so that they can be passed in
XML format.

• Any object returned by a Web-service method must have a default constructor.

• Any variables of a custom type that we wish to make available to clients must be declared Pub-
lic.

• Properties of a custom type that we wish to make available to clients must have both Get and Set
accessors defined.

• When an object is returned from a Web service, all its public properties and fields are marked up
in XML. This information can then be transferred back into an object on the client side.

TERMINOLOGY
Add Web Reference dialog distributed system
ASMX file EnableSession property of 

   WebMethod attributeASP.NET Web Service project type 
code-behind file in Web services exposing a Web-service method
consuming a Web service firewall
CookieContainer class Invoke button
CookieContainer property Invoking a method of a Web service from 

   a Web browsercreating a proxy class for a Web service
Description property for a 
   WebMethod attribute

Namespace property of 
   WebService attribute

Description property of a 
   WebService attribute

OpenRead method of class WebClient
proxy class

.disco file extension publishing a Web service
discovery (DISCO) files remote machine
distributed computing Remote Procedure Call (RPC)



1094 ASP .NET and Web Services Chapter 21

SELF-REVIEW EXERCISES
21.1 State whether each of the following is true or false. If false, explain why.

a) The purpose of a Web service is to create objects of a class located on a remote machine.
This class then can be instantiated and used on the local machine.

b) A Web server is required to create Web services and make them available.
c) If the Web service is referenced by adding a Web reference, a proxy class is not created.
d) A program communicating with a Web service uses SOAP to send and receive messages.
e) An application can use only Web-service methods that are tagged with the WebMethod

attribute.
f) To enable session tracking in a Web-service method, no other action is required the pro-

grammer sets the EnableSession property to True in the WebMethod attribute.
g) The EnableSession property of WebMethod attributes enables session tracking in

Web services.
h) An application can use only one Web service.
i) Not all primitive data types can be returned from a Web service.
j) WebMethods methods cannot be declared Shared.
k) A user-defined type used in a Web service must define both Get and Set accessors for

any property that will be accessed in an application.

21.2 Fill in the blanks for each of the following statements:
a) When messages are sent between an application and a Web service, each message is

placed in a .
b) A Web service can inherit from class .
c) The class that defines a Web service usually is located in the  file for that

Web service.
d) Class  is designed for interaction with resources identified by a URL.
e) Web-service requests are sent over the Internet via the  protocol.
f) To add a description for a Web service method in an ASMX page, the  prop-

erty of the WebService attribute is used.
g) Sending objects between a Web service and a client requires  of the object.
h) A proxy class is defined in a namespace whose name is that of the  in which

the Web service is defined.

ANSWERS TO SELF-REVIEW EXERCISES
21.1 a) False. Web services are used to execute methods on remote machines. The Web service re-
ceives the parameters it needs to execute a particular method, executes the method and returns the result
to the caller. b) True. c) False. The proxy is created by Visual Studio—its creation is hidden from the
programmer. d) True. e) True. f) False. A CookieContainer also must be created on the client side.
g) True. h) False. An application can use as many Web services as it needs. i) True. j) True. k) True.

session tracking in Web services Web service
Simple Object Access Protocol (SOAP) Web Service Description Language (WSDL)
SOAP envelope Web-service method
SOAP message WebClient class
SOAP request WebMethod attribute
System.Net WebService attribute
Uniform Resource Locator (URL) WebService class
Universal Description, Discovery 
   and Integration (UDDI)

wire format
wire protocol

.vsdisco file extension XML serialization



Chapter 21 ASP .NET and Web Services 1095

21.2 a) SOAP message. b) WebService. c) code-behind. d) WebClient. e) HTTP.
f) Description. g) XML serialization. h) domain.

EXERCISES
21.3 Create a Web service that stores phone-book entries in a database. Give the user the capabil-
ity to enter new contacts and to find contacts by last name. Pass only primitive types as arguments to
the Web service.

21.4 Modify Exercise 21.3 so that it uses a class named PhoneBookEntry. The client applica-
tion should provide objects of type PhoneBookEntry to the Web service when adding contacts and
should receive objects of type PhoneBookEntry when searching for contacts.

21.5 Modify the Blackjack Web service example in Section 21.5 to include a class Card. Have
DealCard return an object of type Card. Also have the client application keep track of what cards
have been dealt, using Cards. Your card class should include properties to determine the face and
suit of the card.

21.6 Modify the airline reservation example in Section 21.6 so that it contains two separate Web
methods—one that allows users to view all available seats, and another that allows them to reserve
seats. Use an object of type Ticket to pass information to and from the Web service. This Web ap-
plication should list all available seats in a ListBox and then allow the user to click a seat to reserve
it. Your application must be able to handle cases where two users view available seats, one reserves
a seat, and then the second user tries to reserve the same seat not knowing that the database has
changed since the page was loaded.

21.7 Modify the TemperatureServer example in Section 21.7 so that it returns an array of
CityWeather objects that the client application uses to display the weather information.

21.8 Modify the Web service in the math-tutor example in Section 21.8 so that it includes a meth-
od that calculates how “close” the player is to the correct answer. The client application should pro-
vide the correct answer only after a user has offered numerous answers that were far from the correct
one. Use your best judgement regarding what constitutes being “close” to the right answer. Remem-
ber that there should be a different formula for 1-digit, 2-digit and 3-digit numbers. Also, give the
program the capability to suggest to users that they try a lower difficulty level if the users are consis-
tently wrong.



22
Networking: 

Streams-Based Sockets 
and Datagrams

Objectives
• To be able to implement Visual Basic networking 

applications using sockets and datagrams.
• To understand how to create clients and servers that 

communicate with one another.
• To understand the implementation of network-based 

applications.
• To construct a multithreaded server.
If the presence of electricity can be made visible in any part 
of a circuit, I see no reason why intelligence may not be 
transmitted instantaneously by electricity.
Samuel F. B. Morse

Mr. Watson, come here, I want you.
Alexander Graham Bell

What networks of railroads, highways and canals were in 
another age, the networks of telecommunications, 
information and computerization … are today.
Bruno Kreisky, Austrian Chancellor

Science may never come up with a better office-
communication system than the coffee break.
Earl Wilson



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1097

22.1 Introduction
The Internet and the World Wide Web have generated a great deal of excitement in the busi-
ness and computing communities. The Internet ties the “information world” together; the
Web makes the Internet easy to use while providing the flair of multimedia. Organizations
see both the Internet and the Web as crucial to their information-systems strategies. Visual
Basic and the .NET Framework offer a number of built-in networking capabilities that facil-
itate Internet-based and Web-based applications development. Visual Basic not only can
specify parallelism through multithreading, but also can enable programs to search the Web
for information and collaborate with programs running on other computers internationally.

In Chapters 20 and 21, we began our presentation of Visual Basic’s networking and
distributed-computing capabilities. We discussed Web Forms and Web Services, two high-
level networking technologies that enable programmers to develop distributed applications
in Visual Basic. In this chapter, we focus on the networking technologies that support
Visual Basic’s ASP.NET capabilities and can be used to build distributed applications.

Our discussion of networking focuses on both sides of a client–server relationship.
The client requests that some action be performed; the server performs the action and
responds to the client. A common implementation of this request–response model is
between Web browsers and Web servers. When users select Web sites that they wish to
view through a browser (the client application), the browser makes a request to the appro-
priate Web server (the server application). The server normally responds to the client by
sending the appropriate HTML Web pages. 

Visual Basic’s networking capabilities are grouped into several namespaces. The fun-
damental networking capabilities are defined by classes and interfaces of namespace
System.Net.Sockets. Through this namespace, Visual Basic offers socket-based
communications, which enable developers to view networking as if it were file I/O. This
means that a program can read from a socket (network connection) or write to a socket as
easily as it can read from or write to a file. Sockets are the fundamental way to perform net-
work communications in the .NET Framework. The term “socket” refers to the Berkeley
Sockets Interface, which was developed in 1978 for network programming with UNIX and
was popularized by C and C++ programmers.

The classes and interfaces of namespace System.Net.Sockets also offer packet-
based communications, through which individual packets of information are transmitted—
this is a common method of transmitting audio and video over the Internet. In this chapter,
we show how to create and manipulate sockets and how to communicate via packets of data.

Outline

22.1 Introduction
22.2 Establishing a Simple Server (Using Stream Sockets)
22.3 Establishing a Simple Client (Using Stream Sockets)
22.4 Client/Server Interaction via Stream-Socket Connections
22.5 Connectionless Client/Server Interaction via Datagrams
22.6 Client/Server Tic-Tac-Toe Using a Multithreaded Server

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



1098 Networking: Streams-Based Sockets and Datagrams Chapter 22

Socket-based communications in Visual Basic employ stream sockets. With stream
sockets, a process (running program) establishes a connection to another process. While the
connection is in place, data flows between the processes in continuous streams. For this
reason, stream sockets are said to provide a connection-oriented service. The popular TCP
(Transmission Control Protocol) facilitates stream-socket transmission.

By contrast, packet-based communications in Visual Basic employ datagram sockets,
through which individual packets of information are transmitted. Unlike TCP, the protocol
used to enable datagram sockets—UDP, the User Datagram Protocol—is a connectionless
service and does not guarantee that packets will arrive in any particular order. In fact,
packets can be lost or duplicated and can arrive out of sequence. Applications that use UDP
often require significant extra programming to deal with these problems. UDP is most
appropriate for network applications that do not require the error checking and reliability
of TCP. Stream sockets and the TCP protocol will be the most desirable method of com-
munication for the vast majority of Visual Basic programmers.

Performance Tip 22.1
Connectionless services generally offer better performance but less reliability than do con-
nection-oriented services. 22.1

Portability Tip 22.1
The TCP protocol and its related set of protocols enable intercommunication among a wide
variety of heterogeneous computer systems (i.e., computer systems with different processors
and different operating systems). 22.1

22.2 Establishing a Simple Server (Using Stream Sockets)
Typically, with TCP and stream sockets, a server “waits” for a connection request from a
client. Often, the server program contains a control structure or block of code that executes
continuously until the server receives a request. On receiving a request, the server estab-
lishes a connection with the client. The server then uses this connection to handle future
requests from that client and to send data to the client.

The establishment of a simple server with TCP and stream sockets in Visual Basic
requires five steps. The first step is to create an object of class TcpListener, which
belongs to namespace System.Net.Sockets. This class represents a TCP stream
socket through which a server can listen for requests. A call to the TcpListener con-
structor, such as 

TcpListener server = New TcpListener( port )

binds (assigns) the server to the specified port number. A port number is a numeric identi-
fier that a process uses to identify itself at a given network address, also known as an Inter-
net Protocol Address (IP Address). IP addresses identify computers on the Internet. In fact,
Web-site names, such as www.deitel.com, are aliases for IP addresses. Any process
that performs networking identifies itself via an IP address/port number pair. Hence, no
two processes can have the same port number at a given IP address. The explicit binding of
a socket to a port (using method Bind of class Socket) is usually unnecessary, because
class TcpListener and other classes discussed in this chapter hide this binding (i.e.,
bind sockets to ports implicitly), plus they perform other socket-initialization operations. 



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1099

Software Engineering Observation 22.1
Port numbers can have values between 0 and 65535. Many operating systems reserve port
numbers below 1024 for system services (such as e-mail and Web servers). Applications must
be granted special privileges to use these reserved port numbers. Usually, a server-side ap-
plication should not specify port numbers below 1024 as connection ports, because some op-
erating systems might reserve these numbers. 22.1

Common Programming Error 22.1
Attempting to bind an already assigned port at a given IP address is a logic error. 22.1

To receive requests, the TcpListener first must listen for them. The second step in
our connection process is to call TcpListener’s Start method, which causes the
TcpListener object to begin listening for connection requests. The third step estab-
lishes the connection between the server and client. The server listens indefinitely for a
request—i.e., the execution of the server-side application waits until some client attempts
to connect with it. The server creates a connection to the client upon receipt of a connection
request. An object of class System.Net.Sockets.Socket manages each connection
to the client. Method AcceptSocket of class TcpListener waits for a connection
request, then creates a connection when a request is received. This method returns a
Socket object upon connection, as in the statement

Socket connection = server.AcceptSocket()

When the server receives a request, method AcceptSocket calls method Accept of the
TcpListener’s underlying Socket to make the connection. This is an example of Vi-
sual Basic’s hiding networking complexity from the programmer. The programmer can
write the preceding statement into a server-side program, then allow the classes of
namespace System.Net.Sockets to handle the details of accepting requests and es-
tablishing connections.

Step four is the processing phase, in which the server and the client communicate via
methods Receive and Send of class Socket. These methods return references to
Socket objects for reading from, and writing to, respectively. Note that these methods, as
well as TCP and stream sockets, can be used only when the server and client are connected.
By contrast, through Socket methods SendTo and ReceiveFrom, UDP and datagram
sockets can be used when no connection exists.

The fifth step is the connection-termination phase. When the client and server have
finished communicating, the server uses method Close of the Socket object to close
the connection. Most servers then return to step two (i.e., wait for another client’s connec-
tion request).

One problem associated with the server scheme described in this section is that step
four blocks other requests while processing a client’s request, so that no other client can
connect with the server while the code that defines the processing phase is executing. The
most common technique for addressing this problem is to use multithreaded servers, which
place the processing-phase code in a separate thread. When the server receives a connection
request, the server spawns, or creates, a Thread to process the connection, leaving its
TcpListener (or Socket) free to receive other connections.



1100 Networking: Streams-Based Sockets and Datagrams Chapter 22

Software Engineering Observation 22.2
Using Visual Basic’s multithreading capabilities, we can create servers that can manage si-
multaneous connections with multiple clients. This multithreaded-server architecture is pre-
cisely what popular UNIX and Windows network servers use. 22.2

Software Engineering Observation 22.3
A multithreaded server can be implemented to create a thread that manages network I/O
across a reference to a Socket object returned by method AcceptSocket. A multi-
threaded server also can be implemented to maintain a pool of threads that manage network
I/O across newly created Sockets. 22.3

Performance Tip 22.2
In high-performance systems with abundant memory, a multithreaded server can be imple-
mented to create a pool of threads. These threads can be assigned quickly to handle network
I/O across each newly created Socket. Thus, when a connection is received, the server does
not incur the overhead of thread creation. 22.2

22.3 Establishing a Simple Client (Using Stream Sockets)
We create TCP-stream-socket clients via a process that requires four steps. In the first step,
we create an object of class TcpClient (which belongs to namespace Sys-
tem.Net.Sockets) to connect to the server. This connection is established through
method Connect of class TcpClient. One overloaded version of this method receives
two arguments—the server’s IP address and the port number—as in the following:

TcpClient client = New TcpClient()
client.Connect( serverAddress, serverPort )

Here, serverPort is an Integer that represents the server’s port number; serv-
erAddress can be either an IPAddress instance (that encapsulates the server’s IP ad-
dress) or a String that specifies the server’s hostname. Alternatively, the programmer
could pass an object reference of class IPEndPoint, which represents an IP address/port
number pair, to a different overload of method Connect. Method Connect of class
TcpClient calls method Connect of class Socket to establish the connection. If the
connection is successful, method TcpClient.Connect returns a positive integer; oth-
erwise, it returns 0.

In step two, the TcpClient uses its method GetStream to get a Network-
Stream so that it can write to and read from the server. NetworkStream methods
WriteByte and Write can be used to output individual bytes or sets of bytes to the
server, respectively; similarly, NetworkStream methods ReadByte and Read can be
used to input individual bytes or sets of bytes from the server, respectively.

The third step is the processing phase, in which the client and the server communicate.
In this phase, the client uses methods Read, ReadByte, Write and WriteByte of
class NetworkStream to perform the appropriate communications. Using a process sim-
ilar to that used by servers, a client can employ threads to prevent blocking of communica-
tions with other servers while processing data from one connection.

After the transmission is complete, step four requires the client to close the connection
by calling method Close of the NetworkStream object. This closes the underlying
Socket (if the NetworkStream has a reference to that Socket). Then, the client calls



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1101

method Close of class TcpClient connection to terminate the TCP connection. At this
point, a new connection can be established through method Connect, as we have
described.

22.4 Client/Server Interaction via Stream-Socket Connections
The applications in Fig. 22.1 and Fig. 22.2 use the classes and techniques discussed in the
previous two sections to construct a simple client/server chat application. The server waits
for a client’s request to make a connection. When a client application connects to the server,
the server application sends an array of bytes to the client, indicating that the connection
was successful. The client then displays a message notifying the user that a connection has
been established. 

Both the client and the server applications contain TextBoxes that enable users to
type messages and send them to the other application. When either the client or the server
sends message “TERMINATE,” the connection between the client and the server termi-
nates. The server then waits for another client to request a connection. Figure 22.1 and
Fig. 22.2 provide the code for classes Server and Client, respectively. Figure 22.2 also
contains screen captures displaying the execution between the client and the server.

1 ' Fig. 22.1: Server.vb
2 ' Set up a Server that receives connections from clients and sends
3 ' String data to clients.
4
5 Imports System.Windows.Forms
6 Imports System.Threading
7 Imports System.Net.Sockets
8 Imports System.IO
9

10 Public Class FrmServer
11 Inherits Form
12
13  ' TextBoxes for receiving user input and displaying information
14 Friend WithEvents txtInput As TextBox
15 Friend WithEvents txtDisplay As TextBox
16
17 Private connection As Socket ' Socket object handles connection
18 Private readThread As Thread ' server thread
19
20    ' Stream through which to transfer data
21 Private socketStream As NetworkStream
22
23    ' objects for writing and reading data
24 Private writer As BinaryWriter
25 Private reader As BinaryReader
26
27 Public Sub New()
28       MyBase.New()
29
30       ' equired by the Windows Form Designer.
31       InitializeComponent()

Fig. 22.1 Server portion of a client/server stream-socket connection (part 1 of 4).



1102 Networking: Streams-Based Sockets and Datagrams Chapter 22

32
33       ' add any initialization after the 
34       ' InitializeComponent call
35
36       ' create thread from server
37       readThread = New Thread(AddressOf RunServer)
38       readThread.Start()
39 End Sub ' New
40
41    ' Visual Studio .NET generated code
42
43    ' invoked when user closes server
44 Private Sub FrmServer_Closing( _
45       ByVal sender As System.Object, _
46       ByVal e As system.ComponentModel.CancelEventArgs) _
47       Handles MyBase.Closing
48
49       System.Environment.Exit(System.Environment.ExitCode)
50 End Sub ' FrmServer_Closing
51
52    ' send server text to client
53 Private Sub txtInput_KeyDown( ByVal sender As System.Object, _
54       ByVal e As system.Windows.Forms.KeyEventArgs) _
55       Handles txtInput.KeyDown
56
57       ' send text to client
58       Try
59
60          ' send text if user pressed Enter and connection exists
61          If (e.KeyCode = Keys.Enter AndAlso _
62             Not connection Is Nothing) Then
63
64             writer.Write("SERVER>>> " & txtInput.Text) ' send data
65
66             txtDisplay.Text &= vbCrLf & "SERVER>>> " & _
67                txtInput.Text
68
69             ' close connection if server’s user signals termination
70             If txtInput.Text = "TERMINATE" Then
71                connection.Close()
72             End If
73
74             txtInput.Clear()
75          End If
76
77       ' handle exception if error occurs when server sends data
78       Catch exception As SocketException
79          txtDisplay.Text &= vbCrLf & "Error writing object"
80
81       End Try
82
83 End Sub ' txtInput_KeyDown
84

Fig. 22.1 Server portion of a client/server stream-socket connection (part 2 of 4).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1103

85    ' allow client to connect and display text sent by user
86 Public Sub RunServer()
87       Dim listener As TcpListener
88       Dim counter As Integer = 1
89
90       ' wait for request, then establish connection
91       Try
92
93          ' Step 1: create TcpListener
94          listener = New TcpListener(5000)
95
96          ' Step 2: TcpListener waits for connection request
97          listener.Start()
98
99          ' Step 3: establish connection upon client request
100          While True
101             txtDisplay.Text = "Waiting for connection" & vbCrLf
102
103             ' accept an incoming connection
104             connection = listener.AcceptSocket()
105
106             ' create NetworkStream object associated with socket
107             socketStream = New NetworkStream(connection)
108
109             ' create objects for transferring data across stream
110             writer = New BinaryWriter(socketStream)
111             reader = New BinaryReader(socketStream)
112
113             txtDisplay.Text &= "Connection " & counter & _
114                " received." & vbCrLf
115
116             ' inform client that connection was successfull
117             writer.Write("SERVER>>> Connection successful")
118
119             txtInput.ReadOnly = False
120             Dim theReply As String = ""
121
122             ' Step 4: read String data sent from client
123             Try
124
125                ' loop until client signals termination
126                Do
127                   theReply = reader.ReadString() ' read data
128
129                   ' display message
130                   txtDisplay.Text &= vbCrLf & theReply
131
132                Loop While (theReply <> "CLIENT>>> TERMINATE" _
133                   AndAlso connection.Connected)
134
135             ' handle exception if error reading data
136             Catch inputOutputException As IOException
137                 MessageBox.Show("Client application closing")

Fig. 22.1 Server portion of a client/server stream-socket connection (part 3 of 4).



1104 Networking: Streams-Based Sockets and Datagrams Chapter 22

138
139             ' close connections
140             Finally
141
142                txtDisplay.Text &= vbCrLf & _
143                   "User terminated connection"
144
145                txtInput.ReadOnly = True
146
147                ' Step 5: close connection
148                writer.Close()
149                reader.Close()
150                socketStream.Close()
151                connection.Close()
152
153                counter += 1
154             End Try
155
156          End While
157
158       ' handle exception if error occurs in establishing connection
159       Catch inputOutputException As IOException
160          MessageBox.Show("Server application closing")
161
162       End Try
163
164 End Sub ' RunServer
165
166 End Class ' FrmServer

1 ' Fig. 22.2: Client.vb
2 ' Set up a client that reads and displays data sent from server.
3
4 Imports System.Windows.Forms
5 Imports System.Threading
6 Imports System.Net.Sockets
7 Imports System.IO
8
9 Public Class FrmClient

10 Inherits Form
11
12    ' TextBoxes for inputting and displaying information 
13 Friend WithEvents txtInput As TextBox
14 Friend WithEvents txtDisplay As TextBox
15
16    ' stream for sending data to server
17 Private output As NetworkStream 
18
19    ' objects for writing and reading bytes to streams
20 Private writer As BinaryWriter

Fig. 22.2 Client portion of a client/server stream-socket connection (part 1 of 5).

Fig. 22.1 Server portion of a client/server stream-socket connection (part 4 of 4).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1105

21 Private reader As BinaryReader
22
23 Private message As String = "" ' message sent to server
24
25    ' thread prevents client from blocking data transfer
26 Private readThread As Thread
27
28 Public Sub New()
29       MyBase.New()
30
31       ' equired by the Windows Form Designer.
32       InitializeComponent()
33
34       ' add any initialization after the 
35       ' InitializeComponent call
36
37       readThread = New Thread(AddressOf RunClient)
38       readThread.Start()
39 End Sub ' New
40
41    ' Visual Studio .NET generated code
42
43    ' invoked when user closes application
44 Private Sub FrmClient_Closing(ByVal sender As System.Object, _
45       ByVal e As System.ComponentModel.CancelEventArgs) _
46       Handles MyBase.Closing
47
48       System.Environment.Exit(System.Environment.ExitCode)
49    End Sub
50
51    ' send user input to server
52 Private Sub txtInput_KeyDown(ByVal sender As System.Object, _
53       ByVal e As System.windows.Forms.KeyEventArgs) _
54       Handles txtInput.KeyDown
55
56       ' send user input if user pressed Enter
57       Try
58
59          ' determine whether user pressed Enter
60          If e.KeyCode = Keys.Enter Then
61
62             ' send data to server
63             writer.Write("CLIENT>>> " & txtInput.Text)
64
65             txtDisplay.Text &= vbCrLf & "CLIENT>>> " & _
66                txtInput.Text
67
68             txtInput.Clear()
69          End If
70

Fig. 22.2 Client portion of a client/server stream-socket connection (part 2 of 5).



1106 Networking: Streams-Based Sockets and Datagrams Chapter 22

71       ' handle exception if error occurs in sending data to server
72       Catch exception As SocketException
73          txtDisplay.Text &= vbCrLf & "Error writing object"
74       End Try
75
76 End Sub ' txtInput_KeyDown
77
78    ' connect to server and display server-generated text
79 Public Sub RunClient()
80       Dim client As TcpClient
81
82       ' instantiate TcpClient for sending data to server
83       Try
84
85          txtDisplay.Text &= "Attempting connection" & vbCrLf
86
87          ' Step 1: create TcpClient and connect to server
88          client = New TcpClient()
89          client.Connect("localhost", 5000)
90
91          ' Step 2: get NetworkStream associated with TcpClient
92          output = client.GetStream()
93
94          ' create objects for writing and reading across stream
95          writer = New BinaryWriter(output)
96          reader = New BinaryReader(output)
97
98          txtDisplay.Text &= vbCrLf & "Got I/O streams" & vbCrLf
99
100          txtInput.ReadOnly = False
101
102          ' Step 3: processing phase
103          Try
104
105             ' loop until server signals termination
106             Do
107
108                ' read message from server
109                message = reader.ReadString
110                txtDisplay.Text &= vbCrLf & message
111
112             Loop While message <> "SERVER>>> TERMINATE"
113
114          ' handle exception if error in reading server data
115          Catch inputOutputException As IOException
116             MessageBox.Show("Client application closing")
117
118          ' Step 4: close connection
119          Finally
120
121             txtDisplay.Text &= vbCrLf & "Closing connection." & _
122                vbCrLf
123

Fig. 22.2 Client portion of a client/server stream-socket connection (part 3 of 5).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1107

124             writer.Close()
125             reader.Close()
126             output.Close()
127             client.Close()
128
129          End Try
130
131          Application.Exit()
132
133       ' handle exception if error in establishing connection
134       Catch inputOutputException As Exception
135          MessageBox.Show("Client application closing")
136
137       End Try
138
139 End Sub ' RunClient
140
141 End Class ' FrmClient

Fig. 22.2 Client portion of a client/server stream-socket connection (part 4 of 5).



1108 Networking: Streams-Based Sockets and Datagrams Chapter 22

As we analyze this example, we begin by discussing class Server (Fig. 22.1). In the
constructor, line 37 creates a Thread that will accept connections from clients. Line 38
starts the Thread, which invokes method RunServer (lines 86–164). Method Run-
Server initializes the server to receive connection requests and process connections. Line
94 instantiates the TcpListener to listen for a connection request from a client at port
5000 (Step 1). Line 97 then calls method Start of the TcpListener object, which
requires the TcpListener to wait for requests (Step 2).

Lines 100–156 declare an infinite While loop that establishes connections requested
by clients (Step 3). Line 104 calls method AcceptSocket of the TcpListener object,
which returns a Socket upon successful connection. Method AcceptSocket blocks
other services until a client request is made (i.e., the thread in which method Accept-
Socket is called stops executing until a connection is established). The Socket object
will manage the connection. Line 107 passes this Socket object as an argument to the
constructor of a NetworkStream object. Class NetworkStream provides access to
streams across a network—in this example, the NetworkStream object provides access
to the Socket connection. Lines 110–111 create instances of the BinaryWriter and
BinaryReader classes for writing and reading data. We pass the NetworkStream
object as an argument to each constructor; BinaryWriter can write bytes to the Net-

Fig. 22.2 Client portion of a client/server stream-socket connection (part 5 of 5).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1109

workStream, and BinaryReader can read bytes from NetworkStream. Lines 113–
114 append text to the TextBox, indicating that a connection was received.

BinaryWriter method Write has many overloaded versions, which enable the
method to write various types to a stream. (You might remember that we used these over-
loaded methods in Chapter 17 to write record data to files.) Line 117 uses method Write to
send to the client a String notifying the user of a successful connection. Lines 126–133
declare a Do/Loop While structure that executes until the server receives a message indi-
cating connection termination (i.e., CLIENT>>> TERMINATE). Line 127 uses Bina-
ryReader method ReadString to read a String from the stream (Step 4). (You might
remember that we also used this method in Chapter 17 to read records’ first-name and last-
name Strings from files.) Method ReadString blocks until a String is read. To pre-
vent the whole server from blocking, we use a separate Thread to handle the transfer of
information. The While statement loops until there is more information to read—this results
in I/O blocking, which causes the program always to appear frozen. However, if we run this
portion of the program in a separate Thread, the user can interact with the Windows Form
and send messages while the program waits in the background for incoming messages.

When the chat is complete, lines 148–151 close the BinaryWriter, Bina-
ryReader, NetworkStream and Socket (Step 5) by invoking their respective
Close methods. The server then waits for another client connection request by returning
to the beginning of the While loop (line 100).

When the user of the server application enters a String in the TextBox and presses
the Enter key, event handler txtInput_KeyDown (lines 53–83) reads the String and
sends it via method Write of class BinaryWriter. If a user terminates the server appli-
cation, line 71 calls method Close of the Socket object to close the connection.

Lines 44–50 define the frmServer_Closing event handler for the Closing
event. The event closes the application and uses System.Environment.Exit method
with parameter System.Environment.ExitCode to terminate all threads. Method
Exit of class Environment closes all threads associated with the application.

Figure 22.2 depicts the code for the Client object. Like the Server object, the
Client object creates a Thread (lines 37–38) in its constructor to handle all incoming
messages. Client method RunClient (lines 79–139) connects to the Server,
receives data from the Server and sends data to the Server (when the user presses
Enter). Lines 88–89 instantiate a TcpClient object, then call its method Connect to
establish a connection (Step 1). The first argument to method Connect is the name of the
server—in our case, the server’s name is "localhost", meaning that the server is
located on the same machine as the client. The localhost is also known as the loopback
IP address and is equivalent to the IP address 127.0.0.1. This value sends the data trans-
mission back to the sender’s IP address. [Note: We chose to demonstrate the client/server
relationship by connecting between programs that are executing on the same computer
(localhost). Normally, this argument would contain the Internet address of another
computer.] The second argument to method Connect is the server port number. This
number must match the port number at which the server waits for connections. 

The Client uses a NetworkStream to send data to and receive data from the server.
The client obtains the NetworkStream on line 92 through a call to TcpClient method
GetStream (Step 2). The Do/Loop While structure in lines 106–112 loops until the client
receives the connection-termination message (SERVER>>> TERMINATE). Line 109 uses



1110 Networking: Streams-Based Sockets and Datagrams Chapter 22

BinaryReader method ReadString to obtain the next message from the server (Step
3). Lines 121–122 display the message and lines 124–127 close the BinaryWriter,
BinaryReader, NetworkStream and TcpClient objects (Step 4).

When the user of the client application enters a String in the TextBox and presses
the Enter key, the event handler txtInput_KeyDown (lines 52–76) reads the String
from the TextBox and sends it via BinaryWriter method Write. Notice that, here,
the Server receives a connection, processes it, closes it and waits for the next one. In a
real-world application, a server would likely receive a connection, set up the connection to
be processed as a separate thread of execution and wait for new connections. The separate
threads that process existing connections can continue to execute while the Server con-
centrates on new connection requests.

22.5 Connectionless Client/Server Interaction via Datagrams
Up to this point, we have discussed connection-oriented, streams-based transmission. Now,
we consider connectionless transmission using datagrams. 

Connection-oriented transmission is similar to interaction over a telephone system, in
which a user dials a number and is connected to the telephone of the party they wish to con-
nect. The system maintains the connection for the duration of the phone call, regardless of
whether the users are speaking.

By contrast, connectionless transmission via datagrams more closely resembles the
method by which the postal service carries and delivers mail. Connectionless transmission
bundles and sends information in packets called datagrams, which can be thought of as sim-
ilar to posted letters. If a large message will not fit in one envelope, that message is broken
into separate message pieces and placed in separate, sequentially numbered envelopes. All the
letters are mailed at once. The letters might arrive in order, out of order or not at all. The
person at the receiving end reassembles the message pieces into sequential order before
attempting to interpret the message. If the message is small enough to fit in one envelope, the
sequencing problem is eliminated, but it is still possible that the message will never arrive.
(Unlike with posted mail, duplicates of datagrams could reach a receiving computers.) Visual
Basic provides the UdpClient class for connectionless transmission. Like TcpListener
and TcpClient, UdpClient uses methods from class Socket. The UdpClient
methods Send and Receive are used to transmit data with Socket’s SendTo method and
to read data with Socket’s ReceiveFrom method, respectively.

The programs in Fig. 22.3 and Fig. 22.4 use datagrams to send packets of information
between a client and server application. In the Client application, the user types a mes-
sage into a TextBox and presses Enter. The client converts the message to a Byte array
and sends it to the server. The server receives the packet and displays the packet’s informa-
tion, then echoes, or returns, the packet back to the client. When the client receives the
packet, the client displays the packet’s information. In this example, the implementations
of the Client and Server classes are similar. 

1 ' Fig. 22.3: Server.vb
2 ' Server receives packets from a client, then echoes packets back
3 ' to clients.

Fig. 22.3 Server-side portion of connectionless client/server computing (part 1 of 3).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1111

4
5 Imports System.Windows.Forms
6 Imports System.Net
7 Imports System.Net.Sockets
8 Imports System.Threading
9

10 Public Class FrmDatagramServer
11 Inherits Form
12
13    ' TextBox displays packet information
14 Friend WithEvents txtDisplay As TextBox
15
16    ' reference to client that will send packet information
17 Private client As UdpClient
18
19 ' client IP address/port number pair
20 Private receivePoint As IPEndPoint
21
22 Public Sub New()
23       MyBase.New()
24
25       ' equired by the Windows Form Designer.
26       InitializeComponent()
27
28       ' add any initialization after the 
29       ' InitializeComponent call
30
31       ' instantiate UdpClient listening for requests at port 5000
32       client = New UdpClient(5000)
33
34       ' hold IP address and port number of client
35       receivePoint = New IPEndPoint(New IPAddress(0), 0)
36
37       Dim readThread As Thread = New Thread _
38          (New ThreadStart(AddressOf WaitForPackets))
39
40       readThread.Start() ' wait for packets
41 End Sub ' New
42
43    ' Visual Studio .NET generated code
44
45    ' invoked when user closes server
46 Protected Sub Server_Closing(ByVal sender As system.Object, _
47       ByVal e As System.ComponentModel.CancelEventArgs) _
48       Handles MyBase.Closing
49
50       System.Environment.Exit(System.Environment.ExitCode)
51    End Sub ' Server_Closing
52
53    ' wait for packets to arrive from client
54 Public Sub WaitForPackets()
55

Fig. 22.3 Server-side portion of connectionless client/server computing (part 2 of 3).



1112 Networking: Streams-Based Sockets and Datagrams Chapter 22

56       ' use infinite loop to wait for data to arrive
57       While True
58
59          ' receive byte array from client 
60          Dim data As Byte() = client.Receive(receivePoint)
61
62          ' output packet data to TextBox
63          txtDisplay.Text &= vbCrLf & "Packet received:" & _
64             vbCrLf & "Length: " & data.Length & vbCrLf & _
65             "Containing: " & _
66             System.Text.Encoding.ASCII.GetString(data)
67
68          txtDisplay.Text &= vbCrLf & vbCrLf & _
69             "Echo data back to client..."
70
71          ' echo information from packet back to client
72          client.Send(data, data.Length, receivePoint)
73          txtDisplay.Text &= vbCrLf & "Packet sent" & _
74             vbCrLf
75
76       End While
77
78 End Sub ' WaitForPackets
79
80 End Class ' FrmDatragramServer

1 ' Fig. 22.4: Client.vb
2 ' Client sends packets to, and receives packets from, a server.
3
4 Imports System.Windows.Forms
5 Imports System.Net
6 Imports System.Net.Sockets
7 Imports System.Threading
8
9 Public Class FrmDatagramClient

10 Inherits Form

Fig. 22.4 Client-side portion of connectionless client/server computing (part 1 of 3).

Fig. 22.3 Server-side portion of connectionless client/server computing (part 3 of 3).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1113

11
12    ' TextBoxes for inputting and displaying packet information
13 Friend WithEvents txtInput As TextBox
14 Friend WithEvents txtDisplay As TextBox
15
16    ' UdpClient that sends packets to server
17 Private client As UdpClient
18
19    ' hold IP address and port number of clients
20 Private receivePoint As IPEndPoint
21
22 Public Sub New()
23       MyBase.New()
24
25       ' equired by the Windows Form Designer.
26       InitializeComponent()
27
28       ' add any initialization after the 
29       ' InitializeComponent() call
30
31       receivePoint = New IPEndPoint(New IPAddress(0), 0)
32
33       ' instantiate UdpClient to listen on port 5001
34       client = New UdpClient(5001)
35
36       Dim thread As Thread = New Thread _
37          (New ThreadStart(AddressOf WaitForPackets))
38
39       thread.Start() ' wait for packets
40 End Sub ' New
41
42    ' Visual Studio .NET generated code
43
44    ' invoked when user closes client
45 Private Sub FrmDatagramClient_Closing( _
46       ByVal sender As System.Object, _
47       ByVal e As System.ComponentModel.CancelEventArgs) _
48       Handles MyBase.Closing
49
50       System.Environment.Exit(System.Environment.ExitCode)
51 End Sub ' FrmDatagramClient_Closing
52
53    ' invoked when user presses key
54 Private Sub txtInput_KeyDown( ByVal sender As System.Object, _
55       ByVal e As System.Windows.Forms.KeyEventArgs) _
56       Handles txtInput.KeyDown
57
58       ' determine whether user pressed Enter
59       If e.KeyCode = Keys.Enter Then
60
61          ' create packet (datagram) as String
62          Dim packet As String = txtInput.Text
63

Fig. 22.4 Client-side portion of connectionless client/server computing (part 2 of 3).



1114 Networking: Streams-Based Sockets and Datagrams Chapter 22

64          txtDisplay.Text &= vbCrLf & _
65             "Sending packet containing: " & packet
66
67          ' convert packet to byte array
68          Dim data As Byte() = _
69             System.Text.Encoding.ASCII.GetBytes(packet)
70
71          ' send packet to server on port 5000
72          client.Send(data, data.Length, "localhost", 5000)
73
74          txtDisplay.Text &= vbCrLf & "Packet sent" & vbCrLf
75          txtInput.Clear()
76       End If
77
78 End Sub ' txtInput_KeyDown
79
80    ' wait for packets to arrive
81 Public Sub WaitForPackets()
82
83       While True
84
85          ' receive byte array from client 
86          Dim data As Byte() = client.Receive(receivePoint)
87
88          ' output packet data to TextBox
89          txtDisplay.Text &= vbCrLf & "Packet received:" & _
90             vbCrLf & "Length: " & data.Length & vbCrLf & _
91             System.Text.Encoding.ASCII.GetString(data)
92
93       End While
94
95 End Sub ' WaitForPackets
96
97 End Class ' FrmDatagramClient

Fig. 22.4 Client-side portion of connectionless client/server computing (part 3 of 3).

Client window before sending 
a packet to the server

Client window after sending a packet to 
the server and receiving it back



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1115

The code in Fig. 22.3 defines the Server for this application. Line 32 in the con-
structor for class Server creates an instance of the UdpClient class that receives data
at port 5000. This initializes the underlying Socket for communications. Line 35 creates
an instance of class IPEndPoint to hold the IP address and port number of the client(s)
that transmit to Server. The first argument to the constructor of IPEndPoint is an
IPAddress object; the second argument to the constructor for IPEndPoint is the port
number of the endpoint. These values are both 0, because we need only instantiate an empty
IPEndPoint object. The IP addresses and port numbers of clients are copied into the
IPEndPoint when datagrams are received from clients. 

Server method WaitForPackets (lines 54–78) executes an infinite loop while
waiting for data to arrive at the Server. When information arrives, the UdpClient
method Receive (line 60) receives a byte array from the client. We include Receive in
the IPEndPoint object created in the constructor; this provides the method with a refer-
ence to an IPEndPoint into which the program copies the client’s IP address and port
number. This program will compile and run without an exception even if the reference to
the IPEndPoint object is Nothing, because method Receive (or some method that
method Receive subsequently calls) initializes the IPEndPoint if it is Nothing.

Good Programming Practice 22.1
Initialize all references to objects (to a value other than Nothing). This protects code from
methods that do not check their parameters for Nothing references. 22.1

Lines 63–66 update the Server’s display to include the packet’s information and
content. Line 72 echoes the data back to the client, using UdpClient method Send. This
version of Send takes three arguments: The byte array to send, an Integer representing
the array’s length and the IPEndPoint to which to send the data. We use array Byte()
returned by method Receive as the data, the length of array Byte() as the length and
the IPEndPoint passed to method Receive as the data’s destination. The IP address
and port number of the client that sent the data to Server are stored in receivePoint,
so merely passing receivePoint to Send allows Server to respond to the client.

Class Client (Fig. 22.4) works similarly to class Server, except that the Client
object sends packets only when the user types a message in a TextBox and presses the
Enter key. When this occurs, the program calls event handler txtInput_KeyDown
(lines 54–78). Lines 68–69 convert the String that the user entered in the TextBox to a
Byte array. Line 72 calls UdpClient method Send to send the Byte array to the
Server that is located on localhost (i.e., the same machine). We specify the port as
5000, which we know to be Server’s port.

Line 34 instantiates a UdpClient object to receive packets at port 5001—we choose
port 5001, because the Server already occupies port 5000. Method WaitFor-
Packets of class Client (lines 81–95) uses an infinite loop to wait for these packets.
The UdpClient method Receive blocks until a packet of data is received (line 86).
However, this does not prevent the user from sending a packet, because Visual Basic pro-
vides a separate thread for handling GUI events. The blocking performed by method
Receive does not prevent class Client from performing other services (e.g., handling
user input), because a separate thread runs method WaitForPackets.

When a packet arrives, lines 89–91 display its contents in the TextBox. The user can
type information into the Client window’s TextBox and press the Enter key at any



1116 Networking: Streams-Based Sockets and Datagrams Chapter 22

time, even while a packet is being received. The event handler for the TextBox processes
the event and sends the data to the server.

22.6 Client/Server Tic-Tac-Toe Using a Multithreaded Server
In this section, we present our capstone networking example—the popular game Tic-Tac-
Toe, implemented with stream sockets and client/server techniques. The program consists
of a FrmServer application (Fig. 22.5) and two FrmClient applications (Fig. 22.7);
FrmServer allows the FrmClients to connect to the server and play Tic-Tac-Toe. We
depict the output in Fig. 22.7. When the server receives a client connection, lines 67–78 of
Fig. 22.5 create an instance of class CPlayer to process the client in a separate thread of
execution. This enables the server to handle requests from both clients. The server assigns
value "X" to the first client that connects (player X makes the first move), then assigns val-
ue "O" to the second client. Throughout the game, the server maintains information regard-
ing the status of the board so that the server can validate players’ requested moves.
However, neither the server nor the client can establish whether a player has won the
game—in this application, method GameOver (lines 166–170) always returns False.
Exercise 22.7 asks the reader to implement functionality that enables the application to de-
termine a winner. Each FrmClient maintains its own GUI version of the Tic-Tac-Toe
board to display the game. The clients can place marks only in empty squares on the board.
Class CSquare (Fig. 22.8) is used to define squares on the Tic-Tac-Toe board.

1 ' Fig. 22.5: Server.vb
2 ' Server maintains a Tic-Tac-Toe game for two client applications.
3
4 Imports System.Windows.Forms
5 Imports System.Net.Sockets
6 Imports System.Threading
7
8 Public Class FrmServer
9 Inherits Form

10
11    ' TextBox for displaying results
12 Friend WithEvents txtDisplay As TextBox
13
14 Private board As Char() ' Tic-Tac-Toe game board
15
16 Private players As CPlayer() ' player-client applications
17 Private playerThreads As Thread() ' Threads that run clients
18
19    ' indicates current player ("X" or "O")
20 Private currentPlayer As Integer
21
22    ' indicates whether server has disconnected
23 Private disconnect As Boolean = False
24
25 Public Sub New()
26       MyBase.New()
27

Fig. 22.5 Server side of client/server Tic-Tac-Toe program (part 1 of 4).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1117

28       ' required by the Windows Form Designer
29       InitializeComponent()
30
31       ' add any initialization after the 
32       ' InitializeComponent call
33
34       board = New Char(8) {} ' create board with nine squares
35
36       players = New CPlayer(1) {} ' create two players
37
38       ' create one thread for each player
39       playerThreads = New Thread(1) {}
40       currentPlayer = 0
41
42       ' use separate thread to accept connections
43       Dim getPlayers As Thread = New Thread(New ThreadStart( _
44          AddressOf SetUp))
45
46       getPlayers.Start()
47 End Sub ' New
48
49    ' Visual Studio .NET generated code
50
51    ' invoked when user closes server window
52 Private Sub FrmServer_Closing(ByVal sender As System.Object, _
53       ByVal e As System.ComponentModel.CancelEventArgs) _
54       Handles MyBase.Closing
55
56       disconnect = True
57 End Sub ' FrmServer_Closing
58
59    ' accept connections from two client applications
60 Public Sub SetUp()
61
62       ' server listens for requests on port 5000
63       Dim listener As TcpListener = New TcpListener(5000)
64       listener.Start()
65
66       ' accept first client (player) and start its thread
67       players(0) = New CPlayer(listener.AcceptSocket(), Me, "X"c)
68       playerThreads(0) = _
69          New Thread(New ThreadStart(AddressOf players(0).Run))
70
71       playerThreads(0).Start()
72
73       ' accept second client (player) and start its thread
74       players(1) = New CPlayer(listener.AcceptSocket, Me, "O"c)
75       playerThreads(1) = _
76          New Thread(New ThreadStart(AddressOf players(1).Run))
77
78       playerThreads(1).Start()
79

Fig. 22.5 Server side of client/server Tic-Tac-Toe program (part 2 of 4).



1118 Networking: Streams-Based Sockets and Datagrams Chapter 22

80       ' inform first player of other player’s connection to server
81       SyncLock (players(0))
82
83          players(0).threadSuspended = False
84          Monitor.Pulse(players(0))
85       End SyncLock
86
87 End Sub ' SetUp
88
89    ' display message argument in txtDisplay
90 Public Sub Display(ByVal message As String)
91       txtDisplay.Text &= message & vbCrLf
92 End Sub ' Display
93
94    ' determine whether move is valid
95 Public Function ValidMove(ByVal location As Integer, _
96       ByVal player As Char) As Boolean
97
98       ' prevent other threads from making moves
99       SyncLock(Me)
100
101          Dim playerNumber As Integer = 0
102
103          ' playerNumber = 0 if player = "X", else playerNumber = 1
104          If player = "O"c
105             playerNumber = 1
106          End If
107
108          ' wait while not current player's turn
109          While playerNumber <> currentPlayer
110             Monitor.Wait(Me)
111          End While
112
113          ' determine whether desired square is occupied
114          If Not IsOccupied(location) Then
115
116             ' place either an "X" or an "O" on board
117             If currentPlayer = 0 Then
118                board(location) = "X"c
119             Else
120                board(location) = "O"c
121             End If
122
123             ' set currentPlayer as other player (change turns)
124             currentPlayer = (currentPlayer + 1) Mod 2
125
126             ' notify other player of move
127             players(currentPlayer).OtherPlayerMoved(location)
128
129             ' alert other player to move
130             Monitor.Pulse(Me)
131
132             Return True

Fig. 22.5 Server side of client/server Tic-Tac-Toe program (part 3 of 4).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1119

133          Else
134             Return False
135          End If
136
137       End SyncLock
138
139 End Function ' ValidMove
140
141    ' determine whether specified square is occupied
142 Public Function IsOccupied(ByVal location As Integer) _
143       As Boolean
144
145       ' return True if board location contains "X" or "O"
146       If (board(location) = "X"c OrElse _
147          board(location) = "O"c) Then
148
149          Return True
150       Else
151          Return False
152       End If
153
154 End Function ' IsOccupied
155
156    ' allow clients to see if server has disconnected
157 Public ReadOnly Property Disconnected() As Boolean
158
159       Get
160          Return disconnect
161       End Get
162
163 End Property ' Disconnected
164
165    ' determine whether game is over
166 Public Function GameOver() As Boolean
167
168       ' place code here to test for winner of game
169       Return False
170 End Function ' GameOver
171
172 End Class ' FrmServer

1 ' Fig. 22.6: Player.vb
2 ' Represents a Tic-Tac-Toe player.
3
4 Imports System.Threading
5 Imports System.Net.Sockets
6 Imports System.IO
7
8 Public Class CPlayer
9

Fig. 22.6 CPlayer class represents a Tic-Tac-Toe player (part 1 of 4).

Fig. 22.5 Server side of client/server Tic-Tac-Toe program (part 4 of 4).



1120 Networking: Streams-Based Sockets and Datagrams Chapter 22

10 Private connection As Socket ' connection to server
11 Private server As FrmServer ' reference to Tic-Tac-Toe server
12
13  ' object for sending data to server
14 Private socketStream As NetworkStream
15
16  ' objects for writing and reading bytes to streams
17 Private writer As BinaryWriter
18 Private reader As BinaryReader
19
20 Private mark As Char ' "X" or "O"
21 Friend threadSuspended As Boolean = True
22
23 Sub New(ByVal socketValue As Socket, _
24       ByVal serverValue As FrmServer, ByVal markValue As Char)
25
26       ' assign argument values to class-member values
27       connection = socketValue
28       server = serverValue
29       mark = markValue
30
31       ' use Socket to create NetworkStream object
32       socketStream = New NetworkStream(connection)
33
34  ' create objects for writing and reading bytes across streams
35       writer = New BinaryWriter(socketStream)
36       reader = New BinaryReader(socketStream)
37 End Sub ' New
38
39  ' inform other player that move was made
40 Public Sub OtherPlayerMoved(ByVal location As Integer)
41
42       ' notify opponent
43       writer.Write("Opponent moved")
44       writer.Write(location)
45 End Sub ' OtherPlayerMoved
46
47  ' inform server of move and receive move from other player
48  Public Sub Run()
49
50       Dim done As Boolean = False ' indicates whether game is over
51
52       ' indicate successful connection and send mark to server
53       If mark = "X"c Then
54          server.Display("Player X connected")
55          writer.Write(mark)
56          writer.Write("Player X connected" & vbCrLf)
57       Else
58          server.Display("Player O connected")
59          writer.Write(mark)
60          writer.Write("Player O connected, please wait" & vbCrLf)
61       End If
62

Fig. 22.6 CPlayer class represents a Tic-Tac-Toe player (part 2 of 4).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1121

63    ' wait for other player to connect
64       If mark = "X"c Then
65          writer.Write("Waiting for another player")
66
67          ' wait for notification that other player has connected
68          SyncLock (Me)
69
70             While ThreadSuspended
71                Monitor.Wait(Me)
72             End While
73
74          End SyncLock
75
76          writer.Write("Other player connected. Your move")
77       End If
78
79   ' play game
80       While Not done
81
82          ' wait for data to become available
83          While connection.Available = 0
84             Thread.Sleep(1000)
85
86             ' end loop if server disconnects
87             If server.Disconnected Then
88                Return
89             End If
90
91        End While
92
93          ' receive other player's move
94          Dim location As Integer = reader.ReadInt32()
95
96          ' determine whether move is valid
97          If server.ValidMove(location, mark) Then
98
99             ' display move on server 
100             server.Display("loc: " & location)
101
102             ' notify server of valid move
103             writer.Write("Valid move.")
104
105          Else  ' notify server of invalid move
106             writer.Write("Invalid move, try again")
107          End If
108
109          ' exit loop if game over
110          If server.GameOver Then
111             done = True
112          End If
113
114       End While
115

Fig. 22.6 CPlayer class represents a Tic-Tac-Toe player (part 3 of 4).



1122 Networking: Streams-Based Sockets and Datagrams Chapter 22

116       ' close all connections
117       writer.Close()
118       reader.Close()
119       socketStream.Close()
120       connection.Close()
121 End Sub ' Run
122
123 End Class ' CPlayer

1 ' Fig. 22.7: Client.vb
2 ' Client for the Tic-Tac-Toe program.
3
4 Imports System.Windows.Forms
5 Imports System.Net.Sockets
6 Imports System.Threading
7 Imports System.IO
8
9 Public Class FrmClient

10 Inherits Form
11
12    ' board contains nine panels where user can place "X" or "O"
13 Friend WithEvents Panel1 As Panel
14 Friend WithEvents Panel2 As Panel
15 Friend WithEvents Panel3 As Panel
16 Friend WithEvents Panel4 As Panel
17 Friend WithEvents Panel5 As Panel
18 Friend WithEvents Panel6 As Panel
19 Friend WithEvents Panel7 As Panel
20 Friend WithEvents Panel8 As Panel
21 Friend WithEvents Panel9 As Panel
22
23  ' TextBox displays game status and other player's moves
24 Friend WithEvents txtDisplay As TextBox
25 Friend WithEvents lblId As Label ' Label displays player
26
27 Private board As CSquare(,) ' Tic-Tac-Toe board
28
29    ' square that user previously clicked
30 Private mCurrentSquare As CSquare
31
32 Private connection As TcpClient ' connection to server
33 Private stream As NetworkStream ' stream to tranfser data
34
35   ' objects for writing and reader bytes to streams
36 Private writer As BinaryWriter
37 Private reader As BinaryReader
38
39 Private mark As Char ' "X" or "O"
40 Private turn As Boolean ' indicates which player should move
41

Fig. 22.7 Client side of client/server Tic-Tac-Toe program (part 1 of 7).

Fig. 22.6 CPlayer class represents a Tic-Tac-Toe player (part 4 of 4).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1123

42 Private brush As SolidBrush ' brush for painting board
43
44 Private done As Boolean = False ' indicates whether game is over
45
46 Public Sub New()
47       MyBase.New()
48
49       ' required by the Windows Form Designer
50       InitializeComponent()
51
52       ' add any initialization after the 
53       ' InitializeComponent call
54
55       board = New CSquare(2, 2) {} ' create 3 x 3 board
56
57       ' create nine CSquare's and place their Panels on board
58       board(0, 0) = New CSquare(Panel1, " "c, 0)
59       board(0, 1) = New CSquare(Panel2, " "c, 1)
60       board(0, 2) = New CSquare(Panel3, " "c, 2)
61       board(1, 0) = New CSquare(Panel4, " "c, 3)
62       board(1, 1) = New CSquare(Panel5, " "c, 4)
63       board(1, 2) = New CSquare(Panel6, " "c, 5)
64       board(2, 0) = New CSquare(Panel7, " "c, 6)
65       board(2, 1) = New CSquare(Panel8, " "c, 7)
66       board(2, 2) = New CSquare(Panel9, " "c, 8)
67
68       ' create SolidBrush for writing on Squares
69       brush = New SolidBrush(Color.Black)
70
71       ' make connection request to server at port 5000 
72       connection = New TcpClient("localhost", 5000)
73       stream = connection.GetStream()
74
75       ' create objects for writing and reading bytes to streams
76       writer = New BinaryWriter(stream)
77       reader = New BinaryReader(stream)
78
79       ' create thread for sending and receiving messages
80       Dim outputThread As Thread = New Thread(AddressOf Run)
81       outputThread.Start()
82 End Sub ' New
83
84    ' Visual Studio .NET generated code
85
86    ' invoked on screen redraw
87  Private Sub FrmClient_Paint(ByVal sender As System.Object, _
88       ByVal e As System.Windows.Forms.PaintEventArgs) _
89       Handles MyBase.Paint
90
91       PaintSquares()
92 End Sub
93

Fig. 22.7 Client side of client/server Tic-Tac-Toe program (part 2 of 7).



1124 Networking: Streams-Based Sockets and Datagrams Chapter 22

94 ' invoked when user closes client application
95 Private Sub FrmClient_Closing(ByVal sender As System.Object, _
96       ByVal e As System.ComponentModel.CancelEventArgs) _
97       Handles MyBase.Closing
98
99       done = True
100    End Sub
101
102  ' redraw Tic-Tac-Toe board
103 Public Sub PaintSquares()
104       Dim graphics As Graphics
105
106       ' counters for traversing Tic-Tac-Toe board
107       Dim row As Integer
108       Dim column As Integer
109
110   ' draw appropriate mark on each panel
111       For row = 0 To 2
112
113          For column = 0 To 2
114
115             ' get Graphics for each Panel
116             graphics = board(row, column).Panel.CreateGraphics()
117
118             ' draw appropriate letter on panel
119             graphics.DrawString(board(row, _
120                column).Mark.ToString(), Me.Font, brush, 8, 8)
121          Next
122       Next
123
124 End Sub ' PaintSquares
125
126  ' invoked when user clicks Panels
127 Private Sub square_MouseUp(ByVal sender As System.Object, _
128       ByVal e As System.Windows.Forms.MouseEventArgs) Handles _
129       Panel1.MouseUp, Panel2.MouseUp, Panel3.MouseUp, _
130       Panel4.MouseUp, Panel5.MouseUp, Panel6.MouseUp, _
131       Panel7.MouseUp, Panel8.MouseUp, Panel9.MouseUp
132
133       ' counters for traversing Tic-Tac-Toe board
134       Dim row As Integer
135       Dim column As Integer
136
137       For row = 0 To 2
138
139          For column = 0 To 2
140
141             ' determine which Panel was clicked
142             If board(row, column).Panel Is sender Then
143                mCurrentSquare = board(row, column)
144

Fig. 22.7 Client side of client/server Tic-Tac-Toe program (part 3 of 7).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1125

145                ' send move to server
146                SendClickedSquare(board(row, column).Location)
147             End If
148
149          Next
150       Next
151
152 End Sub ' square_MouseUp
153
154   ' continuously update TextBox display
155 Public Sub Run()
156
157       Dim quote As Char = ChrW(34) ' single quote
158
159   ' get player's mark ("X" or "O")
160       mark = Convert.ToChar(stream.ReadByte())
161       lblId.Text = "You are player " & quote & mark & quote
162
163       ' determine which player's should move
164       If mark = "X" Then
165          turn = True
166       Else
167          turn = False
168       End If
169
170   ' process incoming messages
171       Try
172
173          ' receive messages sent to client
174          While True
175             ProcessMessage(reader.ReadString())
176          End While
177
178          ' notify user if server closes connection 
179       Catch exception As EndOfStreamException
180          txtDisplay.Text = "Server closed connection.  Game over."
181
182    End Try
183
184  End Sub ' Run
185
186  ' process messages sent to client
187 Public Sub ProcessMessage(ByVal messageValue As String)
188
189   ' if valid move, set mark to clicked square
190       If messageValue = "Valid move." Then
191          txtDisplay.Text &= "Valid move, please wait." & vbCrLf
192          mCurrentSquare.Mark = mark
193          PaintSquares()
194

Fig. 22.7 Client side of client/server Tic-Tac-Toe program (part 4 of 7).



1126 Networking: Streams-Based Sockets and Datagrams Chapter 22

195       ' if invalid move, inform user to try again
196       ElseIf messageValue = "Invalid move, try again" Then
197          txtDisplay.Text &= messageValue & vbCrLf
198          turn = True
199
200          ' if opponent moved, mark opposite mark on square
201       ElseIf messageValue = "Opponent moved" Then
202
203          ' find location of opponent's move
204          Dim location As Integer = reader.ReadInt32()
205
206          ' mark that square with opponent's mark
207          If mark = "X" Then
208             board(location \ 3, location Mod 3).Mark = "O"c
209          Else
210             board(location \ 3, location Mod 3).Mark = "X"c
211          End If
212
213          PaintSquares()
214
215          txtDisplay.Text &= "Opponent moved. Your turn." & vbCrLf
216
217          turn = True ' change turns
218
219          ' display message as default case
220       Else
221          txtDisplay.Text &= messageValue & vbCrLf
222       End If
223
224 End Sub ' ProcessMessage
225
226    ' send square position to server
227 Public Sub SendClickedSquare(ByVal location As Integer)
228
229   ' send location to the server if current turn
230       If turn Then
231          writer.Write(location)
232          turn = False ' change turns
233       End If
234
235  End Sub ' SendClickedSquare
236
237  ' Property CurrentSquare
238 Public WriteOnly Property CurrentSquare() As CSquare
239
240       Set(ByVal Value As CSquare)
241          mCurrentSquare = Value
242   End Set
243
244 End Property ' CurrentSquare
245
246 End Class ' FrmClient

Fig. 22.7 Client side of client/server Tic-Tac-Toe program (part 5 of 7).



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1127

Fig. 22.7 Client side of client/server Tic-Tac-Toe program (part 6 of 7).

1.

2.

3.



1128 Networking: Streams-Based Sockets and Datagrams Chapter 22

1 ' Fig. 22.8: Square.vb
2 ' Represents a square on the Tic-Tac-Toe board.
3
4 Public Class CSquare
5
6 Private squarePanel As Panel ' panel on which user clicks
7 Private squareMark As Char ' "X" or "O"
8 Private squareLocation As Integer ' position on board
9

10    ' constructor assigns argument values to class-member values
11 Public Sub New(ByVal panelValue As Panel, _
12       ByVal markValue As Char, ByVal locationValue As Integer)
13
14       squarePanel = panelValue
15       squareMark = markValue
16       squareLocation = locationValue
17 End Sub ' New
18

Fig. 22.8 CSquare class represents a square on the Tic-Tac-Toe board (part 1 of 2).

Fig. 22.7 Client side of client/server Tic-Tac-Toe program (part 7 of 7).

4.

server output after (1.)

server output after (2.)

server output after (3.)

server output after (4.)



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1129

FrmServer (Fig. 22.5) uses its constructor (lines 25–47) to create a Char array to
store the moves the players have made (line 34). The program creates an array of two ref-
erences to CPlayer objects (line 36) and an array of two references to Thread objects
(line 39). Each element in both arrays corresponds to a Tic-Tac-Toe player. Variable cur-
rentPlayer is set to 0, which corresponds to player "X." In our program, player "X"
makes the first move (line 40). Lines 43–46 create and start Thread getPlayers,
which the FrmServer uses to accept connections so that the current Thread does not
block while awaiting players.

Thread getPlayers executes method SetUp (lines 60–87), which creates a
TcpListener object to listen for requests on port 5000 (lines 63–64). This object then
listens for connection requests from the first and second players. Lines 67 and 74 instantiate
CPlayer objects representing the players, and lines 68–69 and 75–76 create two
Threads that execute the Run methods of each CPlayer object.

The CPlayer constructor (Fig. 22.6, lines 23–37) receives as arguments a reference to
the Socket object (i.e., the connection to the client), a reference to the FrmServer object
and a Char indicating the mark ("X" or "O") used by that player. In this case study, Frm-
Server calls method Run (lines 48–121) after instantiating a CPlayer object. Lines 52–

19  ' return panel on which user can click
20 Public ReadOnly Property Panel() As Panel
21
22       Get
23          Return squarePanel
24       End Get
25
26   End Property ' Panel
27
28 ' set and get squareMark ("X" or "O")
29 Public Property Mark() As Char
30
31       Get
32          Return squareMark
33       End Get
34
35       Set(ByVal Value As Char)
36          squareMark = Value
37   End Set
38
39 End Property ' Mark
40
41  ' return squarePanel position on Tic-Tac-Toe board
42 Public ReadOnly Property Location() As Integer
43
44       Get
45          Return squareLocation
46       End Get
47
48   End Property ' Location
49
50 End Class ' CSquare

Fig. 22.8 CSquare class represents a square on the Tic-Tac-Toe board (part 2 of 2).



1130 Networking: Streams-Based Sockets and Datagrams Chapter 22

61 notify the server of a successful connection and send to the client the Char that the client
will place on the board when making a move. If Run is executing for CPlayer "X", lines
65–76 execute, causing CPlayer "X" to wait for a second player to connect. Lines 70–72
define a While loop that suspends the CPlayer "X" Thread until the server signals that
CPlayer "O" has connected. The server notifies the CPlayer of the connection by setting
the CPlayer’s threadSuspended variable to False (Fig. 22.5, lines 81–85). When
threadSuspended becomes False, CPlayer exits the While loop of lines 70–72.

Method Run executes the While structure (lines 80–114), enabling the user to play
the game. Each iteration of this structure waits for the client to send an Integer speci-
fying where on the board to place the "X" or "O"—the CPlayer then places the mark on
the board, if the specified mark location is valid (e.g., that location does not already contain
a mark). Note that the While structure continues execution only if Boolean variable
done is False. This variable is set to True by event handler FrmServer_Closing
of class FrmServer, which is invoked when the server closes the connection.

Line 83 of Fig. 22.6 begins a While that loops until Socket property Available
indicates that there is information to receive from the Socket (or until the server discon-
nects from the client). If there is no information, the thread goes to sleep for one second.
Upon awakening, the thread uses property Disconnected to check for whether server
variable disconnect is True (lines 83–91). If the value is True, the Thread exits the
method (thus terminating the Thread); otherwise, the Thread loops again. However, if
property Available indicates that there is data to receive, the While loop of lines 83–
91 terminates, enabling the information to be processed.

This information contains an Integer representing the location in which the client
wants to place a mark. Line 94 calls method ReadInt32 of the BinaryReader object
(which reads from the NetworkStream created with the Socket) to read this
Integer. Line 97 then passes the Integer to Server method ValidMove. If this
method validates the move, the CPlayer places the mark in the desired location.

Method ValidMove (Fig. 22.5, lines 95–139) sends to the client a message indi-
cating whether the move was valid. Locations on the board correspond to numbers from 0–
8 (0–2 for the first row, 3–5 for the second and 6–8 for the third). All statements in method
ValidMove are enclosed in a SyncLock statement that allows only one move to be
attempted at a time. This prevents two players from modifying the game’s state information
simultaneously. If the CPlayer attempting to validate a move is not the current player
(i.e., the one allowed to make a move), that CPlayer is placed in a wait state until it is that
CPlayer’s turn to move. If the user attempts to place a mark on a location that already
contains a mark, method ValidMove returns False. However, if the user has selected
an unoccupied location (line 114), lines 117–121 place the mark on the local representation
of the board. Line 127 notifies the other CPlayer that a move has been made, and line 130
invokes the Pulse method so that the waiting CPlayer can validate a move. The method
then returns True to indicate that the move is valid.

When a FrmClient application (Fig. 22.7) executes, it creates a TextBox to display
messages from the server and the Tic-Tac-Toe board representation. The board is created out
of nine CSquare objects (Fig. 22.8) that contain Panels on which the user can click, indi-
cating the position on the board in which to place a mark. The FrmClient’s constructor
(line 46–82) opens a connection to the server (line 72) and obtains a reference to the connec-
tion’s associated NetworkStream object from TcpClient (line 73). Lines 80–81 start a



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1131

thread to read messages sent from the server to the client. The server passes messages (for
example, whether each move is valid) to method ProcessMessage (lines 187–224). If the
message indicates that a move is valid (line 190), the client sets its mark to the current square
(the square that the user clicked) and repaints the board. If the message indicates that a move
is invalid (line 196), the client notifies the user to click a different square. If the message indi-
cates that the opponent made a move (line 201), line 204 reads from the server an Integer
specifying where on the board the client should place the opponent’s mark.

In this chapter, we discussed how to use Visual Basic’s networking technologies by
providing both connection-oriented (i.e., streams-based) transmission and connectionless
(i.e., packet-based) transmission. We showed how to create a simple server and client via
stream sockets, then showed how to create a multithreaded server. In Chapter 23, Data
Structures and Collections, we discuss how to store data dynamically and discuss several
of the key classes that belong to the Visual Basic System.Collections namespace.

SUMMARY
• Sockets are the fundamental way to perform network communications in the .NET Framework.

The term “socket” refers to the Berkeley Sockets Interface, which was developed in 1978 to facil-
itate network programming with UNIX and was popularized by C and C++ programmers. 

• The two most popular types of sockets are stream sockets and datagram sockets. 

• Stream sockets provide a connection-oriented service, meaning that one process establishes a con-
nection to another process, and data can flow between the processes in continuous streams.

• Datagram sockets provide a connectionless service that uses messages to transmit data.

• Connectionless services generally offer greater performance but less reliability than connection-
oriented services.

• Transmission Control Protocol (TCP) is the preferred protocol for stream sockets. It is a reliable
and relatively fast way to send data through a network.

• The User Datagram Protocol (UDP) is the preferred protocol for datagram sockets. UDP is unre-
liable. There is no guarantee that packets sent with UDP will arrive in the order in which they were
sent or that they will arrive at all.

• The establishment of a simple server with TCP and stream sockets in Visual Basic requires five
steps. Step 1 is to create a TcpListener object. This class represents a TCP stream socket that
a server can use to receive connections.

• To receive connections, the TcpListener must be listening for them. For the TcpListener
to listen for client connections, its Start method must be called (Step 2).

• TcpListener method AcceptSocket blocks indefinitely until a connection is established, at
which point it returns a Socket (Step 3).

• Step 4 is the processing phase, in which the server and the client communicate via methods Read
and Write via a NetworkStream object.

• When the client and server have finished communicating, the server closes the connection with the
Close method on the Socket (Step 5). Most servers will then, by means of a control loop, return
to the AcceptSocket call step to wait for another client’s connection.

• A port number is a numeric ID number that a process uses to identify itself at a given network ad-
dress, also known as an Internet Protocol Address (IP Address).

• An individual process running on a computer is identified by an IP address/port number pair.
Hence, no two processes can have the same port number at a given IP address.



1132 Networking: Streams-Based Sockets and Datagrams Chapter 22

• The establishment of a simple client requires four steps. In Step 1, we create a TcpClient to
connect to the server. This connection is established through a call to the TcpClient method
Connect containing two arguments—the server’s IP address and the port number

• In Step 2, the TcpClient uses method GetStream to get a Stream to write to and read from
the server.

• Step 3 is the processing phase, in which the client and the server communicate.

• Step 4 has the client close the connection by calling the Close method on the NetworkStream.

• NetworkStream methods WriteByte and Write can be used to output individual bytes or
sets of bytes to the server, respectively.

• NetworkStream methods ReadByte and Read can be used to input individual bytes or sets
of bytes from the server, respectively.

• Method GetBytes of the System.Text.Encoding’s Shared ASCII property retrieves
the bytes that make up a string. This method returns an array of bytes.

• Class UdpClient is provided for connectionless transmission of data.

• Class UdpClient methods Send and Receive are used to transmit data.

• Class IPEndPoint represents an endpoint on a network.

• Class IPAddress represents an Internet Protocol address.

• Multithreaded servers can manage many simultaneous connections with multiple clients.

TERMINOLOGY
127.0.0.1 Exit method of class Environment
AcceptSocket method of class  
   TcpListener

ExitCode property of class Environment
file processing 

Berkeley Sockets Interface GetStream method of class Socket
BinaryReader class Internet Protocol Addresses (IP Address) 
BinaryWriter class IP Address 
Bind method of class Socket IPAddress class 
binding a server to a port IPEndPoint class 
block Local Area Network (LAN) 
block until connection received localhost
client loopback IP address 
client/server model network address 
Close method of class Socket networking as file I/O 
Close method of class TcpClient NetworkStream class 
Connect method of class TcpListener OpenRead method of class WebClient
connection OpenWrite method of class WebClient
connection attempt packet 
connection between client and server terminates pool of threads 
connection port port number 
connection to a server protocol 
connectionless service Read method of class NetworkStream
connectionless transmission with datagrams ReadByte method of class NetworkStream
connection-oriented service reading a file on a Web server 
connection-oriented, streams-based transmission ReadString method of class  

   BinaryReaderdatagram 
datagram socket receive a connection 
echo a packet back to a client receive data from a server 



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1133

SELF-REVIEW EXERCISES
22.1 State whether each of the following is true or false. If false, explain why.

a) UDP is a connection-oriented protocol.
b) With stream sockets, a process establishes a connection to another process.
c) Datagram-packet transmission over a network is reliable—packets are guaranteed to ar-

rive in sequence.
d) Most of the time TCP protocol is preferred over the UDP protocol.
e) Each TcpListener can accept only one connection.
f) A TcpListener can listen for connections at more than one port at a time.
g) A UdpClient can send information onlyto one particular port.
h) Packets sent via a UDP connection are sent only once.
i) Clients need to know the port number at which the server is waiting for connections.

22.2 Fill in the blanks in each of the following statements:
a) Many of Visual Basic’s networking classes are contained in namespaces  and

.
b) Class is used for unreliable datagram transmission.
c) An object of class represents an Internet Protocol (IP) address.
d) The two types of sockets we discussed in this chapter are sockets and

sockets.
e) The acronym URL stands for .
f) Class  listens for connections from clients.
g) Class  connects to servers.
h) Class  provides access to stream data on a network.

ANSWERS TO SELF-REVIEW EXERCISES
22.1 a) False. UDP is a connectionless protocol, and TCP is a connection-oriented protocol.  b) True.
c) False. Packets can be lost, arrive out of order or even be duplicated.  d) True.  e) False. TcpListen-
er AcceptSocket may be called as often as necessary—each call will accept a new connection.
f) False. A TcpListener can listen for connections at only one port at a time.  g) False. A UdpCli-
ent can send information to any port represented by an IPEndPoint.  h) False. Packets may be sent
more than once, to make it more likely that at least one copy of each packet arrives. i) True.

Receive method of class Socket streams-based transmission 
Receive method of class UdpClient system service 
ReceiveFrom method of class Socket System.Net namespace 
send data to a server System.Net.Sockets namespace 
Send method of class Socket TCP (Transmission Control Protocol) 
Send method of class UdpClient TcpClient class 
SendTo method of class Socket TcpListener class 
server Thread class 
server Internet address Transmission Control Protocol (TCP) 
server port number User Datagram Protocol (UDP) 
socket UdpClient class 
socket-based communications User Datagram Protocol 
Socket class User Datagram Protocol (UDP) 
spawning Write method of class BinaryWriter
Start method of class TcpListener Write method of class NetworkStream
stream WriteByte method of class  

   NetworkStreamstream socket 



1134 Networking: Streams-Based Sockets and Datagrams Chapter 22

22.2 a) System.Net, System.Net.Sockets. b) UdpClient. c) IPAddress. d) stream,
datagram. e) Uniform Resource Locator.  f) TcpListener. g) TcpClient. h) NetworkStream.

EXERCISES
22.3 Use a socket connection to allow a client to specify a file name and have the server send the
contents of the file or indicate that the file does not exist. Allow the client to modify the file contents
and to send the file back to the server for storage.

22.4 Multithreaded servers are quite popular today, especially because of the increasing use of
multiprocessing servers (i.e., servers with more than one processor unit). Modify the simple server
application presented in Section 22.4 to be a multithreaded server. Then, use several client applica-
tions and have each of them connect to the server simultaneously.

22.5 Create a client/server application for the game of Hangman, using socket connections. The
server should randomly pick a word or phrase from a file or a database. After connecting, the client
should be allowed to begin guessing. If a client guesses incorrectly five times, the game is over. Dis-
play the original phrase or word on the server. Display underscores (for letters that have not been
guessed yet) and the letters that have been guessed in the word or phrase on the client.

22.6 Modify the previous exercise to be a connectionless game using datagrams.

22.7 (Modifications to the Multithreaded Tic-Tac-Toe Program) The programs of Fig. 22.5–Fig.
22.8 implement a multithreaded, client/server version of the game Tic-Tac-Toe. Our goal in develop-
ing this game was to demonstrate a multithreaded server that could process multiple connections from
clients at the same time. The server in the example is really a mediator between the two clients—it
makes sure that each move is valid and that each client moves in the proper order. The server does
not determine who won or lost or whether there was a draw. Also, there is no capability to allow a
new game to be played or to terminate an existing game. 

The following is a list of suggested modifications to the multithreaded Tic-Tac-Toe application:
a) Modify class Server to test for a win, loss or draw on each move in the game. When

the game is over, send a message to each client that indicates the result of the game.
b) Modify class Client to display a button that, when clicked, allows the client to play

another game. The button should be enabled only when a game completes. Note that both
class Client and class Server must be modified to reset the board and all state infor-
mation. Also, the other Client should be notified of a new game, so that client can reset
its board and state information.

c) Modify class Client to provide a button that allows a client to terminate the program
at any time. When the button is clicked, the server and the other client should be notified.
The server should then wait for a connection from another client so that a new game can
begin.

d) Modify class Client and class Server so that the loser of a game can choose game
piece X or O for the next game. Remember that X always goes first.

22.8 (Networked Morse Code) Perhaps the most famous of all coding schemes is the Morse code,
developed by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a se-
ries of dots and dashes to each letter of the alphabet, each digit, and a few special characters (such as
period, comma, colon and semicolon). In sound-oriented systems, the dot represents a short sound
and the dash represents a long sound. Other representations of dots and dashes are used with light-
oriented systems and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, the absence of a dot or dash.
In a sound-oriented system, a space is indicated by a short period of time during which no sound is
transmitted. The international version of the Morse code appears in Fig. 22.9.



Chapter 22 Networking: Streams-Based Sockets and Datagrams 1135

Write an application that reads an English-language phrase and encodes the phrase into Morse
code. Also, write a program that reads a phrase in Morse code and converts the phrase into the English-
language equivalent. Use one blank between each Morse-coded letter and three blanks between each
Morse-coded word. Then, enable these two applications to send Morse Code messages to each other
through a multithreaded-server application. Each application should allow the user to type normal char-
acters into a TextBox. The application should then translate the characters into Morse Code and send
the coded message through the server to the other client. When messages are received, they should be
decoded and displayed as normal characters and as Morse Code. The application should have two
TextBoxes: One for displaying the other client’s messages, and one for typing.

Character Code Character Code

A •- T -

B -••• U ••-

C -•-• V •••-

D -•• W •--

E • X -••-

F ••-• Y -•--

G --• Z --•• 

H ••••

I •• Digits

J •--- 1 •----

K -•- 2 ••---

L •-•• 3 •••--

M -- 4 ••••-

N -• 5 •••••

O --- 6 -••••

P •--• 7 --•••

Q --•- 8 ---••

R •-• 9 ----•

S ••• 0 -----

Fig. 22.9 English letters of the alphabet and decimal digits as expressed in 
international Morse code.



23
Data Structures and 

Collections

Objectives
• To be able to form linked data structures using 

references, self-referential classes and recursion.
• To be able to create and manipulate dynamic data 

structures, such as linked lists, queues, stacks and 
binary trees.

• To understand various applications of linked data 
structures.

• To understand how to create reusable data structures 
with classes, inheritance and composition.

Much that I bound, I could not free;
Much that I freed returned to me.
Lee Wilson Dodd

‘Will you walk a little faster?’ said a whiting to a snail,
‘There’s a porpoise close behind us, and he’s treading on my 
tail.’
Lewis Carroll

There is always room at the top.
Daniel Webster

Push on—keep moving.
Thomas Morton

I think that I shall never see
A poem lovely as a tree.
Joyce Kilmer



Chapter 23 Data Structures and Collections 1137

23.1 Introduction
The data structures that we have studied thus far, such as single-subscripted and double-
subscripted arrays, have been of fixed sizes. This chapter introduces dynamic data struc-
tures, which can grow and shrink at execution time. Linked lists are collections of data
items “lined up in a row”—users can make insertions and deletions anywhere in a linked
list. Stacks are important in compilers and operating systems; insertions and deletions are
made only at the stack’s top. Queues represent waiting lines; insertions are made only at
the back (also referred to as the tail) of a queue, and deletions are made only from the front
(also referred to as the head) of a queue. Binary trees facilitate high-speed searching and
sorting of data, efficient elimination of duplicate data items, representation of file-system
hierarchies and compilation of expressions into machine language. The various data struc-
tures we just mentioned have many other interesting applications, as well.

In this chapter, we discuss each of the major types of data structures and then imple-
ment programs that create and manipulate these data structures. We use classes, inheritance
and composition to create and package the data structures in ways that enhance reusability
and maintainability.

The chapter examples are practical programs that students will find useful in
advanced courses and in industrial applications. The programs devote special attention
to reference manipulation. 

23.2 Self-Referential Classes
A self-referential class contains a reference member referring to a class object of the same
class type. For example, the class definition in Fig. 23.1 defines type CNode. This type has
two Private instance variables (lines 5–6)—Integer mData and CNode reference

Outline

23.1 Introduction
23.2 Self-Referential Classes
23.3 Linked Lists
23.4 Stacks
23.5 Queues
23.6 Trees

23.6.1 Binary Search Tree of Integer Values

23.6.2 Binary Search Tree of IComparable Objects
23.7 Collection Classes

23.7.1 Class Array

23.7.2 Class ArrayList

23.7.3 Class Stack

23.7.4 Class Hashtable

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



1138 Data Structures and Collections Chapter 23

mNextNode. Member mNextNode references an object of type CNode, the same type
as the current class—hence the term, “self-referential class.” Member mNextNode is re-
ferred to as a link (this means that mNextNode can be used to “tie” an object of type CN-
ode to another object of the same type). Class CNode also has two properties: One for
variable mData, named Data (lines 13–23), and another for variable mNextNode,
named NextNode (lines 26–36).

Self-referential objects can be linked together to form useful data structures, such as
lists, queues, stacks and trees. Figure 23.2 illustrates the linking of two self-referential
objects to form a list. A backslash (representing a Nothing reference) is placed in the link
member of the second self-referential object to indicate that the link does not refer to
another object. A Nothing reference usually defines the end(s) of a data structure.

1 ' Fig. 23.01: Node.vb
2 ' Self-referential Node class.
3
4 Class CNode 
5 Private mData As Integer
6 Private mNextNode As CNode
7
8 Public Sub New(ByVal dataValue As Integer)
9        ' constructor body 

10 End Sub ' New
11
12    ' Property Data
13 Public Property Data() As Integer
14
15       Get
16          ' get body 
17       End Get
18
19       Set(ByVal dataValue As Integer)
20          ' set body 
21       End Set
22
23   End Property ' Data
24
25    ' Property NextNode
26 Public Property NextNode As CNode
27
28       Get
29          ' get next node 
30       End Get
31
32       Set(ByVal nodeValue As CNode)
33          ' set next node 
34   End Set
35
36   End Property ' NextNode
37
38 End Class 'CNode

Fig. 23.1 Self-referential CNode class definition. 



Chapter 23 Data Structures and Collections 1139

Common Programming Error 23.1
Failure to set the link in the last node of a list (or other linear data structure) to Nothing
is a common logic error. 23.1

Creating and maintaining dynamic data structures requires dynamic memory alloca-
tion—a program’s ability to obtain additional memory (to hold new variables) and to
release unneeded memory at execution time. Recall that, instead of releasing dynamically
allocated memory explicitly, Visual Basic programs perform automatic garbage collection.

Dynamic memory allocation is limited by the amount of available physical memory in
the computer (and the amount of available disk space in a virtual-memory system). In most
cases, the limits for an individual program are much smaller—the computer’s available
memory must be shared among many applications.

Keyword New is essential to dynamic memory allocation. Keyword New takes the
class name of an object as an operand. It then dynamically allocates the memory for a new
object, calls the class constructor and returns a reference to the newly created object. For
example, the statement:

Dim nodeToAdd As CNode = New CNode(10)

allocates the appropriate amount of memory to store a CNode, calls the CNode constructor
with an argument of 10 (for the CNode’s mData member) and stores a reference to this
object in nodeToAdd. If no memory is available, New throws an OutOfMemoryEx-
ception.

The following sections discuss lists, stacks, queues and trees. These data structures are
created and maintained with dynamic memory allocation and self-referential classes. 

Good Programming Practice 23.1
When creating an object, it is a good idea to test for an OutOfMemoryException. Per-
form appropriate error processing if the requested memory is not allocated. 23.1

23.3 Linked Lists
A linked list is a linear collection (i.e., a sequence) of self-referential class objects, called
nodes, that are connected by reference links—hence the term, “linked” list. A program ac-
cesses a linked list via a reference to the first node of the list. Each subsequent node is access-
ed via the current node’s link-reference member. By convention, the link reference in the last
node of a list is set to Nothing, marking the end of the list. Data is stored in a linked list
dynamically—each node is created as necessary. A node can contain data of any type.

Although arrays also can store lists of data, linked lists provide several advantages over
arrays. It is appropriate to use a linked list when the number of data elements to be repre-
sented in the data structure is unpredictable. Unlike a linked list, the size of a “conven-
tional” Visual Basic array cannot be altered, because the array size is fixed when the array

Fig. 23.2 Self-referential class objects linked together.

15 10



1140 Data Structures and Collections Chapter 23

is created. Conventional arrays can become full, but linked lists become full only when the
system has insufficient memory to satisfy dynamic storage allocation requests.

Performance Tip 23.1
An array can be declared to contain more elements than the expected number of items, but
this would waste memory. Linked lists can provide better memory utilization in these situa-
tions. In general, the use of dynamic memory allocation (instead of arrays) for data struc-
tures that grow and shrink at execution time can save memory. 23.1

Programmers can maintain linked lists in sorted order simply by inserting each new
element at the proper point in the list. Although locating the proper insertion point does take
time, it is not necessary to move existing list elements.

Performance Tip 23.2
Insertion and deletion in a sorted array can consume time, because all elements following
the inserted or deleted element must be shifted appropriately. 23.2

Performance Tip 23.3
The elements of an array are stored contiguously in memory to allow immediate access to
any array element—the address of any element can be calculated directly as its offset from
the beginning of the array. Linked lists do not afford such immediate access to their ele-
ments—an element can be accessed only by traversing the list from the front. 23.3

Normally, memory does not store linked-list nodes contiguously. Rather, the nodes are
logically contiguous. Figure 23.3 illustrates a linked list containing several nodes.

The program of Fig. 23.4–Fig. 23.6 uses an object of class CList to manipulate a list of
objects of type Object. Method Main of module modListTest (Fig. 23.7) creates a list
of objects, inserts objects at the beginning of the list (using CList method InsertAt-
Front), inserts objects at the end of the list (using CList method InsertAtBack),
deletes objects from the front of the list (using CList method RemoveFromFront) and
deletes objects from the end of the list (using CList method RemoveFromBack). Each
insertion or deletion operation invokes CList method Print to display the current list con-
tents. A detailed discussion of the program follows. An EmptyListException occurs if
an attempt is made to remove an item from an empty list.

The program consists of four classes—CListNode (Fig. 23.4), CList (Fig. 23.5),
EmptyListException (Fig. 23.6) and module modListTest (Fig. 23.7). The
classes in Fig. 23.4–Fig. 23.6 create a linked-list library. These classes belong to
namespace LinkedListLibrary (i.e., we store them in the LinkedListLibrary
class library), enabling us to reuse the classes throughout this chapter. 

Encapsulated in each CList object is a linked list of CListNode objects. Class
CListNode (Fig. 23.4) consists of two member variables—mData and mNextNode.
Member mData can refer to any Object. Member mNextNode stores a reference to the
next CListNode object in the linked list. A CList accesses the CListNode member
variables via properties Data (lines 22–28) and NextNode (lines 31–41), respectively.

Class CList (Fig. 23.5) contains Private members firstNode (a reference to
the first CListNode in a CList) and lastNode (a reference to the last CListNode
in a CList). The constructors (lines 10–14 and 17–19) initialize both references to
Nothing. Methods InsertAtFront (lines 22–36), InsertAtBack (lines 39–54),



Chapter 23 Data Structures and Collections 1141

RemoveFromFront (lines 57–81) and RemoveFromBack (lines 84–117) are the pri-
mary methods of class CList. Each method uses a SyncLock block to ensure that
CList objects are multithread safe when used in a multithreaded program. This means
that, if one thread is modifying the contents of a CList object, no other thread can modify
the same CList object at the same time. Method IsEmpty (lines 120–132) is a predicate
method that determines whether the list is empty (i.e., whether the reference to the first node
of the list is Nothing). Predicate methods typically test a condition and do not modify the
object on which they are called. If the list is empty, method IsEmpty returns True; oth-
erwise, it returns False. Method Print (lines 135–159) displays the list’s contents. Both
method IsEmpty and method Print use SyncLock blocks, ensuring that the state of
the list does not change while the methods are performing their tasks.

Class EmptyListException (Fig. 23.6) defines an exception class to handle
illegal operations on an empty CList. For example, an EmptyListException occurs
if the program attempts to remove a node from an empty CList.

Module modListTest (Fig. 23.7) uses the linked-list library to create and manipu-
late a linked list. Line 10 creates an instance of type CList named list. Then, lines 13–
16 create data to add to the list. Lines 19–29 use CList insertion methods to insert these
objects and use CList method Print to output the contents of list after each insertion.
The code inside the Try block (lines 35–70) removes objects (using CList deletion
methods), outputs the removed object and outputs list after every deletion. If there is an
attempt to remove an object from an empty list, the Catch block (lines 66–68) catches the
EmptyListException. Note that module modListTest uses namespace
LinkedListLibrary (Fig. 23.4); thus, the project containing module modListTest
must contain a reference to the LinkedListLibrary class library.  

Fig. 23.3 Linked-list graphical representation.

1 ' Fig. 23.04: ListNodes.vb
2 ' Class to represent one node in a CList.
3
4 Public Class CListNode
5 Private mData As Object
6 Private mNextNode As CListNode
7

Fig. 23.4 Self-referential class CListNode (part 1 of 2).

...

lastNodefirstNode

H D Q



1142 Data Structures and Collections Chapter 23

8    ' create CListNode with dataValue in list
9   Public Sub New(ByVal dataValue As Object)

10       MyClass.New(dataValue, Nothing)
11    End Sub ' New
12
13    ' create CListNode with dataValue and nextNodeValue in list
14  Public Sub New(ByVal dataValue As Object, _
15       ByVal nextNodeValue As Object)
16
17       mData = dataValue
18       mNextNode = nextNodeValue
19   End Sub ' New
20
21  ' property Data
22   Public ReadOnly Property Data() As Object
23
24      Get
25          Return mData
26       End Get
27
28  End Property ' Data
29
30  ' property mNext
31   Public Property NextNode() As CListNode
32
33       Get
34          Return mNextNode
35       End Get
36
37       Set(ByVal value As CListNode)
38          mNextNode = value
39       End Set
40
41    End Property ' NextNode
42
43 End Class ' CListNode

1 ' Fig. 23.05: List.vb
2 ' Class CList definition.
3
4 Public Class CList
5  Private firstNode As CListNode
6 Private lastNode As CListNode
7 Private name As String
8
9 ' construct empty List with specified name

10 Public Sub New(ByVal listName As String)
11       name = listName
12       firstNode = Nothing

Fig. 23.5 Linked-list CList class (part 1 of 4).

Fig. 23.4 Self-referential class CListNode (part 2 of 2).



Chapter 23 Data Structures and Collections 1143

13       lastNode = Nothing
14   End Sub ' New
15
16    ' construct empty List with "list" as its name
17 Public Sub New()
18       MyClass.New("list")
19 End Sub ' New
20
21    ' insert object at front of List
22 Public Sub InsertAtFront(ByVal insertItem As Object)
23
24       SyncLock (Me) ' ensure thread safe
25
26          ' if this list is empty, create node
27          If IsEmpty() Then
28             lastNode = New CListNode(insertItem)
29             firstNode = lastNode
30          Else ' create node and insert before first node
31             firstNode = New CListNode(insertItem, firstNode)
32          End If
33
34    End SyncLock
35
36  End Sub ' InsertAtFront
37
38    ' insert object at end of List
39   Public Sub InsertAtBack(ByVal insertItem As Object)
40
41       SyncLock (Me) ' ensure thread safety
42
43          ' if list is empty create node and set firstNode
44          If IsEmpty() Then
45             lastNode = New CListNode(insertItem)
46             firstNode = lastNode
47          Else ' create node and insert after last node
48             lastNode.NextNode = New CListNode(insertItem)
49             lastNode = lastNode.NextNode
50          End If
51
52       End SyncLock
53
54  End Sub ' InsertAtBack
55
56    ' remove first node from list
57 Public Function RemoveFromFront() As Object
58
59       SyncLock (Me) ' ensure thread safety
60          Dim removeItem As Object = Nothing
61
62          ' throw exception if removing node from empty list
63          If IsEmpty() Then
64             Throw New EmptyListException(name)
65          End If

Fig. 23.5 Linked-list CList class (part 2 of 4).



1144 Data Structures and Collections Chapter 23

66
67          removeItem = firstNode.Data ' retrieve data
68
69          ' reset firstNode and lastNode references
70          If firstNode Is lastNode Then
71             firstNode = Nothing
72             lastNode = Nothing
73       Else
74             firstNode = firstNode.NextNode
75          End If
76
77          Return removeItem ' return removed item
78
79       End SyncLock
80
81   End Function ' RemoveFromFront
82
83  ' remove last node from CList
84 Public Function RemoveFromBack() As Object
85
86       SyncLock (Me) ' ensure thread safe
87          Dim removeItem As Object = Nothing
88
89          ' throw exception if removing node from empty list
90          If IsEmpty() Then
91             Throw New EmptyListException(name)
92          End If
93
94          removeItem = lastNode.Data ' retrieve data
95
96          ' reset firstNode and last node references
97          If firstNode Is lastNode Then
98             lastNode = Nothing
99             firstNode = lastNode
100          Else
101             Dim current As CListNode = firstNode
102
103             ' loop while current node is not lastNode
104             While (Not (current.NextNode Is lastNode))
105                current = current.NextNode ' move to next node
106             End While
107
108             ' current is new lastNode
109             lastNode = current
110             current.NextNode = Nothing
111          End If
112
113          Return removeItem ' return removed data
114
115      End SyncLock
116
117  End Function ' RemoveFromBack
118

Fig. 23.5 Linked-list CList class (part 3 of 4).



Chapter 23 Data Structures and Collections 1145

119  ' return true if list is empty
120  Public Function IsEmpty() As Boolean
121
122       SyncLock (Me)
123
124          If firstNode Is Nothing Then
125             Return True
126          Else
127             Return False
128          End If
129
130   End SyncLock
131
132 End Function ' IsEmpty
133
134    ' output List contents
135 Public Overridable Sub Print()
136
137       SyncLock (Me)
138
139          If IsEmpty() Then
140             Console.WriteLine("Empty " & name)
141
142             Return
143          End If
144
145          Console.Write("The " & name & " is: ")
146
147          Dim current As CListNode = firstNode
148
149          ' output current node data while not at end of list
150          While Not current Is Nothing
151             Console.Write(current.Data & " ")
152             current = current.NextNode
153          End While
154
155          Console.WriteLine(vbCrLf)
156
157       End SyncLock
158
159 End Sub ' Print
160
161 End Class ' CList

1 ' Fig. 23.06: EmptyListException.vb
2 ' Class EmptyListException definition.
3
4 Public Class EmptyListException
5 Inherits ApplicationException
6

Fig. 23.6 Exception thrown when removing node from empty linked list (part 1 of 2).

Fig. 23.5 Linked-list CList class (part 4 of 4).



1146 Data Structures and Collections Chapter 23

7 Public Sub New(ByVal name As String)
8       MyBase.New("The " & name & " is empty")
9  End Sub ' New

10
11 End Class ' EmptyListException

1 ' Fig. 23.07: ListTest.vb
2 ' Testing class CList.
3
4 ' Deitel namespaces
5 Imports LinkedListLibrary
6
7 Module modListTest
8
9 Sub Main()

10       Dim list As CList = New CList() ' create CList container
11
12   ' create data to store in CList
13       Dim aBoolean As Boolean = True
14       Dim aCharacter As Char = "$"c
15       Dim anInteger As Integer = 34567
16       Dim aString As String = "hello"
17
18       ' use CList insert methods
19       list.InsertAtFront(aBoolean) ' insert Boolean at front
20       list.Print()
21
22       list.InsertAtFront(aCharacter) ' insert Char at front
23       list.Print()
24
25       list.InsertAtBack(anInteger) ' insert Integer at back
26       list.Print()
27
28       list.InsertAtBack(aString) ' insert String at back
29       list.Print()
30
31   ' use CList remove methods
32       Dim removedObject As Object
33
34      ' remove data from list and print after each removal
35       Try
36
37          ' remove object from front of list
38          removedObject = list.RemoveFromFront()
39          Console.WriteLine(Convert.ToString(removedObject) & _
40             " removed")
41
42          list.Print()

Fig. 23.7 Linked-list demonstration (part 1 of 2).

Fig. 23.6 Exception thrown when removing node from empty linked list (part 2 of 2).



Chapter 23 Data Structures and Collections 1147

43
44          ' remove object from front of list
45          removedObject = list.RemoveFromFront()
46          Console.WriteLine(Convert.ToString(removedObject) & _
47             " removed")
48
49          list.Print()
50
51          ' remove object from back of list
52          removedObject = list.RemoveFromBack()
53          Console.WriteLine(Convert.ToString(removedObject) & _
54             " removed")
55
56          list.Print()
57
58          ' remove object from back of list
59          removedObject = list.RemoveFromBack()
60          Console.WriteLine(Convert.ToString(removedObject) & _
61             " removed")
62
63          list.Print()
64
65       ' Catch exception if list is empty
66   Catch emptyListException As EmptyListException
67          Console.Error.WriteLine(vbCrLf & _
68             Convert.ToString(emptyListException))
69
70     End Try
71
72  End Sub ' Main
73
74 End Module ' modListTest

The list is: True

The list is: $ True

The list is: $ True 34567

The list is: $ True 34567 hello

$ removed
The list is: True 34567 hello

True removed
The list is: 34567 hello

hello removed
The list is: 34567

34567 removed
Empty list

Fig. 23.7 Linked-list demonstration (part 2 of 2).



1148 Data Structures and Collections Chapter 23

Over the next several pages, we discuss each of the methods of class CList in detail.
Method InsertAtFront (Fig. 23.5, lines 22–36) places a new node at the front of the
list. This method consists of three steps, which are outlined below:

1. Call IsEmpty to determine whether the list is empty (Fig. 23.5, line 27).

2. If the list is empty, set both firstNode and lastNode to refer to a new
CListNode initialized with object insertItem (lines 28–29). The CList-
Node constructor in lines 9–11 (Fig. 23.4) calls the CListNode constructor on
lines 14–19 (Fig. 23.4) to set instance variable mData to refer to the Object
passed as the first argument and then sets the mNextNode reference to Noth-
ing.

3. If the list is not empty, the new node is “threaded” (not to be confused with mul-
tithreading) into the list by setting firstNode to refer to a new CListNode
object initialized with object insertItem and firstNode (line 30). When the
CListNode constructor (lines 14–19 of Fig. 23.4) executes, it sets instance vari-
able mData to refer to the Object passed as the first argument and performs the
insertion by setting the mNextNode reference to the CListNode passed as the
second argument.

