

CHAPTER

1

Getting Started

1.1 INTRODUCTION TO JAVA 2

Origins of the Java Language

✜ 2

Objects and Methods 3

Applets

✜ 4

A Sample Java Application Program 5

Byte-Code and the Java Virtual Machine 8

Class Loader

✜ 10

Compiling a Java Program or Class 10

Running a Java Program 11

Tip: Error Messages 12

1.2 EXPRESSIONS AND ASSIGNMENT
STATEMENTS 13

Identifiers 13

Variables 15

Assignment Statements 17

Tip: Initialize Variables 18

More Assignment Statements

✜ 19

Assignment Compatibility 20

Constants 22

Arithmetic Operators and Expressions 23

Parentheses and Precedence Rules

✜ 25

Pitfall: Round-Off Errors in Floating-Point
Numbers 26

Integer and Floating-Point Division 27

Pitfall: Division with Whole Numbers 28

Type Casting 29

Increment and Decrement Operators 30

1.3 THE CLASS

String 33

String Constants and Variables 33

Concatenation of Strings 34

Classes 36

String Methods 37

Escape Sequences 42

String Processing 43

The Unicode Character Set

✜ 44

1.4 PROGRAM STYLE 46

Naming Constants 46

Java Spelling Conventions 48

Comments 49

Indenting 50

CHAPTER SUMMARY 51
ANSWERS TO SELF-TEST EXERCISES 52
PROGRAMMING PROJECTS 54

5640_ch01.fm Page 1 Tuesday, February 10, 2004 3:54 PM

1

Getting Started

She starts—she moves—she seems to feel
The thrill of life along her keel.

Henry Wadsworth Longfellow,

The Building of the Ship

INTRODUCTION

This chapter introduces you to the Java language and gives you enough details
to allow you to write simple programs involving expressions, assignments, and
console output. The details about assignments and expressions are similar to
that of most other high-level languages. Every language has its own way of
handling strings and console output, so even the experienced programmer
should look at that material. Even if you are already an experienced program-
mer in some language other than Java, you should read at least the subsection
entitled “A Sample Java Application Program” in Section 1.1 and preferably
all of Section 1.1, and you should read all of Section 1.3 on strings and at least
skim Section 1.4 to find out about Java defined constants and comments.

PREREQUISITES

This book is self contained and requires no preparation other than some sim-
ple high school algebra.

Introduction to Java

Eliminating the middle man is not necessarily a good idea.

Found in my old economics class notes

In this section we give you an overview of the Java programming language.

■ ORIGINS OF THE JAVA LANGUAGE

✜

Java is well-known as a programming language for Internet applications. How-
ever, this book, and many other books and programmers, view Java as a general-
purpose programming language that is suitable for most any application
whether it involves the Internet or not. The first version of Java was neither of
these things, but it evolved into both of these things.

1.1

5640_ch01.fm Page 2 Tuesday, February 10, 2004 3:54 PM

Introduction to Java 3

In 1991, James Gosling lead a team at Sun Microsystems that developed the first
version of Java (which was not yet called

Java

). This first version of the language was
designed for programming home appliances, such as washing machines and televi-
sion sets. Although that may not be a very glamorous application area, it is no easy
task to design such a language. Home appliances are controlled by a wide variety of
computer processors (chips). The language that Gosling was designing needed to
work on all these different processors. Moreover, a home appliance is typically an
inexpensive item, so the manufacturer would be unwilling to invest large amounts of
money into developing complicated compilers. (A compiler is a program that trans-
lates the program into a language the processor can understand.) To simplify the
tasks of writing compilers (translation programs) for each class of appliances, the
team used a two-step translation process. The programs are first translated into an
intermediate language

 that is the same for all appliances (or all computers), then a
small, easy-to-write, and hence inexpensive, program translates this intermediate lan-
guage into the machine language for a particular appliance or computer. This inter-
mediate language is called Java byte-code

 or simply byte-code

. Since there is only
one intermediate language, the hardest step of the two-step translation from program
to intermediate language to machine language is the same for all appliances (or all
computers), and hence, most of the cost of translating to multiple machine languages
was saved. The language for programming appliances never caught on with appliance
manufacturers, but the Java language into which it evolved has become a widely used
programming language.

Why call it

byte-code

? The word code

 is commonly used to mean a program or part
of a program. A byte is a small unit of storage (eight bits to be precise). Computer-
readable information is typically organized into bytes. So the term

byte-code

 suggests a
program that is readable by a computer as opposed to a person.

In 1994, Patrick Naughton and Jonathan Payne at Sun Microsystems developed a
Web browser that could run (Java) programs over the Internet. That Web browser has
evolved into the browser known as HotJava. This was the start of Java’s connection to
the Internet. In the fall of 1995, Netscape Incorporated made its Web browser capable
of running Java programs. Other companies followed suit and have developed software
that accommodates Java programs.

■ OBJECTS AND METHODS

Java is an object-oriented programming

 language, abbreviated OOP

. What is OOP? The
world around us is made up of objects, such as people, automobiles, buildings, streets,
adding machines, papers, and so forth. Each of these objects has the ability to perform
certain actions, and each of these actions has some effect on some of the other objects
in the world. OOP is a programming methodology that views a program as similarly
consisting of objects that interact with each other by means of actions.

Object-oriented programming has its own specialized terminology. The objects are
called, appropriately enough, objects

. The actions that an object can take are called

intermediate
language

byte-code

code

OOP

object

5640_ch01.fm Page 3 Tuesday, February 10, 2004 3:54 PM

4 Chapter 1 Getting Started

methods

. Objects of the same kind are said to have the same

type

 or, more often, are
said to be in the same class

. For example, in an airport simulation program, all the sim-
ulated airplanes might belong to the same class, probably called the

Airplane

 class. All
objects within a class have the same methods. Thus, in a simulation program, all air-
planes have the same methods (or possible actions) such as taking off, flying to a spe-
cific location, landing, and so forth. However, all simulated airplanes are not identical.
They can have different characteristics, which are indicated in the program by associat-
ing different data (that is, some different information) with each particular airplane
object. For example, the data associated with an airplane object might be two numbers
for its speed and altitude.

If you have used some other programming language, it might help to explain Java
terminology in terms of the terminology used in other languages. Things that are called

procedures,

methods,

functions,

 or

subprograms

 in other languages are all called

methods

 in
Java. In Java, all methods (and for that matter, all programming constructs whatsoever)
are part of a class. As we will see, a Java application

 program

 is a class with a method
named

main

, and when you run the Java program, the run-time system automatically
invokes the method named

main

 (that is, it automatically initiates the

main

 action). An
application program is a “regular” Java program; as we are about to see, there is another
kind of Java program known as an applet. Other Java terminology is pretty much the
same as the terminology in most other programming languages and, in any case, will be
explained when each concept is introduced.

■ APPLETS

✜

There are two kinds of Java programs,

applets

 and

 applications

. An application or appli-
cation program is just a regular program. Although the name

applet

 may sound like it
has something to do with apples, the name really means a

little Java application,

 not a
little apple. Applets and applications are almost identical. The difference is that applica-
tions are meant to be run on your computer like any other program, whereas an applet

is meant to be run from a Web browser, and so can be sent to another location on the
Internet and run there. Applets always use a windowing interface, but not all programs
with a windowing interface are applets, as you will see in Chapters 16–18.

WHY IS THE LANGUAGE NAMED “JAVA”?

The current custom is to name programming languages according to the whims of their design-
ers. Java is no exception. There are conflicting explanations of the origin of the name “Java.”
Despite these conflicting stories, one thing is clear: The word “Java” does not refer to any prop-
erty or serious history of the Java language. One believable story about where the name “Java”
came from is that the name was thought of when, after a fruitless meeting trying to come up with
a new name for the language, the development team went out for coffee, and hence the inspira-
tion for the name “Java.”

method
class

application
program

applet
application

5640_ch01.fm Page 4 Tuesday, February 10, 2004 3:54 PM

Introduction to Java 5

Although applets were designed to be run from a Web browser, they can also be run
with a program known as an applet viewer

. The applet viewer is really meant as a
debugging aid and not as the final environment to allow users to run applets. Nonethe-
less, applets are now often run as stand-alone programs using an applet viewer.

1

 We
find this to be a somewhat unfortunate accident of history. Java has multiple libraries of
software for designing windowing interfaces that run with no connection to a browser.
We prefer to use these libraries, rather than applets, to write windowing programs that
will not be run from a Web browser. In this book we show you how to do windowing
interfaces as applets and as programs with no connection to a Web browser. In fact, the
two approaches have a large overlap of both techniques and the Java libraries that they
use. Once you know how to design and write either applets or applications, it is easy to
learn to write the other of these two kinds of programs.

An applet always has a windowing interface. An application program may have a
windowing interface or use simple console I/O. So as not to detract from the code
being studied, most of our example programs, particularly early in the book, use simple
console I/O (that is, simple text I/O).

■ A SAMPLE JAVA APPLICATION PROGRAM

Display 1.1 contains a simple Java program and the screen displays produced when it
is run. A Java program is really a class definition (whatever that is) with a method
named

main

. When the program is run, the method named

main

 is invoked; that is,
the action specified by

main

 is carried out. The body of the method

main

 is enclosed in
braces,

{}

, so that when the program is run, the statements in the braces are executed.
(If you are not even vaguely familiar with the words

class

 and

method,

 they will be
explained. Read on.)

The following line says that this program is a class called

FirstProgram

:

public class FirstProgram
{

The next two lines, shown below, begin the definition of the

main

 method:

public static void main(String[] args)
{

The details of exactly what a Java class is and what words like

public

,

static

,

void

,
and so forth mean will be explained in the next few chapters. Until then, you can think
of these opening lines, repeated below, as being a rather wordy way of saying “Begin the
program named

FirstProgram

.”

public class FirstProgram
{

1

An applet viewer does indeed use a browser to run an applet, but the look and feel is that of a
stand-alone program with no interaction with a browser.

5640_ch01.fm Page 5 Tuesday, February 10, 2004 3:54 PM

6 Chapter 1 Getting Started

 public static void main(String[] args)
 {

The next two lines, shown in what follows, are the first actions the program performs:

System.out.println("Hello reader.");
System.out.println("Welcome to Java.");

Each of these lines begins with

System.out.println

. Each one causes the quoted
string given within the parentheses to be output to the screen. For example, consider

System.out.println("Hello reader.");

This causes the line

Hello reader.

to be written to the screen. The output produced by the next line that begins with

Sys-

tem.out.println

 will go on the following line. Thus, these two lines cause the follow-
ing output:

Hello reader.
Welcome to Java.

Display 1.1 A Sample Java Program

1 public class FirstProgram
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("Hello reader.");
6 System.out.println("Welcome to Java.");

7 System.out.println("Let's demonstrate a simple calculation.");
8 int answer;
9 answer = 2 + 2;

10 System.out.println("2 plus 2 is " + answer);
11 }
12 }

SAMPLE DIALOGUE 1

Hello reader.
Welcome to Java.
Let's demonstrate a simple calculation.
2 plus 2 is 4

Name of class (program)
The main method

println

5640_ch01.fm Page 6 Tuesday, February 10, 2004 3:54 PM

codes6.html

Introduction to Java 7

These lines that begin with

System.out.println are a way of saying “output what is
shown in parentheses,” and the details of why the instruction is written this way need
not concern us yet. However, we can tell you a little about what is going on here.

Java programs work by having things called objects perform actions. The actions per-
formed by an object are called methods. System.out is an object used for sending out-
put to the screen; println is the method (that is, the action) that this object performs.
The action is to send what is in parentheses to the screen. When an object performs an
action using a method, that is called invoking the method (or calling the method). In a
Java program, you write such a method invocation by writing the object followed by a
dot (period), followed by the method name, and some parentheses that may or may not
have something inside them. The thing (or things) inside the parentheses is called an
argument(s) and provides information needed by the method to carry out its action. In
each of these two lines and the similar line that follows them, the method is println.
The method println writes something to the screen, and the argument (a string in
quotes) tells it what it should write.

 Invoking a method is also sometimes called sending a message to the object. With
this view a message is sent to the object (by invoking a method) and in response the
object performs some action (namely the action taken by the method invoked). We sel-
dom use the terminology sending a message, but it is standard terminology used by some
programmers and authors.

Variable declarations in Java are similar to what they are in other programming lan-
guages. The following line from Display 1.1 declares the variable answer:

 int answer;

The type int is one of the Java types for integers (whole numbers). So, this line says
that answer is a variable that can hold a single integer (whole number).

The following line is the only real computing done by this first program:

answer = 2 + 2;

In Java, the equal sign is used as the assignment operator, which is an instruction to
set the value of the variable on the left-hand side of the equal sign. In the preceding
program line, the equal sign does not mean that answer is equal to 2 + 2. Instead, the
equal sign is an instruction to the computer to make answer equal to 2 + 2.

The last program action is

System.out.println("2 plus 2 is " + answer);

This is an output statement of the same kind as we discussed earlier, but there is some-
thing new in it. Note that the string "2 plus 2 is " is followed by a plus sign and the
variable answer. In this case the plus sign is an operator to concatenate (connect) two
strings. However, the variable answer is not a string. If one of the two operands to + is a
string, Java will convert the other operand, such as the value of answer, to a string. In
this program, answer has the value 4, so answer is converted to the string "4" and then

System.out.
println

invoking

dot

argument

sending a
message

variable int

equal sign

assignment
operator

5640_ch01.fm Page 7 Tuesday, February 10, 2004 3:54 PM

8 Chapter 1 Getting Started

concatenated to the string "2 plus 2 is ", so the output statement under discussion is
equivalent to

System.out.println("2 plus 2 is 4");

The remainder of this first program consists of two closing braces. The first closing
brace ends the definition of the method main. The last closing brace ends the definition
of the class named FirstProgram.

■ BYTE-CODE AND THE JAVA VIRTUAL MACHINE

Most modern programming languages are designed to be (relatively) easy for people to
write and to understand. These languages that were designed for people to read are
called high-level languages. The language that the computer can directly understand is
called machine language. Machine language or any language similar to machine lan-
guage is called a low-level language. A program written in a high-level language, like
Java, must be translated into a program in machine language before the program can be
run. The program that does the translating (or at least most of the translating) is called
a compiler and the translation process is called compiling.

One disadvantage of most programming languages is that the compiler translates
the high-level-language program directly into the machine language for your computer.
Since different computers have different machine languages, this means you need a dif-
ferent compiler for each type of computer. Java, however, uses a slightly different and
much more versatile approach to compiling.

Self-Test Exercises

1. If the following statement were used in a Java program, it would cause something to be writ-
ten to the screen. What would it cause to be written to the screen?

System.out.println("Java is not a drink.");

2. Give a statement or statements that can be used in a Java program to write the following to
the screen:

I like Java.
You like tea.

3. Write a complete Java program that uses System.out.println to output the following
to the screen when run:

Hello World!

Note that you do not need to fully understand all the details of the program in order to
write the program. You can simply follow the model of the program in Display 1.1.

high-level,
low-level, and

machine
languages

compiler

5640_ch01.fm Page 8 Tuesday, February 10, 2004 3:54 PM

Introduction to Java 9

The Java compiler does not translate your program into the machine language for
your particular computer. Instead, it translates your Java program into a language called
byte-code. Byte-code is not the machine language for any particular computer. Byte-
code is the machine language for a fictitious computer called the Java Virtual Machine.
The Java Virtual Machine is very similar to all typical computers. Thus, it is easy to
translate a program written in byte-code into a program in the machine language for
any particular computer. The program that does this translation is called an interpreter.
An interpreter combines the translation of the byte-code and the execution of the cor-
responding machine-language instructions. The interpreter works by translating an
instruction of byte-code into instructions expressed in your computer’s machine lan-
guage and then executing those instructions on your computer. It does this one byte-
code instruction at a time. Thus, an interpreter translates and executes the instructions
in the byte-code one after the other, rather than translating the entire byte-code pro-
gram at once.2

To run a Java program, you proceed as follows. First, you use the compiler to trans-
late the Java program into byte-code. Then, you use the byte-code interpreter for your
computer to translate each byte-code instruction to machine language and to run the
machine-language instructions.

It sounds as though Java byte-code just adds an extra step in the process. Why not
write compilers that translate directly from Java to the machine language for your par-
ticular computer? That is what is done for most other programming languages. How-
ever, Java byte-code makes your Java program very portable. After you compile your
Java program into byte-code, you can use that byte-code on any computer. When you
run your program on another type of computer, you do not need to recompile it. This
means that you can send your byte-code over the Internet to another computer and
have it easily run on that computer. This is one of the reasons Java is good for Internet
applications. Of course, every kind of computer must have its own byte-code inter-
preter, but these interpreters are simple programs when compared to a compiler.

When compiling and running a Java program, you are usually not even aware of the
fact that your program is translated into byte-code and not directly translated into
machine-language code. You normally give two commands, one to compile your program

COMPILER

A compiler is a program that translates a high-level-language program, such as a Java program,
into an equivalent low-level language program.

2 Sometimes people use the term Java Virtual Machine (JVM) to refer to the Java byte-code
interpreter (as well as to refer to the underlying hypothetical machine that the interpreter is
based on).

byte-code
Java Virtual
Machine

interpreter

5640_ch01.fm Page 9 Tuesday, February 10, 2004 3:54 PM

10 Chapter 1 Getting Started

(into byte-code) and one to run your program. The run command executes the Java
byte-code interpreter on the byte-code.

When you use a compiler, the terminology can get a bit confusing, because both the
input to the compiler program and the output from the compiler program are also pro-
grams. Everything in sight is some kind of program. To make sure it is clear which pro-
gram we mean, we call the input program, which in our case will be a Java program, the
source program, or source code, and call the translated low-level-language program that
the compiler produces the object program, or object code. The word code just means a
program or a part of a program.

■ CLASS LOADER ✜

A Java program is divided into smaller parts called classes, and normally each class defi-
nition is in a separate file and is compiled separately. In order to run your program, the
byte-code for these various classes needs to be connected together. The connecting is
done by a program known as the class loader. This connecting is typically done auto-
matically, so you normally need not be concerned with it. (In other programming lan-
guages, the program corresponding to the Java class loader is called a linker.)

■ COMPILING A JAVA PROGRAM OR CLASS

As we noted in the previous subsection, a Java program is divided into classes. Before
you can run a Java program, you must compile these classes.

 Before you can compile a Java program, each class definition used in the program
(and written by you, the programmer) should be in a separate file. Moreover, the name
of the file should be the same as the name of the class, except that the file name has
.java added to the end. The program in Display 1.1 is a class called FirstProgram and
so it should be in a file named FirstProgram.java. This program has only one class,
but a more typical Java program would consist of several classes.

If you are using an IDE (Integrated Development Environment), there will be a
simple command to compile your Java program from the editor. You will have to check
your local documentation to see exactly what this command is, but it is bound to be
very simple. (In the TextPad environment the command is Compile Java on the Tools
menu.)

BYTE-CODE

The Java compiler translates your Java program into a language called byte-code, which is the
machine language for a fictitious computer. It is easy to translate this byte-code into the machine
language of any particular computer. Each type of computer will have its own interpreter that
translates and executes byte-code instructions.

run command

source code
object code

code

.java files

5640_ch01.fm Page 10 Tuesday, February 10, 2004 3:54 PM

Introduction to Java 11

If you want or need to compile your Java program or class with a one-line command
given to the operating system, then that is easy to do. We will describe the commands
for the Java system distributed by Sun Microsystems (usually called “the SDK” or “the
JDK” or “Java 2”).

Suppose you want to compile a class named FirstProgram. It will be in a file named
FirstProgram.java. To compile it, you simply give the following command:

javac FirstProgram.java

You should be in the same directory (folder) as the file FirstProgram.java when you
give this javac command. To compile any Java class, whether it is a full program or
not, the command is javac followed by the name of the file containing the class.

When you compile a Java class, the resulting byte-code for that class is placed in a
file of the same name, except that the ending is changed from .java to .class. So,
when you compile a class named FirstProgram in the file FirstProgram.java, the
resulting byte-code is stored in a file named FirstProgram.class.

■ RUNNING A JAVA PROGRAM

A Java program can consist of a number of different classes, each in a different file.
When you run a Java application program, you only run the class that you think of as
the program; that is, the class that contains a main method. Look for the following line,
which starts the main method:

public static void main(String[] args)

The critical words to look for are public static void main. The remaining portion of
the line might be spelled slightly differently in some cases.

If you are using an IDE, you will have a menu command that can be used to run a
Java program. You will have to check your local documentation to see exactly what this
command is. (In the TextPad environment the command is Run Java Application on
the Tools menu.)

If you want or need to run your Java program with a one-line command given to the
operating system, then (in most cases) you can run a Java program by giving the com-
mand java followed by the name of the class containing the main method. For exam-
ple, for the program in Display 1.1, you would give the following one-line command:

java FirstProgram

Note that when you run a program, you use the class name, such as FirstProgram,
without any .java or .class ending.

When you run a Java program, you are actually running the Java byte-code inter-
preter on the compiled version of your program. When you run your program, the sys-
tem will automatically load in any classes you need and run the byte-code interpreter
on those classes as well.

javac

.class files

running a Java
program

5640_ch01.fm Page 11 Tuesday, February 10, 2004 3:54 PM

12 Chapter 1 Getting Started

We have been assuming that the Java compiler and related software were already set
up for you. We were also assuming that all the files were in one directory. (Directories
are also called folders.) If you need to set up the Java compiler and system software, con-
sult the manuals that came with the software. If you wish to spread your class defini-
tions across multiple directories, that is not difficult, but we will not concern ourselves
with that detail until later.

SYNTAX AND SEMANTICS

The description of a programming language, or any other kind of language, can be thought of as
having two parts, called the syntax and semantics of the language.

The syntax tells what arrangement of words and punctuations are legal in the language. The
syntax of the language is often called the grammar rules of the language. For Java, the syntax
describes what arrangements of words and punctuations are allowed in a class or program
definition.

The semantics of a language describes the meaning of things written while following the syntax
rules of the language. For a Java program, the syntax describes how you write a program and the
semantics describes what happens when you run the program.

When writing a program in Java, you are always using both the syntax and the semantics of the
Java language.

Tip

ERROR MESSAGES

A mistake in a program is called a bug. For this reason, the process of eliminating mistakes in your
program is called debugging. There are three commonly recognized types of bugs or errors, and
they are known as syntax errors, run-time errors, and logic errors. Let’s consider them in order.

A syntax error is a grammatical mistake in your program; that is, a mistake in the allowed
arrangement of words and punctuations. If you violate one of these rules, for example, by omit-
ting a required punctuation, that is a syntax error. The compiler will catch syntax errors and out-
put an error message telling you that it has found the error, where it thinks the error is, and what
it thinks the error is. If the compiler says you have a syntax error, you undoubtedly do have an
error. However, the compiler could be incorrect about where and what the error is.

An error that is not detected until your program is run is called a run-time error. If the computer
detects a run-time error when your program is run, then it will output an error message. The error
message may not be easy to understand, but at least it lets you know that something is wrong.

bug
debugging

syntax error

run-time error

5640_ch01.fm Page 12 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 13

Expressions and Assignment Statements
Once a person has understood the way variables are used in pro-
gramming, he has understood the quintessence of programming.

E. W. Dijkstra, Notes on Structured Programming

Variables, expressions, and assignments in Java are similar to their counterparts in most
other general-purpose languages. In this section we describe the details.

■ IDENTIFIERS

The name of a variable (or other item you might define in a program) is called an iden-
tifier. A Java identifier must not start with a digit and all the characters must be letters,
digits, or the underscore symbol. (The symbol $ is also allowed, but it is reserved for
special purposes, and so you should not use $ in your Java identifiers.) For example, the
following are all valid identifiers:

x x1 x_1 _abc ABC123z7 sum RATE count data2 bigBonus

A mistake in the underlying algorithm for your program is called a logic error. If your program
has only logic errors, it will compile and run without any error message. You have written a valid
Java program, but you have not written a program that does what you want. The program runs
and gives output, but gives incorrect output. For example, if you were to mistakenly use the mul-
tiplication sign in place of the addition sign, that would be a logic error. Logic errors are the hard-
est kind of error to locate, because the computer does not give you any error messages.