Figure 23.8 illustrates method InsertAtFront. Part a) of the figure depicts the list
and the new node during the InsertAtFront operation and before the threading of the
new ListNode (containing value 12) into the list. The dotted arrows in part b) illustrate
step 3 of the InsertAtFront operation, which enables the ListNode to become the
new list front.

Method InsertAtBack (Fig. 23.5, lines 39–54) places a new node at the back of the
list. This method consists of three steps:

1. Call IsEmpty to determine whether the list is empty (Fig. 23.5, line 44).

Fig. 23.8 InsertAtFront graphical representation.

firstNode(a)

firstNode(b)

New ListNode

New ListNode

7 11

12

7 11

12



Chapter 23 Data Structures and Collections 1149

2. If the list is empty, set both firstNode and lastNode to refer to a new
CListNode initialized with object insertItem (lines 45–46). The CList-
Node constructor in lines 9–11 (Fig. 23.4) calls the CListNode constructor in
lines 14–19 (Fig. 23.4) to set instance variable mData to refer to the Object
passed as the first argument and then sets the mNextNode reference to Noth-
ing.

3. If the list is not empty, thread the new node into the list by setting lastNode
and lastNode.NextNode to refer to a new CListNode object initialized
with object insertItem (Fig. 23.5, lines 48–49). When the CListNode
constructor (lines 9–11 of Fig. 23.4) executes, it sets instance variable mData
to refer to the Object passed as an argument and sets the mNextNode refer-
ence to Nothing.

Figure 23.9 illustrates method InsertAtBack. Part a) of the figure depicts the list
and the new ListNode (containing value 5) during the InsertAtBack operation and
before the new node has been threaded into the list. The dotted arrows in part b) illustrate
the steps of method InsertAtBack that enable a new ListNode to be added to the end
of a list that is not empty.

Method RemoveFromFront (Fig. 23.5, lines 57–81) removes the front node of the
list and returns a reference to the removed data. The method throws a EmptyList-
Exception (line 63) if the program tries to remove a node from an empty list. This
method consists of four steps:

1. Assign firstNode.Data (the data being removed from the list) to reference
removeItem (line 67).  

Fig. 23.9 InsertAtBack graphical representation.

firstNode(a)

firstNode(b)

New ListNode

New ListNode

7 11

12 7 11

12

lastNode

lastNode

5

5



1150 Data Structures and Collections Chapter 23

2. If the objects to which firstNode and lastNode refer are the same object,
this indicates that the list contains only one element prior to the removal attempt.
In this case, the method sets firstNode and lastNode to Nothing (lines
71–72) to “dethread” (remove) the node from the list (leaving the list empty).

3. If the list contains more than one node prior to removal, then the method leaves
reference lastNode as is and simply assigns firstNode.NextNode to ref-
erence firstNode (line 77). Thus, firstNode references the node that was
the second node prior to the RemoveFromFront call.

4. Return the removeItem reference (line 77).

Figure 23.10 illustrates method RemoveFromFront. Part a) illustrates the list before
the removal operation. Part b) portrays the actual reference manipulations.

Method RemoveFromBack (Fig. 23.5, lines 84–117) removes the last node of a list
and returns a reference to the removed data. The method throws a EmptyListExcep-
tion (line 91) if the program attempts to remove a node from an empty list. This method
consists of seven steps:

1. Assign lastNode.Data (the data being removed from the list) to reference
removeItem (line 94).

2. If the objects to which firstNode and lastNode refer are the same object
(line 97), this indicates that the list contains only one element prior to the removal
attempt. In this case, the method sets firstNode and lastNode to Nothing
(lines 98–99) to dethread (remove) that node from the list (leaving the list empty).

Fig. 23.10 RemoveFromFront graphical representation.

12

firstNode(a)

firstNode(b)

7 1112

lastNode

lastNode

5

7 1112 5

removeItem



Chapter 23 Data Structures and Collections 1151

3. If the list contains more than one node prior to removal, create the CListNode
reference current and assign it firstNode (line 101). 

4. Use current to traverse the list until current references the node directly pre-
ceding the last node. The While loop (lines 104–106) assigns cur-
rent.NextNode to reference current as long as current.NextNode is
not equal to lastNode.

5. After locating the second-to-last node, assign current to lastNode (line 109)
to dethread the last node from the list.

6. Set current.NextNode to Nothing (line 110) in the new last node of the list
to ensure proper list termination.

7. Return the removeItem reference (line 113).

Figure 23.11 illustrates method RemoveFromBack. Part a) illustrates the list before
the removal operation. Part b) portrays the actual reference manipulations. 

Method Print (Fig. 23.5, lines 135–159) first determines whether the list is empty (line
139). If so, Print displays a String consisting of "Empty " and the list’s name and then
returns control to the calling method. Otherwise, Print outputs the data in the list. The
method prints a String consisting of the string "The ", the name of the list and the string
" is: ". Then, line 147 creates CListNode reference current and initializes it with
firstNode. While current is not Nothing, there are more items in the list. Therefore,
the method prints current.Data (line 151) then assigns current.NextNode to cur-
rent (line 152) thus moving to the next node in the list. Note that, if the link in the last node
of the list is not Nothing, the printing algorithm will erroneously attempt to print past the
end of the list. The printing algorithm is identical for linked lists, stacks and queues. 

Fig. 23.11 RemoveFromBack graphical representation.

firstNode(a)

firstNode(b)

7 1112

lastNode

lastNode

5

7 1112 5

removeItem

current



1152 Data Structures and Collections Chapter 23

23.4 Stacks
A stack is a constrained version of a linked list—new nodes can be added to a stack and
removed from a stack only at its top. For this reason, a stack is referred to as a last-in, first-
out (LIFO) data structure. The link member in the bottom (i.e., last) node of the stack is set
to Nothing to indicate the bottom of the stack. 

The primary operations used to manipulate a stack are push and pop. Operation push
adds a new node to the top of the stack. Operation pop removes a node from the top of the
stack and returns the data from the popped node.

Stacks have many interesting applications. For example, when a program calls a
method, the called method must know how to return to its caller, so the return address is
pushed onto the program execution stack. If a series of method calls occurs, the successive
return values are pushed onto the stack in last-in, first-out order so that each method can
return to its caller. Stacks support recursive method calls in the same manner that they sup-
port conventional nonrecursive method calls. 

The program execution stack contains the space created for local variables on each
invocation of a method during a program’s execution. When the method returns to its caller,
the space for that method's local variables is popped off the stack, and those variables are
no longer known to the program. 

Compilers use stacks to evaluate arithmetic expressions and to generate machine-lan-
guage code required to process the expressions. The System.Collections namespace
contains class Stack for implementing and manipulating stacks that can grow and shrink
during program execution. Section 23.7 discusses class Stack.

We take advantage of the close relationship between lists and stacks to implement out
own stack class by reusing a list class. We demonstrate two different forms of reusability.
First, we implement the stack class by inheriting from class CList of Fig. 23.5. Then, we
implement an identically performing stack class through composition by including a
CList object as a Private member of a stack class. This chapter implements list, stack
and queue data structures to store Object references, which encourages further reus-
ability—objects of any type can be stored in such a list, stack or queue.

The program of Fig. 23.12 and Fig. 23.13 creates a stack class by inheriting from class
CList of Fig. 23.5. We want the stack to provide methods Push, Pop, IsEmpty and
Print. Essentially, these are the methods InsertAtFront, RemoveFromFront,
IsEmpty and Print of class List. Class List contains other methods, such as
InsertAtBack and RemoveFromBack, which we would rather not make accessible
through the Public interface of the stack. It is important to remember that all methods in
the Public interface of class CList are also Public methods of the derived class
CStackInheritance (Fig. 23.12). 

When we implement the stack’s methods, we have each CStackInheritance
method call the appropriate CList method—method Push calls InsertAtFront,
and method Pop calls RemoveFromFront. Class CStackInheritance does not
define methods IsEmpty and Print, because CStackInheritance inherits these
methods from class CList into CStackInheritance’s Public interface. The
methods in class CStackInheritance do not use SyncLock statements. Each of
the methods in this class calls a method from class CList that uses SyncLock. If two
threads call Push on the same stack object, only one thread at a time will be able to call
CList method InsertAtFront. Note that class CStackInheritance uses



Chapter 23 Data Structures and Collections 1153

namespace LinkedListLibrary (Fig. 23.4); thus, the project that contains class
CStackInheritance must contain a reference to the LinkedListLibrary class
library. 

Module modStackInheritanceTest’s Main method (Fig. 23.13) uses class
CStackInheritance to instantiate a stack of Objects, called stack. Lines 15–18
define four objects that will be pushed onto the stack and popped off the stack. The pro-
gram pushes onto the stack (lines 21, 24, 27 and 30) a Boolean with value True, a
Char with value $, an Integer with value 34567 and a String with value
"hello". An infinite While loop (lines 40–44) pops the elements from the stack.
When there are no objects left to pop, method Pop throws an EmptyListException,
and the program displays the exception’s stack trace, which depicts the program execu-
tion stack at the time the exception occurred. The program uses method Print (inherited
from class CList) to output the contents of the stack after each operation. Note that
module modStackInheritanceTest uses namespaces LinkedListLibrary
(Fig. 23.4) and CStackInheritanceLibrary (Fig. 23.12); thus, the project con-
taining module modStackInheritanceTest must contain references to both class
libraries. 

1 ' Fig: 23.12: StackInheritance.vb
2 ' Implementing a stack by inheriting from class CList.
3
4 ' Deitel namespaces
5 Imports LinkedListLibrary
6
7 ' class CStackInheritance inherits class CList
8 Public Class CStackInheritance
9 Inherits CList

10
11  ' pass name "stack" to CList constructor
12   Public Sub New()
13       MyBase.New("stack")
14  End Sub ' New
15
16    ' place dataValue at top of stack by inserting dataValue at 
17    ' front of linked list
18    Public Sub Push(ByVal dataValue As Object)
19       MyBase.InsertAtFront(dataValue)
20 End Sub ' Push
21
22    ' remove item from top of stack by removing item at front of
23    ' linked list
24  Public Function Pop() As Object
25       Return MyBase.RemoveFromFront()
26   End Function ' Pop
27
28 End Class ' CStackInheritance

Fig. 23.12 Stack implementation by inheritance from class CList.



1154 Data Structures and Collections Chapter 23

1 ' Fig. 23.13: StackTest.vb
2 ' Testing stack implementations.
3
4 ' Deitel namespaces
5 Imports LinkedListLibrary
6 Imports StackInheritanceLibrary
7
8 ' demonstrates functionality of stack implementations
9 Module modStackInheritanceTest

10
11 Sub Main()
12       Dim stack As CStackInheritance = New CStackInheritance()
13
14       ' create objects to store in stack
15       Dim aBoolean As Boolean = True
16       Dim aCharacter As Char = Convert.ToChar("$")
17       Dim anInteger As Integer = 34567
18       Dim aString As String = "hello"
19
20       ' use method Push to add items to stack
21       stack.Push(aBoolean) ' add Boolean
22       stack.Print()
23
24       stack.Push(aCharacter) ' add Char
25       stack.Print()
26
27       stack.Push(anInteger) ' add Integer
28       stack.Print()
29
30       stack.Push(aString) ' add String
31       stack.Print()
32
33   ' use method Pop to remove items from stack
34       Dim removedObject As Object = Nothing
35
36       ' remove items from stack
37    Try
38
39          ' pop item and output removed item
40          While True
41             removedObject = stack.Pop()
42             Console.WriteLine(removedObject & " popped")
43             stack.Print()
44          End While
45
46       ' catch exception if Pop was called while stack empty
47       Catch emptyListException As EmptyListException
48          Console.Error.WriteLine(emptyListException.StackTrace)
49       End Try
50
51  End Sub ' Main
52
53 End Module ' modStackTest

Fig. 23.13 Stack-by-inheritance test (part 1 of 2).



Chapter 23 Data Structures and Collections 1155

Another way to implement a stack class is by reusing a list class through composition.
The class in Fig. 23.14 uses a Private object of class CList (line 9) in the definition of
class CStackComposition. Composition enables us to hide the methods of class
CList that should not appear in our stack’s Public interface by providing Public
interface methods only to the required CList methods. Class CStackComposition
implements each stack method by delegating its work to an appropriate CList method. In
particular, CStackComposition calls CList methods InsertAtFront, Remove-
FromFront, IsEmpty and Print. We do not show module modStackComposi-
tionTest for this example, because this class differs from that in Fig. 23.13 only is that
we change the type of the stack from CStackInheritance to CStackComposi-
tion in line 12 (Fig. 23.13). If students execute the application from the code on the CD
accompanying this book, they will see that the output for the two applications are identical.

The stack is: True

The stack is: $ True

The stack is: 34567 $ True

The stack is: hello 34567 $ True

hello popped
The stack is: 34567 $ True

34567 popped
The stack is: $ True

$ popped
The stack is: True

True popped
Empty stack
   at LinkedListLibrary.CList.RemoveFromFront() in 
C:\books\2001\vbhtp2\ch23\Examples\Fig23_04\LinkedListLi-
brary\List.vb:line 64
   at StackInheritanceLibrary.CStackInheritance.Pop() in 
C:\books\2001\vbhtp2\ch23\Examples\Fig23_12\StackInheritanceLi-
brary\StackInheritance.vb:line 25
   at StackInheritanceTest.modStackInheritance.Main() in 
C:\books\2001\vbhtp2\ch23\Examples\Fig23_13\StackTest\Stack-
Test.vb:line 41

1 ' Fig. 23.14: StackComposition.vb
2 ' StackComposition definition with composed CList object.
3
4 ' Deitel namespaces
5 Imports LinkedListLibrary

Fig. 23.14 Stack-by-composition test (part 1 of 2).

Fig. 23.13 Stack-by-inheritance test (part 2 of 2).



1156 Data Structures and Collections Chapter 23

23.5 Queues
Another common data structure is the queue. A queue is similar to a checkout line in a super-
market—the first person in line is served first, and other customers enter the line at the end
and wait to be served. Queue nodes are removed only from the head of the queue and are in-
serted only at the tail of the queue. For this reason, a queue is a first-in, first-out (FIFO) data
structure. The insert and remove operations are known as enqueue and dequeue. 

Queues have many applications in computer systems. Most computers contain only a
single processor, enabling them to provide service for at most one user at a time. Thus,
entries for other users are placed in a queue. The entry at the front of the queue receives the
first available service. Each entry gradually advances to the front of the queue as users
receive service.

Information packets in computer networks wait in queues. Each time a packet arrives
at a network node, the routing node must route it to the next node on the network, following
the path to the packet’s final destination. The routing node routes one packet at a time, so
additional packets are enqueued until the router can route them. 

Another example of queries is presented by the file server in a computer network,
which handles file-access requests from many clients throughout the network. Servers have

6
7 ' class CStackComposition encapsulates CList's capabilities
8 Public Class CStackComposition
9  Private stack As CList

10
11  ' construct empty stack
12 Public Sub New()
13       stack = New CList("stack")
14 End Sub ' New
15
16  ' add object to stack
17  Public Sub Push(ByVal dataValue As Object)
18       stack.InsertAtFront(dataValue)
19  End Sub ' Push
20
21   ' remove object from stack
22    Public Function Pop() As Object
23       Return stack.RemoveFromFront()
24  End Function ' Pop
25
26   ' determine whether stack is empty
27 Public Function IsEmpty() As Boolean
28       Return stack.IsEmpty()
29   End Function ' IsEmpty
30
31  ' output stack content
32 Public Sub Print()
33       stack.Print()
34   End Sub ' Print
35
36 End Class ' CStackComposition

Fig. 23.14 Stack-by-composition test (part 2 of 2).



Chapter 23 Data Structures and Collections 1157

a limited capacity to service requests from clients. When client requests exceed that
capacity, the requests wait in queues.

The program of Fig. 23.15 and Fig. 23.16 creates a queue class through inheritance
from a list class. We want the CQueueInheritance class (Fig. 23.15) to include
methods Enqueue, Dequeue, IsEmpty and Print. Note that these methods essen-
tially are the InsertAtBack, RemoveFromFront, IsEmpty and Print methods of
class CList. This class contains other methods, such as methods InsertAtFront and
RemoveFromBack, which we would rather not make accessible through the Public
interface to the queue class. Remember that all methods in the Public interface of the
CList class are also Public methods of the derived class CQueueInheritance.

When we implement the queue’s methods, we have each CQueueInheritance
method call the appropriate CList method—method Enqueue calls InsertAtBack,
and method Dequeue calls RemoveFromFront, whereas IsEmpty and Print calls
invoke their base-class versions. Class CQueueInheritance does not define methods
IsEmpty and Print, because CQueueInheritance inherits these methods from
class CList into CQueueInheritance’s Public interface. The methods in class
CQueueInheritance do not use SyncLock statements. Each method in this class
calls a corresponding method from class CList that uses Synclock. Note that class
CQueueInheritance uses namespace LinkedListLibrary (Fig. 23.4); thus, the
project that contains class CQueueInheritance must include a reference to the
LinkedListLibrary class library.

Module modQueueInheritanceTest’s Main method (Fig. 23.16) uses class
CQueueInheritance to instantiate a queue of Objects, called queue. Lines 15–18
define four objects that will be pushed onto the stack and popped off the stack. The program
enqueues (lines 21, 24, 27 and 30) a Boolean with value True, a Char with value '$',
an Integer with value 34567 and a String with value "hello".

1 ' Fig. 23.15: QueueInheritance.vb
2 ' Implementing a queue by inheriting from class CList.
3
4 ' Deitel namespaces
5 Imports LinkedListLibrary
6
7 ' class CQueueInheritance inherits from class CList
8 Public Class CQueueInheritance
9    Inherits CList

10
11  ' pass name "queue" to CList constructor 
12   Public Sub New()
13     MyBase.New("queue")
14   End Sub
15
16    ' place dataValue at end of queue by inserting dataValue at end
17    ' of linked list
18 Public Sub Enqueue(ByVal dataValue As Object)
19       MyBase.InsertAtBack(dataValue)
20  End Sub ' Enqueue
21

Fig. 23.15 Queue implemented by inheritance from class CList (part 1 of 2).



1158 Data Structures and Collections Chapter 23

An infinite While loop (lines 40–44) dequeues the elements from the queue. When
no objects are left to dequeue, method Dequeue throws an EmptyListException. At
this point, the program displays the exception’s stack trace, which shows the program exe-
cution stack at the time the exception occurred. The program uses method Print (inher-
ited from class CList) to output the contents of the queue after each operation. Note that
class CQueueInheritance uses namespaces LinkedListLibrary and
QueueInheritanceLibrary (Fig. 23.15); thus, the project containing module mod-
QueueInheritanceTest must include references to both class libraries. 

22    ' remove item from front of queue by removing item at front of
23    ' linked list
24  Public Function Dequeue() As Object
25       Return MyBase.RemoveFromFront()
26  End Function ' Dequeue
27
28 End Class ' CQueueInheritance

1 ' Fig. 23.16: QueueTest.vb
2 ' Testing queue implementation.
3
4 ' Deitel namespaces
5 Imports LinkedListLibrary
6 Imports QueueInheritanceLibrary
7
8 ' demonstrate queue functionality
9 Module modQueueTest

10
11 Sub Main()
12       Dim queue As CQueueInheritance = New CQueueInheritance()
13
14       ' create data to store in queue
15       Dim aBoolean As Boolean = True
16       Dim aCharacter As Char = Convert.ToChar("$")
17       Dim anInteger As Integer = 34567
18       Dim aString As String = "hello"
19
20       ' use method Enqueue to add items to queue
21       queue.Enqueue(aBoolean) ' add Boolean
22       queue.Print()
23
24       queue.Enqueue(aCharacter) ' add Char
25       queue.Print()
26
27       queue.Enqueue(anInteger) ' add Integer
28       queue.Print()
29
30       queue.Enqueue(aString) ' add String
31       queue.Print()

Fig. 23.16 Queue-by-inheritance test (part 1 of 2).

Fig. 23.15 Queue implemented by inheritance from class CList (part 2 of 2).



Chapter 23 Data Structures and Collections 1159

32
33       ' use method Dequeue to remove items from queue
34       Dim removedObject As Object = Nothing
35
36       ' remove items from queue
37       Try
38
39          ' dequeue item and output removed item
40          While True
41             removedObject = queue.Dequeue()
42             Console.WriteLine(removedObject & " dequeue")
43             queue.Print()
44          End While
45
46   ' if exception occurs, print stack trace
47       Catch emptyListException As EmptyListException
48          Console.Error.WriteLine(emptyListException.StackTrace)
49       End Try
50
51 End Sub ' Main
52
53 End Module ' modQueueTest

The queue is: True

The queue is: True $

The queue is: True $ 34567

The queue is: True $ 34567 hello

True dequeue
The queue is: $ 34567 hello

$ dequeue
The queue is: 34567 hello

34567 dequeue
The queue is: hello

hello dequeue
Empty queue
   at LinkedListLibrary.CList.RemoveFromFront() in 
C:\books\2001\vbhtp2\ch23\Examples\Fig23_04\LinkedListLi-
brary\List.vb:line 64
   at QueueInheritanceLibrary.CQueueInheritance.Dequeue() in 
C:\books\2001\vbhtp2\ch23\Examples\Fig23_15\QueueInheritanceLi-
brary\QueueInheritance.vb:line 25
   at QueueTest.modQueueInheritanceTest.Main() in 
C:\books\2001\vbhtp2\ch23\Examples\Fig23_16\QueueTest\QueueTest.vb:
line 41

Fig. 23.16 Queue-by-inheritance test (part 2 of 2).



1160 Data Structures and Collections Chapter 23

23.6 Trees
Linked lists, stacks and queues are linear data structures (i.e., sequences). By contrast, tree
is a nonlinear, two-dimensional data structure with special properties. Tree nodes contain
two or more links. This section discusses binary trees (Fig. 23.17), or trees whose nodes
each contain two links (none, one or both of which can be Nothing). The root node is the
first node in a tree. Each link in the root node refers to a child. The left child is the first node
in the left subtree, and the right child is the first node in the right subtree. The children of
a specific node are called siblings. A node with no children is called a leaf node. Computer
scientists normally draw trees as cascading down from the root node—exactly opposite to
the way most trees grow in nature.

Common Programming Error 23.2
Failure to set to Nothing the links in leaf nodes of a tree is a common logic error. 23.2

Our binary-tree example creates a special binary tree called a binary search tree. A
binary search tree (with no duplicate node values) has the characteristic that the values in any
left subtree are less than the value in the subtree’s parent node, and the values in any right sub-
tree are greater than the value in the subtree’s parent node. Figure 23.18 depicts a binary
search tree containing 12 integers. Note that the shape of a binary search tree that corresponds
to a set of data can vary depending on the order in which the values are inserted into the tree.   

Fig. 23.17 Binary tree graphical representation.

Fig. 23.18 Binary search tree containing 12 values.

A

B

D

C

47

25 77

11 43 65 93

7 17 31 44 68



Chapter 23 Data Structures and Collections 1161

23.6.1 Binary Search Tree of Integer Values
The application of Fig. 23.19, Fig. 23.20 and Fig. 23.21 creates a binary search tree of inte-
gers and then traverses it (i.e., walks through all its nodes) in three ways—using recursive in-
order, preorder and postorder traversals. The program generates 10 random numbers and
inserts each into the tree. Figure 23.20 defines class CTree in namespace BinaryTree-
Library (for reuse purposes). Figure 23.21 defines module modTreeTest, which dem-
onstrates class CTree’s functionality. Method Main of module modTreeTest instantiates
an empty CTree object, randomly generates 10 integers and inserts each value in the binary
tree using CTree method InsertNode. The program then performs preorder, inorder and
postorder traversals of the tree. We will discuss these traversals shortly. 

Class CTreeNode (Fig. 23.19) is a self-referential class containing three Private
data members—mLeftNode and mRightNode of type CTreeNode and mData of type
Integer (lines 5–7). Initially, every CTreeNode is a leaf node, so the constructor (lines
10–14) initializes references mLeftNode and mRightNode to Nothing. Properties
LeftNode (lines 17–27), Data (lines 30–40) and RightNode (lines 43–53) provide
access to a CTreeNode’s Private data members. We discuss CTreeNode method
Insert (lines 56–84) shortly.

Class CTree (Fig. 23.20) manipulates objects of class CTreeNode. Class CTree con-
tains a Private root node (line 5)—a reference to the root node of the tree. The class also
contains Public method InsertNode (lines 13–26), which inserts a node in the tree, and
Public methods PreorderTraversal (lines 29–35), InorderTraversal (lines
56–62) and PostorderTraversal (lines 83–89), which begin traversals of the tree. Each
traversal method calls a separate recursive utility method to perform the traversal operations
on the internal representation of the tree. The CTree constructor (lines 8–10) initializes
root to Nothing to indicate that the tree initially is empty.

The CTree class’s method InsertNode first locks the CTree object (to ensure
thread safety) and then determines whether the tree is empty. If so, line 19 instantiates a
CTreeNode object, initializes the node with the integer being inserted in the tree and
assigns the new node to root. If the tree is not empty, method InsertNode calls
CTreeNode (Fig. 23.19) method Insert (lines 56–84), which recursively determines
the location for the new node in the tree and inserts the node at that location. In a binary
search tree, nodes can be inserted only as leaf nodes.

The CTreeNode method Insert compares the value to insert with the mData value
in the root node. If the insert value is less than the root-node data, the program determines
whether the left subtree is empty (line 62). If so, line 63 instantiates a CTreeNode object,
initializes it with the integer being inserted and assigns the new node to reference mLeft-
Node. Otherwise, line 67 recursively calls method Insert on the left subtree to insert the
value into the left subtree. If the insert value is greater than the root node data, the program
determines whether the right subtree is empty (line 74). If so, line 75 instantiates a
CTreeNode object, initializes it with the integer being inserted and assigns the new node
to reference mRightNode. Otherwise, line 79 recursively calls method Insert on the
right subtree to insert the value in the right subtree. 

Methods InorderTraversal, PreorderTraversal and PostorderTra-
versal call helper methods InorderHelper (lines 65–80), PreorderHelper
(lines 38–53) and PostorderHelper (lines 92–107), respectively, to traverse the tree
and print the node values. The helper methods in class CTree allow the programmer to



1162 Data Structures and Collections Chapter 23

1 ' Fig. 23.19: TreeNode.vb
2 ' Class CTreeNode represents a node in a CTree.
3
4 Public Class CTreeNode
5 Private mLeftNode As CTreeNode
6 Private mData As Integer
7 Private mRightNode As CTreeNode
8
9  ' initialize data and make that a leaf node

10  Public Sub New(ByVal nodeData As Integer)
11       mData = nodeData
12       mRightNode = Nothing ' node has no children
13       LeftNode = Nothing ' node has no children
14  End Sub ' New
15
16 ' property LeftNode
17 Public Property LeftNode() As CTreeNode
18
19       Get
20          Return mLeftNode
21       End Get
22
23       Set(ByVal value As CTreeNode)
24          mLeftNode = value
25   End Set
26
27  End Property ' LeftNode
28
29  ' property Data
30  Public Property Data() As Integer
31
32     Get
33          Return mData
34       End Get
35
36       Set(ByVal value As Integer)
37          mData = value
38       End Set
39
40   End Property ' Data
41
42   ' property RightNode
43 Public Property RightNode() As CTreeNode
44
45       Get
46          Return mRightNode
47       End Get
48
49       Set(ByVal value As CTreeNode)
50          mRightNode = value
51       End Set
52
53   End Property ' RightNode

Fig. 23.19 Tree-node data structure (part 1 of 2).



Chapter 23 Data Structures and Collections 1163

start a traversal without first obtaining a reference to the root node first and then calling
the recursive method with that reference. Methods InorderTraversal, Preorder-
Traversal and PostorderTraversal simply take the Private reference root
and pass it to the appropriate helper method to initiate a traversal of the tree. For the fol-
lowing discussion, we use the binary search tree shown in Fig. 23.22.  

54
55    ' insert node into tree
56  Public Sub Insert(ByVal insertValue As Integer)
57
58       ' insert in left subtree
59       If insertValue < mData Then
60
61          ' insert new CTreeNode
62          If mLeftNode Is Nothing Then
63             LeftNode = New CTreeNode(insertValue)
64
65          ' continue traversing left subtree
66          Else
67             LeftNode.Insert(insertValue)
68          End If
69
70 ' insert in right subtree
71       ElseIf insertValue > mData Then
72
73          ' insert new CTreeNode
74          If RightNode Is Nothing Then
75             RightNode = New CTreeNode(insertValue)
76
77          ' continue traversing right subtree
78          Else
79             RightNode.Insert(insertValue)
80          End If
81
82       End If
83
84  End Sub ' Insert
85
86 End Class ' CTreeNode 

1 ' Fig. 23.20: Tree.vb
2 ' Class CTree is a tree containing CTreeNodes.
3
4 Public Class CTree
5 Private root As CTreeNode
6

Fig. 23.20 Tree data structure (part 1 of 3).

Fig. 23.19 Tree-node data structure (part 2 of 2).



1164 Data Structures and Collections Chapter 23

7   ' construct an empty CTree of integers
8 Public Sub New()
9       root = Nothing

10   End Sub ' New
11
12    ' insert new node in binary search tree
13 Public Sub InsertNode(ByVal insertValue As Integer)
14
15       SyncLock (Me)
16
17          ' if node does not exist, create node
18          If root Is Nothing Then
19             root = New CTreeNode(insertValue)
20          Else ' otherwise insert node into tree
21             root.Insert(insertValue)
22          End If
23
24       End SyncLock
25
26 End Sub ' InsertNode
27
28  ' begin preorder traversal
29    Public Sub PreorderTraversal()
30
31       SyncLock (Me)
32          PreorderHelper(root)
33       End SyncLock
34
35   End Sub ' PreOrderTraversal
36
37    ' recursive method to perform preorder traversal
38  Private Sub PreorderHelper(ByVal node As CTreeNode)
39
40       If node Is Nothing Then
41          Return
42       End If
43
44       ' output node data
45       Console.Write(node.Data & " ")
46
47       ' traverse left subtree
48       PreorderHelper(node.LeftNode)
49
50    ' traverse right subtree
51       PreorderHelper(node.RightNode)
52
53  End Sub ' PreorderHelper
54
55  ' begin inorder traversal
56 Public Sub InorderTraversal()
57
58       SyncLock (Me)
59          InorderHelper(root)

Fig. 23.20 Tree data structure (part 2 of 3).



Chapter 23 Data Structures and Collections 1165

60       End SyncLock
61
62  End Sub ' InorderTraversal
63
64  ' recursive method to perform inorder traversal
65  Private Sub InorderHelper(ByVal node As CTreeNode)
66
67       If node Is Nothing Then
68          Return
69       End If
70
71       ' traverse left subtree
72       InorderHelper(node.LeftNode)
73
74    ' output node data
75       Console.Write(node.Data & " ")
76
77       ' traverse right subtree
78       InorderHelper(node.RightNode)
79
80 End Sub ' InorderHelper
81
82    ' begin postorder traversal 
83  Public Sub PostorderTraversal()
84
85       SyncLock (Me)
86          PostorderHelper(root)
87   End SyncLock
88
89  End Sub ' PostorderTraversal
90
91  ' recursive method to perform postorder traversal
92    Private Sub PostorderHelper(ByVal node As CTreeNode)
93
94    If node Is Nothing Then
95          Return
96       End If
97
98      ' traverse left subtree 
99       PostorderHelper(node.LeftNode)
100
101       ' traverse right subtree
102       PostorderHelper(node.RightNode)
103
104       ' output node data
105       Console.Write(node.Data & " ")
106
107   End Sub ' PostorderHelper
108
109 End Class ' CTree

Fig. 23.20 Tree data structure (part 3 of 3).



1166 Data Structures and Collections Chapter 23

1 ' Fig. 23.21: TreeTest.vb
2 ' This program tests class CTree.
3
4 ' Deitel namespaces
5 Imports BinaryTreeLibrary
6
7 Module modTreeTest
8
9   ' test class CTree

10 Sub Main()
11       Dim tree As CTree = New CTree()
12       Dim insertValue As Integer
13       Dim i As Integer
14
15       Console.WriteLine("Inserting Values: ")
16       Dim randomNumber As Random = New Random()
17
18       ' insert 10 random integers from 0-99 in tree 
19       For i = 1 To 10
20          insertValue = randomNumber.Next(100)
21          Console.Write(insertValue & " ")
22          tree.InsertNode(insertValue)
23       Next
24
25       ' perform preorder traversal of tree
26       Console.WriteLine(vbCrLf & vbCrLf & "Preorder Traversal")
27       tree.PreOrderTraversal()
28
29       ' perform inorder traversal of tree
30       Console.WriteLine(vbCrLf & vbCrLf & "Inorder Traversal")
31       tree.InOrderTraversal()
32
33   ' perform postorder traversal of tree
34       Console.WriteLine(vbCrLf & vbCrLf & "Postorder Traversal")
35       tree.PostOrderTraversal()
36
37       Console.WriteLine()
38  End Sub ' Main
39
40 End Module ' modTreeTest

Inserting Values:
83 13 83 96 81 26 25 13 10 89

Preorder Traversal
83 13 10 81 26 25 96 89

Inorder Traversal
10 13 25 26 81 83 89 96

Postorder Traversal
10 25 26 81 13 89 96 83

Fig. 23.21 Tree-traversal demonstration.



Chapter 23 Data Structures and Collections 1167

Method InorderHelper (lines 65–80) defines the steps for an inorder traversal.
Those steps are as follows:

1. If the argument is Nothing, return immediately.

2. Traverse the left subtree with a call to InorderHelper (line 72).

3. Process the value in the node (line 75).

4. Traverse the right subtree with a call to InorderHelper (line 78).

The inorder traversal does not process the value in a node until the values in that node’s left
subtree are processed. The inorder traversal of the tree in Fig. 23.22 is:

6 13 17 27 33 42 48

Note that the inorder traversal of a binary search tree prints the node values in
ascending order. The process of creating a binary search tree actually sorts the data; thus,
this process is called the binary tree sort.

Method PreorderHelper (lines 38–53) defines the steps for a preorder traversal.
Those steps are as follows:

1. If the argument is Nothing, return immediately.

2. Process the value in the node (line 45).

3. Traverse the left subtree with a call to PreorderHelper (line 48).

4. Traverse the right subtree with a call to PreorderHelper (line 51).

The preorder traversal processes the value in each node as the node is visited. After pro-
cessing the value in a given node, the preorder traversal processes the values in the left sub-
tree, then the values in the right subtree. The preorder traversal of the tree in Fig. 23.22 is:

27 13 6 17 42 33 48

Method PostorderHelper (lines 92–107) defines the steps for a postorder tra-
versal. Those steps are as follows:

1. If the argument is Nothing, return immediately.

2. Traverse the left subtree with a call to PostorderHelper (line 99).

3. Traverse the right subtree with a call to PostorderHelper (line 102).

4. Process the value in the node (line 105). 

Fig. 23.22 A binary search tree.

27

13 42

4833176



1168 Data Structures and Collections Chapter 23

The postorder traversal processes the value in each node after the values of all that node’s
children are processed. The postorder traversal of the tree in Fig. 23.22 is:

6 17 13 33 48 42 27

The binary search tree facilitates duplicate elimination. During the construction of a
binary search tree, the insertion operation recognizes attempts to insert a duplicate value,
because a duplicate follows the same “go left” or “go right” decisions on each comparison
as does the original value. Thus, the insertion operation eventually compares the duplicate
with a node containing the same value. At this point, the insertion operation might discard
the duplicate value.

Searching a binary tree for a value that matches a key value can be fast, especially in
tightly packed binary trees. In a tightly packed binary tree, each level contains approximately
twice as many elements as does the previous level. Figure 23.22 is a tightly packed binary
tree. A binary search tree with n elements has a minimum of log2n levels. Thus, at least log2n
comparisons could be required either to find a match or to determine that no match exists. For
example, searching a (tightly packed) 1000-element binary search tree requires at most 10
comparisons, because 210 > 1000. Similarly, searching a (tightly packed) 1,000,000-element
binary search tree requires at most 20 comparisons, because 220 > 1,000,000. 

The chapter exercises present algorithms for other binary-tree operations, such as a
level-order traversal of a binary tree. Such a traversal visits the nodes of the binary tree
row by row, starting at the root-node level. On each level of the tree, a level-order traversal
visits the nodes from left to right. 

23.6.2 Binary Search Tree of IComparable Objects

The binary-tree example in Section 23.6.1 works nicely when all data is of type Integer.
However, suppose that a programmer wants to manipulate a binary tree consisting of dou-
ble values. The programmer could rewrite the CTreeNode and CTree classes with dif-
ferent names and customize the classes so that they manipulate double values. In fact,
programmers could create similar customized versions of classes CTreeNode and CTree
for each data type. This would result in a proliferation of code, which can become difficult
to manage and maintain. 

Ideally, we would like to define the binary-tree functionality once and reuse that func-
tionality for many data types. Visual Basic provides polymorphic capabilities that enable
all objects to be manipulated in a uniform manner. The use of these capabilities enables us
to design a more flexible data structure. 

In our next example, we take advantage of Visual Basic’s polymorphic capabilities.
We implement classes CTreeNode and CTree, which manipulate objects that implement
interface IComparable (of namespace System). It is imperative that we be able to com-
pare objects stored in a binary search tree so that we can determine the path to the insertion
point of a new node. Classes that implement interface IComparable define method
CompareTo, which compares the object that invokes the method with the object that the
method receives as an argument. The method returns an Integer value less than zero if
the calling object is less than the argument object, zero if the objects are equal or an
Integer greater than zero if the calling object is greater than the argument object. Also,
both the calling and argument objects must be of the same data type; otherwise, the method
throws an ArgumentException.



Chapter 23 Data Structures and Collections 1169

The program of Fig. 23.23 and Fig. 23.24 enhances the program from Section 23.6.1 to
manipulate IComparable objects. One restriction on the new versions of classes
CTreeNode and CTree (Fig. 23.23 and Fig. 23.24) is that each CTree object can contain
objects of only one data type (e.g., all Strings or all Doubles). If a program attempts to
insert multiple data types in the same CTree object, ArgumentExceptions will occur.
We modified only seven lines of code in class CTreeNode (lines 6, 10, 30, 36, 56, 59 and
71) and one line of code in class CTree (line 13) to enable the processing of IComparable
objects. With the exception of lines 59 and 71, all other changes simply replaced the type
Integer with the type IComparable. Lines 59 and 71 previously used the < and > oper-
ators to compare the value being inserted with the value in a given node. These lines now
compare IComparable objects using the interface’s method CompareTo; the method’s
return value then is tested to determine whether it is less than zero (the calling object is less
than the argument object), zero (the calling and argument objects are equal) or greater than
zero (the calling object is greater than the argument object). 

1 ' Fig. 23.23: TreeNode2.vb
2 ' Class CTreeNode uses IComparable objects for objects
3
4 Public Class CTreeNode
5 Private mLeftNode As CTreeNode
6 Private mData As IComparable
7 Private mRightNode As CTreeNode
8
9  ' initialize data and make this a leaf node

10   Public Sub New(ByVal nodeData As IComparable)
11       mData = nodeData
12       mRightNode = Nothing ' node has no children
13       LeftNode = Nothing ' node has no children
14  End Sub ' New
15
16  ' property LeftNode
17 Public Property LeftNode() As CTreeNode
18
19       Get
20          Return mLeftNode
21       End Get
22
23       Set(ByVal value As CTreeNode)
24          mLeftNode = value
25       End Set
26
27    End Property ' LeftNode
28
29    ' property Data
30 Public Property Data() As IComparable
31
32   Get
33          Return mData
34   End Get

Fig. 23.23 Tree node contains IComparables as data (part 1 of 2).



1170 Data Structures and Collections Chapter 23

35
36       Set(ByVal value As IComparable)
37          mData = value
38       End Set
39
40 End Property ' Data
41
42  ' property RightNode
43 Public Property RightNode() As CTreeNode
44
45       Get
46          Return mRightNode
47       End Get
48
49       Set(ByVal value As CTreeNode)
50          mRightNode = value
51       End Set
52
53 End Property ' RightNode
54
55    ' insert node into tree
56 Public Sub Insert(ByVal insertValue As IComparable)
57
58       'insert in left subtree
59       If insertValue.CompareTo(mData) < 0 Then
60
61          ' insert new TreeNode
62          If mLeftNode Is Nothing Then
63             LeftNode = New CTreeNode(insertValue)
64
65          ' continue traversing left subtree
66          Else
67             LeftNode.Insert(insertValue)
68          End If
69
70       ' insert in right subtree
71       ElseIf insertValue.CompareTo(mData) Then
72
73          ' insert new TreeNode
74          If RightNode Is Nothing Then
75             RightNode = New CTreeNode(insertValue)
76
77          ' continue traversing right subtree
78          Else
79             RightNode.Insert(insertValue)
80      End If
81
82       End If
83
84 End Sub ' Insert
85
86 End Class ' CTreeNode

Fig. 23.23 Tree node contains IComparables as data (part 2 of 2).



Chapter 23 Data Structures and Collections 1171

1 ' Fig. 23.24: Tree2.vb
2 ' Class CTree contains nodes with IComparable data
3
4 Public Class CTree
5 Private root As CTreeNode
6
7  ' construct an empty CTree of integers
8 Public Sub New()
9       root = Nothing

10  End Sub ' New
11
12    ' insert new node in binary search tree
13 Public Sub InsertNode(ByVal insertValue As IComparable)
14
15       SyncLock (Me)
16
17          ' if node does not exist, create one
18          If root Is Nothing Then
19             root = New CTreeNode(insertValue)
20          Else ' otherwise insert node in tree
21             root.Insert(insertValue)
22          End If
23
24       End SyncLock
25
26 End Sub ' InsertNode
27
28  ' begin preorder traversal
29  Public Sub PreorderTraversal()
30
31       SyncLock (Me)
32          PreorderHelper(root)
33     End SyncLock
34
35 End Sub ' PreorderTraversal
36
37  ' recursive method to perform preorder traversal
38   Private Sub PreorderHelper(ByVal node As CTreeNode)
39
40       If node Is Nothing Then
41          Return
42       End If
43
44   ' output node data
45       Console.Write(Convert.ToString(node.Data) & " ")
46
47    ' traverse left subtree
48       PreOrderHelper(node.LeftNode)
49
50       ' traverse right subtree
51       PreOrderHelper(node.RightNode)
52
53  End Sub ' PreOrderHelper

Fig. 23.24 Binary tree stores nodes with IComparable data (part 1 of 3).



1172 Data Structures and Collections Chapter 23

54
55   ' begin inorder traversal
56  Public Sub InorderTraversal()
57
58       SyncLock (Me)
59          InorderHelper(root)
60       End SyncLock
61
62  End Sub ' InorderTraversal
63
64    ' recursive method to perform inorder traversal
65 Private Sub InorderHelper(ByVal node As CTreeNode)
66
67       If node Is Nothing Then
68          Return
69       End If
70
71       ' traverse left subtree
72       InorderHelper(node.LeftNode)
73
74   ' output node data
75       Console.Write(Convert.ToString(node.Data) & " ")
76
77       ' traverse right subtree
78       InorderHelper(node.RightNode)
79
80   End Sub ' InorderHelper
81
82   ' begin postorder traversal 
83  Public Sub PostorderTraversal()
84
85       SyncLock (Me)
86          PostOrderHelper(root)
87       End SyncLock
88
89 End Sub ' PostorderTraversal
90
91    ' recursive method to perform postorder traversal
92  Private Sub PostorderHelper(ByVal node As CTreeNode)
93
94       If node Is Nothing Then
95          Return
96      End If
97
98       ' traverse left subtree 
99       PostorderHelper(node.LeftNode)
100
101       ' traverse right subtree
102       PostorderHelper(node.RightNode)
103

Fig. 23.24 Binary tree stores nodes with IComparable data (part 2 of 3).



Chapter 23 Data Structures and Collections 1173

Module modTreeTest2 (Fig. 23.25) creates three CTree objects to store
Integer, Double and String values, all of which the .NET Framework defines as
IComparable types. The program populates the trees from the values in arrays inte-
gerArray (line 11), doubleArray (lines 12–13) and stringArray (lines 15–16),
respectively, and then calls method TraverseTree to output the preorder, inorder and
postorder traversals of the three CTrees. Method PopulateTree (lines 36–47) receives
as arguments an Array containing the initializer values for the CTree, a CTree into
which the array elements will be placed and a String representing the CTree name.
Method PopulateType then inserts each Array element in the CTree.

Note that the inorder traversal of each CTree outputs the data in sorted order, regard-
less of the data type stored in the CTree. Our polymorphic implementation of class CTree
invokes the appropriate data type’s CompareTo method, which uses standard binary
search tree insertion rules to determine the path to each value’s insertion point. In addition,
notice that the CTree of Strings is output in alphabetical order.

104    ' output node data
105       Console.Write(Convert.ToString(node.Data) & " ")
106
107  End Sub ' PostorderHelper
108
109 End Class ' CTree

1 ' Fig. 23.25: TreeTest2.vb
2 ' This program tests class CTree.
3
4 ' Deitel namespaces
5 Imports BinaryTreeLibrary2
6
7 Module modTreeTest2
8
9   ' test class CTree.

10 Sub Main()
11       Dim integerArray As Integer() = {8, 2, 4, 3, 1, 7, 5, 6}
12       Dim doubleArray As Double() = _
13          {8.8, 2.2, 4.4, 3.3, 1.1, 7.7, 5.5, 6.6}
14
15       Dim stringArray As String() = {"eight", "two", "four", _
16          "three", "one", "seven", "five", "six"}
17
18      ' create Integer tree
19       Dim integerTree As CTree = New CTree()
20       PopulateTree(integerArray, integerTree, "integerTree")
21       TraverseTree(integerTree, "integerTree")
22

Fig. 23.25 IComparable binary-tree demonstration (part 1 of 3).

Fig. 23.24 Binary tree stores nodes with IComparable data (part 3 of 3).



1174 Data Structures and Collections Chapter 23

23    ' create Double tree
24       Dim doubleTree As CTree = New CTree()
25       populateTree(doubleArray, doubleTree, "doubleTree")
26       TraverseTree(doubleTree, "doubleTree")
27
28       ' create String tree
29       Dim stringTree As CTree = New CTree()
30       populateTree(stringArray, stringTree, "stringTree")
31       TraverseTree(stringTree, "stringTree")
32
33  End Sub ' Main
34
35  ' populate tree with array elements
36  Public Sub PopulateTree(ByVal array As Array, _
37       ByVal tree As CTree, ByVal name As String)
38
39       Dim data As IComparable
40       Console.WriteLine(vbCrLf & "Inserting into " & name & ":")
41
42       For Each data In array
43          Console.Write(Convert.ToString(data) & " ")
44          tree.InsertNode(data)
45       Next
46
47  End Sub ' PopulateTree
48
49    ' perform traversals
50  Public Sub TraverseTree(ByVal tree As CTree, _
51       ByVal treeType As String)
52
53       ' perform preorder traversal of tree
54       Console.WriteLine(vbCrLf & vbCrLf & _
55          "Preorder Traversal of " & treeType)
56
57       tree.PreorderTraversal()
58
59       ' perform inorder traversal of tree
60       Console.WriteLine(vbCrLf & vbCrLf & _
61          "Inorder Traversal of " & treeType)
62
63       tree.InorderTraversal()
64
65   ' perform postorder traversal of tree
66       Console.WriteLine(vbCrLf & vbCrLf & _
67          "Postorder Traversal of " & treeType)
68
69       tree.PostorderTraversal()
70
71       Console.WriteLine(vbCrLf)
72 End Sub ' TraverseTree
73
74 End Module ' CTreeTest2

Fig. 23.25 IComparable binary-tree demonstration (part 2 of 3).



Chapter 23 Data Structures and Collections 1175

Common Programming Error 23.3
When comparing IComparable objects, the argument to method CompareTo must be of
the same type as the object on which CompareTo is invoked; otherwise, an Argument-
Exception occurs. 23.3

23.7 Collection Classes
In the previous sections of this chapter, we discussed how to create and manipulate data
structures. The discussion was “low level,” in the sense that we painstakingly created each
element of each data structure dynamically using keyword New and then modified the data
structures by directly manipulating their elements and references to those elements. In this
section, we consider the prepackaged data-structure classes provided by the .NET Frame-

Inserting into integerTree:
8 2 4 3 1 7 5 6

Preorder Traversal of integerTree
8 2 1 4 3 7 5 6

Inorder Traversal of integerTree
1 2 3 4 5 6 7 8

Postorder Traversal of integerTree
1 3 6 5 7 4 2 8

Inserting into doubleTree:
8.8 2.2 4.4 3.3 1.1 7.7 5.5 6.6

Preorder Traversal of doubleTree
8.8 2.2 1.1 4.4 3.3 7.7 5.5 6.6

Inorder Traversal of doubleTree
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8

Postorder Traversal of doubleTree
1.1 3.3 6.6 5.5 7.7 4.4 2.2 8.8

Inserting into stringTree:
eight two four three one seven five six

Preorder Traversal of stringTree
eight two four five three one seven six

Inorder Traversal of stringTree
eight five four one seven six three two

Postorder Traversal of stringTree
five six seven one three four two eight

Fig. 23.25 IComparable binary-tree demonstration (part 3 of 3).



1176 Data Structures and Collections Chapter 23

work. These classes are known as collection classes—they store collections of data. Each
instance of one of these classes is known as a collection, which is a set of items. 

With collection classes, instead of creating data structures, the programmer uses
existing data structures without worrying about how the data structures are implemented.
This methodology represents a marvelous example of code reuse. Programmers can code
more quickly and can expect excellent performance, maximizing execution speed and min-
imizing memory consumption. 

Examples of collections include the cards that players hold in a card game, a group of
favorite songs stored in a computer and the real-estate records in the local registry of deeds
(which map book numbers and page numbers to properties). The .NET Framework pro-
vides several collections. We demonstrate four collection classes—Array, ArrayList,
Stack and Hashtable—and built-in array capabilities. Namespace System.Col-
lections also provides several other data structures, including BitArray (a collection
of True/False values), Queue and SortedList (a collection of key/value pairs that
are sorted by key and can be accessed either by key or by index).

The .NET Framework provides ready-to-go, reusable components; programmers do
not need to write their own collection classes. The collections are standardized so that
applications can use them easily, without requiring knowledge of the implementation
details. These collections are written for broad reuse. They are tuned for rapid execution,
as well as for efficient use of memory. The .NET collections encourage further reus-
ability—as new data structures and algorithms that fit this framework are developed, a large
base of programmers already will be familiar with the interfaces and algorithms imple-
mented by those data structures.

23.7.1 Class Array

Chapter 7 presented basic array-processing capabilities, and many subsequent chapters
used the techniques that were demonstrated in that chapter. We mentioned that all arrays
inherit from class Array (of namespace System), which defines property Length spec-
ifying the number of elements in an array. In addition, class Array provides Shared
methods that define algorithms for processing arrays. These class Array methods are
overloaded to provide multiple options for performing algorithms. For example, Array
method Reverse can reverse the order of the elements in an entire array or can reverse
the elements in a specified range of elements in an array. For a complete list of class Ar-
ray’s Shared methods and their overloaded versions, see the online documentation for
the class. Figure 23.26 demonstrates several Shared methods of class Array.

1 ' Fig. 23.26: UsingArray.vb
2 ' Using class Array to perform common array manipulations.
3
4 Imports System.Windows.Forms
5 Imports System.Collections
6
7 ' demonstrate algorithms of class Array
8 Public Class CUsingArray
9 Private integerValues As Integer() = {1, 2, 3, 4, 5, 6}

Fig. 23.26 Array class demonstration (part 1 of 3).



Chapter 23 Data Structures and Collections 1177

10 Private doubleValues As Double() = _
11       {8.4, 9.3, 0.2, 7.9, 3.4}
12
13 Private integerValuesCopy(6) As Integer
14 Private output As String
15
16  ' build and display program output 
17 Public Sub Start()
18       Dim result As Integer
19
20       output = "Initial Array Values:" & vbCrLf
21       PrintArray() ' output initial array contents
22
23       ' sort doubleValues
24       Array.Sort(doubleValues)
25
26   ' copy integerValues into integerValuesCopy
27       Array.Copy(integerValues, integerValuesCopy, _
28          integerValues.Length)
29
30       output &= vbCrLf & vbCrLf & _
31          "Array values after Sort and Copy:" & vbCrLf
32
33       PrintArray() ' output array contents
34       output &= vbCrLf & vbCrLf
35
36       ' search for value 5 in integerValues
37       result = Array.BinarySearch(integerValues, 5)
38
39       If result >= 0 Then
40          output &= "5 found at element " & result & _
41             " in integerValues"
42       Else
43          output &= "5 not found" & " in integerValues"
44     End If
45
46       output &= vbCrLf
47
48       ' search for value 8763 in integerValues
49       result = Array.BinarySearch(integerValues, 8763)
50
51       If result >= 0 Then
52          output &= "8763 found at element " & _
53             result & " in integerValues"
54       Else
55          output &= "8763 was not found" & " in integerValues"
56       End If
57
58       MessageBox.Show(output, "Using Class Array", _
59          MessageBoxButtons.OK, MessageBoxIcon.Information)
60
61  End Sub ' Start
62

Fig. 23.26 Array class demonstration (part 2 of 3).



1178 Data Structures and Collections Chapter 23

Line 24 uses Shared Array method Sort to sort an array of Double values. When
this method returns, the array contains its original elements sorted in ascending order.

63    ' append array output to output string
64 Private Sub PrintArray()
65       Dim doubleElement As Double
66       Dim integerElement As Integer
67
68       output &= "doubleValues: "
69
70       ' output each element in array doubleValues
71       For Each doubleElement In doubleValues
72          output &= doubleElement & " "
73       Next
74
75       output &= vbCrLf & " integerValues: "
76
77       ' output each element in array integerValues
78       For Each integerElement In integerValues
79          output &= integerElement & " "
80       Next
81
82       output &= vbCrLf & " integerValuesCopy: "
83
84       ' output each element in array integerValuesCopy
85       For Each integerElement In integerValuesCopy
86          output &= integerElement & " "
87       Next
88
89 End Sub ' PrintArray
90
91   ' main entry point for application
92 Shared Sub Main()
93       Dim application As CUsingArray = New CUsingArray()
94       application.Start()
95 End Sub ' Main
96
97 End Class ' CUsingArray

Fig. 23.26 Array class demonstration (part 3 of 3).



Chapter 23 Data Structures and Collections 1179

Lines 27–28 uses Shared Array method Copy to copy elements from array inte-
gerArray into array integerArrayCopy. The first argument is the array to copy
(integerValues), the second argument is the destination array (integerValues-
Copy) and the third argument is an integer representing the number of elements to copy (in
this case, property integerValues.Length specifies “all elements”).

Lines 37 and 49 invoke Shared Array method BinarySearch to perform binary
searches on array integerValues. Method BinarySearch receives the sorted array in
which to search and the key for which to search. The method returns the index in the array at
which it finds the key, or if the key is not found, the method returns a negative number.

Other Shared Array methods include Clear (to set a range of elements to 0 or
Nothing), CreateInstance (to create an array of a specified data type), IndexOf
(to locate the first occurrence of a specific object in an array or portion of an array),
LastIndexOf (to locate the last occurrence of a specific object in an array or portion of
an array) and Reverse (to reverse the contents of an array or portion of an array).

23.7.2 Class ArrayList

In most programming languages, conventional arrays have a fixed size—they cannot be
changed dynamically to an application’s execution-time memory requirements. In some
applications, this fixed-size limitation presents a problem for programmers. Such program-
mers must choose whether to use fixed-size arrays that are large enough to store the maxi-
mum number of elements the program might require, or to use dynamic data structures,
which can grow or shrink at execution time to accommodate a program’s memory needs.

Visual Basic’s  ArrayList collection (namespace System.Collections)
mimics the functionality of conventional arrays and provides dynamic resizing capabilities.
At any time, an ArrayList contains a certain number of elements, which is either less
than or equal to its capacity—the number of elements currently reserved for the Array-
List. A program can manipulate the capacity with ArrayList property Capacity. If
an ArrayList needs to grow, it by default doubles its current Capacity.

Performance Tip 23.4
As with linked lists, the insertion of additional elements into an ArrayList whose current
size is less than its capacity is a fast operation. 23.4

Performance Tip 23.5
Inserting an element into an ArrayList that must grow larger to accommodate a new el-
ement is a slow operation. 23.5

Performance Tip 23.6
If storage is at a premium, use method TrimToSize of class ArrayList to trim an Ar-
rayList to its exact size. This optimizes an ArrayList’s memory use. However be care-
ful—if the program later needs to insert additional elements, the process will be slower,
because the ArrayList must grow dynamically (trimming leaves no room for growth). 23.6

Performance Tip 23.7
The default capacity increment, which is a doubling of the ArrayList’s size might seem to
waste storage, but doubling is an efficient way for an ArrayList to grow quickly to “about
the right size.” This is a much more efficient use of time than growing the ArrayList by
one element at a time in response to insert operations. 23.7



1180 Data Structures and Collections Chapter 23

ArrayLists store references to Objects. All classes derive from class Object, so
an ArrayList can contain objects of any type. Figure 23.27 lists some useful methods of
class ArrayList.

Figure 23.28 demonstrates class ArrayList and several of its methods. Users can
type a String into the user interface’s TextBox and then press a button representing an
ArrayList method to see that method’s functionality. A TextBox displays messages
indicating each operation’s results.

The ArrayList in this example stores Strings that users input in the TextBox.
Line 32 creates an ArrayList with an initial capacity of one element. This ArrayList
will double in size each time the user fills the array and then attempts to add another element.

ArrayList method Add appends an element to the end of an ArrayList. When
the user clicks Add, event handler cmdAdd_Click (lines 35–41) invokes method Add
(line 38) to append the String in the inputTextBox to the ArrayList.

Method Description

Add Adds an Object to the ArrayList. Returns an Integer specifying 
the index at which the Object was added.

Clear Removes all elements from the ArrayList.

Contains Returns True if the specified Object is in the ArrayList; otherwise, 
returns False.

IndexOf Returns the index of the first occurrence of the specified Object in the 
ArrayList.

Insert Inserts an Object at the specified index.

Remove Removes the first occurrence of the specified Object.

RemoveAt Removes an object at the specified index.

RemoveRange Removes a specified number of elements starting at a specified index in 
the ArrayList.

Sort Sorts the ArrayList.

TrimToSize Sets the Capacity of the ArrayList to the number of elements that 
the ArrayList currently contains.

Fig. 23.27 ArrayList methods (partial list).

1 ' Fig. 23.28: ArrayListTest.vb
2 ' Demonstrating class ArrayList functionality.
3
4 Imports System.Collections
5 Imports System.Text
6 Imports System.Windows.Forms
7
8 Public Class FrmArrayList
9 Inherits Form

10

Fig. 23.28 ArrayList class demonstration (part 1 of 5).



Chapter 23 Data Structures and Collections 1181

11    ' Buttons for invoking ArrayList functionality
12 Friend WithEvents cmdAdd As Button
13 Friend WithEvents cmdRemove As Button
14 Friend WithEvents cmdFirst As Button
15 Friend WithEvents cmdLast As Button
16 Friend WithEvents cmdIsEmpty As Button
17 Friend WithEvents cmdContains As Button
18 Friend WithEvents cmdLocation As Button
19 Friend WithEvents cmdTrim As Button
20 Friend WithEvents cmdStatistics As Button
21 Friend WithEvents cmdDisplay As Button
22
23    ' TextBox for user input
24 Friend WithEvents txtInput As TextBox
25    Friend WithEvents lblEnter As Label
26
27    Friend WithEvents txtConsole As TextBox ' TextBox for output
28
29  ' Visual Studio .NET generated code
30
31  ' ArrayList for manipulating Strings
32 Private arrayList As ArrayList = New ArrayList(1)
33
34  ' add item to end of arrayList
35 Private Sub cmdAdd_Click(ByVal sender As System.Object, _
36       ByVal e As System.EventArgs) Handles cmdAdd.Click
37
38       arrayList.Add(txtInput.Text)
39       txtConsole.Text = "Added to end: " & txtInput.Text
40       txtInput.Clear()
41 End Sub ' cmdAdd_Click
42
43    'remove specified item from arrayList
44 Private Sub cmdRemove_Click(ByVal sender As System.Object, _
45       ByVal e As System.EventArgs) Handles cmdRemove.Click
46
47       arrayList.Remove(txtInput.Text)
48       txtConsole.Text = "Removed: " & txtInput.Text
49       txtInput.Clear()
50  End Sub ' cmdRemove_Click
51
52   ' display first element
53   Private Sub cmdFirst_Click(ByVal sender As System.Object, _
54       ByVal e As System.EventArgs) Handles cmdFirst.Click
55
56   ' get first element
57       Try
58          txtConsole.Text = "First element: " & arrayList(0)
59
60       ' show exception if no elements in arrayList
61       Catch outOfRange As ArgumentOutOfRangeException
62          txtConsole.Text = outOfRange.ToString()
63    End Try

Fig. 23.28 ArrayList class demonstration (part 2 of 5).



1182 Data Structures and Collections Chapter 23

64
65  End Sub ' cmdFirst_Click
66
67    ' display last element
68 Private Sub cmdLast_Click(ByVal sender As System.Object, _
69       ByVal e As System.EventArgs) Handles cmdLast.Click
70
71    ' get last element
72       Try
73          txtConsole.Text = "Last element: " & _
74             arrayList(arrayList.Count - 1)
75
76       ' show exception if no elements in arrayList
77   Catch outOfRange As ArgumentOutOfRangeException
78          txtConsole.Text = outOfRange.ToString()
79   End Try
80
81   End Sub ' cmdLast_Click
82
83  ' determine whether arrayList is empty
84 Private Sub cmdIsEmpty_Click(ByVal sender As System.Object, _
85       ByVal e As System.EventArgs) Handles cmdIsEmpty.Click
86
87       If arrayList.Count = 0 Then
88          txtConsole.Text = "arrayList is empty"
89       Else
90          txtConsole.Text = "arrayList is not empty"
91       End If
92
93   End Sub ' cmdIsEmpty_Click
94
95  ' determine whether arrayList contains specified object
96  Private Sub cmdContains_Click(ByVal sender As System.Object, _
97       ByVal e As System.EventArgs) Handles cmdContains.Click
98
99       If arrayList.Contains(txtInput.Text) Then
100          txtConsole.Text = "arrayList contains " & _
101             txtInput.Text()
102       Else
103          txtConsole.Text = txtInput.Text & " not found"
104   End If
105
106  End Sub ' cmdContains_Click
107
108 ' determine location of specified object
109 Private Sub cmdLocation_Click(ByVal sender As System.Object, _
110       ByVal e As System.EventArgs) Handles cmdLocation.Click
111
112       txtConsole.Text = "Element is at location " & _
113          arrayList.IndexOf(txtInput.Text)
114 End Sub ' cmdLocation_Click
115

Fig. 23.28 ArrayList class demonstration (part 3 of 5).



Chapter 23 Data Structures and Collections 1183

116    ' trim arrayList to current size
117 Private Sub cmdTrim_Click(ByVal sender As System.Object, _
118       ByVal e As System.EventArgs) Handles cmdTrim.Click
119
120       arrayList.TrimToSize()
121       txtConsole.Text = "Vector trimmed to size"
122  End Sub ' cmdTrim_Click
123
124  ' show arrayList current size and capacity
125 Private Sub cmdStatistics_Click(ByVal sender As System.Object, _
126       ByVal e As System.EventArgs) Handles cmdStatistics.Click
127
128       txtConsole.Text = "Size = " & arrayList.Count & _
129       "; capacity = " & arrayList.Capacity
130  End Sub ' cmdStatistics_Click
131
132    ' display contents of arrayList
133 Private Sub cmdDisplay_Click(ByVal sender As System.Object, _
134       ByVal e As System.EventArgs) Handles cmdDisplay.Click
135
136       Dim enumerator As IEnumerator = arrayList.GetEnumerator()
137       Dim buffer As StringBuilder = New StringBuilder()
138
139   While enumerator.MoveNext()
140          buffer.Append(enumerator.Current & " ")
141       End While
142
143       txtConsole.Text = buffer.ToString()
144   End Sub ' cmdDisplay_Click
145
146 End Class ' FrmArrayList

Fig. 23.28 ArrayList class demonstration (part 4 of 5).



1184 Data Structures and Collections Chapter 23

ArrayList method Remove deletes a specified item from an ArrayList. When
the user clicks Remove, event handler cmdRemove_Click (line 44–50) invokes
Remove (line 47) to remove the String specified in the inputTextBox from the
ArrayList. If the object passed to Remove is in the ArrayList, the first occurrence
of that object is removed, and all subsequent elements shift toward the beginning of the
ArrayList to fill the empty position.

A program can access ArrayList elements in the same way that conventional array
elements are accessed: By following the ArrayList reference name with the array sub-
script operator (()) and the desired index of the element. Event handlers
cmdFirst_Click (lines 53–65) and cmdLast_Click (lines 68–81) use the Array-
List subscript operator to retrieve the first element (line 58) and last element (line 74),
respectively. An ArgumentOutOfRangeException occurs if the specified index is
less than zero or greater than the number of elements currently stored in the ArrayList.

Event handler cmdIsEmpty_Click (lines 84–93) uses ArrayList property
Count (line 87) to determine whether the ArrayList is empty. Event handler
cmdContains_Click (lines 96–106) uses ArrayList method Contains (line 99)
to determine whether the object that Contains receives as an argument currently is in the
ArrayList. If so, the method returns True; otherwise, it returns False.

Performance Tip 23.8
ArrayList method Contains performs a linear search, which is a costly operation for
large ArrayLists. If the ArrayList is sorted, use ArrayList method Binary-
Search to perform a more efficient search. 23.8

When the user clicks Location, event handler cmdLocation_Click (lines 109–
114) invokes ArrayList method IndexOf (line 113) to determine the index of a partic-
ular object in the ArrayList. IndexOf returns -1 if the element is not found. 

When the user clicks Trim, event handler cmdTrim_Click (lines 117–122) invokes
method TrimToSize (line 120) to set the Capacity property so that it is equal to the

Fig. 23.28 ArrayList class demonstration (part 5 of 5).



Chapter 23 Data Structures and Collections 1185

Count property. This reduces the storage capacity of the ArrayList to the exact number
of elements currently in the ArrayList.

When users click Statistics, cmdStatistics_Click (lines 125–130) uses the
Count and Capacity properties to display the current number of elements in the
ArrayList and the maximum number of elements that can be stored without the alloca-
tion of more memory to the ArrayList.

When users click Display, cmdDisplay_Click (lines 133–144) outputs the con-
tents of the ArrayList. This event handler uses an IEnumerator (sometimes called
an enumerator, or an iterator) to traverse the elements of an ArrayList one element at
a time. Interface IEnumerator defines methods MoveNext and Reset and property
Current. MoveNext moves the enumerator to the next element in the ArrayList. The
first call to MoveNext positions the enumerator at the first element of the ArrayList.
MoveNext returns True if there is at least one more element in the ArrayList; other-
wise, the method returns False. Method Reset positions the enumerator before the first
element of the ArrayList. Methods MoveNext and Reset throw an InvalidOper-
ationException if the contents of the collection are modified after the enumerator’s
creation. Property Current returns the object at the current location in the ArrayList.

Line 136 creates an IEnumerator, called enumerator, and assigns it the result of
a call to ArrayList method GetEnumerator. Lines 139–141 use enumerator to
iterate the ArrayList (as long as MoveNext returns True), retrieve the current item
via property Count and append it to StringBuilder buffer. When the loop termi-
nates, line 143 displays the contents of buffer.

23.7.3 Class Stack

The Stack class (namespace System.Collections) implements a stack data struc-
ture. This class provides much of the functionality that we defined in our implementation
in Section 23.4. The application in Fig. 23.29 provides a GUI that enables the user to test
many Stack methods. Line 31 of the FrmStackTest constructor creates a Stack with
the default initial capacity (10 elements).

Class Stack provides methods Push and Pop to perform the basic stack operations.
Method Push takes an Object as an argument and adds it to the top of the Stack. If the
number of items on the Stack (the Count property) is equal to the capacity at the time of
the Push operation, the Stack grows to accommodate more Objects. Event handler
cmdPush_Click (lines 37–42) uses method Push to add a user-specified string to the
stack (line 40).

1 ' Fig. 23.29: StackTest.vb
2 ' Demonstrates class Stack functionality.
3
4 Imports System.Collections
5 Imports System.Text
6 Imports System.Windows.Forms
7
8 Public Class FrmStackTest
9 Inherits Form

Fig. 23.29 Stack class demonstration (part 1 of 4).



1186 Data Structures and Collections Chapter 23

10
11    ' Buttons invoking Stack functionality
12 Friend WithEvents cmdPush As Button
13 Friend WithEvents cmdPop As Button
14 Friend WithEvents cmdPeek As Button
15 Friend WithEvents cmdIsEmpty As Button
16 Friend WithEvents cmdSearch As Button
17 Friend WithEvents cmdDisplay As Button
18
19    ' TextBox receives input from user
20 Friend WithEvents txtInput As TextBox
21 Friend WithEvents lblStatus As Label
22 Friend WithEvents lblEnter As Label
23
24 Private stack As Stack
25
26 Public Sub New()
27       MyBase.New()
28
29       InitializeComponent()
30
31       stack = New Stack() ' create stack
32  End Sub ' New
33
34    ' Visual Studio .NET generated code
35
36  ' push element onto stack
37 Private Sub cmdPush_Click(ByVal sender As System.Object, _
38       ByVal e As System.EventArgs) Handles cmdPush.Click
39
40       Stack.Push(txtInput.Text)
41       lblStatus.Text = "Pushed: " & txtInput.Text
42 End Sub ' cmdPush_Click
43
44   ' pop element from stack
45 Private Sub cmdPop_Click(ByVal sender As System.Object, _
46       ByVal e As System.EventArgs) Handles cmdPop.Click
47
48       ' pop element 
49       Try
50          lblStatus.Text = "Popped: " & stack.Pop()
51
52       ' print message if stack is empty
53       Catch invalidOperation As InvalidOperationException
54          lblStatus.Text = invalidOperation.ToString()
55       End Try
56
57 End Sub ' cmdPop_Click
58
59 ' peek at top element of stack
60 Private Sub cmdPeek_Click(ByVal sender As System.Object, _
61       ByVal e As System.EventArgs) Handles cmdPeek.Click
62

Fig. 23.29 Stack class demonstration (part 2 of 4).



Chapter 23 Data Structures and Collections 1187

63   ' view top element
64       Try
65          lblStatus.Text = "Top: " & stack.Peek()
66
67          ' print message if stack is empty
68       Catch invalidOperation As InvalidOperationException
69          lblStatus.Text = invalidOperation.ToString()
70       End Try
71
72 End Sub ' cmdPeek_Click
73
74    ' determine whether stack is empty
75 Private Sub cmdIsEmpty_Click(ByVal sender As System.Object, _
76       ByVal e As System.EventArgs) Handles cmdIsEmpty.Click
77
78       If stack.Count = 0 Then
79          lblStatus.Text = "Stack is empty"
80       Else
81          lblStatus.Text = "Stack is not empty"
82       End If
83
84 End Sub ' cmdIsEmpty_Click
85
86    ' determine whether specified element is on stack
87 Private Sub cmdSearch_Click(ByVal sender As System.Object, _
88       ByVal e As System.EventArgs) Handles cmdSearch.Click
89
90       If stack.Contains(txtInput.Text) Then
91          lblStatus.Text = txtInput.Text & " found"
92       Else
93          lblStatus.Text = txtInput.Text & " not found"
94       End If
95
96  End Sub ' cmdSearch_Click
97
98  ' display stack contents
99 Private Sub cmdDisplay_Click(ByVal sender As System.Object, _
100       ByVal e As System.EventArgs) Handles cmdDisplay.Click
101
102       Dim enumerator As IEnumerator = stack.GetEnumerator()
103       Dim buffer As StringBuilder = New StringBuilder()
104
105       While enumerator.MoveNext()
106          buffer.Append(enumerator.Current & " ")
107       End While
108
109       lblStatus.Text = buffer.ToString()
110 End Sub ' cmdDisplay_Click
111
112 End Class ' FrmStackTest

Fig. 23.29 Stack class demonstration (part 3 of 4).



1188 Data Structures and Collections Chapter 23

Method Pop takes no arguments. This method removes and returns the object cur-
rently on top of the Stack. Event handler cmdPop_Click (lines 45–57) calls method
Pop (line 50) to remove an object from the Stack. An InvalidOperationExcep-
tion occurs if the Stack is empty when the program calls Pop.

Method Peek returns the value of the top stack element, but does not remove the element
from the Stack. We demonstrate Peek in line 65 of event handler cmdPeek_Click (lines
60–72) to view the object on top of the Stack. As with Pop, an InvalidOperation-
Exception occurs if the Stack is empty when the program calls Peek.

Fig. 23.29 Stack class demonstration (part 4 of 4).



Chapter 23 Data Structures and Collections 1189

Common Programming Error 23.4
Attempting to Peek or Pop an empty Stack (a Stack whose Count property equals zero)
causes an InvalidOperationException. 23.4

Event handler cmdIsEmpty_Click (lines 75–84) determines whether the Stack
is empty by comparing the Stack’s Count property to zero. If it is zero, the Stack is
empty; otherwise, it is not. Event handler cmdSearch_Click (lines 87–96) uses Stack
method Contains (lines 90) to determine whether the Stack contains the object speci-
fied as its argument. Contains returns True if the Stack contains the specified object
and False otherwise. 

Event handler cmdDisplay_Click (lines 99–110) uses an IEnumerator to
traverse the Stack and display its contents.

23.7.4 Class Hashtable
Object-oriented programming languages facilitate creating types. When a program creates
objects of new or existing types, it then must manage those objects efficiently. This in-
cludes storing and retrieving objects. It is efficient to store and retrieve information in ar-
rays if some aspect of the data directly matches the key values and if those keys are unique
and tightly packed. If a company has 100 employees with nine-digit Social Security num-
bers and wants to store and retrieve employee data using Social Security numbers as keys,
nominally would require an array with 999,999,999 elements, because there are
999,999,999 unique nine-digit numbers. This is impractical for virtually all applications
that key on Social Security numbers. If it were possible to have an array that large, pro-
grammers could achieve very high performance storing and retrieving employee records by
simply using the Social Security number as the array index.

Many applications have this problem—namely, either that the keys are of the wrong
type (i.e., negative integers) or that they are of the right type, but they are spread sparsely
over a large range.

The solution to this problem must involve a high-speed scheme for converting keys,
such as Social Security numbers and inventory part numbers, to unique array subscripts.
Then, when an application needs to store some value, the scheme could convert the appli-
cation key rapidly to a subscript, and the record of information could be stored at that loca-
tion in the array. Retrieval now occurs the same way. Once the application has a key for
retrieving the data record, the application applies the same conversion to the key, producing
the appropriate array subscript, and retrieves the data.

The scheme we describe here provides the basis for a technique called hashing. When
we convert a key to an array subscript, we literally scramble the bits, forming a kind of
“mishmash” number. The number has no real significance beyond its usefulness in storing
and retrieving the particular data record.

Problems in the scheme arise when collisions occur [i.e., two different keys “hash into”
the same cell (or element) in the array]. Because we cannot store two different data records
into the same space, we need to find alternative homes for all records beyond the first that
hash to a particular array subscript. Many schemes exist for doing this. One is to “hash
again” (i.e., to reapply the hashing operation to the key to produce a next candidate cell in
the array). Because the hashing process is designed to be random, we can assume that, with
just a few hashes, an available cell will be found.



1190 Data Structures and Collections Chapter 23

Another scheme uses one hash to locate the first candidate cell. If the cell is occupied,
successive cells are searched linearly until an available cell is found. Retrieval works the
same way—the key is hashed once, the resulting cell is checked to determine whether it
contains the desired data. If it does, the search is complete. If it does not, successive cells
are searched linearly until the desired data is found.

The most popular solution to hash-table collisions is to have each cell of the table be a
hash “bucket,” which typically is a linked list of all the key/value pairs that hash to that cell.
This is the solution that Visual Basic’s Hashtable class (namespace System.Col-
lections) implements.

The load factor affects the performance of hashing schemes. The load factor is the ratio
of the number of occupied cells in the hash table to the size of the hash table. The closer the
ratio gets to 1.0, the greater the chance of collisions.

Performance Tip 23.9
The load factor in a hash table is a classic example of a space/time trade-off: By increasing
the load factor, we achieve better memory utilization, but cause the program to be slowed by
increased hashing collisions. By decreasing the load factor, we achieve better program
speed due to a reduction in hashing collisions, but we get poorer memory utilization, because
a larger portion of the hash table remains empty. 23.9

The proper programming of hash tables is too complex for most casual programmers.
Computer science students study hashing schemes thoroughly in courses called “Data
Structures” and “Algorithms.” Recognizing the value of hashing, Visual Basic provides
class Hashtable and some related features to enable programmers to take advantage of
hashing without studying the complex details of the technique.

The preceding sentence is profoundly important in our study of object-oriented pro-
gramming. Classes encapsulate and hide complexity (i.e., implementation details) while
offering user-friendly interfaces. Crafting classes to do this properly is one of the most
valued skills in the field of object-oriented programming. 

A hash function performs a calculation that determines where to place data in the hash-
table. The hash function is applied to the key in a key/value pair of objects. Class Hash-
table can accept any object as a key. For this reason, class Object defines method
GetHashCode, which is inherited by all Visual Basic objects. Most classes that can be
used as keys in hash tables override this method to provide one that performs efficient hash-
code calculations for the specific data type. For example, a String has a hashcode calcu-
lation that is based on the contents of the String. Figure 23.30 demonstrates several
methods of class Hashtable.

1 ' Fig. 23.30: FrmHashTableTest.vb
2 ' Demonstrate class Hashtable functionality.
3
4 Imports System.Collections
5 Imports System.Text
6 Imports System.Windows.Forms
7
8 Public Class FrmHashTableTest
9 Inherits Form

Fig. 23.30 Hashtable class demonstration (part 1 of 5).



Chapter 23 Data Structures and Collections 1191

10
11    ' Buttons invoke Hashtable functionality
12 Friend WithEvents cmdAdd As Button
13 Friend WithEvents cmdGet As Button
14 Friend WithEvents cmdRemove As Button
15 Friend WithEvents cmdEmpty As Button
16 Friend WithEvents cmdContains As Button
17 Friend WithEvents cmdClear As Button
18 Friend WithEvents cmdListObjects As Button
19 Friend WithEvents cmdListKeys As Button
20
21    ' TextBoxes enable user to input hashtable data
22 Friend WithEvents txtFirst As TextBox
23 Friend WithEvents txtLast As TextBox
24 Friend WithEvents txtConsole As TextBox
25
26 Friend WithEvents lblFirst As Label
27 Friend WithEvents lblLast As Label
28 Friend WithEvents lblStatus As Label
29
30 Private table As Hashtable
31
32 Public Sub New()
33       MyBase.New()
34
35       'This call is required by the Windows Form Designer.
36       InitializeComponent()
37
38       table = New Hashtable() ' create Hashtable object
39  End Sub ' New
40
41    ' Visual Studio .NET generated code
42
43    ' add last name and CEmployee object to table
44 Private Sub cmdAdd_Click(ByVal sender As System.Object, _
45       ByVal e As System.EventArgs) Handles cmdAdd.Click
46
47       Dim employee As New CEmployee(txtFirst.Text, txtLast.Text)
48
49       ' add new key/value pair 
50       Try
51          table.Add(txtLast.Text, employee)
52          lblStatus.Text = "Put: " & employee.ToString()
53
54       ' if key does not exist or is in table, throw exception
55       Catch argumentException As ArgumentException
56          lblStatus.Text = argumentException.ToString()
57       End Try
58
59    End Sub ' cmdAdd_Click
60

Fig. 23.30 Hashtable class demonstration (part 2 of 5).



1192 Data Structures and Collections Chapter 23

61   ' get object for given key
62  Private Sub cmdGet_Click(ByVal sender As System.Object, _
63       ByVal e As System.EventArgs) Handles cmdGet.Click
64
65       Dim result As Object = table(txtLast.Text)
66
67       If Not result Is Nothing Then
68          lblStatus.Text = "Get: " & result.ToString()
69       Else
70          lblStatus.Text = "Get: " & txtLast.Text & " not in table"
71   End If
72
73    End Sub ' cmdGet_Click
74
75   ' remove key/value pair from table 
76 Private Sub cmdRemove_Click(ByVal sender As System.Object, _
77       ByVal e As System.EventArgs) Handles cmdRemove.Click
78
79       table.Remove(txtLast.Text)
80       lblStatus.Text = "Object Removed"
81  End Sub ' cmdRemove_Click
82
83 ' determine whether table is empty
84 Private Sub cmdEmpty_Click(ByVal sender As System.Object, _
85       ByVal e As System.EventArgs) Handles cmdEmpty.Click
86
87       lblStatus.Text = "Table is "
88
89   If table.Count = 0 Then
90          lblStatus.Text &= "empty"
91   Else
92          lblStatus.Text &= "not empty"
93       End If
94
95    End Sub ' cmdEmpty_Click
96
97 ' determine whether table contains specified key
98 Private Sub cmdContains_Click(ByVal sender As System.Object, _
99       ByVal e As System.EventArgs) Handles cmdContains.Click
100
101       lblStatus.Text = "Contains key: " & _
102          table.ContainsKey(txtLast.Text)
103   End Sub ' cmdContains_Click
104
105  ' discard all table contents
106   Private Sub cmdClear_Click(ByVal sender As System.Object, _
107       ByVal e As System.EventArgs) Handles cmdClear.Click
108
109       table.Clear()
110       lblStatus.Text = "Clear: Table is now empty"
111   End Sub ' cmdClear_Click
112

Fig. 23.30 Hashtable class demonstration (part 3 of 5).



Chapter 23 Data Structures and Collections 1193

113 ' display list of all objects in table 
114 Private Sub cmdListObjects_Click( _
115       ByVal sender As System.Object, ByVal e As System.EventArgs) _
116       Handles cmdListObjects.Click
117
118       Dim enumerator As IDictionaryEnumerator = _
119       table.GetEnumerator()
120
121       Dim buffer As StringBuilder = New StringBuilder()
122
123       While enumerator.MoveNext()
124          buffer.Append(Convert.ToString(enumerator.Value) & _
125             vbCrLf)
126       End While
127
128       txtConsole.Text = buffer.ToString()
129 End Sub ' cmdListObjects_Click
130
131  ' display list of keys in table
132 Private Sub cmdListKeys_Click(ByVal sender As System.Object, _
133       ByVal e As System.EventArgs) Handles cmdListKeys.Click
134
135       Dim enumerator As IDictionaryEnumerator = _
136             table.GetEnumerator()
137
138       Dim buffer As StringBuilder = New StringBuilder()
139
140       While enumerator.MoveNext()
141          buffer.Append(enumerator.Key & vbCrLf)
142       End While
143
144       txtConsole.Text = buffer.ToString()
145   End Sub ' cmdListKeys_Click
146
147 End Class ' FrmHashTableTest

Fig. 23.30 Hashtable class demonstration (part 4 of 5).



1194 Data Structures and Collections Chapter 23

1 ' Fig. 23.31: Employee.vb
2 ' Class CEmployee for use with HashTable.
3
4 Public Class CEmployee
5 Private firstName, lastName As String
6
7 Public Sub New(ByVal first As String, ByVal last As String)
8       firstName = first
9       lastName = last

10 End Sub ' New
11

Fig. 23.31 CEmployee class (part 1 of 2).

Fig. 23.30 Hashtable class demonstration (part 5 of 5).



Chapter 23 Data Structures and Collections 1195

Event handler cmdAdd_Click (lines 44–59) reads the first name and last name of an
employee from the user interface, creates an object of class CEmployee (Fig. 23.31) and
adds that CEmployee to the Hashtable with method Add (line 51). This method
receives two arguments–—a key object and a value object. In this example, the key is the
last name of the CEmployee (a String), and the value is the corresponding CEm-
ployee object. An ArgumentException occurs if the Hashtable already contains
the key or if the key is Nothing.

Event handler cmdGet_Click (lines 62–73) retrieves the object associated with a
specific key using the Hashtable’s subscript operator (as shown on line 65). The expres-
sion in parentheses is the key for which the Hashtable should return the corresponding
object. If the key is not found, the result is Nothing.

Event handler cmdRemove_Click (lines 76–81) invokes Hashtable method
Remove to delete a key and its associated object from the Hashtable. If the key does
not exist in the table, nothing happens.

Event handler cmdEmpty_Click (lines 84–95) uses Hashtable property Count
to determine whether the Hashtable is empty (i.e., Count is 0).

Event handler cmdContainsKey_Click (lines 98–103) invokes Hashtable
method ContainsKey to determine whether the Hashtable contains the specified key.
If so, the method returns True; otherwise, it returns False.

Event handler cmdClear_Click (lines 106–111) invokes Hashtable method
Clear to delete all Hashtable entries. 

Class Hashtable provides method GetEnumerator, which returns an enumer-
ator of type IDictionaryEnumerator, which is derived from IEnumerator. Such
enumerators provide properties Key and Value to access the information for a key/value
pair. The event handler in lines 114–129 (cmdListObjects_click) uses property
Value of the enumerator to output the objects in the Hashtable. The event handler in
lines 132–145 (cmdListKeys_click) uses the Key property of the enumerator to
output the keys in the Hashtable.

SUMMARY
• Dynamic data structures can grow and shrink at execution time. 

• Creating and maintaining dynamic data structures requires dynamic memory allocation—the abil-
ity of a program to obtain more memory at execution time (to hold new nodes) and to release mem-
ory no longer needed. 

• The limit for dynamic memory allocation can be as large as the available physical memory in the
computer and the amount of available disk space in a virtual-memory system.

12  ' return Employee first and last names as String
13 Public Overrides Function ToString() As String
14       Return firstName & " " & lastName
15 End Function ' ToString
16
17 End Class ' CEmployee

Fig. 23.31 CEmployee class (part 2 of 2).



1196 Data Structures and Collections Chapter 23

• Operator New takes as an operand the type of the object to allocate dynamically and returns a ref-
erence to a newly created object of that type. If no memory is available, New throws an Out-
OfMemoryException.

• A self-referential class contains a reference to an object of the same class type. Self-referential ob-
jects can be linked to form such data structures as lists, queues, stacks and trees. 

• A linked list is a linear collection (i.e., a sequence) of self-referential class objects called nodes,
which are connected by reference links. 

• A node can contain data of any type, including objects of other classes. 

• A linked list is accessed via a reference to the first node of the list. Each subsequent node is ac-
cessed via the link-reference member stored in the previous node. 

• By convention, the link reference in the last node of a list is set to Nothing, marking the end of
the list. 

• A stack is a constrained version of a linked list—nodes can be added to a stack and removed from
a stack only at its top. A stack is a last-in, first-out (LIFO) data structure. 

• The primary stack operations are push and pop. Operation push adds a node to the top of the stack.
Operation pop removes a node from the top of the stack and returns the data object from the
popped node.

• Queues represent waiting lines. Insertions occur at the back (also referred to as the tail) of the
queue, and deletions occur from the front (also referred to as the head) of the queue.

• A queue is similar to a checkout line in a supermarket—the first person in line is served first; other
customers enter the end of the line and then wait to be served. 

• Queue nodes are removed only from the head of the queue and are inserted only at the tail of the
queue. For this reason, a queue is referred to as a first-in, first-out (FIFO) data structure. 

• The insert and remove operations for a queue are known as enqueue and dequeue. 

• Binary trees facilitate high-speed searching and sorting of data, efficient elimination of duplicate data
items, representing of file-system hierarchies and compiling of expressions into machine language. 

• Tree nodes contain two or more links. 

• A binary tree is a tree whose nodes each contain two links. The root node is the first node in a tree. 

• Each link in the root node of a binary tree refers to a child. The left child is the first node in the left
subtree, and the right child is the first node in the right subtree. 

• The children of a node of a binary tree are called siblings. A node with no children is a leaf node. 

• In a binary search tree with no duplicate node values has the characteristic that the values in any
left subtree are less than the values that subtree’s parent node and the values in any right subtree
are greater than the values in that subtree’s parent node. 

• In a binary search tree, nodes can be inserted only as a leaf node. 

• An inorder traversal of a binary search tree processes the node values in ascending order. 

• Creating a binary search tree actually sorts the data—hence the term, “binary tree sort.”

• In an inorder traversal, the value in each node is processed after the node’s left subtrees are pro-
cessed, but before the node’s right subtrees are processed.

• In a preorder traversal, the value in each node is processed as the node is visited. After the value
in a given node is processed, the values in the left subtree are processed, then the values in the right
subtree are processed. 

• In a postorder traversal, the value in each node is processed after the node’s left and right subtrees
are processed. 



Chapter 23 Data Structures and Collections 1197

• The binary search tree facilitates duplicate elimination. As the tree is created, attempts to insert a
duplicate value are recognized, because a duplicate follows the same “go left” or “go right” deci-
sions on each comparison as did the original value. Thus, the duplicate eventually is compared
with a node containing the same value. 

• Classes that implement interface IComparable define method CompareTo, which compares
the object that invokes the method with the object that the method receives as an argument.

• Class ArrayList can be used as a dynamic array.

• ArrayList method Add adds an Object to the ArrayList.

• ArrayList method Remove removes the first occurrence of the specified Object from the
ArrayList.

• The ArrayList subscript operator accesses elements of an ArrayList as if the ArrayList
were an array.

• Class Stack is provided in the System.Collections namespace.

• Stack method Push performs the push operation on the Stack.

• Stack method Pop performs the pop operation on the Stack.

• Class Hashtable is provided in the System.Collections namespace.

• Hashtable method Add adds a key/value pair to the Hashtable.

• Programs can use an IEnumerator (also called an enumerator or an iterator) to traverse ele-
ments of an ArrayList one element at a time.

• Interface IEnumerator defines methods MoveNext and Reset and property Current.
MoveNext moves the enumerator to the next element in the ArrayList. Method Reset posi-
tions the enumerator before the first element of the ArrayList. Property Current returns the
object residing at the current location in the ArrayList.

TERMINOLOGY
Add method of ArrayList IEnumerator interface 
ArgumentException IndexOf method of ArrayList
ArrayList class InvalidOperationException
binary tree linked list 
BinarySearch method of ArrayList MoveNext method of IEnumerator
Capacity property of ArrayList Peek method of Stack
Clear method of ArrayList Pop method of Stack
Clear method of Hashtable Push method of Stack
collection queue 
Contains method of ArrayList Remove method of ArrayList
Contains method of Stack Remove method of Hashtable
ContainsKey method of Hashtable RemoveAt method of ArrayList
Count property of ArrayList RemoveRange method of ArrayList
Count property of Stack Reset method of IEnumerator
Current property of IEnumerator searching 
data structure self-referential class 
dynamic data structure Sort method of ArrayList
enumerator sorting 
GetEnumerator method of IEnumerable stack 
GetHashCode method of Object Stack class 
Hashtable class System.Collections namespace 
IDictionaryEnumerator interface TrimToSize method of ArrayList



1198 Data Structures and Collections Chapter 23

SELF-REVIEW EXERCISES
23.1 State whether each of the following is true or false. If false, explain why.

a) In a queue, the first item to be added is the last item to be removed.
b) Trees can have no more than two child nodes per node.
c) A tree node with no children is called a leaf node.
d) Class Stack belongs to namespace System.Collections.
e) A class implementing interface IEnumerator must define only methods MoveNext

and Reset.
f) A hashtable stores key/value pairs.
g) Linked-list nodes are stored contiguously in memory.
h) The primary operations of the stack data structure are enqueue and dequeue.
i) Lists, stacks and queues are linear data structures.

23.2 Fill in the blanks in each of the following statements:
a) A  class is used to define nodes that reference nodes of the same type to form

dynamic data structures, which can grow and shrink at execution time.
b) Operator  allocates memory dynamically; this operator returns a reference to

the allocated memory.
c) A  is a constrained version of a linked list, in which nodes can be inserted and

deleted only from the start of the list; this data structure returns node values in last-in,
first-out (LIFO) order.

d) A queue is a  data structure, because the first nodes inserted are the first nodes
removed.

e) A  is a constrained version of a linked list in which nodes can be inserted only
at the end of the list and deleted only from the start of the list.

f) A  is a nonlinear, two-dimensional data structure that contains nodes with
two or more links.

g) The nodes of a  tree contain two link members.
h) IEnumerator method  advances the enumerator to the next item.
i) The binary-tree-traversal algorithm that processes the root node, then all the nodes to its

left and finally all the nodes to its right, is called the  traversal.

ANSWERS TO SELF-REVIEW EXERCISES
23.1 a) False. A queue is a first-in, first-out (FIFO) data structure—the first item added is the first
item removed. b) False. In general, trees can have as many child nodes per node as is necessary. Only
binary trees are restricted to no more than two child nodes per node. c) True. d) True. e) False. The
class must also implement property Current. f) True. g) False. Linked-list nodes are logically con-
tiguous, but they need not be stored in physically contiguous memory space. h) False. Those are the
primary operations of a queue. The primary operations of a stack are push and pop. i) True.

23.2 a) self-referential.  b) New.  c) stack.  d) first-in, first-out (FIFO).  e) queue.  f) tree.  g) binary.
h) MoveNext.  i) preorder.

EXERCISES
23.3 Write a program that merges two ordered list objects of integers into a single ordered list ob-
ject of integers. Method Merge of class ListMerge should receive references to each of the list
objects to be merged and should return a reference to the merged list object.

23.4 Write a program that inputs a line of text and then uses a stack object to print the line re-
versed.



Chapter 23 Data Structures and Collections 1199

23.5 Write a program that uses a stack to determine whether a string is a palindrome (i.e., the string
is spelled identically backward and forward). The program should ignore spaces, case sensitivity and
punctuation (so, “A man, a plan, a canal, Panama” would be recognized as a palindrome).

23.6 Compilers use stacks to help in the process of evaluating expressions and generating ma-
chine-language code. In this and the next exercise, we investigate how compilers evaluate arithmetic
expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9, in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation, in
which the operator is written to the right of its two operands. The preceding infix expressions would
appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to postfix
notation, then evaluate the postfix version of the expression. Each of these algorithms requires only a
single left-to-right pass of the expression. Each algorithm uses a stack object in support of its opera-
tion, and, in each algorithm, the stack is used for a different purpose.

In this exercise, you will write a Visual Basic version of the infix-to-postfix conversion algo-
rithm. In the next exercise, you will write a Visual Basic version of the postfix expression-evaluation
algorithm. In a later exercise, you will discover that code you write in this exercise can help you
implement a complete working compiler.

Write class InfixToPostfixConverter to convert an ordinary infix arithmetic expres-
sion (assume a valid expression is entered) with single-digit integers, such as: 

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression (note that no parenthe-
ses are needed) is:

6 2 + 5 * 8 4 / -

The program should read the expression into StringBuilder infix. Use class CStackCom-
position (implemented in Fig. 23.14) to help create the postfix expression in StringBuilder
postfix. The algorithm for creating a postfix expression is as follows:

a) Push a left parenthesis '(' onto the stack.
b) Append a right parenthesis ')' to the end of infix.
c) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, append it to postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator:

Pop operators (if there are any) at the top of the stack while they have equal
or higher precedence than the current operator, and append the popped 
operators to postfix.

Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis:

Pop operators from the top of the stack and append them to postfix until
a left parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.

The arithmetic operations allowed in an expression are:
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus



1200 Data Structures and Collections Chapter 23

Some of the methods you might want to provide in your program are as follows:
a) Method ConvertToPostfix, which converts the infix expression to postfix notation.
b) Method IsOperator, which determines whether a character is an operator.
c) Method Precedence, which determines whether the precedence of operator1

(from the infix expression) is less than, equal to or greater than the precedence of
operator2 (from the stack). The method returns True if operator1 has lower pre-
cedence than operator2. Otherwise, False is returned.

d) Add this method to the class definition for class StackComposition.

23.7 Write class PostfixEvaluator, which evaluates a postfix expression (assume it is valid)
such as: 

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a String-
Builder. Using class StackComposition from Exercise 23.6, the program should scan the
expression and evaluate it. The algorithm is as follows:

a) Append a right parenthesis (')') to the end of the postfix expression. When the right-
parenthesis character is encountered, no further processing is necessary.

b) When the right-parenthesis character has not been encountered, read the expression from
left to right.

If the current character is a digit, do the following:
Push its integer value on the stack (the integer value of a digit character is its 
value in the computer’s character set minus the value of '0' in Unicode).

Otherwise, if the current character is an operator:
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

c) When the right parenthesis is encountered in the expression, pop the top value of the
stack. This is the result of the postfix expression.

[Note: In b) above (based on the sample expression at the beginning of this exercise), if the operator
is '/', the top of the stack is 2 and the next element in the stack is 8, then pop 2 into x, pop 8 into
y, evaluate 8 / 2 and push the result, 4, back onto the stack. This note also applies to operator '-'.]
The arithmetic operations allowed in an expression are:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

You might want to provide the following methods:
a) Method EvaluatePostfixExpression, which evaluates the postfix expression.
b) Method Calculate, which evaluates the expression op1 operator op2.

23.8 (Binary Tree Delete) In this exercise, we discuss deleting items from binary search trees.
The deletion algorithm is not as straightforward as the insertion algorithm. There are three cases that
are encountered in the deleting of an item—the item is contained in a leaf node (i.e., it has no chil-
dren), the item is contained in a node that has one child or the item is contained in a node that has
two children. 

If the item to be deleted is contained in a leaf node, the node is deleted, and the reference in the
parent node is set to Nothing.



Chapter 23 Data Structures and Collections 1201

If the item to be deleted is contained in a node with one child, the reference in the parent node
is set to reference the child node, and the node containing the data item is deleted. This causes the
child node to take the place of the deleted node in the tree. 