Self-Test Exercises

4. What is a compiler?

5. What is a source program?

6. What is an object program?

7. What do you call a program that runs Java byte-code instructions?

8. Suppose you define a class named NiceClass in a file. What name should the file have?

9. Suppose you compile the class NiceClass. What will be the name of the file with the
resulting byte-code?

logic error

1.2

identifier

5640_ch01.fm Page 13 Tuesday, February 10, 2004 3:54 PM

14 Chapter 1 Getting Started

All of the preceding names are legal and would be accepted by the compiler, but the first
five are poor choices for identifiers, since they are not descriptive of the identifier’s use.
None of the following are legal identifiers and all would be rejected by the compiler:

12 3X %change data-1 myfirst.java PROG.CLASS

The first two are not allowed because they start with a digit. The remaining four are not
identifiers because they contain symbols other than letters, digits, and the underscore
symbol.

Java is a case-sensitive language; that is, it distinguishes between uppercase and low-
ercase letters in the spelling of identifiers. Hence, the following are three distinct iden-
tifiers and could be used to name three distinct variables:

rate RATE Rate

However, it is usually not a good idea to use two such variants in the same program,
since that might be confusing. Although it is not required by Java, variables are usually
spelled with their first letter in lowercase. The convention that has now become univer-
sal in Java programming is to spell variable names with a mix of upper- and lowercase
letters (and digits), to always start a variable name with a lowercase letter, and to indi-
cate “word” boundaries with an uppercase letter, as illustrated by the following variable
names:

topSpeed bankRate1 bankRate2 timeOfArrival

 A Java identifier can theoretically be of any length, and the compiler will accept
even unreasonably long identifiers.

There is a special class of identifiers, called keywords or reserved words, that have a
predefined meaning in Java and that you cannot use as names for variables or anything

NAMES (IDENTIFIERS)

The name of something in a Java program, such as a variable, class, method, or object name,
must not start with a digit and may only contain letters, digits (0 through 9), and the underscore
character (_). Uppercase and lowercase letters are considered to be different characters. (The
symbol $ is also allowed, but it is reserved for special purposes, and so you should not use $ in a
Java name.)

Names in a program are called identifiers.

Although it is not required by the Java language, the common practice, and the one followed in
this book, is to start the names of classes with uppercase letters and to start the names of vari-
ables, objects, and methods with lowercase letters. These names are usually spelled using only
letters and digits.

case-sensitive

keyword

5640_ch01.fm Page 14 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 15

else. In the code displays of this book, keywords are shown in a different color, as illus-
trated by the keyword public. A complete list of keywords is given in Appendix 1.

Some predefined words, such as System and println, are not keywords. These pre-
defined words are not part of the core Java language and you are allowed to redefine
them. These predefined words are not keywords. However, they are defined in libraries
required by the Java language standard. Needless to say, using a predefined identifier for
anything other than its standard meaning can be confusing and dangerous, and thus
should be avoided. The safest and easiest practice is to treat all predefined identifiers as
if they were keywords.

■ VARIABLES

Every variable in a Java program must be declared before it is used. When you declare a
variable, you are telling the compiler—and, ultimately, the computer—what kind of
data you will be storing in the variable. For example, the following are two declarations
that might occur in a Java program:

int numberOfBeans;
double oneWeight, totalWeight;

The first declares the variable numberOfBeans so that it can hold a value of type int,
that is, a whole number. The name int is an abbreviation for “integer.” The type int is
the default type for whole numbers. The second definition declares oneWeight and
totalWeight to be variables of type double, which is the default type for numbers with
a decimal point (known as floating-point numbers). As illustrated here, when there is
more than one variable in a declaration, the variables are separated by commas. Also,
note that each declaration ends with a semicolon.

Every variable must be declared before it is used. A variable may be declared any
place, so long as it is declared before it is used. Of course, variables should always be
declared in a location that makes the program easier to read. Typically variables are
declared either just before they are used or at the start of a block (indicted by an
opening brace {). Any legal identifier, other than a keyword, may be used for a vari-
able name.

Java has basic types for characters, different kinds of integers, and different kinds of
floating-point numbers (numbers with a decimal point), as well as a type for the values
true and false. These basic types are known as primitive types. Display 1.2 shows all
of Java’s primitive types. The preferred type for integers is int. The type char is the type
for single characters. The preferred type for floating-point numbers is double. The type
boolean has the two values true and false. (Unlike some other programming lan-
guages, the Java values true and false are not integers and will not be automatically
converted to integers.) Objects of the predefined class String represent strings of char-
acters. String is not a primitive type, but is often considered a basic type along with
the primitive types. The class String is discussed later in this chapter.

declare

floating-point
number

primitive types

5640_ch01.fm Page 15 Tuesday, February 10, 2004 3:54 PM

16 Chapter 1 Getting Started

VARIABLE DECLARATIONS

In Java, a variable must be declared before it is used. Variables are declared as follows:

SYNTAX:

Type Variable_1, Variable_2,. . .;

EXAMPLES

int count, numberOfDragons, numberOfTrolls;
char answer;
double speed, distance;

SYNTACTIC VARIABLES

Remember that when you see something such as Type, Variable_1, or Variable_2, these words do
not literally appear in your Java code. They are syntactic variables, which means they are
replaced by something of the category that they describe. For example, Type can be replaced by
int, double, char, or any other type name. Variable_1 and Variable_2 can each be replaced by
any variable name.

Display 1.2 Primitive Types

TYPE NAME KIND OF VALUE MEMORY USED SIZE RANGE

boolean true or false 1 byte not applicable

char single character
(Unicode)

2 bytes all Unicode characters

byte integer 1 byte −128 to 127

short integer 2 bytes −32768 to 32767

int integer 4 bytes −2147483648 to
 2147483647

long integer 8 bytes −9223372036854775808 to
 9223372036854775807

float floating-point
number

4 bytes −±3.40282347 × 10+38 to
−±1.40239846 × 10–45

double floating-point
number

8 bytes ±±1.76769313486231570 × 10+308 to
±±4.94065645841246544 × 10–324

5640_ch01.fm Page 16 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 17

■ ASSIGNMENT STATEMENTS

The most direct way to change the value of a variable is to use an assignment state-
ment. In Java the equal sign is used as the assignment operator. An assignment state-
ment always consists of a variable on the left-hand side of the assignment operator (the
equal sign) and an expression on the right-hand side. An assignment statement ends
with a semicolon. The expression on the right-hand side of the equal sign may be a
variable, a number, or a more complicated expression made up of variables, numbers,
operators, and method invocations. An assignment statement instructs the computer to
evaluate (that is, to compute the value of) the expression on the right-hand side of the
equal sign and to set the value of the variable on the left-hand side equal to the value of
that expression. The following are examples of Java assignment statements:

totalWeight = oneWeight * numberOfBeans;
temperature = 98.6;
count = count + 2;

The first assignment statement sets the value of totalWeight equal to the number in
the variable oneWeight multiplied by the number in numberOfBeans. (Multiplication is
expressed using the asterisk * in Java.) The second assignment statement sets the value
of temperature to 98.6. The third assignment statement increases the value of the vari-
able count by 2.

Note that a variable may occur on both sides of the assignment operator (both sides
of the equal sign). The assigned statement

count = count + 2;

sets the new value of count equal to the old value of count plus 2.

The assignment operator when used with variables of a class type requires a bit more
explanation, which we will give in Chapter 4.

ASSIGNMENT STATEMENTS WITH PRIMITIVE TYPES

An assignment statement with a variable of a primitive type on the left-hand side of the equal
sign causes the following action: First, the expression on the right-hand side of the equal sign is
evaluated, and then the variable on the left-hand side of the equal sign is set equal to this value.

SYNTAX:

Variable = Expression;

EXAMPLE:

distance = rate * time;
count = count + 2;

assignment
 statement

assignment
operator

5640_ch01.fm Page 17 Tuesday, February 10, 2004 3:54 PM

18 Chapter 1 Getting Started

Tip

An assigned statement may be used as an expression that evaluates to a value. When
used this way, the variable on the left-hand side of the equal sign is changed as we have
described, and the new value of the variable is also the value of the assignment expres-
sion. For example,

number = 3;

both changes the value of number to 3 and evaluates to the value 3. This allows you to
chain assignment statements. The following changes the values of both the variables,
number1 and number2, to 3:

number2 = (number1 = 3);

The assignment operator automatically is executed right-to-left if there are no paren-
theses, so this is normally written in the following equivalent way:

number2 = number1 = 3;

INITIALIZE VARIABLES

A variable that has been declared but that has not yet been given a value by some means, such
as an assignment statement, is said to be uninitialized. In some cases an uninitialized variable
may be given some default value, but this is not true in all cases. Moreover, it makes your pro-
gram clearer to explicitly give the variable a value, even if you are simply reassigning it the
default value. (The exact details on default values have been known to change and should not
be counted on.)3

One easy way to ensure that you do not have an uninitialized variable is to initialize it within the
declaration. Simply combine the declaration and an assignment statement, as in the following
examples:

int count = 0;
double speed = 65.5;
char grade = 'A';
int initialCount = 50, finalCount;

Note that you can initialize some variables and not initialize other variables in a declaration.

Sometimes the compiler may say that you have failed to initialize a variable. In most cases, you
will indeed have failed to initialize the variable. Occasionally, the compiler is mistaken in giving
this advice. However, the compiler will not compile your program until you convince it that the
variable in question is initialized. To make the compiler happy, initialize the variable when it is
declared, even if the variable will be given a different value before the variable is used for any-
thing. In such cases, you cannot argue with the compiler.

3 The official rules are that the variables we are now using, which we will later call local variables,
are not automatically initialized. Later in this book we will introduce variables called static vari-
ables and instance variables that are automatically initialized. However, we urge you to never rely
on automatic initialization.

uninitialized
variable

5640_ch01.fm Page 18 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 19

■ MORE ASSIGNMENT STATEMENTS ✜

There is a shorthand notation that combines the assignment operator (=) and an arith-
metic operator so that a given variable can have its value changed by adding, subtract-
ing, multiplying, or dividing by a specified value. The general form is

Variable Op = Expression

which is equivalent to

Variable = Variable Op (Expression)

The Expression can be another variable, a constant, or a more complicated arithmetic
expression. The Op can be any of +, −, *, /, %, as well as some operators we have not yet
discussed. The operator % has not yet been discussed but is explained later in this
chapter. (A full list of values for Op can be seen at the bottom of the precedence table in
Appendix 2.) Below are examples:

INITIALIZING A VARIABLE IN A DECLARATION

You can combine the declaration of a variable with an assignment statement that gives the vari-
able a value.

SYNTAX:

Type Variable_1 = Expression__1, Variable_2 = Expression__2, ...;

Some of the variables may have no equal sign and no expression, as in the first example.

EXAMPLE:

int numberReceived = 0, lastNumber, numberOfStations = 5;
double speed = 98.9, distance = speed * 10;
char initial = 'J';

EXAMPLE: EQUIVALENT TO:

count += 2; count = count + 2;

total -= discount; total = total - discount;

bonus *= 2; bonus = bonus * 2;

time /= rushFactor; time = time / rushFactor;

change %= 100; change = change % 100;

amount *= count1 + count2; amount = amount * (count1 + count2);

5640_ch01.fm Page 19 Tuesday, February 10, 2004 3:54 PM

20 Chapter 1 Getting Started

■ ASSIGNMENT COMPATIBILITY

As a general rule, you cannot store a value of one type in a variable of another type. For
example, the compilers will object to the following:

int intVariable;
intVariable = 2.99;

The problem is a type mismatch. The constant 2.99 is of type double and the variable
intVariable is of type int.

There are some special cases where it is permitted to assign a value of one type to a
variable of another type. It is acceptable to assign a value of an integer type, such as int,
to a variable of a floating-point type, such as the type double. For example, the follow-
ing is both legal and acceptable style:

double doubleVariable;
doubleVariable = 2;

Self-Test Exercises

10. Which of the following may be used as variable names in Java?

rate1, 1stPlayer, myprogram.java, long,
TimeLimit, numberOfWindows

11. Can a Java program have two different variables named number and Number?

12. Give the declaration for two variables called feet and inches. Both variables are of type
int and both are to be initialized to zero in the declaration.

13. Give the declaration for two variables called count and distance. count is of type int
and is initialized to zero. distance is of type double and is initialized to 1.5.

14. Write a Java assignment statement that will set the value of the variable distance to the
value of the variable time multiplied by 80. All variables are of type int.

15. Write a Java assignment statement that will set the value of the variable interest to the
value of the variable balance multiplied by the value of the variable rate. The variables
are of type double.

16. What is the output produced by the following lines of program code?

 char a, b;
 a = 'b';
 System.out.println(a);
 b = 'c';
 System.out.println(b);
 a = b;
 System.out.println(a);

assigning
int values to

double variables

5640_ch01.fm Page 20 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 21

The preceding will set the value of the variable named doubleVariable equal to 2.0.

Similarly, assignments of integer type variables to floating-point type variables are
also allowed. For example, the following is allowed:

int intVariable;
intVariable = 42;
double doubleVariable;
doubleVariable = intVariable;

More generally, you can assign a value of any type in the following list to a variable
of any type that appears further down in the list:

byte —> short —> int —> long —> float —> double

For example, you can assign a value of type int to a variable of type long, float, or
double (or of course to a variable of type int), but you cannot assign a value of type
int to a variable of type byte or short. Note that this is not an arbitrary ordering of the
types. As you move down the list from left to right, the range of allowed values for the
types becomes larger.

You can assign a value of type char to a variable of type int or to any of the numeric
types that follow int in our list of types (but not to those that precede int). However,
in most cases it is not wise to assign a character to an int variable, because the result
could be confusing.4

If you want to assign a value of type double to a variable of type int, then you must
change the type of the value by using a type cast, as explained in the subsection later in
this chapter that is entitled “Type Casting.”

In many languages other than Java, you can assign integers to variables of type
boolean and assign boolean values to integer variables. You cannot do that in Java. In
Java, the boolean values true and false are not integers nor will they be automati-
cally converted to integers. (In fact, it is not even legal to do an explicit type cast
from the type boolean to the type int or vice versa. Explicit type casts are discussed
later in this chapter.)

4 Readers who have used certain other languages, such as C or C++, may be surprised to
learn that you cannot assign a value of type char to a variable of type byte. This is because
Java uses the Unicode character set rather than the ASCII character set, and so Java reserves two
bytes of memory for each value of type char, but naturally only reserves one byte of memory for
values of type byte. This is one of the few cases where you might notice that Java uses the Uni-
code character set. Indeed, if you convert from an int to a char or vice versa, you can expect to
get the usual correspondence of ASCII numbers and characters. It is also true that you cannot
assign a value of type char to a variable of type short, even though they both use two bytes of
memory.

integers and
booleans

5640_ch01.fm Page 21 Tuesday, February 10, 2004 3:54 PM

22 Chapter 1 Getting Started

■ CONSTANTS

Constants or literals are names for one specific value. For example, 2 and 3.1459 are
two constants. We prefer the name constants because it contrasts nicely with the word
variables. Constants do not change value; variables can change their values. Integer
constants are written in the way you are used to writing numbers. Constants of type
int (or any other integer type) must not contain a decimal point. Constants of floating-
point types (float and double) may be written in either of two forms. The simple form
for floating-point constants is like the everyday way of writing decimal fractions. When
written in this form, a floating-point constant must contain a decimal point. No num-
ber constant (neither integer nor floating point) in Java may contain a comma.

A more complicated notation for floating-point constants, such as constants of type
double, is called scientific notation or floating-point notation and is particularly handy
for writing very large numbers and very small fractions. For instance,

3.67 x 105, which is the same as 367000.0,

is best expressed in Java by the constant 3.67e5. The number

5.89 x 10-4, which is the same as 0.000589,

is best expressed in Java by the constant 5.89e−4. The e stands for exponent and means
“multiply by 10 to the power that follows.” The e may be either uppercase or lowercase.

Think of the number after the e as telling you the direction and number of digits to
move the decimal point. For example, to change 3.49e4 to a numeral without an e, you
move the decimal point 4 places to the right to obtain 34900.0, which is another way of
writing the same number. If the number after the e is negative, you move the decimal
point the indicated number of spaces to the left, inserting extra zeros if need be. So,
3.49e−2 is the same as 0.0349.

The number before the e may contain a decimal point, although that is not
required. However, the exponent after the e definitely must not contain a decimal
point.

ASSIGNMENT COMPATIBILITIES

You can assign a value of any type on the following list to a variable of any type that appears fur-
ther down on the list:

byte —> short —> int —> long —> float —> double

In particular, note that you can assign a value of any integer type to a variable of any floating-
point type. You can also assign a value of type char to a variable of type int or of any type that
follows int in the above list.

literals
constants

e notation

5640_ch01.fm Page 22 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 23

Constants of type char are expressed by placing the character in single quotes, as
illustrated in what follows:

char symbol = 'Z';

Note that the left and right single quote symbol are the same symbol.

Constants for strings of characters are given in double quotes, as illustrated by the
following line taken from Display 1.1:

System.out.println("Welcome to Java.");

Be sure to notice that string constants are placed inside of double quotes, while con-
stants of type char are placed inside of single quotes. The two kinds of quotes mean
different things. In particular, 'A' and "A" mean different things. 'A' is a value of type
char and can be stored in a variable of type char. "A" is a string of characters. The fact
that the string happens to contain only one character does not make the string "A" a
value of type char. Also notice that, for both strings and characters, the left and right
quotes are the same. We will have more to say about strings later in this chapter.

The type boolean has two constants, true and false. These two constants may be
assigned to a variable of type boolean or used anyplace else an expression of type bool-
ean is allowed. They must be spelled with all lowercase letters.

■ ARITHMETIC OPERATORS AND EXPRESSIONS

As in most other languages, Java allows you to form expressions using variables, con-
stants, and the arithmetic operators: + (addition), − (subtraction), * (multiplication),

WHAT IS DOUBLED?

How did the floating-point type double get its name? Is there another type for floating-point
numbers called “single” that is half as big? Something like that is true. There is a type that uses
half as much storage, namely the type float. Many programming languages traditionally used
two types for floating-point numbers. One type used less storage and was very imprecise (that is,
it did not allow very many significant digits). The second type used double the amount of storage
and so could be much more precise; it also allowed numbers that were larger (although program-
mers tend to care more about precision than about size). The kind of numbers that used twice as
much storage were called double precision numbers; those that used less storage were called sin-
gle precision. Following this tradition, the type that (more or less) corresponds to this double pre-
cision type in Java was named double in Java. The type that corresponds to single precision in
Java was called float.

(Actually, the type name double was inherited from C++, but this explanation applies to why the
type was named double in C++, and so ultimately it is the explanation of why the type is called
double in Java.)

quotes

5640_ch01.fm Page 23 Tuesday, February 10, 2004 3:54 PM

24 Chapter 1 Getting Started

/ (division), % (modulo, remainder). These expressions can be used anyplace it is legal
to use a value of the type produced by the expression.

All of the arithmetic operators can be used with numbers of type int, numbers of
type double, and even with one number of each type. However, the type of the value
produced and the exact value of the result depends on the types of the numbers being
combined. If both operands (that is, both numbers) are of type int, then the result of
combining them with an arithmetic operator is of type int. If one, or both, of the
operands is of type double, then the result is of type double. For example, if the vari-
ables baseAmount and increase are both of type int, then the number produced by the
following expression is of type int:

baseAmount + increase

However, if one, or both, of the two variables is of type double, then the result is of
type double. This is also true if you replace the operator + with any of the operators −,
*, /, or %.

More generally, you can combine any of the arithmetic types in expressions. If all
the types are integer types, the result will be the integer type. If at least one of the sub-
expressions is of a floating-point type, the result will be a floating-point type.

Knowing whether the value produced is of an integer type or a floating-point type is
typically all that you need to know. However, if you need to know the exact type of the
value produced by an arithmetic expression, it can be determined as follows: The type
of the value produced is one of the types used in the expression. Of all the types used in
the expression, it is, with rare exceptions, the last type (reading left to right) on the fol-
lowing list:

byte —> short —> int —> long —> float —> double

Here are the rare exceptions: Of all the types used in the expression, if the last type
(reading left to right) is byte or short, then the type of the value produced is int. In
other words, an expression never evaluates to either of the types byte or short. These
exceptions have to do with an implementation detail that need not concern us, espe-
cially since we almost never use the types byte and short in this book.

Note that this sequence of types is the same sequence of types we saw when discuss-
ing assignment compatibility. As you go from left to right, the types increase in the
range of values they allow.5

5 Although we discourage the practice, you can use values and variables of type char in arith-
metic expressions using operators such as +. If you do so, the char values and variables will con-
tribute to the expression as if they were of type int.

mixing types

5640_ch01.fm Page 24 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 25

■ PARENTHESES AND PRECEDENCE RULES ✜

If you want to specify exactly what subexpressions are combined with each operator,
you can fully parenthesize an expression. For example:

((base + (rate * hours))/(2 + rate))

If you omit some parentheses in an arithmetic expression, Java will, in effect, put in
parentheses for you. When adding parentheses, Java follows rules called precedence
rules that determine how the operators, such as + and *, are enclosed in parentheses.
These precedence rules are similar to rules used in algebra. For example,

base + rate * hours

is evaluated by Java as if it were parenthesized as follows:

base + (rate * hours)

So, the multiplication will be done before the addition.

Except in some standard cases, such as a string of additions or a simple multiplica-
tion embedded inside an addition, it is usually best to include the parentheses, even if
the intended groupings are the ones dictated by the precedence rules. The parentheses
make the expression easier to read and less prone to programmer error.

A partial list of precedence rules is given in Display 1.3. A complete set of Java pre-
cedence rules is given in Appendix 2. Operators that are listed higher on the list are said
to have higher precedence. When the computer is deciding which of two adjacent
operations to group with parentheses, it groups the operation of higher precedence and
its apparent arguments before the operation of lower precedence. Some operators have
equal precedence, in which case the order of operations is determined by associativity
rules. A brief summary of associativity rules is that binary operators of equal prece-
dence are grouped in left-to-right order.6 Unary operators of equal precedence are
grouped in right-to-left order. So, for example,

base + rate + hours

is interpreted by Java to be the same as

(base + rate) + hours

And, for example,

+−+rate

is interpreted by Java to be the same as

+(−(+rate))

6 There is one exception to this rule. A string of assignment operators, like
 n1 = n2 = n3;, is performed right to left, as we noted earlier in this chapter.

5640_ch01.fm Page 25 Tuesday, February 10, 2004 3:54 PM

26 Chapter 1 Getting Started

For now you can think of the explicit parentheses put in by the programmer and the
implicit parentheses determined by precedence and associativity rules as determining
the order in which operations are performed. For example, in

base + (rate * hours)

the multiplication is performed first and the addition is performed second.

The actual situation is a bit more complicated than what we have described for eval-
uating expressions, but we will not encounter any of these complications in this chap-
ter. A complete discussion of evaluating expressions using precedence and associativity
rules will be given in Chapter 3.

Pitfall

ROUND-OFF ERRORS IN FLOATING-POINT NUMBERS

For all practical purposes, floating-point numbers are only approximate quantities. For example,
in formal mathematics the floating-point number 1.0/3.0 is equal to

0.3333333...

where the three dots indicate that the 3s go on forever. The computer stores numbers in a format
somewhat like this decimal representation, but it has room for only a limited number of digits. If
it can store only 10 digits after the decimal, then 1.0/3.0 is stored as

0.3333333333

with only 10 threes. Thus, 1.0/3.0 is stored as a number that is slightly smaller than one-third. In
other words, the value stored as 1.0/3.0 is only approximately equal to one-third.

In reality, the computer stores numbers in binary notation, rather than in base 10 notation, but
the principles are the same and the consequences are the same. Some floating-point numbers
lose accuracy when they are stored in the computer.

Display 1.3 Precedence Rules

Highest Precedence

First: the unary operators: +, −, ++, −−, and!

Second: the binary arithmetic operators: *, /, and %

Third: the binary arithmetic operators: + and −

Lowest Precedence

5640_ch01.fm Page 26 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 27

■ INTEGER AND FLOATING-POINT DIVISION

When used with one or both operands of type double, the division operator, /,
behaves as you might expect. However, when used with two operands of type int, the
division operator yields the integer part resulting from division. In other words, integer
division discards the part after the decimal point. So, 10/3 is 3 (not 3.3333…), 5/2 is 2
(not 2.5), and 11/3 is 3 (not 3.6666…). Notice that the number is not rounded; the
part after the decimal point is discarded no matter how large it is.