The last case is the most difficult. When a node with two children is deleted, another node in the
tree must take its place. However, the reference in the parent node cannot simply be assigned to ref-
erence one of the children of the node to be deleted. In most cases, the resulting binary search tree
would not adhere to the following characteristic of binary search trees (with no duplicate values):
The values in any left subtree are less than the value in the parent node, and the values in any right
subtree are greater than the value in the parent node. 

Which node is used as a replacement node to maintain this characteristic? Either the node con-
taining the largest value in the tree less than the value in the node being deleted, or the node contain-
ing the smallest value in the tree greater than the value in the node being deleted. Let us consider the
node with the smaller value. In a binary search tree, the largest value less than a parent’s value is
located in the left subtree of the parent node and is guaranteed to be contained in the rightmost node
of that subtree. This node is located by walking down the left subtree to the right until the reference
to the right child of the current node is Nothing. We are now referencing the replacement node,
which is either a leaf node or a node with one child to its left. If the replacement node is a leaf node,
the steps to perform the deletion are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to reference the replacement node.
c) Set the reference in the parent of the replacement node to Nothing.
d) Set the reference to the right subtree in the replacement node to reference the right subtree

of the node to be deleted.
e) Set the reference to the left subtree in the replacement node to reference the left subtree

of the node to be deleted.
The deletion steps for a replacement node with a left child are similar to those for a replacement

node with no children, but the algorithm also must move the child into the replacement node’s posi-
tion in the tree. If the replacement node is a node with a left child, the steps to perform the deletion
are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to reference the replacement

node.
c) Set the reference in the parent of the replacement node reference to the left child of the

replacement node.
d) Set the reference to the right subtree in the replacement node reference to the right subtree

of the node to be deleted.
e) Set the reference to the left subtree in the replacement node to reference the left subtree

of the node to be deleted.
Write method DeleteNode, which takes as its argument the value to be deleted. Method
DeleteNode should locate in the tree the node containing the value to be deleted and use the algo-
rithms discussed here to delete the node. If the value is not found in the tree, the method should print
a message that indicates whether the value is deleted. Modify the program of Fig. 23.20 to use this
method. After deleting an item, call the methods InorderTraversal, PreorderTraversal
and PostorderTraversal to confirm that the delete operation was performed correctly.

23.9 (Level-Order Binary Tree Traversal) The program of Fig. 23.20 illustrated three recursive
methods of traversing a binary tree—inorder, preorder and postorder traversals. This exercise pre-
sents the level-order traversal of a binary tree, in which the node values are printed level by level,
starting at the root-node level. The nodes on each level are printed from left to right. The level-order
traversal is not a recursive algorithm. It uses a queue object to control the output of the nodes. The
algorithm is as follows:



1202 Data Structures and Collections Chapter 23

a) Insert the root node in the queue.
b) While there are nodes left in the queue, do the following:

Get the next node in the queue.
Print the node’s value.
If the reference to the left child of the node is not Nothing:

Insert the left child node in the queue.
If the reference to the right child of the node is not Nothing:

Insert the right child node in the queue.

Write method LevelOrder to perform a level-order traversal of a binary tree object. Modify
the program of Fig. 23.20 to use this method. [Note: You also will need to use the queue-processing
methods of Fig. 23.16 in this program.]



24
Accessibility

Objectives
• To introduce the World Wide Web Consortium’s Web 

Content Accessibility Guidelines 1.0 (WCAG 1.0).
• To understand how to use the alt attribute of the 

HTML <img> tag to describe images to people with 
visual impairments, mobile-Web-device users and 
others unable to view the image.

• To understand how to make tables more accessible to 
page readers.

• To understand how to verify that XHTML tags are 
used properly and to ensure that Web pages can be 
viewed on any type of display or reader.

• To understand how VoiceXML™ and CallXML™ are 
changing the way in which people with disabilities 
access information on the Web.

• To introduce the various accessibility aids offered in 
Windows 2000.

’Tis the good reader that makes the good book...
Ralph Waldo Emerson

I once was lost, but now am found,
Was blind, but now I see.
John Newton



1204 Accessibility Chapter 24

24.1 Introduction
Throughout this book, we discuss the creation of Visual Basic applications. Later chap-
ters also introduce the development of Web-based content using Web Forms, ASP .NET,
XHTML and XML. In this chapter, we explore the topic of accessibility, which refers to
the level of usability that an application or Web site provides to people with various dis-
abilities. Disabilities that might affect an individual’s computer or Internet usage are
common; they include visual impairments, hearing impairments, other physical injuries

Outline

24.1 Introduction
24.2 Regulations and Resources
24.3 Web Accessibility Initiative
24.4 Providing Alternatives for Images
24.5 Maximizing Readability by Focusing on Structure
24.6 Accessibility in Visual Studio .NET

24.6.1 Enlarging Toolbar Icons
24.6.2 Enlarging the Text
24.6.3 Modifying the Toolbox
24.6.4 Modifying the Keyboard
24.6.5 Rearranging Windows

24.7 Accessibility in Visual Basic
24.8 Accessibility in XHTML Tables
24.9 Accessibility in XHTML Frames
24.10 Accessibility in XML
24.11 Using Voice Synthesis and Recognition with VoiceXML™
24.12 CallXML™
24.13 JAWS® for Windows
24.14 Other Accessibility Tools
24.15 Accessibility in Microsoft® Windows® 2000

24.15.1 Tools for People with Visual Impairments
24.15.2 Tools for People with Hearing Impairments
24.15.3 Tools for Users Who Have Difficulty Using the Keyboard
24.15.4 Microsoft Narrator
24.15.5 Microsoft On-Screen Keyboard
24.15.6 Accessibility Features in Microsoft Internet Explorer 5.5

24.16 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises 



Chapter 24 Accessibility 1205

(such as the inability to use a keyboard) and learning disabilities. In today’s computing
environment, such impediments prevent many users from taking full advantage of appli-
cations and Web content. 

The design of applications and sites to meet the needs of individuals with disabilities
should be a priority for all software companies and e-businesses. People affected by dis-
abilities represent a significant portion of the population, and legal ramifications could exist
for companies that discriminate by failing to provide adequate and universal access to their
resources. In this chapter, we explore the World Wide Web Consortium’s Web Accessi-
bility Initiative and its guidelines, and we review various laws regarding the availability of
computing and Internet resources to people with disabilities. We also highlight companies
that have developed systems, products and services that meet the needs of this demo-
graphic. As students use Visual Basic and its related technologies to design applications
and Web sites, they should keep in mind the accessibility requirements and recommenda-
tions that we discuss in this chapter.

24.2 Regulations and Resources
Over the past several years, the United States has taken legislative steps to ensure that peo-
ple with disabilities are given the tools they need to use computers and access the Web. A
wide variety of legislation, including the Americans With Disabilities Act (ADA) of 1990,
governs the provision of computer and Web accessibility (Fig. 24.1). These laws have in-
spired significant legal action. For example, according to the ADA, companies are required
to offer equal access to an individual with visual problems. The National Federation for the
Blind (NFB) cited this law in a 1999 suit against AOL, responding to the company’s failure
to make its services available to individuals with disabilities.

There are 54 million Americans with disabilities, and these individuals represent an
estimated $1 trillion in annual purchasing power. WeMedia.com™ (Fig. 24.2) is a Web
site that provides news, information, products and services to the millions of people with
disabilities and to their families, friends and caregivers. We Media also provides online
educational opportunities for people with disabilities.

Act Purpose

Americans with Disabilities Act The ADA prohibits discrimination on the basis of disability in 
employment, state and local government, public accommoda-
tions, commercial facilities, transportation and telecommuni-
cations.

Telecommunications Act of 1996 The Telecommunications Act of 1996 contains two amend-
ments to Section 255 and Section 251(a)(2) of the Communi-
cations Act of 1934. These amendments require that 
communication devices, such as cell phones, telephones and 
pagers, be accessible to individuals with disabilities.

Fig. 24.1 Acts designed to ensure Internet access for people with disabilities (part 
1 of 2).



1206 Accessibility Chapter 24

Individuals with Disabilities 
Education Act of 1997

The Individuals with Disabilities Education Act stipulates that 
education materials in schools must be made accessible to chil-
dren with disabilities.

Rehabilitation Act Section 504 of the Rehabilitation Act states that college-spon-
sored activities receiving federal funding cannot discriminate 
against individuals with disabilities. Section 508 mandates that 
all government institutions receiving federal funding must 
design their Web sites so that they are accessible to individuals 
with disabilities. Businesses that sell services to the govern-
ment also must abide by this act.

Fig. 24.2 We Media’s home page. Wemedia.com home page (Courtesy of We 
Media Inc.)

Act Purpose

Fig. 24.1 Acts designed to ensure Internet access for people with disabilities (part 
2 of 2).



Chapter 24 Accessibility 1207

The Internet enables individuals with disabilities to work in a vast array of new
fields. This is partly because the Internet provides a medium through which disabled
people can telecommute to jobs and interact easily with others without traveling. Such
technologies as voice activation, visual enhancers and auditory aids create additional
employment opportunities. For example, people with visual impairments can use com-
puter monitors with enlarged text, and people with physical impairments can use head
pointers with on-screen keyboards.

Federal regulations that are similar to the disability ramp mandate will be applied to
the Internet to accommodate the needs of people with hearing, vision, speech and other
impairments. In the following sections, we explore various products and services that pro-
vide Internet access to people with disabilities.

24.3 Web Accessibility Initiative
Currently, the majority of Web sites are considered to be either partially or totally inac-
cessible to people with visual, learning or mobility impairments. Total accessibility is
difficult to achieve, because of the variety of disabilities that must be accommodated and
because of problems resulting from language barriers and hardware and software incon-
sistencies. However, a high level of accessibility is attainable. As more people with dis-
abilities use the Internet, it is imperative that Web-site designers increase the
accessibility of their sites. Although recent legislation focuses on accessibility, standards
organizations also see the need for industry recommendations. In an attempt to address
issues of accessibility, the World Wide Web Consortium (W3C) launched the Web Ac-
cessibility Initiative (WAI™) in April 1997. To learn more about the WAI and to read its
mission statement, visit www.w3.org/WAI.

This chapter explains various techniques used to develop accessible Web sites. In
1999, the WAI published the Web Content Accessibility Guidelines (WCAG) 1.0 to help
businesses determine whether their Web sites are universally accessible. The WCAG 1.0
(available at www.w3.org/TR/WCAG10) uses checkpoints to list specific accessibility
requirements. Each checkpoint also is accompanied by a corresponding priority rating that
indicates its importance. Priority-one checkpoints are goals that must be met to ensure
accessibility; we focus on these points in this chapter. Priority-two checkpoints, though not
essential, are highly recommended. If these checkpoints are not satisfied, people with cer-
tain disabilities will experience difficulty accessing Web sites. Priority-three checkpoints
slightly improve accessibility.

At the time of publication, the WAI was working on WCAG 2.0; a working draft of this
publication can be found at www.w3.org/TR/WCAG20. A single checkpoint in the
WCAG 2.0 Working Draft might encompass several checkpoints from WCAG 1.0. Once
WCAG 2.0 has been reviewed and published by W3C, its checkpoints will supersede those
of WCAG 1.0. Furthermore, the new version can be applied to a wider range of markup
languages (e.g., XML and WML) and content types than can its predecessor. 

The WAI also presents a supplemental checklist of quick tips, which reinforce ten
important points relating to accessible Web-site design. More information on the WAI
Quick Tips can be found at www.w3.org/WAI/References/Quicktips.



1208 Accessibility Chapter 24

24.4 Providing Alternatives for Images
One important WAI requirement specifies that every image on a Web page should be ac-
companied by a textual description that clearly defines the purpose of the image. To accom-
plish this task, Web developers can use the alt attribute of the img and input tags to
include a textual equivalent for each item.

Web developers who do not use the alt attribute to provide text equivalents increase
the difficulties that people with visual impairments experience in navigating the Web. Spe-
cialized user agents (or accessibility aids), such as screen readers (programs that allow
users to hear all text and text descriptions displayed on their screens) and braille displays
(devices that receive data from screen-reading software and then output the data as braille),
enable people with visual impairments to access text-based information that normally is
displayed on the screen. A user agent visually interprets Web-page source code and trans-
lates it into information that is accessible to people with impairments. Web browsers, such
as Microsoft Internet Explorer and Netscape Communicator, and the screen readers men-
tioned throughout this chapter are examples of user agents.

Similarly, Web pages that do not provide text equivalents for video and audio clips are
difficult for people with visual and hearing impairments to access. Screen readers cannot
interpret images, movies and most other non-XHTML content from these Web pages.
However, by providing multimedia-based information in a variety of ways (i.e., using the
alt attribute or providing in-line descriptions of images), Web designers can help maxi-
mize the accessibility of their sites’ content.

Web designers should provide useful and appropriate text equivalents in the alt
attribute for use by nonvisual user agents. For example, if the alt attribute describes a
sales growth chart, it should provide a brief summary of the data, but should not describe
the data in the chart. Instead, a complete description of the chart’s data should be included
in the longdesc (long description) attribute, which is intended to augment the alt
attribute’s description. The longdesc attribute contains a link to a Web page describing
the image or multimedia content. Currently, most Web browsers do not support the long-
desc attribute. An alternative for the longdesc attribute is D-link, which provides
descriptive text about graphs and charts. More information on D-links can be obtained at
the CORDA Technologies Web site (www.corda.com).

The use of a screen reader to facilitate Web–site navigation can be time-consuming and
frustrating, for screen readers cannot interpret pictures and other graphical content. The
inclusion of a link at the top of each Web page that provides direct access to the page’s con-
tent could allow disabled users to bypass long lists of navigation links or other irrelevant or
inaccessible content. This jump can save time and eliminate frustration for individuals with
visual impairments.

Emacspeak (www.cs.cornell.edu/home/raman/emacspeak/emacs-
peak.html) is a screen interface that improves the quality of Internet access for individ-
uals with visual disabilities by translating text to voice data. The open-source product also
implements auditory icons that play various sounds. Emacspeak can be customized with
Linux operating systems and provides support for the IBM ViaVoice speech engine. 

In March 2001, We Media introduced the WeMedia Browser, which allows people
with vision impairments and cognitive disabilities (such as dyslexia) to use the Internet
more conveniently. The WeMedia Browser enhances traditional browser capabilities by
providing oversized buttons and keystroke commands that assist in navigation. The



Chapter 24 Accessibility 1209

browser “reads” text that the user selects, allowing the user to control the speed and volume
at which the browser reads the contents of the Web page. The WeMedia Browser free
download is available at www.wemedia.com.

IBM Home Page Reader (HPR) is another browser that “reads” text selected by the
user. The HPR uses IBM ViaVoice technology to synthesize an audible voice. A trial ver-
sion of HPR is available at www-3.ibm.com/able/hpr.html.

24.5 Maximizing Readability by Focusing on Structure
Many Web sites use XHTML tags for aesthetic purposes, ignoring the tags’ intended func-
tions. For example, the <h1> heading tag often is used erroneously to make text large and
bold rather than to indicate a major section head for content. This practice might create a
desired visual effect, but it also causes problems for screen readers. When the screen–reader
software encounters the <h1> tag, it might verbally inform the user that a new section has
been reached. If this is not in fact the case, the <h1> tag might confuse users. Therefore,
developers should use h1 only in accordance with its XHTML specifications (e.g., to mark-
up a heading that introduces an important section of a document). Instead of using h1 to
make text large and bold, developers can use CSS (Cascading Style Sheets) or XSL (eX-
tensible Stylesheet Language) to format and style the text. For further examples of this na-
ture, refer to the WCAG 1.0 Web site at www.w3.org/TR/WCAG10. [Note: The
<strong> tag also can be used to make text bold; however, screen readers emphasize bold
text, which affects the inflection of what is spoken.]

Another accessibility issue is readability. When creating a Web page intended for the
general public, it is important to consider the reading level (i.e., level of difficulty to read
and understand) at which content is written. Web-site designers can make their sites easier
to read by using shorter words. Furthermore, slang terms and other nontraditional language
could be problematic for readers from other countries, and developers should limit the use
of such words.

WCAG 1.0 suggests using a paragraph’s first sentence to convey its subject. When a
Web site states the point of a paragraph in its first sentence, it is easier both to find crucial
information and to bypass unwanted material.

The Gunning Fog Index, a formula that produces a readability grade when applied to
a text sample, can evaluate a Web site’s readability. To obtain more information about the
Gunning Fog Index, visit www.trainingpost.org/3-2-inst.htm.

24.6 Accessibility in Visual Studio .NET
Visual Studio .NET provides guidelines for the design of accessible software within its pro-
gramming environment. For instance, one guideline recommends reserving the use of color
for the enhancement or emphasis of information, instead of for aesthetic purposes. A sec-
ond guideline recommends providing information about objects (e.g., desktop icons and
open windows) to the accessibility aids (specialized software that renders applications to
individuals with disabilities). Such information might include the name, location and size
of a window. A third guideline recommends designing user interfaces so that they can ac-
commodate user preferences. For example, people with visual disabilities should be able to
modify the font size of a user interface. A fourth guideline recommends allowing users to
adjust the time setting for applications that have time constraints. For example, users with



1210 Accessibility Chapter 24

mobility or speech disabilities might experience difficulty when using applications that re-
quire users to enter input within a predetermined period of time (such as 10 seconds). How-
ever, if such applications provide adjustable time settings, users can modify the settings to
suit their needs. 

In addition to suggesting guidelines that help developers create accessible applications,
Visual Studio .NET also offers features that enable disabled individuals to use the develop-
ment environment itself. For example, users can enlarge icons and text, customize the toolbox
and keyboard and rearrange windows. The next subsections illustrate these capabilities.

24.6.1 Enlarging Toolbar Icons

To enlarge icons in Visual Studio .NET, select Customize from the Tools menu. In the
Customize window’s Options tab, select the Large Icons check box (Fig. 24.3).
Then, select Close. Figure 24.4 depicts the enlarged icons on the Visual Studio devel-
opment window.

Fig. 24.3 Enlarging icons using the Customize feature.

Fig. 24.4 Enlarged icons in the development window.



Chapter 24 Accessibility 1211

24.6.2 Enlarging the Text
Visual Studio uses the default operating-system font settings when displaying text. How-
ever, some individuals cannot read these default font settings, so the applications are inac-
cessible for them. To remedy this, Visual Studio allows users to modify the font size. Select
Options from the Tools menu. In the Options window, open the Environment direc-
tory and choose Fonts and Colors. In the Show settings for drop-down box, select
Text Editor. In the Font drop-down box, select a different style of font, and, in the Size
drop-down box, select a different font size. Figure 24.5 depicts the Text Editor before we
modified the font size, Fig. 24.6 shows the Options window with new font settings and
Fig. 24.7 displays the Text Editor after the changes have been applied.

Fig. 24.5 Text Editor before modifying the font size.

Fig. 24.6 Enlarging text in the Options window.



1212 Accessibility Chapter 24

24.6.3 Modifying the Toolbox
The Toolbox feature of Visual Studio contains numerous design elements that facilitate
the creation of Web applications; however, some developers might use only a few of these
design elements. To accommodate the needs of individual developers, Visual Studio allows
programmers to customize the toolbox by creating new tabs and then inserting design ele-
ments into the tabs. This eliminates the need for users with disabilities to navigate among
multiple tabs or scroll through long lists in search of design elements. To create a new tab,
right-click any existing tab and select Add Tab from the context menu. In the text box,
type an identifier for the tab (such as “Frequently Used”) and click Enter. By default, the
Pointer element is placed in all tabs (Fig. 24.8). The Pointer element simply allows the
cursor to function normally.

To insert elements into the newly created tab, select Customize Toolbox from the
Tools menu. In the .NET Framework Components tab, select the elements to include
in the new tab, and click OK. The selected elements will now appear in the tab.

Fig. 24.7 Text Editor after the font size is modified.



Chapter 24 Accessibility 1213

24.6.4 Modifying the Keyboard

Another accessibility feature in Visual Studio .NET allows individuals with disabilities to
customize their keyboards by creating shortcut keys (i.e., combinations of keyboard keys
that, when pressed together, perform frequent tasks; for example Ctrl + V causes text to be
pasted from the clipboard). To create a shortcut key, begin by selecting Options from the
Tools menu. In the Options window, select the Keyboard item from the Environment
directory. From the Keyboard mapping scheme drop-down list, select a scheme, and
click the Save As button. Then, assign a name to the scheme in the Save Scheme dialog
box, and click OK. Enter the task of the shortcut key in the Show commands contain-
ing text box. For example, to create a shortcut key for the paste function, enter Paste in
the text box—or, from the selection list directly below the text box, select the proper task.
Then, in the Use new shortcut drop-down list, select the applications that will use the
shortcut key. If the shortcut key will be used in all applications, select Global. Finally, in
the Press shortcut key(s) text box, assign a shortcut key to the task in the form non-text
key + text key. Valid non-text keys include Ctrl, Shift and Alt; valid text keys include A–Z,
inclusive. [Note: To enter a non-text key, select the key itself—do not type the word Ctrl,
Shift or Alt. It is possible to include more than one non-text key as part of a shortcut key.
Do not enter the + symbol.] Thus, a valid shortcut key might be Ctrl+Alt+D. After assign-
ing a shortcut key, select Assign and then OK. Figure 24.9 illustrates the process of cre-
ating a shortcut key for the NewBreakpoint function. The shortcut key (Ctrl+Alt+D) is
valid only in the Text Editor.

Fig. 24.8 Adding tabs to the Toolbox.



1214 Accessibility Chapter 24

24.6.5 Rearranging Windows
Some screen readers have difficulty interpreting user interfaces that include multiple
tabs, because most screen readers can read information on only one screen. To accom-
modate such screen readers, Visual Studio allows developers to customize their user in-
terfaces so that only the console window appears. To remove tabs, select Options from
the Tools menu. Then, in the Options window, select the General item from the En-
vironment directory. In the Settings section, select the MDI environment radio but-
ton, and click OK. Figure 24.10 depicts the Options window, and Fig. 24.11 illustrates
a console window with and without tabs.

Fig. 24.9 Shortcut key creation.

Fig. 24.10 Removing tabs from the Visual Studio environment.

operation selection mapping scheme
application to 
apply shortcuts key designation



Chapter 24 Accessibility 1215

24.7 Accessibility in Visual Basic
We now discuss options that Visual Basic programmers have for designing applications to be
more accessible to people with disabilities. It is important that applications be geared toward
not only the average user—with some modifications, it is possible to reach a variety of users
with disabilities. Some general guidelines for designing accessible applications follow.

1. Use larger-sized fonts—this aids people with visual impairments see the text.

2. Create flexible applications that provide keyboard shortcuts for all features within
the application—this allows users to use the application without a mouse.

3. Allow information to be conveyed to the user both in a visual and in an audio man-
ner.

4. Use graphics and images whenever helpful—visual cues may provide help to peo-
ple who have trouble reading text on the screen.

5. Never signal information through sound only—someone accessing the informa-
tion might not have speakers or might be hearing impaired.1

Fig. 24.11 Console windows with tabs and without tabs.

Tab

No Tabs



1216 Accessibility Chapter 24

6. Test the application without using either a mouse or a keyboard. Accessing an ap-
plication’s functionality should not be limited to one input device.

For more information on these and other design guidelines for accessible applications,
please refer to the Visual Studio .NET documentation under the overview subsection of
the index topic accessibility. This section provides links to discussions of how to design
more accessible Windows and ASP.NET applications.

One specific way programmers can make their applications more accessible is to use
a text-to-speech control in their programs. A text-to-speech control can convert text into
speech—a computerized voice speaks the words provided as text to the control. This helps
people who cannot see the screen. 

Another way to make applications more accessible is to use tab stops. Tab stops occur
when the user presses the Tab key—this causes the focus to transfer to another control. The
order in which the controls gain focus is called the tab order. This order is determined by
the TabIndex value of the controls—controls gain focus in ascending order. Each control
also has a TabStop property—if it is True, the control is included in the tab order, oth-
erwise, it is not. By using the TabIndex and TabStop properties, it is easier to create
more navigable applications. If these properties are set incorrectly, the logical ordering of
the application may not be maintained. Consider an application that has TextBoxes for
inputting the first name, the last name and address of a user. The logical tab order would
take the user from the TextBox to input the first name, to the one to input the last name
and the address.

A third and important way for programmers to increase accessibility of their applications
is to use the classes provided by .NET. Class Control, for example, has many properties
designed for conveying information to accessibility applications. These applications can then,
in turn, find the required information stored as properties. Figure 24.12 lists some properties
of class Control that are designed to provide information to accessibility applications.

1. "Basic Principles of Accessible Design," .NET Framework Developer’s Guide, Visual Studio
.NET Online Help

Property Purpose

AccessibleDescription Describes the control to an accessibility client application. For 
example, a CheckBox that says "New User" would not need 
more of a description, but a CheckBox with an image of a cat 
would have its AccessibleDescription property set to 
something like "A CheckBox with an image of a cat
on it".

AccessibleName Contains a short name or identifier for the control.

AccessibleRole Member of the AccessibleRole enumeration. Represents 
the role of this control in the application—this may help the 
accessibility-client application determine what actions it 
should take.

Fig. 24.12 Properties of class Control related to accessibility (part 1 of 2).



Chapter 24 Accessibility 1217

The application in Fig. 24.13 uses the text-to-speech control, tab stops and accessi-
bility-related properties. It consists of a Form with three Labels, three TextBoxes and
a Button to submit the information. Submitting the information simply terminates the
application—the application is intended only to show the user of the text-to-speech control.

The accessibility features in this program work as follows: When the mouse is over a
Label, the text-to-speech control prompts the user to enter the appropriate information in the
TextBox to the right. If the mouse is over a TextBox, the contents of the TextBox are
spoken. Lastly, if the mouse is over the Button, the user is told that the button should be
clicked to submit the information. The tab order is the following: the TextBoxes where the
user inputs the name, phone number and password, then the Button. The Labels and text-
to-speech control are not included in the tab order because the user cannot interact with them
and including them would serve no purpose. The accessibility properties are set so that acces-
sibility-client applications will get the appropriate information about the controls. Please note
that only the relevant code generated by Visual Studio .NET is included in Fig. 24.13. To use
the text-to-speech control, first add it to the Toolbox. To do so, select Customize Toolbox
from the Tools menu. The Customize Toolbox dialog pops up—check the box next to the
TextToSpeech Class option. Click OK to dismiss the dialog box. The VText control is
now in the ToolBox and can be dragged onto a form like any other control. 

IsAccessible Contains a Boolean value specifying whether this control is 
visible to accessibility-client applications.

1 ' Fig. 24.13: TextToSpeech.vb
2 ' Voice user information on selected Label and TextBox 
3 ' components.
4
5 Imports System.Windows.Forms
6
7 ' helps users navigate a form with aid of audio cues
8 Public Class FrmTextToSpeech
9 Inherits System.Windows.Forms.Form

10
11    ' name, phone number and password labels
12 Friend WithEvents lblName As Label
13 Friend WithEvents lblPhoneNumber As Label
14 Friend WithEvents lblPassword As Label
15
16    ' name, phone number and password textboxes
17 Friend WithEvents txtName As TextBox
18 Friend WithEvents txtPhoneNumber As TextBox
19 Friend WithEvents txtPassword As TextBox
20

Fig. 24.13 Application with accessibility features (part 1 of 4).

Property Purpose

Fig. 24.12 Properties of class Control related to accessibility (part 2 of 2).



1218 Accessibility Chapter 24

21    ' TextToSpeech engine
22 Friend WithEvents speaker As AxHTTSLib.AxTextToSpeech
23
24    ' submit button
25 Friend WithEvents cmdSubmit As System.Windows.Forms.Button
26
27    ' Visual Studio .NET generated code
28
29    ' inform user label name
30 Private Sub lblName_MouseHover(ByVal sender As Object, _
31       ByVal e As System.EventArgs) Handles lblName.MouseHover
32
33       ' voice label name
34       VoiceLabelName(sender)
35 End Sub ' lblName_MouseHover
36
37    ' inform user label name
38 Private Sub lblPhoneNumber_MouseHover( _
39       ByVal sender As Object, ByVal e As System.EventArgs) _
40       Handles lblPhoneNumber.MouseHover
41
42       ' voice label name
43       VoiceLabelName(sender)
44 End Sub ' lblPhoneNumber_MouseHover
45
46    ' inform user label name
47 Private Sub lblPassword_MouseHover( _
48       ByVal sender As Object, ByVal e As System.EventArgs) _
49       Handles lblPassword.MouseHover
50
51       ' voice label name
52       VoiceLabelName(sender)
53 End Sub ' lblPassword_MouseHover
54
55    ' inform user value input in textbox
56 Private Sub txtName_MouseHover( _
57       ByVal sender As Object, ByVal e As System.EventArgs) _
58       Handles txtName.MouseHover
59
60       ' speak textbox state
61       VoiceTextBoxValue(sender, "Name TextBox")
62 End Sub ' txtName_MouseHover
63
64    ' inform user value input in textbox
65 Private Sub txtPhoneNumber_MouseHover( _
66       ByVal sender As Object, ByVal e As System.EventArgs) _
67       Handles txtPhoneNumber.MouseHover
68
69       ' speak textbox state
70       VoiceTextBoxValue(sender, "Phone Number TextBox")
71 End Sub ' txtPhoneNumber_MouseHover
72

Fig. 24.13 Application with accessibility features (part 2 of 4).



Chapter 24 Accessibility 1219

73    ' inform user value input in textbox
74 Private Sub txtPassword_MouseHover( _
75       ByVal sender As Object, ByVal e As System.EventArgs) _
76       Handles txtPassword.MouseHover
77
78       ' speak textbox state
79       VoiceTextBoxValue(sender, "Password TextBox")
80 End Sub ' txtPassword_MouseHover
81
82    ' inform user to purpose of submit button
83 Private Sub cmdSubmit_MouseHover( _
84       ByVal sender As Object, ByVal e As System.EventArgs) _
85       Handles cmdSubmit.MouseHover
86
87       ' tell user to click button to submit information
88       speaker.Speak("Click on this button to submit your " & _
89          "information")
90 End Sub ' cmdSubmit_MouseHover
91
92    ' thank user for information submition
93 Private Sub cmdSubmit_Click(ByVal sender As Object, _
94       ByVal e As System.EventArgs) Handles cmdSubmit.Click
95
96       speaker.Speak("Thank you, your information has been " & _
97          "submitted.")
98
99       Application.Exit()
100 End Sub ' cmdSubmit_Click
101
102    ' voices textboxes' states
103 Private Sub VoiceTextBoxValue(ByVal sender As TextBox, _
104       ByVal sourceFieldName As String)
105       Dim inputValue As String
106
107       ' if textbox empty, voice "Nothing"
108       If sender.Text = "" Then
109          inputValue = "Nothing"
110       Else
111          inputValue = sender.Text
112       End If
113
114       ' voice textbox state
115       speaker.Speak("You have entered " & inputValue & _
116          " in the " & sourceFieldName)
117 End Sub ' VoiceTextBoxValue
118
119    ' voice label states
120 Private Sub VoiceLabelName(ByVal sender As Label)
121
122       ' if mouse over Label, tell user to enter information
123       speaker.Speak("Please enter your " & sender.Text & _
124          " in the textbox to the right")
125 End Sub ' VoiceLabelName

Fig. 24.13 Application with accessibility features (part 3 of 4).



1220 Accessibility Chapter 24

The application has three Labels, to prompt for the user’s name, phone number and
password. There are three TextBoxes to accept the user’s input and a Button for the user
to click when done. Line 22 declares a text-to-speech control named speaker. We want
the user to hear audio descriptions of controls when the mouse is over them. Lines 30–53
define the MouseHover event handlers for the Labels, and lines 56–80 define the
MouseHover event handlers for the TextBoxes.

Event handlers lblName_MouseHover, lblPhoneNumber_MouseHover, and
lblPassword_MouseHover call method VoiceLabelName (lines 120–125), which
generates the appropriate audio for each Label. Method VoiceLabelName uses the
Label name to construct a String that describes that the user should enter the corre-
sponding information in the appropriate TextBox (lines 123–124). Lines 123–124 pass
this String to speaker’s method Speak. Method Speak converts the String argu-
ment to speech. As is indicated in the output, the image is animated while the String
argument is being spoken.

A similar process is performed to determine when the mouse hovers over a TextBox.
The event handlers that handle these events are txtName_MouseHover,
txtPhoneNumber_MouseHover and txtPassword_MouseHover in lines 56–80;
they call method VoiceTextBoxValue (lines 103–117) to generate each TextBox’s
appropriate audio. Method VoiceTextBoxValue constructs a String that describes the
contents of a given TextBox. Lines 108–112 ensure that, if a TextBox is empty, the text
that will be converted to speech will indicate that the value in the TextBox is pronounced as
"Nothing" (as opposed to ""). If the value of TextBox is not empty, the value input into
the TextBox by the user will appear in the String that will be converted to speech. Lines
115–116 call speaker’s method Speak to convert the constructed String to speech. 

126
127    ' set each control's IsAccessible property to true
128 Private Sub FrmTextToSpeech_Load(ByVal sender As System.Object, _
129       ByVal e As System.EventArgs) Handles MyBase.Load
130
131       Dim current As Control
132
133       For Each current In Me.Controls
134          current.IsAccessible = True
135       Next
136
137 End Sub ' FrmTextToSpeech_Load
138
139 End Class ' FrmTextToSpeech

Fig. 24.13 Application with accessibility features (part 4 of 4).



Chapter 24 Accessibility 1221

Method cmdSubmit_Click (lines 93–100) executes when the user clicks
Button Submit. Method cmdSubmit_Click calls speaker’s method Speak,
providing as a String argument a thank-you message. Method cmdSubmit_Click
then exits the application.

In the Properties window, we set the Text property of cmdSubmit to
"&Submit". This is an example of providing keyboard access to the functionality of the
application. Recall that in Chapter 13 (Graphical User Interface Concepts: Part 2), we
assigned shortcut keys by placing a "&" in front of the letter to be the shortcut key. Here,
we do the same for cmdSubmit—pressing Alt+S on the keyboard is equivalent to
clicking Button Submit.

The tab order in this application is established through the setting of the TabIndex
and TabStop properties. The TabIndex properties of the controls are assigned
through the Properties window. The TextBoxes are assigned tab indices 1–3, in order
of their appearance (vertically) on the form. The Button has the tab index 4, and the
rest of the controls have the tab indices 5–8. We want the tab order to include only the
TextBoxes and the Button. The default setting for the TabStop property of Labels
is False—thus, we do not need to change it; it will not be included in the tab order. The
TabStop property of TextBoxes and Buttons is True—we do not need to change
it in those controls, either. The TabStop property of speaker, however, is True by
default. We set it to False, indicating we do not want it included in the tab order. In
general, those controls that the user cannot directly interact with should have their Tab-
Stop property set to False.

The last accessibility feature of this application involves setting the accessibility prop-
erties of the controls to allow client-accessibility applications to access and properly pro-
cess the controls. We set the AccessibleDescription property of all the controls
(including the Form) through the Properties window. We do the same for the Acces-
sibleName properties of all the controls (including the Form). The IsAccessible
property is not visible in the Properties window during design time, so we must write
code to set it to True. Lines 133–135 loop through each of the controls on the Form and
set each of their IsAccessible properties to True. The Form and all its controls will
now be visible to client-accessibility applications.

24.8 Accessibility in XHTML Tables
Complex Web pages often contain tables that format content and present data. However,
many screen readers are incapable of translating tables correctly unless developers design
the tables with screen-reader requirements in mind. For example, the CAST eReader, a
screen reader developed by the Center for Applied Special Technology
(www.cast.org), starts at the top-left-hand cell and reads columns from left to right,
then top to bottom. This technique of reading data from a table is done in a linearized man-
ner. Figure 24.14 creates a simple table listing the cost of various fruits; later, we provide
this table to the CAST eReader to demonstrate its linear reading of the table. The CAST
eReader reads the table in Fig. 24.14 as follows:

Price of Fruit Fruit Price Apple $0.25 Orange $0.50 Banana 
$1.00 Pineapple $2.00



1222 Accessibility Chapter 24

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 24.14: withoutheaders.html -->
6 <!-- Table without headers           -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>XHTML Table Without Headers</title>
11
12       <style type = "text/css">
13          body { background-color: #ccffaa;
14                 text-align: center }
15       </style>
16    </head>
17
18    <body>
19
20    <p>Price of Fruit</p>
21
22    <table border = "1" width = "50%">
23
24      <tr>
25         <td>Fruit</td>
26         <td>Price</td>
27      </tr>
28
29          <tr>
30           <td>Apple</td>
31         <td>$0.25</td>
32      </tr>
33
34      <tr>
35             <td>Orange</td>
36         <td>$0.50</td>
37      </tr>
38
39      <tr>
40         <td>Banana</td>
41         <td>$1.00</td>
42      </tr>
43
44      <tr>
45           <td>Pineapple</td>
46         <td>$2.00</td>
47      </tr>
48
49    </table>
50
51    </body>
52 </html>

Fig. 24.14 XHTML table without accessibility modifications (part 1 of 2).



Chapter 24 Accessibility 1223

This reading does not present the content of the table adequately: The reading neither
specifies caption and header information nor links data contained in cells to the column
headers that describe them. WCAG 1.0 recommends using Cascading Style Sheets (CSS)
instead of tables, unless the tables’ content linearizes in an understandable manner. 

If the table in Fig. 24.14 were large, the screen reader’s linearized reading would be
even more confusing to users. By modifying the <td> tag with the headers attribute and
by modifying header cells (cells specified by the <th> tag) with the id attribute, a table
will be read as intended. Figure 24.15 demonstrates how these modifications change the
way in which a screen reader interprets a table.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 24.15: withheaders.html -->
6 <!-- Table with headers           -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10    <title>XHTML Table With Headers</title>
11
12    <style type = "text/css">
13      body { background-color: #ccffaa;
14             text-align: center }
15    </style>
16    </head>
17
18    <body>
19
20 <!-- This table uses the id and headers attributes to     -->
21 <!-- ensure readability by text-based browsers. It also   -->
22 <!-- uses a summary attribute, used by screen readers to  -->
23 <!-- describe the table.                                  -->

Fig. 24.15 Table optimized for screen reading using attribute headers (part 1 of 2).

Fig. 24.14 XHTML table without accessibility modifications (part 2 of 2).



1224 Accessibility Chapter 24

24
25    <table width = "50%" border = "1"
26      summary = "This table uses th elements and id and 
27      headers attributes to make the table readable 
28          by screen readers">
29
30      <caption><strong>Price of Fruit</strong></caption>
31
32      <tr>
33             <th id = "fruit">Fruit</th>
34             <th id = "price">Price</th>
35      </tr>
36
37          <tr>
38             <td headers = "fruit">Apple</td>
39             <td headers = "price">$0.25</td>
40      </tr>
41
42      <tr>
43             <td headers = "fruit">Orange</td>
44             <td headers = "price">$0.50</td>
45      </tr>
46
47      <tr>
48             <td headers = "fruit">Banana</td>
49         <td headers = "price">$1.00</td>
50      </tr>
51
52          <tr>
53             <td headers = "fruit">Pineapple</td>
54         <td headers = "price">$2.00</td>
55      </tr>
56
57    </table>
58
59    </body>
60 </html>

Fig. 24.15 Table optimized for screen reading using attribute headers (part 2 of 2).



Chapter 24 Accessibility 1225

This table does not appear to be different from a standard XHTML table shown in
Fig. 24.14. However, the formatting of this table allows a screen reader to read the con-
tained data more intelligently. A screen reader vocalizes the data from the table in
Fig. 24.15 as follows:

Caption: Price of Fruit
Summary: This table uses th elements and id and headers 
attributes to make the table readable by screen readers
Fruit: Apple, Price: $0.25
Fruit: Orange, Price: $0.50
Fruit: Banana, Price: $1.00
Fruit: Pineapple, Price: $2.00

Every cell in the table is preceded by its corresponding header when read by the screen
reader. This format helps the listener understand the table. The headers attribute is
intended specifically for use in tables that hold large amounts of data. Most small tables lin-
earize fairly well as long as the <th> tag is used properly. We also suggest using the sum-
mary attribute and caption element to enhance clarity. To view additional examples that
demonstrate how to make tables accessible, visit www.w3.org/TR/WCAG.

24.9 Accessibility in XHTML Frames
Web designers often use frames to display more than one XHTML file in a single browser
window. Frames are a convenient way to ensure that certain content always displays on the
screen. Unfortunately, frames often lack proper descriptions, and this prevents users with
text-based browsers and users listening via speech synthesizers from navigating the Web site.

A site that uses frames must provide a meaningful descriptions of each frame in the
frame’s <title> tag. Examples of good titles include, “Navigation Frame” and, “Main
Content Frame.” Users navigating via text-based browsers, such as Lynx, must choose
which frame they want to open; descriptive titles make this choice simpler. However, the
assignment of titles to frames does not solve all the navigation problems associated with
frames. Web designers should use the <noframes> tag, which provides alternative con-
tent for browsers that do not support frames.

Look-and-Feel Observation 24.1
Always provide titles for frames to ensure that user agents that do not support frames have
alternatives. 24.1

Look-and-Feel Observation 24.2
Include a title for each frame’s contents with the frame element; if possible, provide links
to the individual pages within the frameset, so that users still can navigate through the Web
pages. To provide alternate content to browsers that do not support frames, use the <nof-
rames> tag. This also improves access for browsers that offer limited support for frames. 24.2

WCAG 1.0 suggests using Cascading Style Sheets (CSS) as an alternative to frames,
because CSS can provide similar functionality and is highly customizible. Unfortunately,
the ability to display multiple XHTML documents in a single browser window requires the
complete support of HTML 4, which is not widespread. However, the second generation of
Cascading Style Sheets (CSS2) can display a single document as if it were several docu-
ments. CSS2 is not yet fully supported by many user agents.



1226 Accessibility Chapter 24

24.10 Accessibility in XML
XML gives developers the freedom to create new markup languages. Although this feature
provides many advantages, the new languages might not incorporate accessibility features.
To prevent the proliferation of inaccessible languages, the WAI is developing guidelines—
the XML Guidelines (XML GL)—to facilitate the creation of accessible XML documents.
The XML Guidelines recommend including a text description, similar to XHTML’s
<alt> tag, for each non-text object on a page. To enhance accessibility further, element
types should allow grouping and classification and should identify important content.
Without an accessible user interface, other efforts to implement accessibility are less effec-
tive. Therefore, it is essential to create style sheets that can produce multiple outputs, in-
cluding document outlines.

Many XML languages, including Synchronized Multimedia Integration Language
(SMIL) and Scalable Vector Graphics (SVG), have implemented several of the WAI
guidelines. The WAI XML Accessibility Guidelines can be found at www.w3.org/
WAI/PF/xmlgl.htm.

24.11 Using Voice Synthesis and Recognition with VoiceXML™
A joint effort by AT&T®, IBM®, Lucent™ and Motorola® has created an XML vocabu-
lary that marks up information for use by speech synthesizers—tools that enable comput-
ers to speak to users. This technology, called VoiceXML, can provide tremendous
benefits to people with visual impairments and to people who are illiterate. VoiceXML-
enabled applications read Web pages to the user and then employ speech recognition
technology to understand words spoken into a microphone. An example of a speech-rec-
ognition tool is IBM’s ViaVoice (www-4.ibm.com/software/speech). To learn
more about speech recognition and synthesis, consult Chapter 16, Graphics and Multi-
media. 

The VoiceXML interpreter and the VoiceXML browser process VoiceXML. In the
future, Web browsers might incorporate these interpreters. VoiceXML is derived from
XML, so VoiceXML is platform independent. When a VoiceXML document is loaded, a
voice server sends a message to the VoiceXML browser and begins a verbal conversation
between the user and the computer.

The IBM WebSphere Voice Server SDK 1.5 is a VoiceXML interpreter that can be used
to test VoiceXML documents on the desktop. To download the VoiceServer SDK, visit
www.alphaworks.ibm.com/tech/voiceserversdk. [Note: To run the
VoiceXML program in Fig. 24.16, download Java 2 Platform Standard Edition (Java
SDK) 1.3 from www.java.sun.com/j2se/1.3. Installation instructions for both the
VoiceServerSDK and the Java SDK are located on the Deitel & Associates, Inc., Web site
at www.deitel.com.]

Figure 24.16 and Fig. 24.17 depict examples of VoiceXML that could be included on
a Web site. The computer speaks a document’s text to the user, and the text embedded in
the VoiceXML tags enables verbal interaction between the user and the browser. The
output included in Fig. 24.17 demonstrates a conversation that might take place between a
user and a computer after this document is loaded.



Chapter 24 Accessibility 1227

1 <?xml version = "1.0"?>
2 <vxml version = "1.0">
3
4 <!-- Fig. 24.16: main.vxml -->
5 <!-- Voice page           -->
6
7 <link next = "#home">
8    <grammar>home</grammar>
9 </link>

10
11 <link next = "#end">
12    <grammar>exit</grammar>
13 </link>
14
15 <var name = "currentOption" expr = "'home'"/>
16
17 <form>
18    <block>
19       <emp>Welcome</emp> to the voice page of Deitel and
20       Associates. To exit any time say exit. 
21       To go to the home page any time say home.
22    </block>
23
24    <subdialog src = "#home"/>
25 </form>
26
27 <menu id = "home">
28    <prompt count = "1" timeout = "10s">
29       You have just entered the Deitel home page.
30       Please make a selection by speaking one of the 
31       following options:
32       <break msecs = "1000" />
33       <enumerate/>
34    </prompt>
35
36    <prompt count = "2">
37       Please say one of the following.
38       <break msecs = "1000" />
39       <enumerate/>
40    </prompt>
41
42    <choice next = "#about">About us</choice>
43    <choice next = "#directions">Driving directions</choice>
44    <choice next = "publications.vxml">Publications</choice>
45 </menu>
46
47 <form id = "about">
48    <block>
49       About Deitel and Associates, Inc.
50       Deitel and Associates, Inc. is an internationally 
51       recognized corporate training and publishing 
52       organization, specializing in programming languages,
53       Internet and World Wide Web technology and object 

Fig. 24.16 Home page written in VoiceXML (part 1 of 2).



1228 Accessibility Chapter 24

A VoiceXML document contains a series of dialogs and subdialogs resulting in spoken
interaction between the user and the computer. The <form> and <menu> tags implement
the dialogs. A form element both presents information to the user and gathers data from

54       technology education. Deitel and Associates, Inc. is a 
55       member of the World Wide Web Consortium. The company
56       provides courses on Java, C++, Visual Basic, C, Internet
57       and World Wide Web programming and Object Technology. 
58       <assign name = "currentOption" expr = "'about'"/>
59       <goto next = "#repeat"/>
60    </block>
61 </form>
62
63 <form id = "directions">
64    <block>
65       Directions to Deitel and Associates, Inc.
66       We are located on Route 20 in Sudbury, 
67       Massachusetts, equidistant from route 
68       <sayas class = "digits">128</sayas> and route
69       <sayas class = "digits">495</sayas>.
70       <assign name = "currentOption" expr = "'directions'"/>
71       <goto next = "#repeat"/>
72    </block>
73 </form>
74
75 <form id = "repeat">
76    <field name = "confirm" type = "boolean">
77       <prompt>
78          To repeat say yes. To go back to home, say no.
79       </prompt>
80
81       <filled>
82          <if cond = "confirm == true">
83             <goto expr = "'#' + currentOption"/>
84          <else/>
85            <goto next = "#home"/>
86          </if>
87       </filled>
88
89    </field>
90 </form>   
91
92 <form id = "end">
93    <block>
94       Thank you for visiting Deitel and Associates voice page.
95       Have a nice day.
96       <exit/>
97    </block>
98 </form>
99
100 </vxml>

Fig. 24.16 Home page written in VoiceXML (part 2 of 2).



Chapter 24 Accessibility 1229

the user. A menu element provides users with list options and then transfers control to
another dialog to suit the user selection. 

Lines 7–9 (of Fig. 24.16) use element link to create an active link to the home
page. Attribute next specifies the URI navigated to when a user selects the link. Ele-
ment grammar marks up the text that the user must speak to select the link. In the link
element, we navigate to the element with id home when a user speaks the word home.
Lines 11–13 use element link to create a link to id end when a user speaks the word
exit.

Lines 17–25 create a form dialog using element form, which collects information
from the user. Lines 18–22 present introductory text. Element block, which can exist only
within a form element, groups together elements that perform an action or an event. Ele-
ment emp indicates that a section of text should be spoken with emphasis. If the level of
emphasis is not specified, then the default level—moderate—is used. Our example uses the
default level. [Note: To specify an emphasis level, use the level attribute. This attribute
accepts the following values: strong, moderate, none and reduced.]

The menu element in line 27 enables users to select the page to which they would
like to link. The choice element, which always is part of either a menu or a form, pre-
sents the options. The next attribute indicates the page that is loaded when a user makes
a selection. The user selects a choice element by speaking the text marked up between
the tags into a microphone. In this example, the first and second choice elements in
lines 42–43 transfer control to a local dialog (i.e., a location within the same document)
when they are selected. The third choice element transfers the user to the document
publications.vxml. Lines 28–34 use element prompt to instruct the user to make
a selection. Attribute count maintains a record of the number of times that a prompt is
spoken (i.e., each time the computer reads a prompt, count increments by one). The
count attribute transfers control to another prompt once a certain limit has been
reached. Attribute timeout specifies how long the program should wait after outputting
the prompt for users to respond. In the event that the user does not respond before the
timeout period expires, lines 36–40 provide a second, shorter prompt that reminds the
user to make a selection. 

When the user chooses the publications option, publications.vxml
(Fig. 24.17) loads into the browser. Lines 107–113 define link elements that provide
links to main.vxml. Lines 115–117 provide links to the menu element (lines 121–141),
which asks users to select one of the following publications: Java, C or C++. The form
elements in lines 143–217 describe books that correspond to these topics. Once the browser
speaks the description, control transfers to the form element with an id attribute whose
value equals repeat (lines 219–234).

Figure 24.18 provides a brief description of each VoiceXML tag that we used in the
previous example (Fig. 24.17). 

101 <?xml version = "1.0"?>
102 <vxml version = "1.0">
103
104 <!-- Fig. 24.17: publications.vxml        -->
105 <!-- Voice page for various publications -->

Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page (part 1 of 4).



1230 Accessibility Chapter 24

106
107 <link next = "main.vxml#home">
108    <grammar>home</grammar>
109 </link>
110
111 <link next = "main.vxml#end">
112    <grammar>exit</grammar>
113 </link>
114
115 <link next = "#publication">
116    <grammar>menu</grammar>
117 </link>
118
119 <var name = "currentOption" expr = "'home'"/>
120
121 <menu id = "publication">
122
123    <prompt count = "1" timeout = "12s">
124       Following are some of our publications. For more 
125       information visit our web page at www.deitel.com. 
126       To repeat the following menu, say menu at any time.
127       Please select by saying one of the following books:
128       <break msecs = "1000" />
129       <enumerate/>
130    </prompt>
131
132    <prompt count = "2">
133       Please select from the following books.
134       <break msecs = "1000" />
135       <enumerate/>
136    </prompt>
137
138    <choice next = "#java">Java.</choice>
139    <choice next = "#c">C.</choice>
140    <choice next = "#cplus">C plus plus.</choice>
141 </menu>
142
143 <form id = "java">
144    <block>
145       Java How to program, third edition.
146       The complete, authoritative introduction to Java. 
147       Java is revolutionizing software development with 
148       multimedia-intensive, platform-independent, 
149       object-oriented code for conventional, Internet, 
150       Intranet and Extranet-based applets and applications. 
151       This Third Edition of the world's most widely used 
152       university-level Java textbook carefully explains 
153       Java's extraordinary capabilities. 
154       <assign name = "currentOption" expr = "'java'"/>
155       <goto next = "#repeat"/>
156    </block>
157 </form>

Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page (part 2 of 4).



Chapter 24 Accessibility 1231

158
159 <form id = "c">
160    <block>
161       C How to Program, third edition.
162       This is the long-awaited, thorough revision to the 
163       world's best-selling introductory C book! The book's 
164       powerful "teach by example" approach is based on
165       more than 10,000 lines of live code, thoroughly 
166       explained and illustrated with screen captures showing 
167       detailed output.World-renowned corporate trainers and 
168       best-selling authors Harvey and Paul Deitel offer the 
169       most comprehensive, practical introduction to C ever 
170       published with hundreds of hands-on exercises, more 
171       than 250 complete programs written and documented for 
172       easy learning, and exceptional insight into good 
173       programming practices, maximizing performance, avoiding 
174       errors, debugging, and testing. New features include 
175       thorough introductions to C++, Java, and object-oriented 
176       programming that build directly on the C skills taught 
177       in this book; coverage of graphical user interface 
178       development and C library functions; and many new, 
179       substantial hands-on projects.For anyone who wants to 
180       learn C, improve their existing C skills, and understand 
181       how C serves as the foundation for C++, Java, and 
182       object-oriented development. 
183       <assign name = "currentOption" expr = "'c'"/>
184       <goto next = "#repeat"/>
185    </block>
186 </form>
187
188 <form id = "cplus">
189    <block>
190       The C++ how to program, second edition.
191       With nearly 250,000 sold, Harvey and Paul Deitel's C++ 
192       How to Program is the world's best-selling introduction
193       to C++ programming. Now, this classic has been thoroughly 
194       updated! The new, full-color Third Edition has been 
195       completely revised to reflect the ANSI C++ standard, add 
196       powerful new coverage of object analysis and design with 
197       UML, and give beginning C++ developers even better live 
198       code examples and real-world projects. The Deitels' C++ 
199       How to Program is the most comprehensive, practical 
200       introduction to C++ ever published with hundreds of 
201       hands-on exercises, roughly 250 complete programs written 
202       and documented for easy learning, and exceptional insight 
203       into good programming practices, maximizing performance, 
204       avoiding errors, debugging, and testing. This new Third 
205       Edition covers every key concept and technique ANSI C++ 
206       developers need to master: control structures, functions, 
207       arrays, pointers and strings, classes and data 

Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page (part 3 of 4).



1232 Accessibility Chapter 24

208       abstraction, operator overloading, inheritance, virtual 
209       functions, polymorphism, I/O, templates, exception 
210       handling, file processing, data structures, and more. It 
211       also includes a detailed introduction to Standard 
212       Template Library containers, container adapters, 
213       algorithms, and iterators. 
214       <assign name = "currentOption" expr = "'cplus'"/>
215       <goto next = "#repeat"/>
216    </block>
217 </form>
218
219 <form id = "repeat">
220    <field name = "confirm" type = "boolean">
221
222       <prompt>
223          To repeat say yes. Say no, to go back to home.
224       </prompt>
225
226       <filled>
227          <if cond = "confirm == true">
228             <goto expr = "'#' + currentOption"/>
229          <else/>
230             <goto next = "#publication"/>
231          </if>
232       </filled>
233    </field>
234 </form> 
235 </vxml>

Computer speaks:
Welcome to the voice page of Deitel and Associates. To exit any time 
say exit. To go to the home page any time say home.

User speaks:
Home

Computer speaks:
You have just entered the Deitel home page. Please make a selection by 
speaking one of the following options: About us, Driving directions, 
Publications.

User speaks:
Driving directions

Computer speaks:
Directions to Deitel and Associates, Inc.
We are located on Route 20 in Sudbury,
Massachusetts, equidistant from route 128
and route 495.
To repeat say yes. To go back to home, say no.

Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page (part 4 of 4).



Chapter 24 Accessibility 1233

24.12 CallXML™
Another advancement benefiting people with visual impairments is CallXML, a voice tech-
nology created and supported by Voxeo (www.voxeo.com). CallXML creates phone-to-
Web applications that control incoming and outgoing telephone calls. Examples of
CallXML applications include voice mail, interactive voice response systems and Internet
call waiting. Whereas VoiceXML allows computers to read Web pages to users with visual
impairments, CallXML reads Web content to users via a telephone. CallXML has impor-
tant implications for individuals who do not have a computer, but do have a telephone.

When users access CallXML applications, a text-to-speech (TTS) engine converts text
to automated voice. The TTS engine then reads information contained within CallXML ele-
ments to the users. Web applications are tailored to respond to input from callers. [Note:
Users must have a touch-tone phone to access CallXML applications.]

VoiceXML Tag Description

<assign> Assigns a value to a variable.

<block> Presents information to users without any interaction between the user and 
the computer (i.e., the computer does not expect any input from the user).

<break> Instructs the computer to pause its speech output for a specified period of 
time.

<choice> Specifies an option in a menu element.

<enumerate> Lists all the available options to the user.

<exit> Exits the program.

<filled> Contains elements that execute when the computer receives input for a form
element from the user.

<form> Gathers information from the user for a set of variables.

<goto> Transfers control from one dialog to another.

<grammar> Specifies grammar for the expected input from the user.

<if>,
<else>,
<elseif>

Indicates a control statement used for making logic decisions.

<link> Performs a transfer of control similar to the goto statement, but a link can 
be executed at any time during the program’s execution.

<menu> Provides user options and transfers control to another dialog to suit the 
selected option.

<prompt> Specifies text to be read to users when they must make a selection.

<subdialog> Calls another dialog. After executing the subdialog, the calling dialog 
resumes control.

<var> Declares a variable.

<vxml> Top-level tag that specifies that the document should be processed by a 
VoiceXML interpreter.

Fig. 24.18 VoiceXML tags.



1234 Accessibility Chapter 24

Some CallXML applications play prerecorded audio clips or text as output, requesting
responses as input. An audio clip might contain a greeting that introduces callers to the appli-
cations or it might recite a menu of options, requesting that callers make a touch-tone entry.
Certain applications, such as voice mail, might require both verbal and touch-tone input. Once
the application receives the necessary input, it responds by invoking CallXML elements (such
as text) that contain the information a TTS engine reads to users. If the application does not
receive input within a designated time frame, it prompts the user to enter valid input.

When a user accesses a CallXML application, the incoming telephone call is referred
to as a session. A CallXML application can support multiple sessions, which means that the
application can process multiple telephone calls at once (e.g., a conferencing application).
Each session is independent of the others and is assigned a unique sessionID for identifica-
tion. A session terminates either when the user hangs up the telephone or when the
CallXML application invokes the hangup element.

Our first CallXML application demonstrates the classic “Hello World” example
(Fig. 24.19). Line 1 contains the optional XML declaration. Value version indicates the
XML version to which the document conforms. The current XML recommendation is ver-
sion 1.0. Value encoding indicates the type of Unicode encoding that the application
uses. For this example, we employ UTF-8, which requires eight bits to transfer and receive
data. More information on Unicode can be found in Appendix F, Unicode®.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. 24.19: hello.xml            -->
4 <!-- The classic Hello World example -->
5
6 <callxml>
7 <text>Hello World.</text>
8 </callxml>

Fig. 24.19 Hello World CallXML example. (Courtesy of Voxeo, © Voxeo Corporation 
2000–2001).



Chapter 24 Accessibility 1235

The <callxml> tag in line 6 declares that the content is a CallXML document. Line
7 contains the Hello World text. All text that is to be spoken by a text-to-speech (TTS)
engine must be placed within <text> tags.

To deploy a CallXML or VoiceXML application, register with the Voxeo Community
(community.voxeo.com), a Web resource that facilitates the creation, debugging and
deployment of phone applications. For the most part, Voxeo resources are free. The com-
pany does charge fees when CallXML applications are deployed commercially. The Voxeo
Community assigns a unique telephone number to a CallXML application, so that external
users can access and interact with the application. [Note: Voxeo assigns telephone numbers
only to applications that reside on the Internet. If you have access to a Web server (such as
IIS, PWS or Apache), use it to post your CallXML application. Otherwise, open an Internet
account through one of the many Internet-service companies (such as www.geoci-
ties.com, www.angelfire.com, www.stormpages.com, www.freeweb-
sites.com, or www.brinkster.com). These companies allow individuals to post
documents on the Internet through their Web servers.]

Figure 24.19 demonstrates the logging feature of the Voxeo Account Manager,
which is accessible to registered members. The logging feature records and displays the
“conversation” between the user and the application. The first row of the logging feature
lists the URL of the CallXML application and the global variables associated with each
session. When a session begins, the application creates and assigns values to global vari-
ables that the entire application can access and modify. The subsequent row(s) display the
“conversation.” This example demonstrates a one-way conversation (i.e., the application
does not accept any input from the user) in which the TTS engine says Hello World. The
last row displays the end of session message, which states that the phone call has termi-
nated. The logging feature assists developers in the debugging of their applications. By
observing a CallXML “conversation,” a developer can determine the point at which the
application terminates. If the application terminates abruptly (“crashes”), the logging fea-
ture displays information regarding the type and location of the error, pointing the devel-
oper toward the section of the application causing the problem.

The next example (Fig. 24.20) depicts a CallXML application that reads the ISBN
numbers of are of three Deitel textbooks—Internet and World Wide Web How to Program:
Second Edition, XML How to Program or Java How to Program: Fourth Edition—in
response to a user’s touch-tone input. [Note: The code has been formatted for presentation
purposes.]

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. 24.20: isbn.xml                        -->
4 <!-- Reads the ISBN value of three Deitel books -->
5
6 <callxml>
7 <block>
8       <text>
9          Welcome. To obtain the ISBN of the Internet and World

10          Wide Web How to Program: Second Edition, please enter 1. 

Fig. 24.20 CallXML example that reads three ISBN values (part 1 of 3). (Courtesy of 
Voxeo, © Voxeo Corporation 2000–2001.)



1236 Accessibility Chapter 24

11          To obtain the ISBN of the XML How to Program,
12          please enter 2. To obtain the ISBN of the Java How
13          to Program: Fourth Edition, please enter 3. To exit the
14          application, please enter 4.
15       </text>
16
17       <!-- Obtains the numeric value entered by the user and -->
18       <!-- stores it in the variable ISBN. The user has 60   -->
19       <!-- seconds to enter one numeric value                -->
20       <getDigits var = "ISBN"
21          maxDigits = "1"
22          termDigits = "1234"
23          maxTime = "60s" />
24
25       <!-- Requests that the user enter a valid numeric -->
26       <!-- value after the elapsed time of 60 seconds   -->
27       <onMaxSilence>
28          <text>
29             Please enter either 1, 2, 3 or 4.
30          </text>
31
32          <getDigits var = "ISBN"
33             termDigits = "1234" 
34             maxDigits = "1"
35             maxTime = "60s" />
36
37       </onMaxSilence>
38
39       <onTermDigit value = "1">
40          <text>
41             The ISBN for the Internet book is 0130308978.
42             Thank you for calling our CallXML application.
43             Good-bye.
44          </text>
45       </onTermDigit>
46
47       <onTermDigit value = "2">
48          <text>
49             The ISBN for the XML book is 0130284173.
50             Thank you for calling our CallXML application.
51             Good-bye.
52          </text>
53       </onTermDigit>
54
55       <onTermDigit value = "3">
56          <text>
57             The ISBN for the Java book is 0130341517.
58             Thank you for calling our CallXML application.
59             Good-bye.
60          </text>
61       </onTermDigit>
62

Fig. 24.20 CallXML example that reads three ISBN values (part 2 of 3). (Courtesy of 
Voxeo, © Voxeo Corporation 2000–2001.)



Chapter 24 Accessibility 1237

The <block> tag (line 7) encapsulates other CallXML tags. Usually, sets of CallXML
tags that perform similar tasks are enclosed within <block>...</block>. The block ele-
ment in this example encapsulates the <text>, <getDigits>, <onMaxSilence> and
<onTermDigit> tags. A block element also can be nested in other block elements.

Lines 20–23 contain some attributes of the <getDigits> tag. The getDigits ele-
ment obtains the user’s touch-tone response and stores it in the variable declared by the
var attribute (i.e., ISBN). The maxDigits attribute (line 21) indicates the maximum

63       <onTermDigit value = "4">
64          <text>
65             Thank you for calling our CallXML application.
66             Good-bye.
67          </text>
68       </onTermDigit>
69 </block>
70
71 <!-- Event handler that terminates the call -->
72 <onHangup />
73 </callxml>

Fig. 24.20 CallXML example that reads three ISBN values (part 3 of 3). (Courtesy of 
Voxeo, © Voxeo Corporation 2000–2001.)



1238 Accessibility Chapter 24

number of digits that the application can accept. This application accepts only one char-
acter. If no maximum is stated, then the application uses the default value, nolimit.

The termDigits attribute (line 22) contains the list of characters that terminate user
input. When a user inputs a character from this list, the application is notified that it has
received the last acceptable input; any character entered after this point is invalid. These char-
acters do not terminate the call; they simply notify the application to proceed to the next
instruction, because the necessary input has been received. In our example, the values for
termDigits are 1, 2, 3 or 4. The default value for termDigits is the null value ("").

The maxTime attribute (line 23) indicates the maximum amount of time that the appli-
cation will wait for a user response. If the user fails to enter input within the given time
frame, then the CallXML application invokes the event handler onMaxSilence. The
default value for this attribute is 30 seconds.

The onMaxSilence element (lines 27–37) is an event handler that is invoked when
attribute maxTime (or maxSilence) expires. The event handler specified notifies the
application of the appropriate action to perform when a user fails to respond. In this case,
the application asks the user to enter a value, because the maxTime has expired. After
receiving input, getDigits (line 32) stores the entered value in the ISBN variable.

The onTermDigit element (lines 39–68) is an event handler that notifies the appli-
cation of the appropriate action to perform when a user selects one of the termDigits
characters. At least one <onTermDigit> tag must be associated with (appear after) the
getDigits element, even if the default value ("") is used. We provide four actions that
the application can perform to suit the specific termDigits value entered by the user.
For example, if the user enters 1, the application reads the ISBN value of the Internet and
World Wide Web How to Program: Second Edition textbook.

Line 72 contains the <onHangup/> event handler, which terminates the telephone
call when the user hangs up the telephone. Our <onHangup> event handler is an empty
tag (i.e., no action is performed when this tag is invoked).

The logging feature (Fig. 24.20) displays the “conversation” between the application
and the user. As in the previous example, the first row specifies the URL of the application
and the global variables of the session. The subsequent rows display the “conversation”:
The application asks the caller which ISBN value to read, the caller enters 1 (Internet and
World Wide Web How to Program: Second Edition) and the application reads the corre-
sponding ISBN. The end of session message states that the application has terminated.

We provide brief descriptions of various logic and action CallXML elements in
Fig. 24.21. Logic elements assign values to, and clear values from, the session variables;
action elements perform specified tasks, such as answering and terminating a telephone call
during the current session. A complete list of CallXML elements is available at

www.oasis-open.org/cover/callxmlv2.html

Elements Description

assign Assigns a value to a variable, var.

clear Clears the contents of the var attribute.

Fig. 24.21 CallXML elements (part 1 of 2).



Chapter 24 Accessibility 1239

clearDigits Clears all digits that the user has entered.

goto Navigates to another section of the current CallXML application or 
to a different CallXML application. The value attribute specifies 
the URL of the application. The submit attribute lists the vari-
ables that are passed to the invoked application. The method
attribute states whether to use the HTTP get or post request type 
when sending and retrieving information. A get request retrieves 
data from a Web server without modifying the contents, whereas 
the post request receives modified data.

run Starts a new CallXML session for each call. The value attribute 
specifies the CallXML application to retrieve. The submit
attribute lists the variables that are passed to the invoked applica-
tion. The method attribute states whether to use the HTTP get or 
post request type. The var attribute stores the identification num-
ber of the session.

sendEvent Allows multiple sessions to exchange messages. The value
attribute stores the message, and the session attribute specifies 
the identification number of the session that receives the message.

answer Answers an incoming telephone call.

call Calls the URL specified by the value attribute. The callerID
attribute contains the phone number that is displayed on a CallerID 
device. The maxTime attribute specifies the length of time to wait 
for the call to be answered before disconnecting.

conference Connects multiple sessions so that individuals can participate in a 
conference call. The targetSessions attribute specifies the 
identification numbers of the sessions, and the termDigits
attribute indicates the touch-tone keys that terminate the call.

wait Waits for user input. The value attribute specifies how long to 
wait. The termDigits attribute indicates the touch-tone keys 
that terminate the wait element.

play Plays an audio file or pronounces a value that is stored as a num-
ber, date or amount of money and is indicated by the format
attribute. The value attribute contains the information (location 
of the audio file, number, date or amount of money) that corre-
sponds to the format attribute. The clearDigits attribute 
specifies whether to delete the previously entered input. The ter-
mDigits attribute indicates the touch-tone keys that terminate the 
audio file and more.

recordAudio Records an audio file and stores it at the URL specified by value.
The format attribute indicates the file extension of the audio clip. 
Other attributes include termDigits, clearDigits, max-
Time and maxSilence.

Elements Description

Fig. 24.21 CallXML elements (part 2 of 2).



1240 Accessibility Chapter 24

24.13 JAWS® for Windows
JAWS (Job Access with Sound) is one of the leading screen readers currently on the market.
Henter-Joyce, a division of Freedom Scientific™, created this application to help people
with visual impairments interact with technology.

To download a demonstration version of JAWS, visit www.freedomscien-
tific.com.The JAWS demo is fully functional and includes an extensive, highly custom-
ized help system. Users can select the voice that “reads” Web content and the rate at which
text is spoken. Users also can create keyboard shortcuts. Although the demo is in English, the
full version of JAWS allows the user to choose one of several supported languages.

JAWS also includes special key commands for popular programs, such as Microsoft
Internet Explorer and Microsoft Word. For example, when browsing in Internet Explorer,
the capabilities of JAWS extend beyond the reading of content on the screen. If JAWS is
enabled, pressing Insert + F7 in Internet Explorer opens a Links List dialog, which dis-
plays all the links available on a Web page. For more information about JAWS and the
other products offered by Henter-Joyce, visit www.freedomscientific.com.

24.14 Other Accessibility Tools
Many accessibility products are available to assist people with disabilities. One such tech-
nology, Microsoft’s Active Accessibility®, establishes a protocol by which an accessibility
aid can retrieve information about an application’s user interface in a consistent manner.
Accessibility aids require such information as the name, location and layout of particular
GUI elements within an application, so that the accessibility aid can render the information
properly to the intended audience. Active Accessibility also enables software developers
and accessibility-aid developers to design programs and products that are compatible with
each other. Moreover, Active Accessibility is packaged in two components, enabling both
programmers and individuals who use accessibility aids to use the software. The Software
Development Kit (SDK) component is intended for programmers: It includes testing tools,
programmatic libraries and header files. The Redistribution Kit (RDK) component is in-
tended for those who use accessibility aids: It installs a runtime component into the Mi-
crosoft operating system. Accessibility aids use the Active Accessibility runtime
components to interact with and obtain information from any application software. For
more information on Active Accessibility, visit

www.microsoft.com/enable/msaa/ 

Another important accessibility tool for individuals with visual impairments is the
braille keyboard. In addition to providing keys labeled with the letters they represent, a
braille keyboard also has the equivalent braille symbol printed on each key. Most often,
braille keyboards are combined with a speech synthesizer or a braille display, enabling
users to interact with the computer to verify that their typing is correct.

Speech synthesis also provides benefits to people with disabilities. Speech synthesizers
have been used for many years to aid people who are unable to communicate verbally.
However, the growing popularity of the Web has prompted a surge of interest in the fields
of speech synthesis and speech recognition. Now, these technologies are allowing individ-
uals with disabilities to use computers more than ever before. The development of speech
synthesizers is also making possible the improvement of other technologies, such as



Chapter 24 Accessibility 1241

VoiceXML and AuralCSS (www.w3.org/TR/REC-CSS2/aural.html). These tools
allow people with visual impairments and illiterate people to access Web sites.

Despite the existence of adaptive software and hardware for people with visual impair-
ments, the accessibility of computers and the Internet is still hampered by the high costs,
rapid obsolescence and unnecessary complexity of current technology. Moreover, almost
all software currently available requires installation by a person who can see. Ocularis is a
project launched in the open-source community that aims to address these problems. Open-
source software for people with visual impairments already exists; although it is often supe-
rior to its proprietary, closed-source counterparts, it has not yet reached its full potential.
Ocularis ensures that the blind can access and use all aspects of the Linux operating system.
Products that integrate with Ocularis include word processors, calculators, basic finance
applications, Internet browsers and e-mail clients. A screen reader also will be included for
use with programs that have a command-line interface. The official Ocularis Web site is
located at ocularis.sourceforge.net.

People with visual impairments are not the only beneficiaries of efforts to improve
markup languages. People with hearing impairments also have a number of tools to help
them interpret auditory information delivered over the Web. One of these tools, Synchro-
nized Multimedia Integration Language (SMIL™), is designed to add extra tracks (layers
of content found within a single audio or video file) to multimedia content. The additional
tracks can contain closed captioning.

Technologies are also being designed to help people with severe disabilities, such as
quadriplegia, a form of paralysis that affects the body from the neck down. One such tech-
nology, EagleEyes, developed by researchers at Boston College (www.bc.edu/
eagleeyes), is a system that translates eye movements into mouse movements. A user
moves the mouse cursor by moving his or her eyes or head and is thereby able to control
the computer.

The company CitXCorp is developing a new technology that translates Web informa-
tion through the telephone. Information on a specific topic can be accessed by dialing the
designated number. For more information on regulations governing the design of Web sites
to accommodate people with disabilities, visit www.access-board.gov.

GW Micro, Henter-Joyce and Adobe Systems, Inc., are also working on software that
assists people with disabilities. Adobe Acrobat 5.0 complies with Microsoft’s application
programming interface (API) to allow businesses to provide information to a wider audi-
ence. JetForm Corp is also accommodating the needs of people with disabilities by devel-
oping server-based XML software. The new software allows users to download
information in a format that best meets their needs.

There are many services on the Web that assist e-businesses in designing Web sites to
be accessible to individuals with disabilities. For additional information, the U.S. Depart-
ment of Justice (www.usdoj.gov) provides extensive resources detailing legal and tech-
nical issues related to people with disabilities.

24.15 Accessibility in Microsoft® Windows® 2000
Beginning with Microsoft Windows 95, Microsoft has included accessibility features in its
operating systems and many of its applications, including Office 97, Office 2000 and Net-
meeting. In Microsoft Windows 2000, Microsoft has significantly enhanced the operating



1242 Accessibility Chapter 24

system’s accessibility features. All the accessibility options provided by Windows 2000 are
available through the Accessibility Wizard, which guides users through Windows 2000
accessibility features and then configures their computers in accordance with the chosen
specifications. This section uses the Accessibility Wizard to guide users through the
configuration of their Windows 2000 accessibility options.

To access the Accessibility Wizard, users’ computers must be equipped with
Microsoft Windows 2000. Click the Start button, and select Programs followed by
Accessories, Accessibility and Accessibility Wizard. When the wizard starts, the
Welcome screen displays. Click Next. The next dialog (Fig. 24.22) asks the user to select
a font size. Modify the font size, if necessary, and then click Next.

Figure 24.23 depicts the Display Settings dialog. This dialog allows the user to acti-
vate the font-size settings chosen in the previous window, change the screen resolution,
enable the Microsoft Magnifier (a program that displays an enlarged section of the screen
in a separate window) and disable personalized menus. Personalized menus hide rarely
used programs from the start menu and can be a hindrance to users with disabilities. Make
selections, and click Next.

The Set Wizard Options dialog (Fig. 24.24) asks questions about the user’s disabil-
ities; the answers to these questions allow the Accessibility Wizard to customize Win-
dows to better suit the user’s needs. For demonstration purposes, we selected every type of
disability included in the dialogue. Click Next to continue.

Fig. 24.22 Text Size dialog.



Chapter 24 Accessibility 1243

24.15.1 Tools for People with Visual Impairments
After we have checked options in Fig. 24.24, the wizard begins to configure Windows so
that it is accessible to people with visual impairments. The dialog box shown in Fig. 24.25
allows the user to resize the scroll bars and window borders to increase their visibility.
Click Next to proceed to the next dialog.

Fig. 24.23 Display Settings dialog.

Fig. 24.24 Accessibility Wizard initialization options.



1244 Accessibility Chapter 24

Figure 24.26 contains a dialog that allows the user to resize icons. Users with poor
vision and users who are illiterate or have trouble reading benefit from large icons.

Fig. 24.25 Scroll Bar and Window Border Size dialog.

Fig. 24.26 Adjusting up window element sizes.



Chapter 24 Accessibility 1245

Clicking Next displays the Display Color Settings dialog (Fig. 24.27). These set-
tings enable the user to change the Windows color scheme and resize various screen elements. 

Click Next to view the dialog (Fig. 24.28) that enables customization of the mouse
cursor. Anyone who has ever used a laptop computer knows how difficult it can be to see
the mouse cursor. This is even more problematic for people with visual impairments. To
address this problem, the wizard offers users the options of larger cursors, black cursors and
cursors that invert the colors of objects underneath them. Click Next.

Fig. 24.27 Display Color Settings options.

Fig. 24.28 Accessibility Wizard mouse cursor adjustment tool.



1246 Accessibility Chapter 24

24.15.2 Tools for People with Hearing Impairments
This section, which focuses on accessibility for people with hearing impairments, begins
with the SoundSentry window (Fig. 24.29). SoundSentry is a tool that creates visual
signals to notify users of system events. For example, people with hearing impairments are
unable to hear the beeps that normally indicate warnings, so SoundSentry flashes the
screen when a beep occurs. To continue on to the next dialog, click Next.

The next window is the ShowSounds window (Fig. 24.30). ShowSounds adds cap-
tions to spoken text and other sounds produced by today’s multimedia-rich software. Note
that, for ShowSounds to work in a specific application, developers must provide the cap-
tions and spoken text specifically within their software. Make selections, and click Next.

Fig. 24.29 SoundSentry dialog.

Fig. 24.30 ShowSounds dialog.



Chapter 24 Accessibility 1247

24.15.3 Tools for Users Who Have Difficulty Using the Keyboard 
The next dialog describes StickyKeys (Fig. 24.31). StickyKeys is a program that helps
users who have difficulty pressing multiple keys at the same time. Many important com-
puter commands can be invoked only by pressing specific key combinations. For example,
the reboot command requires the user to press Ctrl+Alt+Delete simultaneously. Sticky-
Keys enables the user to press key combinations in sequence, rather than at the same time.
Click Next to continue to the BounceKeys dialog (Fig. 24.32).

Fig. 24.31 StickyKeys window.

Fig. 24.32 BounceKeys dialog.



1248 Accessibility Chapter 24

A common problem that affects certain users with disabilities is the accidental pressing
of the same key multiple times. This problem typically is caused by holding a key down too
long. BounceKeys forces the computer to ignore repeated keystrokes. Click Next.

ToggleKeys (Fig. 24.33) alerts users that they pressed one of the lock keys (i.e., Caps
Lock, Num Lock or Scroll Lock) by sounding an audible beep. Make selections and click
Next.

Next, the Extra Keyboard Help dialog (Fig. 24.34) is displayed. This dialogue can
activate a tool that displays such information as keyboard shortcuts and tool tips when such
information is available. Like ShowSounds, this tool requires that software developers
provide the content to be displayed. 

Fig. 24.33 ToggleKeys window.

Fig. 24.34 Extra Keyboard Help dialog.



Chapter 24 Accessibility 1249

Clicking Next will load the MouseKeys (Fig. 24.35) customization window.
MouseKeys is a tool that uses the keyboard to imitate mouse movements. The arrow keys
direct the mouse, and the 5 key indicates a single click. To double click, the user must press
the + key; to simulate the holding down of the mouse button, the user must press the Ins
(Insert) key. To release the mouse button, the user must press the Del (Delete) key. Choose
whether to enable MouseKeys, and then click Next.

Today’s computer tools, including most mice, are almost exclusively for right-handed
users. Microsoft recognized this problem and added the Mouse Button Settings
window (Fig. 24.36) to the Accessibility Wizard. This tool allows the user to create a
virtual left-handed mouse by swapping the button functions. Click Next.

Fig. 24.35 MouseKeys window.

Fig. 24.36 Mouse Button Settings window.



1250 Accessibility Chapter 24

User can adjust mouse speed via the MouseSpeed (Fig. 24.37) section of the
Accessibility Wizard. Dragging the scroll bar changes the speed. Clicking the Next
button sets the speed and displays the wizard’s Set Automatic Timeouts window
(Fig. 24.38). Although accessibility tools are important to users with disabilities, they can
be a hindrance to users who do not need them. In situations where varying accessibility
needs exist, it is important that the user be able to turn the accessibility tools on and off as
necessary. The Set Automatic Timeouts window specifies a timeout period for enabling
or disabling accessibility tools. A timeout either enables or disables a certain action after
the computer has idled for a specified amount of time. A screen saver is a common example
of a program with a timeout period. Here, a timeout is set to toggle the accessibility tools.

Fig. 24.37 Mouse Speed dialog.

Fig. 24.38 Set Automatic Timeouts dialog.



Chapter 24 Accessibility 1251

After the user clicks Next, the Save Settings to File dialog appears (Fig. 24.39).
This dialog determines whether the accessibility settings should be used as the default set-
tings, which are loaded when the computer is rebooted or after a timeout. Set the accessi-
bility settings as the default if the majority of users needs them. Users also can save
multiple accessibility settings. The user can create a.acw file, which, when chosen, acti-
vates the saved accessibility settings on any Windows 2000 computer.

24.15.4 Microsoft Narrator
Microsoft Narrator is a text-to-speech program designed for people with visual impair-
ments. It reads text, describes the current desktop environment and alerts the user when cer-
tain Windows events occur. Narrator is intended to aid in the configuration of Microsoft
Windows. It is a screen reader that works with Internet Explorer, Wordpad, Notepad and
most programs in the Control Panel. Although its capabilities are limited outside these
applications, Narrator is excellent at navigating the Windows environment.

To explore Narrator’s functionality, we explain how to use the program in conjunc-
tion with several Windows applications. Click the Start button, and select Programs, fol-
lowed by Accessories, Accessibility and Narrator. Once Narrator is open, it
describes the current foreground window. It then reads the text inside the window aloud to
the user. When the user clicks OK, the dialog in Fig. 24.40 displays.

Checking the first option instructs Narrator to describe menus and new windows
when they are opened. The second option instructs Narrator to speak characters as they
are typed. The third option moves the mouse cursor to the region currently being read by
Narrator. Clicking the Voice... button enables the user to change the pitch, volume and
speed of the narrator voice (Fig. 24.41).  

Fig. 24.39 Saving new accessibility settings.



1252 Accessibility Chapter 24

Now, we demonstrate Narrator in various applications. When Narrator is running,
open Notepad and click the File menu. Narrator announces the opening of the program
and begins to describe the items in the File menu. As a user scrolls down the list, Narrator
reads the item to which the mouse currently is pointing. Type some text and press Ctrl–
Shift–Enter to hear Narrator read it (Fig. 24.42). If the Read typed characters option
is checked, Narrator reads each character as it is typed. Users can also employ the key-
board’s direction arrows to make Narrator read. The up and down arrows cause Narrator
to speak the lines adjacent to the current mouse position, and the left and right arrows cause
Narrator to speak the characters adjacent to the current mouse position.

24.15.5 Microsoft On-Screen Keyboard 
Some computer users lack the ability to use a keyboard, but are able to use a pointing device
(such as a mouse). For these users, the On-Screen Keyboard is helpful. To access the
On-Screen Keyboard, click the Start button, and select Programs followed by Acces-
sories, Accessibility and On-Screen Keyboard. Figure 24.43 depicts the layout of
the Microsoft On-Screen Keyboard.

Fig. 24.40 Narrator window.

Fig. 24.41 Voice Settings window.



Chapter 24 Accessibility 1253

Users who have difficulty using the On-Screen Keyboard can purchase more sophisti-
cated products, such as Clicker 4™ by Inclusive Technology. Clicker 4 is an aid designed
for people who cannot use a keyboard effectively. Its best feature is that it can be custom-
ized. Keys can have letters, numbers, entire words or even pictures on them. For more
information regarding Clicker 4, visit www.inclusive.co.uk/catalog/
clicker.htm.

24.15.6 Accessibility Features in Microsoft Internet Explorer 5.5

Internet Explorer 5.5 offers a variety of options that can improve usability. To access
IE5.5’s accessibility features, launch the program, click the Tools menu and select Inter-
net Options.... Then, from the Internet Options menu, press the button labeled Ac-
cessibility... to open the accessibility options (Fig. 24.44).

The accessibility options in IE5.5 are designed to improve the Web-browsing experi-
ences of users with disabilities. Users are able to ignore Web colors, Web fonts and font-
size tags. This eliminates accessibility problems arising from poor Web-page design and
allows users to customize their Web browsing. Users can even specify a style sheet, which
formats every Web site that users visit according to their personal preferences.

Fig. 24.42 Narrator reading Notepad text.

Fig. 24.43 Microsoft On-Screen Keyboard.



1254 Accessibility Chapter 24

In the Internet Options dialog, click the Advanced tab. This opens the dialog
depicted in Fig. 24.45. The first available option is labeled Always expand ALT text for
images. By default, IE5.5 hides some of the <alt> text if the size of the text exceeds that
of the image it describes. This option forces IE5.5 to show all the text. The second option
reads Move system caret with focus/selection changes. This option is intended to
make screen reading more effective. Some screen readers use the system caret (the blinking
vertical bar associated with editing text) to determine what to read. If this option is not acti-
vated, screen readers might not read Web pages correctly. 

Web designers often forget to take accessibility into account when creating Web sites;
in an attempt to provide large amounts of content, they use fonts that are too small. Many
user agents have addressed this problem by allowing the user to adjust the text size. Click
the View menu, and select Text Size to change the font size in pages rendered by IE5.5.
By default, the text size is set to Medium.

In this chapter, we presented a wide variety of technologies that help people with var-
ious disabilities use computers. We hope that all our readers will join us in emphasizing the
importance of these capabilities in their schools and workplaces.

Well, that’s it for now. We sincerely hope that you have enjoyed learning with Visual
Basic How To Program. As this book went to the presses, we were already at work on
Advanced Visual Basic How To Program, a book appropriate for professional developers
writing enterprise applications and for advanced college courses in software development.

Fig. 24.44 Microsoft Internet Explorer 5.5’s accessibility options.



Chapter 24 Accessibility 1255

24.16 Internet and World Wide Web Resources
There are many accessibility resources available on the Internet and World Wide Web; this
section lists a variety of these resources.

General Information, Guidelines and Definitions

www.w3.org/WAI
The World Wide Web Consortium’s Web Accessibility Initiative (WAI) site promotes the design of
universally accessible Web sites. This site contains the current guidelines and forthcoming standards
for Web accessibility.

www.w3.org/TR/xhtml1
The XHTML 1.0 Recommendation contains XHTML 1.0 general information, compatibility issues,
document type definition information, definitions, terminology and much more.

www.abledata.com/text2/icg_hear.htm
This page contains a consumer guide that discusses technologies designed for people with hearing
impairments.

www.washington.edu/doit
The University of Washington’s DO-IT (Disabilities, Opportunities, Internetworking and Technolo-
gy) site provides information and Web-development resources for the creation of universally accessi-
ble Web sites. 

www.webable.com
The WebABLE site contains links to many disability-related Internet resources; the site is geared to-
wards those developing technologies for people with disabilities.

Fig. 24.45 Advanced accessibility settings in Microsoft Internet Explorer 5.5.



1256 Accessibility Chapter 24

www.webaim.org
The WebAIM site provides a number of tutorials, articles, simulations and other useful resources that
demonstrate how to design accessible Web sites. The site provides a screen-reader simulation.

deafness.about.com/health/deafness/msubvib.htm
This site provides information on vibrotactile devices, which allow individuals with hearing impair-
ments to experience audio in the form of vibrations. 

Developing Accessible Applications with Existing Technologies

wdvl.com/Authoring/Languages/XML/XHTML
The Web Developers Virtual Library provides an introduction to XHTML. This site also contains ar-
ticles, examples and links to other technologies.

www.w3.org/TR/1999/xhtml-modularization-19990406/DTD/doc
The XHTML 1.0 DTD documentation site provides links to DTD documentation for the strict, tran-
sitional and frameset document type definitions.

www.webreference.com/xml/reference/xhtml.html
This Web page contains a list of the frequently used XHTML tags, such as header tags, table tags,
frame tags and form tags. It also provides a description of each tag.

www.w3.org/TR/REC-CSS2/aural.html
This site discusses Aural Style Sheets, outlining the purpose and uses of this new technology.

www.islandnet.com
Lynxit is a development tool that allows users to view any Web site as if they were using a text-only
browser. The site’s form allows you to enter a URL and returns the Web site in text-only format.

www.trill-home.com/lynx/public_lynx.html
This site allows users to browse the Web with a Lynx browser. Users can view how Web pages appear
to users who are not using the most current technologies.

java.sun.com/products/java-media/speech/forDevelopers/JSML
This site outlines the specifications for JSML, Sun Microsystem’s Java Speech Markup Language.
This language, like VoiceXML, helps improve accessibility for people with visual impairments.

ocfo.ed.gov/coninfo/clibrary/software.htm
This is the U.S. Department of Education’s Web site that outlines software accessibility requirements.
The site helps developers produce accessible products.

www.speech.cs.cmu.edu/comp.speech/SpeechLinks.html
The Speech Technology Hyperlinks page has over 500 links to sites related to computer-based speech
and speech-recognition tools.

www.islandnet.com/~tslemko
The Micro Consulting Limited site contains shareware speech-synthesis software.

www.chantinc.com/technology
This page is the Chant Web site, which discusses speech technology and how it works. Chant also
provides speech–synthesis and speech-recognition software.

searchmiddleware.techtarget.com/sdefinition/
0,,sid26_gci518993,00.html
This site provides definitions and information about several topics, including CallXML. Its thorough
definition of CallXML differentiates CallXML from VoiceXML, another technology developed by
Voxeo. The site also contains links to other published articles that discuss CallXML.



Chapter 24 Accessibility 1257

www.oasis-open.org/cover/callxmlv2.html
This site provides a comprehensive list of the CallXML tags, complete with a description of each tag.
The site also provides short examples on how to apply the tags in various applications.

web.ukonline.co.uk/ddmc/software.html
This site provides links to software designed for people with disabilities.

www.freedomscientific.com
Henter-Joyce is a division of Freedom Scientific that provides software for people with visual impair-
ments. It is the homepage of JAWS (Job Access with Sound).

www-3.ibm.com/able/
This is the homepage of IBM’s accessibility site. It provides information on IBM products and their
accessibility and discusses hardware, software and Web accessibility.

www.w3.org/TR/voice-tts-reqs
This page explains the speech-synthesis markup requirements for voice markup languages.

www.cast.org
CAST (Center for Applied Special Technology) offers software, including a valuable accessibility
checker, that can help individuals with disabilities use computers. The accessibility checker is a Web-
based program that validates the accessibility of Web sites.

Information on Disabilities

deafness.about.com/health/deafness/msubmenu6.htm
This is the home page of deafness.about.com. It provides a wealth of information on the history
of hearing loss, the current state of medical developments and other resources related to these topics.

www.trainingpost.org/3-2-inst.htm
This site presents a tutorial on the Gunning Fog Index. The Gunning Fog Index is a method of grading
text according to its readability.

laurence.canlearn.ca/English/learn/accessibility2001/neads/
index.shtml
INDIE stands for “Integrated Network of Disability Information and Education.” This site is home to
a search engine that helps users find information on disabilities.

www.wgbh.org/wgbh/pages/ncam/accesslinks.html
This page provides links to other accessibility pages across the Web.

SUMMARY
• Enabling a Web site to meet the needs of individuals with disabilities is an important issue.

• Enabling a Web site to meet the needs of individuals with disabilities is an issue relevant to all
business owners.

• Technologies such as voice activation, visual enhancers and auditory aids enable individuals with
disabilities to have access to the Web and to software applications.

• In 1997, the World Wide Web Consortium (W3C) launched the Web Accessibility Initiative
(WAI). The WAI is an attempt to make the Web more accessible; its mission is described at
www.w3.org/WAI.

• Accessibility refers to the level of usability of an application or Web site for people with disabili-
ties. Total accessibility is difficult to achieve because there are many different disabilities, lan-
guage barriers, and hardware and software inconsistencies. 

• The majority of Web sites are considered to be either partially or totally inaccessible to people with
visual, learning or mobility impairments. 



1258 Accessibility Chapter 24

• The WAI published the Web Content Accessibility Guidelines 1.0, which assign accessibility pri-
orities to a three-tier structure of checkpoints. The WAI currently is working on a draft of the Web
Content Accessibility Guidelines 2.0.

• One important WAI requirement is to ensure that every image, movie and sound on a Web site is
accompanied by a description that clearly defines the item’s  purpose; the description is called an
<alt> tag.

• Specialized user agents, such as screen readers (programs that allow users to hear what is being
displayed on their screen) and braille displays (devices that receive data from screen-reading soft-
ware and output the data as braille), allow people with visual impairments to access text-based in-
formation that normally is displayed on the screen.

• Using a screen reader to navigate a Web site can be time consuming and frustrating, because
screen readers are unable to interpret pictures and other graphical content that do not have alterna-
tive text.

• Including links at the top of each Web page provides easy access to the page’s main content.

• Web pages with large amounts of multimedia content are difficult for user agents to interpret un-
less they are designed properly. Images, movies and most non-XHTML objects cannot be read by
screen readers.

• Misused heading tags (<h1>) also present challenges to some Web users—particularly those who
cannot use a mouse.

• Web designers should avoid misuse of the alt attribute; it is intended to provide a short descrip-
tion of an XHTML object that might load improperly on some user agents. 

• The value of the longdesc attribute is a text-based URL, linked to a Web page, that describes
the image associated with the attribute. 

• When creating a Web page for the general public, it is important to consider the reading level at
which it is written. Web site designers can make their sites more readable through the use of short-
er words; some users may have difficulty understanding slang and other nontraditional language.

• Web designers often use frames to display more than one XHTML file at a time. Unfortunately,
frames often lack proper descriptions, which prevents users with text-based browsers and users
with visual impairments from navigating the Web site.

• The <noframes> tag allows the designer to offer alternative content to users whose browsers do
not support frames.

• VoiceXML has tremendous implications for people with visual impairments and for illiterate peo-
ple. VoiceXML, a speech recognition and synthesis technology, reads Web pages to users and un-
derstands words spoken into a microphone.

• A VoiceXML document is composed of a series of dialogs and subdialogs, which result in spoken
interaction between the user and the computer. VoiceXML is a voice-recognition technology.

• CallXML, a language created and supported by Voxeo, creates phone-to-Web applications. These
applications tailor themselves to the user’s input.

• When a user accesses a CallXML application, the incoming telephone call is referred to as a ses-
sion. A CallXML application can support multiple sessions that enable the application to receive
multiple telephone calls at any given time.

• A session terminates either when the user hangs up the telephone or when the CallXML applica-
tion invokes the hangup element.

• The contents of a CallXML application are inserted within the <callxml> tag.

• CallXML tags that perform similar tasks should be enclosed within the <block> and </block>
tags.



Chapter 24 Accessibility 1259

• To deploy a CallXML application, register with the Voxeo Community, which assigns a telephone
number to the application so that other users may access it.

• Voxeo’s logging feature enables developers to debug their telephone application by observing the
“conversation” between the user and the application.

• Braille keyboards are similar to standard keyboards, except that, in addition to having each key
labeled with the letter it represents, braille keyboards have the equivalent braille symbol printed
on the key. Most often, braille keyboards are combined with a speech synthesizer or a braille dis-
play, so users are able to interact with the computer to verify that their typing is correct.

• People with visual impairments are not the only beneficiaries of the effort being made to improve
markup languages. Individuals with hearing impairments also have a great number of tools to help
them interpret auditory information delivered over the Web. 

• Speech synthesis is another area in which research is being done to help people with disabilities.

• Open-source software for people with visual impairments already exists and is often superior to
most of its proprietary, closed-source counterparts. However, it still does not use the Linux OS to
its fullest extent.

• People with hearing impairments will soon benefit from what is called Synchronized Multimedia
Integration Language (SMIL). This markup language is designed to add extra tracks—layers of
content found within a single audio or video file. The additional tracks can contain data such as
closed captioning.

• EagleEyes, developed by researchers at Boston College (www.bc.edu/eagleeyes), is a sys-
tem that translates eye movements into mouse movements. Users move the mouse cursor by mov-
ing their eyes or head and are thereby able to control the computer.

• All of the accessibility options provided by Windows 2000 are available through the Accessibil-
ity Wizard. The Accessibility Wizard takes users step-by-step through all of the Windows ac-
cessibility features and configures their computers according to the chosen specifications.

• Microsoft Magnifier enlarges the section of your screen surrounding the mouse cursor.

• To solve problems with seeing the mouse cursor, Microsoft offers the ability to use larger cursors,
black cursors and cursors that invert objects underneath them.

• SoundSentry is a tool that creates visual signals when system events occur.

• ShowSounds adds captions to spoken text and other sounds produced by today’s multimedia-
rich software.

• StickyKeys is a program that helps users who have difficulty in pressing multiple keys at the
same time.

• BounceKeys forces the computer to ignore repeated keystrokes, solving the problem of acciden-
tally pressing the same key more than once.

• ToggleKeys causes an audible beep to alert users that they have pressed one of the lock keys (i.e.,
Caps Lock, Num Lock, or Scroll Lock).

• MouseKeys is a tool that uses the keyboard to emulate mouse movements.

• The Mouse Button Settings tool allows you to create a virtual left-handed mouse by swapping
the button functions.

• A timeout either enables or disables a certain action after the computer has idled for a specified
amount of time. A common example of a timeout is a screen saver.

• Default settings are loaded when the computer is rebooted.

• You can create a .acw file, which, when chosen, will automatically activate the saved accessibil-
ity settings on any Windows 2000 computer.



1260 Accessibility Chapter 24

• Microsoft Narrator is a text-to-speech program for people with visual impairments. It reads text,
describes the current desktop environment and alerts the user when certain Windows events occur.