The operator % can be used with operands of type int to recover the information
lost when you use / to do division with numbers of type int. When used with values of
type int, the two operators / and % yield the two numbers produced when you perform
the long division algorithm you learned in grade school. For example, 14 divided by 3 is
4 with a remainder of 2. The / operation yields the number of times one number “goes
into” another (often called the quotient). The % operation gives the remainder. For
example, the statements

System.out.println("14 divided by 3 is " + (14/3));
System.out.println("with a remainder of " + (14%3));

yield the following output:

14 divided by 3 is 4
with a remainder of 2

Floating-point numbers (like numbers of type double) and integers (like numbers of type int)
are stored differently. Floating-point numbers are, in effect, stored as approximate quantities.
Integers are stored as exact quantities. This difference sometimes can be subtle. For example, the
numbers 42 and 42.0 are different in Java. The whole number 42 is of type int and is an exact
quantity. The number 42.0 is of type double because it contains a fractional part (even though
the fraction is 0), and so 42.0 is stored with only limited accuracy.

As a result of this limited accuracy, arithmetic done on floating-point numbers only gives
approximate results. Moreover, one can easily get results on floating-point numbers that are
very far from the true result you would obtain if the numbers could have unlimited accuracy
(unlimited number of digits after the decimal point). For example, if a banking program used
numbers of type double to represent amounts of money and did not do sophisticated manipu-
lations to preserve accuracy, it would quickly bring the bank to ruin since the computed
amounts of money would frequently be very incorrect. Dealing with these inaccuracies in
floating-point numbers is part of the field of Numerical Analysis, a topic we will not discuss in
this book. But, there is an easy way to obtain accuracy when dealing with amounts of money:
use integers instead of floating-point numbers (perhaps one integer for the dollar amount and
another integer for the cents amount).

integer division

the % operator

5640_ch01.fm Page 27 Tuesday, February 10, 2004 3:54 PM

28 Chapter 1 Getting Started

The % operator can be used to count by 2’s, 3’s, or any other number. For example, if
you want to do something to every other integer, you need to know if the integer is
even or odd. Then, you can do it to every even integer (or alternatively every odd inte-
ger). An integer n is even if n%2 is equal to 0 and the integer is odd if n%2 is equal to 1.
Similarly, to do something to every third integer, your program might step through all
integers n but only do the action when n%3 is equal to 0.

Although the % operator is primarily used with integers, it can also be used with two
floating-point numbers, such as two values of type double. However, we will not dis-
cuss nor use % with floating-point numbers.

Pitfall

DIVISION WITH WHOLE NUMBERS

When you use the division operator / on two integers, the result is an integer. This can be a prob-
lem if you expect a fraction. Moreover, the problem can easily go unnoticed, resulting in a pro-
gram that looks fine but is producing incorrect output without your even being aware of the
problem. For example, suppose you are a landscape architect who charges $5,000 per mile to
landscape a highway, and suppose you know the length in feet of the highway you are working
on. The price you charge can easily be calculated by the following Java statement:

totalPrice = 5000 * (feet/5280.0);

This works because there are 5,280 feet in a mile. If the stretch of highway you are landscaping is
15,000 feet long, this formula will tell you that the total price is

5000 * (15000/5280.0)

Your Java program obtains the final value as follows: 15000/5280.0 is computed as 2.84. Then
the program multiplies 5000 by 2.84 to produce the value 14200.00. With the aid of your Java
program, you know that you should charge $14,200 for the project.

Now suppose the variable feet is of type int, and you forget to put in the decimal point and the
zero, so that the assignment statement in your program reads:

totalPrice = 5000 * (feet/5280);

It still looks fine, but will cause serious problems. If you use this second form of the assignment
statement, you are dividing two values of type int, so the result of the division feet/5280 is
15000/5280, which is the int value 2 (instead of the value 2.84, which you think you are get-
ting). So the value assigned to totalPrice is 5000*2, or 10000.00. If you forget the decimal
point, you will charge $10,000. However, as we have already seen, the correct value is $14,200. A
missing decimal point has cost you $4,200. Note that this will be true whether the type of total-
Price is int or double; the damage is done before the value is assigned to totalPrice.

5640_ch01.fm Page 28 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 29

■ TYPE CASTING

A type cast takes a value of one type and produces a value of another type that is Java’s
best guess of an equivalent value. We will motivate type casts with a simple division
example.

Consider the expression 9/2. In Java this expression evaluates to 4, because when
both operands are of an integer type, Java performs integer division. In some situations,
you might want the answer to be the double value 4.5. You can get a result of 4.5 by
using the “equivalent” floating-point value 2.0 in place of the integer value 2, as in the
expression 9/2.0, which evaluates to 4.5. But, what if the 9 and the 2 are the values of

Self-Test Exercises

17. Convert each of the following mathematical formulas to a Java expression:

18. What is the output of the following program lines?

double number = (1/3) * 3;
System.out.println("(1/3) * 3 is equal to " + number);

19. What is the output produced by the following lines of program code?

int quotient, remainder;
quotient = 7/3;
remainder = 7%3;
System.out.println("quotient = " + quotient);
System.out.println("remainder = " + remainder);

20. What is the output produced by the following code?

int result = 11;
result /= 2;
System.out.println("result is " + result);

21. Given the following fragment that purports to convert from degrees Celsius to degrees
Fahrenheit, answer the following questions:

double celsius = 20;
double fahrenheit;
fahrenheit = (9/5) * celsius + 32.0;

a. What value is assigned to fahrenheit?

b. Explain what is actually happening, and what the programmer likely wanted.

c. Rewrite the code as the programmer intended.

3x 3x y+ x y+
7

----------- 3x y+
z 2+

5640_ch01.fm Page 29 Tuesday, February 10, 2004 3:54 PM

30 Chapter 1 Getting Started

variables of type int named n and m. Then, n/m yields 4. If you want floating-point
division in this case, you must do a type cast from int to double (or another floating-
point type), such as in the following:

double ans = n/(double)m;

The expression

(double)m

is a type cast. The expression takes an int (in this example the value of m) and evaluates
to an “equivalent” value of type double. So, if the value of m is 2, the expression (double)m
evaluates to the double value 2.0.

Note that (double)m does not change the value of the variable m. If m has the value 2
before this expression is evaluated, then m still has the value 2 after the expression is
evaluated.

You may use other type names in place of double to obtain a type cast to another
type. We said this produces an “equivalent” value of the target type. The word “equiva-
lent” is in quotes because there is no clear notion of equivalent that applies between any
two types. In the case of a type cast from an integer type to a floating-point type, the
effect is to add a decimal point and a zero. A type cast in the other direction, from a
floating-point type to an integer type, simply deletes the decimal point and all digits
after the decimal point. Note that when type casting from a floating-point type to an
integer type, the number is truncated not rounded: (int)2.9 is 2; it is not 3.

As we noted earlier, you can always assign a value of an integer type to a variable of a
floating-point type, as in

double d = 5;

In such cases Java performs an automatic type cast, converting the 5 to 5.0 and placing
5.0 in the variable d. You cannot store the 5 as the value of d without a type cast, but
sometimes Java does the type cast for you. Such an automatic type cast is sometimes
called a type coercion.

By contrast, you cannot place a double value in an int variable without an explicit
type cast. The following is illegal:

int i = 5.5; //Illegal

Instead, you must add an explicit type cast, like so:

int i = (int)5.5;

■ INCREMENT AND DECREMENT OPERATORS

The increment operator ++ adds one to the value of a variable. The decrement operator
−− subtracts one from the value of a variable. They are usually used with variables of

type coercion

5640_ch01.fm Page 30 Tuesday, February 10, 2004 3:54 PM

Expressions and Assignment Statements 31

type int, but they can be used with any numeric type. If n is a variable of a numeric
type, then n++ increases the value of n by one and n−− decreases the value of n by one.
So, n++ and n−− (when followed by a semicolon) are executable statements. For exam-
ple, the statements

int n = 1, m = 7;
n++;
System.out.println("The value of n is changed to " + n);
m−−;
System.out.println("The value of m is changed to " + m);

yield the following output:

The value of n is changed to 2
The value of m is changed to 6

An expression like n++ also evaluates to a number as well as changing the value of the
variable n, so n++ can be used in an arithmetic expression such as

2*(n++)

The expression n++ changes the value of n by adding one to it, but it evaluates to the
value n had before it was increased. For example, consider the following code:

int n = 2;
int valueProduced = 2*(n++);
System.out.println(valueProduced);
System.out.println(n);

This code produces the following output:

4
3

Notice the expression 2*(n++). When Java evaluates this expression, it uses the value
that number has before it is incremented, not the value that it has after it is incremented.
Thus, the value produced by the expression n++ is 2, even though the increment opera-
tor changes the value of n to 3. This may seem strange, but sometimes it is just what
you want. And, as you are about to see, if you want an expression that behaves differ-
ently, you can have it.

The expression ++n also increments the value of the variable n by one, but it evalu-
ates to the value n has after it is increased. For example, consider the following code:

int n = 2;
int valueProduced = 2*(++n);
System.out.println(valueProduced);
System.out.println(n);

5640_ch01.fm Page 31 Tuesday, February 10, 2004 3:54 PM

32 Chapter 1 Getting Started

This code is the same as the previous piece of code except that the ++ is before the vari-
able, so this code will produce the following output:

6
3

Notice that the two increment operators n++ and ++n have the exact same effect on a
variable n: they both increase the value of n by one. But the two expressions evaluate to
different values. Remember, if the ++ is before the variable, then the incrementing is
done before the value is returned; if the ++ is after the variable, then the incrementing is
done after the value is returned.

Everything we said about the increment operator applies to the decrement operator
as well, except that the value of the variable is decreased by one rather than increased by
one. For example, consider the following code:

int n = 8;
int valueProduced = n−−;
System.out.println(valueProduced);
System.out.println(n);

This produces the output:

8
7

On the other hand, the code

int n = 8;
int valueProduced = −−n;
System.out.println(valueProduced);
System.out.println(n);

produces the output:

7
7

Both n−− and −−n change the value of n by subtracting one, but they evaluate to differ-
ent values. n−− evaluates to the value n had before it was decremented; on the other
hand, −−n evaluates to the value n has after it is decremented.

You cannot apply the increment and decrement operators to anything other than a
single variable. Expressions such as (x + y)++, −−(x + y), 5++, and so forth are all ille-
gal in Java.

The use of the increment and decrement operators can be confusing when used inside
of more complicated expressions, and so, we prefer to not use increment or decrement
operators inside of expressions, but to only use them as simple statements, such as:

n++;

v++ versus
++v

decrement
operator

5640_ch01.fm Page 32 Tuesday, February 10, 2004 3:54 PM

The Class String 33

The Class String
Words, words, mere words, no matter from the heart.

William Shakespeare, Troilus and Cressida

There is no primitive type for strings in Java. However, there is a class called String
that can be used to store and process strings of characters. This section introduces the
class String.

■ STRING CONSTANTS AND VARIABLES

You have already seen constants of type String. The quoted string

"Hello reader."

which appears in the following statement from Display 1.1, is a string constant:

System.out.println("Hello reader.");

A quoted string is a value of type String, although it is normally called an object of type
String rather than a value of type String. An object of type String is a sequence of
characters treated as a single item. A variable of type String can name one of these
string objects.

For example, the following declares blessing to be the name for a String variable:

String blessing;

Self-Test Exercises

22. What is the output produced by the following lines of program code?

int n = (int)3.9;
System.out.println("n == " + n);

23. What is the output produced by the following lines of program code?

int n = 3;
n++;
System.out.println("n == " + n);
n−−;
System.out.println("n == " + n);

1.3

String

5640_ch01.fm Page 33 Tuesday, February 10, 2004 3:54 PM

34 Chapter 1 Getting Started

The following assignment statement sets the value of blessing so that blessing serves
as another name for the String object "Live long and prosper.":

blessing = "Live long and prosper.";

The declaration and assignment can be combined into a single statement, as follows:

String blessing = "Live long and prosper.";

You can write the object named by the String variable blessing to the screen as follows:

System.out.println(blessing);

which produces the screen output

Live long and prosper.