TERMINOLOGY
<alt> tag Cascading Style Sheets (CSS) 
accessibility CAST eReader 
accessibility aids in Visual Studio .NET Center for Applied Special Technology 
Accessibility Wizard choice element of form tag 
Accessibility Wizard initialization option choice element of menu tag 
Accessibility Wizard mouse-cursor 
   adjustment tool 

<choice> tag (<choice>…</choice>)
clear element 

AccessibilityDescription property of  
   class Control

clearDigits element 
Clicker 4 

AccessibilityName property of  
   class Control

conference element 
CORDA Technologies 

AccessibleDescription property of 
   class Control

count attribute if prompt element 
CSS (Cascading Style Sheets) 

AccessibleName property of  
   class Control

CSS2 
default setting 

AccessibleRole enumeration Display Color Settings
AccessibleRole property of 
   class Control

Display Settings
D-link 

action element EagleEyes 
Active Accessibility Emacspeak 
Acts designed to ensure Internet access 
   for people with disabilities 

encoding declaration 
end of session message 

.acw <enumerate> tag (<enumerate>…
   </enumerate>)ADA (Americans with Disabilities Act) 

advanced accessibility settings in Microsoft 
   Internet Explorer 5.5 

event handler 
hello.xml

alt attribute isbn.xml
Americans with Disabilities Act (ADA) main.vxml
answer element publications.vxml
<assign> tag (<assign>…</assign>) withheaders.html
assign element withoutheaders.html
Aural Style Sheet <exit> tag (<exit>…</exit>)
AuralCSS Extra Keyboard Help
block element <filled> tag (<filled>…</filled>)
<block> tag (<block>…</block>) Font Size dialog 
BounceKeys <form> tag (<form>…</form>)
braille display format attribute 
braille keyboard frame 
<break> tag (<break>…</break>) Freedom Scientific 
call element get request type 
callerID attribute getDigits element 
CallXML global variable 
callxml element goto element 
CallXML elements <goto> tag (<goto>…</goto>)
CallXML hangup element <grammar> tag (<grammar>…

   </grammar>)caption element 



Chapter 24 Accessibility 1261

Gunning Fog Index recordAudio element 
headers attribute Redistribution Kit (RDK) 
Henter-Joyce run element 
Home Page Reader (HPR) screen reader 
HPR (Home Page Reader) scroll bar and window border size dialog 
HTTP (HyperText Transfer Protocol) SDK (Software Development Kit) 
<if> tag (<if>…</if>) sendEvent element 
img element session 
Inclusive Technology session attribute 
<input> sessionID 
IsAccessible property of class Control Set Automatic Timeouts
Java Development Kit (Java SDK 1.3) setting up window element size 
JAWS (Job Access with Sound) shortcut key 
JSML ShowSounds
linearized SMIL (Synchronized Multimedia 

   Integration Language) link element in VoiceXML 
<link> tag (<link>…</link>) Software Development Kit (SDK) 
local dialog SoundSentry
logging feature speech recognition 
logic element speech synthesis 
longdesc attribute speech synthesizer 
Lynx StickyKeys
maxDigits attribute style sheet 
maxTime attribute <subdialog> tag (<subdialog>…

   </subdialog>)<menu> tag (<menu>…</menu>)
method attribute submit attribute 
Microsoft Internet Explorer accessibility options summary attribute 
Microsoft Magnifier Synchronized Multimedia Integration 

   Language (SMIL) Microsoft Narrator 
Microsoft Narrator system caret 
Microsoft On-Screen Keyboard tab order 
Mouse Button Settings tab stop 
mouse cursor TabIndex property of class Control
Mouse Speed dialog table 
MouseHover event TabStop property of class Control
MouseKeys targetSessions attribute 
Narrator reading Notepad text termDigits attribute 
next attribute of choice element text element 
object text to speech (TTS) 
Ocularis th element 
onHangup element timeout 
onMaxSilence element timeout attribute of prompt element 
On-Screen Keyboard title tag (<title>…</title>)
onTermDigit element ToggleKeys
play element track 
post request type TTS (text-to-speech) engine 
prompt element in VoiceXML Type class 
<prompt> tag (<prompt>…</prompt>) user agent 
RDK (Redistribution Kit) value attribute 
readability <var> tag (<var>…</var>)



1262 Accessibility Chapter 24

SELF-REVIEW EXERCISES
24.1 Expand the following acronyms:

a) W3C.
b) WAI.
c) JAWS.
d) SMIL.
e) CSS.

24.2 Fill in the blanks in each of the following statements.
a) The highest priority of the Web Accessibility Initiative is to ensure that  ,

 and  are accompanied by descriptions that clearly define their
purposes.

b) Technologies such as ,  and  enable individuals with
disabilities to work in a large number of positions.

c) Although they are a great layout tool for presenting data,  are difficult for
screen readers to interpret and convey clearly to a user.

d) To make a frame accessible to individuals with disabilities, it is important to include
     tags on the page.

e) Blind people using computers often are assisted by  and .
f) CallXML is used to create  applications that allow individuals to receive and

send telephone calls.
g) A  tag must be associated with the <getDigits> tag.

24.3 State whether each of the following is true or false. If false, explain why.
a) Screen readers have no problem reading and translating images.
b) When writing Web pages for the general public, it is important to consider the reading

level of the context.
c) The <alt> tag helps screen readers describe the images on a Web page.
d) Blind people have been helped by the improvements made in speech-recognition tech-

nology more than any other group of people.
e) VoiceXML lets users interact with Web content using speech recognition and speech

synthesis technologies.
f) Elements such as onMaxSilence, onTermDigit and onMaxTime are event han-

dlers because they perform specified tasks when invoked.
g) The debugging feature of the Voxeo Account Manager assists developers in de-

bugging their CallXML applications.

var attribute WAI (Web Accessibility Initiative) 
version declaration WAI Quick Tip 
ViaVoice wait element 
Visual Studio accessibility guidelines Web Accessibility Initiative (WAI) 
Voice Server SDK 1.0 Web Content Accessibility Guidelines 1.0 
voice synthesis Web Content Accessibility Guidelines

   2.0 (Working Draft) voice technology 
VoiceXML World Wide Web Consortium (W3C) 
VoiceXML tags www.voxeo.com (Voxeo) 
Voxeo (www.voxeo.com) XHTML Recommendation 
Voxeo Account Manager XML GL (XML Guidelines) 
<vxml> tag (<vxml>…</vxml>) XML Guidelines (XML GL) 1930 



Chapter 24 Accessibility 1263

ANSWERS TO SELF-REVIEW EXERCISES
24.1 a) World Wide Web Consortium. b) Web Accessibility Initiative. c) Job Access with Sound.
d) Synchronized Multimedia Integration Language. e) Cascading Style Sheets.

24.2 a) image, movie, sound. b) voice activation, visual enhancers and auditory aids. c) tables.
d) <noframes>. e) braille displays, braille keyboards. f) phone-to-Web. g) <onTermDigit>.

24.3 a) False. Screen readers cannot directly interpret images. If the programmer includes an alt
attribute inside the <img> tag, the screen reader reads this description to the user. b) True. c) True.
d) False. Although speech-recognition technology has had a large impact on blind people, speech-rec-
ognition technology has had also a large impact on people who have trouble typing. e) True. f) True.
g) False. The logging feature assists developers in debugging their CallXML application.

EXERCISES
24.4 Insert XHTML markup into each segment to make the segment accessible to someone with
disabilities. The contents of images and frames should be apparent from the context and filenames.

a) <img src = "dogs.jpg" width = "300" height = "250" />
b) <table width = "75%">

   <tr><th>Language</th><th>Version</th></tr>
   <tr><td>XHTML</td><td>1.0</td></tr>
   <tr><td>Perl</td><td>5.6.0</td></tr>
   <tr><td>Java</td><td>1.3</td></tr>
</table>

c) <map name = "links">
<area href = "index.html" shape = "rect"

      coords = "50, 120, 80, 150" />
<area href = "catalog.html" shape = "circle"

      coords = "220, 30" />
</map>
<img src = "antlinks.gif" width = "300" height = "200"

usemap = "#links" />

24.5 Define the following terms:
a) Action element.
b) Gunning Fog Index.
c) Screen reader.
d) Session.
e) Web Accessibility Initiative (WAI).

24.6 Describe the three-tier structure of checkpoints (priority one, priority two and priority three)
set forth by the WAI.

24.7 Why do misused <h1> heading tags create problems for screen readers?

24.8 Use CallXML to create a voice-mail system that plays a voice-mail greeting and records a
message. Have friends and classmates call your application and leave a message.



A
Operator Precedence 

Chart

Operators are shown in decreasing order of precedence from top to bottom with each level of
precedence separated by a horizontal line. Visual Basic operators associate from left to right.

Operator Type

^ exponentiation

+
-

unary plus
unary minus

*
/

multiplication
division

\ integer division

Mod modulus

+
-

addition
subtraction

& concatenation

=
<>
<
<=
>
>=
Like
Is
TypeOf

relational is equal to
relational is not equal to
relational less than
relational less than or equal to
relational greater than
relational greater than or equal to
pattern matching
reference comparison
type comparison

Fig. A.1 Operator precedence chart (part 1 of 2).



Appendix A Operator Precedence Chart 1265

Not logical negation

And
AndAlso

logical AND without short-circuit evaluation
logical AND with short-circuit evaluation

Or
OrElse

logical inclusive OR without short-circuit evaluation
logical inclusive OR with short-circuit evaluation

Xor logical exclusive OR

Operator Type

Fig. A.1 Operator precedence chart (part 2 of 2).



B
Number Systems

Objectives
• To understand basic number system concepts such as 

base, positional value and symbol value.
• To understand how to work with numbers represented 

in the binary, octal and hexadecimal number systems
• To be able to abbreviate binary numbers as octal 

numbers or hexadecimal numbers.
• To be able to convert octal numbers and hexadecimal 

numbers to binary numbers.
• To be able to covert back and forth between decimal 

numbers and their binary, octal and hexadecimal 
equivalents.

• To understand binary arithmetic and how negative 
binary numbers are represented using two’s 
complement notation.

Here are only numbers ratified.
William Shakespeare

Nature has some sort of arithmetic-geometrical coordinate 
system, because nature has all kinds of models. What we 
experience of nature is in models, and all of nature’s models 
are so beautiful.
It struck me that nature’s system must be a real beauty, 
because in chemistry we find that the associations are always 
in beautiful whole numbers—there are no fractions.
Richard Buckminster Fuller



Appendix B Number Systems 1267

B.1 Introduction
In this appendix, we introduce the key number systems that programmers use, especially

when they are working on software projects that require close interaction with “machine-
level” hardware. Projects like this include operating systems, computer networking software,
compilers, database systems, and applications requiring high performance. 

When we write an integer such as 227 or –63 in a program, the number is assumed to
be in the decimal (base 10) number system. The digits in the decimal number system are 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—one less than the
base of 10. Internally, computers use the binary (base 2) number system. The binary
number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit
is 1—one less than the base of 2.  Fig. B.1 summarizes the digits used in the binary, octal,
decimal and hexadecimal number systems.

As we will see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages and in high-level languages that enable pro-
grammers to reach down to the “machine level,” find it cumbersome to work with binary
numbers. So two other number systems the octal number system (base 8) and the hexadec-
imal number system (base 16)—are popular primarily because they make it convenient to
abbreviate binary numbers. 

In the octal number system, the digits range from 0 to 7. Because both the binary
number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits in decimal. 

The hexadecimal number system poses a problem because it requires sixteen digits—
a lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters, and numbers like FFE consisting solely of letters. Occasionally, a
hexadecimal number spells a common word such as FACE or FEED—this can appear
strange to programmers accustomed to working with numbers. Fig. B.2 summarizes each
of the number systems.

Outline

B.1 Introduction
B.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal 

Numbers
B.3 Converting Octal Numbers and Hexadecimal Numbers to Binary 

Numbers
B.4 Converting from Binary, Octal or Hexadecimal to Decimal
B.5 Converting from Decimal to Binary, Octal, or Hexadecimal
B.6 Negative Binary Numbers: Two’s Complement Notation

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • 
Exercises



1268 Number Systems Appendix B

Each of these number systems uses positional notation—each position in which a digit
is written has a different positional value. For example, in the decimal number 937 (the 9,
the 3, and the 7 are referred to as symbol values), we say that the 7 is written in the ones
position, the 3 is written in the tens position, and the 9 is written in the hundreds position.
Notice that each of these positions is a power of the base (base 10), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. B.3).

For longer decimal numbers, the next positions to the left would be the thousands posi-
tion (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hundred-
thousands position (10 to the 5th power), the millions position (10 to the 6th power), the
ten-millions position (10 to the 7th power) and so on.

In the binary number 101, we say that the rightmost 1 is written in the ones position,
the 0 is written in the twos position, and the leftmost 1 is written in the fours position.
Notice that each of these positions is a power of the base (base 2), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. B.4).

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position (2
to the 5th power), the sixty-fours position (2 to the 6th power), and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is written
in the eights position, and the 4 is written in the sixty-fours position. Notice that each of
these positions is a power of the base (base 8), and that these powers begin at 0 and increase
by 1 as we move left in the number (Fig. B.5).

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10) 

B (decimal value of 11)

C (decimal value of 12)

D (decimal value of 13)

E (decimal value of 14)

F (decimal value of 15)

Fig. B.1 Digits of the binary, octal, decimal and hexadecimal number systems.



Appendix B Number Systems 1269

For longer octal numbers, the next positions to the left would be the five-hundred-and-
twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8 to the
4th power), the thirty-two-thousand-seven-hundred-and-sixty eights position (8 to the 5th
power), and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position, the
D is written in the sixteens position, and the 3 is written in the two-hundred-and-fifty-sixes
position. Notice that each of these positions is a power of the base (base 16), and that these
powers begin at 0 and increase by 1 as we move left in the number (Fig. B.6).

For longer hexadecimal numbers, the next positions to the left would be the four-thou-
sand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-hun-
dred-and-thirty-six position (16 to the 4th power), and so on. 

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. B.2 Comparison of the binary, octal, decimal and hexadecimal number 
systems.

Positional values in the decimal number system

Decimal digit 9 3 7 

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a 
power of the base (10)

102 101 100

Fig. B.3 Positional values in the decimal number system.

Positional values in the binary number system

Binary digit 1 0 1 

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a 
power of the base (2)

22 21 20

Fig. B.4 Positional values in the binary number system.



1270 Number Systems Appendix B

B.2 Abbreviating Binary Numbers as Octal Numbers and 
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure B.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a 
power of the base (8)

82 81 80

Fig. B.5 Positional values in the octal number system.

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-and-
fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a 
power of the base (16)

162 161 160

Fig. B.6 Positional values in the hexadecimal number system.

Decimal 
number 

Binary 
representation

Octal 
representation 

Hexadecimal 
representation

 0     0  0  0

 1     1  1  1

 2    10  2  2

 3    11  3  3

 4   100  4  4

 5   101  5  5

 6   110  6  6

 7   111  7  7

Fig. B.7 Decimal, binary, octal, and hexadecimal equivalents (part 1 of 2).



Appendix B Number Systems 1271

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadecimal
(8 and 16 respectively) are powers of the base of the binary number system (base 2). Con-
sider the following 12-digit binary number and its octal and hexadecimal equivalents. See
if you can determine how this relationship makes it convenient to abbreviate binary num-
bers in octal or hexadecimal. The answer follows the numbers.

Binary Number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

To see how the binary number converts easily to octal, simply break the 12-digit binary
number into groups of three consecutive bits each, and write those groups over the corre-
sponding digits of the octal number as follows

100 011 010 001
4 3 2 1

Notice that the octal digit you have written under each group of thee bits corresponds
precisely to the octal equivalent of that 3-digit binary number as shown in Fig. B.7.

The same kind of relationship may be observed in converting numbers from binary to
hexadecimal. In particular, break the 12-digit binary number into groups of four consecu-
tive bits each and write those groups over the corresponding digits of the hexadecimal
number as follows

1000 1101 0001
8 D 1

Notice that the hexadecimal digit you wrote under each group of four bits corresponds
precisely to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. B.7.

 8  1000 10  8

 9  1001 11  9

10  1010 12  A

11  1011 13  B

12  1100 14  C

13  1101 15  D

14  1110 16  E

15  1111 17  F

16 10000 20 10

Decimal 
number 

Binary 
representation

Octal 
representation 

Hexadecimal 
representation

Fig. B.7 Decimal, binary, octal, and hexadecimal equivalents (part 2 of 2).



1272 Number Systems Appendix B

B.3 Converting Octal Numbers and Hexadecimal Numbers to 
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting these groups as
their equivalent octal digit values or hexadecimal digit values. This process may be used in
reverse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as its
3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101, and the 3 as its 3-
digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101, and the 5 as its 4-digit binary equivalent 0101 to form the 16-
digit 1111101011010101.

B.4 Converting from Binary, Octal or Hexadecimal to Decimal
Because we are accustomed to working in decimal, it is often convenient to convert a bina-
ry, octal, or hexadecimal number to decimal to get a sense of what the number is “really”
worth. Our diagrams in Section B.1 express the positional values in decimal. To convert a
number to decimal from another base, multiply the decimal equivalent of each digit by its
positional value, and sum these products. For example, the binary number 110101 is con-
verted to decimal 53 as shown in Fig. B.8.

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values as shown in Fig. B.9.

Converting a binary number to decimal

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=32 1*16=16 0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0 + 1 = 53

Fig. B.8 Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. B.9 Converting an octal number to decimal.



Appendix B Number Systems 1273

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this time
using appropriate hexadecimal positional values as shown in Fig. B.10.

B.5 Converting from Decimal to Binary, Octal, or Hexadecimal
The conversions of the previous section follow naturally from the positional notation
conventions. Converting from decimal to binary, octal or hexadecimal also follows these
conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Positional values: 64 32 16 8 4 2 1

Then we discard the column with positional value 64 leaving:

Positional values: 32 16 8 4 2 1

Next we work from the leftmost column to the right. We divide 32 into 57 and observe
that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column. We divide
16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and write 1 in the 16
column. We divide 8 into 9 and observe that there is one 8 in 9 with a remainder of 1. The
next two columns each produce quotients of zero when their positional values are divided
into 1 so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1 so we write 1 in the 1
column. This yields:

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Positional values: 512 64 8 1

Then we discard the column with positional value 512, yielding:

Positional values: 64 8 1

Converting a hexadecimal number to decimal

Positional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=40960 D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. B.10 Converting a hexadecimal number to decimal.



1274 Number Systems Appendix B

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and write
4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in 7 with
no remainder so we write 7 in the 1 column. This yields:

Positional values: 64 8 1
Symbol values: 1 4 7

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write

Positional values: 4096 256 16 1

Then we discard the column with positional value 4096, yielding:

Positional values: 256 16 1

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a remainder
of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that there are
seven 1s in 7 with no remainder so we write 7 in the 1 column. This yields:

Positional values: 256 16 1
Symbol values: 1 7 7

and thus decimal 375 is equivalent to hexadecimal 177.

B.6 Negative Binary Numbers: Two’s Complement Notation
The discussion in this appendix has been focussed on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation. First
we explain how the two’s complement of a binary number is formed, and then we show
why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

Dim value As Integer = 13

The 32-bit representation of value is

00000000 00000000 00000000 00001101

To form the negative of value we first form its one’s complement by applying Visual Ba-
sic’s Xor operator:

onesComplement = value Xor &H7FFFFFFF

Internally, onesComplement is now value with each of its bits reversed—ones be-
come zeros and zeros become ones as follows:



Appendix B Number Systems 1275

value:
00000000 00000000 00000000 00001101

onesComplement:
11111111 11111111 11111111 11110010

To form the two’s complement of value we simply add one to value’s one’s comple-
ment. Thus

Two’s complement of value:
11111111 11111111 11111111 11110011

Now if this is in fact equal to –13, we should be able to add it to binary 13 and obtain a
result of 0. Let us try this:

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011
------------------------------------
 00000000 00000000 00000000 00000000

The carry bit coming out of the leftmost column is discarded and we indeed get zero as a
result. If we add the one’s complement of a number to the number, the result would be all
1s. The key to getting a result of all zeros is that the twos complement is 1 more than the
one’s complement. The addition of 1 causes each column to add to 0 with a carry of 1. The
carry keeps moving leftward until it is discarded from the leftmost bit, and hence the result-
ing number is all zeros.

Computers actually perform a subtraction such as 

x = a - value

by adding the two’s complement of value to a as follows:

x = a + (onesComplement + 1)

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually
the negative of value, then adding the two’s complement of value to a should produce the
result 14. Let us try this:

a (i.e., 27)   00000000 00000000 00000000 00011011
+(onesComplement + 1) +11111111 11111111 11111111 11110011

------------------------------------
 00000000 00000000 00000000 00001110

which is indeed equal to 14.

SUMMARY
• When we write an integer such as 19 or 227 or –63 in a Visual Basic program, the number is au-

tomatically assumed to be in the decimal (base 10) number system. The digits in the decimal num-
ber system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—one
less than the base of 10. 

• Internally, computers use the binary (base 2) number system. The binary number system has only
two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit is 1—one less than the base of 2. 



1276 Number Systems Appendix B

• The octal number system (base 8) and the hexadecimal number system (base 16) are popular pri-
marily because they make it convenient to abbreviate binary numbers.

• The digits of the octal number system range from 0 to 7. 

• The hexadecimal number system poses a problem because it requires sixteen digits—a lowest digit
of 0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16). By
convention, we use the letters A through F to represent the hexadecimal digits corresponding to
decimal values 10 through 15. 

• Each number system uses positional notation—each position in which a digit is written has a dif-
ferent positional value. 

• A particularly important relationship that both the octal number system and the hexadecimal num-
ber system have to the binary system is that the bases of octal and hexadecimal (8 and 16 re-
spectively) are powers of the base of the binary number system (base 2). 

• To convert an octal number to a binary number, simply replace each octal digit with its three-digit
binary equivalent.

• To convert a hexadecimal number to a binary number, simply replace each hexadecimal digit with
its four-digit binary equivalent.

• Because we are accustomed to working in decimal, it is convenient to convert a binary, octal or
hexadecimal number to decimal to get a sense of the number’s “real” worth. 

• To convert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value, and sum these products. 

• Computers represent negative numbers using two’s complement notation. 

• To form the negative of a value in binary, first form its one’s complement by applying Visual Ba-
sic’s Xor operator. This reverses the bits of the value. To form the two’s complement of a value,
simply add one to the value’s one’s complement. 

TERMINOLOGY

SELF-REVIEW EXERCISES
B.1 The bases of the decimal, binary, octal, and hexadecimal number systems are ,

, , and  respectively.

B.2 In general, the decimal, octal, and hexadecimal representations of a given binary number
contain (more/fewer) digits than the binary number contains.

B.3 (True/False) A popular reason for using the decimal number system is that it forms a conve-
nient notation for abbreviating binary numbers simply by substituting one decimal digit per group of
four binary bits.

B.4 The (octal / hexadecimal / decimal) representation of a large binary value is the most concise
(of the given alternatives).

B.5 (True/False) The highest digit in any base is one more than the base.

base digit
base 2 number system hexadecimal number system
base 8 number system negative value
base 10 number system octal number system
base 16 number system one’s complement notation
binary number system positional notation
bitwise complement operator (~) positional value
conversions symbol value
decimal number system two’s complement notation



Appendix B Number Systems 1277

B.6 (True/False) The lowest digit in any base is one less than the base.

B.7 The positional value of the rightmost digit of any number in either binary, octal, decimal, or
hexadecimal is always .

B.8 The positional value of the digit to the left of the rightmost digit of any number in binary,
octal, decimal, or hexadecimal is always equal to .

B.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100  10   1
hexadecimal  ... 256 ... ...
binary  ... ...  ... ...
octal  512 ...   8 ...

B.10 Convert binary 110101011000 to octal and to hexadecimal.

B.11 Convert hexadecimal FACE to binary.

B.12 Convert octal 7316 to binary.

B.13 Convert hexadecimal 4FEC to octal. (Hint: First convert 4FEC to binary then convert that
binary number to octal.)

B.14 Convert binary 1101110 to decimal.

B.15 Convert octal 317 to decimal.

B.16 Convert hexadecimal EFD4 to decimal.

B.17 Convert decimal 177 to binary, to octal, and to hexadecimal.

B.18 Show the binary representation of decimal 417. Then show the one’s complement of 417, and
the two’s complement of 417. 

B.19 What is the result when the one’s complement of a number is added to itself?

SELF-REVIEW ANSWERS
B.1 10, 2, 8, 16.

B.2 Fewer.

B.3 False.

B.4 Hexadecimal.

B.5 False. The highest digit in any base is one less than the base.

B.6 False. The lowest digit in any base is zero.

B.7 1 (the base raised to the zero power).

B.8 The base of the number system.

B.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal 4096 256 16 1
binary    8   4  2 1
octal  512  64  8 1

B.10 Octal 6530; Hexadecimal D58.

B.11 Binary 1111 1010 1100 1110.



1278 Number Systems Appendix B

B.12 Binary 111 011 001 110.

B.13 Binary 0 100 111 111 101 100; Octal 47754.

B.14 Decimal 2+4+8+32+64=110.

B.15 Decimal 7+1*8+3*64=7+8+192=207.

B.16 Decimal 4+13*16+15*256+14*4096=61396.

B.17 Decimal 177
to binary:

256 128 64 32 16 8 4 2 1
128 64 32 16 8 4 2 1
(1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)
10110001

to octal: 

512 64 8 1
64 8 1
(2*64)+(6*8)+(1*1)
261

to hexadecimal:

256 16 1
16 1
(11*16)+(1*1)
(B*16)+(1*1)
B1

B.18 Binary:

512 256 128 64 32 16 8 4 2 1
256 128 64 32 16 8 4 2 1
(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+
(1*1)
110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

110100001
001011111
---------
000000000

B.19 Zero.

EXERCISES
B.20 Some people argue that many of our calculations would be easier in the base 12 number sys-
tem because 12 is divisible by so many more numbers than 10 (for base 10). What is the lowest digit
in base 12? What might the highest symbol for the digit in base 12 be? What are the positional values
of the rightmost four positions of any number in the base 12 number system?



Appendix B Number Systems 1279

B.21 How is the highest symbol value in the number systems we discussed related to the positional
value of the first digit to the left of the rightmost digit of any number in these number systems?

B.22 Complete the following chart of positional values for the rightmost four positions in each of
the indicated number systems:

decimal 1000 100 10   1
base 6 ... ...  6 ...
base 13 ...  169 ... ...
base 3  27 ... ... ...

B.23 Convert binary 100101111010 to octal and to hexadecimal.

B.24 Convert hexadecimal 3A7D to binary.

B.25 Convert hexadecimal 765F to octal. (Hint: First convert 765F to binary, then convert that bi-
nary number to octal.)

B.26 Convert binary 1011110 to decimal.

B.27 Convert octal 426 to decimal.

B.28 Convert hexadecimal FFFF to decimal.

B.29 Convert decimal 299 to binary, to octal, and to hexadecimal.

B.30 Show the binary representation of decimal 779. Then show the one’s complement of 779, and
the two’s complement of 779.

B.31 What is the result when the two’s complement of a number is added to itself?

B.32 Show the two’s complement of integer value –1 on a machine with 32-bit integers.



C
Career Opportunities

Objectives
• To explore the various online career services.
• To examine the advantages and disadvantages of 

posting and finding jobs online.
• To review the major online career services Web sites 

available to job seekers.
• To explore the various online services available to 

employers seeking to build their workforces. 
What is the city but the people? 
William Shakespeare

A great city is that which has the greatest men and women,
If it be a few ragged huts it is still the greatest city in the 
whole world. 
Walt Whitman

To understand the true quality of people, you must look into 
their minds, and examine their pursuits and aversions. 
Marcus Aurelius

The soul is made for action, and cannot rest till it be 
employed. Idleness is its rust. Unless it will up and think and 
taste and see, all is in vain. 
Thomas Traherne



Appendix C Career Opportunities 1281

C.1 Introduction
There are approximately 40,000 career-advancement services on the Internet today.1 These
services include large, comprehensive job sites, such as Monster.com (see the upcoming
Monster.com feature), as well as interest-specific job sites such as JustJava-
Jobs.com. Companies can reduce the amount of time spent searching for qualified em-
ployees by building recruiting features on their Web sites or establishing accounts with
career sites. This results in a larger pool of qualified applicants, as online services can au-
tomatically select and reject resumes based on user-designated criteria. Online interviews,
testing services and other resources also expedite the recruiting process. 

Applying for a position online is a relatively new method of exploring career opportu-
nities. Online recruiting services streamline the process and allow job seekers to concen-
trate their energies in careers that are of interest to them. Job seekers can explore
opportunities according to geographic location, position, salary or benefits packages.

Job seekers can learn how to write resumes and cover letters, post them online and
search through job listings to find the jobs that best suit their needs. Entry-level positions,
or positions commonly sought by individuals who are entering a specific field or the job
market for the first time; contracting positions; executive-level positions and middle-man-
agement-level positions are all available on the Web. 

Outline

C.1 Introduction
C.2 Resources for the Job Seeker
C.3 Online Opportunities for Employers

C.3.1 Posting Jobs Online
C.3.2 Problems with Recruiting on the Web
C.3.3 Diversity in the Workplace

C.4 Recruiting Services
C.5 Career Sites

C.5.1 Comprehensive Career Sites
C.5.2 Technical Positions
C.5.3 Wireless Positions
C.5.4 Contracting Online
C.5.5 Executive Positions
C.5.6 Students and Young Professionals
C.5.7 Other Online Career Services

C.6 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises • 
Works Cited 



1282 Career Opportunities Appendix C

 Job seekers will find a number of time-saving features when searching for jobs online.
These include storing and distributing resumes digitally, e-mail notification of possible
positions, salary and relocation calculators, job coaches, self-assessment tools and informa-
tion on continuing education.

In this chapter, we explore online career services from the employer and employee’s
perspective. We suggest sites on which applications can be submitted, jobs can be searched
and applicants can be reviewed. We also review services that build recruiting pages directly
into e-businesses.

C.2 Resources for the Job Seeker
Finding a job online can greatly reduce the amount of time spent applying for a position.
Instead of searching through newspapers and mailing resumes, job seekers can request a
specific positions in specific industries through search engines. Some sites allow job seek-
ers to setup intelligent agents to find jobs that meet their requirements. Intelligent agents
are programs that search and arrange large amounts of data and report answers based on
that data. When the agent finds a potential match, it sends it to the job seeker’s inbox. Re-
sumes can be stored digitally, customized quickly to meet job requirements and e-mailed
instantaneously. A potential candidate also can learn more about a company by visiting its
Web site. Most employment sites are free to job seekers. These sites typically generate their
revenues by charging employers for posting job opportunities and by selling advertising
space on their Web pages (see the Monster.com feature). 

Career services, such as FlipDog.com, search a list of employer job sites to find
positions. By searching links to employer Web sites, FlipDog.com is able to identify
positions from companies of all sizes. This feature enables job seekers to find jobs that
employers may not have posted outside the corporation’s Web site. 

Monster.com

Super Bowl ads and effective marketing have made Monster.com one of the most
recognizable online brands (see Fig. C.1). In fact, in the 24 hours following Super Bowl
XXXIV, 5 million job searches occurred on Monster.com.2 The site allows people
looking for jobs to post their resumes, search job listings, read advice and information
about the job-search process and take proactive steps to improve their careers. These
services are free to job seekers. Employers can post job listings, search resume databas-
es and become featured employers. 

Posting a resume at Monster.com is simple and free. Monster.com has a
resume builder that allows users to post a resume to its site in 15–30 minutes. Each user
can store up to 5 resumes and cover letters on the Monster.com server. Some com-
panies offer their employment applications directly through the Monster.com site.
Monster.com has job postings in every state and all major categories. Users can
limit access to their personal identification information. As one of the leading
recruiting sites on the Web, Monster.com is a good place to begin a job search or to
find out more about the search process.



Appendix C Career Opportunities 1283

Job seekers can visit FlipDog.com and choose, by state, the area in which they are
looking for positions. Applicants also can conduct worldwide searches. After a user selects
a region, FlipDog.com requests the user to choose a job category containing several spe-
cific positions. The user’s choice causes a list of local employers to appear. The user can
specify an employer or request that FlipDog.com search the employment databases for
jobs offered by all employers (see Fig. C.2).

Other services, such as employment networks, also help job seekers in their search.
Sites such as Vault.com (see the Vault.com feature) and WetFeet.com allow job
seekers to post questions in designated chat rooms or on electronic bulletin boards about
employers and positions.

C.3 Online Opportunities for Employers
Recruiting on the Internet provides several benefits over traditional recruiting. For exam-
ple, Web recruiting reaches a much larger audience than posting an advertisement in a local
newspaper. Given the breadth of the services provided by most online career services Web
sites, the cost of posting online can be considerably less than posting positions through tra-
ditional means. Even newspapers, which depend greatly on career opportunity advertising,
are starting online career sites.3

Fig. C.1 Monster.com home page. (Courtesy of Monster.com.]

Monster.com (Cont.)



1284 Career Opportunities Appendix C

Fig. C.2 FlipDog.com job search. (Courtesy of Flipdog.com.)

Vault.com: Finding the Right Job on the Web4

Vault.com allows potential employees to seek out additional, third-party informa-
tion for over 3000 companies. By visiting the Insider Research page, Web users have
access to a profile on the company of their choice, as long as it exists in Vault.com’s
database. In addition to Vault.com’s profile, there is a link to additional commentary
by company employees. Most often anonymous, these messages can provide prospec-
tive employees with potentially valuable decision-making information. However, users
must consider the integrity of the source. For example, a disgruntled employee may
leave a posting that is not an accurate representation of the corporate culture of his or
her company.

The Vault.com Electronic Watercooler™ is a message board that allows visi-
tors to post stories, questions and concerns and to advise employees and job seekers. In
addition, the site provides e-newsletters and feature stories designed to help job seekers
in their search. Individuals seeking information on business, law and graduate schools
can also find information on Vault.com.

Job-posting and career-advancement services for the job seeker are featured on
Vault.com. These services include VaultMatch, a career service that e-mails job
postings as requested, and Salary Wizard™, which helps job seekers determine the
salary they are worth. Online guides with advice for fulfilling career ambitions are also
available.



Appendix C Career Opportunities 1285

e-Fact C.1
According to Forrester Research, 33 percent of today’s average company’s hiring budget
goes toward online career services, while the remaining 66 percent is used for traditional
recruiting mechanisms. Online use is expected to increase to 42 percent by 2004, while tra-
ditional mechanisms may be reduced to 10 percent.5 C.1

Generally, jobs posted online are viewed by a larger number of job seekers than jobs
posted through traditional means. However, it is important not to overlook the benefits of
combining online efforts with human-to-human interaction. There are many job seekers
who are not yet comfortable with the process of finding a job online. Often, online
recruiting is used as a means of freeing up a recruiter’s time for the interviewing process
and final selection.

e-Fact C.2
Cisco Systems cites a 39 percent reduction in cost-per-hire expenses, and a 60 percent re-
duction in the time spent hiring.6 C.2

C.3.1 Posting Jobs Online

When searching for job candidates online, there are many things employers need to consid-
er. The Internet is a valuable tool for recruiting, but one that takes careful planning to ac-
quire the best results. It provides a good supplementary tool, but should not be considered
the complete solution for filling positions. Web sites, such as WebHire (www.web-
hire.com), enhance a company’s online employment search (see the WebHire feature). 

There are a variety of sites that allow employers to post jobs online. Some of these sites
require a fee, which generally runs between $100–$200. Postings typically remain on the
Web site for 30–60 days. Employers should be careful to post to sites that are most likely
to be visited by eligible candidates. As we discovered in the previous section, there are a
variety of online career services focused on specific industries, and many of the larger,
more comprehensive sites have categorized their databases by job category. 

When designing a posting, the recruiter should consider the vast number of postings
already on the Web. Defining what makes the job position unique, including information
such as benefits and salary, might convince a qualified candidate to further investigate the
position (see Fig. C.3).7

HotJobs.com career postings are cross-listed on a variety of other sites, thus
increasing the number of potential employees who see the job listings. Like Mon-
ster.com and jobfind.com, HotJobs.com requires a fee per listing. Employers
also have the option of becoming HotJobs.com members. Employers can gain access to
HotJob’s Private Label Job Boards (private corporate employment sites), online recruiting
technology and online career fairs. 

Employers can also use the site. HR Vault, a feature of Vault.com, provides
employers with a free job-posting site. It offers career-management advice, employer-
to-employee relationship management and recruiting resources. 

Vault.com: Finding the Right Job on the Web4 (Cont.)



1286 Career Opportunities Appendix C

Boston Herald Job Find (www.jobfind.com) also charges employers to post on its
site. The initial fee entitles the employer to post up to three listings. Employers have no lim-
itations on the length of their postings.

Other Web sites providing employers with employee recruitment services include
CareerPath.com, America’s Job Bank (www.ajb.dni.us/employer),
CareerWeb (www.cweb.com), Jobs.com and Career.com.

WebHire™8

Designed specifically for recruiters and employers, WebHire is a multifaceted service
that provides employers with end-to-end recruiting solutions. The service offers job-
posting services as well as candidate searches. The most comprehensive of the services,
WebHire™ Enterprise, locates and ranks candidates found through resume-scanning
mechanisms. Clients will also receive a report indicating the best resources for their
search. Other services available through the WebHire™ Employment Services Network
include preemployment screening, tools for assessing employees’ skill levels and in-
formation on compensation packages. An employment law advisor helps organizations
design interview questions. 

WebHire™ Agent is an intelligent agent that searches for qualified applicants
based on job specifications. When WebHire Agent identifies a potential candidate, an
e-mail is sent to the candidate to generate interest. WebHire Agent then ranks appli-
cants according to the skills information it gains from the Web search; the information
is stored so that new applicants are distinguished from those who have already received
an e-mail from the site. 

Yahoo!® Resumes, a feature of WebHire, allows recruiters to find potential
employees by typing in keywords on the Yahoo! Resumes search engine. Employers
can purchase a year’s membership to the recruiting solution for a flat fee; there are no
per-use charges. 

Job Seeker’s Criteria 

Position (responsibilities)

Salary

Location

Benefits (health, dental, stock options)

Advancement

Time Commitment

Training Opportunities

Tuition Reimbursement

Corporate Culture

Fig. C.3 List of a job seeker’s criteria.



Appendix C Career Opportunities 1287

C.3.2 Problems with Recruiting on the Web
The large number of applicants presents a challenge to both job seekers and employers.
On many recruitment sites, matching resumes to positions is conducted by resume-filter-
ing software. The software scans a pool of resumes for keywords that match the job de-
scription. While this software increases the number of resumes that receive attention, it
is not a foolproof system. For example, the resume-filtering software might overlook
someone with similar skills to those listed in the job description, or someone whose abil-
ities would enable them to learn the skills required for the position. Digital transmissions
can also create problems because certain software platforms are not always acceptable by
the recruiting software. This sometimes results in an unformatted transmission, or a
failed transmission.

A lack of confidentiality is another disadvantage of online career services. In many
cases, a job candidate will want to search for job opportunities anonymously. This reduces
the possibility of offending the candidate’s current employer. Posting a resume on the Web
increases the likelihood that the candidate’s employer might come across it when recruiting
new employees. The traditional method of mailing resumes and cover letters to potential
employers does not impose the same risk.

According to recent studies, the number of individuals researching employment posi-
tions through traditional means, such as referrals, newspapers and temporary agencies, far
outweighs the number of job seekers researching positions through the Internet.9 Optimists
feel, however, that this disparity is largely due to the early stages of e-business develop-
ment. Given time, online career services will become more refined in their posting and
searching capabilities, decreasing the amount of time it takes for a job seeker to find jobs
and employers to fill positions. 

C.3.3 Diversity in the Workplace

Every workplace inevitably develops its own culture. Responsibilities, schedules, dead-
lines and projects all contribute to a working environment. Perhaps the most defining ele-
ments of a corporate culture are the employees. For example, if all employees were to have
the same skills, same backgrounds and the same ideas, the workplace would lack diversity.
It also might lack creativity and enthusiasm. One way to increase the dynamics of an orga-
nization is to employ people of different backgrounds and cultures. 

The Internet hosts demographic-specific sites for employers seeking to increase diver-
sity in the workplace. By recruiting people from different backgrounds, new ideas and per-
spectives are brought forth, helping businesses meet the needs of a larger, more diverse
target audience.10

Blackvoices.com and hirediversity.com are demographic-specific Web
sites. BlackVoices™, which functions primarily as a portal (a site offering news, sports and
weather information, as well as Web searches), features job searching capabilities and the
ability for prospective employees to post resumes. HireDiversity is divided into several cat-
egories, including opportunities for African Americans, Hispanics and women. Other
online recruiting services place banner advertisements on ethnic Web sites for companies
seeking diverse workforces. 



1288 Career Opportunities Appendix C

The Diversity Directory (www.mindexchange.com) offers international career-
searching capabilities. Users selecting the Diversity site can find job opportunities, infor-
mation and additional resources to help them in their career search. The site can be searched
according to demographics (African American, Hispanic, alternative lifestyle, etc.) or by
subject (employer, position, etc.) via hundreds of links. Featured sites include Bilin-
gualJobs.com, Latin World and American Society for Female Entrepreneurs.

Many sites have sections dedicated to job seekers with disabilities. In addition to pro-
viding job-searching capabilities, these sites include additional resources, such as equal
opportunity documents and message boards. The National Business and Disability Council
(NBDC) provides employers with integration and accessibility information for employing
people with disabilities, and the site also lists opportunities for job seekers.

C.4 Recruiting Services
There are many services on the Internet that help employers match individuals to positions.
The time saved by conducting preliminary searches on the Internet can be dedicated to in-
terviewing qualified candidates and making the best matches possible.

Advantage Hiring, Inc. (www.advantagehiring.com) provides employers with
a resume-screening service. When a prospective employee submits a resume for a partic-
ular position, Advantage Hiring, Inc. presents Net-Interview™, a small questionnaire to
supplement the information presented on the resume. The site also offers SiteBuilder, a ser-
vice that helps employers build an employee recruitment site. An online demonstration can
be found at www.advantagehiring.com. The demonstration walks the user through
the Net-Interview software, as well as a number of other services offered by Advantage
Hiring (see Fig. C.4). 

Recruitsoft.com is an application service provider (ASP) that offers companies
recruiting software on a pay-per-hire basis (Recruitsoft receives a commission on hires
made via its service). Recruiter WebTop™ is the company’s online recruiting software. It
includes features such as Web-site hosting, an employee-referral program, skill-based
resume screening, applicant-tracking capabilities and job-board posting capabilities. A
demonstration of Recruiter WebTop’s Corporate Recruiting Solutions can be found at
www.recruitsoft.com/process. Other online recruiting services include
Hire.com, and Futurestep.com™.

The Internet also provides employers with a cost-effective means of testing their pro-
spective employees in such categories as decision making, problem solving and person-
ality. Services such eTest help to reduce the cost of in-house testing and to make the
interview process more effective. Test results, given in paragraph form, present employers
with the interested individual’s strengths and weaknesses. Based on these results, the report
suggests interview methods, such as asking open-ended questions, which are questions that
require more than a “yes” or “no” response. Sample reports and a free-trial test can be found
at www.etest.net.

Employers and job seekers can also find career placement exercises at www.advi-
sorteam.net/User/ktsintro.asp. Some of these services require a fee. The tests
ask several questions regarding the individual’s interests and working style. Results help
candidates determine the best career for their skills and interests.



Appendix C Career Opportunities 1289

C.5 Career Sites
Online career sites can be comprehensive or industry specific. In this section, we explore a
variety of sites on the Web that accommodate the needs of both the job seeker and the em-
ployer. We review sites offering technical positions, free-lancing opportunities and con-
tracting positions. 

C.5.1 Comprehensive Career Sites

As mentioned previously, there are many sites on the Web that provide job seekers with
career opportunities in multiple fields. Monster.com is the largest of these sites, attract-
ing the greatest number of unique visitors per month. Other popular online recruiting sites
include JobsOnline.com, HotJobs.com, www.jobtrak.com (a Monster.com
site) and Headhunter.net.

Searching for a job online can be a conducted in a few steps. For example, during an
initial visit to JobsOnline.com, a user is required to fill out a registration form. The
form requests basic information, such as name, address and area of interest. After regis-
tering, members can search through job postings according to such criteria as job category,
location and the number of days the job has been posted. Contact information is provided
for additional communication. 

Fig. C.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of 
Advantage Hiring, Inc.)



1290 Career Opportunities Appendix C

C.5.2 Technical Positions
Technical positions are becoming widely available as the Internet grows more pervasive.
Limited job loyalty and high turnover rates in technical positions allow job seekers to find
jobs that best suit their needs and skills. Employers are required to rehire continuously to
keep positions filled and productivity levels high. The amount of time for an employer to
fill a technical position can be greatly reduced by using an industry-specific site. Career
sites designed for individuals seeking technical positions are among the most popular on-
line career sites. In this section, we review several sites that offer recruiting and hiring op-
portunities for technical positions.

e-Fact C.3
It costs a company 25 percent more to hire a new technical employee than it does to pay an
already employed individual’s salary.14

C.3

Dice.com (www.dice.com) is a recruiting Web site that focuses on technical
fields. Company fees are based on the number of jobs the company posts and the frequency
with which the postings are updated. Job seekers can post their resumes and search the job
database for free. JustTechJobs.com directs job seekers toward 39 specific computer
technologies for their job search. Language-specific sites include JustJavaJobs.com,
JustCJobs.com and JustPerlJobs.com. Hardware, software and communications
technology sites are also available. Other technology recruiting sites include Hire-
Ability.com, and HotDispatch.com.

C.5.3 Wireless Positions
The wireless industry is developing rapidly. According to WirelessResumes.com, the
number of wireless professionals is 328,000. This number is expected to increase 40 percent
each year for the next five years. To accommodate this growth, and the parallel demand for
professionals, WirelessResumes.com has created an online career site specifically for
the purpose of filling wireless jobs (see the WirelessResumes.com feature). 

WirelessResumes.com: Filling Wireless Positions

WirelessResumes.com is an online career site focused specifically on matching
wireless professionals with careers in the industry. This narrow focus enables business-
es to locate new employees quickly—reducing the time and expense attached to tradi-
tional recruiting methods. Similarly, candidates can limit their searches to precisely the
job category of interest. Wireless carriers, device manufacturers, WAP and Bluetooth
developers, e-commerce companies and application service providers (ASPs) are
among those represented on the site. 

In addition to searching for jobs and posting a resume, WirelessRe-
sumes.com provides job seekers with resume writing tips, interviewing techniques,
relocation tools and assistance in obtaining a Visa or the completion of other necessary
paperwork. Employers can use the site to search candidates and post job opportunities. 



Appendix C Career Opportunities 1291

The Caradyne Group (www.pcsjobs.com), an executive search firm, connects job
seekers to employers in the wireless technology field. Interested job seekers must first fill
out a “Profile Questionnaire.” This information is then entered into The Caradyne Group’s
database and is automatically matched to an open position in the job seeker’s field of exper-
tise. If there are no open positions, a qualified consultant from The Caradyne Group will
contact the job seeker for further a interview and discussion.

C.5.4 Contracting Online

The Internet also serves as a forum for job seekers to find employment on a project-by-
project basis. Online contracting services allow businesses to post positions for which they
wish to hire outside resources, and individuals can identify projects that best suit their in-
terests, schedules and skills.

e-Fact C.4
Approximately six percent of America’s workforce falls into the category of independent con-
tractor.15

C.4

Guru.com (www.guru.com) is a recruiting site for contract employees. Indepen-
dent contractors, private consultants and trainers use guru.com to find short-term and
long-term contract assignments. Tips, articles and advice are available for contractors
who wish to learn more about their industry. Other sections of the site teach users how to
manage their businesses, buy the best equipment and deal with legal issues. Guru.com
includes an online store where contractors can buy products associated with small-busi-
ness management, such as printing services and office supplies. Companies wishing to
hire contractors must register with guru.com, but individuals seeking contract assign-
ments do not.

Monster.com’s Talent Market™ offers online auction-style career services to free
agents. Interested users design a profile, listing their qualifications. After establishing a
profile, free agents “Go Live” to start the bidding on their services. The bidding lasts for
five days during which users can view the incoming bids. At the close of five days, the user
can choose the job of his or her choice. The service is free for users, and bidding employers
pay a commission on completed transactions.

eLance.com is another site where individuals can find contracting work. Interested
applicants can search eLance’s database by category, including business, finance and mar-
keting (Fig. C.5). These projects, or requests for proposals (RFPs), are posted by compa-
nies worldwide. When users find projects for which they feel qualified, they submit bids on
the projects. Bids must contain a user’s required payment, a statement detailing the user’s
skills and a feedback rating drawn from other projects on which the user has worked. If a
user’s bid is accepted, the user is given the project, and the work is conducted over eLance’s
file-sharing system, enabling both the contractor and the employer to contact one another
quickly and easily. For an online demonstration, visit www.elance.com and click on the
take a tour... link.

Other Web sites that provide contractors with projects and information include
eWork® Exchange (www.ework.com), MBAFreeAgent.com, Aquent.com and
WorkingSolo.com.



1292 Career Opportunities Appendix C

C.5.5 Executive Positions

In this section, we discuss the advantages and disadvantages of finding an executive posi-
tion online. Executive career advancement sites usually include many of the features found
on comprehensive job-search sites. Searching for an executive position online differs from
finding an entry-level position online. The Internet allows individuals to continually survey
the job market. However, candidates for executive-level positions must exercise a higher
level of caution when determining who is able to view their resume. Applying for an exec-
utive position online is an extensive process. As a result of the high level of scrutiny passed
on a candidate during the hiring process, the initial criteria presented by an executive level
candidate often are more specific than the criteria presented by the first-time job seeker. Ex-
ecutive positions often are difficult to fill, due to the high demands and large amount of ex-
perience required for the jobs. 

SixFigureJobs (www.sixfigurejobs.com) is a recruitment site designed for
experienced executives. Resume posting and job searching is free to job seekers. Other
sites, including www.execunet.com, Monster.com’s ChiefMonster™
(www.chiefmonster.com) and www.nationjob.com are designed for helping
executives find positions.

Fig. C.5 eLance.com request for proposal (RFP) example. (Courtesy of 
eLance, Inc.]



Appendix C Career Opportunities 1293

C.5.6 Students and Young Professionals
The Internet provides students and young professionals with tools to get them started in the
job market. Individuals still in school and seeking internships, individuals who are just grad-
uating and individuals who have been in the workforce for a few years make up the target
market. Additional tools specifically designed for this demographic (a population defined by
a specific characteristic) are available. For example, journals kept by previous interns provide
prospective interns with information regarding what to look for in an internship, what to ex-
pect and what to avoid. Many sites will provide information to lead young professionals in
the right direction, such as matching positions to their college or university major. 

Experience.com is a career services Web site geared toward the younger popu-
lation. Members can search for positions according to specific criteria, such as geo-
graphic location, job category, keywords, commitment (i.e. full time, part time,
internship), amount of vacation and amount of travel time. After applicants register, they
can send their resumes directly to the companies posted on the site. In addition to the
resume, candidates provide a personal statement, a list of applicable skills and their lan-
guage proficiency. Registered members also receive access to the site’s Job Agent. Up to
three Job Agents can be used by each member. The agents search for available positions,
based on the criteria posted by the member. If a match is made, the site contacts the can-
didate via e-mail.16,17

Internships.wetfeet.com helps students find internships. In addition to
posting a resume and searching for an internship, students can use the relocation calculator
to compare the cost of living in different regions. Tips on building resumes and writing
essays are provided. The City Intern program provides travel, housing and entertainment
guides to interns interviewing or accepting a position in an unfamiliar city, making them
feel more at home in a new location.

In addition to its internship locators, undergraduate, graduate, law school, medical
school and business school services, the Princeton Review’s Web site
(www.review.com) offers career services to graduating students. While searching for a
job, students and young professionals can also read through the site’s news reports or even
increase their vocabulary by visiting the “word for the day.” Other career sites geared
toward the younger population include campuscareercenter.com, brassring-
campus.com and collegegrad.com.

C.5.7 Other Online Career Services

In addition to Web sites that help users find and post jobs online, there are a number of Web
sites that offer features that will enhance searches, prepare users to search online, help ap-
plicants design resumes or help users calculate the cost of relocating.

Salary.com helps job seekers gauge their expected income, based on position, level
of responsibility and years of experience. The search requires job category, ZIP code and
specific job title. Based on this information, the site will return an estimated salary for an
individual living in the specified area and employed in the position described. Estimates are
returned based on the average level of income for the position. 

In addition to helping applicants find employment, www.careerpower.com pro-
vides individuals with tests that will help them realize their strengths, weaknesses, values,
skills and personality traits. Based on the results, which can be up to 10–12 pages per test,



1294 Career Opportunities Appendix C

users can best decide what job categories they are qualified for and what career choice will
be best suited to their personal ambitions. The service is available for a fee. 

InterviewSmart™ is another service offered through CareerPower that prepares job
seekers of all levels for the interviewing process. The service can be downloaded for a min-
imal fee or can be used on the Web for free. Both versions are available at www.career-
power.com/CareerPerfect/interviewing.htm#is.start.anchor.

Additional services will help applicants find positions that meet their unique needs,
or design their resumes to attract the attention of specific employers. Dog-
friendly.com, organized by geographic location, helps job seekers find opportuni-
ties that allow them to bring their pets to work, and cooljobs.com is a searchable
database of unique job opportunities. 

C.6 Internet and World Wide Web Resources

Information Technology (IT) Career Sites

www.dice.com 
This is a recruiting Web site that focuses on the computer industry.

www.guru.com
This is a recruiting site for contract employees. Independent contractors, private consultants and train-
ers can use guru.com to find short-term and long-term work.

www.hallkinion.com
This is a Web recruiting service for individuals seeking IT positions.

www.techrepublic.com
This site provides employers and job seekers with recruiting capabilities and information regarding
developing technology.

www.justcomputerjobs.com
This site serves as a portal with access to language-specific sites, including Java, Perl, C and C++.

www.hotdispatch.com
This forum provides software developers with the opportunity to share projects, discuss code and ask
questions.

www.techjobs.bizhosting.com/jobs.htm
This site directs job seekers to links of numerous technological careers listed by location, internet,
type of field, etc.

Career Sites

www.careerbuilder.com
A network of career sites, including IT Careers, USA Today and MSN, CareerBuilder attracts 3 mil-
lion unique job seekers per month. The site provides resume-builder and job-searching agents. 

www.recruitek.com
This free site caters to jobs seekers, employers and contractors.

www.monster.com 
This site, the largest of the online career sites, allows people looking for jobs to post their resumes,
search job listings and read advice and information about the job-search process. It also provides a
variety of recruitment services for employers.



Appendix C Career Opportunities 1295

www.jobsonline.com
Similar to Monster.com, this site provides opportunities for job seekers and employers.

www.hotjobs.com
This online recruiting site offers cross-listing possibilities on additional sites. 

www.jobfind.com
This job site is an example of locally targeted job-search resources. JobFind.com targets the
Boston area.

www.flipdog.com
This site allows online job candidates to search for career opportunities. It employs intelligent agents
to scour the Web and return jobs matching the candidate’s request.

www.cooljobs.com
This site highlights unique job opportunities.

www.inetsupermall.com
This site aids job searchers in creating professional resumes and connecting with employers.

www.wirelessnetworksonline.com
This site helps connect job searchers to careers for which they are qualified.

www.careerweb.com
This site highlights featured employers and jobs and allows job seekers and employers to post and
view resumes, respectively.

www.jobsleuth.com
On this site job seekers can fill out a form that indicates their desired field of employment. Job
Sleuth™ searches the Internet and returns potential matches to the user’s inbox. The service is free.

www.ajb.org
America’s Job Bank is an online recruiting service provided through the Department of Labor and the
state employment service. Searching for and posting positions on the site are free. 

Executive Positions

www.sixfigurejobs.com
This is a recruitment site designed for experienced executives.

www.leadersonline.com
This career services Web site offers confidential job searches for mid-level professionals. Potential
job matches are e-mailed to job candidates. 

www.ecruitinginc.com
This site is designed to search for employees for executive positions.

Diversity

www.latpro.com
This site is designed for Spanish-speaking and Portuguese-speaking job seekers. In addition to pro-
viding resume-posting services, the site enables job seekers to receive matching positions via e-mail.
Advice and information services are available.

www.blackvoices.com
This portal site hosts a career center designed to match African American job seekers with job op-
portunities.



1296 Career Opportunities Appendix C

www.hirediversity.com
In addition to services for searching for and posting positions, resume-building and updating services
are also available on this site. The site targets a variety of demographics including African Americans,
Asian Americans, people with disabilities, women and Latin Americans.

People with Disabilities

www.halftheplanet.com
This site represents people with disabilities. The site is large and includes many different resources
and information services. A special section is dedicated to job seekers and employers.

www.wemedia.com
This site is designed to meet the needs of people with disabilities. It includes a section for job seekers
and employers.

www.disabilities.com
This site provides users with a host of links to information resources on career opportunities.

www.mindexchange.com
The diversity section of this site provides users with several links to additional resources regarding
people with disabilities and employment.

www.usdoj.gov/crt/ada/adahom1.htm
This is the Americans with Disabilities Act home page.

www.abanet.org/publicserv/mental.html
This is the Web site for The Commission on Mental and Physical Disability Law.

janweb.icdi.wvu.edu
The Job Accommodation Web site offers consulting services to employers regarding integration of
people with disabilities into the workplace. 

General Resources

www.vault.com
This site provides potential employees with “insider information” on over 3000 companies. In addi-
tion, job seekers can search through available positions and post and answer questions on the message
board.

www.wetfeet.com
Similar to vault.com, this site allows visitors to ask questions and receive “insider information”
on companies that are hiring.

Special Interest

www.eharvest.com/careers/
This Web site provides job seekers interested in agricultural positions with online career services. 

www.opportunitynocs.org
This career services site is for both employers and job seekers interested in non-profit opportunities.

www.experience.com
This Web site is designed specifically for young professionals and students seeking full-time, part-
time and internship positions.

www.internships.wetfeet.com
Students seeking internships can search job listings on this site. It also features City Intern, to help
interns become acquainted with a new location.



Appendix C Career Opportunities 1297

www.brassringcampus.com
This site provides college grads and young professionals with less than five years of experience with
job opportunities. Additional features help users buy cars or find apartments. 

Online Contracting

www.ework.com
This online recruiting site matches outside contractors with companies needing project specialists.
Other services provided through eWork include links to online training sites, benefits packages and
payment services and online meeting and management resources. 

www.elance.com
Similar to eWork.com, eLance matches outside contractors with projects.

www.MBAFreeAgent.com
This site is designed to match MBAs with contracting opportunities.

www.aquent.com
This site provides access to technical contracting positions.

www.WorkingSolo.com
This site helps contractors begin their own projects.

Recruiting Services

www.advantagehiring.com
This site helps employers screen resumes.

www.etest.net
This site provides employers with testing services to assess the strengths and weaknesses of prospec-
tive employees. This information can be used for better hiring strategies.

www.hire.com
Hire.com’s eRecruiter is an application service provider that helps organizations streamline their
Web-recruiting process. 

www.futurestep.com
Executives can register confidentially at Futurestep.com to be considered for senior executive po-
sitions. The site connects registered individuals to positions. It also offers career management services.

www.webhire.com
This site provides employers with end-to-end recruiting solutions. 

Wireless Career Resources

www.wirelessresumes.com/
This site connects employers and job seekers with resumes that focus on jobs revolving around wire-
less technology.

www.msua.org/job.htm
This site contains links to numerous wireless job-seeking Web sites.

www.wiwc.org
This site’s focus is wireless communication job searching for women.

www.firstsearch.com
At this site a job seeker is able to discover part-time, full-time and salary-based opportunities in the
wireless industry.



1298 Career Opportunities Appendix C

www.pcsjobs.com
This is the site for The Caradyne Group, which is an executive search firm that focuses on finding job
seekers wireless job positions.

www.cnijoblink.com
CNI Career Networks offers confidential, no-charge job placement in the wireless and telecommuni-
cations industries.

SUMMARY
• The Internet can improve an employer’s ability to recruit employees and help users find career op-

portunities worldwide.

• Job seekers can learn how to write a resume and cover letter, post them online and search through
job listings to find the jobs that best suit their needs. 

• Employers can post jobs that can be searched by an enormous pool of applicants.

• Job seekers can store and distribute resumes digitally, receive e-mail notification of possible posi-
tions, use salary and relocation calculators, consult job coaches and use self-assessment tools when
searching for a job on the Web.

• There are approximately 40,000 career-advancement services on the Internet today.

• Finding a job online can greatly reduce the amount of time spent applying for a position. Potential
candidates can also learn more about a company by visiting its Web site. 

• Most sites are free to job seekers. These sites typically generate their revenues by charging em-
ployers who post their job opportunities, and by selling advertising space on their Web pages. 

• Sites such as Vault.com and WetFeet.com allow job seekers to post questions about employ-
ers and positions in chat rooms and on bulletin boards. 

• On many recruitment sites, the match of a resume to a position is conducted with resume-filtering
software. 

• A lack of confidentiality is a disadvantage of online career services. 

• According to recent studies, the number of individuals researching employment positions through
means other than the Internet, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers.

• Career sites designed for individuals seeking technical positions are among the most popular on-
line career sites.

• Online contracting services allow businesses to post positions for which they wish to hire outside re-
sources, and allow individuals to identify projects that best suit their interests, schedules and skills.

• The Internet provides students and young professionals with some of the necessary tools to get
them started in the job market. The target market is made up of individuals still in school and seek-
ing internships, individuals who are just graduating and individuals who have been in the work-
force for a few years. 

• There are a number of Web sites that offer features that enhance job searches, prepare users to
search online, help design applicants’ resumes or help users calculate the cost of relocating.

• Web recruiting reaches a much larger audience than posting an advertisement in the local news-
paper. 

• There are a variety of sites that allow employers to post jobs online. Some of these sites require a
fee, which generally runs between $100–$200. Postings remain on the Web site for approximately
30–60 days. 

• Employers should try to post to sites that are most likely to be visited by eligible candidates. 



Appendix C Career Opportunities 1299

• When designing a job posting, defining what makes a job position unique and including informa-
tion such as benefits and salary might convince a qualified candidate to further investigate the po-
sition.

• The Internet hosts demographic-specific sites for employers seeking to increase diversity in the
workplace. 

• The Internet has provided employers with a cost-effective means of testing their prospective em-
ployees in such categories as decision making, problem solving and personality. 

TERMINOLOGY

SELF-REVIEW EXERCISES
C.1 State whether each of the following is true or false, if false, explain why.

a) Online contracting services allow businesses to post job listings for specific projects that
can be viewed by job seekers over the Web.

b) Employment networks are Web sites designed to provide information on a selected com-
pany to better inform job seekers of the corporate environment.

c) The large number of applications received over the Internet is considered an advantage
by most online recruiters.

d) There is a greater number of individuals searching for work on the Web than through all
other mediums combined.

e) Sixteen percent of America’s workforce is categorized as independent contractors.

C.2 Fill in the blanks in each of the following statements.
a) There are approximately  online career services Web sites on the Internet to-

day.
b) The Internet hosts demographic-specific sites for employers seeking to increase

 in the workplace. 
c) In the 24 hours following the Super Bowl, job searches occurred on Mon-

ster.com.
d) Many recruitment sites use  to filter through received resumes.
e) Employers should try to post to sites that are most likely to be visited by  can-

didates. 

ANSWERS TO SELF-REVIEW EXERCISES
C.1 a) True. b) True. c) False. The large number of applicants reduces the amount of time a re-
cruiter can spend interviewing and making decisions. Despite screening processes, many highly qual-
ified applicants can be overlooked. d) False. The number of individuals researching employment
positions through other means, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers. e) False. Six percent of America’s workforce is categorized as in-
dependent consultants. 

C.2 a) 40,000. b) diversity. c) 5 million. d) resume-filtering software. e) eligible. 

corporate culture open-ended question
demographic pay-per-hire
end-to-end recruiting solutions request for proposal (RFP)
entry-level position resume-filtering software
online contracting service



1300 Career Opportunities Appendix C

EXERCISES
C.3 State whether each of the following is true or false, if false, explain why.

a) RFP is the acronym for request for proposal.
b) The Internet has provided employers with a cost-effective means of testing their prospec-

tive employees in such categories as decision making, problem solving and personality. 
c) Online job recruiting can completely replace other means of hiring employees.
d) Posting a job online is less expensive than placing ads in more traditional media.
e) A lack of confidentiality is a disadvantage of online career services.

C.4 Fill in the blanks in each of the following:
a) Finding a job online can greatly the amount of time spent applying for a

position.
b)  is an example of a Web site in which contractors can bid on projects.
c) When designing a job posting, defining what makes the position unique and including

information such as  and  might convince a qualified candidate
to further investigate the position. 

d) The Internet hosts  for employers seeking to increase diversity in the work-
place. 

e) The Internet provides employers with a cost-effective means of testing their prospective
employees in such categories as ,  and .

C.5 Define the following
a) Corporate culture.
b) Pay-per-hire.
c) Request for proposal (RFP).
d) Resume-filtering software.

C.6 (Class discussion). In this chapter, we discuss the short-comings and advantages of recruiting
on the Internet. Using the text, additional reading material and personal accounts answer the follow-
ing questions. Be prepared to discuss your answers.

a) Do you think finding a job is easier on the Web? Why or why not?
b) What disadvantages can you identify?
c) What are some of the advantages?
d) Which online recruiting services do you think will be most successful? Why?

C.7  Many of the career services Web sites we have discussed in this chapter offer resume-build-
ing capabilities. Begin building your resume, choosing an objective that is of interest to you. Think
of your primary concerns. Are you searching for a paid internship or a volunteer opportunity? Do you
have a specific location in mind? Do you have an opportunity for future employment? Are stock op-
tions important to you? Find several entry-level jobs that meet your requirements. Write a short sum-
mary of your results. Include any obstacles and opportunities. 

C.8 In this chapter, we have discussed online contracting opportunities. Visit eLance
(www.elance.com) and search the requests for proposals for contracting opportunities that interest
you or visit guru.com and create a profile.

C.9 In this chapter, we have discussed many career services Web sites. Choose three sites. Ex-
plore the opportunities and resources offered by the sites. Visit any demonstrations, conduct a job
search, build your resume and calculate your salary or relocation expenses. Answer the following
questions.

a) Which site provides the best service? Why?
b) What did you like? Dislike? 
c) Write a brief summary of your findings, including descriptions of any features that you

would add. 



Appendix C Career Opportunities 1301

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at the
Web site.

1. J. Gaskin, “Web Job Sites Face Tough Tasks,” Inter@ctive Week 14 August 2000: 50.

2. J. Gaskin, 50.

3. M. Berger, “Jobs Supermarket,” Upside November 2000: 224. 

4. <www.vault.com>.

5. M. Berger, 224.

6. Cisco Advertisement, The Wall Street Journal 19 October 2000: B13. 

7. M. Feffer, “Posting Jobs on the Internet,” 18 August 2000 <www.webhire.com/hr/
spotlight.asp>.

8. <www.webhire.com>.

9. J. Gaskin, 51. 

10. C. Wilde, “Recruiters Discover Diverse Value in Web Sites,” Information Week 7 February
2000: 144. 

11. <www.jobsonline.com>.

12. <www.driveway.com>.

13. <www.cruelworld.com>.

14. A.K. Smith, “Charting Your Own Course,” U.S. News and World Report 6 November 2000: 58. 

15. D. Lewis, “Hired! By the Highest Bidder,” The Boston Globe 9 July 2000: G1.

16. <www.experience.com>.

17. M. French, “Experience Inc., E-Recruiting for Jobs for College Students,” Mass High Tech 7
February–13 February 2000: 29.



D
Visual Studio .NET 

Debugger

Objectives
• To understand syntax and logic errors.
• To become familiar with the Visual Studio .NET 

debugging tools.
• To understand the use of breakpoints to suspend 

program execution.
• To be able to examine data using expressions in the 

debugging windows.
• To be able to debug procedures and objects.
And often times excusing of a fault
Doth make the fault the worse by the excuse.
William Shakespeare

To err is human, to forgive divine.
Alexander Pope, An Essay on Criticism



Appendix D Visual Studio .NET Debugger 1303

D.1 Introduction
Syntax errors (or compilation errors) occur when program statements violate the grammat-
ical rules of a programming language, such as forgetting to end a module with End Mod-
ule (Fig. D.1). Syntax errors are caught by the compiler. In Visual Studio .NET, syntax
errors appear in the Task List window along with a description, line number and the file
name. For additional information on a specific syntax error, select it in the Task List and
press F1 to open a help window. Programs that contain syntax errors cannot be executed.

Testing and Debugging Tip D.1
When the compiler reports a syntax error on a particular line, check that line for the syntax
error. If the error is not on that line, check the preceding few lines of code for the cause of
the syntax error. 24.0

Outline

D.1 Introduction
D.2 Breakpoints
D.3 Examining Data
D.4 Program Control
D.5 Additional Procedure Debugging Capabilities
D.6 Additional Class Debugging Capabilities

Fig. D.1 Syntax error.

Syntax 
error

Error 
message



1304 Visual Studio .NET Debugger Appendix D

Testing and Debugging Tip D.2
After fixing one error, recompile your program. You may observe that the number of overall
errors perceived by the compiler is significantly reduced. 24.0

Debugging is the process of finding and correcting logic errors in applications. Logic
errors are more subtle than syntax errors because the program compiles successfully, but
does not run as expected. Logic errors are often difficult to debug because the programmer
cannot see the code as it is executing. Some programmers attempt to debug programs using
message boxes or Console.WriteLine statements. For example, the programmer
might print the value of a variable when the variable’s value changes to determine if it is
being set correctly. This method is cumbersome, because programmers must write a line of
code wherever they suspect may be a problem. Once the program has been debugged, the
programmer must remove these printing statements.

Debuggers provide a set of tools that allow the programmer to analyze a program while
it is running. These tools allow the programmer to suspend program execution, examine and
set variables, call procedures without having to modify the program and much more. In this
appendix, we introduce the Visual Studio .NET debugger and several of its debugging tools.
[Note: A program must successfully compile before it can be used in the debugger.]

D.2 Breakpoints
Breakpoints are a simple but powerful debugging tool. A breakpoint is a marker that can be
set at any executable line of code. When a program reaches a breakpoint, execution pauses,
allowing the programmer to examine the state of the program and ensure that everything is
working properly. We use the following program (Fig. D.2) to demonstrate debugging a
loop using the features of the Visual Studio .NET debugger. This program is designed to
output the value of ten factorial (10!), but contains two logic errors—the first iteration of
the loop multiplies x by 10 instead of 9, and the result of the factorial calculation 0.

1 ' Fig. D.2: DebugExample.vb
2 ' Sample program to debug.
3
4 Module modDebug
5
6 Sub Main()
7       Dim x As Integer = 10
8       Dim i As Integer
9

10       Console.Write("The value of " & x & " factorial is: ")
11
12       ' loop to determine x factorial, contains logic error
13       For i = x To 0 Step -1
14          x *= i
15       Next
16
17       Console.WriteLine(x)
18 End Sub ' Main
19
20 End Module ' modDebug

Fig. D.2 Debug sample program (part 1 of 2).



Appendix D Visual Studio .NET Debugger 1305

To enable the debugger, compile the program using the debug configuration
(Fig. D.3). Select Debug from the configuration toolbar item if it is not already selected.
Alternatively, select Build > Configuration Manager and change the Active Solu-
tion Configuration to Debug.

To set breakpoints in Visual Studio, click the gray area to the left of any line of code
(Fig. D.4) or right-click a line of code and select Insert Breakpoint. A solid red circle
appears, indicating that the breakpoint has been set. When the program executes, it sus-
pends when it reaches the line containing the breakpoint.

Selecting Debug > Start begins the debugging process. When debugging a console
application, the console window appears (Fig. D.5), allowing program interaction (input
and output). When the breakpoint (line 14) is reached, program execution is suspended, and
the IDE becomes the active window. Programmers may need to switch between the IDE
and the console window while debugging programs.  

The value of 10 factorial is: 0

Fig. D.3 Debug configuration setting.

Fig. D.4 Setting a breakpoint.

Fig. D.5 Console application suspended for debugging.

Fig. D.2 Debug sample program (part 2 of 2).

Debug
setting

Breakpoint tooltipBreakpoint



1306 Visual Studio .NET Debugger Appendix D

Figure D.6 shows the IDE with program execution suspended at a breakpoint. The
yellow arrow to the left of the statement

x *= i

indicates that execution is suspended at this line and that this line contains the next state-
ment to execute. Note that the title bar of the IDE displays [break]—this indicates that the
IDE is in break mode (i.e., the debugger is being used). Once the program has reached the
breakpoint, you may “hover” with the mouse on a variable (in this case x or i) in the source
code to see the value of that variable.

Testing and Debugging Tip D.3
Loops that iterate many times can be executed in full (without stopping every time through
the loop) by placing a breakpoint after the loop and selecting Start from the Debug menu. 24.0

D.3 Examining Data
Visual Studio .NET includes several debugging windows, all accessible from the
Debug > Windows submenu. Some windows are listed only when the IDE is in break
mode (also called debug mode). The Watch window (Fig. D.7), which is available only in
break mode, allows the programmer to examine variable values and expressions. Visual
Studio provides a total of four windows that allow programmers to organize and view vari-
ables and expressions.

Fig. D.6 Execution suspended at a breakpoint.

Yellow arrow indicates next 
statement to be executed

Title bar displays [break]



Appendix D Visual Studio .NET Debugger 1307

The Watch window is initially empty. To examine data, type an expression into the
Name field. Most valid Visual Basic expressions can be entered in the Name field,
including expressions that contain procedure calls. Consult the documentation under
“debugger, expressions” for a full description of valid expressions.

Once an expression has been entered, its type and value appear in the Value and Type
fields. The first expression in Fig. D.7 is the variable i—it is 10 because the For loop (line
13) assigns the value of x (10) to i. The Watch window also can evaluate more complex
arithmetic expressions (e.g, (i + 3) * 5). Note that expressions containing the = symbol
are treated as Boolean expressions instead of assignment statements. For example, the
expression i = 3 evaluates to False. The value of i is not altered.

To debug the program in Fig. D.2, we might enter the expression i * x in the Watch
window. When we reach the breakpoint for the first time, this expression has a value 100,
which indicates a logic error in our program (our calculation contains an extra factor of 10).
To fix the error, we could subtract 1 from the initial value of the For loop (i.e., change 10
to 9).

If a Name field in the Watch window contains a variable name, the variable’s value
can be modified for debugging purposes. To modify a variable’s value, click its value in the
Value field and enter a new value. Any modified value appears in red.

If an expression is invalid, an error appears in the Value field. For example, the fourth
expression in Fig. D.7 is an invalid expression because VariableThatDoesNotExist is
not an identifier used in the program. Visual Studio .NET issues an error message and dis-
plays its contents in the Value field. To remove an expression, select it and press Delete.

Testing and Debugging Tip D.4
When a procedure is called from a Watch window, the program does not stop at breakpoints
inside the procedure. Do not call procedures that may have errors from the Watch window. 24.0

The Locals and Autos windows are similar to the Watch window, except the pro-
grammer does not specify their contents. The Locals window displays the name and cur-
rent value for all the local variables or objects in the current scope. The Autos window
displays the variables and objects used in the previous statement and the current statement
(indicated by the yellow arrow). Variables can be changed in either window by clicking the
appropriate Value field and entering a new value. When executing an object’s procedure,
the Me window displays data for that object. If the program is inside a procedure that does
not belong to an object (such as Main), the Me window is empty.  

Fig. D.7 Watch window.

Expressions



1308 Visual Studio .NET Debugger Appendix D

The Immediate window provides a convenient way to execute statements (Fig. D.9).
To execute a statement, type it into the window and press Enter. Procedure calls can be exe-
cuted as well. For example, typing Console.WriteLine(i) then pressing Enter out-
puts the value of i in the console window. Notice that the = symbol can be used to perform
assignments in the Immediate window. Notice that the values for i and x in the Locals
window contain these updated values.

Testing and Debugging Tip D.5
Use the Immediate window to call a procedure exactly once. Placing a procedure call in-
side the Watch window calls it every time the program breaks. 24.0

D.4 Program Control
The Debug toolbar (Fig. D.10) contains buttons for controlling the debugging process.
These buttons provide convenient access to actions in the Debug menu. To display the De-
bug toolbar, select View > Toolbars > Debug.

Fig. D.8 Autos and Locals windows.

Fig. D.9 Immediate window.



Appendix D Visual Studio .NET Debugger 1309

The Restart button restarts the application, pausing at the beginning of the program
to allow the programmer to set breakpoints before the program executes. The Continue
button resumes execution of a suspended program. The Stop Debugging button ends the
debugging session. The Break All button allows the user to suspend an executing program
directly (i.e., without explicitly setting breakpoints). After execution is suspended, the
yellow arrow appears indicating the next statement to be executed.

Testing and Debugging Tip D.6
When a program is executing, problems such as infinite loops usually can be interrupted by
selecting Debug > Break All or by clicking the corresponding button on the toolbar. 24.0

Clicking the Show Next Statement button places the cursor on the same line as the
yellow arrow that indicates the next statement to execute. This command is useful when
returning to the current execution point after setting breakpoints in a program that contains
a large number of lines of code.

The Step Over button executes the next executable line of code and advances the
yellow arrow to the next line. If the next line of code contains a procedure call, the proce-
dure is executed in its entirety as one step. This button allows the user to execute the pro-
gram one line at a time without seeing the details of every procedure that is called. We
discuss the Step Into and Step Out buttons in the next section.

The Hex button toggles the display format of data. If enabled, Hex displays data in hexa-
decimal (base 16) form, rather than decimal (base 10) form. Experienced programmers often
prefer to read values in hexadecimal format—especially large numbers. For more information
about the hexadecimal and decimal number formats, see Appendix B, Number Systems.

The Breakpoints window displays all the breakpoints currently set for the program
(Fig. D.11). A checkbox appears next to each breakpoint, indicating whether the breakpoint
is active (checked) or disabled (unchecked). Lines with disabled breakpoints contain an
unfilled red circle rather than a solid one (Fig. D.12). The debugger does not pause execu-
tion at disabled breakpoints. 

The Condition field displays the condition a that must be satisfied to suspend pro-
gram execution at that breakpoint. The Hit Count field displays the number of times the
debugger has stopped at each breakpoint. Double-clicking an item in the Breakpoints
window moves the cursor to the line containing that breakpoint. The down-arrow immedi-
ately to the right of the Breakpoints button provides access to the various debugging win-
dows. [Note: Choosing another debugging window from the list changes the icon
displayed.]

Fig. D.10 Debug toolbar icons.

Continue 
debugging

Stop 
debugging

Break all Restart
Show next 
statement

Step into Step over Step out

Toggle 
hexadecimal display

Breakpoint 
window



1310 Visual Studio .NET Debugger Appendix D

Testing and Debugging Tip D.7
Disabled breakpoints allow the programmer to maintain breakpoints in key locations in the
program so they can be used again when needed. Disabled breakpoints are always visible. 24.0

Breakpoints can be added using the Breakpoints window by clicking the New
button, which displays the New Breakpoint dialog (Fig. D.13). The Function, File,
Address and Data tabs allow the programmer to cause execution to suspends at a proce-
dure, a line in a particular file, an instruction in memory or when the value of a variable
changes. The Hit Count... button (Fig. D.14) can be used to specify when the breakpoint
should suspend the program (the default is to always break). A breakpoint can be set to sus-
pend the program when the hit count reaches a specific number, is a multiple of a number
or is greater than or equal to a specific number.

The Visual Studio debugger also allows execution to suspend at a breakpoint
depending upon the value of an expression. Clicking the Condition… button opens the
Breakpoint Condition dialog (Fig. D.15). The Condition checkbox indicates whether
breakpoint conditions are enabled. The radio buttons determine how the expression in the
text box is evaluated. The is true radio button pauses execution at the breakpoint whenever
the expression is true. The has changed radio button causes program execution to sus-
pend when it first encounters the breakpoint and again time the expression differs from its
previous value when the breakpoint is encountered.

For example, suppose we set x * i <> 0 as the condition for the breakpoint in our loop
with the has changed option enabled. (We might choose to do this because the program
produces an incorrect output of 0). Program execution suspends when it first reaches the
breakpoint and records that the expression has a value of True, because x * i is 100 (or
10 if we fixed the earlier logic error). We continue, and the loop decrements i. While i is
between 10 and 1, the condition’s value never changes, and execution is not suspended at
that breakpoint. When i is 0, the expression x * i <> 0 is False, and execution is sus-
pended. This leads to the identification of the second logic error in our program—that the

Fig. D.11 Breakpoints window.

Fig. D.12 Disabled breakpoint.

Disabled breakpoint



Appendix D Visual Studio .NET Debugger 1311

final iteration of the For loop multiplies the result by 0. When finished debugging, click
the Stop Debugging button on the Debug toolbar. The IDE returns to design mode. 

Fig. D.13 New Breakpoint dialog.

Fig. D.14 Breakpoint Hit Count dialog.

Fig. D.15 Breakpoint Condition dialog.

Function tab Data tabFile tab Address tab



1312 Visual Studio .NET Debugger Appendix D

D.5 Additional Procedure Debugging Capabilities
The Visual Studio debugger includes tools for analyzing procedures and procedure calls.
We demonstrate some procedure-debugging tools with the following example (Fig. D.16).

The Call Stack window contains the program’s procedure call stack, which allows
the programmer to determine the exact sequence of calls that led to the current procedure
and to examine calling procedures on the stack. This window helps the programmer see the
flow of control that led to the execution of the current procedure. For example, if we place
a breakpoint in MyProcedure, we get the call stack in Fig. D.17. The program called pro-
cedure Main first, followed by MyProcedure.

1 ' Fig. D.16: ProcedureDebugExample.vb
2 ' Demonstrates debugging procedures.
3
4 Module modProcedureDebug
5
6    ' entry point for application
7 Public Sub Main()
8       Dim i As Integer
9

10       ' display MyProcedure return values
11       For i = 0 To 10
12          Console.WriteLine(MyProcedure(i))
13       Next
14 End Sub ' Main
15
16  ' perform calculation
17 Public Function MyProcedure(ByVal x As Integer) As Integer
18       Return (x * x) - (3 * x) + 7
19 End Function ' MyProcedure
20
21    ' method with logic error
22 Public Function BadProcedure(ByVal x As Integer) As Integer
23       Return MyProcedure(x) \ x
24 End Function ' BadProcedure
25
26 End Module ' modProcedureDebug

Fig. D.16 Demonstrates procedure debugging .

Fig. D.17 Call Stack window.

Most recently called procedure



Appendix D Visual Studio .NET Debugger 1313

Double-clicking any line in the Call Stack window displays the last executed line in that
procedure. Visual Studio .NET highlights the line in green and displays the tooltip shown in
Fig. D.18. A green triangle also is displayed to the left of the line to emphasize the line further.

Visual Studio .NET also provides additional program control buttons for debugging-
procedures. The Step Over button executes one statement in a procedure, then pauses pro-
gram execution again. As previously mentioned, if a statement contains a procedure call,
the called procedure executes in its entirety. The next statement that will be executed is the
statement that follows the procedure call. In contrast, the Step Into button executes pro-
gram statements, one per click, including statements in the procedures that are called. Step
Into transfers control to the procedure, which allows programmers to confirm the proce-
dure’s execution, line-by-line. The Step Out finishes executing the procedure and returns
control to the line that called the procedure.

Testing and Debugging Tip D.8
Use Step Out to finish a procedure that was stepped into accidentally. D.8

Figure D.19 lists each program-control debug feature, its shortcut key and a descrip-
tion. Experienced programmers often use these shortcut keys in preference to accessing the
menu commnads.   

Fig. D.18 IDE displaying a procedures calling point.

Control Button Shortcut Key Description

Continue F5 Continue running program. Execution continues until 
either a breakpoint is encountered or the program ends 
(through normal execution).

Stop Debugging Shift + F5 Stop debugging and return to Visual Studio design mode.

Step Over F10 Step to next command, do not step into procedure calls.

Step Into F11 Execute next statement. If the statement contains a pro-
cedure call, control transfers to the procedure for line-
by-line debugging. If the statement does not contain a 
procedure call, Step Into behaves like Step Over.

Step Out Shift + F11 Finishes executing the current procedure and suspends 
program execution in the calling procedure.

Fig. D.19 Debug program control features.



1314 Visual Studio .NET Debugger Appendix D

The Immediate window (Fig. D.20) discussed in Section D.3 is useful for testing
arguments passed to a procedure. This helps determine if a procedure is functioning prop-
erly without the programmer modifying code.

D.6 Additional Class Debugging Capabilities 
Visual Studio includes class debugging features which allow the programmer to determine
the current state of objects used in a program. We demonstrate some class debugging fea-
tures using the code presented in Fig. D.21. We place a breakpoint at the location shown in
Fig. D.22. [Note: A Visual Basic file may contain multiple classes, as is the case with this
example.] 

Fig. D.20 Using the Immediate window to debug procedures.

1 ' Fig. D.21: DebugClass.vb
2 ' Console application to demonstrate debugging objects.
3
4 Public Class CDebugEntry
5 Private mSomeInteger As Integer = 123
6 Private mIntegerArray As Integer() = {74, 101, 102, 102}
7 Private mDebugClass As CDebugClass
8 Private mRandomObject As Random
9 Private mList As Object() = New Object(2) {}

10
11 Public Sub New()
12       mRandomObject = New Random()
13       mDebugClass = New CDebugClass("Hello World", _
14             New Object())
15
16       mList(0) = mIntegerArray
17       mList(1) = mDebugClass
18       mList(2) = mRandomObject
19 End Sub ' New
20
21 Public Sub DisplayValues()
22       Console.WriteLine(mRandomObject.Next())
23       Console.WriteLine(mDebugClass.SomeString)
24       Console.WriteLine(mIntegerArray(0))
25 End Sub ' DisplayValues
26
27  ' main entry point for application
28 Public Shared Sub Main()
29

Fig. D.21 Debugging a class (part 1 of 2).



Appendix D Visual Studio .NET Debugger 1315

To assist class debugging, Visual Studio .NET allows the programmer to expand and
view all data members and properties of a class, including Private members. In any of
the four windows (i.e., Watch, Locals, Autos and Me), a class that has data members is
displayed with a plus (+) next to it (Fig. D.23). Clicking the plus box displays all of the
object’s data members and their values. If a member references an object, the object’s data
members also can be listed by clicking the object’s plus box.

30       Dim entry As CDebugEntry = New CDebugEntry()
31       entry.DisplayValues()
32 End Sub ' Main
33
34 End Class ' DebugEntry
35
36 ' demonstrates class debugging
37 Public Class CDebugClass
38
39   ' declarations
40 Private mSomeString As String
41 Private mPrivateRef As Object
42
43 Public Sub New(ByVal stringData As String, _
44       ByVal objectData As Object)
45
46       mSomeString = stringData
47       mPrivateRef = objectData
48
49 End Sub ' New
50
51 Public Property SomeString() As String
52
53       Get
54          Return SomeString
55       End Get
56
57       Set(ByVal Value As String)
58
59          SomeString = Value
60       End Set
61
62 End Property ' SomeString
63
64 End Class ' CDebugClass

Fig. D.22 Breakpoint location for class debugging.

Fig. D.21 Debugging a class (part 2 of 2).



1316 Visual Studio .NET Debugger Appendix D

One of the most valuable features of the debugger is the ability to display all the values
in an array. Figure D.24 displays the contents of the mList array. At index 0 is
mIntegerArray, which is expanded to show its contents. Index 1 contains a Debug-
Class object—expanded to show the object’s Private data members, as well as a
Public property. Index 2 contains a Random object, defined in the Framework Class
Library (FCL).

The Visual Studio debugger contains several other debugging windows, including
Threads, Modules, Memory, Disassembly and Registers. These windows are used
by experienced programmers to debug large, complex projects—consult the Visual Studio
.NET documentation for more details on these features.

In this appendix we demonstrated several techniques for debugging programs, proce-
dures and classes. The Visual Studio .NET debugger is a powerful tool, which allows pro-
grammers to build more robust fault tolerant programs.

Fig. D.23 Expanded class in Watch window.

Fig. D.24 Expanded array in Watch window.



Appendix D Visual Studio .NET Debugger 1317

SUMMARY
• Debugging is the process of finding logic errors in applications. 

• Syntax errors (or compilation errors) occur when program statements violate the grammatical
rules of a programming language. These errors are caught by the compiler.

• Logic errors are more subtle than syntax errors. They occur when a program compiles successful-
ly, but does not run as expected. 

• Debuggers can suspend a program at any point, which allows programmers to examine and set
variables and call procedures. 

• A breakpoint is a marker set at a line of code. When a program reaches a breakpoint, execution is
suspended. The programmer then can examine the state of the program and ensure that the pro-
gram is working properly.

• To enable the debugging features, the program must be compiled using the debug configuration.

• To set breakpoints, click the gray area to the left of any line of code. Alternatively, right-click a
line of code and select Insert Breakpoint.

• The Watch window allows the programmer to examine variable values and expressions. To ex-
amine data, type a valid Visual Basic expression, such as a variable name, into the Name field.
Once the expression has been entered, its type and value appear in the Type and Value fields.

• Variables in the Watch window can be modified by the user for testing purposes. To modify a
variable’s value, click the Value field and enter a new value.

• The Locals window displays the name and current value for all the local variables or objects in
the current scope.

• The Autos window displays the variables and objects used in the previous statement and the cur-
rent statement (indicated by the yellow arrow).

• To evaluate an expression in the Immediate window, simply type the expression into the window
and press Enter.

• The Continue button resumes execution of a suspended program.

• The Stop Debugging button ends the debugging session.

• The Break All button allows the programmer to place an executing program in break mode.

• The Show Next Statement button places the cursor on the same line as the yellow arrow that
indicates the next statement to execute.

• The Step Over button executes the next executable line of code and advances the yellow arrow
to the following executable line in the program. If the line of code contains a procedure call, the
procedure is executed in its entirety as one step.

• The Hex button toggles the display format of data. If enabled, Hex displays data in a hexadecimal
(base 16) form, rather than decimal (base 10) form.

• The Breakpoints window displays all the breakpoints currently set for a program. 

• Disabled breakpoints allow the programmer to maintain breakpoints in key locations in the pro-
gram so they can be used again when needed.

• The Call Stack window contains the program’s procedure call stack, which allows the program-
mer to determine the exact sequence of calls that led to the current procedure and to examine call-
ing procedures on the stack.

• The Step Over button executes one statement in a procedure, then pauses program execution.

• The Step Into button executes next statement. If the statement contains a procedure call, control
transfers to the procedure for line-by-line debugging. If the statement does not contain a procedure
call, Step Into behaves like Step Over.



1318 Visual Studio .NET Debugger Appendix D

• The Step Out finishes executing the procedure and returns control to the line that called the pro-
cedure.

• The Immediate window is useful for testing arguments passed to a procedure. This helps deter-
mine if a procedure is functioning properly.

• Visual Studio .NET includes class debugging features which allow the programmer to determine
the current state of any objects used in a program.

• To assist class debugging, Visual Studio .NET allows the programmer to expand and view all data
members variables and properties of an object, including those declared Private.



E
ASCII Character Set

Fig. E.1 ASCII character set.

The digits at the left of the table are the left digits of the decimal equivalent (0–127) of the
character code, and the digits at the top of the table are the right digits of the character code.
For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by Visual Basic to represent characters from most of the world’s lan-
guages. For more information on the Unicode character set, see Appendix F.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht
1 nl vt ff cr so si dle dc1 dc2 dc3
2 dc4 nak syn etb can em sub esc fs gs
3 rs us sp ! " # $ % & ‘
4 ( ) * + , - . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [ \ ] ^ _ ’ a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ del



F
Unicode®

Objectives
• To become familiar with Unicode.
• To discuss the mission of the Unicode Consortium.
• To discuss the design basis of Unicode.
• To understand the three Unicode encoding forms: 

UTF-8, UTF-16 and UTF-32.
• To introduce characters and glyphs.
• To discuss the advantages and disadvantages of using 

Unicode.
• To provide a brief tour of the Unicode Consortium’s 

Web site.



Appendix F Unicode® 1321

F.1 Introduction
The use of inconsistent character encodings (i.e., numeric values associated with charac-
ters) in the developing of global software products causes serious problems, because com-
puters process information as numbers. For instance, the character “a” is converted to a
numeric value so that a computer can manipulate that piece of data. Many countries and
corporations have developed their own encoding systems that are incompatible with the en-
coding systems of other countries and corporations. For example, the Microsoft Windows
operating system assigns the value 0xC0 to the character “A with a grave accent”; the Ap-
ple Macintosh operating system assigns that same value to an upside-down question mark.
This results in the misrepresentation and possible corruption of data when data is not pro-
cessed as intended.

In the absence of a widely-implemented universal character-encoding standard, global
software developers had to localize their products extensively before distribution. Local-
ization includes the language translation and cultural adaptation of content. The process of
localization usually includes significant modifications to the source code (such as the con-
version of numeric values and the underlying assumptions made by programmers), which
results in increased costs and delays releasing the software. For example, some English-
speaking programmers might design global software products assuming that a single char-
acter can be represented by one byte. However, when those products are localized for Asian
markets, the programmer’s assumptions are no longer valid; thus, the majority, if not the
entirety, of the code needs to be rewritten. Localization is necessary with each release of a
version. By the time a software product is localized for a particular market, a newer version,
which needs to be localized as well, may be ready for distribution. As a result, it is cumber-
some and costly to produce and distribute global software products in a market where there
is no universal character-encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facili-
tates the production and distribution of software, was created. The Unicode Standard out-
lines a specification to produce consistent encoding of the world’s characters and symbols.
Software products that handle text encoded in the Unicode Standard need to be localized,
but the localization process is simpler and more efficient because the numeric values need
not be converted and the assumptions made by programmers about the character encoding
are universal. The Unicode Standard is maintained by a nonprofit organization called the

Outline

F.1 Introduction
F.2 Unicode Transformation Formats
F.3 Characters and Glyphs
F.4 Advantages/Disadvantages of Unicode
F.5 Unicode Consortium’s Web Site
F.6 Using Unicode
F.7 Character Ranges

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



1322 Unicode® Appendix F

Unicode Consortium, whose members include Apple, IBM, Microsoft, Oracle, Sun Micro-
systems, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, they wanted
an encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed easily. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

F.2 Unicode Transformation Formats
Although Unicode incorporates the limited ASCII character set (i.e., a collection of char-
acters), it encompasses a more comprehensive character set. In ASCII each character is rep-
resented by a byte containing 0s and 1s. One byte is capable of storing the binary numbers
from 0 to 255. Each character is assigned a number between 0 and 255; thus, ASCII-based
systems can support only 256 characters, a tiny fraction of world’s characters. Unicode ex-
tends the ASCII character set by encoding the vast majority of the world’s characters. The
Unicode Standard encodes all of those characters in a uniform numerical space from 0 to
10FFFF hexadecimal. An implementation will express these numbers in one of several
transformation formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32, depending on the
size of the units—in bits—being used. UTF-8, a variable-width encoding form, requires
one to four bytes to express each Unicode character. UTF-8 data consists of 8-bit bytes
(sequences of one, two, three or four bytes depending on the character being encoded) and
is well suited for ASCII-based systems, where there is a predominance of one-byte charac-
ters (ASCII represents characters as one byte). Currently, UTF-8 is widely implemented in
UNIX systems and in databases.

The variable-width UTF-16 encoding form expresses Unicode characters in units of 16
bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters of
Unicode are expressed in a single 16-bit unit. However, characters with values above FFFF
hexadecimal are expressed with an ordered pair of 16-bit units called surrogates. Surro-
gates are 16-bit integers in the range D800 through DFFF, which are used solely for the pur-
pose of “escaping” into higher numbered characters. Approximately one million characters
can be expressed in this manner. Although a surrogate pair requires 32 bits to represent
characters, it is space-efficient to use these 16-bit units. Surrogates are rare characters in
current implementations. Many string-handling implementations are written in terms of
UTF-16. [Note: Details and sample code for UTF-16 handling are available on the Unicode
Consortium Web site at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts encoded
above FFFF hexadecimal should use UTF-32, a 32-bit, fixed-width encoding form that usu-
ally requires twice as much memory as UTF-16 encoded characters. The major advantage
of the fixed-width UTF-32 encoding form is that it expresses all characters uniformly, so it
is easy to handle in arrays.

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on computer systems and business protocols, not on the data
itself. Typically, the UTF-8 encoding form should be used where computer systems and



Appendix F Unicode® 1323

business protocols require data to be handled in 8-bit units, particularly in legacy systems
being upgraded, because it often simplifies changes to existing programs. For this reason,
UTF-8 has become the encoding form of choice on the Internet. Likewise, UTF-16 is the
encoding form of choice on Microsoft Windows applications. UTF-32 is likely to become
more widely used in the future as more characters are encoded with values above FFFF
hexadecimal. Also, UTF-32 requires less sophisticated handling than UTF-16 in the pres-
ence of surrogate pairs. Figure F.1 shows the different ways in which the three encoding
forms handle character encoding.

F.3 Characters and Glyphs 
The Unicode Standard consists of characters, written components (i.e., alphabetic letters,
numerals, punctuation marks, accent marks, etc.) that can be represented by numeric val-
ues. Examples of characters include: U+0041 LATIN CAPITAL LETTER A. In the first
character representation, U+yyyy is a code value, in which U+ refers to Unicode code val-
ues, as opposed to other hexadecimal values. The yyyy represents a four-digit hexadecimal
number of an encoded character. Code values are bit combinations that represent encoded
characters. Characters are represented with glyphs, various shapes, fonts and sizes for dis-
playing characters. There are no code values for glyphs in the Unicode Standard. Examples
of glyphs are shown in Fig. F.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators and so on. that comprose the written lan-
guages and scripts of the world. A diacritic is a special mark added to a character to
distinguish it from another letter or to indicate an accent (e.g., in Spanish, the tilde “~”
above the character “n”). Currently, Unicode provides code values for 94,140 character
representations, with more than 880,000 code values reserved for future expansion.  

Character UTF-8 UTF-16 UTF-32

LATIN CAPITAL LETTER A 0x41 0x0041 0x00000041

GREEK CAPITAL LETTER 
ALPHA

0xCD 0x91 0x0391 0x00000391

CJK UNIFIED IDEOGRAPH-
4E95

0xE4 0xBA 0x95 0x4E95 0x00004E95

OLD ITALIC LETTER A 0xF0 0x80 0x83 0x80 0xDC00 0xDF00 0x00010300

Fig. F.1 Correlation between the three encoding forms.

Fig. F.2 Various glyphs of the character A.



1324 Unicode® Appendix F

F.4 Advantages/Disadvantages of Unicode
The Unicode Standard has several significant advantages that promote its use. One is the
impact it has on the performance of the international economy. Unicode standardizes the
characters for the world’s writing systems to a uniform model that promotes transferring
and sharing data. Programs developed using such a schema maintain their accuracy because
each character has a single definition (i.e., a is always U+0061, % is always U+0025). This
enables corporations to manage the high demands of international markets by processing
different writing systems at the same time. Also, all characters can be managed in an iden-
tical manner, thus avoiding any confusion caused by different character-code architectures.
Moreover, managing data in a consistent manner eliminates data corruption, because data
can be sorted, searched and manipulated via a consistent process.

Another advantage of the Unicode Standard is portability (i.e., the ability to execute
software on disparate computers or with disparate operating systems). Most operating sys-
tems, databases, programming languages and Web browsers currently support, or are plan-
ning to support, Unicode. Additionally, Unicode includes more characters than any other
character set in common use (although it does not yet include all of the world’s characters.

A disadvantage of the Unicode Standard is the amount of memory required by UTF-
16 and UTF-32. ASCII character sets are 8 bits in length, so they require less storage than
the default 16-bit Unicode character set. However, the double-byte character set (DBCS)
and the multi-byte character set (MBCS) that encode Asian characters (ideographs) require
two to four bytes, respectively. In such instances, the UTF-16 or the UTF-32 encoding
forms may be used with little hindrance on memory and performance.

F.5 Unicode Consortium’s Web Site
If you would like to learn more about the Unicode Standard, visit www.unicode.org.
This site provides a wealth of information about the Unicode Standard. Currently, the home
page is organized into various sections: New to Unicode, General Information, The Con-
sortium, The Unicode Standard, Work in Progress and For Members.

The New to Unicode section consists of two subsections: What is Unicode? and
How to Use this Site. The first subsection provides a technical introduction to Unicode
by describing design principles, character interpretations and assignments, text processing
and Unicode conformance. This subsection is recommended reading for anyone new to
Unicode. Also, this subsection provides a list of related links that provide the reader with
additional information about Unicode. The How to Use this Site subsection contains
information about using and navigating the site as well hyperlinks to additional resources.

The General Information section contains six subsections: Where is my Char-
acter?, Display Problems?, Useful Resources, Enabled Products, Mail Lists
and Conferences. The main areas covered in this section include a link to the Unicode
code charts (a complete listing of code values) assembled by the Unicode Consortium as
well as a detailed outline on how to locate an encoded character in the code chart. Also, the
section contains advice on how to configure different operating systems and Web browsers
so that the Unicode characters can be viewed properly. Moreover, from this section, the
user can navigate to other sites that provide information on various topics, such as fonts,
linguistics and such other standards as the Armenian Standards Page and the Chinese GB
18030 Encoding Standard.



Appendix F Unicode® 1325

The Consortium section consists of five subsections: Who we are, Our Members,
How to Join, Press Info and Contact Us. This section provides a list of the current
Unicode Consortium members as well as information on how to become a member. Privi-
leges for each member type—full, associate, specialist and individual—and the fees
assessed to each member are listed here.

The Unicode Standard section consists of nine subsections: Start Here, Latest Ver-
sion, Technical Reports, Code Charts, Unicode Data, Updates & Errata, Uni-
code Policies, Glossary and Technical FAQ. This section describes the updates
applied to the latest version of the Unicode Standard and categorizes all defined encoding.
The user can learn how the latest version has been modified to encompass more features
and capabilities. For instance, one enhancement of Version 3.1 is that it contains additional
encoded characters. Also, if users are unfamiliar with vocabulary terms used by the Uni-
code Consortium, they can navigate to the Glossary subsection.

The Work in Progress section consists of three subsections: Calendar of Meetings,
Proposed Characters and Submitting Proposals. This section presents the user with
a catalog of the recent characters included into the Unicode Standard scheme as well as
those characters being considered for inclusion. If users determine that a character has been
overlooked, then they can submit a written proposal for the inclusion of that character. The
Submitting Proposals subsection contains strict guidelines that must be adhered to
when submitting written proposals.

The For Members section consists of two subsections: Member Resources and
Working Documents. These subsections are password protected; only consortium mem-
bers can access these links.

F.6 Using Unicode
Visual Studio .NET uses Unicode UTF-16 encoding to represent all characters. Figure F.3
uses Visual Basic to display the text “Welcome to Unicode!” in eight different languages:
English, French, German, Japanese, Portuguese, Russian, Spanish and Traditional Chinese.
[Note: The Unicode Consortium’s Web site contains a link to code charts that lists the 16-
bit Unicode code values.] 

The first welcome message (lines 13–16) contains the hexadecimal codes for the
English text. The Code Charts page on the Unicode Consortium Web site contains a doc-
ument that lists the code values for the Basic Latin block (or category), which includes
the English alphabet. The hexadecimal codes in lines 13–14 equate to “Welcome.” When
using Unicode characters in Visual Basic, the format &Hyyyy is used, where yyyy represents
the hexadecimal Unicode encoding. For example, the letter “W” (in “Welcome”) is denoted
by &H57. [Note: The actual code for the letter “W” is &H0057, but Visual Studio removes
the two zeros.] Line 15 contains the hexadecimal for the space character (&H20). The hexa-
decimal value for the word “to” is on line 15 and the word “Unicode” is on line 14. “Uni-
code” is not encoded because it is a registered trademark and has no equivalent translation
in most languages. Line 16 also contains the &H21 notation for the exclamation mark (!).

The remaining welcome messages (lines 18–61) contain the hexadecimal codes for the
other seven languages. The code values used for the French, German, Portuguese and
Spanish text are located in the Basic Latin block, the code values used for the Traditional
Chinese text are located in the CJK Unified Ideographs block, the code values used for



1326 Unicode® Appendix F

the Russian text are located in the Cyrillic block and the code values used for the Japanese
text are located in the Hiragana block. 

1 ' Fig. F.3: Unicode.vb
2 ' Using Unicode encoding.
3
4 Public Class FrmUnicode
5 Inherits System.Windows.Forms.Form
6
7    ' Visual Studio .NET generated code 
8
9 Private Sub Form1_Load(ByVal sender As System.Object, _

10       ByVal e As System.EventArgs) Handles MyBase.Load
11
12       'English
13       lblEnglish.Text = ChrW(&H57) & ChrW(&H65) & ChrW(&H6C) & _
14          ChrW(&H63) & ChrW(&H6F) & ChrW(&H6D) & ChrW(&H65) & _
15          ChrW(&H20) & ChrW(&H74) & ChrW(&H6F) & ChrW(&H20) & _
16          "Unicode" & ChrW(&H21)
17
18       ' French
19       lblFrench.Text = ChrW(&H42) & ChrW(&H69) & ChrW(&H65) & _
20          ChrW(&H6E) & ChrW(&H76) & ChrW(&H65) & ChrW(&H6E) & _
21          ChrW(&H75) & ChrW(&H65) & ChrW(&H20) & ChrW(&H61) & _
22          ChrW(&H75) & ChrW(&H20) & "Unicode" & ChrW(&H21)
23
24       ' German
25       lblGerman.Text = ChrW(&H57) & ChrW(&H69) & ChrW(&H6C) & _
26          ChrW(&H6B) & ChrW(&H6F) & ChrW(&H6D) & ChrW(&H6D) & _
27          ChrW(&H65) & ChrW(&H6E) & ChrW(&H20) & ChrW(&H7A) & _
28          ChrW(&H75) & ChrW(&H20) & "Unicode" & ChrW(&H21)
29
30       ' Japanese
31       lblJapanese.Text = "Unicode" & ChrW(&H3078) & _
32          ChrW(&H3087) & ChrW(&H3045) & ChrW(&H3053) & _
33          ChrW(&H305D) & ChrW(&H21)
34
35       ' Portuguese 
36       lblPortuguese.Text = ChrW(&H53) & ChrW(&HE9) & ChrW(&H6A) & _
37          ChrW(&H61) & ChrW(&H20) & ChrW(&H42) & _
38          ChrW(&H65) & ChrW(&H6D) & ChrW(&H76) & _
39          ChrW(&H69) & ChrW(&H6E) & ChrW(&H64) & _
40          ChrW(&H6F) & ChrW(&H20) & "Unicode" & ChrW(&H21)
41
42   ' Russian 
43       lblRussian.Text = ChrW(&H414) & ChrW(&H43E) & ChrW(&H431) & _
44          ChrW(&H440) & ChrW(&H43E) & ChrW(&H20) & _
45          ChrW(&H43F) & ChrW(&H43E) & ChrW(&H436) & _
46          ChrW(&H430) & ChrW(&H43B) & ChrW(&H43E) & _
47          ChrW(&H432) & ChrW(&H430) & ChrW(&H442) & _
48          ChrW(&H44A) & ChrW(&H20) & ChrW(&H432) & _
49          ChrW(&H20) & "Unicode" & ChrW(&H21)
50

Fig. F.3 Windows application demonstrating Unicode encoding (part 1 of 2).



Appendix F Unicode® 1327

[Note: To render the Asian characters in a Windows application, you could need to
install the proper language files on your computer. To do this, open the Regional
Options dialog from the Control Panel (Start > Settings > Control Panel). At the
bottom of the General tab is a list of languages. Check the Japanese and the Tradi-
tional Chinese checkboxes and press Apply. Follow the directions of the install wizard
to install the languages. For additional assistance, visit www.unicode.org/help/
display_problems.html.]

F.7 Character Ranges
The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to
E007F (Tags), to the written characters of the world. Currently, there are code values for
94,140 characters. To simplify the search for a character and its associated code value, the
Unicode Standard generally groups code values by script and function (i.e., Latin charac-
ters are grouped in a block, mathematical operators are grouped in another block, etc.). As
a rule, a script is a single writing system that is used for multiple languages (e.g., the Latin
script is used for English, French, Spanish, etc.). The Code Charts page on the Unicode
Consortium Web site lists all the defined blocks and their respective code values.
Figure F.4 lists some blocks (scripts) from the Web site and their range of code values.

51       ' Spanish 
52       lblSpanish.Text = ChrW(&H42) & ChrW(&H69) & ChrW(&H65) & _
53          ChrW(&H6E) & ChrW(&H76) & ChrW(&H65) & _
54          ChrW(&H6E) & ChrW(&H69) & ChrW(&H64) & _
55          ChrW(&H61) & ChrW(&H20) & ChrW(&H61) & _
56          ChrW(&H20) & "Unicode" & ChrW(&H21)
57
58     ' Traditional Chinese 
59       lblChinese.Text = ChrW(&H6B22) & ChrW(&H8FCE) & _
60          ChrW(&H4F7F) & ChrW(&H7528) & ChrW(&H20) & _
61          "Unicode" & ChrW(&H21)
62  End Sub
63
64 End Class

Fig. F.3 Windows application demonstrating Unicode encoding (part 2 of 2).



1328 Unicode® Appendix F

SUMMARY
• Before Unicode, software developers were plagued by the use of inconsistent character encoding

(i.e., numeric values for characters). Most countries and organizations had their own encoding sys-
tems, which were incompatible. A good example is the individual encoding systems on the Win-
dows and Macintosh platforms.

• Computers process data by converting characters to numeric values. For instance, the character “a”
is converted to a numeric value so that a computer can manipulate that piece of data.

• Without Unicode, localization of global software requires significant modifications to the source
code, which results in increased cost and delays in releasing the product.

• Localization is necessary with each release of a version. By the time a software product is localized
for a particular market, a newer version, which needs to be localized as well, is ready for distribu-
tion. As a result, it is cumbersome and costly to produce and distribute global software products
in a market where there is no universal character-encoding standard.

• The Unicode Consortium developed the Unicode Standard in response to the serious problems cre-
ated by multiple character encodings and the use of those encodings.

• The Unicode Standard facilitates the production and distribution of localized software. It outlines
a specification for the consistent encoding of the world’s characters and symbols.

Script Range of Code Values

Arabic U+0600–U+06FF

Basic Latin U+0000–U+007F

Bengali (India) U+0980–U+09FF

Cherokee (Native America) U+13A0–U+13FF

CJK Unified Ideographs (East Asia) U+4E00–U+9FAF

Cyrillic (Russia and Eastern Europe) U+0400–U+04FF

Ethiopic U+1200–U+137F

Greek U+0370–U+03FF

Hangul Jamo (Korea) U+1100–U+11FF

Hebrew U+0590–U+05FF

Hiragana (Japan) U+3040–U+309F

Khmer (Cambodia) U+1780–U+17FF

Lao (Laos) U+0E80–U+0EFF

Mongolian U+1800–U+18AF

Myanmar U+1000–U+109F

Ogham (Ireland) U+1680–U+169F

Runic (Germany and Scandinavia) U+16A0–U+16FF

Sinhala (Sri Lanka) U+0D80–U+0DFF

Telugu (India) U+0C00–U+0C7F

Thai U+0E00–U+0E7F

Fig. F.4 Some character ranges.



Appendix F Unicode® 1329

• Software products that handle text encoded in the Unicode Standard need to be localized, but the
localization process is simpler and more efficient because the numeric values need not be convert-
ed.

• The Unicode Standard is designed to be universal, efficient, uniform and unambiguous.

• A universal encoding system encompasses all commonly used characters; an efficient encoding
system parses text files easily; a uniform encoding system assigns fixed values to all characters;
and an unambiguous encoding system represents the same character for any given value.

• Unicode extends the limited ASCII character set to include all the major characters of the world. 

• Unicode makes use of three Unicode Transformation Formats (UTF): UTF-8, UTF-16 and UTF-
32, each of which may be appropriate for use in different contexts.

• UTF-8 data consists of 8-bit bytes (sequences of one, two, three or four bytes depending on the
character being encoded) and is well suited for ASCII-based systems, where there is a predomi-
nance of one-byte characters (ASCII represents characters as one byte).

• UTF-8 is a variable-width encoding form that is more compact for text involving mostly Latin
characters and ASCII punctuation.

• UTF-16 is the default encoding form of the Unicode Standard. It is a variable-width encoding form
that uses 16-bit code units instead of bytes. Most characters are represented by a single unit, but
some characters require surrogate pairs.

• Surrogates are 16-bit integers in the range D800 through DFFF, which are used solely for the pur-
pose of “escaping” into higher numbered characters.

• Without surrogate pairs, the UTF-16 encoding form can only encompass 65,000 characters, but
with the surrogate pairs, this is expanded to include over a million characters.

• UTF-32 is a 32-bit encoding form. The major advantage of the fixed-width encoding form is that
it uniformly expresses all characters, so that they are easy to handle in arrays and so forth.

• The Unicode Standard consists of characters. A character is any written component that can be rep-
resented by a numeric value. 

• Characters are represented with glyphs (various shapes, fonts and sizes for displaying characters).

• Code values are bit combinations that represent encoded characters. The Unicode notation for a
code value is U+yyyy, in which U+ refers to the Unicode code values, as opposed to other hexa-
decimal values. The yyyy represents a four-digit hexadecimal number.

• Currently, the Unicode Standard provides code values for 94,140 character representations.

• An advantage of the Unicode Standard is its impact on the overall performance of the international
economy. Applications that conform to an encoding standard can be processed easily by comput-
ers anywhere.

• Another advantage of the Unicode Standard is its portability. Applications written in Unicode can
be easily transferred to different operating systems, databases, Web browsers and so on. Most
companies currently support, or are planning to support, Unicode.

• To obtain more information about the Unicode Standard and the Unicode Consortium, visit
www.unicode.org. It contains a link to the code charts, which contain the 16-bit code values
for the currently encoded characters.

• The Unicode Standard has become the default encoding system for XML and any language de-
rived from XML, such as XHTML.

• The Visual Basic .NET IDE uses Unicode UTF-16 encoding to represent all characters.

• In the marking up of Visual Basic documents, the entity reference &Hyyyy is used, where yyyy rep-
resents the hexadecimal code value.



1330 Unicode® Appendix F

TERMINOLOGY

SELF-REVIEW EXERCISES
F.1 Fill in the blanks in each of the following.

a) Global software developers had to  their products to a specific market before
distribution.

b) The Unicode Standard is an  standard that facilitates the uniform production
and distribution of software products.

c) The four design basis that constitute the Unicode Standard are: , ,
 and .

d) A  is the smallest written component the can be represented with a numeric
value.

e) Software that can execute on different operating systems is said to be .
f) Of the three encoding forms,  is currently supported by Internet Explorer 5.5

and Netscape Communicator 6.

F.2 State whether each of the following is true or false. If false, explain why.
a) The Unicode Standard encompasses all the world’s characters.
b) A Unicode code value is represented as U+yyyy, where yyyy represents a number in bi-

nary notation.
c) A diacritic is a character with a special mark that emphasizes an accent.
d) Unicode is portable.
e) When designing Visual Basic programs, the entity reference is denoted by #U+yyyy.

ANSWERS TO SELF-REVIEW EXERCISES
F.1 a) localize. b) encoding. c) universal, efficient, uniform, unambiguous. d) character. e) por-
table. f) UTF-8.

F.2 a) False. It encompasses the majority of the world’s characters. b) False. The yyyy represents a
hexadecimal number. c) False. A diacritic is a special mark added to a character to distinguish it from
another letter or to indicate an accent. d) True. e) False. The entity reference is denoted by &Hyyyy.

EXERCISES
F.3 Navigate to the Unicode Consortium Web site (www.unicode.org) and write the hexa-
decimal code values for the following characters. In which block are they located?

&Hyyyy notation portability
ASCII script
block surrogate
character symbol
character set unambiguous (Unicode design basis)
code value Unicode Consortium
diacritic Unicode design basis
double-byte character set (DBCS) Unicode Standard
efficient (Unicode design basis) Unicode Transformation Format (UTF)
encode uniform (Unicode design basis)
entity reference universal (Unicode design basis)
glyph UTF-8
hexadecimal notation UTF-16
localization UTF-32
multi-byte character set (MBCS)



Appendix F Unicode® 1331

a) Latin letter ‘Z.’
b) Latin letter ‘n’ with the ‘tilde (~).’
c) Greek letter ‘delta.’
d) Mathematical operator ‘less than or equal to.’
e) Punctuation symbol ‘open quote (“).’

F.4 Describe the Unicode Standard design basis.

F.5 Define the following terms:
a) code value.
b) surrogates.
c) Unicode Standard.
d) UTF-8.
e) UTF-16.
f) UTF-32.

F.6 Describe a scenario where it is optimal to store your data in UTF-16 format.

F.7 Using the Unicode Standard code values, create a program that prints your first and last
name. If you know other writing systems, print your first and last name in those as well. Use a Label
to display your name.

F.8 Write an ASP.NET program that prints “Welcome to Unicode!” in English, French, German,
Japanese, Portuguese, Russian, Spanish and Traditional Chinese. Use the code values provided in
Fig. F.3. In ASP.NET, a code value is represented the same way as in a Windows application
(&Hyyyy, where yyyy is a four-digit hexadecimal number).



G
COM Integration

G.1 Introduction
Initially, applications created for Windows or DOS were designed as single monolithic ex-
ecutables—i.e., complete applications packaged as single executable files. However, as
software became more complex, developers began to experience difficulties in constructing
all the necessary components of an application. Furthermore, as the size of applications in-
creased, it became impractical to redistribute an entire application to accommodate each
application upgrade or bug fix. 

To address these problems, Microsoft incorporated shared libraries into Windows,
enabling developers to reuse and modularize code. A shared library, or dynamic link library
(DLL) in Windows, is a file containing compiled code that an application loads at execution
time. The fact that these libraries are loaded at runtime allows developers to modify specific
libraries and test the results without rebuilding an entire application. Shared libraries
increase the modularity of programs, in that multiple applications can access a single code
library. The partitioning of programs into small pieces also makes it easier to distribute
application upgrades, because only those DLLs modified must be redistributed.

The introduction of shared libraries solved many problems that previously had
restricted modularity and code reusability. However, these libraries also raised new con-
cerns. Monolithic applications rarely created version conflicts—if an application vendor
fixed a bug in one piece of software, it was unlikely that the bug fix would affect any other
software on the system. With the establishment of system-wide shared libraries, a vendor’s
upgrade or modification of a library could “break” software that used that library. Often,
developers packaged DLLs with their applications to ensure software compatibility. How-
ever, these DLLs could overwrite preexisting libraries on users’ systems, possibly affecting
previously installed software. Problems introduced by shared libraries were so difficult to
locate and fix that their effects became known as “DLL hell.”

Microsoft developed the Component Object Model (COM) in an attempt to expand
DLL functionality and correct DLL problems. COM is a specification that controls library



Appendix G COM Integration 1333

versions, backwards compatibility and defines a communication standard among libraries.
Microsoft defined the COM specification to be detailed and strict, thus ensuring that COM
developers create compatible libraries. Microsoft also implemented the COM architecture
on a large scale—virtually all Windows libraries adhere to the COM specification.

When implemented correctly, COM ensures highly organized and reusable libraries,
but the specification does have limitations. For example, COM is difficult to program and
deploy, because developers must guarantee that new COM components are both compat-
ible with previous versions and correctly registered with the system. If a COM library is
placed on a system without being properly registered, applications will be unable to find or
use the library.

In the .NET platform, COM components are no longer necessary. Microsoft .NET
components retain the benefits of COM while resolving many of its associated problems.
Components in .NET maintain all identification information internally—the independence
of the component from the Windows Registry ensures correct component identification.
Many developers and companies have invested significant resources in the development of
COM components, but want to harness the power, organization and functionality of .NET.
To facilitate developers’ migration from COM to .NET, Microsoft created a set of tools
designed to integrate existing COM components into the .NET platform.

G.2 ActiveX Integration
In recent years, ActiveX controls have been popular COM components. Visual Basic .NET
allows developers to import and use ActiveX controls in Windows Forms applications. We
include an ActiveX LabelScrollbar control on the CD that accompanies this book,
which we now use to demonstrate Microsoft’s ActiveX integration utility.

To use this control, readers first must register the .OCX file in the Windows Registry.
To register the control, open a Command Prompt, and invoke the RegSvr32 utility
program, which is located in the directory c:\winnt\system32. (This path might vary
among different computers and Windows versions.) Figure G.1 depicts the successful reg-
istration of the LabelScrollbar ActiveX control.

Fig. G.1 ActiveX control registration.



1334 COM Integration Appendix G

Once readers register the ActiveX control, they must add it to the Visual Studio IDE’s
toolbox. To accomplish this, right click the toolbox, and select Customize Toolbox
(Fig. G.2). The Customize Toolbox lists all the COM components that are registered on
the machine. Select the Deitel LabelScrollbar .OCX file to add the LabelScrollbar
to the toolbox, and then click OK. At this point, Visual Studio generates libraries Deitel
and AxDeitel and adds them to the references in the Solution Explorer. The first ref-
erence (Deitel) is the Common Runtime Library proxy, which allows the programmer to
access the ActiveX component’s methods and properties from .NET code. The second ref-
erence (AxDeitel) is the Windows Forms proxy, which allows the programmer to add the
ActiveX component to a form. In this context a proxy is an object that allows .NET code to
interact with COM code—we discuss the interaction between .NET and COM in greater
detail in the next section. Note that, once the LabelScrollbar is added to the toolbox,
two DLL files are generated in the bin directory of the application:
AxInterop.Deitel.dll, and Interop.Deitel.dll.

The first image in Fig. G.3 depicts the IDE toolbox after the LabelScrollBar has
been added. The second image displays a list of the LabelScrollBar control proper-
ties, consisting of properties defined in the ActiveX control (i.e., Min, Max, Small-
Change, LargeChange and Value) and Visual Studio-defined properties (e.g.,
Anchor, Dock and Location).

To demonstrate LabelScrollBar’s functionality, we add three LabelScroll-
bars to a form (Fig. G.4). These controls enable a user to select RGB values (i.e., red,
green and blue) that specify the color of a PictureBox.

Fig. G.2 Customize Toolbox dialog with an ActiveX control selected.



Appendix G COM Integration 1335

The constructor calls SetupRGBTitleScrollbar, (lines 12–22) which sets the ini-
tial property values of Min, Max, LargeChange and SmallChange for each
LabelScrollbar control. The Max property of each LabelScrollbar is set to 255,
allowing a color range of over 16 million colors.

Fig. G.3 IDE’s toolbox and LabelScrollbar properties.

1 ' Fig. G.4 : LabelScrollBar.vb
2 ' ActiveX controls integration example.
3
4 Imports System.Drawing
5 Imports System.Windows.Forms
6
7 ' uses ActiveX control LabelScrollBar to select RGB value
8 Public Class RGBColors
9 Inherits System.Windows.Forms.Form

10
11    ' initialize LabelScrollBar properties
12 Private Sub SetupRGBTitleScrollbar( _
13       ByVal scrollBar As AxDeitel.AxLabelScrollbar)

Fig. G.4 ActiveX COM control integration in Visual Basic .NET (part 1 of 3).

LabelScrollBar
Control

Control 
Properties



1336 COM Integration Appendix G

14
15       With scrollBar
16          .Min = 0             ' minimum value
17          .Max = 255           ' maximum value
18          .LargeChange = 10    ' large change value
19          .SmallChange = 1     ' small change value
20       End With
21
22 End Sub ' SetupRGBTitleScrollBar
23
24  Public Sub New()
25       MyBase.New()
26
27       InitializeComponent()
28
29       ' setup LabelScrollbar properties
30       SetupRGBTitleScrollbar(redScrollbar)
31       SetupRGBTitleScrollbar(blueScrollbar)
32       SetupRGBTitleScrollbar(greenScrollbar)
33
34       ' initialize PictureBox back color
35       PictureBox.BackColor = Color.FromArgb( _
36          redScrollBar.Value, greenScrollBar.Value, _
37          blueScrollBar.Value)
38    End Sub ' New
39
40 Friend WithEvents PictureBox As PictureBox
41
42    ' LabelScrollBars used to control PictureBox color
43 Friend WithEvents redScrollBar As _
44       AxDeitel.AxLabelScrollbar
45 Friend WithEvents blueScrollBar As _
46       AxDeitel.AxLabelScrollbar
47 Friend WithEvents greenScrollBar As _
48       AxDeitel.AxLabelScrollbar
49
50    ' Visual Studio .NET generated code
51
52    ' event handler that changes PictureBox back color
53 Private Sub ScrollBar_Change( _
54       ByVal sender As System.Object, _
55       ByVal e As System.EventArgs) _
56       Handles redScrollBar.change, greenScrollBar.change, _
57          blueScrollBar.change
58
59       PictureBox.BackColor = Color.FromArgb( _
60          redScrollBar.Value, greenScrollBar.Value, _
61          blueScrollBar.Value)
62    End Sub ' ScrollBar_Change
63
64 End Class ' RGBColors

Fig. G.4 ActiveX COM control integration in Visual Basic .NET (part 2 of 3).



Appendix G COM Integration 1337

 The constructor also sets the PictureBox’s initial background color (lines 35–37).
Lines 51–60 define the event handler for the LabelScrollbar’s change event. When
the user changes the value of a LabelScrollbar, the change event fires, and the
PictureBox’s background color changes.

G.3 DLL Integration
Visual Studio .NET also supports the integration of COM DLLs. This process is similar to
the integration of ActiveX components. To demonstrate how Visual Studio .NET integrates
a COM DLL, we have included deitelvb6addition.dll on the CD that accompa-
nies this book. This simple library contains function AdditionFunction, which takes
two arguments, adds them together and returns the result. 

The first step in the integration of this COM DLL is to identify the DLL in the Win-
dows Registry with the RegSvr32 utility, as follows:

regsvr32 deitelvb6addition.dll

After registering the library, add a reference to it in a Visual Basic program by right-
clicking References in the Solution Explorer and selecting Add Reference. In the
Add Reference dialog (Fig. G.5), select the COM tab. Then, choose Simple Addition
DLL, and click OK. A dialog appears, indicating that .NET must generate a primary
interop assembly (Fig. G.5). Select Yes when this dialog appears. The primary interop
assembly contains information for all methods and classes contained in the COM library. 

In Windows, all components (both .NET and COM) must be accompanied by identifica-
tion information. This information contains Globally Unique Identifiers (GUID) for the com-
ponent and its internal classes as well as language-independent descriptions of all classes and
types that are defined in the component. These language-independent descriptions help to
enable component reuse across multiple programming languages. A GUID consists of a long
string of numbers that a computer generates on the basis of the computer’s current time and
hardware and a random number. The GUID algorithm never generates the same identifier
twice; thus, GUIDs enable unique component identification across all computers. 

Fig. G.4 ActiveX COM control integration in Visual Basic .NET (part 3 of 3).



1338 COM Integration Appendix G

When a COM component is registered, its GUID is stored in the Windows Registry;
programs then can use the registry to locate and identify the component. Once a program
has located a desired component, it uses the component’s type library to find and use the
library’s objects and methods. A type library describes all of a COM component’s inter-
faces, types and methods; the type library is included either in the component .dll file or
in a separate .tlb file. The separation of the GUID (located in the Windows Registry)
from the library file is the source of many problems associated with the COM architecture.
By contrast, .NET components avoid these problems by maintaining all identification
information internally. When Visual Studio imports a COM component, it creates a file that
contains all identification and data-description information internally. Visual Studio
obtains the component GUID from the Windows Registry and converts the data description
from the type library-format into the .NET assembly format. This processing creates a new
DLL file, called a primary interop assembly, which then is placed into the application’s
bin directory. 

The primary interop assembly is used by .NET to locate COM methods and to translate
component data types between the .NET platform types and COM component types. The
translation for each COM component is performed by a Runtime Callable Wrapper (RCW).
The RCW is a proxy object created by the .NET runtime from the information in the
object’s primary interop assembly. The RCW manages the COM object and performs com-
munication between .NET code and the COM object.

Fig. G.5 Add Reference dialog DLL Selection.



Appendix G COM Integration 1339

Performance Tip G.1
The .NET and COM architectures are fundamentally different in terms of memory manage-
ment and object representation. Method calls to COM objects can degrade program perfor-
mance, because the RCW must convert all data types between the managed (.NET) context
and the unmanaged (COM) context. G.1

When we instantiate a COM object in Visual Basic, we are actually creating a new
instance of the object’s RCW. The communication between the RCW and the COM com-
ponent is entirely transparent, enabling the .NET developer to interact with the COM object
as if it were a .NET object.

We created an application (Fig. G.6) demonstrating how to use the Simple Addition
DLL that we want to integrate into .NET. This program includes three text boxes and a button.
After entering an Integer into each of the first two text boxes, the user clicks the Calcu-
late button, and the program displays the sum of the two Integers in the third text box. 

1 ' Fig. G.6 : Addition.vb
2 ' COM component integration example.
3
4 Imports System.Windows.Forms
5
6 ' adds two numbers entered in text boxes
7 Public Class CAddition
8 Inherits System.Windows.Forms.Form
9

10 Dim firstInteger As Integer
11 Dim secondInteger As Integer
12 Dim total As Integer
13 Dim additionObject As Deitel_DLL.CAddition = _
14       New Deitel_DLL.CAddition()
15
16 Friend WithEvents lblDisplay1 As Label
17 Friend WithEvents lblDisplay2 As Label
18
19 Friend WithEvents txtFirstBox As TextBox ' first integer box
20 Friend WithEvents txtSecondBox As TextBox ' second integer box
21    Friend WithEvents txtResultBox As TextBox ' result text box
22
23 Friend WithEvents cmdCalculate As Button ' calculate value
24
25    ' Visual Studio .NET generated code.
26
27    ' event handler that enables cmdCalculate
28 Private Sub txtSecondBox_TextChanged( _
29       ByVal sender As System.Object, _
30       ByVal e As System.EventArgs) _
31       Handles txtSecondBox.TextChanged, _
32       txtFirstBox.TextChanged
33
34       ' enable button if text boxes contain text
35       If (txtFirstBox.Text <> "" AndAlso _
36          txtSecondBox.Text <> "") Then

Fig. G.6 COM DLL component in Visual Basic.NET (part 1 of 2).



1340 COM Integration Appendix G

Lines 13–14 create the RCW additionObject for COM component
Deitel_DLL.CAddition. Lines 35–41 enable the cmdCalculate button if both
text boxes contain values, and disable the button if the text boxes are empty. When the user
clicks Calculate, the button fires the event handler cmdCalculate_Click, which
obtains the content of the text boxes and then adds the values. The event handler calls COM
method addFunction, which returns the sum as an Integer (lines 57–58). The result
then is displayed in txtResultBox (line 60).

In this appendix, we demonstrated the use of COM components (e.g., ActiveX controls
and DLLs) from a .NET application. In addition, we briefly explored the history of COM

37
38          cmdCalculate.Enabled = True
39       Else
40          cmdCalculate.Enabled = False
41       End If
42
43    End Sub ' txtSecondBox_TextChanged
44
45    ' event handler that displays sum 
46    ' when cmdCalculate is clicked
47 Private Sub cmdCalculate_Click( _
48       ByVal sender As System.Object, _
49       ByVal e As System.EventArgs) _
50       Handles cmdCalculate.Click
51
52       firstInteger = Convert.ToInt32(txtFirstBox.Text)
53       secondInteger = Convert.ToInt32(txtSecondBox.Text)
54
55       ' additionObject invokes AddFunction that
56       ' returns integer value
57       total = additionObject.AddFunction( _
58          firstInteger, secondInteger)
59
60       txtResultBox.Text = total
61    End Sub ' cmdCalculate_Click
62
63 End Class ' CAddition

Fig. G.6 COM DLL component in Visual Basic.NET (part 2 of 2).



Appendix G COM Integration 1341

and the differences between its architecture and that of .NET. After reading this appendix,
readers should have a basic understanding of COM and should be able to use COM com-
ponents in .NET applications. To learn more about .NET and COM, consult the Web
resources described in Section G.4.

G.4 Internet and World Wide Web Resources
www.microsoft.com/com
The Microsoft COM Web page provides technical white papers, documentation and developer sup-
port. This Web page is an essential resource for COM developers.

www.cs.umd.edu/~pugh/com
This Web site presents a high-level technical overview of the COM architecture.

msdn.microsoft.com/msdnmag/issues/01/08/Interop/Interop.asp
This Web site provides an introduction to integration services provided in .NET. The Web site in-
cludes introductory examples and describes .NETs COM interoperability capabilities.

SUMMARY
• Initially, applications created for Windows or DOS were designed as single monolithic executa-

bles—entire applications packaged in single executable files.

• As applications grew larger and more complex, it became impractical for developers to construct
and distribute all the necessary components of an application, which resulted in longer develop-
ment times and more costly distribution mechanism.

• Microsoft incorporated dynamic link libraries (DLL) in Windows to allow developers to modular-
ize and reuse code. 

• A shared library, or dynamic link library, is a file containing compiled code that an application
loads at execution time. 

• Runtime loading allows developers to modify a single library and immediately test the results
without rebuilding the entire application. 

• Shared libraries increase the modularity of programs by allowing multiple applications to access
a single code library. 

• The partition of programs into smaller “pieces” makes it easier to distribute application upgrades,
because only those DLLs modified must be redistributed.

• Often, developers packaged DLLs with their applications to ensure that users were running the li-
brary version designed for their software. However, the packaged DLLs could overwrite preexist-
ing libraries on users’ systems, possibly breaking previously installed software. 

• The problems introduced by shared libraries were so difficult to locate and fix that their effects
became known as “DLL hell.”

• In an attempt to combat “DLL hell,” Microsoft developed the Component Object Model (COM).

• COM is a specification that controls library versions, backwards compatibility and language in-
teroperability. 

• The COM specification, defined by Microsoft, is detailed and strict to ensure that COM developers
create compatible libraries. 

• Microsoft implemented the COM architecture on a large scale. Today, virtually all Windows li-
braries adhere to the COM specification.

• When implemented correctly, COM ensures highly organized and reusable libraries, but it does
have limitations. 



1342 COM Integration Appendix G

• COM is difficult to program and deploy, because developers must guarantee that new COM com-
ponents are both compatible with previous versions and registered with the system. 

• Microsoft .NET components retain the benefits of COM while avoiding many of its associated
problems. 

• To facilitate migration from COM to .NET, Microsoft created a set of utilities designed to integrate
existing COM components into the .NET platform. 

• ActiveX controls are a commonly used COM component.

• The RegSvr32 utility program registers COM components with the operating system.

• ActiveX can be imported into the IDE’s toolbox. 

• The Customize Toolbox option lists all the COM components that are registered on a specific
machine. 

• Windows components contain Globally Unique Identifiers (GUID) for the component and its in-
ternal classes, plus language-independent descriptions of all classes and types that are defined in
the component. 

• Language-independent descriptions help to enable component reuse across multiple programming
languages. 

• A GUID consists of a long string of numbers that a computer generates on the basis of the com-
puter’s current time and hardware and a random number. The GUID algorithm never generates the
same identifier twice; thus, GUIDs enable unique component identification across all computers. 

• When a COM component is registered, its GUID is stored in the Windows Registry; programs then
can use the registry to locate and identify the component. 

• A type library describes all of a COM component’s interfaces, types and methods; the type library
is included either in the component .dll file or in a separate .tlb file. 

• The separation of component identifiers (located in the Windows registry) from the data represented
on the disk (the library file) is the source of many problems associated with the COM architecture. 

• .NET components problems by maintaining all identification information internally. 

• A primary interop assembly is used by .NET to locate COM methods and to translate component
data types between the .NET platform types and COM component types.

• The translation for each COM component is performed by a Runtime Callable Wrapper (RCW).
The RCW is a proxy object created by the .NET runtime from the information in the object’s pri-
mary interop assembly. 

• The RCW manages the COM object and performs communication between .NET code and the
COM object.

• When we instantiate a COM object in Visual Basic, we are actually creating a new in-
stance of the object’s RCW. The communication between the RCW and the COM com-
ponent is entirely transparent, enabling the .NET developer to interact with the COM
object as if it were a .NET object.

TERMINOLOGY
ActiveX DLL (Dynamic Link Library)
COM (Component Object Model) .dll file
COM component DLL hell
COM limitation Dynamic Link Library (DLL)
Common Runtime Library proxy Globally Unique Identifier (GUID)
Component Object Model (COM) GUID (Globally Unique Identifier)



Appendix G COM Integration 1343

SELF-REVIEW EXERCISES
G.1 Fill in the blanks in each of the following statements:

a) Initially, DOS and Windows programs were designed as   executables.
b) Microsoft incorporated shared libraries, or , into Windows to allow program

modularity and code reusability.
c) The COM specification was designed as a uniform programming model that promotes

,  and .
d) A  contains language-independent descriptions of all interfaces, methods and

data types defined in a COM component.
e) When an ActiveX control is imported, two files are created: A(n)  proxy, and

a(n)  proxy.

G.2 State whether each of the following is true or false. If false, explain why.
a) The Runtime Callable Wrapper (RCW) allows .NET components to be accessed from

COM components.
b) A primary interop assembly contains information about COM components.
c) .NET component GUIDs must be entered in the Windows Registry.
d) The Component Object Model eliminates “DLL hell.” 
e) ActiveX controls are COM components.

ANSWERS TO SELF-REVIEW EXERCISES
G.1 a) monolithic. b) Dynamic Link Libraries (DLLs). c) language independence, backwards com-
patibility and version control. d) type library. e) Common Language Runtime, Windows Forms proxy.

G.2 a) False. The RCW allows .NET components to access COM components. b) True. c) False.
Unlike COM components, .NET components contain their GUIDs internally. d) False. COM DLLs
might not be correctly represented in the windows registry, causing misidentification and resulting in
“DLL hell.” e) True.

monolithic executable RegSvr32 utility
.NET component Runtime Callable Wrapper (RCW)
.OCX file shared library
primary interop assembly .tlb file
proxy Windows Forms proxy
RCW (Runtime Callable Wrapper) Windows Registry



H
Introduction to 

HyperText Markup 
Language 4: Part 1

Objectives
• To understand the key components of an HTML 

document.
• To be able to use basic HTML elements to create 

World Wide Web pages.
• To be able to add images to your Web pages.
• To understand how to create and use hyperlinks to 

traverse Web pages. 
• To be able to create lists of information.
To read between the lines was easier than to follow the text.
Henry James

Mere colour, unspoiled by meaning, and annulled with 
definite form, can speak to the soul in a thousand different 
ways.
Oscar Wide

High thoughts must have high language.
Aristophanes

I’ve gradually risen from lower-class background to lower-
class foreground.
Marvin Cohen



Appendix H Introduction to HyperText Markup Language 4: Part 1 1345

Marvin CohenMarvin Cohen

H.1 Introduction
In this appendix we introduce the basics of creating Web pages in HTML. We write many
simple Web pages. In Appendix I, Introduction to HyperText Markup Language 4: Part 2,
we introduce more sophisticated HTML techniques, such as tables, which are particularly
useful for structuring information from databases. In this appendix, we do not present any
Visual Basic programming.

In this appendix, we introduce basic HTML elements and attributes. A key issue when
using HTML is the separation of the presentation of a document (i.e., how the document is
rendered on the screen by a browser) from the structure of that document. In this appendix
and in Appendix I, we discuss this issue in depth. 

H.2 Markup Languages
HTML is a markup language. It is used to format text and information. This “marking up”
of information is different from the intent of traditional programming languages, which is
to perform actions in a designated order. 

In HTML, text is marked up with elements, delineated by tags that are keywords con-
tained in pairs of angle brackets. For example, the HTML element itself, which indicates
that we are writing a Web page to be rendered by a browser, begins with the start tag
<html> and terminates with the end tag </html>. These elements format your page in
a specified way. Over the course of the next two appendices, we introduce many of the
commonly used tags and how to use them.

Good Programming Practice H.1
HTML tags are not case sensitive. However, keeping all the letters in one case improves pro-
gram readability. Although the choice of case is up to you, we recommend that you write all
of your code in lowercase. Writing in lowercase ensures greater compatibility with future
markup languages that are designed to be written with only lowercase tags and elements. H.1

Outline

H.1 Introduction
H.2 Markup Languages
H.3 Editing HTML
H.4 Common Elements
H.5 Headers
H.6 Linking
H.7 Images
H.8 Special Characters and More Line Breaks
H.9 Unordered Lists
H.10 Nested and Ordered Lists
H.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises



1346 Introduction to HyperText Markup Language 4: Part 1 Appendix H

Common Programming Error H.1
Forgetting to include end tags for elements that require them is a syntax error and can gross-
ly affect the formatting and look of your page. Unlike conventional programming languages,
a syntax error in HTML does not usually cause page display in browsers to fail completely. H.1

H.3 Editing HTML
In this appendix we show how to write HTML in its source-code form. We create HTML
documents using a text editor and store them in files with either the.html or .htm file
name extension. A wide variety of text editors exist. We recommend that you initially use
a text editor called Notepad, which is built into Windows. Notepad can be found inside the
Accessories panel of your Program list, inside the Start menu. You can also download
a free HTML source-code editor called HTML-Kit at www.chami.com/html-kit.
Unix users can use popular text editors like vi or emacs.

Good Programming Practice H.2
Assign names to your files that describe their functionality. This practice can help you iden-
tify documents faster. It also helps people who want to link to your page, by giving them an
easier-to-remember name for the file. For example, if you are writing an HTML document
that will display your products, you might want to call it products.html. H.2

As mentioned previously, errors in conventional programming languages like C, C++
and Visual Basic often prevent the program from running. Errors in HTML markup are usu-
ally not fatal. The browser will make its best effort at rendering the page, but will probably
not display the page as you intended.

The file name of your home page (the first of your HTML pages that a user sees when
browsing your Web site) should be index.html, because when a browser does not
request a specific file in a directory, the normal default Web server response is to return
index.html (this may be different for your server) if it exists in that directory. For
example, if you direct your browser to www.deitel.com, the server actually sends the
file www.deitel.com/index.html to your browser.

H.4 Common Elements
Throughout these HTML appendices, we will present both HTML source code and a sam-
ple screen capture of the rendering of that HTML in Internet Explorer. Figure H.1 shows
an HTML file that displays one line of text.

Lines 1 and 2

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
           "http://www.w3.org/TR/html4/strict.dtd">

are required in every HTML document and are used to specify the document type. The doc-
ument type specifies which version of HTML is used in the document and can be used with
a validation tool, such as the W3C’s validator.w3.org, to ensure an HTML docu-
ment conforms to the HTML recommendation. In these examples we create HTML version
4.01 documents. All of the examples in these appendices have been validated through the
Web site validator.w3.org.

The HTML document begins with the opening <html> tag (line 3) and ends with the
closing </html> tag (line 17).     



Appendix H Introduction to HyperText Markup Language 4: Part 1 1347

Good Programming Practice H.3
Always include the <html>…</html> tags in the beginning and end of your HTML doc-
ument. H.3

Good Programming Practice H.4
Place comments throughout your code. Comments in HTML are placed inside the   <!--…
--> tags. Comments help other programmers understand the code, assist in debugging and
list other useful information that you do not want the browser to render. Comments also help
you understand your own code, especially if you have not looked at it for a while. H.4

 We see our first comments (i.e., text that documents or describes the HTML markup)
on lines 5 and 6

<!-- Fig. H.1: main.html -->
<!-- Our first Web page. -->

Comments in HTML always begin with <!-- and end with -->. The browser ignores any
text and/or tags inside a comment. We place comments at the top of each HTML document
giving the figure number, the file name and a brief description of the purpose of the exam-

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.1: main.html -->
6 <!-- Our first Web page. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <p>Welcome to Our Web Site!</p>
15
16 </body>
17 </html>

Fig. H.1 Basic HTML file.



1348 Introduction to HyperText Markup Language 4: Part 1 Appendix H

ple. In subsequent examples, we also include comments in the markup, especially when we
introduce new features.

Every HTML document contains a head element, which generally contains informa-
tion about the document, and a body element, which contains the page content. Informa-
tion in the head element is not generally rendered in the display window, but may be made
available to the user through other means. Lines 8–10

<head>
   <title>Visual Basic .NET How to Program - Welcome</title>
</head>

show the head element section of our Web page. Including a title element is required
for every HTML document. To include a title in your Web page, enclose your chosen title
between the pair of tags <title>…</title> in the head element. 

Good Programming Practice H.5
Use a consistent title-naming convention for all pages on your site. For example, if your site
is called “Al’s Web Site,” then the title of your links page might best be “Al’s Web Site -
Links”. This practice presents a clearer picture to those browsing your site. H.5

The title element names your Web page. The title usually appears on the colored
bar at the top of the browser window, and also will appear as the text identifying your page
if a user adds your page to their list of Favorites or Bookmarks. The title is also used by
search engines for cataloging purposes, so picking a meaningful title can help search
engines direct a more focused group of people to your site.

Line 12

<body>

opens the body element. The body of an HTML document is the area where you place the
content of your document. This includes text, images, links and forms. We discuss many
elements that can be inserted in the body element later in this appendix. Remember to in-
clude the end </body> tag before the closing </html> tag.

Various elements enable you to place text in your HTML document. We see the para-
graph element on line 14

<p>Welcome to Our Web Site!</p>

All text placed between the <p>…</p> tags forms one paragraph. Most Web browsers
render paragraphs as set apart from all other material on the page by a line of vertical space
both before and after the paragraph. The HTML in line 12 causes Internet Explorer to ren-
der the enclosed text as shown in Fig. H.1.

Our code example ends on lines 16 and 17 with

</body>
</html>

These two tags close the body and HTML sections of the document, respectively. As dis-
cussed earlier, the last tag in any HTML document should be </html>, which tells the
browser that all HTML coding is complete. The closing </body> tag is placed before the
</html> tag because the body section of the document is entirely enclosed by the HTML
section. Therefore, the body section must be closed before the HTML section.



Appendix H Introduction to HyperText Markup Language 4: Part 1 1349

H.5 Headers
The six headers are used to delineate new sections and subsections of a page. Figure H.2
shows how these elements (h1 through h6) are used. Note that the actual size of the text of
each header element is selected by the browser and can vary significantly between browsers. 

Good Programming Practice H.6
Adding comments to the right of short HTML lines is a clean-looking way to comment code. H.6

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.2: header.html -->
6 <!-- HTML headers.         -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Headers</title>

10 </head>
11
12 <body>
13
14 <h1>Level 1 Header</h1> <!-- Level 1 header -->
15 <h2>Level 2 header</h2> <!-- Level 2 header -->
16 <h3>Level 3 header</h3> <!-- Level 3 header -->
17 <h4>Level 4 header</h4> <!-- Level 4 header -->
18 <h5>Level 5 header</h5> <!-- Level 5 header -->
19 <h6>Level 6 header</h6> <!-- Level 6 header -->
20
21 </body>
22 </html>

Fig. H.2 Header elements h1 through h6.



1350 Introduction to HyperText Markup Language 4: Part 1 Appendix H

Line 14

<h1>Level 1 Header</h1>

introduces the h1 header element, with its start tag <h1> and its end tag </h1>. Any text
to be displayed is placed between the two tags. All six header elements, h1 through h6,
follow the same pattern.

Good Programming Practice H.7
Putting a header at the top of every Web page helps those viewing your pages understand
what the purpose of each page is. H.7

H.6 Linking
The most important capability of HTML is its ability to create hyperlinks to other docu-
ments, making possible a worldwide network of linked documents and information. In HT-
ML, both text and images can act as anchors to link to other pages on the Web. We
introduce anchors and links in Fig. H.3.

The first link can be found on line 19

<p><a href = "http://www.yahoo.com">Yahoo</a></p>

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.3: links.html        -->
6 <!-- Introduction to hyperlinks. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Links</title>

10 </head>
11
12 <body>
13
14 <h1>Here are my favorite Internet Search Engines</h1>
15
16 <p><strong>Click on the Search Engine address to go to that
17       page.</strong></p>
18
19 <p><a href = "http://www.yahoo.com">Yahoo</a></p>
20
21 <p><a href = "http://www.altavista.com">AltaVista</a></p>
22
23 <p><a href = "http://www.askjeeves.com">Ask Jeeves</a></p>
24
25 <p><a href = "http://www.webcrawler.com">WebCrawler</a></p>
26
27 </body>
28 </html>

Fig. H.3 Linking to other Web pages (part 1 of 2).



Appendix H Introduction to HyperText Markup Language 4: Part 1 1351

Links are inserted with the a (anchor) element. The anchor element is unlike the elements
we have seen thus far in that it requires certain attributes (i.e., markup that provides infor-
mation about the element) to specify the hyperlink. Attributes are placed inside an ele-
ment’s start tag and consist of a name and a value. The most important attribute for the a
element is the location to which you would like the anchoring object to be linked. This lo-
cation can be any resource on the Web, including pages, files and email addresses. To spec-
ify the address to link to, add the href attribute to the anchor element as follows: <a href
= "address">. In this case, the address we are linking to is http://www.yahoo.com.
The hyperlink (line 19) makes the text Yahoo a link to the address specified in href.

Anchors can use mailto URLs to provide links to email addresses. When someone
selects this type of anchored link, most browsers launch the default email program to ini-
tiate an email message to the linked address. This type of anchor is demonstrated in
Fig. H.4. 

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.4: contact.html   -->
6 <!-- Adding email hyperlinks. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Contact Page</title>

10 </head>
11

Fig. H.4 Linking to an email address (part 1 of 2).

Fig. H.3 Linking to other Web pages (part 2 of 2).



1352 Introduction to HyperText Markup Language 4: Part 1 Appendix H

We see an email link on lines 14 and 15

<p>My email address is <a href = "mailto:deitel@deitel.com">
deitel@deitel.com</a>. Click on the address and your browser

The form of an email anchor is <a href = "mailto:emailaddress">…</a>. It is im-
portant that this whole attribute, including the mailto:, be placed in quotation marks.

H.7 Images
We have thus far dealt exclusively with text. We now show how to incorporate images into
Web pages (Fig. H.5).

12 <body>
13
14 <p>My email address is <a href = "mailto:deitel@deitel.com">
15    deitel@deitel.com</a>. Click on the address and your browser
16    will open an email message and address it to me.</p>
17
18 </body>
19 </html>

Fig. H.4 Linking to an email address (part 2 of 2).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.5: picture.html   -->
6 <!-- Adding images with HTML. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Welcome</title>

10 </head>
11

Fig. H.5 Placing images in HTML files (part 1 of 2).



Appendix H Introduction to HyperText Markup Language 4: Part 1 1353

The image in this code example is inserted in lines 14 and 15:

<p><img src = "vbnethtp.jpg" height = "238" width = "181"
   alt = "Demonstration of the alt attribute"></p>

You specify the location of the image file in the img element. This is done by adding the
src = "location" attribute. You can also specify the height and width of an image,
measured in pixels. The term pixel stands for “picture element.” Each pixel represents one
dot of color on the screen. This image is 181 pixels wide and 238 pixels high. 

Good Programming Practice H.8
Always include the height and the width of an image inside the img tag. When the
browser loads the HTML file, it will know immediately how much screen space to give the
image and will therefore lay out the page properly, even before it downloads the image. H.8

Common Programming Error H.2
Entering new dimensions for an image that changes its inherent width-to-height ratio distorts
the appearance of the image. For example, if your image is 200 pixels wide and 100 pixels
high, you should always make sure that any new dimensions have a 2:1 width-to-height ratio. H.2

The alt attribute is required for every img element. In Fig. H.5, the value of this
attribute is

alt = "Demonstration of the alt attribute"

12 <body>
13
14 <p><img src = "vbnethtp.jpg" height = "238" width = "181"
15       alt = "Demonstration of the alt attribute"></p>
16
17 </body>
18 </html>

Fig. H.5 Placing images in HTML files (part 2 of 2).



1354 Introduction to HyperText Markup Language 4: Part 1 Appendix H

Attribute alt is provided for browsers that have images turned off or cannot view images
(e.g., text-based browsers). The value of the alt attribute will appear on-screen in place
of the image, giving the user an idea of what was in the image. The alt attribute is espe-
cially important for making Web pages accessible to users with disabilities, as discussed in
Chapter 24, Accessibility.

Good Programming Practice H.9
Include a description of the purpose of every image, using the alt attribute in the img tag. H.9

Now that we have discussed placing images on your Web page, we will show you how
to transform images into anchors to provide links to other sites on the Internet (Fig. H.6).    

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.6: nav.html            -->
6 <!-- Using images as link anchors. -->
7
8 <head>
9 <title>Visual Basic .NET - Navigation Bar</title>

10 </head>
11
12 <body>
13
14 <p>
15       <a href = "links.html">
16       <img src = "buttons/links.jpg" width = "65" height = "50"
17          alt = "Links Page"></a><br>
18
19       <a href = "list.html">
20       <img src = "buttons/list.jpg" width = "65" height = "50"
21          alt = "List Example Page"></a><br>
22
23       <a href = "contact.html">
24       <img src = "buttons/contact.jpg" width = "65" height = "50"
25          alt = "Contact Page"></a><br>
26
27       <a href = "header.html">
28       <img src = "buttons/header.jpg" width = "65" height = "50"
29          alt = "Header Page"></a><br>
30
31       <a href = "table.html">
32       <img src = "buttons/table.jpg" width = "65" height = "50"
33          alt = "Table Page"></a><br>
34
35       <a href = "form.html">
36       <img src = "buttons/form.jpg" width = "65" height = "50"
37          alt = "Feedback Form"></a><br>
38 </p>
39

Fig. H.6 Using images as link anchors (part 1 of 2).



Appendix H Introduction to HyperText Markup Language 4: Part 1 1355

We see an image hyperlink in lines 15–17

<a href = "links.html">
<img src = "buttons/links.jpg" width = "65" height = "50"
   alt = "Links Page"></a><br>

Here we use the a element and the img element. The anchor works the same way as when
it surrounds text; the image becomes an active hyperlink to a location somewhere on the
Internet, indicated by the href attribute inside the <a> tag. Remember to close the anchor
element when you want the hyperlink to end.

If you direct your attention to the src attribute of the img element, 

src = "buttons/links.jpg"

you will see that it is not in the same form as that of the image in the previous example. This
is because the image we are using here, about.jpg, resides in a subdirectory called
buttons, which is in the main directory for our site. We have done this so that we can
keep all our button graphics in the same place, making them easier to find and edit. 

You can always refer to files in different directories simply by putting the directory
name in the correct format in the src attribute. If, for example, there was a directory inside
the buttons directory called images, and we wanted to put a graphic from that directory
onto our page, we would just have to make the source attribute reflect the location of the
image: src = "buttons/images/filename".

40 </body>
41 </html>

Fig. H.6 Using images as link anchors (part 2 of 2).



1356 Introduction to HyperText Markup Language 4: Part 1 Appendix H

You can even insert an image from a different Web site into your site (after obtaining
permission from the site’s owner, of course). Just make the src attribute reflect the loca-
tion and name of the image file.

On line 17

alt = "Links Page"></a><br>

we introduce the br element, which causes a line break to be rendered in most browsers.

H.8 Special Characters and More Line Breaks
In HTML, the old QWERTY typewriter setup no longer suffices for all our textual needs.
HTML 4.01 has a provision for inserting special characters and symbols (Fig. H.7).  

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.7: contact.html        -->
6 <!-- Inserting special characters. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program</title>

10 </head>
11
12 <body>
13
14 <!-- special characters are entered using the form &code; -->
15 <p>My email address is <a href = "mailto:deitel@deitel.com">
16    deitel@deitel.com</a>. Click on the address and your browser
17    will automatically open an email message and address it to my
18    address.</p>
19
20 <hr> <!-- inserts a horizontal rule -->
21
22 <p>All information on this site is <strong>&copy;</strong>
23    Deitel <strong>&amp;</strong> Associates, 2002.</p>
24
25    <!-- text can be struck out with a set of <del>...</del>   -->
26    <!-- tags, it can be set in subscript with <sub>...</sub>, -->
27    <!-- and it can be set into superscript with <sup...</sup> -->
28 <p><del>You may copy up to 3.14 x 10<sup>2</sup> characters
29    worth of information from this site.</del> Just make sure
30    you <sub>do not copy more information</sub> than is allowable.
31 </p>
32
33 <p>No permission is needed if you only need to use <strong>
34    &lt; &frac14;</strong> of the information presented here.</p>
35
36 </body>
37 </html>

Fig. H.7 Inserting special characters into HTML (part 1 of 2).



Appendix H Introduction to HyperText Markup Language 4: Part 1 1357

There are some special characters inserted into the text of lines 22 and 23:

<p>All information on this site is <strong>&copy;</strong>
Deitel <strong>&amp;</strong> Associates, 2002.</p>

All special characters are inserted in their code form. The format of the code is always
&code;. An example of this is &amp;, which inserts an ampersand. Codes are often abbre-
viated forms of the character (like amp for ampersand and copy for copyright) and can
also be in the form of hex codes. (For example, the hex code for an ampersand is 38, so
another method of inserting an ampersand is to use &#38;.) Please refer to the chart in Ap-
pendix L for a listing of special characters and their respective codes.  

In lines 28–31, we introduce three new styles.

<p><del>You may copy up to 3.14 x 10<sup>2</sup> characters
worth of information from this site.</del> Just make sure
you <sub>do not copy more information</sub> than is allow-
able.
</p>

You can indicate text that has been deleted from a document by including it in a del ele-
ment. This could be used as an easy way to communicate revisions of an online document.
Many browsers render the del element as strike-through text. To turn text into superscript
(i.e., raised vertically to the top of the line and made smaller) or to turn text into subscript
(the opposite of superscript, lowers text on a line and makes it smaller), use the sup or sub
element, respectively.

Line 20

<hr> <!-- inserts a horizontal rule -->

Fig. H.7 Inserting special characters into HTML (part 2 of 2).



1358 Introduction to HyperText Markup Language 4: Part 1 Appendix H

inserts a horizontal rule, indicated by the <hr> tag. A horizontal rule is rendered by most
browsers as a straight line going across the screen horizontally. The hr element also inserts
a line break directly below it.

H.9 Unordered Lists
Figure H.8 demonstrates displaying text in an unordered list. Here, we reuse the HTML file
from Fig. H.3, adding an unordered list to enhance the structure of the page. The unordered
list element ul creates a list in which every line begins with a bullet mark in most Web
browsers.    

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.8: links.html                  -->
6 <!-- Unordered list containing hyperlinks. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Links</title>

10 </head>
11
12 <body>
13
14 <h1>Here are my favorite Internet Search Engines</h1>
15
16
17 <p><strong>Click on the Search Engine address to go to that
18       page.</strong></p>
19
20 <ul>
21       <li>
22          <a href = "http://www.yahoo.com">Yahoo</a>
23       </li>
24
25       <li>
26          <a href = "http://www.altavista.com">AltaVista</a>
27       </li>
28
29       <li>
30          <a href = "http://www.askjeeves.com">Ask Jeeves</a>
31       </li>
32
33       <li>
34          <a href = "http://www.webcrawler.com">WebCrawler</a>
35       </li>
36  </ul>
37
38 </body>
39 </html>

Fig. H.8 Unordered lists in HTML (part 1 of 2).



Appendix H Introduction to HyperText Markup Language 4: Part 1 1359

The first list item appears in lines 21–23

<li>
   <a href = "http://www.yahoo.com">Yahoo</a>
</li>

Each entry in an unordered list is a li (list item) element. Most Web browsers render these
elements with a line break and a bullet mark at the beginning of the line. 

H.10 Nested and Ordered Lists
Figure H.9 demonstrates nested lists (i.e., one list inside another list). This feature is useful
for displaying information in outline form.

Fig. H.8 Unordered lists in HTML (part 2 of 2).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. H.9: list.html                 -->
6 <!-- Advanced Lists: nested and ordered. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Lists</title>

10 </head>
11
12 <body>
13
14 <h1>The Best Features of the Internet</h1>
15
16 <ul>
17       <li>You can meet new people from countries around 
18          the world.</li>

Fig. H.9 Nested and ordered lists in HTML (part 1 of 3).



1360 Introduction to HyperText Markup Language 4: Part 1 Appendix H

19       <li>You have access to new media as it becomes public:
20
21          <!-- this starts a nested list, which -->
22          <!-- uses a modified bullet. The list -->
23          <!-- ends when you close the <ul> tag -->
24          <ul>
25             <li>New games</li>
26             <li>New applications
27
28                <!-- another nested list -->
29                <ul>
30                   <li>For business</li>
31                   <li>For pleasure</li>
32                </ul> <!-- this ends the double nested list -->
33             </li>
34
35             <li>Around the clock news</li>
36             <li>Search engines</li>
37             <li>Shopping</li>
38             <li>Programming
39
40                <ul>
41                   <li>Visual Basic .NET</li>
42                   <li>Java</li>
43                   <li>HTML</li>
44                   <li>Scripts</li>
45                   <li>New languages</li>
46                </ul>
47
48             </li>
49
50          </ul> <!-- this ends the first level nested list -->
51       </li>
52
53       <li>Links</li>
54       <li>Keeping in touch with old friends</li>
55       <li>It is the technology of the future!</li>
56
57 </ul> <!-- this ends the primary unordered list -->
58
59 <h1>My 3 Favorite <em>CEOs</em></h1>
60
61    <!-- ordered lists are constructed in the same way as   -->
62    <!-- unordered lists, except their starting tag is <ol> -->
63 <ol>
64       <li>Lawrence J. Ellison</li>
65       <li>Steve Jobs</li>
66       <li>Michael Dell</li>
67 </ol>
68
69 </body>
70 </html>

Fig. H.9 Nested and ordered lists in HTML (part 2 of 3).



Appendix H Introduction to HyperText Markup Language 4: Part 1 1361

Our first nested list begins on line 24, and its first element is on 25.

<ul>
   <li>New games</li>

A nested list is created in the same way as the list in Fig. H.8, except that the nested list is
itself contained in a list element. Most Web browsers render nested lists by indenting the
list one level and changing the bullet type for the list elements. 

Good Programming Practice H.10
Indenting each level of a nested list in your code makes the code easier to edit and debug. H.10

In Fig. H.9, lines 16–57 show a list with three levels of nesting. When nesting lists, be
sure to insert the closing </ul> tags in the appropriate places. Lines 63–67

Fig. H.9 Nested and ordered lists in HTML (part 3 of 3).



1362 Introduction to HyperText Markup Language 4: Part 1 Appendix H

<ol>
   <li>Lawrence J. Ellison</li>
   <li>Steve Jobs</li>
   <li>Michael Dell</li>
</ol>

define an ordered list element with the tags <ol>…</ol>. Most browsers render ordered
lists with a sequence number for each list element instead of a bullet. By default, ordered
lists use decimal sequence numbers (1, 2, 3, …).

H.11 Internet and World Wide Web Resources
There are many resources available on the World Wide Web that go into more depth on the
topics we cover. Visit the following sites for additional information on this appendix’s topics.

www.w3.org
The World Wide Web Consortium (W3C), is the group that makes HTML recommendations. This
Web site holds a variety of information about HTML—both its history and its present status. 

www.w3.org/TR/html401
The HTML 4.01 Specification contains all the nuances and fine points in HTML 4.01.

www.w3schools.com/html
The HTMl School. This site contains a complete guide to HTML, starting with an introduction to the
WWW and ending with advanced HTML features. This site also has a good reference for the features
of HTML. 

www2.utep.edu/~kross/tutorial
This University of Texas at El Paso site contains another guide for simple HTML programming. The
site is helpful for beginners, because it focuses on teaching and gives specific examples.

www.w3scripts.com/html
This site, an offshoot of W3Schools, is a repository for code examples exhibiting all of the features of
HTML, from beginner to advanced.

SUMMARY
• HTML is not a procedural programming language like C, Fortran, Cobol or Pascal. It is a markup

language that identifies the elements of a page so a browser can render that page on the screen. 

•  HTML is used to format text and information. This “marking up” of information is different from
the intent of traditional programming languages, which is to perform actions in a designated order. 

• In HTML, text is marked up with elements, delineated by tags that are keywords contained in pairs
of angle brackets. 

• HTML documents are created via text editors.

•  All HTML documents stored in files require either the.htm or the.html file name extension.

• Making errors while coding in conventional programming languages like C, C++ and Java often
produces a fatal error, preventing the program from running. Errors in HTML code are usually not
fatal. The browser will make its best effort at rendering the page, but will probably not display the
page as you intended. In our Common Programming Errors and Testing and Debugging Tips, we
highlight common HTML errors and how to detect and correct them.

• For most Web servers, the filename of your home page should be index.html. When a browser
requests a directory, the default Web server response is to return index.html, if it exists in that
directory. 



Appendix H Introduction to HyperText Markup Language 4: Part 1 1363

• The document type specifies which version of HTML is used in the document and can be used with
a validation tool, such as the W3C’s validator.w3.org, to ensure an HTML document con-
forms to the HTML specification.

• <html> tells the browser that everything contained between the opening <html> tag and the
closing </html> tag is HTML. 

• Comments in HTML always begin with <!-- and end with --> and can span across several
source lines. The browser ignores any text and/or tags placed inside a comment. 

• Every HTML file is separated into a header section and a body. 

• Including a title is mandatory for every HTML document. Use the <title>…</title> tags to
do so. They are placed inside the header. 

• <body> opens the body element. The body of an HTML document is the area where you place
all content you would like browsers to display. 

• All text between the <p>…</p> tags forms one paragraph. Most browsers render paragraphs as
set apart from all other material on the page by a line of vertical space both before and after the
paragraph.

• Headers are a simple form of text formatting that typically increase text size based on the header’s
“level” (h1 through h6). They are often used to delineate new sections and subsections of a page. 

• The purpose of HTML is to mark up text; the question of how it is presented is left to the browser
itself. 

• People who have difficulty seeing can use special browsers that read the text on the screen aloud.
These browsers (which are text based and do not show images, colors or graphics) might read
strong and em with different inflections to convey the impact of the styled text to the user.

• You should close tags in the reverse order from that in which they were started to ensure proper
nesting.

• The most important capability of HTML is creating hyperlinks to documents on any server to form
a worldwide network of linked documents and information.

• Links are inserted with the a (anchor) element. To specify the address you would like to link to,
add the href attribute to the anchor element, with the address as the value of href.

• Anchors can link to email addresses. When someone clicks this type of anchored link, their default
email program initiates an email message to the linked address. 

• The term pixel stands for “picture element”. Each pixel represents one dot of color on the screen.

• You specify the location of the image file with the src = "location" attribute in the <img> tag.
You can specify the height and width of an image, measured in pixels. 

• alt is provided for browsers that cannot view pictures or that have images turned off (text-based
browsers, for example). The value of the alt attribute will appear on screen in place of the image,
giving the user an idea of what was in the image.

• You can refer to files in different directories by including the directory name in the correct format
in the src attribute. You can insert an image from a different Web site onto your site (after ob-
taining permission from the site’s owner). Just make the src attribute reflects the location and
name of the image file.

• The br element forces a line break. If the br element is placed inside a text area, the text begins
a new line at the place of the <br> tag.

• HTML 4.01 has a provision for inserting special characters and symbols. All special characters are
inserted in the format of the code, always &code;. An example of this is &amp;, which inserts an
ampersand. Codes are often abbreviated forms of the character (like amp for ampersand and copy



1364 Introduction to HyperText Markup Language 4: Part 1 Appendix H

for copyright) and can also be in the form of hex codes. (For example, the hex code for an amper-
sand is 38, so another method of inserting an ampersand is to use &#38;.)

• The del element marks text as deleted, which is rendered with a strike through by most browsers.
To turn text into superscript or subscript, use the sup or sub element, respectively.

• Most visual Web browsers place a bullet mark at the beginning of each element in an unordered
list. All entries in an unordered list must be enclosed within <ul>…</ul> tags, which open and
close the unordered list element.

• Each entry in an unordered list is contained in an li element. You then insert and format any text.

• Nested lists display information in outline form. A nested list is a list that is contained in an li
element. Most visual Web browsers indent nested lists one level and change the bullet type to re-
flect the nesting. 

• An ordered list (<ol>…</ol>) is rendered by most browsers with a sequence number instead
of a bullet at the beginning of each list element. By default, ordered lists use decimal sequence
numbers (1,2,3, …).

TERMINOLOGY
&amp; HTML-kit
.htm hyperlink
.html hypertext
<!--…--> (comment) image
<body>…</body> img element
<hr> element (horizontal rule) index.html
a element (anchor; <a>…</a>) line-break element (<br>…</br>)
alt link
anchor link attribute of body element…
attributes of an HTML tag mailto:
clear = "all" in <br> markup language
closing tag opening tag
color p element (paragraph; <p>…</p>)
comments presentation of a Web page
content of an HTML element RGB colors
del element size = in <font>
em element (<em>…</em>) source-code form
emphasis special characters
h1 element (<h1>…</h1>) src attribute in img element
h2 element (<h2>…</h2>) strong element (<strong>…</strong>)
h3 element (<h3>…</h3>) structure of a Web page
h4 element (<h4>…</h4>) sub (subscript)
h5 element (<h5>…</h5>) sup (superscript)
h6 element (<h6>…</h6>) tags in HTML
head element (<head>…</head>) text in body
height text-based browser
horizontal rule title element (<title>…</title>)
href attribute of <a> element unordered list (<ul>…</ul>)
HTML (HyperText Markup Language) Web site
HTML document width attribute
html element (<html>…</html>) width by percentage
HTML file width by pixel
HTML tags World Wide Web



Appendix H Introduction to HyperText Markup Language 4: Part 1 1365

SELF-REVIEW EXERCISES
H.1 State whether the following statements are true or false. If false, explain why.

a) The document type for an HTML document is optional.
b) The use of the em and strong elements is deprecated.
c) The name of your site’s home page should always be homepage.html.
d) It is a good programming practice to insert comments into your HTML document that

explain what you are doing.
e) A hyperlink is inserted around text with the link element.

H.2 Fill in the blanks in each of the following statements:
a) The  element is used to insert a horizontal rule.
b) Superscript is formatted with the  element and subscript is formatted with the

 element.
c) The  element is located within the <head>…</head> tags.
d) The least important header is the  element and the most important text header

is .
e) The  element is used to create an unordered list.

H.3 Identify each of the following as either an element or attribute:
a) html
b) width
c) href
d) br
e) h3
f) a
g) src

ANSWERS TO SELF-REVIEW EXERCISES
H.1 a) False. The document type is required for HTMl documents. b) False. The use of the i and
b elements is deprecated. Elements em and strong may be used instead. c) False. The name of your
home page should always be index.html. d) True. e) False. A hyperlink is inserted around text
with the a (anchor) element.

H.2 a) hr. b) sup, sub. c) title. d) h6, h1. e) ul.

H.3 a) Tag. b) Attribute. c) Attribute. d) Tag.  e) Tag. f) Tag. g) Attribute.

EXERCISES
H.4 Use HTML to mark up the first paragraph of this appendix. Use h1 for the section header, p
for text, strong for the first word of every sentence, and em for all capital letters.

H.5 Why is this code valid? (Hint: you can find the W3C specification for the p element at
www.w3.org/TR/html4)

<p>Here’s some text...
<hr>
<p>And some more text...</p>

H.6 Why is this code invalid? [Hint: you can find the W3C specification for the br element at the
same URL given in Exercise 2.5.]

<p>Here’s some text...<br></br>
And some more text...</p>



1366 Introduction to HyperText Markup Language 4: Part 1 Appendix H

H.7 We have an image named deitel.gif that is 200 pixels wide and 150 pixels high. Use
the width and height attributes of the img tag to a) increase image size by 100%; b) increase im-
age size by 50%; c) change the width-to-height ratio to 2:1, keeping the width attained in a). 

H.8 Create a link to each of the following: a) index.html, located in the files directory; b)
index.html, located in the text subdirectory of the files directory; c) index.html, located
in the other directory in your parent directory [Hint: .. signifies parent directory.]; d) A link to
the President of the United States’ email address (president@whitehouse.gov); e) An FTP
link to the file named README in the pub directory of ftp.cdrom.com. [Hint: remember to use
ftp://]



I
Introduction to 

HyperText Markup 
Language 4: Part 2

Objectives
• To be able to create tables with rows and columns of 

data.
• To be able to control the display and formatting of 

tables.
• To be able to create and use forms.
• To be able to create and use image maps to aid 

hyperlinking.
• To be able to make Web pages accessible to search 

engines.
• To be able to use the frameset element to create 

more interesting Web pages.
Yea, from the table of my memory
I’ll wipe away all trivial fond records.
William Shakespeare



1368 Introduction to HyperText Markup Language 4: Part 2 Appendix I

William Shakespeare

I.1 Introduction
In Appendix H, Introduction to HyperText Markup Language 4: Part 1, we discussed some
basic HTML features. We built several complete Web pages featuring text, hyperlinks, im-
ages and such formatting tools as horizontal rules and line breaks.

In this appendix, we discuss more substantial HTML elements and features. We will
see how to present information in tables. We discuss how to use forms to collect informa-
tion from people browsing a site. We explain how to use internal linking and image maps
to make pages more navigable. We also discuss how to use frames to make navigating Web
sites easier. By the end of this appendix, you will be familiar with most commonly used
HTML tags and features. You will then be able to create more complex Web sites. In this
appendix, we do not present any Visual Basic programming.

I.2 Basic HTML Tables
HTML 4.0 tables are used to mark up tabular data, such as data stored in a database. The
table in Fig. I.1 organizes data into rows and columns.

Outline

I.1 Introduction
I.2 Basic HTML Tables
I.3 Intermediate HTML Tables and Formatting
I.4 Basic HTML Forms
I.5 More Complex HTML Forms
I.6 Internal Linking
I.7 Creating and Using Image Maps

I.8 <meta> Tags

I.9 frameset Element

I.10 Nested framesets
I.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.1: table.html -->
6 <!-- Basic table design.  -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Tables</title>

10 </head>

Fig. I.1 HTML table (part 1 of 2).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1369

All tags and text that apply to the table go inside the <table> element, which begins
on line 18:

<table border = "1" width = "40%">

11
12 <body>
13
14 <h1>Table Example Page</h1>
15
16    <!-- the <table> tag opens a new table and lets you -->
17    <!-- put in design options and instructions         -->
18 <table border = "1" width = "40%">
19
20       <!-- use the <caption> tag to summarize the table's -->
21       <!-- contents (this helps the visually impaired)    -->
22       <caption>Here is a small sample table.</caption>
23
24       <!-- The <thead> is the first (non-scrolling)  -->
25       <!-- horizontal section. <th> inserts a header -->
26       <!--  cell and displays bold text              -->
27       <thead>
28          <tr><th>This is the head.</th></tr>
29       </thead>
30
31       <!-- All of your important content goes in the <tbody>. -->
32       <!-- Use this tag to format the entire section          -->
33       <!-- <td> inserts a data cell, with regular text        -->
34       <tbody>
35          <tr><td>This is the body.</td></tr>
36       </tbody>
37
38 </table>
39
40 </body>
41 </html>

Fig. I.1 HTML table (part 2 of 2).



1370 Introduction to HyperText Markup Language 4: Part 2 Appendix I

The border attribute lets you set the width of the table’s border in pixels. If you want the
border to be invisible, you can specify border = "0". In the table shown in Fig. I.1, the
value of the border attribute is set to 1. The width attribute sets the width of the table as
either a number of pixels or a percentage of the screen width.

Line 22

<caption>Here is a small sample table.</caption>

inserts a caption element into the table. The text inside the caption element is inserted
directly above the table in most visual browsers. The caption text is also used to help text-
based browsers interpret the table data.

Tables can be split into distinct horizontal and vertical sections. The first of these sec-
tions, the head area, appears in lines 27–29

<thead>
   <tr><th>This is the head.</th></tr>
</thead>

Put all header information (for example, the titles of the table and column headers) inside
the thead element. The tr, or table row element, is used to create rows of table cells. All
of the cells in a row belong in the <tr> element for that row.

The smallest unit of the table is the data cell. There are two types of data cells, one
type—the th element—is located in the table header. The other type—the td element—is
located in the table body. The code example in Fig. I.1 inserts a header cell, using the th
element. Header cells, which are placed in the <thead> element, are suitable for column
headings.

The second grouping section, the tbody element, appears in lines 34–36

<tbody>
   <tr><td>This is the body.</td></tr>
</tbody>

Like thead, the tbody element is used for formatting and grouping purposes. Although
there is only one row and one cell (line 35) in the above example, most tables will use
tbody to group the majority of their content in multiple rows and multiple cells. 

Look-and-Feel Observation I.1
Use tables in your HTML pages to mark up tabular data. I.1

Common Programming Error I.1
Forgetting to close any of the elements inside the table element is an error and can distort
the table format. Be sure to check that every element is opened and closed in its proper place
to make sure that the table is structured as intended. I.1

I.3 Intermediate HTML Tables and Formatting
In the previous section and code example, we explored the structure of a basic table. In
Fig. I.2, we extend our table example with more structural elements and attributes 



Appendix I Introduction to HyperText Markup Language 4: Part 2 1371

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.2: table.html       -->
6 <!-- Intermediate table design. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Tables</title>

10 </head>
11
12 <body>
13
14 <h1>Table Example Page</h1>
15
16 <table border = "1">
17       <caption>Here is a more complex sample table.</caption>
18
19       <!-- <colgroup> and <col> are used to format     -->
20       <!-- entire columns at once. SPAN determines how -->
21       <!-- many columns the <col> tag effects.         -->
22       <colgroup>
23          <col align = "right">
24          <col span = "4">
25       </colgroup>
26
27       <thead>
28
29      <!-- rowspans and colspans combine the indicated -->
30      <!-- number of cells vertically or horizontally  -->
31          <tr>
32             <th rowspan = "2">
33                <img src = "camel.gif" width = "205"
34                   height = "167" alt = "Picture of a camel">
35             </th>
36             <th colspan = "4" valign = "top">
37                <h1>Camelid comparison</h1><br>
38                <p>Approximate as of 8/99</p>
39             </th>
40          </tr>
41
42          <tr valign = "bottom">
43             <th># of Humps</th>
44             <th>Indigenous region</th>
45             <th>Spits?</th>
46             <th>Produces Wool?</th>
47          </tr>
48
49       </thead>
50

Fig. I.2 Complex HTML table (part 1 of 2).



1372 Introduction to HyperText Markup Language 4: Part 2 Appendix I

The table begins on line 16. The colgroup element, used for grouping columns, is
shown on lines 22–25

<colgroup>
   <col align = "right">

51       <tbody>
52
53          <tr>
54             <th>Camels (bactrian)</th>
55             <td>2</td>
56             <td>Africa/Asia</td>
57             <td rowspan = "2">Llama</td>
58             <td rowspan = "2">Llama</td>
59          </tr>
60
61          <tr>
62             <th>Llamas</th>
63             <td>1</td>
64             <td>Andes Mountains</td>
65          </tr>
66
67       </tbody>
68
69 </table>
70
71 </body>
72 </html>

Fig. I.2 Complex HTML table (part 2 of 2).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1373

   <col span = "4">
</colgroup>

The colgroup element can be used to group and format columns. Each col element in
the <colgroup>…</colgroup> tags can format any number of columns (specified
with the span attribute). Any formatting to be applied to a column or group of columns
can be specified in both the colgroup and col tags. In this case, we align the text inside
the leftmost column to the right. Another useful attribute to use here is width, which spec-
ifies the width of the column.

Most visual Web browsers automatically format data cells to fit the data they contain.
However, it is possible to make some data cells larger than others. This effect is accom-
plished with the rowspan and colspan attributes, which can be placed inside any data
cell element. The value of the attribute specifies the number of rows or columns to be occu-
pied by the cell, respectively. For example, rowspan = "2" tells the browser that this data
cell will span the area of two vertically adjacent cells. These cells will be joined vertically
(and will thus span over two rows). An example of colspan appears in line 36,

<th colspan = "4" valign = "top">

where the header cell is widened to span four cells. 
We also see here an example of vertical alignment formatting. The valign attribute

accepts the following values: "top", "middle", "bottom" and "baseline". All
cells in a row whose valign attribute is set to "baseline" will have the first text line
occur on a common baseline. The default vertical alignment in all data and header cells is
valign = "middle".

The remaining code in Fig. I.2 demonstrates other uses of the table attributes and
elements outlined above. 

Common Programming Error I.2
When using colspan and rowspan in table data cells, consider that the modified cells will
cover the areas of other cells. Compensate for this in your code by reducing the number of
cells in that row or column. If you do not, the formatting of your table will be distorted, and
you could inadvertently create more columns and/or rows than you originally intended. I.2

I.4 Basic HTML Forms
HTML provides several mechanisms to collect information from people viewing your site;
one is the form (Fig. I.3).   

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.3: form.html    -->
6 <!-- Form design example 1. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Forms</title>

10 </head>

Fig. I.3 Simple form with hidden fields and a text box (part 1 of 2).



1374 Introduction to HyperText Markup Language 4: Part 2 Appendix I

11
12 <body>
13
14 <h1>Feedback Form</h1>
15
16 <p>Please fill out this form to help us improve our site.</p>
17
18    <!-- This tag starts the form, gives the method of sending -->
19    <!-- information and the location of form scripts.         -->
20    <!-- Hidden inputs give the server non-visual information  -->
21 <form method = "post" action = "/cgi-bin/formmail">
22
23 <p>
24       <input type = "hidden" name = "recipient"
25          value = "deitel@deitel.com">
26
27       <input type = "hidden" name = "subject"
28          value = "Feedback Form">
29
30       <input type = "hidden" name = "redirect"
31          value = "main.html">
32 </p>
33
34  <!-- <input type = "text"> inserts a text box -->
35 <p><label>Name:
36       <input name = "name" type = "text" size = "25">
37 </label></p>
38
39 <p>
40       <!-- input types "submit" and "reset" insert buttons -->
41       <!-- for submitting or clearing the form's contents  -->
42       <input type = "submit" value = "Submit Your Entries">
43       <input type = "reset" value = "Clear Your Entries">
44 </p>   
45
46 </form>
47
48 </body>
49 </html>

Fig. I.3 Simple form with hidden fields and a text box (part 2 of 2).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1375

The form begins on line 21

<form method = "post" action = "/cgi-bin/formmail">

with the form element. The method attribute indicates the way the information gathered
in the form will be sent to the Web server for processing. Use method = "post" in a form
that causes changes to server data, for example when updating a database. The form data
will be sent to the server as an environment variable, which scripts are able to access. The
other possible value, method = "get", should be used when your form does not cause
any changes in server-side data, for example when making a database request. The form
data from method = "get" is appended to the end of the URL (for example, /cgi-
bin/formmail?name=bob&order=5). Also be aware that method = "get" is lim-
ited to standard characters and cannot submit any special characters. 

A Web server is a machine that runs a software package like Microsoft’s PWS (Per-
sonal Web Server), Microsoft’s IIS (Internet Information Server) or Apache. Web servers
handle browser requests. When a browser requests a page or file somewhere on a server,
the server processes the request and returns an answer to the browser. In this example, the
data from the form goes to a CGI (Common Gateway Interface) script, which is a means of
interfacing an HTML page with a script (i.e., a program) written in Perl, C, Tcl or other
languages. The script then handles the data fed to it by the server and typically returns some
information for the user. The action attribute in the form tag is the URL for this script;
in this case, it is a simple script that emails form data to an address. Most Internet Service
Providers (ISPs) will have a script like this on their site, so you can ask your system admin-
istrator how to set up your HTML to use the script correctly.

For this particular script, there are several pieces of information (not seen by the user)
needed in the form. Lines 24–31

<input type = "hidden" name = "recipient"
   value = "deitel@deitel.com">

<input type = "hidden" name = "subject"
   value = "Feedback Form">

<input type = "hidden" name = "redirect"
   value = "main.html">

specify this information using hidden input elements. The input element is common in
forms and always requires the type attribute. Two other attributes are name, which pro-
vides a unique identifier for the input element, and value, which indicates the value that
the input element sends to the server upon submission.

As shown above, hidden inputs always have the attribute type = "hidden". The
three hidden inputs shown are typical for this kind of CGI script: An email address to which
the data will be sent, the subject line of the email and a URL to which the user is redirected
after submitting the form.

Good Programming Practice I.1
Place hidden input elements in the beginning of a form, right after the opening <form>
tag. This makes these elements easier to find and identify. I.1

The usage of an input element is defined by the value of its type attribute. We intro-
duce another of these options in lines 35–37:



1376 Introduction to HyperText Markup Language 4: Part 2 Appendix I

<p><label>Name:
   <input name = "name" type = "text" size = "25">
</label></p>

The input type = "text" inserts a one-line text box into the form (line 36). A good use
of the textual input element is for names or other one-line pieces of information. The la-
bel element on lines 35–37 provide a description for the input element on line 36. 

We also use the size attribute of the input element to specify the width of the text
input, measured in characters. You can also set a maximum number of characters that the
text input will accept using the maxlength attribute.

Good Programming Practice I.2
When using input elements in forms, be sure to leave enough space with the maxlength
attribute for users to input the pertinent information. I.2

Common Programming Error I.3
Forgetting to include a label element for each form element is a design error. Without these
labels, users will have no way of knowing what the function of individual form elements is. I.3

There are two types of input elements in lines 42–43

<input type = "submit" value = "Submit Your Entries">
<input type = "reset" value = "Clear Your Entries">

that should be inserted into every form. The type = "submit" input element allows
the user to submit the data entered in the form to the server for processing. Most visual Web
browsers place a button in the form that submits the data when clicked. The value at-
tribute changes the text displayed on the button (the default value is "submit"). The input
element type = "reset" allows a user to reset all form elements to the default values.
This can help the user correct mistakes or simply start over. As with the submit input, the
value attribute of the reset input element affects the text of the button on the screen,
but does not affect its functionality.

Common Programming Error I.4
Be sure to close your form code with the </form> tag. Neglecting to do so is an error and
can affect the functionality of other forms on the same page. I.4

I.5 More Complex HTML Forms
We introduce additional form input options in Fig. I.4.   

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.4: form.html    -->
6 <!-- Form design example 2. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Forms</title>

10 </head>

Fig. I.4 Form including textareas, password boxes and checkboxes (part 1 of 3).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1377

11
12 <body>
13
14 <h1>Feedback Form</h1>
15
16 <p>Please fill out this form to help us improve our site.</p>
17
18 <form method = "post" action = "/cgi-bin/formmail">
19
20       <p>
21          <input type = "hidden" name = "recipient"
22             value = "deitel@deitel.com">
23
24          <input type = "hidden" name = "subject"
25             value = "Feedback Form">
26
27          <input type = "hidden" name = "redirect"
28             value = "main.html">
29       </p>
30
31       <p><label>Name:
32          <input name = "name" type = "text" size = "25">
33       </label></p>
34
35       <!-- <textarea> creates a textbox of the size given -->
36       <p><label>Comments: 
37          <textarea name = "comments" rows = "4" cols = "36">
38          </textarea>
39       </label></p>
40
41    <!-- <input type = "password"> inserts textbox whose -->
42    <!-- readout will be in *** not regular characters   -->
43       <p><label>Email Address: 
44          <input name = "email" type = "password" size = "25">
45       </label></p>
46
47       <p>
48          <strong>Things you liked:</strong><br>
49
50          <label>Site design
51          <input name = "thingsliked" type = "checkbox"
52             value = "Design"></label>
53        
54          <label>Links
55          <input name = "thingsliked" type = "checkbox"
56             value = "Links"></label>
57
58          <label>Ease of use
59          <input name = "thingsliked" type = "checkbox"
60             value = "Ease"></label>
61
62          <label>Images 

Fig. I.4 Form including textareas, password boxes and checkboxes (part 2 of 3).



1378 Introduction to HyperText Markup Language 4: Part 2 Appendix I

Lines 37–38

<textarea name = "comments" rows = "4" cols = "36">
</textarea>

introduce the textarea element. The textarea element inserts a text box into the
form. You specify the size of the box with the rows attribute, which sets the number of
rows that will appear in the textarea. With the cols attribute, you specify how wide

63          <input name = "thingsliked" type = "checkbox"
64             value = "Images"></label>
65
66          <label>Source code
67          <input name = "thingsliked" type = "checkbox"
68             value = "Code"></label>
69       </p>
70
71       <p>
72          <input type = "submit" value = "Submit Your Entries">
73          <input type = "reset" value = "Clear Your Entries">
74       </p>   
75
76 </form>
77
78 </body>
79 </html>

Fig. I.4 Form including textareas, password boxes and checkboxes (part 3 of 3).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1379

the textarea should be. This textarea is four rows of characters tall and 36 charac-
ters wide. Any default text that you want to place inside the textarea should be con-
tained in the textarea element. 

The input type = "password" (line 44)

<input name = "email" type = "password" size = "25">

inserts a text box with the indicated size. The password input field provides a way for users
to enter information that the user would not want others to be able to read on the screen. In
visual browsers, the data the user types into a password input field is shown as asterisks.
However, the actual value the user enters is sent to the server. Nonvisual browsers may ren-
der this type of input field differently.

Lines 50–68 introduce another type of form element, the checkbox. Every input ele-
ment with type = "checkbox" creates a new checkbox item in the form. Checkboxes
can be used individually or in groups. Each checkbox in a group should have the same
name (in this case, name = "thingsliked"). This notifies the script handling the form
that all of the checkboxes are related to one another.

Common Programming Error I.5
When your form has several checkboxes with the same name, you must make sure that they
have different values, or else the script will have no way of distinguishing between them. I.5

Additional form elements are introduced in Fig. I.5. In this form example, we intro-
duce two new types of input options. The first of these is the radio button, introduced in
lines 80–97. Inserted into forms with the input attribute type = "radio", radio buttons
are similar in function and usage to checkboxes. Radio buttons are different in that only one
element in the group may be selected at any time. All of the name attributes of a group of
radio inputs must be the same and all of the value attributes different. Insert the attribute
checked to indicate which radio button you would like selected initially. The checked
attribute can also be applied to checkboxes.

Common Programming Error I.6
When you are using a group of radio inputs in a form, forgetting to set the name values to the
same name will let the user select all the radio buttons at the same time—an undesired result. I.6

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.5: form.html    -->
6 <!-- Form design example 3. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Forms</title>

10 </head>
11
12 <body>
13
14 <h1>Feedback Form</h1>
15

Fig. I.5 Form including radio buttons and pulldown lists (part 1 of 4).



1380 Introduction to HyperText Markup Language 4: Part 2 Appendix I

16 <p>Please fill out this form to help us improve our site.</p>
17
18 <form method = "post" action = "/cgi-bin/formmail">
19
20       <p>
21          <input type = "hidden" name = "recipient"
22             value = "deitel@deitel.com">
23
24          <input type = "hidden" name = "subject"
25             value = "Feedback Form">
26
27          <input type = "hidden" name = "redirect"
28             value = "main.html">
29       </p>
30
31       <p><label>Name: 
32          <input name = "name" type = "text" size = "25">
33       </label></p>
34
35       <p><label>Comments: 
36          <textarea name = "comments" rows = "4" cols = "36">
37             </textarea>
38       </label></p>
39
40       <p><label>Email Address: 
41          <input name = "email" type = "password" size = "25">
42       </label></p>
43
44       <p>
45          <strong>Things you liked:</strong><br>
46
47          <label>Site design
48             <input name = "things" type = "checkbox"
49                value = "Design">
50          </label>
51        
52          <label>Links
53             <input name = "things" type = "checkbox"
54                value = "Links">
55          </label>
56
57          <label>Ease of use
58             <input name = "things" type = "checkbox" 
59                value = "Ease">
60          </label>
61
62          <label>Images 
63             <input name = "things" type = "checkbox"
64                value = "Images">
65          </label>
66
67          <label>Source code

Fig. I.5 Form including radio buttons and pulldown lists (part 2 of 4).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1381

68             <input name = "things" type = "checkbox"
69                value = "Code">
70          </label>
71       </p>
72
73       <!-- <input type = "radio"> creates one radio button -->
74       <!-- radio buttons and checkboxes differ in that     -->
75       <!-- only one radio button in group can be selected  -->
76       <p>
77          <strong>How did you get to our site?:</strong><br>
78
79          <label>Search engine
80             <input name = "how get to site" type = "radio"
81                value = "search engine" checked></label>
82       
83          <label>Links from another site
84             <input name = "how get to site" type = "radio"
85                value = "link"></label>
86
87          <label>Deitel.com Web site
88             <input name = "how get to site" type = "radio"
89                value = "deitel.com"></label>
90
91          <label>Reference in a book
92             <input name = "how get to site" type = "radio"
93                value = "book"></label>
94
95          <label>Other
96             <input name = "how get to site" type = "radio"
97                value = "other"></label>
98        
99       </p>
100
101       <!-- <select> tags present drop down menus   -->
102       <!-- with choices indicated by <option> tags -->
103       <p>
104          <label>Rate our site: 
105
106          <select name = "rating">
107             <option selected>Amazing:-)</option>
108             <option>10</option>
109             <option>9</option>
110             <option>8</option>
111             <option>7</option>
112             <option>6</option>
113             <option>5</option>
114             <option>4</option>
115             <option>3</option>
116             <option>2</option>
117             <option>1</option>
118             <option>The Pits:-(</option>
119          </select>
120

Fig. I.5 Form including radio buttons and pulldown lists (part 3 of 4).



1382 Introduction to HyperText Markup Language 4: Part 2 Appendix I

The last type of form input that we introduce here is the select element (lines 106–
119). This will place a selectable list of items inside your form.

<select name = "rating">
   <option selected>Amazing:-)</option>
   <option>10</option>
   <option>9</option>
   <option>8</option>
   <option>7</option>
   <option>6</option>

121          </label>
122       </p>
123
124       <p>
125          <input type = "submit" value = "Submit Your Entries">
126          <input type = "reset" value = "Clear Your Entries">
127       </p>   
128
129 </form>
130
131 </body>
132 </html>

Fig. I.5 Form including radio buttons and pulldown lists (part 4 of 4).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1383

   <option>5</option>
   <option>4</option>
   <option>3</option>
   <option>2</option>
   <option>1</option>
   <option>The Pits:-(</option>
</select>

This type of form input is created via a select element. Inside the opening <select>
tag, be sure to include the name attribute.

To add an item to the list, add to the select element an option element containing
the text to be displayed. The selected attribute, like the checked attribute for radio but-
tons and checkboxes, applies a default selection to your list.

The preceding code will generate a pull-down list of options in most visual browsers,
as shown in Fig. I.5. You can change the number of list options visible at one time, using
the size attribute of the select element. Use this attribute if you prefer an expanded
version of the list to the one-line expandable list.

I.6 Internal Linking
In Appendix H, Introduction to HyperText Markup Language 4: Part 1, we discussed how
to link one Web page to another with text and image anchors. Figure I.6 introduces internal
linking, which lets you create named anchors for hyperlinks to particular parts of an HTML
document. 

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.6: links.html -->
6 <!-- Internal linking.    -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - List</title>

10 </head>
11
12 <body>
13
14  <!-- <a name = ".."></a> makes internal hyperlinks -->
15  <p>
16       <a name = "features"></a>
17    </p>
18
19 <h1>The Best Features of the Internet</h1>
20
21 <!-- internal link's address is "xx.html#linkname" -->
22 <p>
23       <a href = "#ceos">Go to <em>Favorite CEOs</em></a>
24    </p>
25

Fig. I.6 Using internal hyperlinks to make your pages more navigable (part 1 of 3).



1384 Introduction to HyperText Markup Language 4: Part 2 Appendix I

26 <ul>
27       <li>You can meet people from countries around the world.
28       </li>
29
30       <li>You have access to new media as it becomes public:
31
32          <ul>
33             <li>New games</li>
34             <li>New applications 
35
36                <ul>
37                   <li>For Business</li>
38                   <li>For Pleasure</li>
39                </ul>
40
41             </li>
42
43             <li>Around the Clock news</li>
44             <li>Search Engines</li>
45             <li>Shopping</li>
46             <li>Programming
47
48                <ul>
49                   <li>HTML</li>
50                   <li>Java</li>
51                   <li>Dynamic HTML</li>
52                   <li>Scripts</li>
53                   <li>New languages</li>
54                </ul>
55
56             </li>
57          </ul>
58
59       </li>
60
61       <li>Links</li>
62       <li>Keeping In touch with old friends</li>
63       <li>It is the technology of the future!</li>
64 </ul>
65
66 <p><a name = "ceos"></a></p>
67
68 <h1>My 3 Favorite <em>CEOs</em></h1>
69
70 <p>
71       <a href = "#features">Go to <em>Favorite Features</em></a>
72 </p>
73
74 <ol>
75       <li>Lawrence J. Ellison</li>
76       <li>Steve Jobs</li>
77       <li>Michael Dell</li>
78 </ol>

Fig. I.6 Using internal hyperlinks to make your pages more navigable (part 2 of 3).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1385

Lines 15–17 

<p>
   <a name = "features"></a>
</p>

show a named anchor for an internal hyperlink. A named anchor is created via an a element
with a name attribute. Line 15 creates an anchor named features. Because the name of
the page is list.html, the URL of this anchor in the Web page is list.html#fea-
tures. Line 71

79
80 </body>
81 </html>

Fig. I.6 Using internal hyperlinks to make your pages more navigable (part 3 of 3).