■ CONCATENATION OF STRINGS

When you use the + operator on two strings, the result is the string obtained by con-
necting the two strings to get a longer string. This is called concatenation. So, when it
is used with strings, the + is sometimes called the concatenation operator. For example,
consider the following:

String noun = "Strings";
String sentence;
sentence = noun + "are cool.";
System.out.println(sentence);

This will set the variable sentence to "Stringsare cool." and will output the follow-
ing to the screen:

Stringsare cool.

Note that no spaces are added when you concatenate two strings. If you wanted
sentence set to "Strings are cool.", then you should change the assignment state-
ment to add the extra space. For example, the following will add the desired space:

sentence = noun + " are cool.";

THE String CLASS

The class String is a predefined class that is automatically made available to you when you are
programming in Java. Objects of type String are strings of characters that are written within
double quotes. For example, the following declares the variable motto to be of type String and
makes motto a name for the String object "We aim to please.":

String motto = "We aim to please.";

+ operator
concatenation

5640_ch01.fm Page 34 Tuesday, February 10, 2004 3:54 PM

The Class String 35

We added a space before the word "are".

You can concatenate any number of Strings using the + operator. Moreover, you
can use the + operator to concatenate a String to almost any other type of item. The
result is always a String. In most situations, Java will convert an item of any type to a
string when you connect it to a string with the + operator. For numbers, it does the
obvious thing. For example,

String solution = "The answer is " + 42;

will set the String variable solution to "The answer is 42". Java converts the integer
constant 42 to the string "42" and then concatenates the two strings "The answer is "
and "42" to obtain the longer string "The answer is 42".

 Notice that a number or other value is converted to a string object only when it is
connected to a string with a plus sign. If it is connected to another number with a plus
sign, it is not converted to a string. For example,

System.out.println("100" + 42);

outputs

10042

but

System.out.println(100 + 42);

outputs

142

USING THE + SIGN WITH STRINGS

If you connect two strings with the + operator, the result is the concatenation (pasting) of the two
strings.

EXAMPLE:

String name = "Chiana";
String farewell = "Good bye " + name;
System.out.println(farewell);

This sets farewell to the string "Good bye Chiana". So, it outputs the following to the
screen:

Good bye Chiana

 Note that we added a space at the end of "Good bye ".

5640_ch01.fm Page 35 Tuesday, February 10, 2004 3:54 PM

36 Chapter 1 Getting Started

■ CLASSES

Classes are central to Java and you will soon be defining and using your own classes. The
class String, which we discuss in this section, gives us an opportunity to introduce
some of the notation and terminology used for classes. A class is the name for a type
whose values are objects. Objects are entities that store data and can take actions. For
example, objects of the class String store data consisting of strings of characters, such
as "Hello". The actions that an object can take are called methods. Most of the meth-
ods for the class String return some value—that is, produce some value. For example,
the method length() returns the number of characters in a String object. So,
"Hello".length() returns the integer 5 and this returned value can be stored in an int
variable as follows:

int n = "Hello".length();

As indicated by the example "Hello".length(), a method is called into action by
writing a name for the object followed by a dot followed by the method name with
parentheses. When you call a method into action, you are (or your code is) said to
invoke the method or call the method, and the object before the dot is known as the
calling object.

Although you can call a method with a constant object, as in "Hello".length(), it
is more common to use a variable as the calling object, as illustrated by the following:

String greeting = "Hello";
int n = greeting.length();

 Information needed for the method invocation is given in the parentheses. In some
cases, like the method length, no information is needed (other than the data in the
calling object) and the parentheses are empty. In other cases, which we see soon, there
is some information that must be provided inside the parentheses. The information in
parentheses is known as an argument (or arguments).

 Invoking a method is also sometimes called sending a message to the object. With
this view a message is sent to the object (by invoking a method) and in response the
object performs some action. For example, in response to the message

greeting.length()

the object greeting answers with the value 5.

 All objects within a class have the same methods, but each object can have different
data. For example, the two String objects "Hello" and "Good-Bye" have different
data—that is, different strings of characters. However, they have the same methods.
Thus, since we know that the String object "Hello" has the method length(), we
know that the String object "Good-Bye" must also have the method length().

You now have seen two kinds of types in Java: primitive types and class types. The
main difference you have seen between these two kinds of types is that classes have

class
object

method

method call or
method invocation

calling object

argument

sending a
message

5640_ch01.fm Page 36 Tuesday, February 10, 2004 3:54 PM

The Class String 37

methods and primitive types do not have methods. We will later see more differences
between classes and primitive types. A smaller difference between primitive types and
class types is that all the primitive types are spelled using only lowercase letters but, by
convention, class types are spelled with their first letter in uppercase, as in String.

■ STRING METHODS

The class String has a number of useful methods that can be used for string-processing
applications. A sample of these String methods is presented in Display 1.4. Some of
the notation and terminology used in Display 1.4 is described in the box entitled
“Returned Value.” A more complete list of String methods is given in Appendix 4.

 As with any method, a String method is called (invoked) by writing a String
object, a dot, the name of the method, and finally a pair of parentheses that enclose any
arguments to the method. Let’s look at some examples.

As we’ve already noted, the method length can be used to find out the number of
characters in a string. You can use a call to the method length anywhere that you can
use a value of type int. For example, all of the following are legal Java statements:

String greeting = "Hello";
int count = greeting.length();
System.out.println("Length is " + greeting.length());

Some methods for the class String depend on counting positions in the string. Posi-
tions are counted starting with 0 not with 1. So, in the string "Surf time", 'S' is in
position 0, 'u' is in position 1, and so forth. A position is usually referred to as an
index. So, it would be preferable to say: 'S' is at index 0, 'u' is at index 1, and so forth.

The method indexOf can be used to find the index of a substring of the calling
objects. For example, consider

String phrase = "Java is fun.";

CLASSES, OBJECTS, AND METHODS

A Java program works by having things called objects perform actions. The actions are known as
methods and typically involve data contained in the object. All objects of the same kind are said
to be of the same class. So, a class is a category of objects. When the object performs the action of
a given method, that is called invoking the method (or calling the method). Information pro-
vided to the method in parentheses is called the argument (or arguments).

For example, in Display 1.1, System.out is an object, println is a method, and the following is
an invocation of the method by this object using the argument "Hello reader.":

System.out.println("Hello reader.");

length

position

index

5640_ch01.fm Page 37 Tuesday, February 10, 2004 3:54 PM

38 Chapter 1 Getting Started

RETURNED VALUE

An expression like numberOfGirls + numberOfBoys produces a value. If numberOfGirls has
the value 2 and numberOfBoys has the value 10, then the number produced is 12. The number
12 is the result of evaluating the expression.

Some method invocations are simple kinds of expression, and any such method invocation evalu-
ates to some value. If a method invocation produces a value, we say that the method returns the
value. For example, suppose your program executes

String greeting = "Hello!";

After that, if you evaluate greeting.length(), the value returned will be 6. So the following
code outputs the integer 6:

String greeting = "Hello!";
System.out.println(greeting.length());

A method can return different values depending on what happens in your program. However,
each method can return values of only one type. For example, the method length of the class
String always returns an int value. In Display 1.4, The type given before the method name is
the type of the values returned by that method. Since length always returns an int value, the
entry for length begins

int length()

Display 1.4 Some Methods in the Class String

int length()

Returns the length of the calling object (which is a string) as a value of type int.

EXAMPLE:

After program executes String greeting = "Hello!";
greeting.length() returns 6.

boolean equals(Other_String)

Returns true if the calling object string and the Other_String are equal. Otherwise, returns false.

EXAMPLE:

After program executes String greeting = "Hello";
greeting.equals("Hello") returns true
greeting.equals("Good-Bye") returns false
greeting.equals("hello") returns false

Note that case matters. "Hello" and "hello" are not equal because one starts with an uppercase letter
and the other starts with a lowercase letter.

(Part 1 of 4)

5640_ch01.fm Page 38 Tuesday, February 10, 2004 3:54 PM

The Class String 39

boolean equalsIgnoreCase(Other_String)

Returns true if the calling object string and the Other_String are equal, considering uppercase and low-
ercase versions of a letter to be the same. Otherwise, returns false.

EXAMPLE:

After program executes String name = "mary";
greeting.equalsIgnoreCase("Mary!") returns true

String toLowerCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to lowercase.

EXAMPLE:

After program executes String greeting = "Hi Mary!";
greeting.toLowerCase() returns "hi mary!".

String toUpperCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to uppercase.

EXAMPLE:

After program executes String greeting = "Hi Mary!";
greeting.toUpperCase() returns "HI MARY!".

String trim()

Returns a string with the same characters as the calling object string, but with leading and trailing white
space removed. Whitespace characters are the characters that print as white space on paper, such as the
blank (space) character, the tab character, and the new-line character '\n'.

EXAMPLE:

After program executes String pause = " Hmm ";
pause.trim() returns "Hmm".

char charAt(Position)

Returns the character in the calling object string at the Position. Positions are counted 0, 1, 2, etc.

EXAMPLE:

After program executes String greeting = "Hello!";
greeting.charAt(0) returns 'H', and
greeting.charAt(1) returns 'e'.

Display 1.4 Some Methods in the Class String (Part 2 of 4)

5640_ch01.fm Page 39 Tuesday, February 10, 2004 3:54 PM

40 Chapter 1 Getting Started

String substring(Start)

Returns the substring of the calling object string starting from Start through to the end of the calling
object. Positions are counted 0, 1, 2, etc. Be sure to notice that the character at position Start is included in
the value returned.

EXAMPLE:

After program executes String sample = "AbcdefG";
sample.substring(2) returns "cdefG".

String substring(Start, End)

Returns the substring of the calling object string starting from position Start through, but not including,
position End of the calling object. Positions are counted 0, 1, 2, etc. Be sure to notice that the character at
position Start is included in the value returned, but the character at position End is not included.

EXAMPLE:

After program executes String sample = "AbcdefG";
sample.substring(2, 5) returns "cde".

int indexOf(A_String)

Returns the index (position) of the first occurrence of the string A_String in the calling object string. Posi-
tions are counted 0, 1, 2, etc. Returns −1 if A_String is not found.

EXAMPLE:

After program executes String greeting = "Hi Mary!";
greeting.indexOf("Mary") returns 3, and
greeting.indexOf("Sally") returns −1.

int indexOf(A_String, Start)

Returns the index (position) of the first occurrence of the string A_String in the calling object string that
occurs at or after position Start. Positions are counted 0, 1, 2, etc. Returns −1 if A_String is not found.

EXAMPLE:

After program executes String name = "Mary, Mary quite contrary";
name.indexOf("Mary", 1) returns 6.
The same value is returned if 1 is replaced by any number up to and including 6.
name.indexOf("Mary", 0) returns 0.
name.indexOf("Mary", 8) returns −1.

Display 1.4 Some Methods in the Class String (Part 3 of 4)

5640_ch01.fm Page 40 Tuesday, February 10, 2004 3:54 PM

The Class String 41

int lastIndexOf(A_String)

Returns the index (position) of the last occurrence of the string A_String in the calling object string. Posi-
tions are counted 0, 1, 2, etc. Returns −1, if A_String is not found.

EXAMPLE:

After program executes String name = "Mary, Mary, Mary quite so";
greeting.indexOf("Mary") returns 0, and
name.lastIndexOf("Mary") returns 12.

int compareTo(A_String)

Compares the calling object string and the string argument to see which comes first in the lexicographic
ordering. Lexicographic order is the same as alphabetical order but with the characters ordered as in
Appendix 3. Note that in Appendix 3 all the uppercase letters are in regular alphabetical order and all the
lowercase letters are in alphabetical order, but all the uppercase letters precede all the lowercase letters.
So, lexicographic ordering is the same as alphabetical ordering provided both strings are either all upper-
case letters or both strings are all lowercase letters. If the calling string is first, it returns a negative value.
If the two strings are equal, it returns zero. If the argument is first, it returns a positive number.

EXAMPLE:

After program executes String entry = "adventure";
entry.compareTo("zoo") returns a negative number,
entry.compareTo("adventure") returns 0, and
entry.compareTo("above") returns a positive number.

int compareToIgnoreCase(A_String)

Compares the calling object string and the string argument to see which comes first in the lexicographic
ordering, treating uppercase and lowercase letters as being the same. (To be precise, all uppercase letters
are treated as if they were their lowercase versions in doing the comparison.) Thus, if both strings consist
entirely of letters, the comparison is for ordinary alphabetical order. If the calling string is first, it returns a
negative value. If the two strings are equal ignoring case, it returns zero. If the argument is first, it returns
a positive number.