1386 Introduction to HyperText Markup Language 4: Part 2 Appendix I

<a href = "#features">Go to <em>Favorite Features</em></a>

shows a hyperlink with the anchor features as its target. Selecting this hyperlink in a
visual browser would scroll the browser window to the features anchor (line 16). Ex-
amples of this occur in Fig. I.6, which shows two different screen captures from the same
page, each at a different anchor. You can also link to an anchor in another page, using the
URL of that location (using the format href = "page.html#name").

Look-and-Feel Observation I.2
Internal hyperlinks are most useful in large HTML files with lots of information. You can link
to various points on the page to save the user from having to scroll down and find a specific
location. I.2

I.7 Creating and Using Image Maps
We have seen that images can be used as links to other places on your site or elsewhere on
the Internet. We now discuss how to create image maps (Fig. I.7), which allow you to des-
ignate certain sections of the image as hotspots and then use these hotspots as links.  

All elements of an image map are contained inside the <map>…</map> tags. The
required attribute for the map element is name (line 18):

<map name = "picture">

As we will see, this attribute is needed for referencing purposes. A hotspot on the
image is designated with the area element. Every area element has the following
attributes: href sets the target for the link on that spot, shape and coords set the char-
acteristics of the area and alt functions just as it does in the img element.  

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.7: picture.html         -->
6 <!-- Creating and using imape maps. -->
7
8 <head>
9 <title>Visual Basic .NET How to Program - Image Map</title>

10 </head>
11
12 <body>
13
14 <p>
15
16    <!-- <map> opens and names image map formatting -->
17    <!-- area and to be referenced later            -->
18 <map name = "picture">
19
20       <!-- "shape = rect" indicates rectangular -->
21       <!-- area, with coordinates of the        -->
22       <!-- upper-left and lower-right corners   -->

Fig. I.7 Picture with links anchored to an image map (part 1 of 2).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1387

23       <area href = "form.html" shape = "rect"
24          coords = "3, 122, 73, 143"
25          alt = "Go to the feedback form">
26
27       <area href = "contact.html" shape = "rect"
28          coords = "109, 123, 199, 142"
29          alt = "Go to the contact page">
30
31       <area href = "main.html" shape = "rect"
32          coords = "1, 2, 72, 17"
33          alt = "Go to the homepage">
34
35       <area href = "links.html" shape = "rect"
36          coords = "155, 0, 199, 18"
37          alt = "Go to the links page">
38
39       <!-- "shape = polygon" indicates area of -->
40       <!-- cusotmizable shape, with the        -->
41       <!-- coordinates of every vertex listed  -->
42       <area href = "mailto:deitel@deitel.com" shape = "poly"
43       coords = "28, 22, 24, 68, 46, 114, 84, 111, 99, 56, 86, 13"
44          alt = "Email the Deitels">
45
46       <!-- "shape = circle" indicates circular -->
47       <!-- area with center and radius listed  -->
48       <area href = "mailto:deitel@deitel.com" shape = "circle"
49          coords = "146, 66, 42" alt = "Email the Deitels">
50 </map>
51
52    <!-- <img src=... usemap = "#name"> says that    -->
53    <!-- indicated image map will be used with image -->
54 <img src = "deitel.gif" width = "200" height = "144"
55       alt = "Harvey and Paul Deitel" usemap = "#picture">
56 </p>
57
58 </body>
59 </html>

Fig. I.7 Picture with links anchored to an image map (part 2 of 2).



1388 Introduction to HyperText Markup Language 4: Part 2 Appendix I

The markup on lines 23–25

<area href = "form.html" shape = "rect"
  coords = "3, 122, 73, 143" alt = "Go to the feedback form">

causes a rectangular hotspot to be drawn around the coordinates given in the coords ele-
ment. A coordinate pair consists of two numbers, which are the locations of the point on the
x and y axes. The x axis extends horizontally from the upper-left corner, the y axis vertically.
Every point on an image has a unique x–y coordinate. In the case of a rectangular hotspot, the
required coordinates are those of the upper-left and lower-right corners of the rectangle. In
this case, the upper-left corner of the rectangle is located at 3 on the x axis and 122 on the y
axis, annotated as (3, 122). The lower-right corner of the rectangle is at (73, 143).

Another map area is in lines 42–44

<area href = "mailto:deitel@deitel.com" shape = "poly"
   coords = "28, 22, 24, 68, 46, 114, 84, 111, 99, 56, 86, 13

alt = "Email the Deitels">                                     

In this case, we use the value poly for the shape attribute. This creates a hotspot in the
shape of a polygon, using the coordinates in the coords attribute. These coordinates rep-
resent each vertex, or corner, of the polygon. The browser will automatically connect these
points with lines to form the area of the hotspot.

shape = "circle" is the last shape attribute that is commonly used in image maps.
It creates a circular hotspot, and requires both the coordinates of the center of the circle and
the radius of the circle, in pixels. 

To use the image map with an img element, you must insert the usemap = "#name"
attribute into the img element, where name is the value of the name attribute in the map
element. Lines 54–55

<img src = "deitel.gif" width = "200" height= "144" alt = 
"Harvey and Paul Deitel" usemap = "#picture">

show how the image map name = "picture" is applied to the img element.

I.8 <meta> Tags
People use search engines to find interesting Web sites. Search engines usually catalog sites
by following links from page to page and saving identification and classification informa-
tion for each page visited. The main HTML element that search engines use to catalog pag-
es is the meta tag (Fig. I.8).  

A meta tag contains two attributes that should always be used. The first of these,
name, identifies the type of meta tag you are including. The content attribute provides
information the search engine will catalog about your site.    

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2           "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.8: main.html         -->
6 <!-- <meta> and <!doctype> tags. -->

Fig. I.8 Using meta to provide keywords and a description.



Appendix I Introduction to HyperText Markup Language 4: Part 2 1389

Lines 11–13 demonstrate the meta tag.

<meta name = "keywords" content = "Webpage, design, HTML, 
   tutorial, personal, help, index, form, contact, feedback,
   list, links, frame, deitel">

The content of a meta tag with name = "keywords" provides search engines with a
list of words that describe key aspects of your site. These words are used to match with
searches—if someone searches for some of the terms in your keywords meta tag, they
have a better chance of being notified about your site in the search-engine output. Thus, in-
cluding meta tags and their content information will draw more viewers to your site. 

The description attribute value (lines 15–17)

<meta name = "description" content = "This Web site will help 
you learn the basics of HTML and Webpage design through the 
use of interactive examples and instruction.">

7
8 <head>
9    <!-- <meta> tags give search engines information -->

10    <!-- they need to catalog your site              -->
11 <meta name = "keywords" content = "Webpage, design, HTML,
12       tutorial, personal, help, index, form, contact, feedback,
13       list, links, frame, deitel">
14
15 <meta name = "description" content = "This Web site will help
16       you learn the basics of HTML and Webpage design through the
17       use of interactive examples and instruction.">
18
19 <title>Visual Basic .NET How to Program - Welcome</title>
20 </head>
21
22 <body>
23
24 <h1>Welcome to Our Web Site!</h1>
25
26 <p>
27       We have designed this site to teach about the wonders of 
28       <em>HTML</em>. We have been using <em>HTML</em> since  
29       version <strong>2.0</strong>, and we enjoy the features  
30       that have been added recently. It seems only a short  
31       time ago that we read our first <em>HTML</em> book. 
32       Soon you will know about many of the great new  
33       features of HTML 4.01.
34    </p>
35
36 <p>Have Fun With the Site!</p>
37
38 </body>
39 </html>

Fig. I.8 Using meta to provide keywords and a description.



1390 Introduction to HyperText Markup Language 4: Part 2 Appendix I

is quite similar to the keywords value. Instead of giving a list of words describing your
page, the contents of the keywords meta element should be a readable 3-to-4-line de-
scription of your site, written in sentence form. This description is also used by search en-
gines to catalog and display your site.

Software Engineering Observation I.1
meta elements are not visible to users of the site and must be placed inside the header sec-
tion of your HTML document. I.1

I.9 frameset Element
All of the Web pages we have designed so far have the ability to link to other pages but can
display only one page at a time. Figure I.9 introduces frames, which can help you display
more than one HTML file at a time. Frames, when used properly, can make your site more
readable and usable for your users.     

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
2           "http://www.w3.org/TR/html4/frameset.dtd">
3 <html>
4
5 <!-- Fig. I.9: index.html -->
6 <!-- HTML Frames I.       -->
7
8 <head>
9 <meta name = "keywords" content = "Webpage, design, HTML,

10       tutorial, personal, help, index, form, contact, feedback,
11       list, links, frame, deitel">
12
13 <meta name = "description" content = "This Web site will help
14       you learn the basics of HTML and Webpage design through the
15       use of interactive examples and instruction.">
16
17 <title>Visual Basic .NET How to Program - Main</title>
18 </head>
19
20 <!-- the <frameset> tag gives dimensions of your frame -->
21 <frameset cols = "110,*">
22
23    <!-- the individual frame elements specify --> 
24    <!-- which pages appear in given frames    -->
25 <frame name = "nav" src = "nav.html">
26 <frame name = "main" src = "main.html">
27
28  <noframes>
29       <p>
30          This page uses frames, but your browser 
31             does not support them.
32       </p>
33

Fig. I.9 Web site using two frames—navigation and content (part 1 of 2).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1391

On lines 1 and 2,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
           "http://www.w3.org/TR/html4/frameset.dtd">

we encounter a new document type. The document type specified here indicates that this
HTML document uses frames. You should use this document type whenever you use
frames in your HTML document.

The framed page begins with the opening frameset tag, on line 21

<frameset cols = "110,*">

This tag tells the browser that the page contains frames. The cols attribute of the opening
frameset tag gives the layout of the frameset. The value of cols (or rows, if you will
be writing a frameset with a horizontal layout) gives the width of each frame, either in pix-

34       <p>
35          Please, <a href = "nav.html">follow this link to 
36             browse our site without frames</a>.
37       </p>
38 </noframes>
39
40 </frameset>
41 </html>

Fig. I.9 Web site using two frames—navigation and content (part 2 of 2).



1392 Introduction to HyperText Markup Language 4: Part 2 Appendix I

els or as a percentage of the screen. In this case, the attribute cols = "110,*" tells the
browser that there are two frames. The first one extends 110 pixels from the left edge of the
screen, and the second frame fills the remainder of the screen (as indicated by the asterisk). 

Now that we have defined the page layout, we have to specify what files will make up
the frameset. We do this with the frame element in lines 25 and 26:

<frame name = "nav" src = "nav.html">
<frame name = "main" src = "main.html">

In each frame element, the src attribute gives the URL of the page that will be displayed
in the frame. In the preceding example, the first frame (which covers 110 pixels on the left
side of the frameset) will display the page nav.html and has the attribute name =
"nav". The second frame will display the page main.html and has the attribute name
= "main".

The purpose of a name attribute in the frame element is to identify the frame,
enabling hyperlinks in a frameset to load in their intended target frame. For example,

 <a href = "links.html" target = "main">

would load links.html in the frame whose name attribute is "main".
A target in an anchor element can also be set to a number of preset values:

target="_blank" loads the page in a new blank browser window,
target="_self" loads the page into the same window as the anchor element,
target="_parent" loads it in the parent frameset (i.e., the frameset which con-
tains the current frame) and target="_top" loads the page into the full browser
window (the page loads over the frameset).

In lines 28–38 of the code example in Fig. I.9, the noframes element displays
HTML in those browsers that do not support frames.
No Portability Tip I.1

Not everyone uses a browser that supports frames. Use the noframes element inside the
frameset to direct users to a nonframed version of your site. I.1

Look-and-Feel Observation I.3
Frames are capable of enhancing your page, but are often misused. Never use frames to ac-
complish what you could with other, simpler HTML formatting. I.3

I.10  Nested framesets
You can use the frameset element to create more complex layouts in a framed Web site
by nesting frameset areas as in Fig. I.10.

  The first level of frameset tags is on lines 21 and 22

<frameset cols = "110,*">
   <frame name = "nav"src = "nav.html">

The frameset and frame elements here are constructed in the same manner as in
Fig. I.9. We have one frame that extends over the first 110 pixels, starting at the left edge.

The second (nested) level of the frameset element covers only the remaining
frame area that was not included in the primary frameset. Thus, any frames included



Appendix I Introduction to HyperText Markup Language 4: Part 2 1393

in the second frameset will not include the leftmost 110 pixels of the screen. Lines 26–
29 show the second level of frameset tags. 

<frameset rows = "175,*">
   <frame name = "picture" src = "picture.html">
   <frame name = "main" src = "main.html">
</frameset>

In this frameset area, the first frame extends 175 pixels from the top of the screen, as
indicated by the rows = "175,*". Be sure to include the correct number of frame ele-
ments inside the second frameset area. Also, be sure to include a noframes element
and to close both of the frameset areas at the end of the Web page. 

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
2           "http://www.w3.org/TR/html4/frameset.dtd">
3 <html>
4
5 <!-- Fig. I.10: index.html  -->
6 <!-- HTML frames II.        -->
7
8 <head>
9

10    <meta name = "keywords" content = "Webpage, design, HTML,
11       tutorial, personal, help, index, form, contact, feedback,
12       list, links, frame, deitel">
13
14    <meta name = "description" content = "This Web site will help
15       you learn the basics of HTML and Webpage design through 
16       the use of interactive examples and instruction.">
17
18    <title>Visual Basic .NET How to Program - Main</title>
19 </head>
20
21 <frameset cols = "110,*">
22 <frame name = "nav" src = "nav.html">
23
24    <!-- nested framesets are used to change formatting -->
25    <!-- and spacing of frameset as whole               -->
26 <frameset rows = "175,*">
27       <frame name = "picture" src = "picture.html">
28       <frame name = "main" src = "main.html">
29 </frameset>
30
31 <noframes>
32       <p>
33          This page uses frames, but your browser does 
34             not support them.
35       </p>
36
37       <p>
38          Please, <a href = "nav.html">follow this link  
39             to browse our site without frames</a>.

Fig. I.10 Framed Web site with a nested frameset (part 1 of 2).



1394 Introduction to HyperText Markup Language 4: Part 2 Appendix I

Testing and Debugging Tip I.1
When using nested frameset elements, indent every level of frame tag. This makes the
page clearer and easier to debug. I.1

Look-and-Feel Observation I.4
Nested framesets can help you create visually pleasing, easy-to-navigate Web sites. I.4

I.11 Internet and World Wide Web Resources
There are many Web sites that cover the more advanced and difficult features of HTML.
Several of these sites are featured here.

www.geocities.com/SiliconValley/Orchard/5212
Adam’s Advanced HTML Page is geared to those looking to master the more advanced techniques of
HTML. It includes instructions for creating tables, frames and marquees and other advanced topics.

www.w3scripts.com/html
This site, an offshoot of W3Schools, is a repository for code examples exhibiting all of the features of
HTML, from beginner to advanced.

www.blooberry.com/indexdot/html
Index Dot HTML, The Advance HTML Reference... The name speaks for itself. This site has a great
directory and tree-based index of all HTML elements, plus more.

40       </p>
41 </noframes>
42
43 </frameset>
44 </html>

Fig. I.10 Framed Web site with a nested frameset (part 2 of 2).



Appendix I Introduction to HyperText Markup Language 4: Part 2 1395

www.neiljohan.com/html/advancedhtml.htm
The Advanced HTML Guide gives insights into improving your site using HTML in ways you might
not have thought possible.

SUMMARY
• HTML tables organize data into rows and columns. All tags and text that apply to a table go inside

the <table>…</table> tags. The border attribute lets you set the width of the table’s bor-
der in pixels. The width attribute sets the width of the table—you specify either a number of pix-
els or a percentage of the screen width.

• The text inside the <caption>…</caption> tags is inserted directly above the table in the
browser window. The caption text is also used to help text-based browsers interpret the table data.

• Tables can be split into distinct horizontal and vertical sections. Put all header information (such
as table titles and column headers) inside the <thead>…</thead> tags. The tr (table row)
element is used for formatting the cells of individual rows. All of the cells in a row belong within
the <tr>…</tr> tags of that row. 

• The smallest area of the table that we are able to format is the data cell. There are two types of
data cells: ones located in the header (<th>…</th>) and ones located in the table body
(<td>…</td>). Header cells, usually placed in the <thead> area, are suitable for titles and
column headings.

• Like thead, the tbody is used for formatting and grouping purposes. Most tables use tbody to
house the majority of their content. 

• td table data cells are left aligned by default. th cells are centered by default.

• Just as you can use the thead and tbody elements to format groups of table rows, you can use
the colgroup element to group and format columns. colgroup is used by setting in its open-
ing tag the number of columns it affects and the formatting it imposes on that group of columns.

• Each col element contained inside the <colgroup>…</colgroup> tags can in turn format
a specified number of columns.

• You can add a background color or image to any table row or cell with either the bgcolor or
background attributes, which are used in the same way as in the body element. 

• It is possible to make some table data cells larger than others by using the rowspan and col-
span attributes. The attribute value extends the data cell to span the specified number of cells. 

• The valign (vertical alignment) attribute of a table data cell accepts the following values:
"top", "middle", "bottom" and "baseline".

• All cells in a table row whose valign attribute is set to "baseline" will have the first text line
on a common baseline. 

• The default vertical alignment in all data and header cells is valign="middle".

• HTML provides several mechanisms—including the form—to collect information from people
viewing your site. 

• Use method = "post" in a form that causes changes to server data, for example when updating
a database. The form data will be sent to the server as an environment variable, which scripts are
able to access. The other possible value, method = "get", should be used when your form does
not cause any changes in server-side data, for example when making a database request. The form
data from method = "get" is appended to the end of the URL. Because of this, the amount of
data submitted using this method is limited to 4K. Also be aware that method = "get" is lim-
ited to standard characters and cannot submit any special characters.



1396 Introduction to HyperText Markup Language 4: Part 2 Appendix I

• A Web server is a machine that runs a software package like Apache or IIS; servers are designed
to handle browser requests. When a user uses a browser to request a page or file somewhere on the
server, the server processes this request and returns an answer to the browser. 

• The action attribute in the form tag is the path to a script that processes the form data.

• The input element is common in forms and always requires the type attribute. Two other at-
tributes are name, which provides a unique identification for the input, and value, which in-
dicates the value that the input element sends to the server upon submission.

• The input type="text" inserts a one-line text bar into the form. The value of this input ele-
ment and the information that the server sends to you from this input is the text that the user
types into the bar. The size attribute determines the width of the text input, measured in charac-
ters. You can also set a maximum number of characters that the text input will accept by inserting
the maxlength="length" attribute.

• You must make sure to include a label element for each form element to indicate the function
of the element. 

• The type="submit" input element places a button in the form that submits data to the server
when clicked. The value attribute of the submit input changes the text displayed on the button. 

• The type="reset" input element places a button on the form that, when clicked, will clear all
entries the user has entered into the form. 

• The textarea element inserts a box into the form. You specify the size of the box (which is
scrollable) inside the opening <textarea> tag with the rows attribute and the cols attribute. 

• Data entered in a type="password" input appears on the screen as asterisks. The password is
used for submitting sensitive information that the user would not want others to be able to read. It
is just the browser that displays asterisks—the real form data is still submitted to the server.

• Every input element with type="checkbox" creates a new checkbox in the form. Check-
boxes can be used individually or in groups. Each checkbox in a group should have the same name
(in this case, name="things"). 

• Inserted into forms by means of the input attribute type="radio", radio buttons are different
from checkboxes in that only one in the group may be selected at any time. All of the name at-
tributes of a group of radio inputs must be the same and all of the value attributes different. 

• Insert the attribute checked to indicate which radio button you would like selected initially.

• The select element places a selectable list of items inside your form. To add an item to the list,
insert an option element in the <select>…</select> area and type what you want the list
item to display on the same line. You can change the number of list options visible at one time by
including the size="size" attribute inside the <select> tag. Use this attribute if you prefer an
expanded version of the list to the one-line expandable list.

• A location on a page is marked by including a name attribute in an a element. Clicking this hy-
perlink in a browser would scroll the browser window to that point on the page. 

• An image map allows you to designate certain sections of the image as hotspots and then use these
hotspots as anchors for linking.

• All elements of an image map are contained inside the <map>…</map> tags. The required at-
tribute for the map element is name.

• A hotspot on the image is designated with the area element. Every <area> tag has the following
attributes: href sets the target for the link on that spot, shape and coords set the characteris-
tics of the area and alt function just as it does in <img> tags. 

• shape="rect" creates a rectangular hotspot around the coordinates of a coords element. 



Appendix I Introduction to HyperText Markup Language 4: Part 2 1397

• A coordinate pair consists of two numbers, which are the locations of the point on the x and y axes.
The x axis extends horizontally from the upper-left corner, the y axis vertically. Every point on an
image has a unique x–y coordinate, annotated as (x, y).

• In the case of a rectangular hotspot, the required coordinates are those of the upper-left and lower-
right corners of the rectangle. 

• The shape="poly" creates a hotspot of no preset shape—you specify the shape of the hotspot
in the coords attribute by listing the coordinates of every vertex, or corner of the hotspot. 

• shape="circle" creates a circular hotspot; it requires both the coordinates of the center of the
circle and the length of the radius, in pixels. 

• To use an image map with a graphic on your page, you must insert the usemap="#name" at-
tribute into the img element, where “name” is the value of the name attribute in the map element.

• The main element that interacts with search engines is the meta element.

• meta tags contain two attributes that should always be used. The first of these, name, is an iden-
tification of the type of meta tag you are including. The content attribute gives the information
the search engine will be cataloging. 

• The content of a meta tag with name="keywords" provides the search engines with a list
of words that describe the key aspects of your site. By including meta tags and their content in-
formation, you can give precise information about your site to search engines. This will help you
draw a more focused audience to your site. 

• The description value of the name attribute in the meta tag should be a 3-to-4-line descrip-
tion of your site, written in sentence form. This description is used by the search engine to catalog
and display your site.

• meta elements are not visible to users of the site and should be placed inside the header section
of your HTML document. 

• The frameset tag tells the browser that the page contains frames. 

• cols or rows gives the width of each frame in pixels or as a percentage of the screen. 

• In each frame element, the src attribute gives the URL of the page that will be displayed in the
specified frame. 

• The purpose of a name attribute in the frame element is to give an identity to that specific frame,
in order to enable hyperlinks in a frameset to load their intended frame. The target at-
tribute in an anchor element is set to the name of the frame in which the new page should load.

• A target in an anchor element can be set to a number of preset values: target="_blank" loads
the page in a new blank browser window, target="self" loads the page into the same window
as the anchor element, target="_parent" loads the page into the parent frameset and
target="_top" loads the page into the full browser window.

• Not everyone viewing a page has a browser that can handle frames. You therefore need to include
a noframes element inside of the frameset. You should include regular HTML tags and ele-
ments within the <noframes>…</noframes> tags. Use this area to direct the user to a non-
framed version of the site. 

• By nesting frameset elements, you can create more complex layouts.

TERMINOLOGY
<!doctype…> area
<meta> tag border property of table element
<option> caption element 
ACTION attribute in form element cell of a table



1398 Introduction to HyperText Markup Language 4: Part 2 Appendix I

SELF-REVIEW EXERCISES
I.1 State whether the following statements are true or false. If false, explain why.

a) The width of all data cells in a table must be the same.
b) The thead element is mandatory in a table.
c) You are limited to a maximum of 100 internal links per page.
d) All browsers can render framesets.

I.2 Fill in the blanks in each of the following statements.
a) The  attribute in an input element inserts a button that, when clicked, will

clear the contents of the form.
b) The spacing of a frameset is set by including the  attribute or the

 attribute inside of the <frameset> tag.
c) The  element inserts a new item in a list.

CGI script name="redirect" in input element
checked name="subject" in input element
circular hotspot nested lists
col element noframes
colgroup element noresize attribute in frame
cols attribute of table element ol (ordered list) element (<ol>…</ol>)
colspan attribute of td element rectangular hotspot
column of a table row of a table
coords attribute inside area element rowspan attribute of td element
data cell scrolling attribute in frame
environment variable select element (<select>…</select>)
form shape attribute inside area element
frame element (<frame>…</frame>) size attribute in select
frameset element src attribute of frame element
header cell table
hotspot table element (<table>…</table>)
image map target="_blank"
indenting lists target="_blank"
input element (<input>…</input>) target="_parent"
input type="button" target="_top"
input type="checkbox" tbody
input type="password" td (table data) element (<td>…</td>)
input type="radio" text-based browser
input type="reset" th (header cell) element (<th>…</th>)
input type="submit" thead element (<thead>…</thead>)
input type="text" tr (table row) element (<tr>…</tr>)
input type="textarea" type=1 attribute of <ol>
internal linking type=a attribute of <ol>
list type=A attribute of <ol>
map element type=i attribute of <ol>
maxlength="#" type=I attribute of <ol>
method="get" ul (unordered list) element (<ul>…</ul>)
method="post" usemap="name" attribute in img
name attribute in input element value attribute of input element
name="recipient" in input element Web server



Appendix I Introduction to HyperText Markup Language 4: Part 2 1399

d) The  element tells the browser what version of HTML is included on the
page. Two types of this element are  and .

e) The common shapes used in image maps are ,  and .

I.3 Write HTML tags to accomplish the following tasks:
a) Insert a framed Web page with the first frame extending 300 pixels across the page from

the left side.
b) Insert an ordered list that will have numbering by lowercase Roman numerals.
c) Insert a scrollable list (in a form) that will always display four entries of the list.
d) Insert an image map onto a page, using deitel.gif as an image and map with

name="hello" as the image map, and have “hello” be the alt text.

ANSWERS TO SELF-REVIEW EXERCISES
I.1 a) False. You can specify the width of any column either in pixels or as a percentage of the total
width of the table. c) False. The thead element is used only for formatting purposes and is optional
(but it is recommended that you include it). d) False. You can have an unlimited number of hyperlink
locations on any page. e) False. Text-based browsers are unable to render a frameset and must there-
fore rely on the information that you include inside the <noframes>…</noframes> tag.

I.2 a) type = "reset".  b) cols, rows.  c) li.  d) <!doctype…>, transitional,
frameset.  e) poly, circle, rect.

I.3 a) <frameset cols = "300,*">…</frameset> b) <ol type = "i">…</ol>
c) <select size = "4">…</select> d)<img src = "deitel.gif" alt = "hello"
usemap = "#hello">

EXERCISES
I.4 Categorize each of the following as an element or an attribute:

a) width
b) td
c) th
d) frame
e) name
f) select
g) type

I.5 What will the frameset produced by the following code look like? Assume that the pages
being imported are blank with white backgrounds and that the dimensions of the screen are 800 by
600. Sketch the layout, approximating the dimensions.

<frameset rows = "20%,*">
<frame src = "hello.html" name = "hello">
   <frameset cols = "150,*">
   <frame src = "nav.html" name = "nav">
   <frame src = "deitel.html" name = "deitel">
   </frameset>
</frameset>

I.6 Assume that you have a document with many subsections. Write the HTML markup to create
a frame with a table of contents on the left side of the window, and have each entry in the table of
contents use internal linking to scroll down the document frame to the appropriate subsection.



J
Introduction to XHTML: 

Part 1

Objectives
• To understand important components of XHTML 

documents.
• To use XHTML to create World Wide Web pages.
• To be able to add images to Web pages.
• To understand how to create and use hyperlinks to 

navigate Web pages. 
• To be able to mark up lists of information.
To read between the lines was easier than to follow the text.
Aristophanes



Appendix J Introduction to XHTML: Part 1 1401

Henry JamesHigh thoughts must have high language.Aristophanes

J.1 Introduction
In this appendix, we introduce XHTML1—the Extensible HyperText Markup Language. In
the next appendix, Introduction to XHTML: Part 2, we introduce more sophisticated XHT-
ML techniques, such as tables, which are particularly useful for structuring information
from databases (i.e., software that stores structured sets of data). In this appendix, we do
not present any Visual Basic programming.

Unlike procedural programming languages such as C, Fortran, Cobol and Visual
Basic, XHTML is a markup language that specifies the format of text that is displayed in a
Web browser such as Microsoft’s Internet Explorer or Netscape’s Communicator.

One key issue when using XHTML2 is the separation of the presentation of a docu-
ment (i.e., the document’s appearance when rendered by a browser) from the structure of
the document’s information. Throughout this appendix and the next, we will discuss this
issue in depth.

J.2 Editing XHTML
In this appendix, we write XHTML in its source-code form. We create XHTML documents
by typing them in with a text editor (e.g., Notepad, Wordpad, vi or emacs), saving the doc-
uments with either an.html or .htm file-name extension.

Outline

J.1 Introduction
J.2 Editing XHTML
J.3 First XHTML Example
J.4 W3C XHTML Validation Service
J.5 Headers
J.6 Linking
J.7 Images
J.8 Special Characters and More Line Breaks
J.9 Unordered Lists
J.10 Nested and Ordered Lists
J.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. XHTML has replaced the HyperText Markup Language (HTML) as the primary means of describ-
ing Web content. XHTML provides more robust, richer and more extensible features than HTML.
For more on XHTML/HTML, visit www.w3.org/markup.

2. As this book was being submitted to the publisher, XHTML 1.1 became a World Wide Web Con-
sortium (W3C) Recommendation. The XHTML examples presented in this book are based upon
the XHTML 1.0 Recommendation, because Internet Explorer 5.5 does not support the full set of
XHTML 1.1 features. In the future, Internet Explorer and other browsers will support XHTML
1.1. When this occurs, we will update our Web site (www.deitel.com) with XHTML 1.1 ex-
amples and information.



1402 Introduction to XHTML: Part 1 Appendix J

Good Programming Practice J.1
Assign documents file names that describe their functionality. This practice can help you
identify documents faster. It also helps people who want to link to a page, by giving them an
easy-to-remember name. For example, if you are writing an XHTML document that contains
product information, you might want to call it products.html. J.1

Machines running specialized software called a Web server store XHTML documents.
Clients (e.g., Web browsers) request specific resources, such as the XHTML documents from
the Web server. For example, typing www.deitel.com/books/downloads.htm into
a Web browser’s address field requests downloads.htm from the Web server running at
www.deitel.com. This document is located in a directory named books.

J.3 First XHTML Example
In this appendix and the next, we present XHTML markup and provide screen captures that
show how Internet Explorer renders (i.e., displays) the XHTML. Every XHTML document
we show has line numbers for the reader’s convenience. These line numbers are not part of
the XHTML documents.

Our first example (Fig. J.1) is an XHTML document named main.html that displays
the message Welcome to XHTML! in the browser.

The key line in the program is line 14, which tells the browser to display Welcome
to XHTML! Now let us consider each line of the program. 

Lines 1–3 are required in XHTML documents to conform with proper XHTML syntax.
For now, copy and paste these lines into each XHTML document you create. The meaning
of these lines is discussed in detail in Chapter 18, Extensible Markup Language (XML). 

Lines 5–6 are XHTML comments. XHTML document creators insert comments to
improve markup readability and describe the content of a document. Comments also help
other people read and understand an XHTML document’s markup and content. Comments
do not cause the browser to perform any action when the user loads the XHTML document
into the Web browser to view the document. XHTML comments always start with <!--
and end with -->. Each of our XHTML examples includes comments that specify the
figure number and file name and provide a brief description of the example’s purpose. Sub-
sequent examples include comments in the markup, especially to highlight new features.

Good Programming Practice J.2
Place comments throughout your markup. Comments help other programmers understand
the markup, assist in debugging and list useful information that you do not want the browser
to render. Comments also help you understand your own markup when you revisit a docu-
ment for modifications or updates in the future. J.2

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.1: main.html -->
6 <!-- Our first Web page. -->
7

Fig. J.1 First XHTML example (part 1 of 2).



Appendix J Introduction to XHTML: Part 1 1403

XHTML markup contains text that represents the content of a document and elements
that specify a document’s structure. Some important elements of an XHTML document
include the html element, the head element and the body element. The html element
encloses the head section (represented by the head element) and the body section (repre-
sented by the body element). The head section contains information about the XHTML
document, such as the title of the document. The head section also can contain special doc-
ument formatting instructions called style sheets and client-side programs called scripts for
creating dynamic Web pages. The body section contains the page’s content that the browser
displays when the user visits the Web page.

XHTML documents delimit an element with start and end tags. A start tag consists of
the element name in angle brackets (e.g., <html>). An end tag consists of the element
name preceded by a / in angle brackets (e.g., </html>). In this example, lines 8 and 16
define the start and end of the html element. Note that the end tag on line 16 has the same
name as the start tag, but is preceded by a / inside the angle brackets. Many start tags define
attributes that provide additional information about an element. Browsers can use this addi-
tional information to determine how to process the element. Each attribute has a name and
a value separated by an equal sign (=). Line 8 specifies a required attribute (xmlns) and
value (http://www.w3.org/1999/xhtml) for the html element in an XHTML
document. For now, simply copy and paste the html element start tag on line 8 into your
XHTML documents. We discuss the details of the html element’s xmlns attribute in
Chapter 18, Extensible Markup Language (XML). 

Common Programming Error J.1
Not enclosing attribute values in either single or double quotes is a syntax error. J.1

Common Programming Error J.2
Using uppercase letters in an XHTML element or attribute name is a syntax error. J.2

8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Welcome</title>
11    </head>
12
13    <body>
14       <p>Welcome to XHTML!</p>
15    </body>
16 </html>

Fig. J.1 First XHTML example (part 2 of 2).



1404 Introduction to XHTML: Part 1 Appendix J

An XHTML document divides the html element into two sections—head and body.
Lines 9–11 define the Web page’s head section with a head element. Line 10 specifies a
title element. This is called a nested element, because it is enclosed in the head ele-
ment’s start and end tags. The head element also is a nested element, because it is enclosed
in the html element’s start and end tags. The title element describes the Web page.
Titles usually appear in the title bar at the top of the browser window and also as the text
identifying a page when users add the page to their list of Favorites or Bookmarks,
which enable users to return to their favorite sites. Search engines (i.e., sites that allow users
to search the Web) also use the title for cataloging purposes.

Good Programming Practice J.3
Indenting nested elements emphasizes a document’s structure and promotes readability. J.3

Common Programming Error J.3
XHTML does not permit tags to overlap—a nested element’s end tag must appear in the doc-
ument before the enclosing element’s end tag. For example, the nested XHTML tags
<head><title>hello</head></title> cause a syntax error, because the enclos-
ing head element’s ending </head> tag appears before the nested title element’s end-
ing </title> tag. J.3

Good Programming Practice J.4
Use a consistent title naming convention for all pages on a site. For example, if a site is
named “Bailey’s Web Site,” then the title of the main page might be “Bailey’s Web Site—
Links”. This practice can help users better understand the Web site’s structure. J.4

Line 13 opens the document’s body element. The body section of an XHTML docu-
ment specifies the document’s content, which may include text and tags.

Some tags, such as the paragraph tags (<p> and </p>) in line 14, mark up text for dis-
play in a browser. All text placed between the <p> and </p> tags form one paragraph. When
the browser renders a paragraph, a blank line usually precedes and follows paragraph text.

This document ends with two closing tags (lines 15–16). These tags close the body
and html elements, respectively. The ending </html> tag in an XHTML document
informs the browser that the XHTML markup is complete.

To view this example in Internet Explorer, perform the following steps:

1. Copy the Appendix J examples onto your machine from the CD that accompanies
this book (or download the examples from www.deitel.com).

2. Launch Internet Explorer, and select Open... from the File Menu. This displays
the Open dialog.

3. Click the Open dialog’s Browse... button to display the Microsoft Internet
Explorer file dialog. 

4. Navigate to the directory containing the Appendix J examples and select the file
main.html; then, click Open.

5. Click OK to have Internet Explorer render the document. Other examples are
opened in a similar manner.

At this point your browser window should appear similar to the sample screen capture
shown in Fig. J.1. (Note that we resized the browser window to save space in the book.)



Appendix J Introduction to XHTML: Part 1 1405

J.4 W3C XHTML Validation Service
Programming Web-based applications can be complex, and XHTML documents must be
written correctly to ensure that browsers process them properly. To promote correctly writ-
ten documents, the World Wide Web Consortium (W3C) provides a validation service
(validator.w3.org) for checking a document’s syntax. Documents can be validated
either from a URL that specifies the location of the file or by uploading a file to the site
validator.w3.org/file-upload.html. Uploading a file copies the file from the
user’s computer to another computer on the Internet. Figure J.2 shows main.html
(Fig. J.1) being uploaded for validation. Although the W3C’s Web page indicates that the
service name is HTML Validation Service,1 the validation service is able to validate the
syntax of XHTML documents. All the XHTML examples in this book have been validated
successfully through validator.w3.org.

By clicking Browse…, users can select files on their own computers for upload. After
selecting a file, clicking the Validate this document button uploads and validates the
file. Figure 4.3 shows the results of validating main.html. This document does not con-
tain any syntax errors. If a document does contain syntax errors, the Validation Service dis-
plays error messages describing the errors. In Exercise J.11, we ask readers to create an
invalid XHTML document (i.e., one that contains syntax errors) and to check the docu-
ment’s syntax, using the Validation Service. This enables readers to see the types of error
messages generated by the validator.

1. HTML (HyperText Markup Language) is the predecessor of XHTML designed for marking up
Web content. HTML is a deprecated technology.

Fig. J.2 Validating an XHTML document. (Courtesy of World Wide Web 
Consortium (W3C).)



1406 Introduction to XHTML: Part 1 Appendix J

Testing and Debugging Tip J.1
Use a validation service, such as the W3C HTML Validation Service, to confirm that an XHT-
ML document is syntactically correct. J.1

J.5 Headers
Some text in an XHTML document may be more important than some other. For example,
the text in this section is considered more important than a footnote. XHTML provides six
headers, called header elements, for specifying the relative importance of information.
Figure J.4 demonstrates these elements (h1 through h6).

Portability Tip J.1
The text size used to display each header element can vary significantly between browsers.  J.1

Fig. J.3 XHTML validation results. (Courtesy of World Wide Web Consortium 
(W3C).)



Appendix J Introduction to XHTML: Part 1 1407

Header element h1 (line 15) is considered the most significant header and is rendered
in a larger font than the other five headers (lines 16–20). Each successive header element
(i.e., h2, h3, etc.) is rendered in a smaller font.

Look-and-Feel Observation J.1
Placing a header at the top of every XHTML page helps viewers understand the purpose of
each page. J.1

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.4: header.html -->
6 <!-- XHTML headers.        -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Headers</title>
11    </head>
12
13    <body>
14
15       <h1>Level 1 Header</h1>
16       <h2>Level 2 header</h2>
17       <h3>Level 3 header</h3>
18       <h4>Level 4 header</h4>
19       <h5>Level 5 header</h5>
20       <h6>Level 6 header</h6>
21
22    </body>
23 </html>

Fig. J.4 Header elements h1 through h6.



1408 Introduction to XHTML: Part 1 Appendix J

Look-and-Feel Observation J.2
Use larger headers to emphasize more important sections of a Web page. J.2

J.6 Linking
One of the most important XHTML features is the hyperlink, which references (or links to)
other resources, such as XHTML documents and images. In XHTML, both text and images
can act as hyperlinks. Web browsers typically underline text hyperlinks and color their text
blue by default, so that users can distinguish hyperlinks from plain text. In Fig. J.5, we cre-
ate text hyperlinks to four different Web sites.

Line 17 introduces the <strong> tag. Browsers typically display text marked up with
<strong> in a bold font.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.5: links.html        -->
6 <!-- Introduction to hyperlinks. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Links</title>
11    </head>
12
13    <body>
14
15       <h1>Here are my favorite sites</h1>
16
17       <p><strong>Click a name to go to that page.</strong></p>
18
19       <!-- create four text hyperlinks -->
20       <p>
21          <a href = "http://www.deitel.com">Deitel</a>
22       </p>
23
24       <p>
25          <a href = "http://www.prenhall.com">Prentice Hall</a>
26       </p>
27
28       <p>
29          <a href = "http://www.yahoo.com">Yahoo!</a>
30       </p>
31
32       <p>
33          <a href = "http://www.usatoday.com">USA Today</a>
34       </p>
35
36    </body>
37 </html>

Fig. J.5 Linking to other Web pages (part 1 of 2).



Appendix J Introduction to XHTML: Part 1 1409

Links are created using the a (anchor) element. Line 21 defines a hyperlink that links
the text Deitel to the URL assigned to attribute href, which specifies the location of a
linked resource, such as a Web page, a file or an e-mail address. This particular anchor ele-
ment links to a Web page located at http://www.deitel.com. When a URL does not
indicate a specific document on the Web site, the Web server returns a default Web page.
This pages often is called index.html; however, most Web servers can be configured to
to use any file as the default Web page for the site. (Open http://www.deitel.com
in one browser window and http://www.deitel.com/index.html in a second
browser window to confirm that they are identical.) If the Web server cannot locate a
requested document, the server returns an error indication to the Web browser and the
browser displays an error message to the user.

Anchors can link to e-mail addresses through a mailto: URL. When someone clicks
this type of anchored link, most browsers launch the default e-mail program (e.g., Outlook
Express) to enable the user to write an e-mail message to the linked address. Figure J.6
demonstrates this type of anchor.

Fig. J.5 Linking to other Web pages (part 2 of 2).



1410 Introduction to XHTML: Part 1 Appendix J

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.6: contact.html   -->
6 <!-- Adding email hyperlinks. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Contact Page
11       </title>
12    </head>
13
14    <body>
15
16       <p>My email address is
17          <a href = "mailto:deitel@deitel.com">
18             deitel@deitel.com 
19          </a>
20          . Click the address and your browser will 
21          open an e-mail message and address it to me.
22       </p>
23    </body>
24 </html>

Fig. J.6 Linking to an e-mail address.



Appendix J Introduction to XHTML: Part 1 1411

Lines 17–19 contain an e-mail link. The form of an e-mail anchor is <a href =
"mailto:emailaddress">…</a>. In this case, we link to the e-mail address
deitel@deitel.com.

J.7 Images
The examples discussed so far demonstrated how to mark up documents that contain only
text. However, most Web pages contain both text and images. In fact, images are an equal
and essential part of Web-page design. The two most popular image formats used by Web
developers are Graphics Interchange Format (GIF) and Joint Photographic Experts Group
(JPEG) images. Users can create images, using specialized pieces of software, such as Ado-
be PhotoShop Elements and Jasc Paint Shop Pro (www.jasc.com). Images may also be
acquired from various Web sites, such as gallery.yahoo.com. Figure J.7 demon-
strates how to incorporate images into Web pages.

Lines 16–17 use an img element to insert an image in the document. The image file’s
location is specified with the img element’s src attribute. In this case, the image is located
in the same directory as this XHTML document, so only the image’s file name is required.
Optional attributes width and height specify the image’s width and height, respec-
tively. The document author can scale an image by increasing or decreasing the values of
the image width and height attributes. If these attributes are omitted, the browser uses
the image’s actual width and height. Images are measured in pixels (“picture elements”),
which represent dots of color on the screen. The image in Fig. J.7 is 181 pixels wide and
238 pixels high. 

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.7: picture.html    -->
6 <!-- Adding images with XHTML. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Welcome</title>
11    </head>
12
13    <body>
14
15       <p>
16          <img src = "vbnethtp.jpg" height = "238" width = "181"
17             alt = "Visual Basic.NET How to Program book cover" />
18
19          <img src = "jhtp.jpg" height = "238" width = "181"
20             alt = "Java How to Program book cover" />
21       </p>
22
23    </body>
24 </html>

Fig. J.7 Placing images in XHTML files (part 1 of 2).



1412 Introduction to XHTML: Part 1 Appendix J

Good Programming Practice J.5
Always include the width and the height of an image inside the <img> tag. When the
browser loads the XHTML file, it will know immediately from these attributes how much
screen space to provide for the image and will lay out the page properly, even before it down-
loads the image. J.5

Performance Tip J.1
Including the width and height attributes in an <img> tag will help the browser load
and render pages faster. J.1

Common Programming Error J.4
Entering new dimensions for an image that change its inherent width-to-height ratio distorts
the appearance of the image. For example, if your image is 200 pixels wide and 100 pixels
high, you should ensure that any new dimensions have a 2:1 width-to-height ratio. J.4

Every img element in an XHTML document has an alt attribute. If a browser cannot
render an image, the browser displays the alt attribute’s value. A browser might not be
able to render an image for several reasons. It might not support images—as is the case with
a text-based browser (i.e., a browser that can display only text)—or the client may have dis-
abled image viewing to reduce download time. Figure J.7 shows Internet Explorer ren-
dering the alt attribute’s value when a document references a nonexistent image file
(jhtp.jpg).

The alt attribute is important for creating accessible Web pages for users with dis-
abilities, especially those with vision impairments and text-based browsers. Specialized
software called speech synthesizers often are used by people with disabilities. These soft-
ware applications “speak” the alt attribute’s value so that the user knows what the
browser is displaying. We discuss accessibility issues in detail in Chapter 24, Accessibility.

Fig. J.7 Placing images in XHTML files (part 2 of 2).



Appendix J Introduction to XHTML: Part 1 1413

Some XHTML elements (called empty elements) contain only attributes and do not
mark up text (i.e., text is not placed between the start and end tags). Empty elements (e.g.,
img) must be terminated, either by using the forward slash character (/) inside the closing
right angle bracket (>) of the start tag or by explicitly including the end tag. When using
the forward slash character, we add a space before the forward slash to improve readability
(as shown at the ends of lines 17 and 20). Rather than using the forward slash character,
lines 19–20 could be written with a closing </img> tag as follows:

<img src = "jhtp.jpg" height = "238" width = "181"
   alt = "Java How to Program book cover"></img>

By using images as hyperlinks, Web developers can create graphical Web pages that
link to other resources. In Fig. J.8, we create six different image hyperlinks.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.8: nav.html            -->
6 <!-- U\sing images as link anchors. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Navigation Bar
11       </title>
12    </head>
13
14    <body>
15
16       <p>
17          <a href = "links.html">
18             <img src = "buttons/links.jpg" width = "65"
19                height = "50" alt = "Links Page" />
20          </a><br />
21
22          <a href = "list.html">
23             <img src = "buttons/list.jpg" width = "65"
24                height = "50" alt = "List Example Page" />
25          </a><br />
26
27          <a href = "contact.html">
28             <img src = "buttons/contact.jpg" width = "65"
29                height = "50" alt = "Contact Page" />
30          </a><br />
31
32          <a href = "header.html">
33             <img src = "buttons/header.jpg" width = "65"
34                height = "50" alt = "Header Page" />
35          </a><br />
36

Fig. J.8 Using images as link anchors (part 1 of 2).



1414 Introduction to XHTML: Part 1 Appendix J

Lines 17–20 create an image hyperlink by nesting an img element within an anchor
(a) element. The value of the img element’s src attribute value specifies that this image
(links.jpg) resides in a directory named buttons. The buttons directory and the
XHTML document are in the same directory. Images from other Web documents also can
be referenced (after obtaining permission from the document’s owner) by setting the src
attribute to the name and location of the image.

37          <a href = "table.html">
38             <img src = "buttons/table.jpg" width = "65"
39                height = "50" alt = "Table Page" />
40          </a><br />
41
42          <a href = "form.html">
43             <img src = "buttons/form.jpg" width = "65"
44                height = "50" alt = "Feedback Form" />
45          </a><br />
46       </p>
47
48    </body>
49 </html>

Fig. J.8 Using images as link anchors (part 2 of 2).



Appendix J Introduction to XHTML: Part 1 1415

On line 20, we introduce the br element, which most browsers render as a line break.
Any markup or text following a br element is rendered on the next line. Like the img ele-
ment, br is an example of an empty element terminated with a forward slash. We add a
space before the forward slash to enhance readability.

J.8 Special Characters and More Line Breaks
When marking up text, certain characters or symbols (e.g., <) may be difficult to embed
directly into an XHTML document. Some keyboards may not provide these symbols, or the
presence of these symbols may cause syntax errors. For example, the markup

<p>if x < 10 then increment x by 1</p>

results in a syntax error, because it uses the less-than character (<), which is reserved for
start tags and end tags such as <p> and </p>. XHTML provides special characters or en-
tity references (in the form &code;) for representing these characters. We could correct the
previous line by writing

<p>if x &lt; 10 then increment x by 1</p>

which uses the special character &lt; for the less-than symbol. 
Figure J.9 demonstrates how to use special characters in an XHTML document. For a

list of special characters, see Appendix L, Special Characters.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.9: contact2.html       -->
6 <!-- Inserting special characters. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Contact Page
11       </title>
12    </head>
13
14    <body>
15
16       <!-- special characters are    -->
17       <!-- entered using form &code; -->
18       <p>
19          Click
20          <a href = "mailto:deitel@deitel.com">here
21          </a> to open an e-mail message addressed to 
22          deitel@deitel.com.
23       </p>
24
25       <hr /> <!-- inserts a horizontal rule -->
26

Fig. J.9 Inserting special characters into XHTML (part 1 of 2).



1416 Introduction to XHTML: Part 1 Appendix J

Lines 27–28 contain other special characters, which are expressed as either word
abbreviations (e.g., amp for ampersand and copy for copyright) or hexadecimal (hex)
values (e.g., &#38; is the hexadecimal representation of &amp;). Hexadecimal numbers
are base-16 numbers—digits in a hexadecimal number have values from 0 to 15 (a total of
16 different values). The letters A–F represent the hexadecimal digits corresponding to dec-
imal values 10–15. Thus, in hexadecimal notation we can have numbers like 876 consisting
solely of decimal-like digits, numbers like DA19F consisting of digits and letters, and num-
bers like DCB consisting solely of letters. We discuss hexadecimal numbers in detail in
Appendix B, Number Systems.

In lines 34–36, we introduce three new elements. Most browsers render the del ele-
ment as strike-through text. With this format, users can easily indicate document revisions.
To superscript text (i.e., raise text on a line with a decreased font size) or subscript text (i.e.,
lower text on a line with a decreased font size), use the sup and sub elements, respec-
tively. We also use special characters &lt; for a less-than sign and &frac14; for the
fraction 1/4 (line 38).

27       <p>All information on this site is <strong>&copy;</strong>
28          Deitel <strong>&amp;</strong> Associates, Inc. 2002.</p>
29
30       <!-- to strike through text use <del> tags   -->
31       <!-- to subscript text use <sub> tags        -->
32       <!-- to superscript text use <sup> tags      -->
33       <!-- these tags are nested inside other tags -->
34       <p><del>You may download 3.14 x 10<sup>2</sup>
35          characters worth of information from this site.</del>
36          Only <sub>one</sub> download per hour is permitted.</p>
37
38       <p>Note: <strong>&lt; &frac14;</strong> of the information 
39          presented here is updated daily.</p>
40
41    </body>
42 </html>

Fig. J.9 Inserting special characters into XHTML (part 2 of 2).



Appendix J Introduction to XHTML: Part 1 1417

In addition to special characters, this document introduces a horizontal rule, indicated
by the <hr /> tag in line 25. Most browsers render a horizontal rule as a horizontal line.
The <hr /> tag also inserts a line break above and below the horizontal line.

J.9 Unordered Lists
Up to this point, we have presented basic XHTML elements and attributes for linking to
resources, creating headers, using special characters and incorporating images. In this sec-
tion, we discuss how to organize information on a Web page using lists. In Appendix K,
Introduction to XHTML: Part 2, we introduce another feature for organizing information,
called a table. Figure J.9 displays text in an unordered list (i.e., a list that does not order its
items by letter or number). The unordered list element ul creates a list in which each item
begins with a bullet symbol (called a disc).

Each entry in an unordered list (element ul in line 20) is an li (list item) element
(lines 23, 25, 27 and 29). Most Web browsers render these elements with a line break and
a bullet symbol indented from the beginning of the new line.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. J.10: links2.html                -->
6 <!-- Unordered list containing hyperlinks. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Links</title>
11    </head>
12
13    <body>
14
15       <h1>Here are my favorite sites</h1>
16
17       <p><strong>Click on a name to go to that page.</strong></p>
18
19       <!-- create an unordered list -->
20       <ul>
21
22          <!-- add four list items -->
23          <li><a href = "http://www.deitel.com">Deitel</a></li>
24
25          <li><a href = "http://www.w3.org">W3C</a></li>
26
27          <li><a href = "http://www.yahoo.com">Yahoo!</a></li>
28
29          <li><a href = "http://www.cnn.com">CNN</a></li>
30
31        </ul>
32

Fig. J.9 Unordered lists in XHTML (part 1 of 2).



1418 Introduction to XHTML: Part 1 Appendix J

J.10 Nested and Ordered Lists
Lists may be nested to represent hierarchical relationships, as in an outline format.
Figure J.10 demonstrates nested lists and ordered lists (i.e., list that order their items by let-
ter or number).

33    </body>
34 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. J.11: list.html                -->
6 <!-- Advanced Lists: nested and ordered. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Lists</title>
11    </head>
12
13    <body>
14
15       <h1>The Best Features of the Internet</h1>
16
17       <!-- create an unordered list -->
18       <ul>
19          <li>You can meet new people from countries around 
20             the world.</li>
21
22          <li>
23             You have access to new media as it becomes public:
24
25             <!-- start nested list, use modified bullets -->
26             <!-- list ends with closing </ul> tag        -->

Fig. J.10 Nested and ordered lists in XHTML (part 1 of 3).

Fig. J.9 Unordered lists in XHTML (part 2 of 2).



Appendix J Introduction to XHTML: Part 1 1419

27             <ul>
28                <li>New games</li>
29                <li>
30                   New applications
31
32                   <!-- ordered nested list -->
33                   <ol type = "I">
34                      <li>For business</li>
35                      <li>For pleasure</li>
36                   </ol>
37
38                </li>
39
40                <li>Around the clock news</li>
41                <li>Search engines</li>
42                <li>Shopping</li>
43                <li>
44                   Programming
45
46                   <!-- another nested ordered list -->
47                   <ol type = "a">
48                      <li>XML</li>
49                      <li>Java</li>
50                      <li>XHTML</li>
51                      <li>Scripts</li>
52                      <li>New languages</li>
53                   </ol>
54
55                </li>
56
57             </ul> <!-- ends nested list started in line 27 -->
58
59          </li>
60
61          <li>Links</li>
62          <li>Keeping in touch with old friends</li>
63          <li>It is the technology of the future!</li>
64
65       </ul>   <!-- ends unordered list started in line 18 -->
66
67       <h1>My 3 Favorite <em>CEOs</em></h1>
68
69       <!-- ol elements without type attribute have -->
70       <!-- numeric sequence type (i.e., 1, 2, ...) -->
71       <ol>
72          <li>Lawrence J. Ellison</li>
73          <li>Steve Jobs</li>
74          <li>Michael Dell</li>
75       </ol>
76
77    </body>
78 </html>

Fig. J.10 Nested and ordered lists in XHTML (part 2 of 3).



1420 Introduction to XHTML: Part 1 Appendix J

The first ordered list begins in line 33. Attribute type specifies the sequence type (i.e.,
the set of numbers or letters used in the ordered list). In this case, setting type to "I" spec-
ifies upper-case roman numerals. Line 47 begins the second ordered list and sets attribute
type to "a", specifying lowercase letters for the list items. The last ordered list (lines 71–
75) does not use attribute type. By default, the list’s items are enumerated from one to three.

A Web browser indents each nested list to indicate a hierarchal relationship. By
default, the items in the outermost unordered list (line 18) are preceded by discs. List items
nested inside the unordered list of line 18 are preceded by circles. Although not demon-
strated in this example, subsequent nested list items are preceded by squares. Unordered
list items may be explicitly set to discs, circles or squares by setting the ul element’s type
attribute to "disc", "circle" or "square", respectively.

Note: XHTML is based on HTML (HyperText Markup Language)—a legacy tech-
nology of the World Wide Web Consortium (W3C). In HTML, it was common to specify
the document’s content, structure and formatting. Formatting might specify where the
browser places an element in a Web page or the fonts and colors used to display an element.
The so-called strict form of XHTML allows only a document’s content and structure to
appear in a valid XHTML document, and not that document’s formatting. Our first several
examples used only the strict form of XHTML. In fact, the purpose of lines 2–3 in each of
the examples before Fig. J.10 was to indicate to the browser that each document conformed
to the strict XHTML definition. This enables the browser to confirm that the document is

Fig. J.10 Nested and ordered lists in XHTML (part 3 of 3).



Appendix J Introduction to XHTML: Part 1 1421

valid. There are other XHTML document types as well. This particular example uses the
XHTML transitional document type. This document type exists to enable XHTML docu-
ment creators to use legacy HTML technologies in an XHTML document. In this example,
the type attribute of the ol element (lines 33 and 47) is a legacy HTML technology.
Changing lines 2–3 as shown in this example, enables us to demonstrate ordered lists with
different numbering formats. Normally, such formatting is specified with style sheets. Most
examples in this book adhere to strict HTML form. 

Testing and Debugging Tip J.2
Most current browsers still attempt to render XHTML documents, even if they are invalid. J.2

J.11 Internet and World Wide Web Resources
www.w3.org/TR/xhtml1
The XHTML 1.0 Recommendation contains XHTML 1.0 general information, compatibility issues,
document type definition information, definitions, terminology and much more.

www.xhtml.org
XHTML.org provides XHTML development news and links to other XHTML resources, which in-
clude books and articles.

www.w3schools.com/xhtml/default.asp
The XHTML School provides XHTML quizzes and references. This page also contains links to XHT-
ML syntax, validation and document type definitions.

validator.w3.org
This is the W3C XHTML validation service site.

hotwired.lycos.com/webmonkey/00/50/index2a.html
This site provides an article about XHTML. Key sections of the article overview XHTML and discuss
tags, attributes and anchors.

wdvl.com/Authoring/Languages/XML/XHTML
The Web Developers Virtual Library provides an introduction to XHTML. This site also contains ar-
ticles, examples and links to other technologies.

www.w3.org/TR/1999/xhtml-modularization-19990406/DTD/doc
The XHTML 1.0 DTD documentation site provides links to DTD documentation for the strict, tran-
sitional and frameset document type definitions.

SUMMARY
•  XHTML (Extensible Hypertext Markup Language) is a markup language for creating Web pages. 

• A key issue when using XHTML is the separation of the presentation of a document (i.e., the doc-
ument’s appearance when rendered by a browser) from the structure of the information in the doc-
ument.

• In XHTML, text is marked up with elements, delimited by tags that are names contained in pairs
of angle brackets. Some elements may contain additional markup called attributes, which provide
additional information about the element.

• A machine that runs specialized piece of software called a Web server stores XHTML documents. 

• XHTML documents that are syntactically correct are guaranteed to render properly. XHTML doc-
uments that contain syntax errors may not display properly.



1422 Introduction to XHTML: Part 1 Appendix J

• Validation services (e.g., validator.w3.org) ensure that an XHTML document is syntacti-
cally correct.

• Every XHTML document contains a start <html> tag and an end </html> tag.

• Comments in XHTML always begin with <!-- and end with -->. The browser ignores all text
inside a comment.

• Every XHTML document has a head element, which generally contains information, such as a title,
and a body element, which contains the page content. Information in the head element generally
is not rendered in the display window, but it may be made available to the user through other means.

• The title element names a Web page. The title usually appears in the colored bar (called the
title bar) at the top of the browser window and also appears as the text identifying a page when
users add your page to their list of Favorites or Bookmarks.

• The body of an XHTML document is the area in which the document’s content is placed. The con-
tent may include text and tags. 

• All text placed between the <p> and </p> tags forms one paragraph.

• XHTML provides six headers (h1 through h6) for specifying the relative importance of information.
Header element h1 is considered the most significant header and is rendered in a larger font than the
other five headers. Each successive header element (i.e., h2, h3, etc.) is rendered in a smaller font.

• Web browsers typically underline text hyperlinks and color them blue by default.

• The <strong> tag renders text in a bold font. 

• Users can insert links with the a (anchor) element. The most important attribute for the a element
is href, which specifies the resource (e.g., page, file or e-mail address) being linked. 

• Anchors can link to an e-mail address, using a mailto URL. When someone clicks this type of
anchored link, most browsers launch the default e-mail program (e.g., Outlook Express) to initiate
an e-mail message to the linked address.

• The img element’s src attribute specifies an image’s location. Optional attributes width and
height specify the image width and height, respectively. Images are measured in pixels (“picture
elements”), which represent dots of color on the screen. Every img element in a valid XHTML
document must have an alt attribute, which contains text that is displayed if the client cannot ren-
der the image. 

• The alt attribute makes Web pages more accessible to users with disabilities, especially those
with vision impairments.

• Some XHTML elements are empty elements, contain only attributes and do not mark up text.
Empty elements (e.g., img) must be terminated, either by using the forward slash character (/) or
by explicitly writing an end tag.

• The br element causes most browsers to render a line break. Any markup or text following a br
element is rendered on the next line.

• XHTML provides special characters or entity references (in the form &code;) for representing
characters that cannot be marked up. 

• Most browsers render a horizontal rule, indicated by the <hr /> tag, as a horizontal line. The hr
element also inserts a line break above and below the horizontal line.

• The unordered list element ul creates a list in which each item in the list begins with a bullet sym-
bol (called a disc). Each entry in an unordered list is an li (list item) element. Most Web browsers
render these elements with a line break and a bullet symbol at the beginning of the line.

• Lists may be nested to represent hierarchical data relationships.

• Attribute type specifies the sequence type (i.e., the set of numbers or letters used in the ordered list).



Appendix J Introduction to XHTML: Part 1 1423

TERMINOLOGY

SELF-REVIEW EXERCISES
J.1 State whether the following statements are true or false. If false, explain why.

a) Attribute type, when used with an ol element, specifies a sequence type.
b) An ordered list cannot be nested inside an unordered list.
c) XHTML is an acronym for XML HTML.
d) Element br represents a line break.
e) Hyperlinks are marked up with <link> tags.

J.2 Fill in the blanks in each of the following statements:
a) The  element inserts a horizontal rule.
b) A superscript is marked up with element  and a subscript is marked up with

element .
c) The least important header element is  and the most important header element

is .
d) Element  marks up an unordered list.
e) Element  marks up a paragraph.

<!--…--> (XHTML comment) <li> (list item) tag
a element (<a>…</a>) linked document
alt attribute mailto: URL
&amp; (& special character) markup language
anchor nested list
angle brackets (< >) ol (ordered list) element
attribute p (paragraph) element
body element special character
br (line break) element src attribute (img)
comments in XHTML <strong> tag
&copy; (© special character) sub element
disc subscript
element superscript
e-mail anchor syntax
empty tag tag
Extensible Hypertext Markup Language
   (XHTML)

text editor
title element

head element type attribute
header unordered list element (ul)
header elements (h1 through h6) valid document
height attribute Web page
hexadecimal code width attribute
<hr /> tag (horizontal rule) World Wide Web (WWW)
href attribute XHTML (Extensible Hypertext 

   Markup Language).htm (XHTML file-name extension)
<html> tag XHTML comment
.html (XHTML file-name extension) XHTML markup
hyperlink XHTML tag
image hyperlink XML declaration
img element xmlns attribute
level of nesting



1424 Introduction to XHTML: Part 1 Appendix J

ANSWERS TO SELF-REVIEW EXERCISES
J.1 a) True. b) False. An ordered list can be nested inside an unordered list. c) False. XHTML is
an acronym for Extensible HyperText Markup Language. d) True. e) False. A hyperlink is marked up
with <a> tags.

J.2 a) hr. b) sup, sub. c) h6, h1. d) ul. e) p.

EXERCISES
J.3 Use XHTML to create a document that contains instructions to mark up the following text:

Internet and World Wide Web How to Program: Second Edition
Welcome to the world of Internet programming. We have provided topical coverage for 
many Internet-related topics. 

Use h1 for the title (the first line of text), p for text (the second and third lines of text) and sub for
each word that begins with a capital letter. Insert a horizontal rule between the h1 element and the p
element. Open your new document in a Web browser to view the marked-up document.

J.4 Why is the following markup invalid?

<p>Here is some text...
<hr />
<p>And some more text...</p>

J.5 Why is the following markup invalid?

<p>Here is some text...<br>
And some more text...</p>

J.6 An image named deitel.gif is 200 pixels wide and 150 pixels high. Use the width and
height attributes of the <img> tag to (a) increase the size of the image by 100%; (b) increase the
size of the image by 50%; and (c) change the width-to-height ratio to 2:1, keeping the width attained
in part (a). Write separate XHTML statements for parts (a), (b) and (c).

J.7 Create a link to each of the following: (a) index.html, located in the files directory;
(b) index.html, located in the text subdirectory of the files directory; (c) index.html, locat-
ed in the other directory in your parent directory [Hint: .. signifies parent directory.]; (d) The United
States President’s e-mail address (president@whitehouse.gov); and (e) An FTP link to the file
named README in the pub directory of ftp.cdrom.com [Hint: Use ftp://.].

J.8 Create an XHTML document that marks up your resume.

J.9 Create an XHTML document containing three ordered lists: ice cream, soft serve and frozen
yogurt. Each ordered list should contain a nested, unordered list of your favorite flavors. Provide a
minimum of three flavors in each unordered list.

J.10 Create an XHTML document that uses an image as an e-mail link. Use attribute alt to pro-
vide a description of the image and link.

J.11 Create an XHTML document that contains an ordered list of your favorite Web sites. Your
page should contain the header “My Favorite Web Sites.”

J.12 Create an XHTML document that contains links to all the examples presented in this appen-
dix. [Hint: Place all the appendix examples in one directory].

J.13 Modify the XHTML document (picture.html) in Fig. J.7 by removing all end tags. Val-
idate this document, using the W3C validation service. What happens? Next remove the alt at-
tributes from the <img> tags and revalidate your document. What happens?



Appendix J Introduction to XHTML: Part 1 1425

J.14 Identify each of the following as either an element or an attribute:
a) html
b) width
c) href
d) br
e) h3
f) a
g) src

J.15 State which of the following statements are true and which are false. If false, explain why.
a) A valid XHTML document can contain uppercase letters in element names.
b) Tags need not be closed in a valid XHTML document.
c) XHTML documents can have the file extension .htm.
d) Valid XHTML documents can contain tags that overlap.
e) &less; is the special character for the less-than (<) character.
f) In a valid XHTML document, <li> can be nested inside either <ol> or <ul> tags.

J.16 Fill in the blanks for each of the following statements:
a) XHTML comments begin with <!-- and end with .
b) In XHTML, attribute values must be enclosed in .
c)  is the special character for an ampersand.
d) Element  can be used to bold text.



K
Introduction to XHTML: 

Part 2

Objectives
• To be able to create tables with rows and columns of 

data.
• To be able to control table formatting.
• To be able to create and use forms.
• To be able to create and use image maps to aid in 

Web-page navigation.
• To be able to make Web pages accessible to search 

engines through <meta> tags.
• To be able to use the frameset element to display 

multiple Web pages in a single browser window.
Yea, from the table of my memory
I’ll wipe away all trivial fond records.
William Shakespeare



Appendix K Introduction to XHTML: Part 2 1427

K.1 Introduction
In the previous appendix, we introduced XHTML. We built several complete Web pages
featuring text, hyperlinks, images, horizontal rules and line breaks. In this appendix, we dis-
cuss more substantial XHTML features, including presentation of information in tables and
incorporating forms for collecting information from a Web-page visitor. We also introduce
internal linking and image maps for enhancing Web-page navigation and frames for dis-
playing multiple documents in the browser. By the end of this appendix, you will be famil-
iar with the most commonly used XHTML features and will be able to create more complex
Web documents. In this appendix, we do not present any Visual Basic programming.

K.2 Basic XHTML Tables
This section presents the XHTML table—a frequently used feature that organizes data into
rows and columns. Our first example (Fig. K.1) uses a table with six rows and two columns
to display price information for fruit.

Outline

K.1 Introduction
K.2 Basic XHTML Tables
K.3 Intermediate XHTML Tables and Formatting
K.4 Basic XHTML Forms
K.5 More Complex XHTML Forms
K.6 Internal Linking
K.7 Creating and Using Image Maps

K.8 meta Elements

K.9 frameset Element

K.10 Nested framesets
K.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.1: table1.html   -->
6 <!-- Creating a basic table. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>A simple XHTML table</title>
11    </head>
12

Fig. K.1 XHTML table (part 1 of 3).



1428 Introduction to XHTML: Part 2 Appendix K

13    <body>
14
15       <!-- the <table> tag begins table -->
16       <table border = "1" width = "40%"
17          summary = "This table provides information about
18             the price of fruit">
19
20          <!-- <caption> tag summarizes table's   -->
21          <!-- contents to help visually impaired -->
22          <caption><strong>Price of Fruit</strong></caption>
23
24          <!-- <thead> is first section of table -->
25          <!-- it formats table header area      -->
26          <thead>
27             <tr> <!-- <tr> inserts one table row -->
28                <th>Fruit</th> <!-- insert heading cell -->
29                <th>Price</th>
30             </tr>
31          </thead>
32
33          <!-- all table content is enclosed within <tbody> -->
34          <tbody>
35             <tr>
36                <td>Apple</td> <!-- insert data cell -->
37                <td>$0.25</td>
38             </tr>
39
40             <tr>
41                <td>Orange</td>
42                <td>$0.50</td>
43             </tr>
44
45             <tr>
46                <td>Banana</td>
47                <td>$1.00</td>
48             </tr>
49
50             <tr>
51                <td>Pineapple</td>
52                <td>$2.00</td>
53             </tr>
54          </tbody>
55
56          <!-- <tfoot> is last section of table -->
57          <!-- it formats table footer          -->
58          <tfoot>
59             <tr>
60                <th>Total</th>
61                <th>$3.75</th>
62             </tr>
63          </tfoot>
64
65       </table>

Fig. K.1 XHTML table (part 2 of 3).



Appendix K Introduction to XHTML: Part 2 1429

Tables are defined with the table element. Lines 16–18 specify the start tag for a
table element that has several attributes. The border attribute specifies the table’s border
width in pixels. To create a table without a border, set border to "0". This example
assigns attribute width "40%", to set the table’s width to 40 percent of the browser’s
width. A developer can also set attribute width to a specified number of pixels.

Testing and Debugging Tip K.1
Try resizing the browser window to see how the width of the window affects the width of the
table. K.1

As its name implies, attribute summary (line 17) describes the table’s contents.
Speech devices use this attribute to make the table more accessible to users with visual
impairments. The caption element (line 22) describes the table’s content and helps text-
based browsers interpret the table data. Text inside the <caption> tag is rendered above
the table by most browsers. Attribute summary and element caption are two of many
XHTML features that make Web pages more accessible to users with disabilities. We dis-
cuss accessibility programming in detail in Chapter 24, Accessibility.

A table has three distinct sections—head, body and foot. The head section (or header
cell) is defined with a thead element (lines 26–31), which contains header information,
such as column names. Each tr element (lines 27–30) defines an individual table row. The
columns in the head section are defined with th elements. Most browsers center text for-
matted by th (table header column) elements and display it in bold. Table header elements
are nested inside table row elements.

The body section, or table body, contains the table’s primary data. The table body
(lines 34–54) is defined in a tbody element. Data cells contain individual pieces of data
and are defined with td (table data) elements. 

66
67    </body>
68 </html> 

Fig. K.1 XHTML table (part 3 of 3).

Table 
border

Table 
header

Table 
footer

Table 
body



1430 Introduction to XHTML: Part 2 Appendix K

The foot section (lines 58–63) is defined with a tfoot (table foot) element and repre-
sents a footer. Text commonly placed in the footer includes calculation results and footnotes.
Like other sections, the foot section can contain table rows and each row can contain columns.

K.3 Intermediate XHTML Tables and Formatting
In the previous section, we explored the structure of a basic table. In Fig. K.2, we enhance
our discussion of tables by introducing elements and attributes that allow the document au-
thor to build more complex tables. 

The table begins on line 17. Element colgroup (lines 22–27) groups and formats
columns. The col element (line 26) specifies two attributes in this example. The align
attribute determines the alignment of text in the column. The span attribute determines
how many columns the col element formats. In this case, we set align’s value to
"right" and span’s value to "1" to right-align text in the first column (the column con-
taining the picture of the camel in the sample screen capture).

Table cells are sized to fit the data they contain. Document authors can create larger
data cells by using attributes rowspan and colspan. The values assigned to these
attributes specify the number of rows or columns occupied by a cell. The th element at
lines 36–39 uses the attribute rowspan = "2" to allow the cell containing the picture of
the camel to use two vertically adjacent cells (thus the cell spans two rows). The th ele-
ment at lines 42–45 uses the attribute colspan = "4" to widen the header cell (containing
Camelid comparison and Approximate as of 9/2002) to span four cells.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.2: table2.html      -->
6 <!-- Intermediate table design. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Tables</title>
11    </head>
12
13    <body>
14
15       <h1>Table Example Page</h1>
16
17       <table border = "1">
18          <caption>Here is a more complex sample table.</caption>
19
20          <!-- <colgroup> and <col> tags are -->
21          <!-- used to format entire columns -->
22          <colgroup>
23
24             <!-- span attribute determines how  -->
25             <!-- many columns <col> tag affects -->

Fig. K.2 Complex XHTML table (part 1 of 3).



Appendix K Introduction to XHTML: Part 2 1431

26             <col align = "right" span = "1" />
27          </colgroup>
28
29          <thead>
30
31             <!-- rowspans and colspans merge specified    -->
32             <!-- number of cells vertically or horizontally   -->
33             <tr>
34
35              <!-- merge two rows -->
36                <th rowspan = "2">
37                   <img src = "camel.gif" width = "205"
38                      height = "167" alt = "Picture of a camel" />
39                </th>
40
41              <!-- merge four columns -->
42                <th colspan = "4" valign = "top">
43                   <h1>Camelid comparison</h1><br />
44                   <p>Approximate as of 9/2002</p>
45                </th>
46             </tr>
47
48             <tr valign = "bottom">
49                <th># of Humps</th>
50                <th>Indigenous region</th>
51                <th>Spits?</th>
52                <th>Produces Wool?</th>
53             </tr>
54
55          </thead>
56
57          <tbody>
58
59             <tr>
60                <th>Camels (bactrian)</th>
61                <td>2</td>
62                <td>Africa/Asia</td>
63                <td rowspan = "2">Llama</td>
64                <td rowspan = "2">Llama</td>
65             </tr>
66
67             <tr>
68                <th>Llamas</th>
69                <td>1</td>
70                <td>Andes Mountains</td>
71             </tr>
72
73          </tbody>
74
75       </table>
76
77    </body>
78 </html>

Fig. K.2 Complex XHTML table (part 2 of 3).



1432 Introduction to XHTML: Part 2 Appendix K

Common Programming Error K.1
When using colspan and rowspan to adjust the size of table data cells, keep in mind that
the modified cells will occupy more than one column or row; other rows or columns of the
table must compensate for the extra rows or columns spanned by individual cells. If you do
not, the formatting of your table will be distorted, and you could inadvertently create more
columns and rows than you originally intended. K.1

Line 42 introduces attribute valign, which aligns data vertically and may be
assigned one of four values—"top" aligns data with the top of the cell, "middle" ver-
tically centers data (the default for all data and header cells), "bottom" aligns data with
the bottom of the cell and "baseline" ignores the fonts used for the row data and sets
the bottom of all text in the row on a common baseline (i.e., the horizontal line to which
each character in a word is aligned).

K.4 Basic XHTML Forms
When browsing Web sites, users often need to provide information such as e-mail address-
es, search keywords and zip codes. XHTML provides a mechanism, called a form, for col-
lecting such user information. 

Data that users enter on a Web page normally is sent to a Web server that provides
access to a site’s resources (e.g., XHTML documents or images). These resources are
located either on the same machine as the Web server or on a machine that the Web server
can access through the network. When a browser requests a Web page or file that is located
on a server, the server processes the request and returns the requested resource. A request

Fig. K.2 Complex XHTML table (part 3 of 3).



Appendix K Introduction to XHTML: Part 2 1433

contains the name and path of the desired resource and the method of communication
(called a protocol). XHTML documents use the HyperText Transfer Protocol (HTTP). 

Figure K.3 sends the form data to the Web server, which passes the form data to a CGI
(Common Gateway Interface) script (i.e., a program) written in Perl, C or some other lan-
guage. The script processes the data received from the Web server and typically returns infor-
mation to the Web server. The Web server then sends the information in the form of an
XHTML document to the Web browser. [Note: This example demonstrates client-side func-
tionality. If the form is submitted (by clicking Submit Your Entries), an error occurs.]

Forms can contain visual and non-visual components. Visual components include
clickable buttons and other graphical user interface components with which users interact.
Non-visual components, called hidden inputs, store any data that the document author spec-
ifies, such as e-mail addresses and XHTML document file names that act as links. The form
begins on line 23 with the form element. Attribute method specifies how the form’s data
is sent to the Web server.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.3: form.html    -->
6 <!-- Form design example 1. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Forms</title>
11    </head>
12
13    <body>
14
15       <h1>Feedback Form</h1>
16
17       <p>Please fill out this form to help 
18          us improve our site.</p>
19
20       <!-- <form> tag begins form, gives -->
21       <!-- method of sending information -->
22       <!-- and location of form scripts  -->
23       <form method = "post" action = "/cgi-bin/formmail">
24
25          <p>
26
27             <!-- hidden inputs contain non-visual -->
28             <!-- information                      -->
29             <input type = "hidden" name = "recipient"
30                value = "deitel@deitel.com" />
31
32             <input type = "hidden" name = "subject"
33                value = "Feedback Form" />
34

Fig. K.3 Simple form with hidden fields and a textbox (part 1 of 2).



1434 Introduction to XHTML: Part 2 Appendix K

Using method = "post" appends form data to the browser request, which contains
the protocol (i.e., HTTP) and the requested resource’s URL. Scripts located on the Web
server’s computer (or on a computer accessible through the network) can access the form
data sent as part of the request. For example, a script may take the form information and
update an electronic mailing list. The other possible value, method = "get", appends the

35             <input type = "hidden" name = "redirect"
36                value = "main.html" />
37          </p>
38
39         <!-- <input type = "text"> inserts text box -->
40          <p>
41             <label>Name:
42                <input name = "name" type = "text" size = "25"
43                   maxlength = "30" />
44             </label>
45          </p> 
46
47          <p>
48
49          <!-- input types "submit" and "reset" -->
50          <!-- insert buttons for submitting    -->
51          <!-- and clearing form's contents     -->
52             <input type = "submit" value =
53                "Submit Your Entries" />
54
55             <input type = "reset" value =
56                "Clear Your Entries" />
57          </p>
58
59       </form>
60
61    </body>
62 </html>

Fig. K.3 Simple form with hidden fields and a textbox (part 2 of 2).



Appendix K Introduction to XHTML: Part 2 1435

form data directly to the end of the URL. For example, the URL /cgi-bin/formmail
might have the form information name = bob appended to it.

 The action attribute in the <form> tag specifies the URL of a script on the Web
server; in this case, it specifies a script that e-mails form data to an address. Most Internet
Service Providers (ISPs) have a script like this on their site; ask the Web-site system admin-
istrator how to set up an XHTML document to use the script correctly.

Lines 29–36 define three input elements that specify data to provide to the script that
processes the form (also called the form handler). These three input element have type
attribute "hidden", which allows the document author to send form data that is not
entered by a user to a script. 

The three hidden inputs are an e-mail address to which the data will be sent, the e-
mail’s subject line and a URL where the browser will be redirected after submitting the
form. Two other input attributes are name, which identifies the input element, and
value, which provides the value that will be sent (or posted) to the Web server.

Good Programming Practice K.1
Place hidden input elements at the beginning of a form, immediately after the opening
<form> tag. This placement allows document authors to locate hidden input elements
quickly. K.1

We introduce another type of input in lines 38–39. The "text" input inserts a
text box into the form. Users can type data in text boxes. The label element (lines 37–40)
provides users with information about the input element’s purpose.

Common Programming Error K.2
Forgetting to include a label element for each form element is a design error. Without
these labels, users cannot determine the purpose of individual form elements. K.2

The input element’s size attribute specifies the number of characters visible in the
text box. Optional attribute maxlength limits the number of characters input into the text
box. In this case, the user is not permitted to type more than 30 characters into the text box.

There are two types of input elements in lines 52–56. The "submit" input ele-
ment is a button. When the user presses a "submit" button, the browser sends the data in
the form to the Web server for processing. The value attribute sets the text displayed on
the button (the default value is Submit). The "reset" input element allows a user to
reset all form elements to their default values. The value attribute of the "reset"
input element sets the text displayed on the button (the default value is Reset).

K.5 More Complex XHTML Forms
In the previous section, we introduced basic forms. In this section, we introduce elements
and attributes for creating more complex forms. Figure K.4 contains a form that solicits
user feedback about a Web site.

The textarea element (lines 42–44) inserts a multiline text box, called a textarea,
into the form. The number of rows is specified with the rows attribute and the number of
columns (i.e., characters) is specified with the cols attribute. In this example, the tex-
tarea is four rows high and 36 characters wide. To display default text in the text area,
place the text between the <textarea> and </textarea> tags. Default text can be
specified in other input types, such as textboxes, by using the value attribute.



1436 Introduction to XHTML: Part 2 Appendix K

The "password" input in lines 52–53 inserts a password box with the specified
size. A password box allows users to enter sensitive information, such as credit card num-
bers and passwords, by “masking” the information input with asterisks. The actual value
input is sent to the Web server, not the asterisks that mask the input.

Lines 60–78 introduce the checkbox form element. Checkboxes enable users to select
from a set of options. When a user selects a checkbox, a check mark appears in the check
box. Otherwise, the checkbox remains empty. Each "checkbox" input creates a new
checkbox. Checkboxes can be used individually or in groups. Checkboxes that belong to a
group are assigned the same name (in this case, "thingsliked").

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.4: form2.html   -->
6 <!-- Form design example 2. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Forms</title>
11    </head>
12
13    <body>
14
15       <h1>Feedback Form</h1>
16
17       <p>Please fill out this form to help 
18          us improve our site.</p>
19
20       <form method = "post" action = "/cgi-bin/formmail">
21
22          <p>
23             <input type = "hidden" name = "recipient"
24                value = "deitel@deitel.com" />
25
26             <input type = "hidden" name = "subject"
27                value = "Feedback Form" />
28
29             <input type = "hidden" name = "redirect"
30                value = "main.html" />
31          </p>
32
33          <p>
34             <label>Name:
35                <input name = "name" type = "text" size = "25" />
36             </label>
37          </p>
38
39          <!-- <textarea> creates multiline textbox -->
40          <p>
41             <label>Comments:<br />

Fig. K.4 Form with textareas, password boxes and checkboxes (part 1 of 3).



Appendix K Introduction to XHTML: Part 2 1437

42                <textarea name = "comments" rows = "4"
43                   cols = "36">Enter your comments here.
44                </textarea>
45             </label></p>
46
47          <!-- <input type = "password"> inserts -->
48          <!-- textboxwhose display is masked    -->
49          <!-- with asterisk characters         -->
50          <p>
51             <label>E-mail Address: 
52                <input name = "email" type = "password"
53                   size = "25" />
54             </label>
55          </p>
56
57          <p>
58             <strong>Things you liked:</strong><br />
59
60             <label>Site design
61             <input name = "thingsliked" type = "checkbox"
62                value = "Design" /></label>
63        
64             <label>Links
65             <input name = "thingsliked" type = "checkbox"
66                value = "Links" /></label>
67
68             <label>Ease of use
69             <input name = "thingsliked" type = "checkbox"
70                value = "Ease" /></label>
71
72             <label>Images 
73             <input name = "thingsliked" type = "checkbox"
74                value = "Images" /></label>
75
76             <label>Source code
77             <input name = "thingsliked" type = "checkbox"
78                value = "Code" /></label>
79          </p>
80
81          <p>
82             <input type = "submit" value =
83                "Submit Your Entries" />
84
85             <input type = "reset" value =
86                "Clear Your Entries" />
87          </p>
88
89       </form>
90
91    </body>
92 </html>

Fig. K.4 Form with textareas, password boxes and checkboxes (part 2 of 3).



1438 Introduction to XHTML: Part 2 Appendix K

Common Programming Error K.3
When your form has several checkboxes with the same name, you must make sure that they
have different values, or the scripts running on the Web server will not be able to distin-
guish between them. K.3

We continue our discussion of forms by presenting a third example that introduces sev-
eral more form elements from which users can make selections (Fig. K.5). In this example,

Fig. K.4 Form with textareas, password boxes and checkboxes (part 3 of 3).



Appendix K Introduction to XHTML: Part 2 1439

we introduce two new input types. The first type is the radio button (lines 90–113), speci-
fied with type "radio". Radio buttons are similar to checkboxes, except that only one radio
button in a group of radio buttons may be selected at any time. All radio buttons in a group
have the same name attribute; they are distinguished by their different value attributes. The
attribute–value pair checked = "checked" (line 92) indicates which radio button, if any,
is selected initially. The checked attribute also applies to checkboxes. 

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.5: form3.html   -->
6 <!-- Form design example 3. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Forms</title>
11    </head>
12
13    <body>
14
15       <h1>Feedback Form</h1>
16
17       <p>Please fill out this form to help 
18          us improve our site.</p>
19
20       <form method = "post" action = "/cgi-bin/formmail">
21
22          <p>
23             <input type = "hidden" name = "recipient"
24                value = "deitel@deitel.com" />
25
26             <input type = "hidden" name = "subject"
27                value = "Feedback Form" />
28
29             <input type = "hidden" name = "redirect"
30                value = "main.html" />
31          </p>
32
33          <p>
34             <label>Name: 
35                <input name = "name" type = "text" size = "25" />
36             </label>
37          </p>
38
39          <p>
40             <label>Comments:<br />
41                <textarea name = "comments" rows = "4"
42                   cols = "36"></textarea>
43             </label>
44          </p>
45

Fig. K.5 Form including radio buttons and drop-down lists (part 1 of 4).



1440 Introduction to XHTML: Part 2 Appendix K

46          <p>
47             <label>E-mail Address: 
48                <input name = "email" type = "password"
49                   size = "25" />
50             </label>
51          </p>
52
53          <p>
54             <strong>Things you liked:</strong><br />
55
56             <label>Site design
57                <input name = "thingsliked" type = "checkbox"
58                   value = "Design" />
59             </label>
60        
61             <label>Links
62                <input name = "thingsliked" type = "checkbox"
63                   value = "Links" />
64             </label>
65
66             <label>Ease of use
67                <input name = "thingsliked" type = "checkbox" 
68                   value = "Ease" />
69             </label>
70
71             <label>Images 
72                <input name = "thingsliked" type = "checkbox"
73                   value = "Images" />
74             </label>
75
76             <label>Source code
77                <input name = "thingsliked" type = "checkbox"
78                   value = "Code" />
79             </label>
80
81          </p>
82
83          <!-- <input type = "radio" /> creates one radio   -->
84          <!-- button. The difference between radio buttons -->
85          <!-- and checkboxes is that only one radio button -->
86          <!-- in a group can be selected.                  -->
87          <p>
88             <strong>How did you get to our site?:</strong><br />
89
90             <label>Search engine
91                <input name = "howtosite" type = "radio"
92                  value = "search engine" checked = "checked" />
93             </label>
94       
95             <label>Links from another site
96                <input name = "howtosite" type = "radio"
97                   value = "link" />
98             </label>

Fig. K.5 Form including radio buttons and drop-down lists (part 2 of 4).



Appendix K Introduction to XHTML: Part 2 1441

99
100             <label>Deitel.com Web site
101                <input name = "howtosite" type = "radio"
102                   value = "deitel.com" />
103             </label>
104
105             <label>Reference in a book
106                <input name = "howtosite" type = "radio"
107                   value = "book" />
108             </label>
109
110             <label>Other
111                <input name = "howtosite" type = "radio"
112                  value = "other" />
113             </label>
114        
115          </p>
116
117          <p>
118             <label>Rate our site: 
119
120                 <!-- <select> tag presents a drop-down -->
121                 <!-- list with choices indicated by    -->
122                 <!-- <option> tags                     -->
123                <select name = "rating">
124                   <option selected = "selected">Amazing</option>
125                   <option>10</option>
126                   <option>9</option>
127                   <option>8</option>
128                   <option>7</option>
129                   <option>6</option>
130                   <option>5</option>
131                   <option>4</option>
132                   <option>3</option>
133                   <option>2</option>
134                   <option>1</option>
135                   <option>Awful</option>
136                </select>
137
138             </label>
139          </p>
140
141          <p>
142             <input type = "submit" value =
143                "Submit Your Entries" />
144
145             <input type = "reset" value = "Clear Your Entries" />
146          </p>
147
148       </form>
149
150    </body>
151 </html>

Fig. K.5 Form including radio buttons and drop-down lists (part 3 of 4).



1442 Introduction to XHTML: Part 2 Appendix K

Fig. K.5 Form including radio buttons and drop-down lists (part 4 of 4).



Appendix K Introduction to XHTML: Part 2 1443

Common Programming Error K.4
When using a group of radio buttons in a form, forgetting to set the name attributes to the
same name lets the user select all of the radio buttons at the same time, which is a logic er-
ror. K.4

The select element (lines 123–136) provides a drop-down list of items from which
the user can select an item. The name attribute identifies the drop-down list. The option
element (lines 124–135) adds items to the drop-down list. The option element’s
selected attribute specifies which item initially is displayed as the selected item in the
select element. 

K.6 Internal Linking
In Appendix J, we discussed how to hyperlink one Web page to another. Figure K.6 introduc-
es internal linking—a mechanism that enables the user to jump between locations in the same
document. Internal linking is useful for long documents that contain many sections. Clicking
an internal link enables users to find a section without scrolling through the entire document.  

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.6: links.html -->
6 <!-- Internal linking.    -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - List</title>
11    </head>
12
13    <body>
14
15       <!-- <a name = ".."></a> creates internal hyperlink -->
16     <p><a name = "features"></a></p>
17
18       <h1>The Best Features of the Internet</h1>
19
20       <!-- address of internal link is "#linkname" -->
21       <p>
22          <a href = "#ceos">Go to <em>Favorite CEOs</em></a>
23       </p>
24
25       <ul>
26          <li>You can meet people from countries 
27             around the world.</li>
28
29          <li>You have access to new media as it becomes public:
30
31             <ul>
32                <li>New games</li>

Fig. K.6 Using internal hyperlinks to make pages more easily navigable (part 1 of 3).



1444 Introduction to XHTML: Part 2 Appendix K

33                <li>New applications 

34
35                   <ul>
36                      <li>For Business</li>
37                      <li>For Pleasure</li>
38                   </ul>
39
40                </li>
41
42                <li>Around the clock news</li>
43                <li>Search Engines</li>
44                <li>Shopping</li>
45                <li>Programming
46
47                   <ul>
48                      <li>XHTML</li>
49                      <li>Java</li>
50                      <li>Dynamic HTML</li>
51                      <li>Scripts</li>
52                      <li>New languages</li>
53                   </ul>
54
55                </li>
56             </ul>
57
58          </li>
59
60          <li>Links</li>
61          <li>Keeping in touch with old friends</li>
62          <li>It is the technology of the future!</li>
63       </ul>
64
65       <!-- named anchor -->
66       <p><a name = "ceos"></a></p>
67
68       <h1>My 3 Favorite <em>CEOs</em></h1>
69
70       <p>
71
72          <!-- internal hyperlink to features -->
73          <a href = "#features">
74             Go to <em>Favorite Features</em>
75          </a>
76       </p>
77
78       <ol>
79          <li>Lawrence J. Ellison</li>
80          <li>Steve Jobs</li>
81          <li>Michael Dell</li>
82       </ol>
83
84    </body>

Fig. K.6 Using internal hyperlinks to make pages more easily navigable (part 2 of 3).



Appendix K Introduction to XHTML: Part 2 1445

Line 16 contains a named anchor (called features) for an internal hyperlink. To
link to this type of anchor inside the same Web page, the href attribute of another anchor
element includes the named anchor preceded with a pound sign (as in #features). Lines
73–74 contain a hyperlink with the anchor features as its target. Selecting this hyperlink
in a Web browser scrolls the browser window to the features anchor at line 16. 

Look-and-Feel Observation K.1
Internal hyperlinks are useful in XHTML documents that contain large amounts of informa-
tion. Internal links to various sections on the page make it easier for users to navigate the
page: They do not have to scroll to find a specific section. K.1

Although not demonstrated in this example, a hyperlink can specify an internal link in
another document by specifying the document name followed by a pound sign and the
named anchor as in:

href = "page.html#name"

85 </html>

Fig. K.6 Using internal hyperlinks to make pages more easily navigable (part 3 of 3).



1446 Introduction to XHTML: Part 2 Appendix K

For example, to link to a named anchor called booklist in books.html, href is as-
signed "books.html#booklist".

K.7 Creating and Using Image Maps
In Appendix J, we demonstrated how images can be used as hyperlinks to link to other re-
sources on the Internet. In this section, we introduce another technique for image linking
called the image map, which designates certain areas of an image (called hotspots) as links.
Figure K.7 introduces image maps and hotspots. 

1 <?xml version = "1.0" ?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.7: picture.html         -->
6 <!-- Creating and using image maps. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Image Map
11       </title>
12    </head>
13
14    <body>
15
16       <p>
17
18          <!-- <map> tag defines image map -->
19          <map id = "picture">
20
21             <!-- shape = "rect" indicates rectangular  --> 
22             <!-- area, with coordinates for upper-left -->
23             <!-- and lower-right corners               -->
24             <area href = "form.html" shape = "rect"
25                coords = "2,123,54,143"
26                alt = "Go to the feedback form" />
27
28             <area href = "contact.html" shape = "rect"
29                coords = "126,122,198,143"
30                alt = "Go to the contact page" />
31
32             <area href = "main.html" shape = "rect"
33                coords = "3,7,61,25" alt = "Go to the homepage" />
34
35             <area href = "links.html" shape = "rect"
36                coords = "168,5,197,25"
37                alt = "Go to the links page" />
38
39          <!-- value "poly" creates hotspot in shape -->
40          <!-- of polygon, defined by coords         -->

Fig. K.7 Image with links anchored to an image map (part 1 of 2).



Appendix K Introduction to XHTML: Part 2 1447

Lines 19–50 define an image map via a map element. Attribute id (line 19) identifies
the image map. If id is omitted, the map cannot be referenced by an image. Shortly, we
discuss how to reference an image map. Hotspots are defined with area elements (as
shown on lines 24–26). Attribute href (line 24) specifies the link’s target (i.e., the
resource to which to link). Attributes shape (line 24) and coords (line 25) specify the
hotspot’s shape and coordinates, respectively. Attribute alt (line 26) provides alternative
text for the link.

Common Programming Error K.5
Not specifying an id attribute for a map element prevents an img element from using the
map’s area elements to define hotspots. K.5

The markup on lines 24–26 creates a rectangular hotspot (shape = "rect") for the
coordinates specified in the coords attribute. A coordinate pair consists of two numbers

41             <area shape = "poly" alt = "E-mail the Deitels"
42                coords = "162,25,154,39,158,54,169,51,183,39,161,26"
43                href = "mailto:deitel@deitel.com" />
44

45           <!-- shape = "circle" indicates a circular -->
46           <!-- area with the given center and radius -->
47             <area href = "mailto:deitel@deitel.com"
48                shape = "circle" coords = "100,36,33"
49                alt = "E-mail the Deitels" />
50          </map>
51
52        <!-- <img src =... usemap = "#id"> indicates that -->
53      <!-- specified image map is used with this image  -->
54          <img src = "deitel.gif" width = "200" height = "144"
55             alt = "Deitel logo" usemap = "#picture" />
56       </p>
57
58    </body>
59 </html>

Fig. K.7 Image with links anchored to an image map (part 2 of 2).



1448 Introduction to XHTML: Part 2 Appendix K

representing the location of a point on the x-axis and the y-axis, respectively. The x-axis
extends horizontally and the y-axis extends vertically from the upper-left corner of the
image. Every point on an image has a unique x–y coordinate. For rectangular hotspots, the
required coordinates are those of the upper-left and lower-right corners of the rectangle. In
this case, the upper-left corner of the rectangle is located at 2 on the x-axis and 123 on the
y-axis, annotated as (2, 123). The lower-right corner of the rectangle is at (54, 143). Coor-
dinates are measured in pixels.

Common Programming Error K.6
Overlapping coordinates of an image map cause the browser to render the first hotspot it en-
counters for the area. K.6

The map area (lines 41–43) assigns the shape attribute "poly" to create a hotspot
in the shape of a polygon, using the coordinates in attribute coords. These coordinates
represent each vertex, or corner, of the polygon. The browser connects these points with
lines to form the hotspot’s area.

The map area (lines 47–49) assigns the shape attribute "circle" to create a cir-
cular hotspot. In this case, the coords attribute specifies the circle’s center coordinates
and the circle’s radius, in pixels. 

To use an image map with an img element, the img element’s usemap attribute is
assigned the id of a map. Lines 54–55 reference the image map named "picture". The
image map is located within the same document, so internal linking is used.

K.8 meta Elements
People use search engines to find useful Web sites. Search engines usually catalog sites by
following links from page to page and saving identification and classification information
for each page. One way that search engines catalog pages is by reading the content in each
page’s meta elements, which specify information about a document.

Two important attributes of the meta element are name, which identifies the type of
meta element and content, which provides the information search engines use to cat-
alog pages. Figure K.8 introduces the meta element.

Lines 14–16 demonstrate a "keywords" meta element. The content attribute of
such a meta element provides search engines with a list of words that describe a page.
These words are compared with words in search requests. Thus, including meta elements
and their content information can draw more viewers to your site. 

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.8: main.html -->
6 <!-- Using meta tags.    -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Welcome</title>
11

Fig. K.8 Using meta to provide keywords and a description (part 1 of 2).



Appendix K Introduction to XHTML: Part 2 1449

Lines 18–21 demonstrate a "description" meta element. The content
attribute of such a meta element provides a three- to four-line description of a site, written
in sentence form. Search engines also use this description to catalog your site and some-
times display this information as part of the search results.

Software Engineering Observation K.1
meta elements are not visible to users and must be placed inside the head section of your
XHTML document. If meta elements are not placed in this section, they will not be read by
search engines. K.1

K.9 frameset Element
All of the Web pages we have presented in this book have the ability to link to other pages,
but can display only one page at a time. Figure K.9 uses frames, which allow the browser
to display more than one XHTML document simultaneously, to display the documents in
Fig. K.8 and Fig. K.10.

12       <!-- <meta> tags provide search engines with -->
13       <!-- information used to catalog site        -->
14       <meta name = "keywords" content = "Web page, design, 
15          XHTML, tutorial, personal, help, index, form, 
16          contact, feedback, list, links, frame, deitel" />

17
18       <meta name = "description" content = "This Web site will
19          help you learn the basics of XHTML and Web page design 
20          through the use of interactive examples and 
21          instruction." />
22
23    </head>
24
25    <body>
26
27       <h1>Welcome to Our Web Site!</h1>
28
29       <p>
30          We have designed this site to teach about the wonders 
31          of <strong><em>XHTML</em></strong>. <em>XHTML</em> is   
32          better equipped than <em>HTML</em> to represent complex 
33          data on the Internet. <em>XHTML</em> takes advantage of 
34          XML’s strict syntax to ensure well-formedness. Soon you 
35          will know about many of the great new features of 
36          <em>XHTML.</em>
37       </p>
38
39      <p>Have Fun With the Site!</p>
40
41    </body>
42 </html>

Fig. K.8 Using meta to provide keywords and a description (part 2 of 2).



1450 Introduction to XHTML: Part 2 Appendix K

Most of our prior examples adhered to the strict XHTML document type. This partic-
ular example uses the frameset document type—a special XHTML document type specif-
ically for framesets. This new document type is specified in lines 2–3 and is required for
documents that define framesets.

A document that defines a frameset normally consists of an html element that con-
tains a head element and a frameset element. The <frameset> tag (line 24) informs
the browser that the page contains frames. Attribute cols specifies the frameset’s column
layout. The value of cols gives the width of each frame, either in pixels or as a percentage
of the browser width. In this case, the attribute cols = "110,*" informs the browser that
there are two vertical frames. The first frame extends 110 pixels from the left edge of the
browser window, and the second frame fills the remainder of the browser width (as indi-
cated by the asterisk). Similarly, frameset attribute rows can be used to specify the
number of rows and the size of each row in a frameset. 

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
4
5 <!-- Fig. K.9: index.html -->
6 <!-- XHTML frames I.      -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Main</title>
11
12       <meta name = "keywords" content = "Webpage, design, 
13          XHTML, tutorial, personal, help, index, form, 
14          contact, feedback, list, links, frame, deitel" />
15
16       <meta name = "description" content = "This Web site will 
17          help you learn the basics of XHTML and Web page design 
18          through the use of interactive examples 
19          and instruction." />
20
21    </head>
22
23    <!-- <frameset> tag sets frame dimensions -->
24    <frameset cols = "110,*">
25
26       <!-- frame elements specify which pages -->
27       <!-- are loaded into given frame        -->
28       <frame name = "leftframe" src = "nav.html" />
29       <frame name = "main" src = "main.html" />
30
31     <noframes>
32          <p>This page uses frames, but your browser does not 
33          support them.</p>

Fig. K.9 Web document containing two frames—navigation and content (part 1 
of 3).



Appendix K Introduction to XHTML: Part 2 1451

34
35          <p>Please, <a href = "nav.html">follow this link to  
36          browse our site without frames</a>.</p>
37       </noframes>
38
39    </frameset>
40 </html>

Fig. K.9 Web document containing two frames—navigation and content (part 2 
of 3).



1452 Introduction to XHTML: Part 2 Appendix K

Fig. K.9 Web document containing two frames—navigation and content (part 3 
of 3).

Left frame 
leftframe

Right frame 
main



Appendix K Introduction to XHTML: Part 2 1453

The documents that will be loaded into the frameset are specified with frame ele-
ments (lines 28–29 in this example). Attribute src specifies the URL of the page to display
in the frame. Each frame has name and src attributes. The first frame (which covers 110
pixels on the left side of the frameset) is named leftframe and displays the page
nav.html (Fig. K.10). The second frame is named main and displays the page
main.html.

Attribute name identifies a frame, enabling hyperlinks in a frameset to specify the
target frame in which a linked document should display when the user clicks the link.
For example,

 <a href = "links.html" target = "main">

loads links.html in the frame whose name is "main".
Not all browsers support frames. XHTML provides the noframes element (lines 31–

37) to enable XHTML document designers to specify alternative content for browsers that
do not support frames.

Portability Tip K.1
Some browsers do not support frames. Use the noframes element inside a frameset to
direct users to a nonframed version of your site. K.1

Fig. K.10 is the Web page displayed in the left frame of Fig. K.9. This XHTML docu-
ment provides the navigation buttons that, when clicked, determine which document is dis-
played in the right frame. 

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. K.10: nav.html           -->
6 <!-- Using images as link anchors. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9

10    <head>
11       <title>Visual Basic .NET How to Program - Navigation Bar
12       </title>
13    </head>
14
15    <body>
16
17       <p>
18          <a href = "links.html" target = "main">
19             <img src = "buttons/links.jpg" width = "65"
20                height = "50" alt = "Links Page" />
21          </a><br />
22
23          <a href = "list.html" target = "main">
24             <img src = "buttons/list.jpg" width = "65"
25                height = "50" alt = "List Example Page" />
26          </a><br />

Fig. K.10 XHTML document displayed in the left frame of Fig. K.5 (part 1 of 2).



1454 Introduction to XHTML: Part 2 Appendix K

Line 29 (Fig. K.9) displays the XHTML page in Fig. K.10. Anchor attribute target
(line 18 in Fig. K.10) specifies that the linked documents are loaded in frame main (line
30 in Fig. K.9). A target can be set to a number of preset values: "_blank" loads the
page into a new browser window, "_self" loads the page into the frame in which the
anchor element appears and "_top" loads the page into the full browser window (i.e.,
removes the frameset).

K.10  Nested framesets
You can use the frameset element to create more complex layouts in a Web page by
nesting framesets, as in Fig. K.11. The nested frameset in this example displays the
XHTML documents in Fig. K.7, Fig. K.8 and Fig. K.10. 

The outer frameset element (lines 23–41) defines two columns. The left frame extends
over the first 110 pixels from the left edge of the browser, and the right frame occupies the
rest of the window’s width. The frame element on line 24 specifies that the document
nav.html (Fig. K.10) will be displayed in the left column.

Lines 28–31 define a nested frameset element for the second column of the outer
frameset. This frameset defines two rows. The first row extends 175 pixels from the top
of the browser window, and the second occupies the remainder of the browser window’s
height, as is indicated by rows = "175,*". The frame element at line 29 specifies that
the first row of the nested frameset will display picture.html (Fig. K.7). The
frame element at line 30 specifies that the second row of the nested frameset will dis-
play main.html (Fig. K.9). 

27
28          <a href = "contact.html" target = "main">
29             <img src = "buttons/contact.jpg" width = "65"
30                height = "50" alt = "Contact Page" />
31          </a><br />
32
33          <a href = "header.html" target = "main">
34             <img src = "buttons/header.jpg" width = "65"
35                height = "50" alt = "Header Page" />
36          </a><br />
37
38          <a href = "table1.html" target = "main">
39             <img src = "buttons/table.jpg" width = "65"
40                height = "50" alt = "Table Page" />
41          </a><br />
42
43          <a href = "form.html" target = "main">
44             <img src = "buttons/form.jpg" width = "65"
45                height = "50" alt = "Feedback Form" />
46          </a><br />
47       </p>
48
49    </body>
50 </html>

Fig. K.10 XHTML document displayed in the left frame of Fig. K.5 (part 2 of 2).



Appendix K Introduction to XHTML: Part 2 1455

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
4
5 <!-- Fig. K.11: index2.html -->
6 <!-- XHTML frames II.       -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9    <head>

10       <title>Visual Basic .NET How to Program - Main</title>
11
12       <meta name = "keywords" content = "Webpage, design, 
13          XHTML, tutorial, personal, help, index, form, 
14          contact, feedback, list, links, frame, deitel" />
15
16       <meta name = "description" content = "This Web site will 
17          help you learn the basics of XHTML and Web page design 
18          through the use of interactive examples 
19          and instruction." />
20
21    </head>
22
23    <frameset cols = "110,*">
24       <frame name = "leftframe" src = "nav.html" />
25
26       <!-- nested framesets are used to change -->
27       <!-- formatting and layout of frameset  -->
28       <frameset rows = "175,*">
29          <frame name = "picture" src = "picture.html" />
30          <frame name = "main" src = "main.html" />
31       </frameset>
32
33       <noframes>
34          <p>This page uses frames, but your browser does not 
35          support them.</p>
36
37          <p>Please, <a href = "nav.html">follow this link to 
38          browse our site without frames</a>.</p>
39       </noframes>
40
41    </frameset>
42 </html>

Fig. K.11 Framed Web site with a nested frameset (part 1 of 2).



1456 Introduction to XHTML: Part 2 Appendix K

Testing and Debugging Tip K.2
When using nested frameset elements, indent every level of <frame> tag. This practice
makes the page clearer and easier to debug. K.2

In this appendix, we presented XHTML for marking up information in tables, creating
forms for gathering user input, linking to sections within the same document, using
<meta> tags and creating frames. 

K.11 Internet and World Wide Web Resources
courses.e-survey.net.au/xhtml/index.html
The Web Page Design—XHTML site provides descriptions and examples for various XHTML fea-
tures, such as links, tables, frames and forms. Users can e-mail questions or comments to the Web
Page Design support staff.

www.vbxml.com/xhtml/articles/xhtml_tables
The VBXML.com Web site contains a tutorial on creating XHTML tables.

www.webreference.com/xml/reference/xhtml.html
This Web page contains a list of the frequently used XHTML tags, such as header tags, table tags,
frame tags and form tags. It also provides a description of each tag.

Fig. K.11 Framed Web site with a nested frameset (part 2 of 2).

Left frame 
leftframe

Right frame 
contains 
these two 
nested 
frames



Appendix K Introduction to XHTML: Part 2 1457

SUMMARY
• XHTML tables mark up tabular data and are one of the most frequently used features in XHTML.

• The table element defines an XHTML table. Attribute border specifies the table’s border
width, in pixels. Tables without borders set this attribute to "0".

• Element summary summarizes the table’s contents and is used by speech devices to make the ta-
ble more accessible to users with visual impairments.

• Element caption describe’s the table’s content. The text inside the <caption> tag is rendered
above the table in most browsers.

• A table can be split into three distinct sections: head (thead), body (tbody) and foot (tfoot).
The head section contains such information as table titles and column headers. The table body con-
tains the primary table data. The table foot contains secondary information, such as footnotes.

• Element tr, or table row, defines individual table rows. Element th defines a header cell. Text in
th elements usually is centered and displayed in bold by most browsers. This element can be
present in any section of the table.

• Data within a row are defined with td, or table data, elements. 

• Element colgroup groups and formats columns. Each col element can format any number of
columns (specified with the span attribute).

• The document author has the ability to merge data cells with the rowspan and colspan at-
tributes. The values assigned to these attributes specify the number of rows or columns occupied
by the cell. These attributes can be placed inside any data-cell tag.

• XHTML provides forms for collecting information from users. Forms contain visual components,
such as buttons that users click. Forms may also contain nonvisual components, called hidden in-
puts, which are used to store any data, such as e-mail addresses and XHTML document file names
used for linking.

• A form begins with the form element. Attribute method specifies how the form’s data is sent to
the Web server.

• The "text" input inserts a textbox into the form. Textboxes allow the user to input data.

• The input element’s size attribute specifies the number of characters visible in the input el-
ement. Optional attribute maxlength limits the number of characters input into a textbox.

• The "submit" input submits the data entered in the form to the Web server for processing. Most
Web browsers create a button that submits the form data when clicked. The "reset" input al-
lows a user to reset all form elements to their default values.

• The textarea element inserts a multiline textbox, called a textarea, into a form. The number of
rows in the textarea is specified with the rows attribute, the number of columns (i.e., characters)
with the cols attribute.

• The "password" input inserts a password box into a form. A password box allows users to enter
sensitive information, such as credit card numbers and passwords, by “masking” the information
input with another character. Asterisks are the masking character used for most password boxes.
The actual value input is sent to the Web server, not the asterisks that mask the input.

• The checkbox input allows the user to make a selection. When the checkbox is selected, a check
mark appears in the checkbox. Otherwise, the checkbox is empty. Checkboxes can be used indi-
vidually and in groups. Checkboxes that are part of the same group have the same name.

• A radio button is similar in function and use to a checkbox, except that only one radio button in a
group can be selected at any time. All radio buttons in a group have the same name attribute value,
but different attribute values.



1458 Introduction to XHTML: Part 2 Appendix K

• The select input provides a drop-down list of items. The name attribute identifies the drop-down
list. The option element adds items to the drop-down list. The selected attribute, like the
checked attribute for radio buttons and checkboxes, specifies which list item is displayed initially.

• Image maps designate certain sections of an image as links. These links are more properly called
hotspots.

• Image maps are defined with map elements. Attribute id identifies the image map. Hotspots are de-
fined with the area element. Attribute href specifies the link’s target. Attributes shape and co-
ords specify the hotspot’s shape and coordinates, respectively, and alt provides alternative text. 

• One way that search engines catalog pages is by reading the meta elements’s contents. Two im-
portant attributes of the meta element are name, which identifies the type of meta element, and
content, which provides information a search engine uses to catalog a page.

• Frames allow the browser to display more than one XHTML document simultaneously. The
frameset element informs the browser that the page contains frames. Not all browsers support
frames. XHTML provides the noframes element to specify alternative content for browsers that
do not support frames.

• You can use the frameset element to create more complex layouts in a Web page by nesting
framesets.

TERMINOLOGY
action attribute name attribute
area element navigational frame
border attribute nested frameset element
browser request nested tag
<caption> tag noframes element
checkbox password box
checked attribute "radio" (attribute value)
col element rows attribute (textarea)
colgroup element rowspan attribute (tr)
cols attribute selected attribute
colspan attribute size attribute (input)
coords element table element
form target = "_blank"
form element target = "_self"
frame element target = "_top"
frameset element tbody element
header cell td element
hidden input element textarea
hotspot textarea element
href attribute tfoot (table foot) element
image map <thead>...</thead>
img element tr (table row) element
input element type attribute
internal hyperlink usemap attribute
internal linking valign attribute (th)
map element value attribute
maxlength attribute Web server
meta element XHTML form
method attribute x–y coordinates



Appendix K Introduction to XHTML: Part 2 1459

SELF-REVIEW EXERCISES
K.1 State whether the following statements are true or false. If false, explain why.

a) The width of all data cells in a table must be the same.
b) Framesets can be nested.
c) You are limited to a maximum of 100 internal links per page.
d) All browsers can render framesets.

K.2 Fill in the blanks in each of the following statements:
a) Assigning attribute type  in an input element inserts a button that, when

clicked, clears the contents of the form.
b) The layout of a frameset is set by including the  attribute or the

 attribute inside the <frameset> tag.
c) The  element marks up a table row.
d)   are usually used as the masking characters in a password box.
e) The common shapes used in image maps are ,  and .

K.3 Write XHTML markup to accomplish each of the following tasks:
a) Insert a framed Web page, with the first frame extending 300 pixels across the page from

the left side.
b) Insert a table with a border of 8.
c) Indicate alternative content to a frameset.
d) Insert an image map in a page, using deitel.gif as an image and map with

name = "hello" as the image map, and set the alt text to “hello”.

ANSWERS TO SELF-REVIEW EXERCISES
K.1 a) False. You can specify the width of any column, either in pixels or as a percentage of the
table width. b) True. c) False. You can have an unlimited number of internal links. d) False. Some
browsers are unable to render a frameset and must therefore rely on the information that you in-
clude inside the <noframes>…</noframes> tags.

K.2 a) "reset". b) cols, rows. c) tr. d) asterisks. e) poly (polygons), circles, rect
(rectangles). 

K.3 a) <frameset cols = "300,*">…</frameset>
b) <table border = "8">…</table>
c) <noframes>…</noframes>
d) <img src = "deitel.gif" alt = "hello" usemap = "#hello" />

EXERCISES
K.4 Categorize each of the following as an element or an attribute:

a) width
b) td
c) th
d) frame
e) name
f) select
g) type

K.5 What will the frameset produced by the following code look like? Assume that the pages
referenced are blank with white backgrounds and that the dimensions of the screen are 800 by 600.
Sketch the layout, approximating the dimensions.



1460 Introduction to XHTML: Part 2 Appendix K

<frameset rows = "20%,*">
   <frame src = "hello.html" name = "hello" />
      <frameset cols = "150,*">
         <frame src = "nav.html" name = "nav" />
         <frame src = "deitel.html" name = "deitel" />
      </frameset>
</frameset>

K.6 Write the XHTML markup to create a frame with a table of contents on the left side of the
window, and have each entry in the table of contents use internal linking to scroll down the document
frame to the appropriate subsection.

K.7 Create XHTML markup that produces the table shown in Fig. K.12. Use <em> and
<strong> tags as necessary. The image (camel.gif) is included in the Appendix K examples
directory on the CD-ROM that accompanies this book.

K.8 Write an XHTML document that produces the table shown in Fig. K.13.

K.9 A local university has asked you to create an XHTML document that allows potential stu-
dents to provide feedback about their campus visit. Your XHTML document should contain a form
with textboxes for a name, address and e-mail. Provide checkboxes that allow prospective students to
indicate what they liked most about the campus. These chec boxes should include students, location,
campus, atmosphere, dorm rooms and sports. Also, provide radio buttons that ask the prospective stu-
dents how they became interested in the university. Options should include friends, television, Inter-
net and other. In addition, provide a textarea for additional comments, a submit button and a reset
button.

K.10 Create an XHTML document titled “How to Get Good Grades.” Use <meta> tags to include
a series of keywords that describe your document.

K.11 Create an XHTML document that displays a tic-tac-toe table with player X winning. Use
<h2> to mark up both Xs and Os. Center the letters in each cell horizontally. Title the game, using
an <h1> tag. This title should span all three columns. Set the table border to 1.

Fig. K.12 XHTML table for Exercise K.7.



Appendix K Introduction to XHTML: Part 2 1461

Fig. K.13 XHTML table for Exercise K.8.



L
HTML/XHTML

Special Characters

The table of Fig. L.1 shows many commonly used HTML/XHTML special characters—
called character entity references by the World Wide Web Consortium. For a complete list
of character entity references, see the site 

www.w3.org/TR/REC-html40/sgml/entities.html

Character HTML/XHTML encoding Character HTML/XHTML encoding

non-breaking space &#160; ê &#234;

§ &#167; ì &#236;

© &#169; í &#237;

® &#174; î &#238;

¼ &#188; ñ &#241;

½ &#189; ò &#242;

¾ &#190; ó &#243;

à &#224; ô &#244;

á &#225; õ &#245;

â &#226; ÷ &#247;

ã &#227; ù &#249;

å &#229; ú &#250;

ç &#231; û &#251;

è &#232; • &#8226;

é &#233; ™ &#8482;

Fig. L.1 XHTML special characters.



M
HTML/XHTML Colors

Colors may be specified by using a standard name (such as aqua) or a hexadecimal RGB
value (such as #00FFFF for aqua). Of the six hexadecimal digits in an RGB value, the
first two represent the amount of red in the color, the middle two represent the amount of
green in the color, and the last two represent the amount of blue in the color. For example,
black is the absence of color and is defined by #000000, whereas white is the maxi-
mum amount of red, green and blue and is defined by #FFFFFF. Pure red is #FF0000,
pure green (which is called lime) is #00FF00 and pure blue is #0000FF. Note that
green in the standard is defined as #008000. Figure M.1 contains the HTML/XHTML
standard color set.Figure M.2 contains the HTML/XHTML extended color set. 

Color name Value Color name Value

aqua #00FFFF navy #000080

black #000000 olive #808000

blue #0000FF purple #800080

fuchsia #FF00FF red #FF0000

gray #808080 silver #C0C0C0

green #008000 teal #008080

lime #00FF00 yellow #FFFF00

maroon #800000 white #FFFFFF

Fig. M.1 HTML/XHTML standard colors and hexadecimal RGB values.



1464 HTML/XHTML Colors Appendix M

Color name Value Color name Value

aliceblue #F0F8FF deeppink #FF1493

antiquewhite #FAEBD7 deepskyblue #00BFFF

aquamarine #7FFFD4 dimgray #696969

azure #F0FFFF dodgerblue #1E90FF

beige #F5F5DC firebrick #B22222

bisque #FFE4C4 floralwhite #FFFAF0

blanchedalmond #FFEBCD forestgreen #228B22

blueviolet #8A2BE2 gainsboro #DCDCDC

brown #A52A2A ghostwhite #F8F8FF

burlywood #DEB887 gold #FFD700

cadetblue #5F9EA0 goldenrod #DAA520

chartreuse #7FFF00 greenyellow #ADFF2F

chocolate #D2691E honeydew #F0FFF0

coral #FF7F50 hotpink #FF69B4

cornflowerblue #6495ED indianred #CD5C5C

cornsilk #FFF8DC indigo #4B0082

crimson #DC1436 ivory #FFFFF0

cyan #00FFFF khaki #F0E68C

darkblue #00008B lavender #E6E6FA

darkcyan #008B8B lavenderblush #FFF0F5

darkgoldenrod #B8860B lawngreen #7CFC00

darkgray #A9A9A9 lemonchiffon #FFFACD

darkgreen #006400 lightblue #ADD8E6

darkkhaki #BDB76B lightcoral #F08080

darkmagenta #8B008B lightcyan #E0FFFF

darkolivegreen #556B2F lightgoldenrodyellow #FAFAD2

darkorange #FF8C00 lightgreen #90EE90

darkorchid #9932CC lightgrey #D3D3D3

darkred #8B0000 lightpink #FFB6C1

darksalmon #E9967A lightsalmon #FFA07A

darkseagreen #8FBC8F lightseagreen #20B2AA

darkslateblue #483D8B lightskyblue #87CEFA

darkslategray #2F4F4F lightslategray #778899

darkturquoise #00CED1 lightsteelblue #B0C4DE

darkviolet #9400D3 lightyellow #FFFFE0

Fig. M.2 XHTML extended colors and hexadecimal RGB values (part 1 of 2).



Appendix M HTML/XHTML Colors 1465

limegreen #32CD32 mediumblue #0000CD

mediumpurple #9370DB mediumorchid #BA55D3

mediumseagreen #3CB371 plum #DDA0DD

mediumslateblue #7B68EE powderblue #B0E0E6

mediumspringgreen #00FA9A rosybrown #BC8F8F

mediumturquoise #48D1CC royalblue #4169E1

mediumvioletred #C71585 saddlebrown #8B4513

midnightblue #191970 salmon #FA8072

mintcream #F5FFFA sandybrown #F4A460

mistyrose #FFE4E1 seagreen #2E8B57

moccasin #FFE4B5 seashell #FFF5EE

navajowhite #FFDEAD sienna #A0522D

oldlace #FDF5E6 skyblue #87CEEB

olivedrab #6B8E23 slateblue #6A5ACD

orange #FFA500 slategray #708090

orangered #FF4500 snow #FFFAFA

orchid #DA70D6 springgreen #00FF7F

palegoldenrod #EEE8AA steelblue #4682B4

palegreen #98FB98 tan #D2B48C

paleturquoise #AFEEEE thistle #D8BFD8

palevioletred #DB7093 tomato #FF6347

papayawhip #FFEFD5 turquoise #40E0D0

peachpuff #FFDAB9 violet #EE82EE

peru #CD853F wheat #F5DEB3

pink #FFC0CB whitesmoke #F5F5F5

mediumaquamarine #66CDAA yellowgreen #9ACD32

Color name Value Color name Value

Fig. M.2 XHTML extended colors and hexadecimal RGB values (part 2 of 2).



N
Crystal Reports® for 
Visual Studio .NET

N.1 Introduction
All industries collect and maintain data relevant to their businesses. For example, manufac-
turing companies maintain information about inventories and production, retail shops
record sales, health care organizations maintain patient records and publishers track book
sales and inventories. However, just storing data is not enough: Managers must use these
data to make informed business decisions. Information must be properly organized, easily
accessible and shared among various individuals, departments and affiliates. This facili-
tates data analysis that can reveal business-critical information, such as sales trends or po-
tential inventory shortages. To make this possible, developers have created reporting
software—a key tool enabling the presentation of stored data sources.

Crystal Reports was first released in 1992 as a Windows-based report writer, and
Microsoft adopted the reporting software as the standard for Visual Basic in 1993.1 Visual
Studio .NET now integrates a special edition of Crystal Reports, further tying Crystal
Reports to Windows and Web development. This appendix presents the resources that
Crystal Decisions, the company that produces Crystal Reports, offers on its Web site, and
overviews Crystal Report’s unique functionality and features in Visual Studio .NET.

N.2 Crystal Reports Web Site Resources
Crystal Decisions offers resources to developers working in Visual Studio .NET at their
Web site, www.crystaldecisions.com/net. The site updates the changes in Visu-
al Studio .NET versions in English, Simplified Chinese, Traditional Chinese, French, Ger-
man, Italian, Japanese, Korean and Spanish. Crystal Decisions also provides e-mail-based
technical support for Crystal Reports VB .NET developers. The site offers walkthroughs,

1. “Company History,” <www.crystaldecisions.com/about/ourcompany/
history.asp>.



Appendix N Crystal Reports® for Visual Studio .NET 1467

an online newsletter, a multimedia product demo, discussion groups, a developer’s zone
and an overview of Crystal Reports in Visual Studio .NET

N.3 Crystal Reports and Visual Studio .NET
Developers working in Visual Studio .NET’s Integrated Development Environment (IDE)
can create and integrate reports in their applications using Crystal Reports software. The
Visual Studio .NET edition of the software provides powerful capabilities to developers.
Features in the Visual Studio .NET Crystal Reports include an API (application program
interface) that allows developers to control how reports are cached on servers—setting tim-
eouts, restrictions, etc. Developers can create reports in multiple languages, because Crys-
tal Reports now fully supports Unicode data types. The reports that are created can be
viewed in many file formats. A user can convert a report to Microsoft Word, Adobe’s Por-
table Document Format (PDF), Hypertext Markup Language (HTML) and others so that
report information can be distributed easily and used in a wide variety of documentation.
Any Crystal Report created in Visual Studio .NET can become an embedded resource for
use in Windows and Web applications and Web services. This section overviews the initial
stages of creating reports as well as some more advanced capabilities.

To aid Visual Studio .NET developers design reports, Crystal Reports provides a
Report Expert. Experts are similar to “templates” and “wizards”—they guide users through
the creation of a variety of reports while handling the details of how the report is created,
so the user need not be concerned with them. The available Experts create several types of
reports, including standard, form-letter, form, cross-tab, subreport, mail label and drill-
down reports (Fig. N.1). Figure N.2 illustrates the Standard Report Expert interface. 

Fig. N.1 Report expert choices. (Courtesy Crystal Decisions)



1468 Crystal Reports® for Visual Studio .NET Appendix N

The Crystal Reports software for Visual Studio .NET is comprised of several compo-
nents. Once a report is set up, either manually or by using an Expert, developers use the
Crystal Reports Designer in Visual Studio .NET to modify, add and format objects and
fields, as well as to format the report layout and manipulate the report design (Fig. N.3).
The Designer then generates RPT files (.rpt is the file extension for a Crystal Report).
These RPT files are processed by the Crystal Reports engine, which delivers the report
output to one of two Crystal Report viewers—a Windows Forms viewer control or a Web
Forms viewer control, depending on the type of application the developer specifies. The
viewers then present the formatted information to the user.

Walkthroughs illustrating the new functionality are available on the Crystal Decisions
Web site at www.crystaldecisions.com/x-jump/scr_net/default.asp.
The walkthroughs include integrating and viewing Web reports through Windows applica-
tions, creating interactive reports in Web applications, exposing Crystal Reports through
Web services and reporting from ActiveX Data Objects (ADO) .NET data.2 (For a detailed
discussion of ADO .NET and other database tools, see Chapter 19, Databases, SQL and
ADO .NET.) This section overviews the functionality of some of the Web applications and
Web services walkthroughs.

Fig. N.2 Expert formatting menu choices. (Courtesy of Crystal Decisions)

2. The walkthroughs on the Crystal Decisions Web site were tested using C# in Visual Studio .NET,
but a developer should be able to use the walkthroughs with any language supported by Visual Stu-
dio .NET.



Appendix N Crystal Reports® for Visual Studio .NET 1469

N.3.1 Crystal Reports in Web Applications
Using Visual Studio .NET, a developer can integrate a Crystal Report in a static Web page,
or can use a variety of technologies available in Visual Studio .NET to create interactive and
dynamic reports in Web applications. ASP .NET technology integrated into Visual Studio
.NET enables interactivity by producing cross-platform, dynamic Web applications. We dis-
cuss these technologies in detail in Chapter 20, ASP .NET, Web Forms and Web Controls.

Web forms consist of HTML files with embedded Web Controls and code-behind files
that contain event-handling logic. Crystal Reports provides a Web Forms Report Viewer,
which is a Web form that hosts the report. When a client accesses such a Web form, the
event handler can update and format information in a Crystal Report and send the updated
report to the user.3

A walkthrough on the Crystal Decision’s Web site instructs a programmer how to
enable Web page interactivity and how to use ASP .NET and its controls. In the walk-
through, the user accesses information about countries by first entering a country name in
the text box. When the user submits the information, the country name is passed to the Web
forms viewer control and the report is updated—the Web forms page updates the report in
HTML and sends it to the client browser. 

N.3.2 Crystal Reports and Web Services

Any Crystal Report created in Visual Basic .NET can be published as a part of a Web ap-
plication or a Web service. A Web service provides a method that is accessible over the In-

Fig. N.3 Crystal Reports designer interface. (Courtesy of Crystal Decisions)

3. “Interactivity and Reports in Web Applications,” Crystal Reports for Visual Studio .NET.
<www.crystaldecisions.com>.



1470 Crystal Reports® for Visual Studio .NET Appendix N

ternet to any application, independent of programming language or platform. A report Web
service would be an excellent vehicle with which business partners could access specific
report information. Crystal Decisions provides a walkthrough to overview the steps to fa-
miliarize the user with implementing a report as a Web service. (We discuss Web services
in detail in Chapter 21, ASP .NET and Web Services.)

When a Crystal report is published as a Web service, Visual Studio .NET generates a
DLL file that contains the report, and an XML file. Both files are published to a Web server
so that a client can access the report. The XML Simple Object Access Protocol (SOAP)
message passes the data to and from the Web service.

When a developer uses Visual Studio .NET to create and publish the Web service, the
developer can bind the service either to a Windows or to a Web application to display the
Web service. The walkthrough details how to create and generate the Web service, bind the
service to either a Windows or Web viewer and how to build the client application that will
view the service.4

4. “Exposing Reports as Web Services,” Crystal Reports for Visual Studio .NET. <www.crystal-
decidecisions.com>.



Bibliography

Anderson, R., A. Homer, R. Howard and D. Sussman. A Preview of Active Server Pages+. Birming-
ham, UK: Wrox Press, 2001.

Appleman, D. Moving to VB .NET: Strategies, Concepts, and Code. Berkeley, CA: Apress Publish-
ing, 2001.

Archer, T. Inside C#. Redmond, WA: Microsoft Press, 2001.

Barwell, F., R. Blair, R. Case, J. Crossland, B. Forgey, W. Hankison, B. S. Hollis, R, Lhotka, T.
McCarthy, J. D. Narkiewicz, J. Pinnock, R. Ramachandran, M. Reynolds, J. Roth, B. Sempf, B.
Sheldon and S. Short. Professional VB .NET. Birmingham, UK: Wrox Press, 2001.

Blaha, M. R., W. J. Premerlani, and J. E. Rumbaugh. “Relational Database Design Using an Object-
Oriented Methodology.” Communications of the ACM, Vol. 31, No. 4, April 1988, 414–427.

Carr, D. “Hitting a High Note.” Internet World. March 2001, 71.

Carr, D. “Slippery SOAP.” Internet World. March 2001, 72–74.

Carr, D. F. “Dave Winer: The President of Userland and Soap Co-Creator Surveys the Changing
Scene.” Internet World. March 2001, 53–58.

Chappel, D. “Coming Soon: The Biggest Platform Ever.” Application Development Trends Maga-
zine, May 2001,15.

Chappel, D. “A Standard for Web Services: SOAP vs. ebXML.” Application Development Trends,
February 2001, 17.

Codd, E. F. “A Relational Model of Data for Large Shared Data Banks.” Communications of the
ACM, June 1970.

Codd, E. F. “Further Normalization of the Data Base Relational Model.” Courant Computer Science
Symposia, Vol. 6, Data Base Systems. Upper Saddle River, N.J.: Prentice Hall, 1972.

Codd, E. F. “Fatal Flaws in SQL.” Datamation, Vol. 34, No. 16, August 15, 1988, 45–48.

Conard, J., P. Dengler, B. Francis, J. Glynn, B. Harvey, B. Hollis, R. Ramachandran, J. Schenken, S.
Short and C. Ullman. Introducing .NET. Birmingham, UK: Wrox Press, 2000.



1472 Bibliography

Correia, E. J. “Visual Studio .NET to Speak in Tongues.” Software Development Times, April 2001, 12.

Cornell, G. and J. Morrison.  Moving to VB .NET: Strategies, Concepts, and Code. Berkeley, CA:
Apress Publishing, 2001.

Cornes, O., C. Goode, J. T. Llibre, C. Ullman, R. Birdwell, J. Kauffman, A. Krishnamoorthy, C. L.
Miller, N. Raybould and D. Sussman. Beginning ASP .NET Using VB .NET. Birmingham, UK:
Wrox Press, 2001.

Date, C. J. An Introduction to Database Systems, Seventh Edition. Reading, MA: Addison-Wesley
Publishing, 2000.

Davydov, M. “The Road to the Future of Web Services.” Intelligent Enterprise. May 2001, 50–52.

Deitel, H. M. and Deitel, P. J. Java How To Program, Fourth Edition. Upper Saddle River, NJ: Pren-
tice Hall, 2001

Deitel, H. M., Deitel, P. J. and T. R. Nieto. Visual Basic 6 How To Program. Upper Saddle River, NJ:
Prentice Hall, 1999.

Deitel, H. M., P. J. Deitel, T. R. Nieto, T. M. Lin and P. Sadhu. XML How To Program. Upper Saddle
River, NJ: Prentice Hall, 2001

Deitel, H. M. Operating Systems, Second Edition. Reading, MA: Addison Wesley Publishing, 1990.

Dejong, J. “Raising the Bar.” Software Development Times, March 2001, 29–30.

Dejong, J. “Microsoft’s Clout Drives Web Services.” Software Development Times, March 2001, 29,
31.

Dejong, J. “One-Stop Shopping: A Favored Method.” Software Development Times, February 2001,
20.

Erlanger. L. “.NET Services.” Internet World, March 2001, 47.

Erlanger. L. “Dissecting .NET.” Internet World, March 2001, 30–36.

Esposito, D. “Data Grid In-Place Editing.” MSDN Magazine, June 2001, 37-–45.

Esposito, D. “Server-Side ASP .NET Data Binding: Part 2: Customizing the Data Grid Control.”
MSDN Magazine, April 2001, 33–45.

Finlay, D. “UDDI Works on Classification, Taxonomy Issues.” Software Development Times, March
2001, 3.

Finlay, D. “New York Prepares for .NET Conference.” Software Development Times, June 2001, 23.

Finlay, D. “GoXML Native Database Clusters Data, Reduces Seek Time.” Software Development
Times, March 2001, 5.

Fontana, J. “What You Get in .NET.” Network World, April 2001, 75.

Galli, P. and R. Holland. “.NET Taking Shape, but Developers Still Wary.” eWeek, June 2001, pages
9, 13.

Gillen, A. “Sun’s Answer to .NET.” EntMag, March 2001, 38.

Gillen, A. “What a Year It’s Been.” Entmag, December 2000, 54.

Gladwin, L. C. “Microsoft, eBay Strike Web Services Deal.” Computer World, March 2001, 22. 

Grimes, R. “Make COM Programming a Breeze with New Feature in Visual Studio .NET.” MSDN
Magazine, April 2001, 48–62.

Harvey, B., S. Robinson, J. Templeman and K. Watson. C# Programming With the Public Beta. Bir-
mingham, UK: Wrox Press, 2000.



Bibliography 1473

Holland, R. “Microsoft Scales Back VB Changes.” eWeek, April 2001, 16.

Holland, R. “Tools Case Transition to .NET Platform.” eWeek, March 2001, 21.

Hollis, B. S. and R Lhotka. VB .NET Programming With the Public Beta. Birmingham, UK: Wrox
Press, 2001.

Hulme, G, V. “XML Specification May Ease PKI Integration.” Information Week, December 2000, 38. 

Hutchinson, J. “Can’t Fit Another Byte.” Network Computing, March 2001, 14.

Jepson, B. “Applying .NET to Web Services.” Web Techniques, May 2001, 49–54.

Karney. J. “.NET Devices.” Internet World, March 2001, 49–50.

Kiely, D. “Doing .NET In Internet Time.” Information Week, December 2000, 137–138, 142–144,
148.

Kirtland, M. “The Programmable Web: Web Services Provides Building Blocks for the Microsoft
.NET Framework.” MSDN Magazine, September 2000 <msdn.microsoft.com/msd-
nmag/issues/0900/WebPlatform/WebPlatform.asp>.

Levitt, J. “Plug-And-Play Redefined.” Information Week, April 2001, 63–68.

McCright, J. S. and D. Callaghan. “Lotus Pushes Domino Services.” eWeek, June 2001, 14.

“Microsoft Chimes in with New C Sharp Programming Language.” Xephon Web site. June 30, 2000
<www.xephon.com/news/00063019.html>.

Microsoft Developer Network Documentation. Visual Studio .NET CD-ROM, 2001.

Microsoft Developer Network Library. .NET Framework SDK. Microsoft Web site
<msdn.microsoft.com/library/default.asp>.

Moran, B. “Questions, Answers, and Tips.” SQL Server Magazine, April 2001, 19–20.

MySQL Manual. MySQL Web site <www.mysql.com/doc/>.

Oracle Technology Network Documentation. Oracle Web site. <otn.oracle.com/docs/con-
tent.html>.

Otey, M. “Me Too .NET.” SQL Server Magazine. April 2001, 7.

Papa, J. “Revisiting the Ad-Hoc Data Display Web Application.” MSDN Magazine, June 2001, 27–33.

Pratschner, S. “Simplifying Deployment and Solving DLL Hell with the .NET Framework.” MSDN
Library, September 2000 <msdn.microsoft.com/library/techart/dplywith-
net.htm>.

Prosise, J. “Wicked Code.” MSDN Magazine, April 2001, 121–127.

Relational Technology, INGRES Overview. Alameda, CA: Relational Technology, 1988.

Ricadela, A. and P. McDougall. “EBay Deal Helps Microsoft Sell .NET Strategy.” Information
Week, March 2001, 33.

Ricadela, A. “IBM Readies XML Middleware.” Information Week, December 2000, 155.

Richter, J. “An Introduction to Delegates.” MSDN Magazine, April 2001, 107–111.

Richter, J. “Delegates, Part 2." MSDN Magazine, June 2001, 133–139.

Rizzo, T. “Let’s Talk Web Services.” Internet World, April 2001, 4–5.

Rizzo, T. “Moving to Square One.” Internet World, March 2001, 4–5.

Robinson, S., O. Cornes, J. Glynn, B. Harvey, C. McQueen, J. Moemeka, C. Nagel, M. Skinner and
K. Watson. Professional C#. Birmingham, UK: Wrox Press, 2001.



1474 Bibliography

Rollman, R. “XML Q & A.” SQL Server Magazine, April 2001, 57–58.

Rubinstein, D. “Suit Settled, Acrimony Remains” Software Development Times, February 2001,
pages 1, 8.

Rubinstein, D. “Play It Again, XML.” Software Development Times, March 2001, 12.

Scott, G. “Adjusting to Adversity.” EntMag, March 2001, 38.

Scott, G. “Putting on the Breaks.” Entmag, December 2000,   54.

Sells, C. “Managed Extensions Bring .NET CLR Support to C++.” MSDN Magazine. July 2001,
115–122.

Seltzer, L. “Standards and .NET.” Internet World, March 2001, 75–76.

Shohoud, Y. “Tracing, Logging, and Threading Made Easy with .NET.” MSDN Magazine, July
2001, 60–72.

Sliwa, C. “Microsoft Backs Off Changes to VB .NET.” Computer World, April 2001, 14.

Songini, Marc. “Despite Tough Times, Novell Users Remain Upbeat.” Computer World, March
2001, 22. 

Spencer, K. “Cleaning House.” SQL Server Magazine, April 2001, 61–62.

Spencer, K. “Windows Forms in Visual Basic .NET.” MSDN Magazine, April 2001, 25–45.

Stonebraker, M. “Operating System Support for Database Management,” Communications of the
ACM, Vol. 24, No. 7, July 1981, 412–418.

Surveyor. J. “.NET Framework.” Internet World, March 2001, 43–44.

Tapang, C. C. “New Definition Languages Expose Your COM Objects to SOAP Clients.” MSDN
Magazine, April 2001, 85–89.

Utley, C. A Programmer’s Introduction to Visual Basic .NET. Indianapolis, IN: Sams Publishing, 2001.

Visual Studio .NET ADO .NET Overview. Microsoft Developers Network Web site
<msdn.microsoft.com/vstudio/nextgen/technology/adoplusde-
fault.asp>.

Ward, K. “Microsoft Attempts to Demystify .NET.” Entmag, December 2000, 1.

Waymire, R. “Answers from Microsoft.” SQL Server Magazine, April 2001, 71–72.

Winston, A. “A Distributed Database Primer,” UNIX World, April 1988, 54–63.

Whitney, R. “XML for Analysis.” SQL Server Magazine, April 2001, 63–66.

Zeichick, A. “Microsoft Serious About Web Services.” Software Development Times, March 2001, 3.



Index

Symbols
- minus operator 77
" double quotation 64
"" 839
& (menu access shortcut) 526
& operator 648
&= string concatenation 

assignment operator 111
&amp; 1357
&copy; 1357
&frac14; 1416
&Hyyyy; notation 1325
&lt; 1415, 1416
( ) parentheses 76
* multiplication operator 74, 77, 

874
*= multiplication assignment 

operator 111
+ addition operator 77
+ sign 77
+= addition assignment operator 

110, 111
. (dot operator) 64, 192, 193, 306, 

327, 354, 370
/ 835
/ division (float) operator 75, 77
/= division assignment operator 

111
< less than operator 79
<!--…--> tags 835, 1347
<= less than or equal to operator 

79, 164
<> ”is not equal to” 164

<> angle brackets 835
<> inequality operator 79, 80
<? and ?> delimiters 870
= assignment operator 71, 110
= comparison operator 639
= equality operator 79
-= subtraction assignment 

operator 111
> greater than operator 79
>= greater than or equal to 79
? regular expression 

metacharacter 762
\ integer division operator 75
\ separator character 757
\= integer division assignment 

operator 111
^ exponentiation operator 75
^= exponentiation assignment 

operator 111
_ line-continuation character 83
_ underscore 63

A
A binary search tree 1167
a element 1351, 1355, 1409, 1414
A portion of a Shape class 

hierarchy 354
A property of structure Color 688
abbreviating an assignment 

expression 110
Abbreviations for controls 

introduced in chapter 517

Abort method of class Thread
596

AbortRetryIgnore constant 
152

AboutBox method of class Ax-
MediaPlayer 731

Abs method of class Math 194
absolute positioning 955
absolute value 194
abstract base class 398
abstract class 398, 409
Abstract CShape base class 400
abstract data type (ADT) 22, 298
Abstract data type representing 

time in 24-hour format 299
abstract derived class 409
abstract method 398, 409
abstraction 351
AcceptButton property 479
AcceptSocket method of class 

TcpListener 1099
AcceptsReturn property 492
access method 301
access shared data 609
access shortcut 525
accessibility 1208, 1240, 1241, 

1250, 1251, 1253, 1254, 
1255

accessibility aids in Visual Studio 
.NET 1208, 1209

Accessibility Wizard 1242, 
1245, 1250



1476 Index 

Accessibility Wizard
initialization option 1243

Accessibility Wizard mouse 
cursor adjustment tool 1245

AccessibilityDescrip-
tion property of class 
Control 1221

AccessibilityName
property of class Control
1221

AccessibleDescription
property of class Control
1216

AccessibleName property of 
class Control 1216

AccessibleRole enumeration 
1216

AccessibleRole property of 
class Control 1216

accessing shared memory without 
synchronization 604

action 64, 334
action attribute 1435
action element 1238
action oriented 298
action symbol 99
action/decision model of 

programming 103
Activation property of class 

ListView 555, 556
Active Accessibility 1240
Active Server Pages (ASP) .NET 

17, 26
active tab 37
active window 479
ActiveLinkColor property of 

class LinkLabel 534
ActiveMdiChild property of 

class Form 568, 569
ActiveX 1333
ActiveX COM control integration 

in Visual Basic .NET 1335
ActiveX control 28, 1334
ActiveX DLL 28
Acts designed to ensure Internet 

access for people with 
disabilities 1205

.acw 1251
Ad attribute 967
Ada programming language 11, 

593
add a reference 85
add custom control to a form 584
Add member of enumeration 

MenuMerge 570
Add method 867

Add method of class ArrayList
716, 1057, 1180

Add method of class Hashtable
982, 1081

Add method of class TreeNode-
Collection 551

Add method of Columns
collection 1004

Add method of Hashtable
1195

Add Reference dialog 86
Add Reference dialog DLL 

Selection 1338
Add Tab menu item 563
Add User Control... option in 

Visual Studio .NET 582
Add Web Reference dialog 

1046
Add WindowsForm... option in 

Visual Studio .NET 567
adding a Web service reference to 

a project 1045
adding Web References in 

Visual Studio 1045
addition assignment operator (+=)

110, 111
Addition program to add two 

values entered by the user 70
Addition.vb 1339
AddLine method of class 

GraphicsPath 712
AddressOf keyword 433, 438
Adjusting up window element size 

1244
“administrative” section of the 

computer 4
ADO .NET 26, 38, 889, 912
Adobe® Photoshop™ Elements 

51
AdRotator class 964, 965
AdRotatorInforma-

tion.xml 967
ADT (abstract data type) 22, 298
advanced accessibility settings in 

Microsoft Internet Explorer 
5.5 1255

Advanced Research Projects 
Agency (ARPA) 14

Advantage Hiring, Inc. 1288
AdvertisementFile

property of class 
AdRotator 965

advertisment 979
AfterSelect event of class 

TreeView 551
aggregation 306

Airline Reservation Web service 
1066

algebraic notation 75
algorithm 21, 98, 112, 123, 224
algorithm for traversing a maze 

295
Alignment property 50
allocating an array with New 255
allocating arrays 249
AllowPaging property of a 

DataGrid control 1018
AllowSorting property of 

DataGrid control 1019
Alphabetic icon 42
alphabetizing 639
alt attribute 27, 1208, 1353, 

1412
Alt key 513
Alt key shortcut 525
Alt property 516
<alt> tag 1254
ALU (arthimetic and logic unit) 4
America’s Job Bank 1286
American Society for Female 

Entrepreneurs 1288
American Standard Code for 

Information Interchange 
(ASCII) 28

ampersand (&) 1357
Analytical Engine mechanical 

computing device 11
ancestor node 842
anchor 1350, 1355
anchor control 489
Anchor property 490
anchoring a control 488
Anchoring demonstration 489
AND 910, 911
And (logical AND without short-

circuit evaluation) 164, 166, 
170

AndAlso (logical AND with 
short-circuit evaluation) 
164, 165, 166

angle bracket (<>) 835, 1345
animated character 25
animation 686
answer element 1239
Apache 1375
API (application programming 

interface) 684
APL progamming language 19
Append method of class 

StringBuilder 655
AppendFormat method of class 

StringBuilder 656, 657



Index 1477

AppendText method of class 
File 757

Apple computer 5
Apple Computer, Inc. 1322
Application class 533
application programming 

interface (API) 684
application service provider (ASP) 

1288
application tracing 1019
Application.Exit method 

533, 542
ApplicationException

class 450
ApplicationException

derived class thrown when a 
program performs illegal 
operations on negative 
numbers 465

Applying rule 3 of Fig. 5.25 to the 
simplest flowchart 174

Aquent.com 1291
Arc 702
arc angle 702
arc method 702
AREA element 1386
area element 1447
ARGB values 687
argument 64, 189
ArgumentOutOfRangeEx-

ception 637, 648, 658, 
1184

arithmetic and logic unit (ALU) 4
arithmetic calculation 74
arithmetic mean (average) 77
arithmetic operator 74
arithmetic overflow 442, 445
ARPA (Advanced Research 

Projects Agency) 14
ARPAnet 14
ArrangeIcons value in Lay-

outMdi enumeration 571
array 22, 246
array allocated with New 255
array bounds 249, 255
Array class 1176, 1178
Array class demonstration 1176
Array consisting of 12 elements 

247
array declaration 248
array elements passed call-by-

value 261
array indexer (()) 247
array initialized to zero 255
array of arrays 280
array of primitive data types 249

array passed call-by-reference 261
array subscript operator, () 1184
ArrayList class 716, 1056, 

1057, 1176, 1179, 1180
ArrayList methods (partial 

list) 1180
ArrayReferenceTest.vb

265
arrays are Visual Basic objects 

297
arrays as object 264
article.xml 834
article.xml displayed by 

Internet Explorer 837
ASC 901, 903
ASC (ascending order) 901
ascending order (ASC) 874, 901
ascent 697
ASCII (American Standard Code 

for Information Interchange) 
28, 1322

ASCII character set Appendix 
1319

ASCII character, test for 514
ASCX code for the header 1007
ASCX file 1006
ASMX file 1033
ASMX file rendered in Internet 

Explorer 1033
ASMX page 1036
ASP (Active Server Pages) .NET 

17
ASP .NET comment 947
ASP .NET server controls 942
ASP .NET Web service 1036
ASP.NET Web service project 

type 1043
ASP.NET_SessionId cookie 

988
ASPX file 942
.aspx file extension 942
ASPX file that allows a user to 

select an author from a drop-
down list 1013

ASPX file that takes ticket 
information 1069

ASPX listing for the guestbook 
page 999

ASPX page that displays the Web 
server’s time 946

ASPX page with tracing turned off 
1020

assembler 7
assembly 84, 339
assembly language 6
AssemblyTest.vb 339

<assign> tag (<assign>…</
assign>) 1233

assign element 1238
assign value to a variable 71
assignment operator (=) 71, 72, 

110
Assignment operators 111
assignment statement 71
associativity of operators 76
asterisk (*) 897, 1450
asterisk (*) indicating 

multiplication 74
asterisk (*) occurence indicator 

861
asynchronous event 445
Attempting to access restricted 

class members results in a 
syntax error 307

ATTLIST element 862
attribute 128, 838, 1351
attribute of an element 1403
audio clip 593
audio-video interleave (AVI) 729
Aural Style Sheet 1256
AuralCSS 1241
authorISBN table of books

database 890, 891, 892
authorization 1012
authors table of books

database 890
auto hide 39
auto hide, disable 39
AutoEventWireup attribute of 

ASP.NET page 947
automatic duration 203
automatic garbage collection 452, 

594
automatic variable 203
Autos window 1307
AutoScroll property 495
average 77
average calculation 112, 114
Average1.vb 112
AVI (audio-video interleave) 729
AxAgent class 743
AxAgent control 744
AxMediaPlayer class 731

B
B property of structure Color 688
B2B 1033
Babbage, Charles 11
BackColor property 48, 487
background color 48, 522



1478 Index 

BackgroundImage property 
487

Ballmer, Steve 20
bandwidth 14, 714
bar chart 256, 257
base case(s) 218, 222, 224
base class 128, 350, 351, 353
base-class constructor 355
base-class constructor call syntax 

370
base-class default constructor 355
base-class destructor 386
base-class method is overridden in 

a derived class 382
base-class Private member 354
base-class reference 394, 395
baseline 1432
BASIC (Beginner’s All-Purpose 

Symbolic Instruction Code) 
7

batch 5
batch processing 5
BCPL programming language 9
Beginner’s All-Purpose Symbolic 

Instruction Code (BASIC) 7
behavior 128, 297
Berkeley System Distribution 

(BSD) 19
Berners-Lee, Tim 15
BilingualJobs.com 1288
binary 180
binary digit 753
binary operator 71, 74, 167
binary search 272, 275, 294
Binary search of a sorted array 276
binary search tree 1160
Binary search tree containing 12 

values 1160
binary tree 1137, 1160, 1167
Binary tree graphical 

representation 1160
binary tree sort 1167
Binary tree stores nodes with 

IComparable data 1171
BinaryFormatter class 756, 

777
BinaryReader class 806, 807, 

1108
BinarySearch method of class 

Array 1179
BinarySearch method of class 

ArrayList 1184
BinarySearchTest.vb 276
BinaryWriter class 1108
Bind method of class Socket

1098

binding a server to a port 1098
bit 753
bit (size of unit) 1322
bit manipulation 754
BitArray class 1176
Bitmap class 711
bitwise operators 500
bitwise Xor operator 534
BizTalk 26, 839
BizTalk Framework 877
BizTalk Schema Library 877
(BTS) BizTalk Server 877
BizTalk Server (BTS) 877
BizTalk Terminologies 877
Black Shared property of 

structure Color 688
blackjack 27, 1053
Blackjack game that uses Black-

jack Web service 1057
Blackjack Web service 1054
Blackjack.vb 1057
BlackjackSer-

vice.asmx.vb 1054
Blackvoices.com 1287
blank line 64
block 187, 1099
block element 1237
block for input/output 597
block scope 203, 204, 306
<block> tag (<block>…</

block>) 1233
block until connection received 

1108
blocked state 596
Blue Shared property of 

structure Color 688
Bluetooth 1290
BMP (Windows bitmap) 51
body element <body>…</

body> 1348
body element 1006, 1403, 1404
body of a class definition 300
body of a loop 149
body of the If/Then structure 78
body of the procedure definition 

64
body of the While 106
body section 1403
Bohm, C. 99, 173
Bold member of enumeration 

FontStyle 695
Bold property of class Font 694
book.xdr 866
book.xml 865
books database 890

books database table 
relationships 896

Boolean values 169
BORDER = "0" 1370
border attribute 1370, 1429
bottom tier 945
BounceKeys 1247, 1248
boundary of control 581
bounding rectangle 701, 702
bounding rectangle for an oval 702
br (line break) element 1356, 

1415
braces ({ and }) 249
braille display 1208, 1240
braille keyboard 1240
Brassringcampus.com 1293
Break All button 1309
break program 1309
<break> tag (<break>…

</break>) 1233
breakpoint 1304
breakpoint condition 1310
breakpoint hit count 1309
breakpoint, active 1309
breakpoint, disabled 1309
breakpoint, set 1305
Breakpoints window 1309
bricks-and-mortar store 979
Browse... button 46
browser request 1375, 1432
Brush class 684, 689, 699, 701
BSD (Berkeley System 

Distribution) 19
bubble sort 268
Bubble sort using delegates 433
Bubble-sort Form application 435
BubbleSort procedure in mod-

BubbleSort 268
BubbleSort.vb 268
BubbleSortTest.vb 269
buffer 603
buffer empty 603
BufferedStream class 756
buffering 25
bug.png 51
Build menu 38
building block 97
building-block approach 12
built-in array capabilities 1176
built-in data type 70, 334
Business letter DTD 861
business logic 946
business rule 946
Business-two-Business (B2B) 

1033
button 34, 84, 87, 477



Index 1479

Button class 214, 492
button label 492
Button properties and events 

493
Buttons for message dialogs 151
ByRef keyword 200
ByRefTest.vb 201
byte 754
byte offset 790
ByVal and ByRef used to pass 

value-type arguments 201
ByVal keyword 200

C
C formatting code 154
C programming language 9, 298, 

1346, 1401
c type character 199
C# How to Program 3
C# programming language 10, 19, 

839
C++ programming language 9, 

839, 1346
cache 912
calculation 4
call-by-reference 200
call-by-value 200
call element 1239
Call Stack 1312
call stack 459
callerID attribute 1239
CallXML 27, 1233
callxml element 1235
CallXML hangup element 1234
CampusCareerCenter.com

1293
CancelButton property 479
Candidate Recommendation 15
capacity of a collection 1179
Capacity property of class Ar-

rayList 1179, 1184
Capacity property of class 

StringBuilder 652
<CAPTION>…</CAPTION>

1370
caption element 1225, 1429
card games 663
Career.com 1286
CareerPath.com 1286
CareerWeb 1286
carriage return/linefeed 121
carry bit 1275
Cascade value in LayoutMdi

enumeration 571

Cascading Style Sheets (CSS) 15, 
16, 27

Case Else keywords 158
Case keyword 155
case sensitive 64, 1345
CAST eReader 1221
cast operation 394
catch all exception types 445
Catch block (or handler) 445, 

449
Catch handler 449
catch-related errors 451
Categorized icon 42
CBoss class inherits from class 

CEmployee 411
CCard class 663
CCircle class contains an x-y

coordinate and a radius 358
CCircle class that inherits from 

class CPoint 391
CCircle2 class that inherits 

from class CPoint 362
CCircle2 class that inherits 

from class CPoint2 403
CCircle3 class that inherits 

from class CPoint2 365
CCircle3 class that inherits 

from class CPoint3 427
CCircle4 class that inherits 

from class CPoint but does 
not use Protected data 
369

CCircle5 class inherits from 
class CPoint3 and 
overrides a finalizer method 
379

CCylinder class inherits from 
class CCircle4 and 
Overrides method Area
373

CCylinder2 class inherits from 
class CCircle2 404

CCylinder3 class inherits class 
CCircle3 429

CDATA flag 862
CDay class encapsulates day, 

month and year information 
321

CD-ROM 3
Ceil method of class Math 194
CEmployee class encapsulates 

employee name, birthday 
and hire date 323

CEmployee2 class objects share 
Shared variable 328

CEmployee3 class object 
modifies Shared variable 
when created and destroyed 
336

CEmployee3 class to store in 
class library 336

Center for Applied Special 
Technology 1221, 1257

central processing unit (CPU) 4
CERN (the European 

Organization for Nuclear 
Research) 15

CGI (Common Gateway 
Interface) 1375

CGI script 1375, 1435
chance 206
changes in server-side data 1375
Changing a property in the code 

view 132
Changing a property in the code 

view editor 132
Changing a property value at 

runtime 134
Char array 636
Char structure 634, 661
Char.IsDigit method 662
Char.IsLetter method 663
Char.IsLetterOrDigit

method 663
Char.IsLower method 663
Char.IsPunctuation

method 663
Char.IsSymbol method 663
Char.IsUpper method 663
Char.IsWhiteSpace method 

663
Char.ToLower method 663
Char.ToUpper method 663
character 754, 1323
character class 668
character constant 634
character entity reference 29
character set 754, 1322
character string 64
Characters property of class 

AxAgent 744
Chars property of class String

637
checkbox 477, 492, 498, 1436
CheckBox class 497
checkbox label 498
CheckBox properties and events 

498
checkboxes 1376
CheckBoxes property of class 

ListView 556



1480 Index 

CheckBoxes property of class 
TreeView 550

checked attribute 1379, 1439
checked context 468, 472
Checked property 498, 501
Checked property of class 

MenuItem 528
Checked property of class 

TreeNode 551
CheckedChanged event 498, 

502
CheckedIndices property of 

class CheckedListBox
543

CheckedItems property of 
class CheckedListBox
543

CheckedListBox 524
CheckedListBox and a 

ListBox used in a program 
to display a user selection 
544

CheckedListBox class 538, 
542

CheckedListBox properties 
and events 543

CheckState property 498
CheckStateChanged event 

498
Chemical Markup Language 

(CML) 26
ChessGame.vb 720
ChessPiece.vb 718
ChiefMonster™ 1292
child 1160
child element 836, 838
child node 550, 842
child window maximized 570
child window minimized 570
choice element of formtag 

1229
choice element of menutag 

1229
<choice> tag (<choice>…

</choice>) 1233
CHourlyWorker class inherits 

from class CEmployee 416
circle 1420
"circle" attribute value 1420
circular buffer 618, 628
circular hotspot 1388, 1448
circumference 94
CityWeather.vb 1076
clarity 2
class 12, 22, 298
class definition 299

class hierarchy 389, 398
Class keyword 128
class library 13, 335, 351, 383
class scope 203, 306
Class that stores equation 

information 1082
Class that stores weather 

information about a city 
1076

Class using Me reference 325
Class-average program with 

counter-controlled repetition 
112

Class-average program with 
sentinel-controlled 
repetition 117

ClassAverage2.vb 117
classes to implement abstract data 

types 335
class-scope variable hidden by 

method-scope variable 306
class-wide information 327
clear element 1238
Clear method of class Array

1179
Clear method of class ArrayL-

ist 1180
Clear method of class TreeNo-

deCollection 551
Clear method of DataSet 922
Clear method of Hashtable

1195
clearDigits element 1239
click a button 492
Click event of class MenuItem

526, 528
Clicker 4 1253
clicking 34
client 6, 334
Client interacting with server and 

Web server. Step 1
The GET request, GET /
books/down-
loads.htm HTTP/1.0
944

Client interacting with server and 
Web server. Step 2

The HTTP response, HTTP/
1.0 200 OK 944

Client portion of a client/server 
stream socket connection 
1104

Client portion of connectionless 
client/server computing 
1112

Client side of client/server Tic-
Tac-Toe program 1122

client tier 946
Client.vb 1077
client/server chat 1101
client/server computing 6
ClipRectangle property of 

class PaintEventArgs
580, 581

clock 580
close a file 783
close button 54
Close button icon 54
Close method of class Form 479
Close method of class Socket

1099, 1109
Close method of class Stream-

Reader 789
Close method of class Tcp-

Client 1100, 1101
closed polygon 705
CloseFigure method of class 

GraphicsPath 712
closing a project 38
CLR (Common Language 

Runtime) 19, 452, 465
CLS (Common Language 

Specification) 18
CML (Chemical Markup 

Language) 26
CNN.com 979
COBOL (COmmon Business 

Oriented Language) 10, 
1401

COBOL progamming language 19
Code generated by the IDE for 

lblWelcome 130
code reuse 1176
code value 1323
code-behind file 942, 1006, 1007
Code-behind file for a page that 

updates the time every 
minute 948

Code-behind file for page 
demonstrating the 
AdRotator class 965

Code-behind file for the guest 
book application 1001

Code-behind file for the log in 
page for authors application 
1007

Code-behind file for the page that 
allows a user to choose an 
author 1014

Code-behind file for the 
reservation page 1070



Index 1481

Code-behind file for the word 
generator page 972

code-behind file in Web services 
1033

coercion of arguments 195
coin tossing 207, 243
col element 1373, 1430
colgroup element <COL-

GROUP>…</COLGROUP>
1372, 1373

colgroup element 1430
collapse code 129
Collapse method of class 

TreeNode 552
collapse node 550
collapsing a tree 40
Collect method inSystem.GC

330
Collect method of GC 381
collection 1176
collection class 1176
Collegegrads.com 1293
collision detection 718
color constant 687
color manipulation 686
Color methods and properties 

688
Color property of class Color-

Dialog 692
Color structure 684, 687, 688
ColorDialog class 692
cols attribute 1378, 1391, 1435, 

1450
colspan attribute 1430
colspan attributes 1373
column 279, 889, 890, 1368
column heading 1370
column number 898
Columns collection 1004
COM (Component Object Model) 

28, 1332, 1334
COM component 28, 1333
COM limitation 1333
combo box 477
ComboBox 524
ComboBox class 545
ComboBox demonstration 546
ComboBox properties and events 

546
ComboBox used to draw a 

selected shape 547
comma (,) 157
comma-separated list of 

arguments 72
comma-separated list of variable 

names 71

command-and-control system 593
command prompt 62, 88
command window 62, 69, 605, 

616, 617
Commands property of interface 

744
comment 62, 81, 1347, 1402
comments in HTML 1347
commercial application 753
CommissionWorker class 

inherits from class CEm-
ployee 412

COmmon Business Oriented 
Language (COBOL) 10

Common Gateway Interface 
(CGI) 1375, 1433

Common Language Runtime 
(CLR) 19, 452, 465

Common Language Specification 
(CLS) 18

Common Programming Error 13
Common Runtime Library proxy 

1334
CompareTo method of ICom-

parable 1168
CompareTo method of structure 

Char 663
Comparison.vb 80
compilation error 1303
compile-time error 68
compile, debug setting 1305
compiled classes 84
compiler 7
Compiler error messages 

generated from overloaded 
procedures 228

compiling 1137
complete representation of a 

program 115, 120
complex curve 712
complexity theory 224
component 9, 478
Component Object Model (COM) 

28, 1332, 1334
Component Pascal progamming 

language 19
component selection 43
composition 22, 306, 321, 351, 

353
Composition demonstration 324
comprehensive job sites 1281
computation 3
computational complexity 272
computer 3
computer program 3
computer programmer 3

Computing the sum of the 
elements of an array 252

Concat method of class String
648

Concat Shared method 648
concrete class 398
concurrency 593
concurrent producer and consumer 

threads 609
concurrent programming 593
concurrent threads 609
condition 78
condition variable 616
conditional expression 302
conference element 1239
Connect method of class Tc-

pListener 1100
connect to a database 913
connected lines 705
connection 1098
connection attempt 1100
connection between client and 

server terminates 1101
connection to a server 1100, 1130
ConnectionConnection

property of OleDb-
Command 920

connectionless service 1098
connectionless transmission with 

datagrams 1110, 1131
connection-oriented, streams-

based transmission 1110, 
1131

connector symbol 99
consistent state 302, 305, 314
console application 62
Console class 756
console window 62
Console.Write method 69
Console.WriteLine method 

64, 105
Const and ReadOnly class 

members 333
Const keyword 23, 214, 331
ConstAndReadOnly.vb 333
constant 75, 121, 331
constant identifier 214
Constants used in class 

CCircleConstants
Examples

Constants used in class 
CCircleConstants 332

constituent controls 580
constrained version of a linked list 

1152
constructor 302, 308, 381



1482 Index 

consume method 603
consumer 616
Consumer reads Integers from 

synchronized shared buffer 
612

Consumer reads Integers from 
synchronized, circular buffer 
624

Consumer reads Integers from 
unsynchronized shared 
buffer 606

consumer thread 603
consuming a Web service 1037
contact.html 1351, 1356, 

1410, 1415
container 477, 479
container elements 836
Contains method of class 

ArrayList 1180, 1184
Contains method of class 

Stack 1189
ContainsKey method of 

Hashtable 1195
content 866
content attribute of a meta tag 

1448
content attribute of meta

element 948
CONTENT frame 1390
CONTENT of a META tag 1389
Contents command 44
context-sensitive help 45
contiguous memory location 246
control 21, 41, 476, 478
control boundary 581
Control class 487, 580
Control key 513
control layout 38
control layout and properties 487
Control property 516
control structure 99, 100, 145, 175
control variable 145, 147
control variable final value 145
control variable inital value 145
control variable name 145, 149
controlling expression 155
control-structure nesting 101
control-structure stacking 100, 

172
ControlToValidate

property of class Regu-
larExpressionVali-
dator 971

converge on a base case 218
Convert class 197

Converting a binary number to 
decimal 1272

Converting a hexadecimal number 
to decimal 1273

Converting an octal number to 
decimal 1272

cookie 979, 980, 987, 988
deletion 980
domain 989
expiration 980
expiration date 980
Expires property 980
header 980

CookieContainer class 1056, 
1065

Cookies getting created in an ASP 
.NET Web application 983

Cookies property of Request
class 987

Cookies recieved in an ASP .NET 
Web application 987

Cooljobs.com 1294
coordinate system 685, 686
coordinates (0, 0) 685
coords element 1388, 1447
Copy method of class Array

1179
Copy method of class File 757
copy of an argument 200
copyright 28
CopyTo method of class String

637
CORDA Technologies 1208
corporate culture 1284, 1287
Cos method of class Math 194
cosine 194
count attribute if prompt

element 1229
Count property of class Array-

List 1184
Count property of Hashtable

1195
counter 112, 113, 115
counter-controlled loop 120, 162
counter-controlled repetition 112, 

118, 112, 124, 125, 145, 146, 
147

Counter-controlled repetition with 
the For/Next structure 146

Counter-controlled repetition with 
the While structure 146

Counts property of Http-
SessionState class 995

CPieceWorker class inherits 
from class CEmployee 414

CPlayer class represents a Tic-
Tac-Toe player 1119

CPoint class represents an x-y
coordinate pair 355, 390

CPoint2 class inherits from 
MustInherit class 
CShape 401

CPoint2 class represents an x-y
coordinate pair as Pro-
tected data 364

CPoint3 base class contains 
constructors and finalizer 
378

CPoint3 class implements 
interface IShape 426

CProcess class 535
CPU (Central Processing Unit) 4
CRandomAccessRecord class 

represents a record for 
random-access file-
processing applications 791

Craps game using class Random
214

create custom control 580
Create method of class File

757
create new classes from existing 

class definitions 299
CreateArray.vb 250
CreateDirectory method of 

class Directory 758
CreateInstance method of 

class Array 1179
CreateText method of class 

File 757
creating a child form to be added 

to an MDI form 567
creating data types 335
Creating variable-length 

parameter lists 287
CRecord class represents a 

record for sequential-access 
file-processing applications 
770

Crystal Decisions 1466
Crystal Reports 1466
Crystal Reports Designer 1468
CSquare class represents a 

square on the Tic-Tac-Toe 
board 1128

CSS (Cascading Style Sheets) 15, 
16, 27, 1225

CSS2 1225
CTest class tests the CEmploy-

ee class hierarchy 417



Index 1483

CTest2 demonstrates 
polymorphism in Point-
Circle-Cylinder hierarchy 
406

CTest3 uses interfaces to 
demonstrate polymorphism 
in Point-Circle-Cylinder 
hierarchy 431

CTransaction class handles 
record transactions for the 
transaction-processor case 
study 808

CubeTest.vb 238
Current property of IEnu-

merator 1185
current scope, variable in 1307
current statement, variable in 1307
current time 582
CurrentPageIndex property 

of a DataGrid control 
1019

CurrentThread Shared
Thread property 599

CurrentValue event of class 
CheckedListBox 543

Curriculum progamming language 
19

cursor 64, 69
curve 712
custom control 580, 581
Custom control added to a Form

584
Custom control added to the 

ToolBox 584
Custom control creation 581, 583
custom controls 580
Custom palette 48
Custom tab 48
customization 980
customize a form 41
Customize Toolbox 1334
Customize Toolbox dialog 

selecting an ActiveX control 
1334

Customize Toolbox... option in 
Visual Studio .NET 583

customize Visual Studio .NET 
IDE 35, 38

customizing the Toolbox 729
CustomValidator class 1007, 

1011
cut 38
Cyan Shared property of 

structure Color 688
cylinder 404

D
D formatting code 154
DarkBlue Shared property of 

structure Color 695
DarkGray Shared property of 

structure Color 688
Dash member of enumeration 

DashStyle 712
DashCap enumeration 711
DashCap property of class Pen

711
DashStyle enumeration 711
DashStyle property of class 

Pen 711
data 3
data abstraction 334
data entry 87
data hierarchy 754, 755
data in support of actions 334
data independence 16
data manipulation 714
data member 298
Data menu 38
data representation of an abstract 

data type 334
data structure 22, 27, 246, 301, 

1137
data tier 945
database 38, 888, 1345, 1401
Database access and information 

display 913
database management system 

(DBMS) 755, 888
Database modification 

demonstration 923
database table 889
datagram 1110
DataGrid class 913, 920
DataGrid control 1004, 1018, 

1019
AllowPaging property 

1018
CurrentPageIndex

property 1019
DataSource property 1004
PageIndexChange event 

1018
PagerStyle property 1018
PageSize property 1018

DataSet class 912, 932
DataSource property of a 

DataGrid control 1004
DataTable class 1004
data-type attribute 874
DataView

Sort property 1018
date and time 582
DateTime structure 582
DBCS (double byte character set) 

1324
DBMS (database management 

system) 755
DB2 888
Dead thread state 596
deadlock 602, 603
debug configuration setting 1305
Debug menu 38, 1306, 1308
Debug sample program 1304
Debug toolbar 1308
DebugClass.vb 1314
DebugExample.vb 1304
debugger 1304
debugging 1019, 1303, 1347, 1402
Debugging a class. 1314
debugging, begin 1305
debugging, call stack 1312
debugging, step into 1313
debugging, step out 1313
debugging, step over 1309
decendant node 842
Decimal data type 152, 154
decimal digit 754
decision 78
decision symbol 100, 103
declaration 70
declaration and initialization of an 

array 249
declaration space 203
declare each variable on a separate 

line 71
declaring an array 249
decreasing order 268
decrement of loop 145
default constructor 355
default font 695
default namespace 841
Default namespaces 

demonstration 841
default package 303
default properties 129
default setting 1251
default sorting order is ascending 

901
default values for Optional

arguments 229
defaultnamespace.xml

841, 841
Defining NotInheritable

class CHourlyWorker
416

definite repetition 112



1484 Index 

degree 702
deitel@deitel.com 3
del element 1416
delegate 432, 480
Delegate class 433
DELETE FROM 897, 911
Delete method of class Direc-

tory 758
Delete method of class File

757
DELETE statement 911
DeleteCommand property of 

OleDbAdapter 920
deletion 1140
delimit 835
Demonstrates function debugging. 

1312
Demonstrating keyboard events 

514
Demonstrating logical operators 

168
Demonstrating order in which 

constructors and finalizers 
are called 381

Demonstrating the While
repetition structure 107

Demonstrating XML namespaces 
839

deny 1012
dequeue operation of queue 335, 

1156
derived class 128, 350, 351, 353
DESC 901, 902
Description property of a 

WebMethod attribute 1038
Description property of a 

WebService attribute 
1037

deselected state 501
Deserialize method of class 

BinaryFormatter 777
design mode 53, 54
design units 695
Design view 36
designing form 54
diacritic 1323
dialog 36, 82, 84
dialog displaying a run-time error 

72
diameter 94
diamond symbol 100, 103, 107, 

149, 159
dice game 213
dice-rolling program 257
Dice.com 1290
DiceModule.vb 231

DiceModuleTest.vb 232
direct-access files 790
direct base class 350
directive in ASP.NET page 947
Directory class methods 

(partial list) 758
DirectoryInfo class 561, 757
disabled scroll arrow 41
disc 1417, 1420
"disc" attribute value 1420
DISCO (Discovery file) 1048
.disco file extension 1045
disconnected 912
discovery (DISCO) files 1048
disk 3, 13
disk I/O completion 445
disk space 1139
dismiss (hide) a dialog 84
display 64
Display Color Settings 1245
Display member of 

enumeration Graphics-
Unit 695

display output 82
Display Settings 1243
displaying a phrase 64
displaying data on the screen 88
Displaying multiple lines in a 

dialog 83
displaying numeric data 

graphically 256
DisplayLogo.vb 714
distributed computing 6, 1032
diversity 1288
divide-and-conquer approach 183
divide by zero 446
DivideByZeroException

class 446, 449
division (float) operator, / 75
division assignment operator (/=)

111
division by zero 116
division by zero is undefined 335
D-link 1208
DLL (Dynamic Link Library) 22, 

1332, 1334, 1338, 1339
.dll file 1338
"DLL hell" 1332
DNS (domain name server) 943
DNS lookup 943
Do Until/Loop repetition 

structure 100
Do Until/Loop repetition 

structure demonstration 109
Do Until/Loop repetition 

structure flowchart 110

Do Until/Loop structure 160, 
174

Do While/Loop repetition 
structure 100, 108

Do While/Loop repetition 
structure demonstration 108

Do While/Loop repetition 
structure flowchart 109

Do While/Loop structure 174
Do/Loop Until repetition 

structure 100
Do/Loop Until repetition 

structure flowchart 161
Do/Loop Until structure 160, 

161, 171, 174
Do/Loop While repetition 

structure 100, 159
Do/Loop While repetition 

structure flowchart 160
Do/Loop While structure 159, 

171, 174
do/while structure 21
Dock property 490
docking demonstration 490
DockPadding property 490
Document member of 

enumeration Graphic-
sUnit 695

Document Object Model (DOM) 
842

Document Style and Semantics 
Specification Language 
(DSSSL) 16

document type 947, 1346
Document Type Definition (DTD) 

860, 861, 862
Dogfriendly.com 1294
DOM (Document Object Model) 

842
DOM parser 842
DOM structure of an XML 

document illustrated by a 
class 846

domain name server (DNS) 943
Domain property of 

HttpCookie class 989
dot operator (.) 64, 192, 193, 306, 

327, 354, 370
Double 83
double-byte character set (DBCS) 

1324
Double class 465
double-clicking 34
double quotes ("") 64, 839
double-selection structure 100, 

173



Index 1485

double-subscripted array 279
double-precision floating-point 

number 114
double-selection structure 172
DoUntil.vb 109
DoWhile.vb 108, 159
down-arrow button 48
Downloads page 35
drag and drop 480
draw on control 581
draw shapes 684
DrawArc method of class 

Graphics 703
DrawArcs.vb 703
DrawEllipse method of class 

Graphics 549, 700, 701
drawing a line 699
drawing a rectangle 699
drawing an oval 699
DrawLine method of class 

Graphics 699
DrawLines method of class 

Graphics 705
DrawPie method of class 

Graphics 549, 703
DrawPolygon method of class 

Graphics 705
DrawPolygons.vb 705
DrawRectangle method of 

class Graphics 549, 700, 
701

DrawShapes.vb 709
DrawStars.vb 712
DrawString method of Class 

Graphics 691
DrawString method of class 

Graphics 695
drop-down list 477, 545
DropDown style for ComboBox

547
DropDownList class 1007
DropDownList style for Com-

boBox 547
DropDownStyle property of 

class ComboBox 546, 547
DSSSL (Document Style and 

Semantics Specification 
Language) 16

DTD (Document Type Definition) 
860, 862

.dtd file extension 862
DTD for a business letter 861
DTD repository 866
dummy value 114
duplicate elimination 1168
duplicate of datagram 1110

duration 202
dynamic content 10
dynamic data structures 1137
dynamic help 44
Dynamic Help window 44
dynamic link library 339
dynamic link library (.dll) 84
Dynamic Link Library (DLL) 22, 

1332, 1334, 1338, 1339
dynamic memory allocation 1139, 

1140

E
E formatting code 154
e-mail (electronic mail) 14
EagleEyes 1241
EBNF (Extended Backus-Naur 

Form) grammar 861
echo a packet back to a client 1110
ECMA (European Computer 

Manufacturer’s Association) 
18

ECMAScript 969
Edit menu 38
Edit menu in Internet Explorer 87
editable list 547
efficient (Unicode design basis) 

1322
Eiffel progamming language 19
eights position 1268
eLance.com 1291
electronic devices with two stable 

states 753
electronic mail (e-mail) 14
element 247, 1345
!ELEMENT element 861
element of chance 206
element type declaration 861
elements 835
ElementType 866
eliminate resource leak 453
ellipsis button 50
Else keyword 104
ElseIf keyword 106
eltOnly attribute 867
emacs text editor 1346, 1401
Emacspeak 1208
e-mail (electronic mail) 1099, 

1411
e-mail anchor 1352, 1411
embedded parentheses 76
employee 396
empty element 839, 1413, 1415
EMPTY keyword 862
Enabled property 487

EnableSession property of a 
WebMethod attribute 1056

EnableSessionState
attribute 947

EnableViewState attribute 
947, 978

encapsulate 297
encoding 1321
encoding declaration 1234
encoding scheme 28
encrypt 1012
end of data entry 114
end-of-file marker 755
end of session message 1235, 

1238
End Select statement 157
End Sub 64
end tag 835, 1403
EndsWith method of class 

String 641
enqueue operation of queue 335, 

1156
EnsureCapacity method of 

class StringBuilder
653

Enter (or Return) key 46, 65, 70
Enter method of class Monitor

602, 609, 616, 617, 619
entity

&amp; 862
&lt; 862

entity reference 862, 1415
entry point 304
entry point of a control structure 

172
entry point of a program 64
entry point of control structure 100
entry-level position 1281
Enum keyword 214
<enumerate> tag (

<enumerate>…
</enumerate>) 1233

enumeration 214
enumerator 1185
envelope (SOAP) 16
environment variable 1375
equal likelihood 207
Equality and relational operators 

79
equality operator (=) 78
Equals method of class String

639, 641
Equation.vb 1082
Error constant 151
error-processing code 443



1486 Index 

Error property of class Con-
sole 755

ErrorMessage property 971
ErrorMessage property in a 

Web Form 1012
escape character 910
European Computer 

Manufacturer’s Association 
(ECMA) 18

event 24, 191, 480
event argument 485
event driven 480
event-driven process 687
event-driven programming 2
event handler 191, 192, 217, 222, 

480, 1238
event handler, create 485
event handler, documentation 485
event handling model 480
event multicasting 485
event procedure 184
events at an interval 581
eWork® Exchange 1291
examination-results problem 122
Examples 837

A binary seach tree 1167
A picture with links anchored 

to an image map 1386
A portion of a Shape class 

hierarchy 354
Abstract CShape base class 

400
Abstract data type 

representing time in 24-hour 
format 299

ActiveX COM control 
integration in Visual Basic 
.NET 1335

Add Reference dialog 86
Adding a reference to an 

assembly in the Visual Studio 
.NET IDE 86

Adding a Web service 
reference to a project 1045

Addition program that adds 
two numbers entered by the 
user 70
Addition.vb 1339
AdRotatorInforma-
tion.xml 967

Airline Reservation Web 
service 1066

Anchoring demonstration 489
Animation of a series of 

images 717

Append methods of class 
StringBuilder 655

Applying rule 3 of Fig. 5.25 to 
the simplest flowchart 174

Arc Method demonstration 
703

Arithmetic operators 75
Array class demonstration 

1176
ArrayReference-
Test.vb 265

ASCX code for the header 
1007

ASMX file rendered in 
Internet Explorer 1033

ASPX file that allows a user to 
select an author from a drop-
down list 1013

ASPX file that takes ticket 
information 1069

ASPX listing for the 
guestbook page 999

ASPX page that displays the 
Web server’s time 946

ASPX page with tracing 
turned off 1020
AssemblyTest.vb 339
Assignment operators 111
Attempting to access restricted 

class members results in a 
syntax error 307
Average1.vb 112
Binary search of a sorted array 

276
Binary search tree containing 

12 values 1160
Binary tree graphical 

representation 1160
Binary tree stores nodes with 
IComparable data 1171
BinarySearchTest.vb

276
BizTalk terminologies 877
Blackjack game that uses 
Blackjack Web service 
1057
Blackjack Web service 

1054
Blackjack.vb 1057
Blackjack-
Service.asmx.vb 1054

Bubble sort using delegates 
433

Bubble-sort Form application 
435

BubbleSort procedure in 
modBubbleSort 268
BubbleSort.vb 268
BubbleSortTest.vb 269
Business letter DTD 861
Buttons for message dialogs 

151
ByRefTest.vb 201
CallXML example that reads 

three ISBN values 1235
CBoss class inherits from 

class CEmployee 411
CCard class 663
CCircle class contains an x-

y coordinate and a radius 358
CCircle2 class that inherits 

from class CPoint 362
CCircle2 class that inherits 

from class CPoint2 403
CCircle3 class that inherits 

from class CPoint2 365
CCircle3 class that inherits 

from class CPoint3 427
CCircle4 class that inherits 

from class CPoint but does 
not use Protected data 
369
CCircle5 class inherits from 

class CPoint3 and 
overrides a finalizer method 
379
CCommissionWorker

class inherits from class 
CEmployee 412
CCylinder2 class inherits 

from class CCircle2 404
CCylinder3 class inherits 

class CCircle3 429
CDay class encapsulates day, 

month and year information 
321
CEmployee class 

encapsulates employee name, 
birthday and hire date 323
CEmployee2 class objects 

share Shared variable 328
CEmployee3 class object 

modifies Shared variable 
when created and destroyed 
336
CEmployee3 class to store in 

class library 336
Changing a property in the 

code view 132
Changing a property in the 

code view editor 132



Index 1487

Changing a property value at 
runtime 134
CheckedListBox and a 
ListBox used in a program 
to display a user selection 
544

Chess-game code 720
ChessGame.vb 720
ChessPiece.vb 718
CHourlyWorker class 

inherits from class CEm-
ployee 416
CityWeather.vb 1076
Class that stores equation 

information 1082
Class that stores weather 

information about a city 1076
Class using Me reference 325
Class-average program with 

counter-controlled repetition 
112

Class-average program with 
sentinel-controlled repetition 
117
ClassAverage2.vb 117
Client portion of a client/

server stream socket 
connection 1104

Client portion of 
connectionless client/server 
computing 1112

Client side of client/server Tic-
Tac-Toe program 1122
Client.vb 1077
Code generated by the IDE for 
lblWelcome 130

Code-behind file for a page 
that updates the time every 
minute 948

Code-behind file for page 
demonstrating the 
AdRotator class 965

Code-behind file for the guest 
book application 1001

Code-behind file for the log in 
page for authors application 
1007

Code-behind file for the page 
that allows a user to choose 
an author 1014

Code-behind file for the 
reservation page 1070

Code-behind file for the word 
generator page 972

Color value and alpha 
demonstration 689

ColorDialog used to 
change background and text 
color 692

COM DLL component in 
Visual Basic.NET 1339
ComboBox used to draw a 

selected shape 547
Comparison.vb 80
Complex XHTML table 1430
Composition demonstration 

324
Computing the sum of the 

elements of an array 252
Concat Shared method 

648
Const and ReadOnly class 

members 333
ConstAndReadOnly.vb

333
Consumer reads Integers

from synchronized shared 
buffer 612

Consumer reads Integers
from unsynchronized shared 
buffer 606

Consumer reads Integers in 
synchronized, circular buffer 
624
contact.html 1351, 1356, 

1410, 1415
Container class for chess 

pieces 718
Cookies getting created in an 

ASP .NET Web application 
983

Cookies recieved in an ASP 
.NET Web application 987

Counter-controlled repetition 
with the For/Next structure 
146

Counter-controlled repetition 
with the While structure 146
CPieceWorker class 

inherits from class CEm-
ployee 414
CPlayer class represents a 

Tic-Tac-Toe player 1119
CPoint class represents an x-

y coordinate pair 355, 390
CPoint2 class inherits from 
MustInherit class 
CShape 401
CPoint2 class represents an 

x-y coordinate pair as Pro-
tected data 364

CPoint3 base class contains 
constructors and finalizer 378
CPoint3 class implements 

interface IShape 426
CRandomAccessRecord

class represents a record for 
random-access file-
processing applications 791
CreateArray.vb 250
Creating a Console Appli-
cation with the New 
Project dialog 65

Creating an array 250
Creating variable-length 

parameter lists 287
CRecord class represents a 

record for sequential-access 
file-processing applications 
770
CTest class tests the CEm-
ployee class hierarchy 417
CTest2 demonstrates 

polymorphism in Point-
Circle-Cylinder hierarchy 
406
CTest3 uses interfaces to 

demonstrate polymorphism 
in Point-Circle-Cylinder 
hierarchy 431
CTransaction class 

handles record transactions 
for the transaction-processor 
case study 808
Cylinder class inherits from 

class CCircle4 and Over-
rides method Area 373

Database access and 
information display 913

Database modification 
demonstration 923

Debug sample program 1304
DebugClass.vb 1314
DebugExample.vb 1304
Debugging a class. 1314
Default namespaces 

demonstration 841
Demonstrates function 

debugging. 1312
Demonstrating keyboard 

events 514
Demonstrating logical 

operators 168
Demonstrating order in which 

constructors and finalizers 
are called 381



1488 Index 

Demonstrating the While
repetition structure 107

Demonstrating XML 
namespaces 839

Demonstration of methods that 
draw lines, rectangles and 
elipses 700

Dialog displayed by calling 
MessageBox.Show 85
DiceModule.vb 231
DiceModuleTest.vb 232
Displaying text in a dialog 83
DisplayLogo.vb 714
Do Until/Loop repetition 

structure demonstration 109
Do Until/Loop repetition 

structure flowchart 110
Do While/Loop repetition 

structure demonstration 108
Do While/Loop repetition 

structure flowchart 109
Do/Loop Until repetition 

structure flowchart 161
Do/Loop While repetition 

structure 159
Do/Loop While repetition 

structure flowchart 160
DOM structure of an XML 

document illustrated by a 
class 846
DoUntil.vb 109
DoWhile.vb 108, 159
DrawArcs.vb 703
DrawPolygons.vb 705
DrawShapes.vb 709
DrawStars.vb 712
DTD for a business letter 861
Equality and relational 

operators 79
Equation.vb 1082
Exception handlers for 
FormatException and 
DivideByZero-
Exception 447
Exception properties and 

demonstrating stack 
unwinding 462

Exception thrown when 
removing node from empty 
linked list 1145

Executing the program of Fig. 
3.1 68, 85
Exit keyword in repetition 

structures 162
ExitTest.vb 162

Exponentiation using an 
assignment operator 111
Factorial.vb 220
Fibonacci.vb 222
Finally statements always 

execute, despite whether an 
exception occurs 454

First program in Visual Basic 
63

Flowcharting a double-
selection If/Then/Else
structure 105

Flowcharting a single-
selection If/Then structure 
103
Font and FontStyles 695
FontFamily class used to 

obtain font metric 
information 697
For/Next repetition structure 

148
For/Next repetition structure 

flowchart 149
For/Next structure used for 

summation 150
For/Next structure used to 

calculate compound interest 
152
ForCounter.vb 146
ForEach.vb 288
Form including radio buttons 

and drop-down lists 1439
Form including textareas, 

password boxes and 
checkboxes 1376
form.html 1433
form2.html 1436
form3.html 1439
Formatting codes for 
Strings 154

Framed Web site with a nested 
frameset 1393, 1455
FrmBankUI class is the base 

class for GUIs in our file-
processing applications 767
FrmCreateRandomAc-
cessFile class create files 
for random-access file-
processing applications 794
FrmCreateSequentia-
lAccessFile class creates 
and writes to sequential-
access files 772
FrmCreditInquiry class 

is a program that displays 
credit inquiries 783

FrmDeleteDialog class 
enables users to remove 
records from files in 
transaction-processor case 
study 825
FrmFileSearch class uses 

regular expressions to 
determine file types 762
FrmFileTest class tests 

classes File and Direc-
tory 759
FrmHashTableTest.vb

1190
FrmNewDialog class 

enables users to create 
records in transaction-
processor case study 816
FrmReadRandomAccess-
File class reads records 
from random-access files 
sequentially 802
FrmReadSequential-
AccessFile class reads 
sequential-access file 779
FrmSquareRoot class 

throws an exception if an 
error occurs when calculating 
the square root 466
FrmStartDialog class 

enables users to access dialog 
boxes associated with various 
transactions 813
FrmTransactionProc-
essor class runs the 
transaction-processor 
application 812
FrmUpdateDialog class 

enables users to update 
records in transaction-
processor case study 819
FrmWriteRandom-
AccessFile class writes 
records to random-access 
files 798
Function procedure for 

squaring an integer 188
FunctionDebug-
Example.vb 1312
Generator.asmx.vb

1085
Generator.aspx 970
GetHashCode method 

demonstration 643
Graphical user interface for 

class CTime3 318



Index 1489

Header elements h1 through 
h6 1349, 1407
header.html 1349, 1407
hello.xml 1234
Hierarchical boss method/

worker method relationship 
185
Histogram.vb 256
HugeInteger Web service 

1038
HugeInteger.asmx.vb

1038
IDE showing program code for 

a simple program 129
IDE with an open console 

application 66
If/Then single-selection 

structure flowchart 103
If/Then/Else double-

selection structure flowchart 
105

Image resizing 714
Image with links anchored to 

an image map 1446
Important methods of class 
HttpCookie 989
index.html 1450
index2.html 1455
Inheritance examples 352
Inheritance hierarchy for 

university CCommuni-
tyMembers 353
InitArray.vb 251
Initializing array elements two 

different ways 251
Initializing element arrays 

three different ways 251
Initializing multidimensional 

arrays 281
InsertAtBack graphical 

representation 1149
InsertAtFront graphical 

representation 1148
Inserting special characters 

into HTML 1356
Inserting special characters 

into XHTML 1415
IntelliSense feature of the 

Visual Studio .NET IDE 68
Interest.vb 152
Internet Explorer window with 

GUI components 87
Invoking the Object Brows-
er from the development 
environment 342
isbn.xml 1235

IShape interface provides 
methods Area and Volume
and property Name 426
JaggedArray.vb 283
Keywords in Visual Basic 101
LabelScrollBar.vb

1335
letter.xml 837
LinearSearch.vb 272
LinearSearchTest.vb

272, 273
LinesRectangles-
Ovals.vb 700

Linked-list CList class 1142
Linked-list demonstration 

1146
Linked-list graphical 

representation 1141
Linking to an e-mail address 

1410
Linking to an email address 

1351
Linking to other Web pages 

1350, 1408
LinkLabels used to link to 

a folder, a Web page and an 
application 536
links.html 1350, 1358, 

1408, 1443
list.html 1359, 1418
List.vb 1142
ListBox on an ASPX page 

986
ListBox used in a program 

to add, remove and clear 
items 540

Listing for namespace.xml
839
ListNodes.vb 1141
ListTest.vb 1146
ListView displaying files 

and folders 557
Literals with type characters 

199
Log in Web Form 1005
Logical operator truth tables 

168
LogicalOperator.vb

168
LogoAnimator.vb 717
LoopUntil.vb 160
main.html 1347, 1402, 

1448
main.vxml 1227
Manipulating the size of a 
StringBuilder 653

Math tutor application 1087
Maximum.vb 190
MDI child FrmChild 575
MDI parent window class 572
Me reference demonstration 

326
Memory location showing 

name and value of variable 
number1 74

Menus used to change text font 
and color 528

Message dialog button 
constants 151

Message dialog icon constants 
151

Method FrmASimple-
Program_Load 133

Method that determines the 
largest of three numbers 190
MethodOverload2.vb

228
MethoOverload.vb 226
Miscellaneous String

methods 649
modCircleTest

demonstrates class CCir-
cle functionality 360
modCircleTest3

demonstrates class 
CCircle3 functionality 
367
modCircleTest4

demonstrates class 
CCircle4 functionality 
371
modPointTest

demonstrates class CPoint
functionality 357

Module used to define a group 
of related procedures 231
Multidimensional
Arrays.vb 281
MustInherit class CEm-
ployee definition 410
nav.html 1354, 1413, 1453
Nested and ordered lists in 

HTML 1359
Nested and ordered lists in 

XHTML 1418
Nested control structures used 

to calculate examination 
results 122

Nested repetition structures 
used to print a square of *s
126



1490 Index 

New Text property value 
reflected in design mode 132

News article formatted with 
XML 834

Object Browser when user 
selects Object from 
development environment 
343

Obtaining documentation for a 
class using the Index dialog 
85
Optional argument 

demonstration with method 
Power 229

Options supplied on an ASPX 
page 981, 989

Order in which a second-
degree polynomial is 
evaluated 79
OverflowException

cannot occur if user disables 
integer-overflow checking 
468

Overloaded methods 226
Overloaded-constructor 

demonstration 312
Overloading constructors 309
ParamArrayTest.vb 287
Parameter Info and Parameter 

List windows 68
PassArray.vb 261
Passing an array reference 

using ByVal and ByRef
with an array 265

Passing arrays and individual 
array elements to procedures 
261

Paths used to draw stars on a 
form 712
Payment.vb 185
Performing comparisons with 

equality and relational 
operators 80

Picture with links anchored to 
an image map 1386
picture.html 1352, 1411, 

1446
Placing images in HTML files 

1352
Placing images in XHTML 

files 1411
Polygon drawing 

demonstration 705
Power.vb 229
Precedence and associativity 

chart 169

Precedence and associativity 
of operators introduced in 
this chapter 82

Precedence of arithmetic 
operators 76
PrintSquare.vb 126
Procedures for performing a 

linear search 272
Producer and consumer 

threads accessing a circular 
buffer 625

Producer and consumer 
threads accessing a shared 
object with syncronization 
613

Producer and consumer 
threads accessing a shared 
object without 
syncronization 608

Producer places Integers in 
synchronized shared buffer 
612

Producer places Integers in 
synchronized, circular buffer 
623

Producer places Integers in 
unsynchronized shared 
buffer 605

Program that prints histograms 
256

Program to display hidden text 
in a password box 493

Properties in a class 314
Properties window used to 

set a property value 131
Publication page of 
Deitel’s VoiceXML 
page 1229
publications.vxml

1229
Quantifiers used in regular 

expressions 670
Queue implemented by 

inheritance from class 
CList 1157

Queue-by-inheritance test 
1158
QueueInheritance.vb

1157
QueueTest.vb 1158
Random class used to 

simulate rolling 12 six-sided 
dice 211
RandomInt.vb 208
Recursive calls to method Fi-
bonacci 224

Recursive evaluation of 5! 219
Recursive factorial program 

220
Recursively generating 

Fibonacci numbers 222
Regex methods Replace

and Split 675
Regular expressions checking 

birthdays 668
RemoveFromBack

graphical representation 
1151
RemoveFromFront

graphical representation 
1150

Renaming the program file in 
the Properties window 66

Repeatedly applying rule 2 of 
Fig. 5.25 to the simplest 
flowchart 173

Replacing text with class 
StringBuilder 659
Reservation.asmx.vb

1066
RollDie.vb 209, 257
RollDie2.vb 211
Scoping rules in a class 204
Searching for characters and 

substrings in Strings 644
Second refinement of the 

pseudocode 126
Select Case multiple-

selection structure flowchart 
158
Select Case structure used 

to count grades 155
SelectTest.vb 155
Self-referential class CList-
Node 1141

Self-referential class objects 
linked together 1139

Self-referential CNode class 
definition 1138

Sequence structure flowchart 
100

Server portion of a client/
server stream socket 
connection 1101

Server side of client/server 
Tic-Tac-Toe program 1116

Server-side portion of 
connectionless client/server 
computing 1110

Service description for a Web 
service 1034



Index 1491

Session information displayed 
in a ListBox 995

Sessions created for each user 
in an ASP .NET Web 
application 991

Shapes drawn on a form 709
Shared class member 

demonstration 330
Shared method Concat

648
ShowColors.vb 689
ShowColorsComplex.vb

692
Simple Class Library project 

338
Simple form with hidden fields 

and a text box 1433
Simple student-poll analysis 

program 254
Simple Visual Basic program 

63
Simplest flowchart 173
SOAP request message for the 
HugeInteger Web service 
1036

Sorting an array with bubble 
sort 269

SQL statements executed on a 
database 921
SquareInteger.vb 188
Stack class demonstration 

1185
Stack implementation by 

inheritance from class 
CList 1153

Stack-by-composition test 
1155

Stack-by-inheritance test 1154
StackComposition.vb

1155
Stacked, nested and 

overlapped building blocks 
175
StackInheritance.vb

1153
StackTest.vb 1185
String 635
String Length property, 

the CopyTo method and 
StrReverse function 637
String methods Replace,
ToLower, ToUpper and 
Trim 649
String testing for equality 

639

StringBuilder class 
constructor 651
StringBuilder size 

manipulation 653
StringBuilder text 

replacement 659
StringBuilder’s
AppendFormat method 
656

Structured programming rules 
172
StudentPoll.vb 254
Sub procedure for printing 

payment information 185
Substrings generated from 
Strings 647
Sum.vb 150
SumArray.vb 252
Synchronized shared circular 

buffer 620
Synchronized shared Inte-
ger buffer 610

Syntax error generated from 
overloaded methods 228
TabControl used to display 

various font settings 564
Table optimized for screen 

reading using attribute head-
ers 1223
table1.html 1427
table2.html 1430
TemperatureServ-
er.asmx.vb 1073

Testing class CCylinder
375

Testing the modDice
procedures 232

Thread life cycle 595
Threads sleeping and printing 

600
ThreadStart delegate 
Print displays message and 
sleeps for arbitrary duration 
of time 598
TicketReserva-
tion.aspx 1069
TicketReserva-
tion.aspx.vb 1070

Tree data structure 1163
Tree node contains ICompa-
rables as data 1169

Tree structure for Fig. 18.1 
842
Tree.vb 1163
Tree2.vb 1171
Tree-node data structure. 1162

TreeNode.vb 1162
TreeNode2.vb 1169
TreeTest.vb 1166
TreeTest2.vb 1173
Tree-traversal demonstration. 