EXAMPLE:

After program executes String entry = "adventure";
entry.compareToIgnoreCase("Zoo") returns a negative number,
entry.compareToIgnoreCase("Adventure") returns 0, and
"Zoo".compareToIgnoreCase(entry) returns a positive number.

Display 1.4 Some Methods in the Class String (Part 4 of 4)

5640_ch01.fm Page 41 Tuesday, February 10, 2004 3:54 PM

42 Chapter 1 Getting Started

After this declaration, the invocation

phrase.indexOf("is")

 will return

5

 because the

'i'

 of

"is"

 is at index

5

. (Remember, the first index is

0

, not

1

.) This is illustrated in
Display 1.5.

■ ESCAPE SEQUENCES

A backslash,

\

, preceding a character tells the compiler that the character following the

\

does not have its usual meaning. Such a sequence is called an escape sequence

 or an
escape character

. The sequence is typed in as two characters with no space between the
symbols. Several escape sequences are defined in Java.

If you want to put a backslash,

\

, or a quote symbol,

"

, into a string constant, you
must escape the ability of the

"

 to terminate a string constant by using

\"

, or the ability
of the

\

 to escape, by using

\\

. The

\\

 tells the compiler you mean a real backslash,

\

,
not an escape sequence, and

\"

 means a quote character, not the end of a string con-
stant. A list of escape sequences is given in Display 1.6.

It is important to note that each escape sequence is a single character, even though it
is spelled with two symbols. So, the string

"Say \"Hi\"!"

 contains 9 characters (

'S'

,

'a'

,

'y'

, the blank character,

'\"'

,

'H'

,

'i'

,

'\"'

, and

'!'

), not 11 characters.

Display 1.5 String Indexes

The 12 characters in the string "Java is fun." have indexes 0 through 11.

0 1 2 3 4 5 6 7 8 9 10 11

J a v a i s f u n .

Notice that the blanks and the period
count as characters in the string.

backslash \
escape sequence

Display 1.6 Escape Sequences

\" Double quote.
\' Single quote.
\\ Backslash.
\n New line. Go to the beginning of the next line.
\r Carriage return. Go to the beginning of the current line.
\t Tab. White space up to the next tab stop.

5640_ch01.fm Page 42 Tuesday, February 17, 2004 5:19 PM

The Class String 43

Including a backslash in a quoted string is a little tricky. For example, the string
"abc\def" is likely to produce the error message “Invalid escape character.” To include
a backslash in a string, you need to use two backslashes. The string "abc\\def", if out-
put to the screen, would produce

abc\def

The escape sequence \n indicates the start of a new line. For example, the statement

System.out.println("To be or\nNot to be.");

will write the following to the screen:

To be or
Not to be.

You do not need to use the escape sequence \' to include a single quote inside a
quoted string. For example, "Time's up!" is a valid quoted string. However, you do
need \' if you want to indicate the constant for the single-quote character, as in

char singleQuote = '\'';

■ STRING PROCESSING

In Java an object of type String is an immutable object, meaning that the characters in
the String object cannot be changed. This will eventually prove to be important to us,
but at this stage of our exploration of Java, it is a misleading statement. To see that an
object of type String cannot be changed, note that none of the methods in Display 1.4
changes the value of the String calling object. There are more String methods than
those shown in Display 1.4, but none of them lets you write statements that say things
like “Change the fifth character in the calling object string to 'x'”. This was done
intentionally to make the implementation of the String class more efficient and for
other reasons that we will discuss later in this book. There is another string class, called
StringBuffer, that has methods for altering its string object. We will not discuss the
class StringBuffer in this text, but a table explaining many of the methods of the class
StringBuffer is included in Appendix 4.

Although there is no method that allows you to change the value of a String object,
such as "Hello", you can still write programs that change the value of a String vari-
able, which is probably all you want anyway. To perform the change, you simply use an
assignment statement, as in the following example:

String name = "Soprano";
name = "Anthony " + name;

The assignment statement in the second line changes the value of the name variable so
that the string it names changes from "Soprano" to "Anthony Soprano". Display 1.7
contains a demonstration of some simple string processing.

immutable object

5640_ch01.fm Page 43 Tuesday, February 10, 2004 3:54 PM

44 Chapter 1 Getting Started

■ THE UNICODE CHARACTER SET ✜

Until recently, most programming languages used the ASCII character set, which is
given in Appendix 3. The ASCII character set is simply a list of all the characters nor-
mally used on an English-language keyboard plus a few special characters. In this list,
each character has been assigned a number so that characters can be stored by storing
the corresponding number. Java, and now many other programming languages, uses
the Unicode character set. The Unicode character set includes the ASCII character set
plus many of the characters used in languages with a different alphabet from English.
This is not likely to be a big issue if you are using an English-language keyboard. Nor-
mally, you can just program as if Java were using the ASCII character set. The ASCII
character set is a subset of the Unicode character set, and the subset you are likely to
use. Thus, Appendix 3, which lists the ASCII character set, in fact lists the subset of the
Unicode character set that we will use in this book. The advantage of the Unicode char-

Display 1.7 Using the String Class

1 public class StringProcessingDemo
2 {
3 public static void main(String[] args)
4 {
5 String sentence = "I hate text processing!";
6 int position = sentence.indexOf("hate");
7 String ending =
8 sentence.substring(position + "hate".length());
9

10 System.out.println("01234567890123456789012");
11 System.out.println(sentence);
12 System.out.println("The word \"hate\" starts at index "
13 + position);

14 sentence = sentence.substring(0, position) + "adore"
15 + ending;
16 System.out.println("The changed string is:");
17 System.out.println(sentence);
18 }
19 }

SAMPLE DIALOGUE

01234567890123456789012
I hate text processing!
The word "hate" starts at index 2
The changed string is:
I adore text processing!

You could just use 4 here, but if you had a
String variable instead of "hate", you
would have to use length as shown.

ASCII

Unicode

5640_ch01.fm Page 44 Tuesday, February 10, 2004 3:54 PM

codes44.html

The Class String 45

acter set is that it makes it possible to easily handle languages other than English. For
example, it is legal to spell a Java identifier using the letters of the Greek alphabet
(although you may want a Greek-language keyboard and monitor to do this). The dis-
advantage of the Unicode character set is that it sometimes requires more computer
memory to store each character than it would if Java used only the ASCII character set.

Self-Test Exercises

24. What is the output produced by the following?

String verbPhrase = "is money";
System.out.println("Time" + verbPhrase);

25. What is the output produced by the following?

String test = "abcdefg";
System.out.println(test.length());
System.out.println(test.charAt(1));

26. What is the output produced by the following?

String test = "abcdefg";
System.out.println(test.substring(3));

27. What is the output produced by the following?

System.out.println("abc\ndef");

28. What is the output produced by the following?

System.out.println("abc\\ndef");

29. What is the output produced by the following?

String test = "Hello Tony";
test = test.toUpperCase();
System.out.println(test);

30. What is the output of the following two lines of Java code?

System.out.println("2 + 2 = " + (2 + 2));
System.out.println("2 + 2 = " + 2 + 2);

31. Suppose sam is an object of a class named Person and suppose increaseAge is a method
for the class Person that takes one argument that is an integer. How do you write an invo-
cation of the method increaseAge using sam as the calling object and using the argument
10? The method increaseAge will change the data in sam so that it simulates sam aging
by 10 years.

5640_ch01.fm Page 45 Tuesday, February 10, 2004 3:54 PM

46 Chapter 1 Getting Started

Program Style
In matters of grave importance,
style, not sincerity, is the vital thing.

Oscar Wilde, The Importance of Being Earnest

Java programming style is similar to that used in other languages. The goal is to make
your code easy to read and easy to modify. This section gives some basic points on good
programming style in general and some information on the conventions normally fol-
lowed by Java programmers.

■ NAMING CONSTANTS

There are two problems with numbers in a computer program. The first is that they
carry no mnemonic value. For example, when the number 10 is encountered in a pro-
gram, it gives no hint of its significance. If the program is a banking program, it might
be the number of branch offices or the number of teller windows at the main office. To
understand the program, you need to know the significance of each constant. The sec-
ond problem is that when a program needs to have some numbers changed, the chang-
ing tends to introduce errors. Suppose that 10 occurs 12 times in a banking program,
that 4 of the times it represents the number of branch offices, and that 8 of the times it
represents the number of teller windows at the main office. When the bank opens a
new branch and the program needs to be updated, there is a good chance that some of
the 10’s that should be changed to 11 will not be, or some that should not be changed
will be. The way to avoid these problems is to name each number and use the name
instead of the number within your program. For example, a banking program might
have two constants with the names BRANCH_COUNT and WINDOW_COUNT. Both of these
numbers might have a value of 10, but when the bank opens a new branch, all you need
to do to update the program is to change the definition of BRANCH_COUNT.

One way to name a number is to initialize a variable to that number value, as in the
following example:

int BRANCH_COUNT = 10;
int WINDOW_COUNT = 10;

There is, however, one problem with this method of naming number constants: You
might inadvertently change the value of one of these variables. Java provides a way of
marking an initialized variable so that it cannot be changed. The syntax is

public static final Type Variable = Constant;

1.4

5640_ch01.fm Page 46 Tuesday, February 10, 2004 3:54 PM

Program Style 47

For example, the names

BRANCH_COUNT

 and

WINDOW_COUNT

 can be given values that can-
not be changed by your code as follows:

public static final int BRANCH_COUNT = 10;
public static final int WINDOW_COUNT = 10;

These constant definitions must be placed outside of the

main

 method and, when we
start having more methods, outside of any other methods. This is illustrated in Display
1.8. When we start writing programs and classes with multiple methods, you will see
that the defined constants can be used in all the methods of a class.

Display 1.8 Comments and a Named Constant

1 /**
2 Program to show interest on a sample account balance.
3 Author: Jane Q. Programmer.
4 E-mail Address: janeq@somemachine.etc.etc.
5 Last Changed: September 21, 2004.
6 */
7 public class ShowInterest
8 {
9 public static final double INTEREST_RATE = 2.5;

10 public static void main(String[] args)
11 {
12 double balance = 100;
13 double interest; //as a percent

14 interest = balance * (INTEREST_RATE/100.0);
15 System.out.println("On a balance of $" + balance);
16 System.out.println("you will earn interest of $"
17 + interest);
18 System.out.println("All in just one short year.");
19 }
20
21 }

SAMPLE DIALOGUE

On a balance of $100.0
you will earn interest of $2.5
All in just one short year.

Although it would not be as clear, it is
legal to place the definition of
INTEREST_RATE here instead.

5640_ch01.fm Page 47 Tuesday, February 17, 2004 5:19 PM

codes47.html

48 Chapter 1 Getting Started

We will fully explain the modifiers public static final later in this book, but we
can now explain most of what they mean. The part

int BRANCH_COUNT = 10;

simply declares BRANCH_COUNT as a variable and initializes it to 10. The words that pre-
cede this modify the variable BRANCH_COUNT in various ways. The word public says
there are no restrictions on where you can use the name BRANCH_COUNT. The word
static will have to wait until Chapter 5 for an explanation, but be sure to include it.
The word final means that the value 10 is the final value assignment to BRANCH_COUNT,
or, to phrase it another way, that the program is not allowed to change the value of
BRANCH_COUNT.

■ JAVA SPELLING CONVENTIONS

In Java, as in all programming languages, identifiers for variables, methods, and other
items should always be meaningful names that are suggestive of the identifiers’ mean-
ings. Although it is not required by the Java language, the common practice of Java
programmers is to start the names of classes with uppercase letters and to start the
names of variables, objects, and methods with lowercase letters. Defined constants are
normally spelled with all uppercase letters and underscore symbols for “punctuation,”
as we did in the previous subsection.

For example, String, FirstProgram, and JOptionPane are classes, although we have
not yet discussed the last one. The identifiers println, balance, and readLine should
each be either a variable, object, or method.

NAMING CONSTANTS

The syntax for defining a name for a constant, such as a name for a number, is as follows:

SYNTAX:

public static final Type Variable = Constant;

EXAMPLE:

public static final int MAX_SPEED = 65;
public static final double MIN_SIZE = 0.5;
public static final String GREETING = "Hello friend!";
public static final char GOAL = 'A';

Although it is not required, it is the normal practice of programmers to spell named constants
using all uppercase letters with the underscore symbol used to separate “words.”