1166
TreeView used to display 

directories 553
Truth table for the AndAlso

operator 165
Truth table for the OrElse

operator 166
Truth table for the Xor

(logical exclusive OR) 
operator 167
Tutor.vb 1087
Unordered lists in HTML 1358
Unordered lists in XHTML 

1417
Unstructured flowchart 175
Unsynchronized shared In-
teger buffer 604
UserControl defined clock 

581
Using <META> and <DOC-
TYPE> 1388

Using a PictureBox to 
display images 508

Using an abstract data type 
303

Using arrays to eliminate a 
Select Case structure 257

Using CheckBoxes to change 
font styles 498

Using default namespaces 841
Using For Each/Next
with an array 288

Using GroupBoxes and 
Panels to arrange Buttons
496

Using images as link anchors 
1354, 1413

Using internal hyperlinks to 
make your pages more 
navigable 1383, 1443

Using jagged two-dimensional 
arrays 283

Using meta to provide 
keywords and a description 
1448

Using overloaded constructors 
312

Using RadioButtons to set 
message-window options 
502



1492 Index 

Using temperature and 
weather data 1077

Using the HugeInteger
Web service 1049
UsingArray.vb 1176
UsingFontMetrics.vb

697
UsingFonts.vb 695
UsingHugeInteger-
Service.vb 1049

Validating user information 
using regular expressions 670

Viewing the tracing 
information for a project 
1021

Visual Basic console 
application 66

Visual Basic’s single-entry/
single-exit repetition 
structures 171

Visual Basic’s single-entry/
single-exit sequence and 
selection structures 170

Web service that generates 
random equations 1085

Web site using two frames: 
navigational and content 
1390, 1450
WebTime.aspx.vb 948
While repetition structure 

flowchart 107
While repetition structure 

used to print powers of two 
107
While.vb 107
WhileCounter.vb 146
Windows Form Designer 

generated code expanded 130
Windows Form Designer 

generated code reflecting 
new property values 132
withheaders.html 1223
withoutheaders.html

1222
XHTML document displayed 

in the left frame of Fig. 5.9. 
1453

XHTML table 1427
XHTML table without acces-

sibility modifications 1222
XML document containing 

book information 871
XML document that describes 

various sports 859
XML document using 

Unicode encoding 1326

XML file containing AdRo-
tator information 967

XML namespaces 
demonstration 839

XML representation of a 
DataSet written to a file 
932

XML to mark up a business 
letter 837

XML used to mark up an 
article 834

XML Validator displaying an 
error message 865

XML Validator used to 
validate an XML document 
864
XmlNodeReader used to 

iterate through an XML 
document 843
XPathNavigator class 

used to navigate selected 
nodes 852

XSL document that transforms 
sorting.xml into 
XHTML. 872

XSL style sheet applied to an 
XML document 875

exception 23, 256, 442
Exception class 445, 450, 458, 

459
exception for invalid array 

indexing 256
exception handler 442, 445, 451
Exception handlers for Forma-

tException and Di-
videByZeroException
447

Exception library class 23
Exception properties and 

demonstrating stack 
unwinding 462

Exception thrown when removing 
node from empty linked list 
1145

exception thrown within a Syn-
cBlock 619

Exclamation constant 151
exclusive OR operator (Xor) 164, 

167
.exe file 67
ExecuteNonQuery property of 

OleDbCommand 932
Execution of the Welcome1

program 68, 72, 85
execution stack 1152
exhaust free memory 594

exhausting memory 221
Exists method of class Direc-

tory 758
Exit Do 162
Exit For 162
Exit keyword 21, 162
Exit method of class Applica-

tion 533, 542
Exit method of class Environ-

ment 1109
Exit method of class Monitor

602, 609, 616, 617, 619
exit point of control structure 100, 

172
Exit Sub statement 187, 188
<exit> tag (<exit>…</ex-

it>) 1233
Exit While 162
ExitTest.vb 162
Exp method of class Math 194
Expand method of class TreeN-

ode 552
expand node 550
expand tree 40
ExpandAll method of class 

TreeNode 552
expanded code 129
Experience.com 1293
Expires property of Http-

Cookie class 980, 989
explicit conversion 197
explicit relationships between data 

835
exponential “explosion” of calls 

225
exponential method 194
exponentiation 194
exponentiation assignment 

operator (^=) 111
Exponentiation using an 

assignment operator 111
exposing a Web service method 

1032
expression 1307
Extended Backus-Naur Form 

(EBNF) grammar 861, 865
extensibility 16
Extensible HyperText Markup 

Language (XHTML) 15, 26, 
29, 870, 1401

extensible language 303
Extensible Linking Language 

(XLink) 16
Extensible Markup Language 

(XML) 15, 1033



Index 1493

Extensible Stylesheet Language 
(XSL) 16, 839, 870

Extensible Stylesheet Language 
Transformation (XSLT) 26

external DTD 862
external help 45
External Help option 45
Extra Keyboard Help 1248

F
F formatting code 154
F1 help key 45, 1303
factorial 180, 218, 219
Factorial.vb 220
fail.xml 869

falsity 78
fatal logic error 103
fault-tolerant program 442
FCL (Framework Class Library) 

18, 20, 27, 82
Fibonacci series 221, 224
Fibonacci.vb 222
field 754, 889, 890
FIFO (first-in, first-out) 335
file 754
file as a collection of bytes 754
File class methods (partial list) 

757
File menu 38
File menu in Internet Explorer 87
File Name property 65
file opening in Windows 535
file-position 783
file-position pointer 783
file processing 753
file synchronization 18
FileAccess enumeration 777
FileName property of class Ax-

MediaPlayer 731
file-processing programs 756
files 753
FileStream class 756, 777, 783
Fill method of class Graphics

713
Fill method of OleDbAdapt-

er 920
<filled> tag (<filled>…

</filled>) 1233
FillEllipse method of class 

Graphics 549, 700, 701
FillPie method of class 

Graphics 549, 703
FillPolygon method of class 

Graphics 705

FillRectange method of class 
Graphics 549

FillRectangle method of 
class Graphics 691, 701

FillRectangles method of 
class Graphics 700

filter 84
final value of control variable 145, 

146, 148, 149, 161
finalizer 326
Finally block 445, 453
Finally statements always 

execute, regardless of 
whether an exception occurs 
454

find 38
firewall 1036
First program in Visual Basic 63
first refinement 120, 124
first-in, first-out (FIFO) 335, 1156
FirstNode property of class 

TreeNode 551
five-pointed star 712
fixed-length records 790
flag value 114
FlipDog.com 1282
floating-point number 119
floating-point data type 198
floating-point number 118
Floor method of class Math 194
flow of control 88, 107, 118, 161
flowchart 21, 99, 103
flowchart of For/Next structure 

149
flowchart reducible to the simplest 

flowchart 173
FlowLayout 955
flowline 99, 103
Focus method 488
Focused property 488
font 685, 694
Font class 684, 695
font control 694
font descent 697
Font dialog 50
font height 697
font leading 697
font manipulation 686
font metrics 697
font name 695
Font property 50, 488, 499
font size 50, 695
Font Size dialog 1242
font style 50, 498, 695
Font window 51
FontFamily class 685, 697

FontFamily property of class 
Font 694

FontStyle enumeration 695
For Each/Next repetition 

structure 100
For Each/Next structure 174, 

288
For/Next header 148
For/Next header components 

148
For/Next repetition structure 

100
For/Next repetition structure 

flowchart 149
For/Next structure 21, 146, 147, 

148, 149, 153, 171, 174
For/Next structure used for 

summation 150
For/Next structure used to 

calculate compound interest 
152

ForCounter.vb 146
For-Each logic 407
ForEach.vb 288
ForeColor property 488
foreign key 896
</FORM> 1376
<form> tag (<form>…

</form>) 1228
<form> tag (<form>…

</form>) 1233
form 37, 478, 1368, 1373, 1427, 

1432
Form array 975
form background color 48
Form class 128, 479
Form Close method 479
form element 1375, 1433
Form including textareas, 

password boxes and 
checkboxes 1376

form input 1383
Form properties, methods and 

events 479
Form property 

IsMdi_Container 567
form title bar 46
Form1.vb 54
format 73
format attribute 1239
format control string 302
Format menu 38
Format method of String 302
format string 657
FormatException class 446, 

449



1494 Index 

formation of structured programs 
172

formatting code 153
Formatting codes for Strings

154
forms 1012
forms authentication 1012
FormsAuthentication class 

1012
FORmula TRANslator (Fortran) 

10
Fortran 1401
Fortran (FORmula TRANslator) 

10
Fortran progamming language 19
forward slash character (/) 835, 

1413
ForwardDiagonal member of 

enumeration LinearGra-
dientMode 709

frame 1225, 1390, 1449
frame element 1392, 1453
Framed Web site with a nested 

frameset 1393, 1455
frameset document type 1450
frameset element 1391, 1392
Framework Class Library (FCL) 

18, 20, 27, 82
FreeBSD operating system 18
Freedom Scientific 1240
Friend member access 354
FrmBankUI class is the base 

class for GUIs in our file-
processing applications 767

FrmCreateRandom-
AccessFile class create 
files for random-access file-
processing applications 794

FrmCreateSequentialAc-
cessFile class creates 
and writes to sequential-
access files 772

FrmCreditInquiry class is a 
program that displays credit 
inquiries 783

FrmDeleteDialog class 
enables users to remove 
records from files in 
transaction-processor case 
study 825

FrmDiceModuleTest 232
FrmDiceStatistics 211
FrmFibonacci 222
FrmFileSearch class uses 

regular expressions to 
determine file types 762

FrmFileTest class tests classes 
File and Directory 759

FrmHashTableTest.vb 1190
FrmNewDialog class enables 

users to create records in 
transaction-processor case 
study 816

FrmOverload 226
FrmRandomDice 209
FrmReadRandomAccess-

File class reads records 
from random-access files 
sequentially 802

FrmReadSequentialAc-
cessFile class reads 
sequential-access file 779

FrmSquareRoot class throws 
an exception if an error 
occurs when calculating the 
square root 466

FrmStartDialog class enables 
users to access dialog boxes 
associated with various 
transactions 813

FrmTransaction-
Processor class runs the 
transaction-processor 
application 812

FrmUpdateDialog class 
enables users to update 
records in transaction-
processor case study 819

FrmWriteRandomAccess-
File class writes records to 
random-access files 798

FROM 897, 901, 902, 903, 904
FromArgb method of structure 

Color 688
FromImage method of class 

Graphics 711
FromName method 688
FullName property 561
FullPath property of class 

TreeNode 551
fully qualified name 905
Function procedure 184, 188
Function procedure for 

squaring an integer 188
functionalization 3
FunctionDebug-

Example.vb 1312
Futurestep.com 1288

G
G formatting code 154

G property of structure Color 688
gallery.yahoo.com 1411
game playing 206
game-playing program 206
games.xml 859, 859
garbage collection 326, 452, 594
garbage collector 326, 377, 636
garbage-collector thread 594
Gates, Bill 8
GC namespace of System 330
GDI+ (Graphics Device 

Interface+) 25, 684
general path 712
Generator.asmx.vb 1085
Generator.aspx 970
Genie Microsoft Agent

character 731
Get accessor 307
Get method of Property 318
get request type 1239, 1434
Get Started page 34
GetCellAscent method of 

class FontFamily 697
GetCellDescent method of 

class FontFamily 697
GetCreationTime method of 

class Directory 758
GetCreationTime method of 

class File 757
GetCurrentDirectory

method 208, 510
getDigits element 1237, 1238
GetDirectories method of 

class Directory 553, 758
GetDirectories method of 

class DirectoryInfo
561

GetEmHeight method of class 
FontFamily 697

GetEnumerator method of 
ArrayList 1185

GetEnumerator method of 
Hashtable 1195

GetFiles method of class Di-
rectory 758

GetFiles method of class Di-
rectoryInfo 561

GetHashCode method 
demonstration 643

GetHashCode method of class 
Object 1190

GetHashCode of class String
643

GetItemChecked method of 
class CheckedListBox
543



Index 1495

GetLastAccessTime method 
of class Directory 758

GetLastAccessTime method 
of class File 757

GetLastWriteTime method 
of class Directory 758

GetLastWriteTime method 
of class File 757

GetLineSpacing method of 
class FontFamily 697

GetNodeCount method of class 
TreeNode 552

GetSelected method of class 
ListBox 539

GetStream method of class 
Socket 1100

GetUpperBound method of 
class System.Array 248

GetXml method of DataSet
932

GIF (Graphic Interchange Format) 
51

global variable 327, 1235
Globally Unique Identifier 

(GUID) 1337
glyph 1323
golden mean 221
golden ratio 221
Goldfarb, Charles 880
Good Programming Practice 12
Gosling, James 9
goto element 1239
GoTo elimination 99
GoTo-less programming 99
GoTo statement 99
<goto> tag (<goto>…

</goto>) 1233
<grammar> tag (

<grammar>…
</grammar>) 1233

graph information 257
Graphic Interchange Format (GIF) 

51
graphical representation of an 

algorithm 99
Graphical User Interface (GUI) 

37, 87
graphical user interface (GUI) 24

(GUI) graphical user interface 
476

Graphical user interface for class 
CTime3 318

graphics 684
Graphics class 549, 684, 686, 

695, 699, 711, 712, 713
graphics context 686

Graphics Device Interface+ 
(GDI+) 25, 684

Graphics Interchange Format 
(GIF) 1411

Graphics property of class 
PaintEventArgs 581

GraphicsPath class 712
GraphicsUnit structure 695
Gray Shared property of 

structure Color 688
greedy quantifier 670
Green project 9
Green Shared property of 

structure Color 688
grid 54
GridLayout 955
GROUP BY 897
group of related fields 754
GroupBox 494
GroupBox class 214
GroupBox Controls property 

495
GroupBox properties and events 

495
guest book 998
GUI (Graphical User Interface) 37
GUI (graphical user interface) 24, 

87
GUI component 87, 476
GUI component, basic examples 

477
GUID (Globally Unique 

Identifier) 1337
Gunning Fog Index 1209, 1257

H
h1 header element 1349, 1350, 

1406
h6 header element 1349, 1406
HailStorm Web services 18
hardware 3
“has-a” relationship 351
hash code 643
hash table 643
Hashtable class 982, 1081, 

1176, 1190
Haskell progamming language 19
HatchBrush class 689, 709
HatchStyle enumeration 689
head 1403
head element 947, 1348, 1403
head of a queue 1137, 1156
head section 1403
header 1349, 1406
header cell 1370, 1429

header element 1406
header.html 1349, 1407
headers element 27, 1223, 1225
Headhunter.net 1289
Headlines page 35
height attribute 1353, 1411, 

1412
Height property of class Font

694
Hejlsberg, Anders 10
Help menu 38, 44
help‚ context-sensitive 45
help‚ dynamic 44
help‚ external 45
help‚ internal 45
helper method 301, 1163
HelpLink property of Excep-

tion 460
Henter-Joyce 1240, 1257
hex code 1357
hexadecimal (base16) number 

system 180
hexadecimal value 1416
hidden

element 979
field 979

hidden form element 979
hidden input elements 1375
hide an internal data 

representation 335
Hide method 488
Hide of class Form 480
hiding implementation details 184, 

305, 334
Hierarchical boss method/worker 

method relationship 184, 
185

hierarchy 835
hierarchy diagram 352
hierarchy of shapes 396
high-level language 6, 7
Highest ThreadPriority

enumeration member 596
Hire.com 1288
HireAbility.com 1290
Hirediversity.com 1287
histogram 256, 257
Histogram.vb 256
hit count 1309
Hoare, C. A. R. 601
home page 1346
Home Page Reader (HPR) 1209
horizontal coordinate 685
horizontal rule 28, 1417
host 943
hostname 943



1496 Index 

hot key 525
HotDispatch.com 1290
HotJobs.com 1285, 1289
hotspot 1386, 1446
hotwired.lycos.com/

webmonkey/00/50/
index2a.html 1421

HPR (Home Page Reader) 1209
<hr> tag (horizontal rule) 1358, 

1417
hr element 1358, 1417
HREF 1386
href attribute 1351, 1355, 1409, 

1445
.htm (html file extension) 1346
.html (html file name extension) 

1346
.html (XHTML file name 

extension) 1401
<html>…</html> 1345
HTML (Hyper Text Markup 

Language) 943
HTML (HyperText Markup 

Language) 15, 25, 26, 28, 
942, 1345, 1401

form 980, 998
HTML element 1006

HTML comment 1347
HTML document 28
html element 947, 1403
HTML frame 28
HTML-Kit 1346
HTML list 28
HTML recommendation 1346
HTML source code 1346
HTML table 28
HTML tag 943, 1345
HTTP (HyperText Transfer 

Protocol) 16, 20, 943, 979, 
1239

HTTP being used with firewalls 
1036

HTTP GET request 1034
HTTP header 945
HTTP method 944
HTTP POST request 1034
HTTP transaction 944
HttpCookie class 986, 988, 989

Domain property 989
Expires property 989
Name property 988, 989
Path property 989
Secure property 989
Value property 988, 989

HttpCookieCollection 987
HttpSession class 995

SessionID property 995
HttpSessionState 995

Timeout property 995
HttpSessionState class 989, 

991, 994, 995, 998, 1026
Counts property 995
IsNewSession property 

995
IsReadOnly property 995
Keys property 995, 998
SessionID property 995
Timeout property 995

HugeInteger Web service 
1038

HugeInteger.asmx.vb 1038
hyperlink 943, 1350, 1355, 1408
hypertext 943
HyperText Markup Language 

(HTML) 15, 25, 26, 942, 
943, 1401

HyperText Transfer Protocol 
(HTTP) 16, 20, 943, 979

HyTime 16

I
I/O completion 597
IAgentCtlCharacter

interface 743, 744
IAgentCtlUserInput

interface 745
IBM (International Business 

Machines) 5
IBM Corporation 1322
IBM Personal Computer 6
IComparable interface 1168
IComponent interface 478
icon 38
IDE (Integrated Development 

Environment) 8, 21, 24, 34
IDE showing program code for a 

simple program 129
IDE’s toolbox and La-

belScrollbar properties 
1335

identifier 63
identifier’s duration 202
IDictionaryEnumerator

interface 1195
IE (Internet Explorer) 836
IEEE 754 floating-point 199
IEnumerator interface 1185, 

1195
<if> tag (<if>…</if>) 1233

If/Then selection structure 21, 
78, 81, 100, 102, 104, 117, 
155, 170, 173, 175

If/Then single-selection 
structure flowchart 103

If/Then/Else double-selection 
structure flowchart 105

If/Then/Else selection 
structure 100, 104, 155, 170, 
173

ignoring array element zero 255
IIS (Internet Information Services) 

943
image anchor 1383
Image Collection Editor 555
image hyperlink 1355, 1414
image map 28, 1386, 1388, 1447
Image property 51, 52, 508
ImageIndex property of class 

ListViewItem 555
ImageIndex property of class 

TreeNode 551
ImageList class 555
ImageList collection 551
ImageList property of class 

TabControl 564
ImageList property of class 

TreeView 551
images in Web pages 1352, 1411
ImageUrl attribute 967
img element 27, 1208, 1355, 

1388, 1411, 1412, 1414
Immediate window 1308
immutable String 636
implement an interface 425
implementation 298, 305
implementation of a class hidden 

from its clients 305
implementation-dependent code 

305
Implements keyword 421, 425
implicit conversion 72
implicitly NotOverridable

method 408
#IMPLIED flag 862
Important methods of class 

HttpCookie 989
Imports directive 86
Imports keyword 82
Imports statement 87
Impressions attribute 967
In property of class Console

755
Inch member of enumeration 

GraphicsUnit 695
Inclusive Technology 1253



Index 1497

increasing order 268
increment of a For/Next

structure 147
increment of control variable 146, 

148, 149
increment of loop 145
indefinite postponement 597
indefinite repetition 114
indentation convention 102, 104
indentation in If/Then

statements 82
indentation techniques 64, 88
Indenting each level of a nested 

list in code 1361
index 256, 279
Index command 44
Index event of class 

CheckedListBox 544
index of an array 247
Index property of class Menu-

Item 528
index.html 1346
indexer for class Hashtable

1081
IndexOf method of class Array

1179
IndexOf method of class 

ArrayList 1180, 1184
IndexOf method of class 

String 644
IndexOfAny method of class 

String 644
IndexOutOfRange-

Exception class 256, 451
indirect base class 352
infinite loop 108, 159, 161, 221, 

1115
infinite recursion 221
infinity symbol 895
Information constant 151
information hiding 297, 298, 334
information parameter 835
information tier 945
Informix 888
inherit from class Control 581
inherit from Windows Form 

control 581
inherit implementation 440
inherit interface 398, 440
inheritance 22, 298, 299, 306, 350, 

353, 382, 389, 425
Inheritance examples 352
inheritance hierarchy 352, 399
Inheritance hierarchy for 

university CCommunity-
Members 353

inheritance with exceptions 451
inheriting interface versus 

inheriting implementation 
440

Inherits attribute of ASP .NET 
page 947

Inherits keyword 128
Init event 950
InitArray.vb 251
initial set of classes 298
initial value of control variable 

145, 148, 149
initialization phase 117
initialize implicitly to default 

values 308
initialize instance variables 305
initializer 308
initializer list 249, 280
Initializing array elements two 

different ways 251
initializing arrays 249
Initializing element arrays three 

different ways 251
Initializing multidimensional 

arrays 281
initializing two-dimensional 

arrays in declarations 281
inner block 204
inner For structure 257, 282
INNER JOIN 897, 904
inner loop 125
InnerException property of 

Exception 460, 461
innermost pair of parentheses 76
innermost set of parentheses 255
inorder traversal of a binary tree 

1161
<input> 1208
input 37
input 979
input data from the keyboard 477
input device 4
input element 1375, 1376, 1435
INPUT TYPE = "reset" 1376
INPUT TYPE = "submit"

1376
input unit 4
input/output 756
input/output blocking 597
input/output operation 99
input/output request 596
inputting data from the keyboard 

88
INRIA (Institut National de 

Recherche en Informatique 
et Automatique) 15

insert an item into a container 
object 301

INSERT INTO 897, 909
Insert method of class Array-

List 1180
Insert Separator option 526
INSERT statement 909
InsertAtBack graphical 

representation 1149
InsertAtFront graphical 

representation 1148
InsertCommand property of 

OleDbAdapter 920
inserting separators in a menu 526
insertion 1140
insertion point 1140
instance of a built-in type 298
instance of a user-defined type 298
instance variable 301, 314, 324, 

355, 358
“instant-access” application 789
instantiate (or create) objects 298
Institut National de Recherche en 

Informatique et 
Automatique (INRIA) 15

Int32 structure 197
Int32.MaxValue constant 206
integer division assignment 

operator (\=) 111
integer division operator (\) 75
integer mathematics 334
Integer primitive data type 70, 

114
integer value 70
integral data type 198, 468
Integrated development 

environment (IDE) 34
integrated development 

environment (IDE) 8, 21
intelligent agent 1282
IntelliSense 67, 68
IntelliSense feature of the Visual 

Studio .NET IDE 193
interactions among objects 334
interactive animated character 25, 

731
Interest.vb 152
interface 307, 419, 420, 421, 425, 

889
Interface keyword 419, 425
internal data representation 335
internal help 45
Internal Help option 45
internal hyperlink 1445
internal hyperlinks 1386
internal linking 28, 1383, 1443



1498 Index 

internal Web browser 36
International Business Machines 

(IBM) 5
Internet 14, 15
Internet Explorer (IE)

IE (Internet Explorer) 476, 
535, 836, 1401, 1412

Internet Information Services (IIS) 
943

Internet Protocol (IP) 14
Internet Protocol Addresses (IP 

Address) 1098
Internet Service Provider (ISP) 

1375, 1435
Internshipprograms.com

1293
interpreter 7
Interrupt method of class 

Thread 596
Interval property of class 

Timer 581
InterviewSmart™ 1294
intranet 11, 13
Invalidate method of class 

Control 687
InvalidCastException

394, 395
InvalidOperationExcep-

tion 1189
Invoke 1035
invoking a method 194
Invoking a method of a Web 

service from a Web browser 
1035

Invoking the Object Browser
from the development 
environment 342

IP (Internet Protocol) 14
IP Address 1098
IP address 943
IPAddress class 1100
IPEndPoint class 1100
“is-a” relationship 351, 394, 397
Is keyword 158
is-a relationship 425
IsAccessible property of 

class Control 1217, 1221
isbn attribute 874
IsDigit method of class Char

662
IsFull method 301
IShape interface provides 

methods Area and Volume
and property Name 426

IsLetter method of class Char
663

IsLetterOrDigit method of 
class Char 663

IsLower method of class Char
663

IsMdiChild property of class 
Form 569

IsMdiContainer property of 
class Form 567, 569

IsNewSession property of 
HttpSessionState
class 995

ISP (Internet Service Provider) 
1375, 1435

IsPostBack property of class 
Page 975

IsPunctuation method of 
class Char 663

IsReadOnly property of Ht-
tpSessionState class 
995

IsSymbol method of class Char
663

IsUpper method of class Char
663

IsValid property of Server-
ValidateEventArgs
class 1011, 1012

IsWhiteSpace method of class 
Char 663

Italic member of enumeration 
FontStyle 695

Italic property of class Font
694

ItemActivate event of class 
ListView 556

ItemCheck event of class 
CheckedListBox 543

ItemCheckEventArgs event 
of class CheckedList-
Box 543

Items property of class Combo-
Box 546

Items property of class List-
Box 538

Items property of class List-
View 556

ItemSize property of class 
TabControl 564

iteration 125
iteration of a For loop 255
iteration of a loop 145
iterative 221
iterative binary search 275
iterator 400, 1185
iterator class 400

J
J# progamming language 19
Jacopini, G. 99, 173
jagged array 279, 280, 281
JaggedArray.vb 283
Jasc® Paint Shop Pro™ 51
Java Development Kit (Java SDK 

1.3) 1226
JAWS (Job Access with Sound) 

1240, 1257
job 5
jobfind.com 1285
Jobs.com 1286
JobsOnline.com 1289
Join method of class Thread

596, 629
joining tables 896
Joint Photographic Experts Group 

(JPEG) 51, 1411
JPEG (Joint Photographic Experts 

Group) 51
JScript scripting language 20
JSML 1256
JustCJobs.com 1290
JustComputerJobs.com

1290
JustJavaJobs.com 1281, 

1290

K
Keio University 15
Kemeny, John 7
key code 516
key data 516
key event 513
key value 272, 516, 1168
key-value pairs 982
key, modifier 513
keyboard 3, 5, 476
KeyDown event 513
KeyEventArgs properties 513
KeyPress event 513
KeyPressEventArgs

properties 513
Keys property of HttpSes-

sionState class 995, 998
KeyUp event 513
keyword 63, 100, 101
Keywords in Visual Basic 101
Koenig, Andrew 442
Kurtz, Thomas 7

L
label 49, 50, 87, 476, 477, 491



Index 1499

Label class 214, 491
LabelScrollBar.vb 1335
LAN (local area network) 6
language attribute 947
language independence 19
language interoperability 8, 19, 20
LargeImageList property of 

class ListView 556
LastChild property of 

XmlNode 851
last-in, first-out (LIFO) data 

structure 1152
LastIndexOf method of class 

Array 1179
LastIndexOf method of class 

String 644, 646
LastIndexOfAny method of 

class String 644
last-in-first-out (LIFO) 334
LastNode property of class 

TreeNode 551
Latin World 1288
layout control 38
layout window 38
layout, control 487
LayoutMdi enumeration 571, 

572
LayoutMdi method of class 

Form 569, 571
LayoutMdi.ArrangeIcons

571
LayoutMdi.Cascade 571
LayoutMdi.Tile-

Horizontal 571
LayoutMdi.TileVertical

571
lazy quantifier 670
leaf node 1160
leaf node in a binary search tree 

1161
left child 1160
left subtree 1160, 1161, 1201
left-to-right evaluation 78
length of an array 248
Length property of class 248
Length property of class 

String 637, 638
Length property of class 

StringBuilder 652
letter 754
letter.dtd 861, 861
letter.xml 837
level of nesting 1361
level of refinement 115, 117
level-order binary tree traversal 

1168

levels of nesting 125, 172
lexicographical comparison 641
<li> (list item) tag 1359, 1417
lifetime of an identifier 202
LIFO (last-in, first-out) 334
LIKE 899, 900, 903
likelihood 207
line 684
linear collection 1139
linear data structure 1160
linear search 272, 275, 294
LinearGradientBrush class 

689, 709
LinearGradientMode

enumeration 709
linearized 1221
LinearSearch.vb 272
LinearSearchTest.vb 272, 

273
line-continuation character _ 83
LinesRectangles-

Ovals.vb 700
link 1139, 1160
link element in VoiceXML 1229
link for a self-referential class 

1138
link one Web page to another 1383
<link> tag (<link>…

</link>) 1233
LinkArea property of class 

LinkLabel 534
LinkBehavior property of 

class LinkLabel 535
LinkButton 1019
LinkClicked event of class 

LinkLabel 534, 535
LinkColor property of class 

LinkLabel 535
linked document 1350
linked list 27, 301, 400, 1137, 

1139
linked list in sorted order 1140
Linked-list CList class 1142
Linked-list demonstration 1146
Linked-list graphical 

representation 1141
LinkLabel class 524, 534
LinkLabel properties and 

events 534
LinkLabels used to link to a 

folder, a Web page and an 
application 536

Links property of class Link-
Label 535

links.html 1350, 1358, 1408
links2.html 1417

LinkVisited property of class 
LinkLabel 535

Linux operating system 5, 6
list 477
list, editable 547
list.html 1359, 1418
List.vb 1142
ListBox class 524, 538
ListBox of namespace 

System.Web.UI.Web-
Controls 971

ListBox on an ASPX page 986
ListBox properties, methods 

and events 538
ListBox used in a program to 

add, remove and clear items 
540

ListBox Web control 995
Listing for namespace.xml

839
ListNodes.vb 1141
ListTest.vb 1146
ListView class 555
ListView displaying files and 

folders 557
ListView properties and events 

556
literal 199
literal String objects 635
Literals with type characters 199
live-code™ approach 3
Load event 480
Load method in XslTrans-

form 875
Load method of XMLDocument

843
local area network (LAN) 6
local dialog 1229
local variable 203, 204
local variable “goes out of scope” 

753
local variable is destroyed 263
local variables of a method 306, 

324
localhost 1109
localization 1321
Locals window 1307
local-variable declaration space 

204
location in the computer’s 

memory 73
Location property 490
lock 616, 617
locking objects 601
Log in Web Form 1005
Log method of class Math 194



1500 Index 

logarithm 194
logarithmic calculation 22
logging feature 1235
logic element 1238
logic error 103, 115, 116, 1304
logical AND with short-circuit 

evaluation (AndAlso) 164, 
165, 166

logical AND without short-circuit 
evaluation (And) 164, 166, 
170

logical decision 3
logical exclusive OR operator 

(Xor) 164, 167
logical inclusive OR with short-

circuit evaluation (OrElse)
164, 165, 166

logical inclusive OR without 
short-circuit evaluation (Or)
164, 166

logical NOT operator (Not) 164, 
167

logical operator 21, 164, 167
Logical operator truth tables 168
logical unit 4
LogicalOperator.vb 168
loginUrl 1012
LogoAnimator.vb 717
long-term retention of data 753
longdesc attribute 1208
Look-and-Feel Observation 13
loop 114
loop body 159
loop counter 145
loopback IP address 1109
loop-continuation condition 146, 

147, 148, 159, 161
loop-continuation test 109
looping process 120
LoopUntil.vb 160
Lovelace, Ada 11
lowercase 64
Lowest ThreadPriority

enumeration member 596
lvalue ("left value") 110, 247
Lynx 1225

M
m-by-n array 279
machine dependent 6
machine language 6
MacOS operating system 6
Magenta Shared property of 

structure Color 688
magnetic disk 753

magnetic tape 753
mailto: URL 1352, 1409
Main method 147, 583
Main method of class CTest 415
Main procedure 64, 68, 81
Main thread of execution 598
main.html 1347, 1402
MainMenu 525
MainMenu class 525
MainMenu control 59
MainMenu properties 527
MainMenu properties and events 

527
maintenance of software 12
making decisions 88
Manipulating the size of a 

StringBuilder 653
“manufacturing” section of the 

computer 4
many-to-many relationship 896
map element <map>…</map>

1386
map element 1447
marked for garbage collection 328
markup 943
markup language 28, 1345, 1401
Massachusetts Institute of 

Technology (MIT) 15
match 874
Match class 668, 675
match the selection criteria 898
MatchCollection class 668
matching left and right braces 73
Math class 22, 83, 1087
Math class methods 190, 194
Math tutor application 1087
Math.Abs method 194
Math.Ceiling method 194
Math.Cos method 194
Math.E constant 194
Math.Exp method 194
Math.Floor method 194
Math.Log method 194
Math.Max method 194
Math.Min method 194
Math.PI constant 194
Math.Pow method 194
Math.Sin method 194
Math.Sqrt method 83, 195
Math.Tan method 195
mathematical formula 834
Mathematical Markup Language 

(MathML) 26
MathML (Mathematical Markup 

Language) 26
Max method of class Math 194

maxDigits attribute 1237
MaxDropDownItems property 

of class ComboBox 545, 
546

Maximum.vb 190
MaximumSize property 491
maxlength attribute 1376, 

1435
maxOccurs attribute 867
maxTime attribute 1238, 1239
MaxValue constant of Int32

469
maze traversal 295
MBAFreeAgent.com 1291
MBCS (multi-byte character set) 

1324
MDI (multiple document 

interface) 24, 567
MDI child FrmChild 575
MDI form 569
MDI parent and MDI child events 

and properties 569
MDI parent window class 572
MDI title bar 569
MdiChildActivate event of 

class Form 569
MdiChildren property of class 

Form 568, 569
MdiList property of class 

MenuItem 570
MdiParent property of class 

Form 567, 569
Me keyword 324, 328
Me reference demonstration 326
mean (average) 77
member access modifier 

Private 301
member access modifier Public

301
member access modifiers 301
member access operator 354, 370
memory 3, 4, 13
memory consumption 1176
memory leak 326, 452, 594
memory location 255
memory unit 4
MemoryStream class 756
menu 37, 87, 476, 524
menu access shortcut 525
menu access shortcut, create 526
menu bar 87, 476
menu bar in Visual Studio .NET 

IDE 37
Menu Designer in VS .NET 525
menu item 37, 525
menu separator 526



Index 1501

<menu> tag (<menu>…
</menu>) 1228, 1233

menu, ellipsis convention 527
menu, expanded and checked 525
MenuItem 525
MenuItem class 526
MenuItem properties 528
MenuItem properties and events 

527
MenuItem property MdiList

example 571
MenuItems property of class 

MainMenu 527
MenuItems property of class 

MenuItem 528
MenuMerge enumeration 570
MenuMerge.Add 570
MenuMerge.MergeItems 570
MenuMerge.Remove 570
MenuMerge.Replace 570
Menus used to change text font 

and color 528
Mercury programming language 

20
Merge records from Tables 903
MergeItems member of 

enumeration MenuMerge
570

MergeOrder property of class 
MenuItem 569

MergeType property of class 
MenuItem 569

Merlin Microsoft Agent
character 731

message box 21, 1304
message dialog 151, 191
message dialog button 151
Message dialog button constants 

151
message dialog icon 151
Message dialog icon constants 151
Message property of

Exception 450, 454, 459
MessageBox class 82, 84, 257
MessageBoxButtons class 

151
MessageBox-

Buttons.AbortRetry-
Ignore 152

MessageBoxButtons.OK 151
MessageBoxButtons.OK-

Cancel 151
MessageBoxButtons.Re-

tryCancel 151
MessageBoxButtons.Yes-

No 151

MessageBoxButtons.Yes-
NoCancel 151

MessageBoxIcon class 151
MessageBoxIcon.Error 151
MessageBoxIcon.Excla-

mation 151
MessageBoxIcon.Infor-

mation 151
MessageBoxIcon.Ques-

tion 151
meta element 947, 1390, 1448, 

1449
META tag 1388
method 175
method = "get" 1375, 1434
method = "post" 1375, 1434
method attribute 1239, 1375, 

1433
method call stack 459
method definition 64
Method FrmASimple-

Program_Load 133
method overloading 226
Method that determines the largest 

of three numbers 190
MethodOverload.vb 226
MethodOverload2.vb 228
MFC (Microsoft Foundation 

Classes) 12
microprocessor chip technology 

13
Microsoft 1322
Microsoft Agent 25
Microsoft Agent 731, 743
Microsoft Agent Character Editor 

732
Microsoft Agent Control 2.0

743
Microsoft Intermediate Language 

(MSIL) 19, 67
Microsoft Internet Explorer 

accessibility options 1254
Microsoft Linguistic Sound 

Editing Tool 732
Microsoft Magnifier 1242
Microsoft Narrator 1251
Microsoft Narrator 1251, 1253
Microsoft .NET 17
Microsoft On-Screen Key-

board 1252, 1253
Microsoft Paint 51
Microsoft SansSerif font 695
Microsoft Serif font 695
Microsoft SQL Server 888
Microsoft Windows 95/98 62
Microsoft Windows NT/2000 62

middle array element 275
middle tier 946
MIDI (Musical Instrument Digital 

Interface) 729
Millimeter member of 

enumeration Graphics-
Unit 695

MIME (Multipurpose Internet 
Mail Extensions) 945, 980

Min method of class Math 194
minimized and maximized child 

window 570
MinimumSize property 491
minOccurs attribute 867
minus box 40
minus sign (-) 836
Miscellaneous String methods 

649
MIT (Massachusetts Institute of 

Technology) 15
MIT’s Project Mac 14
Mod (modulus operator) 74, 75, 77
Mod keyword 74
modal dialog 777
modCircleTest demonstrates 

class CCircle
functionality 360

modCircleTest3
demonstrates class 
CCircle3 functionality 
367

modCircleTest4
demonstrates class 
CCircle4 functionality 
371

mode attribute 1012
model attribute 867
modifier key 513
modify a variable at run time 1307
modPointTest demonstrates 

class CPoint functionality 
357

module scope 203
Module used to define a group of 

related procedures 231
modulus 75
modulus operator (Mod) 74, 75
Monitor class 595, 596, 597, 

601, 609, 616, 617
monolithic excecutable 1332
Monster.com 1281, 1285, 

1289, 1291
MonthCalendar control 60
Moore’s Law 13
More Windows... option in 

Visual Studio .NET 570



1502 Index 

Morse code 1134, 1135
Motion Pictures Experts Group 

(MPEG) 729
mouse 3, 476
Mouse Button Settings 1249
mouse click 510
mouse cursor 84, 1245
mouse event 510
mouse move 510
mouse pointer 39, 41, 84
mouse press 510
Mouse Speed dialog 1250
MouseDown event 510
MouseEventArgs class 510
MouseEventArgs properties 

511
MouseHover event 510
MouseKeys 1249
MouseLeave event 510
MouseMove event 511
MouseUp event 511
Move method of class 

Directory 758
Move method of class File 757
MoveNext of IEnumerator

1185
MoveTo method of interface 

IAgentCtlCharacter
745

MPEG format 729
MS-DOS prompt 62
MSDN documentation 151
msdn.microsoft.com/

downloads/samples/
Internet/xml/
xml_validator/
sample.asp 863

MSIL (Microsoft intermediate 
language) 19, 67

MSN.com 979
msxml parser 836
mulit-byte character set (MBCS) 

1324
multi-tier application 945
multicast delegate 433
multicast event 480, 485
MulticastDelegate class 

433, 480
MultiColumn property of class 

ListBox 539
multidimensional array 246, 279
Multidimensional

Arrays.vb 281
MultiExtended value of 

SelectionMode 539
multilevel priority queue 597

MultiLine property of class 
TabControl 492, 564

multimedia 729
Multiple Document Interface 

(MDI) 24
multiple document interface 

(MDI) 567
multiple inheritance 350
multiple selection logic 159
multiple-subscripted array 279
multiple-selection structure 100, 

155, 173
multiplication assignment 

operator (*=) 111
multiprogramming 5
Multipurpose Internet Mail 

Extensions (MIME) 945, 
980

MultiSelect property of class 
ListView 555, 556

MultiSimple value of Se-
lectionMode 539

multitasking 11
multithread safe 1141
multithreading 11, 24, 593
Musical Instrument Digital 

Interface (MIDI) 729
MustInherit 398, 399, 408, 

409
MustInherit class 409, 431
MustInherit class CEmploy-

ee definition 410
MustInherit keyword 756
MustOverride method 399, 

409
mutual exclusion 501
mutually exclusive options 501
My Documents folder 36
My Profile page 35, 45
MyBase reference 382
MySQL 888

N
N formatting code 154
n-tier application 945
name 1375
name = "keywords" 1389
name attribute 1435
name attribute of meta element 

948
name node-set function 874
name of a control variable 145
name of a variable 73
name of an attribute 1403
(Name) property 492

Name property of class Font 694
Name property of HttpCookie

class 988, 989
Name property of structure Col-

or 691
namespace 82, 208, 299, 303, 839
namespace prefix 839, 841
Namespace property of a Web-

Service attribute 1037
namespace scope 203
namespace.xml 839, 839
NamespaceURI 851
naming collision 336, 839
NaN constant of class Double

465
Narrator reading Notepad text 

1253
narrowing conversion 195
natural logarithm 194
nav.html 1354, 1413
NavigateUrl attribute 967
navigation bar 1006
navigational frame 1390, 1450
negative arc angles 702
negative infinity 447
nested  tags 1392
nested building block 175
nested control structure 119, 125, 

159, 172
Nested control structures used to 

calculate examination results 
122

nested element 835, 1404
nested For loop 257, 281, 283, 

286
nested frameset element 1394, 

1454, 1456
nested If/Then/Else structure 

104
nested list 1359, 1361, 1418
nested loop 125
nested parentheses 76
nested repetition structure 125
Nested repetition structures used 

to print a square of *s 126
nested within a loop 121
nesting 119, 175
nesting rule 172
.NET initiative 17
.NET-compliant language 19
.NET component 1333
.NET Framework 18
.NET Framework Class Library 

(FCL) 27, 183, 193, 234, 593
.NET Languages 19
Netscape Communicator 1401



Index 1503

network address 1098
network message arrival 445
networking 27, 753
NetworkStream class 1100
New keyword 249, 1139, 1175
New Project dialog 37, 46
new project in Visual Studio .NET 

IDE 38
New Text property value 

reflected in design mode 132
newline 102
News article formatted with XML 

834
newsgroup 34
NewValue event of class 

CheckedListBox 544
next attribute of choice

element 1229
Next keyword 147
Next method of class Random

206, 1087
NextNode property of class 

TreeNode 551
node 550
node, child 550
node, expand and collapse 550
node, parent 550
node, root 550
Nodes property of class Tree-

Node 551
Nodes property of class Tree-

View 551
node-set function 874
noframes element 1392, 1393, 

1453
nondestructive read from memory 

74
None value of Selection-

Mode 539
nonfatal logic error 103
nonrecursive method call 225
nonvalidating XML parser 860
Not (logical NOT) 164, 167
not-selected state 501
Notepad 535, 1401
Notepad text editor 1346
Nothing keyword 217, 249, 

1138
NotInheritable class 408, 

409
NotOverridable method 409
noun 12
Now property of structure Da-

teTime 582
n-tier application 6

NullReferenceException
451

Number systems Appendix 1266

O
Oberon programming language 19
object 9, 12, 297, 298
object-based programming 2
Object Browser when user 

selects Object from 
development environment 
343

Object class 299, 407, 643
object of a derived class 389
object of a derived class is 

instantiated 376
object orientation 297
object oriented 298
object-oriented programming 

(OOP) 2, 9
object passed by reference 298
"object speak" 297
"object think" 297
object-based programming (OBP) 

298
object-oriented language 12
object-oriented programming 

(OOP) 2, 9, 298, 350, 389, 
839

objects constructed “inside out” 
381

OBP (object-based programming) 
298

occurence indicator 861
octal (base8) 180
Ocularis 1241
.OCX file 1333, 1334
off-by-one error 147, 248
OK button on a dialog 84
OK constant 151
OKCancel constant 151
ol (ordered list) tag <ol>…

</ol> 1362
OleDbCommand class 912
OleDbConnection class 912
OleDbDataAdapter class 912
OleDbDataReader 1011
one comparison in the binary 

search algorithm 275
one-dimensional array 279
one-to-many relationship 895
One value of SelectionMode

539
one’s complement 1274
ones position 1268

onHangup element 1238
Online Community 34
online contracting service 1291
online guest book 998
online recruiting 1283
onMaxSilence element 1237, 

1238
OnPaint method of class 

Control 580, 686
On-Screen Keyboard 1252
onTermDigit element 1237, 

1238
OOP (object-oriented 

programming) 2, 9, 298, 
350, 389, 839

Open method of class File 757
open-source software 5
open technology 834
opened 756
OpenFileDialog class 778, 

789
opening a file in Windows 535
opening a project 38
OpenRead method of class File

757
OpenRead method of class Web-

Client 1076
OpenText method of class File

757
OpenWrite method of class 

File 757
operand 71
operating system 5
operations of an abstract data type 

335
operator precedence 76
operator precedence chart 27
Operator precedence chart 

Appendix 1264
optical disk 753
optional argument 226
Optional argument 

demonstration with method 
Power 229

Optional keyword 228, 236
Options supplied on an ASPX 

page 981, 989
Or (logical inclusive OR without 

short-circuit evaluation) 
164, 166

Oracle Corporation 888, 1322
Orange Shared property of 

structure Color 688
order attribute 874
ORDER BY 897, 901, 902, 903
ordered 889



1504 Index 

ordered list 1418, 1420
ordered list element 1362
ordering of records 897
OrElse (logical inclusive OR 

with short-circuit 
evaluation) 164, 165, 166

out-of-range array subscript 445, 
451

Out property of class Console
755

outer block 204
outer For structure 286
outer set of parentheses 255
OutOfMemoryException

Exception 1139
output 37
output cursor 64, 69
output device 4
output directory 583
output file 583
output unit 4
oval symbol 99
overflow 445, 468
OverflowException cannot 

occur if user disables 
integer-overflow checking 
468

OverflowException class 
468, 472

overhead of recursion 225
overlapped building block 175
overload resolution 227
overloaded constructor 308
overloaded method 226, 309
Overloaded-constructor 

demonstration 312
overloading 371
Overloading constructors 309
Overridable keyword 425
Overridable method 408
overridden 351
override method ToString 371
Overrides keyword 399
Oz programming language 19

P
p (paragraph) element 1348, 1404
P format code (percent) 210
packet 1098
Page class 949, 975, 991

Session property 991
Trace property 1019

page content 1348
page layout software 634
page tracing 1019

Page_Unload method 950
PageIndexChange event for a 

DataGrid control 1018
pageLayout property of 

ASP.NET page 955
PagerStyle property of a 

DataGrid control 1018
PageSize property of a 

DataGrid control 1018
Paint 557
Paint Shop Pro 1411
PaintEventArgs class 580, 

686
PaintEventArgs properties 

581
palette 48
palindrome 293
Palo Alto Research Center 

(PARC) 9
panel 477
Panel class 494, 685
Panel Controls property 495
Panel properties and events 495
panel with scrollbars 495
paper 4
parallelogram 351
ParamArray keyword 287
ParamArrayTest.vb 287
parameter 186, 189
Parameter Info feature of the 

Visual Studio .NET IDE 193
parameter list 187
parameter variable 186
parameterized constructor 308
parameterless Catch block 445
PARC (Palo Alto Research 

Center) 9
parent element 836
parent menu 525
parent node 550, 842, 1160, 1200
parentheses () 76
parsed character data 862
parser 836, 840
partition 294
partitioning step 294, 295
Pascal programming language 10, 

11, 19
Pascal, Blaise 11
pass-by-reference 200
pass-by-value 200
pass of a sorting algorithm 268
PassArray.vb 261
passing an array element to a 

procedure 261

Passing an array reference using 
ByVal and ByRef with an 
array 265

passing an array to a procedure 
260, 261

Passing arrays and individual 
array elements to procedures 
261

password box 1376, 1436
password textbox 491
PasswordChar property 492
PasswordChar property of 

TextBox class 491
paste 38
Path property of HttpCookie

class 989
path to a resource 943
PathGradientBrush class 

709
pattern matching 899
pattern of 1s and 0s 754
Payment.vb 185
payroll system 396, 754
#PCDATA flag 862
PDA (personal digital assistant) 8
Peedy the Parrot Microsoft Agent 

character 731
Peek method of class Stack

1188
Pen class 684, 688, 699, 701
Performance Tip 13
performing a calculation 88
Perl progamming language 19
permission setting 557
persistent data 753
persistent information 979
personal computer 3
personal computing 5
personal digital assistant (PDA) 8
personalization 979
PhotoShop Elements 1411
PhysicalApplication-

Path property of Request
class 1001

picture box 51, 508
picture.html 1352, 1411
PictureBox class 214, 508, 571
PictureBox properties and 

events 508
Pig Latin 682
pin a window 39
pin icon 39
Pink Shared property of 

structure Color 688
pixel 1411



Index 1505

Pixel member of enumeration 
GraphicsUnit 695

platform independence 17, 19
play element 1239
Play method of interface 

IAgentCtlCharacter
744

playback, choppy 594
player thread 594
plus box 40
plus sign (+) 836
plus sign (+) occurence indicator 

861
PNG (Portable Networks Graphic) 

51
point-of-sale system 789
Point structure 686
poker 681
polymorphic programming 396, 

400
polymorphic screen manager 397
polymorphism 23, 159, 298, 383, 

389, 394, 397, 399, 409
polymorphism as an alternative to 

Select Caselogic 440
polynomial 78, 79
pool of threads 1100
Pop method of class Stack

1185, 1188
pop stack operation 1152
popping off a stack 334
port number 1098, 1099
portability 19, 1324
Portability Tip 13
portable 834
Portable Networks Graphic (PNG) 

51
porting 19
position number 247
positional notation 1268
Positional value 1269
Positional values in the decimal 

number system 1269
positive and negative arc angles 

702
positive infinity 447
post request type 1239, 1434
postback 975
postorder traversal 1161
postorder traversal of a binary tree 

1161
Pow method 1087
Pow method of class Math 194
power 194
Power.vb 229

Precedence and associativity chart 
169

precedence chart Appendix 1264
precedence of arithmetic operators 

76
precedence rule 76
predicate method 301, 1141
premature program termination 

255
preorder traversal of a binary tree 

1161
prepackaged data structures 1175
preprocessor directives 519
presentation logic 946
presentation of a document 1345, 

1401
previous statement, variable in 

1307
PrevNode property of class 

TreeNode 551
primary interop assembly 1337
primary key 889, 895
primary memory 4
primitive (or built-in) data-type 

198
primitive data type 70
Princeton Review 1293
principle of least privilege 203
print 64
printing a project 38
PrintSquare.vb 126
Priority property of class 

Thread 597
priority scheduling 597
privacy invasion 979
privacy protection 979
Private keyword 301, 306, 307, 

314, 408
Private members of a base 

class 353
probability 206
procedural programming language 

12, 298
procedure 63, 64
procedure body 187
procedure definition 186
procedure for solving a problem 

97
procedure header 187
procedure overloading 288
procedure-name 187
Procedures for performing a linear 

search 272
processing instruction 870
processing instruction target 871
processing instruction value 871

processing phase 117
processing unit 3
produce method 603
producer 616
producer and consumer threads 

accessing a circular buffer 
625

producer and consumer threads 
accessing a shared object 
with syncronization 613

producer and consumer threads 
accessing a shared object 
without syncronization 608

Producer places Integers in 
synchronized shared buffer 
612

Producer places Integers in 
synchronized, circular buffer 
623

Producer places Integers in 
unsynchronized shared 
buffer 605

producer thread 603
producer/consumer relationship 

603
productivity 13
program 3, 62
program construction principles 

145
program control 98
program development 62
program development process 334
program development tool 127
program execution stack 1152
program in the general 440
program termination 255
Program that prints histograms 

256
Program to display hidden text in a 

password box 493
program, break execution 1309
program, suspend 1304
programmer 3
programmer-defined exception 

class 464, 465
programmer-defined type 298
project 34, 36
Project Location dialog 46
Project Mac 14
Project menu 38
project properties dialog 583
project, Windows control library 

582
promotion 979
prompt 71



1506 Index 

prompt element in VoiceXML 
1229

<prompt> tag (<prompt>…
</prompt>) 1233

Properties in a class 314
Properties window 41, 42, 43, 

46, 50, 129, 955
Properties window on a Web 

Page 1019
Properties window used to set a 

property value 131
property 41
property for a form or control 41
property of an object 12, 21
Proposed Recommendation 15
Protected 354
protection 1012
proxy 1334
proxy class for Web services 1037, 

1044, 1045
pseudocode 21, 98, 102, 106, 112, 

115, 122, 123
pseudocode algorithm 116
pseudocode If/Else structure 

104
pseudocode representation of the 

top 124
pseudocode statement 106
pseudo-random number 206
Public interface 302
Public keyword 301, 302, 411
Public member of a derived 

class 353
public operations encapsulated in 

an object 305
Public service 302
Public Shared members 327
publishers table of books

database 890, 891
publishing a Web service 1037
Pulse method of class Monitor

596, 602, 609, 616, 617
PulseAll method of class 

Monitor 596, 602
Push method of class Stack

1185
push stack operation 1152
pushing into a stack 334
PWS (Personal Web Server) 1375
Pythagorean Triples 180
Python progamming language 19

Q
quantifier 670

Quantifiers used in regular 
expressions 670

quantum 596
quantum expiration 595
query 888, 889
query a database 913
Question constant 151
question mark (?) occurence 

indicator 861
queue 27, 301, 335, 1137, 1156
Queue class 1176
Queue implemented by 

inheritance from class 
CList 1157

Queue-by-inheritance test 1158
QueueInheritance.vb 1157
QueueTest.vb 1158
quicksort 294

R
R property of structure Color 688
RAD (rapid application 

development) 8, 24
RAD (rapid applications 

development) 335
radian 194
radio 1379, 1439
radio button 492, 501
radio button group 501
radio buttons, using with 

TabPage 567
RadioButton class 497, 501
RadioButton properties and 

events 501
RadioCheck property of class 

MenuItem 528, 533
raise event 480
RAM (Random Access Memory) 

4
random-access file 753, 790, 802
random access memory (RAM) 4
Random class 206, 235, 1087
Random class used to simulate 

rolling 12 six-sided dice 211
random number generation 663, 

682
random-access file 25
Random-access file with fixed-

length records 790
RandomInt.vb 208
rapid application development 

(RAD) 8, 24
rapid applications development 

(RAD) 335

RCW (Runtime Callable 
Wrapper) 1338

RDBMS (relational database 
management system) 945

RDK (Redistribution Kit) 1240
Read method 869
Read method of class Console

756
Read method of class Network-

Stream 1100
read-only text 491
readability 62, 64, 125, 1209, 

1257, 1402
ReadByte method of class 

NetworkStream 1100
ReadLine method 71
ReadLine method of class 

Console 756
ReadOnly keyword 23, 331
ReadOnly property 493
ReadString method of class 

BinaryReader 1109
ReadXml method of DataSet

932
Ready thread state 595
receive a connection 1108
receive data from a server 1109
Receive method of class 

Socket 1099
Receive method of class 

UdpClient 1110, 1115
ReceiveFrom method of class 

Socket 1099
receiving an array through a 

procedure call 261
“receiving” section of the 

computer 4
recent project 34
reclaim memory 330
reclaiming dynamically allocated 

memory 594
recognizing clients 979
record 754, 889, 895
record key 754, 790
record set 889
record size 790
recordAudio element 1239
Recruitsoft.com 1288
rectangle 684, 700
Rectangle structure 686, 709
rectangle symbol 99, 103, 107, 

149, 159, 172
rectangular array 279, 280
rectangular hotspot 1388, 1447, 

1448
recursion 218, 555



Index 1507

recursion overhead 225
recursion step 218, 222
recursion vs. iteration 225
recursive call 218, 222, 224
Recursive calls to method 

Fibonacci 224
Recursive evaluation of 5! 219
Recursive factorial program 220
recursive method 22, 218, 221
recursive method Factorial

219
recursive program 224
recursive searching 294
recursive step 294
recursive version of the binary 

search 272
recursive version of the linear 

search 272
Recursively generating Fibonacci 

numbers 222
red circle, solid 1305, 1309
Red Shared property of 

structure Color 688
Redistribution Kit (RDK) 1240
redundant parentheses 78
reference 198, 249
reference manipulation 1137
reference to a new object 303
reference type 198
reference variable 249
referring to a base-class object 

with a base-class reference 
395

referring to a base-class object 
with a derived-class 
reference 396

referring to a derived-class object 
with a base-class reference 
396

referring to a derived-class object 
with a derived-class 
reference 395

refinement process 115
Regex class 634, 668, 669
Regex methods Replace and 

Split 675
regional invalidation 718
<%@Register…%> directive 

1006
Registering an ActiveX control 

1333
RegSvr32 utility 1333, 1337
regular expression 761
Regular expressions checking 

birthdays 668

Regular member of 
enumeration FontStyle
695

relational database 888
relational database management 

system (RDBMS) 945
relational database model 889
relational database table 889
relational operator 161
relative positioning 955
release a lock 616, 617
release resource 453
release the lock 619
remainder 75
remote machine 1032
Remote Procedure Call (RPC) 16, 

1032
Remove member of enumeration 

MenuMerge 570
Remove method of class Array-

List 1180, 1184
Remove method of class 

StringBuilder 658
Remove method of class Tree-

NodeCollection 551
Remove method of Hashtable

1195
RemoveAt method of class 

ArrayList 1180
RemoveFromBack graphical 

representation 1151
RemoveFromFront graphical 

representation 1150
RemoveRange method of class 

ArrayList 1180
Removing tabs from Visual Studio 

environment 1214
renders 945
Repeatedly applying rule 2 of Fig. 

5.25 to the simplest 
flowchart 173

repetition 171, 173, 174
repetition control structure 99, 

100, 106, 116
repetition structure 21
Replace member of 

enumerationMenuMerge
570

Replace method of class Regex
675, 677

Replace method of class 
String 649, 650

Replace method of class 
StringBuilder 659

Replacing text with class 
StringBuilder 659

Report Expert 1467
Request class 1001

Cookies property 987
PhysicalApplication-
Path property 1001

request for proposal 1291
Request object 975, 987
RequiredFieldValidator

class 971
Reservation.asmx.vb 1066
"reset" input 1435
Reset of IEnumerator 1185
resolution 685
resource leak 326, 444, 452
Response.Write 1019
responses to a survey 253, 255
Restart button 1309
result of an uncaught exception 

445
result set 889, 898
result tree 870
Results of invoking a Web service 

method from a Web browser 
1035

resume 1282, 1287
Resume method of class Thread

596
resume-filtering software 1287
resumption model of exception 

handling 445
rethrow an exception 458
RetryCancel constant 151
Return keyword 187, 188, 190, 

218
Return statement 189
reusability 1137
reusable component 351
reusable software component 12, 

13
Reverse method of class Array

1179
RGB values 687, 688
Richards, B. Martin 9
RichTextBox control 59, 60
right child 1160
right subtree 1160, 1161
RightToLeft property of class 

MainMenu 528
rise-and-shine algorithm 98
Ritchie, Dennis 9
Robby the Robot Microsoft Agent 

character 731
robust 71
robust application 442
RollDie.vb 209, 257
RollDie2.vb 211



1508 Index 

root element 835, 862
root node 550, 842, 1160
root node, create 552
RotateTransform method of 

class Graphics 713
Round member of enumeration 

DashCap 711
round-robin 597
rounding 75
rounding error 195
rounds 194
row 279, 889
rows attribute (textarea)

1378, 1435
rows to be retrieved 897
rowspan attribute (tr) 1373, 

1430
RPC (Remote Procedure Call) 16, 

1032
RPG progamming language 19
Rule of Entity Integrity 895
Rule of Referential Integrity 896
rules of operator precedence 76
Run command in Windows 535
run element 1239
run mode 53
run-time exception 451
Runnable thread state 595
running an application 535
Running thread state 595, 599
Runtime Callable Wrapper 

(RCW) 1338
run-time error 71

S
Salary.com 1293
Sample data for the program of 

Fig. 17.8 779
SaveFileDialog class 776
scaling factor 207
scheduling 596
Schema 860, 865, 866
schema repository 866
Schemas property of 

XmlSchema-
Collection 867

Scheme progamming language 19
scope 202, 203, 306
Scoping 204
Scoping rules in a class 204
screen 3, 4, 5
screen-manager program 397
screen reader 1208, 1221, 1240, 

1251, 1254
script 1327, 1403

scroll arrow 41
scroll bar and window border size 

dialog 1244
scrollbar 476, 477
scrollbar in panel 495
SDI (single document interface) 

567
SDK (Software Development Kit) 

1240
Search command 44
search engine 1348, 1388, 1404, 

1448
search key 272
Search Online page 35
searching 272, 1137
Searching for characters and 

substrings in Strings 644
searching technique 246
second-degree polynomial 78
second refinement 121, 125
Second refinement of the 

pseudocode 126
secondary storage 4, 13
secondary storage device 753
sector 703
Secure property of 

HttpCookie class 989
secure protocol 989
SeekOrigin enumeration 802
SeekOrigin.Begin constant 

802
SELECT 889, 897, 898, 900, 901, 

902, 903, 904
select 889, 897
select all fields from a table 898
Select Case logic 396
SelectCase multiple-selection 

structure flowchart 158
SelectCase selection structure 

100
Select Case structure 21, 155, 

157, 159, 170, 173
Select Case structure used to 

count grades 155
SelectCommand property of 

OleDbAdapter 920
selected attribute 1443
selected state 501
SelectedImageIndex

property of class Tree-
Node 551

SelectedIndex property of 
class ComboBox 546

SelectedIndex property of 
class ListBox 539

SelectedIndex property of 
class TabControl 564

SelectedIndexChanged
event of class ComboBox
546

SelectedIndexChanged
event of class ListBox 539

SelectedIndexChanged
event of class TabControl
564

SelectedIndices property of 
class ListBox 539

SelectedItem property of 
class ComboBox 546

SelectedItem property of 
class ListBox 539

SelectedItems property of 
class ListBox 539

SelectedItems property of 
class ListView 556

SelectedNode property of 
class TreeView 551

SelectedTab property of class 
TabControl 564

selecting 34
selecting data from a table 890
selection 170, 172, 173
selection control structure 99, 100
selection criteria 898
selection structure 21
SelectionMode enumeration 

539
SelectionMode property of 

class CheckedListBox
543

SelectionMode property of 
class ListBox 539

SelectionMode.Multi-
Extended 539

SelectionMode.Multi-
Simple 539

SelectionMode.None 539
SelectionMode.One 539
SelectTest.vb 155
self-documenting 71
self-referential class 1137, 1139
Self-referential class CList-

Node 1141
Self-referential class objects 

linked together 1139
Self-referential CNode class 

definition 1138
Self-referential object 1138
send data to a server 1109
Send method of class Socket

1099



Index 1509

Send method of class 
UdpClient 1110, 1115

sendEvent element 1239
SendTo method of class Socket

1099
sentinel-controlled repetition 114, 

116, 119
sentinel value 114, 115, 119, 162
sentinel-controlled loop 162
separator bar 526
separator, menu 526
sequence 170, 173, 175, 1160
sequence control structure 99, 100, 

115
sequence of items 1139
sequence structure 21
Sequence structure flowchart 100
sequence type 1420
sequential-access file 25, 753, 

755, 771, 789
sequential execution 98
Serializable attribute 771
SerializationException

783
Serialize method of class 

BinaryFormatter 777
serialized object 771
server 6
server Internet address 1109
server port number 1109
Server portion of a client/server 

stream socket connection 
1101

Server side of client/server Tic-
Tac-Toe program 1116

Server-side portion of 
connectionless client/server 
computing 1110

ServerValidate event 1007, 
1011

ServerValidate event of 
CustomValidator class 
1011

ServerValidate-
EventArgs class 1011

service 306
Service description for a Web 

service 1033, 1034
session 979, 1234

tracking 979
session attribute 1239
Session information displayed in a 

ListBox 995
session item 991
Session property of Page class 

991

session tracking 979
session tracking in Web services 

1032
sessionID 1234
SessionID property of 

HttpSession class 995
SessionID property of Ht-

tpSessionState class 
995

Sessions created for each user in 
an ASP .NET Web 
application 991

session-tracking 980
SET 910
Set accessor 307
Set accessor of a property 318
Set Automatic Timeouts 1250
SET keyword 910
setAttribute method of 

interface HttpSession
994

SetAuthCookie method of 
FormAuthenication
class 1012

SetDataBinding method of 
DataGrid 920

SGML (Standard Generalized 
Markup Language) 15

SHAPE = "circle" 1388
shape class hierarchy 353, 354, 

387
Shared attribute 203
shared buffer 603, 616, 617
Shared class member 

demonstration 330
Shared class variable 327
Shared class variables have class 

scope 327
Shared class variables save 

storage 327
Shared keyword 327
shared library 1332
shared memory 603
Shared method cannot access 

non-Shared class members 
328

Shared method Concat 648
Shift key 513
Shift property 516
Shifted random integers 207
“shipping” section of the computer 

4
short-circuit evaluation 166
shortcut key 525, 1213
Shortcut key creation 1214

Shortcut property of class 
MenuItem 528

shortcuts with the & symbol 526
show all files icon 41
Show method 488
Show method of class Form 567, 

576
Show method of class Message-

Box 84, 151, 176
Show method of interface 

IAgentCtlCharacter
744

Show Next Statement button 
1309

Show of class Form 480
ShowColors.vb 689
ShowColorsComplex.vb 692
ShowDialog method of class 

OpenFileDialog 778, 
789

ShowDialog method of class 
SaveFileDialog 777

ShowShortcut property of 
class MenuItem 528

ShowSounds 1246, 1248
sibling 1160
sibling node 550, 842
side effect 166
signal value 114
signature 227, 309, 371
silicon chip 3
simple condition 164
Simple Object Access Protocol 

(SOAP) 8, 16, 20, 1031, 
1032

Simple student-poll analysis 
program 254

Simple style for ComboBox 547
Simple-Class-Library project 338
simplest flowchart 172, 173, 174
Simula 67 programming language 

9
simulate coin tossing 243
simulation 206
Sin method of class Math 194
sine 194
Single data type 114
single document interface (SDI) 

567
single-entry/single-exit control 

structure 100, 103
single inheritance 350
single-line comment 73
single-quote character (') 839
single selection 173
single-selection structure 100



1510 Index 

single-subscripted array 279
singlecast delegate 433
single-clicking with left mouse 

button 34
single-entry/single-exit control 

structure 172
single-entry/single-exit sequence, 

selection, and repetition 
structures 170, 171

single-precision floating-point 
number 114

single-quote character (') 62, 900
sinking sort 268
SixFigureJobs 1292
size attribute (input) 1376, 

1435
size of a variable 73
size of an array 249
Size property 490
Size property of class Font 694
SizeInPoints property of 

class Font 694
SizeMode property 52, 508
sizing handle 47
sizing handle, disabled 47
sizing handle, enabled 47
Sleep method of class Thread

596, 598, 599, 605, 606, 607
sleeping thread 597
small circle symbol 99, 159
SmallImageList property of 

class ListView 556
Smalltalk programming language 

9, 19
SMIL (Synchronized Multimedia 

Integration Language) 26, 
1241

“sneakernet” 6
SOAP (Simple Object Access 

Protocol) 8, 16, 20, 1031, 
1032, 1034

SOAP encoding rule 16
SOAP envelope 1036, 1037
SOAP message 1036
SOAP request 1037
SOAP request message for the 

HugeInteger Web 
service 1036

socket 1097
Socket class 1108
software 3
software component 17
Software Development Kit (SDK) 

1240
Software Engineering 

Observation 12

software reusability 350
software reuse 12, 306, 335, 336
Solaris operating system 6
solid arc 703
solid polygon 705
solid rectangle 700
SolidBrush class 691, 695, 701
solution 36
Solution Explorer 1337
Solution Explorer after adding 

a Web reference to a project 
1047

Solution Explorer in Visual 
Studio .NET 576

Solution Explorer in Visual 
Studio .NET IDE 40

Solution Explorer window 40
solution, debug setting 1305
Sort method of class Array

1178
Sort method of class ArrayL-

ist 1180
Sort property in DataView

class 1018
sorted array 1140
Sorted property of class Com-

boBox 546
Sorted property of class List-

Box 539
SortedList class 1176
sorting 268, 1137
sorting a large array 272
Sorting an array with bubble sort 

269
sorting schemes 268
sorting technique 246
sorting.xml 871
SoundSentry 1246
source-code form 1401
Source property of

Exception 460
source tree 870
source-code form 1346
space character 64
spacing convention 64
span attribute 948, 1430
spawning 1099
special character 635, 1357, 1375, 

1415, 1416
special symbol 754
speech device 1429
speech recognition 25, 1240, 1256
speech recognition engine 731
speech synthesis 25, 1240, 1256, 

1257
speech synthesizer 1240, 1412

spiral 221
Split method of class Regex

675, 677
SQL (Structured Query Language) 

888, 889, 896
SQL keywords 897
SQL statement 889
SQL statements executed on a 

database 921
Sqrt method of class Math 195, 

465
square 351, 1420
"square" attribute value 1420
square brackets in a query 897
square root 195
SquareInteger.vb 188
src attribute 1411, 1414
src attribute (img) 1355
Src file 1007
stack 27, 243, 301, 334, 1152
Stack class 1176, 1185
Stack class demonstration 1185
Stack implementation by 

inheritance from class 
CList 1153

stack unwinding 446, 460
Stack-by-composition test 1155
Stack-by-inheritance test 1154
StackComosition.vb 1155
Stacked, nested and overlapped 

building blocks 175
stacking 175
stacking rule 172
StackInheritance.vb 1153
StackTest.vb 1185
StackTrace property of

Exception 459, 460, 461
standard character 1375
standard error 756
Standard Generalized Markup 

Language (SGML) 15
standard input 756
Standard ML language 19
standard number format 119
standard output 756
standard reusable component 351
standard time format 303
Start method of class Process

535
Start method of class Tcp-

Listener 1099
Start method of class Thread

595, 599
Start Page 34, 37
start tag 835, 838, 1403
Started thread state 595, 616, 617



Index 1511

starting angle 702
StartsWith method of class 

String 641
startup project 40
starvation 597
state button 497
stateless protocol 979
statement 64
static entities 246
Step Into button 1313
Step keyword 147
Step Out button 1313
Step Over button 1309
stepwise refinement 123
StickyKeys 1247
Stop Debugging button 1309, 

1311
Stopped thread state 596, 629
straight line 712
straight-line form 75
stream 1098
Stream class 756
stream input/output 753
stream of bytes 755
stream socket 1116
StreamReader class 756
streams-based transmission 1110, 

1131
StreamWriter class 756
StretchImage value 52
Strikeout member of 

enumeration FontStyle
695

Strikeout property of class 
Font 694

string 24, 64
String class 302, 411, 412, 414, 

634
String Collection Editor in 

Visual Studio .NET 540
string concatenation assignment 

operator (&=) 111
string concatenation operator (&)

84
string constant 635
String constructors 635
String Length property, the 

CopyTo method and Str-
Reverse method 637

string literal 64, 635
string of characters 64
String testing for equality 639
String type 70
StringBuilder class 634, 651
StringBuilder class 

constructor 651

StringBuilder size 
manipulation 653

StringBuilder text 
replacement 659

StringBuilder’s Append-
Format method 656

strong element 1408
strong typing 198
Stroustrup, Bjarne 9, 442
Structure 660
structure 660
structured programming 2, 10, 11, 

21, 88, 99, 145, 164, 175, 
334

Structured programming rules 172
Structured Query Language (SQL) 

888, 889, 890, 896
structured systems analysis and 

design 11
StudentPoll.vb 254
style sheet 836, 1253, 1403
sub element 1357, 1416
sub-initializer list 280
Sub keyword 64
Sub procedure 184, 185, 188
Sub procedure for printing 

payment information 185
subarray 275
subclass 128
<subdialog> tag (<subdi-

alog>…</subdialog>)
1233

submenu 525
submit attribute 1239
submit data to a server 1376
"submit" input 1435
submit input 1376
subscript 1357, 1416
subscription-based software 18
Substring method of class 

String 647
Substrings generated from 

Strings 647
subtraction assignment operator 

(-=) 111
Success property of Match 674
sum function 875
Sum.vb 150
SumArray.vb 252
summarizing responses to a survey 

253
summary attribute 1225, 1429
Sun Microsystems, Inc. 1322
sup element 1416
superclass 128
supercomputer 3

superscript 1357, 1416
suspend a program 1304
Suspend method of class 

Thread 596
Suspended thread state 596
swapping elements in an array 268
sweep 702
Sybase, Inc. 888, 1322
symbol 1321
SyncBlock 602, 616
synchronization 601, 603, 609
synchronize 1141
Synchronized Multimedia 

Integration Language 
(SMIL) 1241

Synchronized shared circular 
buffer 620

Synchronized shared Integer
buffer 610

synchronous error 445
SyncLock block 619, 620
SyncLock keyword 602, 619, 

1141, 1152
syntax error 68, 103
syntax error in HTML 1346
syntax error underlining 69
syntax-color highlighting 65
system caret 1254
SYSTEM flag 862
System namespace 299, 634
system service 1099
System.Collections

namespace 1152, 1176
System.Data namespace 26, 

912
System.Data.OleDb

namespace 912
System.Data.Sqlclient

namespace 912
System.dll 87
System.Drawing namespace 

684, 686, 709
System.Draw-

ing.Drawing2D
namespace 684, 711, 712

System.IO namespace 756
System.Net 1065
System.Runtime.

Serialization.
Formatters.Binary
namespace 778

System.Text namespace 634
System.Text.Regular-

Expressions namespace 
634, 668

System.Web namespace 949



1512 Index 

System.Web.Security
namespace 1012

System.Web.UI namespace 
949

System.Web.UI.Web-
Controls namespace 950

System.Windows.Forms
namespace 82, 85, 87, 128, 
214, 479

System.Win-
dows.Forms.dll 84, 
150

System.Win-
dows.Forms.dll
assembly 87

System.Xml namespace 842
System.Xml.Xsl namespace 

875
SystemException class 450, 

451, 465

T
tab 102
tab character 64
tab order 1216
tab stop 1216
Tabbed pages in Visual Studio 

.NET 562
tabbed window 37
TabControl class 562
TabControl used to display 

various font settings 564
TabControl with TabPages

example 563
TabControl, adding a 

TabPage 563
TabCount property of class 

TabControl 564
TabIndex property 488
TabIndex property of class 

Control 1221
table 889, 1221, 1223, 1345, 1368, 

1401
table body 1429
table column 889
table data 1429
table element 279
table element 1429
table head element 1429
table in which record will be 

updated 910, 911
table of values 279
table row 889, 1429
table tag <table>…

</table> 1369

tableName.fieldName 905
TabPage class 562
TabPage, add to TabControl

563
TabPage, using radio buttons 

567
TabPages added to a Tab-

Control 563
TabPages property of class 

TabControl 564
TabStop property 488
TabStop property of class 

Control 1221
tabular format 250, 251
tag 943, 1345

name 1006
prefix 948

tail of a queue 1156
Tan method of class Math 195
tangent 195
target = "_blank" 1454
target = "_self" 1454
target = "_top" 1454
target="_blank" 1392
target="_parent" 1392
target="_self" 1392
target="_top" 1392
targetSessions attribute 

1239
TargetSite property of

Exception 460
task 5
Task List window 68, 1303
tbody (table body) element 

1370, 1429
TCP (Transmission Control 

Protocol) 1098
TCP/IP (Transmission Control 

Protocol/Internet Protocol) 
14

TcpClient class 1100
TcpListener class 1098, 1099
td element 1429
TEI (Text Encoding Initiative) 16
telephone system 1110
TemperatureServer Web 

service 1073
TemperatureServ-

er.asmx.vb 1073
temporary data storage 753
termDigits attribute 1238, 

1239
terminal 5
termination 255
termination housekeeping 326

termination model of exception 
handling 445

termination phase 117
Testing and Debugging Tip 13
Testing class CCylinder 375
Testing the modDice procedures 

232
text 731
text-based browser 1412
text box 87, 1435
text editor 65, 634, 1346, 1401
text element 1234, 1235, 1237
Text Encoding Initiative (TEI) 16
text file 842
"text" input 1435
Text property 50, 488, 494
Text property of class Link-

Label 535
Text property of class Menu-

Item 528
Text property of class Tree-

Node 551
text-to-speech (TTS) 1216, 1235, 

1251
TextAlign property 488
textarea 1376
textarea element 1378, 1435, 

1436
text-based browser 1354
text-based browsers 1370
TextBox class 273, 476, 477, 

491, 492
TextChanged event 493
TextReader class 756
text-to-speech engine 731
TextureBrush class 689, 709, 

711
TextWriter class 756
tfoot (table foot) element 1430
th (table header column) element 

1429
th element 1223
The Diversity Directory 1288
The National Business and 

Disability Council (NBDC) 
1288

thead (table head) tag 
<thead>…</thead>
1370

thead element 1429
Then keyword 82
Thompson, Ken 9
Thread class 595, 1108
thread life cycle 595
thread of execution 593
thread-priority scheduling 597



Index 1513

thread scheduling 607
thread state 595
thread state Dead 596
thread state Ready 595
thread state Runnable 595
thread state Running 595, 599
thread state Started 595
thread state Stopped 596, 629
thread state Suspended 596
thread state Unstarted 595
thread state WaitSleepJoin 596, 

599, 602, 603
thread synchronization 601
ThreadAbortException 596
ThreadPriority enumeration 

596, 597
threads sleeping and printing 600
ThreadStart delegate 595, 

599, 600
three-dimensional application 714
throughput 5
throw an exception 445, 449
throw point 445, 459
Throw statement 454
Tick event of class Timer 581, 

717
TicketReservation.aspx

1069
TicketReservation.

aspx.vb 1070
Tic-Tac-Toe 1116
tightly packed binary tree 1168
tightly packed tree 1168
TileHorizontal value in 

LayoutMdi enumeration 
571

TileVertical value in 
LayoutMdi enumeration 
571

time and date 582
Time class 22
timeout 1250
timeout attribute of prompt

element 1229
Timeout property of 

HttpSessionState
class 995

timer 581
Timer class 716
timesharing 5, 11
timeslicing 596
<title>…</title> 1348
title tag (<title>…

</title>) 1225
title bar 46, 1404
title bar, MDI parent and child 569

title element 874, 1348, 1404
title HTML element 943
title of a document 1403
titles table of books database 

890, 892, 893
.tlb file 1338
To keyword 147, 157
ToggleKeys 1248
ToLongTimeString method 

of structure ToLong-
TimeString 582

ToLower method of class Char
663

ToLower method of class 
String 649, 650

tool tip 39
toolbar 38
toolbar icon 38
Toolbox 21, 41, 955
Tools menu 38
tooltip 967
top 115, 120, 124
top 1373
top-down, stepwise refinement 3, 

115, 117, 119, 123, 124
top tier 946
top-down, stepwise refinement 21
ToString method of class Dec-

imal 419
ToString method of class 

String 651
ToString method of class 

StringBuilder 652, 655
ToString method of class

Exception 461
ToString method of Object

356
total 113
ToUpper method of class Char

663
ToUpper method of class 

String 649, 650
Towers of Hanoi 243
tr (table row) element 1370, 1429
Trace class 1019

Warn method 1019
Write property 1019

Trace element in a 
Web.config file 1020

Trace property 26
Trace property of Page class 

1019
trace.axd file 1021
TraceContext class 1019
tracing 1019
track 1241

tracking customers 979
trademark symbol 28
trailing white-space character 650
transaction-processing system 789
transfer of control 99
Transform method in Xsl-

Transform 875
TranslateTransform

method of class Graphics
712

translation step 6
translator program 7
Transmission Control Protocol/

Internet Protocol (TCP/IP) 
14

trapezoid 351
traverse a tree 1161
tree 27, 550, 1160
Tree data structure 1163
Tree node contains ICompara-

bles as data 1169
tree structure 836
Tree structure for article.xml

842
Tree structure for Fig. 18.1 842
Tree.vb 1163
Tree2.vb 1171
TreeNode class 551
Tree-node data structure. 1162
TreeNode Editor in VS .NET 

552
TreeNode properties and 

methods 551
TreeNode.vb 1162
TreeNode2.vb 1169
TreeTest.vb 1166
TreeTest2.vb 1173
Tree-traversal demonstration. 

1166
TreeView class 524, 550
TreeView displaying a sample 

tree 550
TreeView properties and events 

550
TreeView used to display 

directories 553
trigger an event 477
trigonometric calculation 22
trigonometric cosine 194
trigonometric sine 194, 195
trigonometric tangent 195
trillion-instruction-per-second 

computers 3
Trim method of class String

649
Trim method of String 860



1514 Index 

TrimToSize method of class 
ArrayList 1180, 1184

truncate 75
truth 78
Truth table for operator Not

(logical NOT) 167
Truth table for the AndAlso

operator 165
Truth table for the OrElse

operator 166
Truth table for the Xor (logical 

exclusive OR) operator 167
Try block 445, 449
Try block expires 445
TTS (text-to-speech) engine 1234, 

1235
Tutor.vb 1087
two-dimensional data structure 

1160
two-dimensional shape 684
two’s complement 1275
two-dimensional array 279
Two-dimensional array with three 

rows and four columns 280
twos position 1268
type = "hidden" 1375
type = "password" 1379
type = "radio" 1379
type = "reset" 1376
type = "submit" 1376
type = "text" 1376
type attribute 1375, 1420, 1435
type of a variable 73
typesetting system 634

U
U+yyyy (Unicode notational 

convention) 1323
UDDI (Universal Description, 

Discovery and Integration) 
1048

UDP (User Datagram Protocol) 
1098

UdpClient class 1110
ul element 1417
unambiguous (Unicode design 

basis) 1322
unary negative (-) 76
unary operator 74, 167
unary plus (+) 76
UnauthorizedAccess-

Exception class 553
unchecked context 468, 472

Underline member of 
enumeration FontStyle
695

Underline property of class 
Font 694

underscore (_) 63
undo 38
uneditable text or icons 477
Unicode 198, 199
Unicode character 754
Unicode character set 634
Unicode Consortium 1322
Unicode Standard 28, 1321
Unicode Standard design basis 

1322
uniform (Unicode design basis) 

1322
Uniform Resource Identifier 

(URI) 840
Uniform Resource Locator (URL) 

943
Univac 1108 14
universal (Unicode design 

principle) 1322
universal data access 18
Universal Description, Discovery 

and Integration (UDDI) 
1048

Universal Resource Locator 
(URL) 840

universal-time format 300, 302, 
303

UNIX operating system 5, 6, 9
Unload event 950
unmanaged resource 950
unnecessary parentheses 78
unordered list 1358, 1359, 1417
unordered list element (ul) 1358, 

1417
Unstarted thread state 595
unstructured flowchart 173, 175
Unsynchronized shared Integer

buffer 604
UPDATE 897, 910
UPDATE query 1068
UpdateCommand property of 

OleDbAdapter 920
updating a database 1375
upper-left corner of a GUI 

component 685
URI (Uniform Resource 

Identifier) 840
URL (Uniform Resource Locator) 

943
rewriting 979

URL (Universal Resource 
Locator) 840

USEMAP 1388
usemap attribute 1448
UseMnemonic property of class 

LinkLabel 535
user agent 1208, 1254
user control 1006
User Datagram Protocol (UDP) 

1098
user-defined control 580
user-defined type 298
user interface 946
UserControl class 580
UserControl defined clock 

581
userInput of class 

_AgentEvents_Comman
dEvent 745

Using <META> and <DOCTYPE>
1388

Using a PictureBox to display 
images 508

Using an abstract data type 303
Using arrays to eliminate a Se-

lect Case structure 257
Using CheckBoxes to change 

font styles 498
Using default namespaces 841
Using elements of an array as 

counters 257
Using For Each/Next with an 

array 288
Using GroupBoxes and Panels

to arrange Buttons 496
Using internal hyperlinks to make 

pages more navigable 1383, 
1443

Using jagged two-dimensional 
arrays 283

Using meta to provide keywords 
and a description 1448

Using overloaded constructors 
312

using parentheses to force the 
order of evaluation 76

Using RadioButtons to set 
message-window options 
502

Using String indexer, Length
property and CopyTo
method 637

Using temperature and weather 
data 1077

Using the HugeInteger Web 
service 1049



Index 1515

UsingArray.vb 1176
UsingFontMetrics.vb 697
UsingFonts.vb 695
UsingHugeInteger-

Service.vb 1049
UTF-8 1322
UTF-16 1322
UTF-32 1322
utility method 301

V
valid 860
valid identifier 63
Validating user information using 

regular expressions 670
validating XML parser 860
validation service 1405
ValidationExpression

property of class Regu-
larExpressionVali-
dator 971

validator 969
validator.w3.org 1346, 

1405, 1421
validator.w3.org/file-

upload.html 1405
validity 861
validity checking 314
valign = "middle" 1373
valign attribute (th) 1373, 

1432
value attribute 1238, 1239, 

1375, 1376, 1435
value of a variable 73
value of an attribute 1403
Value property of 

HttpCookie class 989
Value property of 

HttpCookie class 988
Value property of Server-

ValidateEventArgs
class 1011

value type 198
VALUES 909
ValueType class 661
<var> tag (<var>…</var>)

1233
var attribute 1237, 1238
variable 70, 73, 298
variable name 73
variable number of arguments 287
variable size 73
variable type 73
variable value 73
variable, in current scope 1307

variable, in previous statement 
1307

variable, modify at run time 1307
Vault.com 1284
.vb file name extension 40
vbCrLf constant 121
vbTab constant 121
version 871
version declaration 1234
version in xml declaration 835
vertex 1448
vertical alignment formatting 

1373
vertical coordinate 685
vertical spacing 102
vi text editor 1346, 1401
ViaVoice 1208, 1226
video clip 593
View menu 38, 39
View menu in Internet Explorer 

87
View property of class List-

View 556
Viewing the tracing information 

for a project 1021
__VIEWSTATE hidden input 

978
virtual directory 943
virtual key code 516
virtual memory operating system 

11
Visible property 488
VisitedLinkColor property 

of class LinkLabel 535
Visual Basic 396, 397
Visual Basic .NET 20
Visual Basic primitive data types 

198
Visual Basic Projects folder 

36, 46
Visual Basic’s single-entry/single-

exit repetition structures 171
Visual Basic’s single-entry/single-

exit sequence and selection 
structures 170

Visual Basic’s view of a file of n
bytes 756

Visual Basic’s view of an n-byte 
file 756

Visual C++ .NET 20
visual programming 21, 34, 479
Visual Studio .NET 21, 34
Visual Studio .NET Debugger 28
Visual Studio .NET-generated 

console application 65

Visual Studio accessibility 
guidelines 1209

Visual Studio Projects folder 
36

vocabulary 16, 839
Voice Server SDK 1.0 1226
Voice settings window 1252
voice synthesis 1226
VoiceXML 26, 27, 1226, 1228, 

1241, 1256
VoiceXML tags 1233
volatile memory 4
Voxeo (www.voxeo.com) 1233, 

1235
Voxeo Account Manager 1235
.vsdisco file extension 1045
<vxml> tag (<vxml>…

</vxml>) 1233

W
W3C (World Wide Web 

Consortium) 15, 27, 880, 
1420

W3C host 15
W3C member 15
W3C Recommendation 15, 1401
W3C XML Schema 864
WAI (Web Accessibility 

Initiative) 27
WAI (Web Accessiblity Initiative) 

1208
WAI Quick Tip 1207
wait element 1239
Wait method of class Monitor

596, 602, 609, 616, 617, 634
waiting line 1137
waiting thread 616, 617
WaitSleepJoin thread state 596, 

599, 602, 603
“walk” past end of an array 255
“warehouse” section of the 

computer 4
Warn method of Trace class 

1019
WAV file format 729
Web 28
Web Accessibility Initiative 

(WAI) 27, 1255
Web-based application 

development 942
Web Content Accessibility 

Guidelines 1.0 1207, 1209, 
1223, 1225



1516 Index 

Web Content Accessibility 
Guidelines 2.0 (Working 
Draft) 1207

Web control 26, 942
Web Form 26, 942, 980, 994, 1019

Properties window 1019
Web Form page 942
Web Hosting page 35
Web reference 1045
Web server 1099, 1375, 1402, 

1432
Web servers 943
Web service 8, 17, 26, 35, 1032
Web Service Description 

Language (WSDL) 1033
Web-service method 1032
Web service that generates 

random equations 1085
Web site 3
Web site using two frames: 

navigational and content 
1390, 1450

Web user control 1006
Web.config namespace 1012, 

1020
WebClient class 1076
WebControl class 950
WebHire 1285
WebMethod attribute 1032, 

1034, 1038
WebService attribute 1037
WebService class 1038
WebTime.aspx.vb 948
well-formed document 860
What’s New page 34
WHERE 897, 898, 899, 900, 903, 

910, 911
While repetition structure 21, 

100, 106, 117, 118, 146, 171, 
174, 175

While repetition structure 
flowchart 107

While repetition structure used to 
print powers of two 107

While.vb 107
WhileCounter.vb 146
White Shared property of 

structure Color 688
white-space character 102
whitespace 64
whitespace character 64, 650, 668
widening conversion 195, 196
widget 476
width attribute 1353, 1411, 

1412, 1429
width of text input 1376

width-to-height ratio 1412, 1353
Wiltamuth, Scott 10
Win32 API (Windows 32-bit 

Application Programming 
Interface) 8

window auto hide 39
window gadget 476
window layout 38
window tab 37
Windows 2000 6, 27, 36
Windows 32-bit Application 

Programming Interface 
(Win32 API) 8

Windows 95/98 62
Windows application 36
Windows bitmap (BMP) 51
Windows control library 582
Windows Control Library

project 769
Windows Explorer 535
Windows Form 24
Windows form 478
Windows Form Designer 

generated code expanded 
130

Windows Form Designer 
generated code reflecting 
new property values 132

Windows Forms proxy 1334
Windows Media Player 729
Windows menu 38
Windows NT/2000/XP 62
Windows Registry 1333
Windows wave file format (WAV) 

729
Windows XP 6, 36
WinForms 478
wire format 1034
wire protocol 1034
wireless application protocol 

(WAP) 1290
Wireless Markup Language 

(WML) 26
WirelessResumes.com 1290
Wirth, Nicklaus 10
WML (Wireless Markup 

Language) 26
word character 668
word processor 634, 644
Wordpad 1401
Working Draft 15
WorkingSolo.com 1291
workstation 6
World Wide Web 476, 593
World Wide Web (WWW) 3, 15, 

27

World Wide Web Consortium 
(W3C) 15, 27, 834, 880, 
1255

World Wide Web site 87
Write method of class Binary-

Writer 1109
Write method of class Console

756
Write method of class 

NetworkStream 1100
Write property of Trace class 

1019
WriteByte method of class 

NetworkStream 1100
WriteLine method 119, 1304
WriteLine method of class 

Console 756
WriteXml method of DataSet

932
WSDL (Web Service Description 

Language) 1033
WWW (World Wide Web) 3, 15, 

27
www.adobe.com 51
www.advantagehir-

ing.com 1288
www.advisorteam.net/

AT/User/kcs.asp 1288
www.biztalk.com 879
www.careerpower.com 1293
www.chami.com/html-kit

1346
www.chiefmonster.com

1292
www.deitel.com 3, 29, 45, 

1346, 1409
www.elsop.com/wrc/

h_comput.htm 29
www.etest.net 1288
www.ework.com 1291
www.execunet.com 1292
www.InformIT.com/dei-

tel 3
www.jasc.com 51, 1411
www.jobfind.com 1286
www.jobtrak.com 1289
www.microsoft.com 29
www.microsoft.com/net

18
www.mindexchange.com

1288
www.msdn.microsoft.com

/vstudio 55
www.nationjob.com 1292
www.netvalley.com/

intval.html 29



Index 1517

www.prenhall.com/
deitel 3, 29

www.recruitsoft.com/
process 1288

www.review.com 1293
www.sixfigurejobs.com

1292
www.softlord.com/comp

29
www.unicode.org 1324
www.vbi.org 55
www.voxeo.com (Voxeo) 1233, 

1235
www.w3.org 15, 29
www.w3.org/

History.html 29
www.w3.org/markup 1401
www.w3.org/TR/xhtml1

1421
www.w3.org/XML/

Schema.html 863
www.w3schools.com/

xhtml/default.asp
1421

www.webhire.com 1285
www.worldofdotnet.net

55
www.xhtml.org 1421
www.yahoo.com 1351

X
x-axis 685
x-coordinate 685
X formatting code 154
Xalan XSLT processor 870
XBRL (Extensible Business 

Reporting Language) 26
Xerces parser 836
XHTML (Extensible HyperText 

Markup Language) 15, 26, 
27, 870, 1401

XHTML comment 1402
XHTML form 1432
XHTML Recommendation 1255, 

1421
XLink (Extensible Linking 

Language) 16

XML (Extensible Markup 
Language) 15, 20, 25, 834, 
1033

XML declaration 835
XML document containing book 

information 871
XML document that conforms to a 

Microsoft Schema document 
865

XML document that describes 
various sports 859

XML file containing AdRotator
information 967

.xml file extension 836
XML GL (XML Guidelines) 1226
XML Guidelines (XML GL) 1226
xml namespace 839
XML namespaces demonstration 

839
XML node 836, 842
XML parser 836
XML representation of a 

DataSet written to a file 
932

XML root 836
XML Schema 26, 839, 865
XML serialization 1082
XML tag 835
XML to mark up a business letter 

837
XML used to mark up an article 

834
XML Validator 863
XML Validator displaying an 

error message 865
XML Validator used to validate an 

XML document 864
XML Web services 1031
XML Web Services page 35
XML.org 880
XML4J parser 836
XmlNodeReader class 842
XmlNodeReader used to iterate 

through an XML document 
843

xmlns attribute 840, 841
XmlReader class 842

XmlValidatingReader class 
867

Xor (logical exclusive OR) 164, 
167

Xor bitwise operator 534
XPath expression 852, 860, 882
XPathNavigator class used to 

navigate selected nodes 852
XPathNodeIterator Class 

860
xsl

template 874
XSL (Extensible Stylesheet 

Language) 16, 839, 870
XSL document that transforms 

sorting.xml into 
XHTML 872

XSL specification 880
XSL style sheet applied to an 

XML document 875
XSL variable 875
XSLT (Extensible Stylesheet 

Language Transformation) 
26

XSLT processor 870
XsltArgumentList class 875
XslTransform class 875
x-y coordinate 1388
xy-coordinate 1448

Y
y-axis 685
y-coordinate 685
Yahoo! 1286
yellow 687
yellow arrow 1306
Yellow Shared property of 

structure Color 688
YesNo constant 151
YesNoCancel constant 151

Z
zero-based counting 251
zeroth element 247


	aki