5640_ch01.fm Page 48 Tuesday, February 10, 2004 3:54 PM

Program Style 49

Since blanks are not allowed in Java identifiers, “word” boundaries are indicated by
an uppercase letter, as in numberOfPods. Since defined constants are spelled with all
uppercase letters, the underscore symbol is used for “word” boundaries, as in MAX_SPEED.

The identifier System.out seems to violate this convention, since it names an object
but yet begins with an uppercase letter. It does not violate the convention, but the
explanation hinges on a topic we have not yet covered. System is the name of a class.
Within the class named System there is a definition of an object named out. So, the
identifier System.out is used to indicate the object out (starting with a lowercase letter
for an object) that is defined in the class System (starting with an uppercase letter for a
class). This sort of dot notation will be explained later in the book.

There is one Java convention that people new to Java often find strange. Java pro-
grammers normally do not use abbreviations in identifiers, but rather spell things out
in full. A Java programmer would not use numStars. He or she would use numberOf-
Stars. A Java programmer would not use FirstProg. He or she would use FirstPro-
gram. This can produce long identifiers and sometimes exceedingly long identifiers. For
example, BufferedReader and ArrayIndexOutOfBoundsException are the names of
two standard Java classes. The first will be used in the next chapter and the second will
be used later in this book. These long names cause you to do more typing and they
make program lines quickly get too long. However, there is a very good reason for using
these long names: With the long names, there is seldom any confusion on how the
identifiers are spelled. With abbreviations, you often cannot recall how the identifier
was abbreviated. Was it BufReader or BuffReader or BufferedR or BR or something
else? Since all the words are spelled out, you know it must be BufferedReader. Once
they get used to using these long names, most programmers learn to prefer them.

■ COMMENTS

There are two ways to insert comments in a Java program. In Java the symbols // are
used to indicate the start of a comment. All of the text between the // and the end of
the line is a comment. The compiler simply ignores anything that follows // on a line.
If you want a comment that covers more than one line, place a // on each line of the
comment. The symbols // are two slashes (without a space between them). Comments
indicated with // are often called line comments.

There is another way to insert comments in a Java program. Anything between the
symbol pair /* and the symbol pair */ is considered a comment and is ignored by the
compiler. Unlike the // comments, which require an additional // on each line, the /*
to */ comments can span several lines like so:

/*This is a multi-line comment.
Note that there is no comment symbol
of any kind on the second line.*/

Comments of the /* */ type are often called block comments. These block com-
ments may be inserted anywhere in a program that a space or line break is allowed.
However, they should not be inserted anywhere except where they do not distract from

// comments

line comments

/*comments*/

block comments

5640_ch01.fm Page 49 Tuesday, February 10, 2004 3:54 PM

50 Chapter 1 Getting Started

the layout of the program. Usually comments are only placed at the ends of lines or on
separate lines by themselves.

Java comes with a program called javadoc that will automatically extract documen-
tation from the classes you define. The workings of the javadoc program dictate when
you normally use each kind of comment.

The javadoc program will extract a /* */ comment in certain situations, but java-
doc will not extract a // comment. We will say more about javadoc and comments
after we discuss defining classes. In the meantime you may notice the following con-
ventions in our code:

We use line comments (that is, the // kind) for comments meant only for the code
writer or for a programmer who modifies the code and not for any other programmer
who merely uses the code.

For comments that would become part of the documentation for users of our code,
we use block comments (that is, the /* */ kind). The javadoc program allows you to
indicate whether or not a block comment is eligible to be extracted for documentation.
If the opening /* has an extra asterisk, like so /**, then the comment is eligible to be
extracted. If there is only one asterisk, javadoc will not extract the comment. For this
reason, our block comments invariably open with /**.

It is difficult to say just how many comments a program should contain. The only
correct answer is “just enough,” which of course conveys little to the novice program-
mer. It will take some experience to get a feel for when it is best to include a comment.
Whenever something is important and not obvious, it merits a comment. However,
providing too many comments is as bad as providing too few. A program that has a
comment on each line is so buried in comments that the structure of the program is
hidden in a sea of obvious observations. Comments like the following contribute noth-
ing to understanding and should not appear in a program:

 interest = balance * rate; //Computes the interest.

A well-written program is what is called self-documenting, which means that the
structure of the program is clear from the choice of identifier names and the indenting
pattern. A completely self-documenting program would need none of these // com-
ments that are only for the programmer who reads or modifies the code. That may be
an ideal that is not always realizable, but if your code is full of // comments and you
follow our convention on when to use // comments, then either you simply have too
many comments or your code is poorly designed.

A very simple example of the two kinds of comments is given in Display 1.8.

■ INDENTING

We will say more about indenting as we introduce more Java. However, the general rule
is easy to understand and easy to follow. When one structure is nested inside another
structure, the inside structure is indented one more level. For example, in our pro-

when to comment

self-documenting

5640_ch01.fm Page 50 Tuesday, February 10, 2004 3:54 PM

Chapter Summary 51

grams, the main method is indented one level, and the statements inside the main
method are indented two levels. We prefer to use four spaces for each level of indent-
ing. More than four spaces eats up too much line length. It is possible to get by with
indenting only two or three spaces for each level so long as you are consistent. One
space for a level of indenting is not enough to be clearly visible.

■ Compiling a Java class or program produces byte-code, which is the machine lan-
guage for a fictitious computer. When you run the byte-code, a program called an
interpreter translates and executes the byte-code instructions on your computer one
instruction at a time.

■ A variable can be used to hold values, like numbers. The type of the variable must
match the type of the value stored in the variable. All variables must be declared
before they are used.

■ The equal sign, =, is used as the assignment operator in Java. An assignment state-
ment is an instruction to change the value of a variable.

■ Each variable should be initialized before the program uses its value.

■ Parentheses in arithmetic expressions indicate which arguments are given to an oper-
ator. When parentheses are omitted, Java adds implicit parentheses using precedence
rules and associativity rules.

■ You can have variables and constants of type String. String is a class type, not a
primitive type.

■ You can use the plus sign to concatenate two strings.

■ There are methods in the class String that can be used for string processing.

Self-Test Exercises

32. What are the two kinds of comments in Java?

33. What is the output produced by the following Java code?

/**
 Code for Exercise.
*/
System.out.println("Hello");
//System.out.print("Mr. or Ms. ");
System.out.println("Student");

34. What is the normal spelling convention for named constants?

35. Write a line of Java code that will give the name ANSWER to the int value 42. In other
words, make ANSWER a named constant for 42.

Chapter Summary

5640_ch01.fm Page 51 Tuesday, February 10, 2004 3:54 PM

52 Chapter 1 Getting Started

■ Variables (and all other items in a program) should be given names that indicate
how they are used.

■ You should define names for number constants in a program and use these names
rather than writing out the numbers within your program.

■ Programs should be self-documenting to the extent possible. However, you should
also insert comments to explain any unclear points.

ANSWERS TO SELF-TEST EXERCISES

1.Java is not a drink.

2. System.out.println("I like Java.");
System.out.println("You like tea.");

3. public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

4. A compiler translates a program written in a programming language such as Java into a
program in a low-level language. When you compile a Java program, the compiler trans-
lates your Java program into a program expressed in Java byte-code.

5. The program that is input to a compiler is called the source program.

6. The translated program that is produced by a compiler is called the object program or object
code.

7. A program that runs Java byte-code instructions is called an interpreter. It is also often
called the Java Virtual Machine.

8.NiceClass.java

9.NiceClass.class

10. 1stPlayer may not be used because it starts with a digit; myprogram.java may not be
used because it contains an illegal symbol, the dot; long may not be used because it is a
keyword. All the others may be used as variable names. However, TimeLimit, while legal,
violates the style rule that all variable names begin with a lowercase letter.

11. Yes, a Java program can have two different variables named number and Number. However,
it would not be good style to do so.

12. int feet = 0, inches = 0;

13. int count = 0;
double distance = 1.5;

14.distance = time * 80;

5640_ch01.fm Page 52 Tuesday, February 10, 2004 3:54 PM

Answers to Self-Test Exercises 53

15.interest = balance * rate;

16. b
 c
 c

17. 3*x
3*x + y
(x + y)/7 Note that x + y/7 is not correct.
(3*x + y)/(z + 2)

18.(1/3) * 3 is equal to 0.0

Since 1 and 3 are of type int, the / operator performs integer division, which discards the
remainder, so the value of 1/3 is 0, not 0.3333 This makes the value of the entire
expression 0 * 3, which of course is 0.

19. quotient = 2
remainder = 1

20. result is 5

21. a. 52.0

b. 9/5 has int value 1; because the numerator and denominator are both of type int, integer
division is done; the fractional part is discarded. The programmer probably wanted
floating-point division, which does not discard the part after the decimal point.

c. fahrenheit = (9.0/5) * celsius + 32.0;
or this
fahrenheit = 1.8 * celsius + 32.0;

22.n == 3

23. n == 4
n == 3

24. Timeis money

25. 7
b

26.defg

27. abc
def

28.abc\ndef

29.HELLO TONY

30. The output is

2 + 2 = 4

5640_ch01.fm Page 53 Tuesday, February 10, 2004 3:54 PM

54 Chapter 1 Getting Started

2 + 2 = 22

In the expression "2 + 2 = " + (2 + 2) the integers 2 and 2 in (2 + 2) are added to
obtain the integer 4. When 4 is connected to the string "2 + 2" with a plus sign, the
integer 4 is converted to the string "4" and the result is the string "2 + 2 = 4". However
"2 + 2 = " + 2 + 2 is interpreted by Java to mean

("2 + 2 = " + 2) + 2

The first integer 2 is changed to the string "2" because it is being combined with the string
"2 + 2". The result is the string "2 + 2 = 2". The last integer 2 is combined with the
string "2 + 2 = 2". So, the last 2 is converted to the string "2". So the final result is

"2 + 2 = 2" + "2"

which is "2 + 2 = 22".

31. sam.increaseAge(10);

32. The two kinds of comments are // comments and /* */ comments. Everything follow-
ing a // on the same line is a comment. Everything between a /* and a matching */ is a
comment.

33. Hello
Student

34. The normal spelling convention is to spell named constants using all uppercase letters with
the underscore symbol used to separate words.

35.public static final int ANSWER = 42;

PROGRAMMING PROJECTS

1. A government research lab has concluded that an artificial sweetener commonly used in diet
soda pop will cause death in laboratory mice. A friend of yours is desperate to lose weight
but cannot give up soda pop. Your friend wants to know how much diet soda pop it is pos-
sible to drink without dying as a result. Write a program to supply the answer. The program
has no input but does have defined constants for the following items: the amount of artificial
sweetener needed to kill a mouse, the weight of the mouse, the starting weight of the dieter,
and the desired weight of the dieter. To ensure the safety of your friend, be sure the program
uses the weight at which the dieter will stop dieting, rather than the dieter’s current weight,
to calculate how much soda pop the dieter can safely drink. You may use any reasonable val-
ues for these defined constants. Assume that diet soda contains 1/10th of one percent artifi-
cial sweetener. Use another named constant for this fraction. You may want to express the
percent as the double value 0.001. (If your program turns out not to use a defined con-
stant, you may remove that defined constant from your program.)

5640_ch01.fm Page 54 Tuesday, February 10, 2004 3:54 PM

project54.html

Programming Projects 55

2. Write a program that starts with a line of text and then outputs that line of text with the
first occurrence of "hate" changed to "love". For example, a possible sample output
might be

The line of text to be changed is:
I hate you.
I have rephrased that line to read:
I love you.

You can assume that the word "hate" occurs in the input. If the word "hate" occurs
more than once in the line, your program will replace only the first occurrence of "hate".
Since we will not discuss input until Chapter 2, use a defined constant for the string to be
changed. To make your program work for another string, you should only need to change
the definition of this defined constant.

5640_ch01.fm Page 55 Tuesday, February 10, 2004 3:54 PM

project55b.html
project55c.html
project55a.html

	code links 2:
	code links 3:
	Text: For additional online Programming Projects, click the CodeMate icons below.
	program project 1:
	4:
	3:
	2:
	1:

	Text3: 1.3
	Text4: 1.4
	code links 1:

