

CHAPTER

3

Flow of Control

3.1 BRANCHING MECHANISM 94

if-else Statements 94

Omitting the

else 95

Compound Statements 96

Tip: Placing of Braces 97

Nested Statements 98

Multiway

if-else Statement 98

Example: State Income Tax 100

The

switch Statement 102

Pitfall: Forgetting a

break in a

switch Statement 104

The Conditional Operator

✜ 106

3.2 BOOLEAN EXPRESSIONS 107

Simple Boolean Expressions 107

Pitfall: Using

= in Place of

== 108

Pitfall: Using

== with Strings 109

Lexicographic and Alphabetical Order 110

Building Boolean Expressions 113

Evaluating Boolean Expressions 115

Pitfall: Strings of Inequalities 115

Tip: Naming

boolean Variables 118

Short-Circuit and Complete Evaluation 118

Precedence and Associativity Rules 119

3.3 LOOPS 127

while Statement and

do-while Statement 127

Algorithms and Pseudocode 131

Example: Averaging a List of Scores 131

Tip: End of Input Character

✜ 134

The

for Statement 135

The Comma in

for Statements 138

Tip: Repeat N Times Loops 140

Pitfall: Extra Semicolon in a

for Statement 140

Pitfall: Infinite Loops 141

Nested Loops 142

The

break and

continue Statements

✜ 144

Loop Bugs 145

Tracing Variables 146

Assertion Checks

✜ 147

CHAPTER SUMMARY 150
ANSWERS TO SELF-TEST EXERCISES 150
PROGRAMMING PROJECTS 155

5640_ch03.fm Page 93 Wednesday, February 11, 2004 2:05 PM

3

Flow of Control

“If you think we’re wax-works,” he said, “you ought to
pay, you know. Wax-works weren’t made to be looked
at for nothing. Nohow!”
“Contrariwise,” added the one marked “DEE,” “if you
think we’re alive, you ought to speak.”

Lewis Carroll,

Through the Looking-Glass

INTRODUCTION

As in most programming languages, Java handles flow of control with branching
and looping statements. Java branching and looping statements are the same as
in the C and C++ languages and very similar to what they are in other program-
ming languages. (However, the Boolean expressions that control Java branches
and loops are a bit different in Java from what they are in C and C++.)

Most branching and looping statements are controlled by Boolean expres-
sions. A Boolean expression

 is any expression that is either true or false. In Java
the primitive type

boolean

 has only the two values

true

 and

false

, and Bool-
ean expressions evaluate to one of these two values. Before we discuss Boolean
expressions and the type

boolean

, we will introduce the Java branching state-
ments using only Boolean expressions whose meaning is intuitively obvious.
This will serve to motivate our discussion of Boolean expressions.

PREREQUISITES

This chapter uses material from Chapters 1 and 2.

Branching Mechanism

When you come to a fork in the road,
take it.

Attributed to Yogi Berra

■

if-else STATEMENTS

An

if-else

 statement chooses between two alternative statements based on
the value of a Boolean expression. For example, suppose you want to design a
program to compute a week’s salary for an hourly employee. Assume the firm

Boolean
expression

3.1

if-else

5640_ch03.fm Page 94 Wednesday, February 11, 2004 2:05 PM

Branching Mechanism 95

pays an overtime rate of one-and-one-half times the regular rate for all hours after the
first 40 hours worked. When the employee works 40 or more hours, the pay is then
equal to

rate*40 + 1.5*rate*(hours

−

 40)

However, if the employee works less than 40 hours, the correct pay formula is simply

rate*hours

The following

if-else

 statement computes the correct pay for an employee whether
the employee works less than 40 hours or works 40 or more hours:

if (hours > 40)
 grossPay = rate*40 + 1.5*rate*(hours - 40);
else
 grossPay = rate*hours;

The syntax for an

if-else

 statement is given in the box entitled “

if-else

 State-
ment.” If the Boolean expression in parentheses (after the

if

) evaluates to

true

, then
the statement before the

else

 is executed. If the Boolean expression evaluates to

false

,
then the statement after the

else

 is executed.

Notice that an

if-else

 statement has smaller statements embedded in it. Most of
the statement forms in Java allow you to make larger statements out of smaller state-
ments by combining the smaller statements in certain ways.

Remember that when you use a Boolean expression in an

if-else

 statement, the
Boolean expression must be enclosed in parentheses

.

■ OMITTING THE

else

Sometimes you want one of the two alternatives in an

if-else

 statement to do nothing
at all. In Java this can be accomplished by omitting the

else

 part. These sorts of state-
ments are referred to as

if

 statements

 to distinguish them from

if-else

 statements.
For example, the first of the following two statements is an

if

 statement:

if (sales > minimum)
 salary = salary + bonus;
System.out.println("salary = $" + salary);

If the value of

sales

 is greater than the value of

minimum

, the assignment statement is
executed and then the following

System.out.println

 statement is executed. On the
other hand, if the value of

sales

 is less than or equal to

minimum

, then the embedded
assignment statement is not executed, so the

if

 statement causes no change (that is, no
bonus is added to the base salary), and the program proceeds directly to the

Sys-

tem.out.println

 statement.

parentheses

if statement

5640_ch03.fm Page 95 Wednesday, February 11, 2004 2:05 PM

96 Chapter 3 Flow of Control

■ COMPOUND STATEMENTS

You will often want the branches of an

if-else

 statement to execute more than one
statement each. To accomplish this, enclose the statements for each branch between a
pair of braces,

{

 and

}

. A list of statements enclosed in a pair of braces is called a com-
pound statement

. A compound statement is treated as a single statement by Java and
may be used anywhere that a single statement may be used. Thus, the “Multiple State-
ment Alternatives” version described in the box entitled “

if-else

Statement” is really
just a special case of the “simple” case with one statement in each branch.

if-else with
multiple

statements
compound
statement

if-else STATEMENT

The if-else statement chooses between two alternative actions based on the value of a
Boolean_Expression; that is, an expression that is either true or false, such as balance < 0.

Syntax:

if (Boolean_Expression)
Yes_Statement

else
No_Statement

If the Boolean_Expression is true, then the Yes_Statement is executed. If the Boolean_Expression
is false, then the No_Statement is executed.

EXAMPLE:

if (time < limit)
 System.out.println("You made it.");
else
 System.out.println("You missed the deadline.");

Omitting the else Part:

You may omit the else part to obtain what is often called an if statement.

SYNTAX:

if (Boolean_Expression)
Action_Statement

If the Boolean_Expression is true, then the Action_Statement is executed; otherwise, nothing
happens and the program goes on to the next statement.

EXAMPLE:

if (weight > ideal)
 calorieAllotment = calorieAllotment − 500;

 Be sure to note that the Boolean_Expression must be
enclosed in parentheses.

5640_ch03.fm Page 96 Wednesday, February 11, 2004 2:05 PM

Branching Mechanism 97

Tip

PLACING OF BRACES

There are two commonly used ways of indenting and placing braces in if-else statements.
They are illustrated below:

if (myScore > yourScore)
{
 System.out.println("I win!");
 wager = wager + 100;
}
else
{
 System.out.println("I wish these were golf scores.");
 wager = 0;
}

and

if (myScore > yourScore) {
 System.out.println("I win!");
 wager = wager + 100;
} else {
 System.out.println("I wish these were golf scores.");
 wager = 0;
}

The only difference is the placement of braces. We find the first form easier to read and so prefer
the first form. The second form saves lines and so some programmers prefer the second form or
some minor variant of the second form.

Be sure to note the indenting pattern in these examples.

MULTIPLE STATEMENT ALTERNATIVES:

In an if-else statement, you can have one or both alternatives contain several statements. To
accomplish this, group the statements using braces, as in the following example:

if (myScore > yourScore)
{
 System.out.println("I win!");
 wager = wager + 100;
}
else
{
 System.out.println("I wish these were golf scores.");
 wager = 0;
}

5640_ch03.fm Page 97 Wednesday, February 11, 2004 2:05 PM

98 Chapter 3 Flow of Control

■ NESTED STATEMENTS

As you have seen, if-else statements and if statements contain smaller statements
within them. Thus far we have used compound statements and simple statements, such
as assignment statements, as these smaller substatements, but there are other possibili-
ties. In fact, any statement at all can be used as a subpart of an if-else statement, or
other statement that has one or more statements within it.

When nesting statements, you normally indent each level of nested substatements,
although there are some special situations (such as a multiway if-else statement)
where this rule is not followed.

■ MULTIWAY if-else STATEMENT

The multiway-if-else statement is not really a different kind of Java statement. It is
simply ordinary if-else statements nested inside of if-else statements, but it is
thought of as a different kind of statement and is indented differently from other
nested statements so as to reflect this thinking.

The syntax for a multiway-if-else statement and a simple example are given in the
box entitled “Multiway-if-else Statement.” Note that the Boolean expressions are
aligned with one another, and their corresponding actions are also aligned with one
another. This makes it easy to see the correspondence between Boolean expressions and
actions. The Boolean expressions are evaluated in order until a true Boolean expression
is found. At that point the evaluation of Boolean expressions stops, and the action cor-

Self-Test Exercises

1. Write an if-else statement that outputs the word "High" if the value of the variable
score is greater than 100 and outputs "Low" if the value of score is at most 100. The
variable score is of type int.

2. Suppose savings and expenses are variables of type double that have been given values.
Write an if-else statement that outputs the word "Solvent", decreases the value of
savings by the value of expenses, and sets the value of expenses to zero, provided that
savings is larger than expenses. If, however, savings is less than or equal to expenses,
the if-else statement simply outputs the word "Bankrupt", and does not change the
value of any variables.

3. Suppose number is a variable of type int. Write an if-else statement that outputs the
word "Positive" if the value of the variable number is greater than 0 and outputs the
words "Not positive" if the value of number is less than or equal to 0.

4. Suppose salary and deductions are variables of type double that have been given val-
ues. Write an if-else statement that outputs the word "Crazy" if salary is less than
deductions; otherwise, it outputs "OK" and sets the variable net equal to salary minus
deductions.

indenting

multiway
 if-else

5640_ch03.fm Page 98 Wednesday, February 11, 2004 2:05 PM

Branching Mechanism 99

responding to the first true Boolean expression is executed. The final else is optional.
If there is a final else and all the Boolean expressions are false, the final action is exe-
cuted. If there is no final else and all the Boolean expressions are false, then no action
is taken. An example of a multiway-if-else statement is given in the following Pro-
gramming Example.

Example

STATE INCOME TAX

Display 3.1 contains a program that uses a multiway if-else statement to compute state income
tax. This state computes tax according to the rate schedule below:

1. No tax is paid on the first $15,000 of net income.

2. A tax of 5% is assessed on each dollar of net income from $15,001 to $30,000.

3. A tax of 10% is assessed on each dollar of net income over $30,000.

The program uses a multiway-if-else statement with one action for each of the above three
cases. The condition for the second case is actually more complicated than it needs to be. The
computer will not get to the second condition unless it has already tried the first condition and
found it to be false. Thus, you know that whenever the computer tries the second condition, it
will know that netIncome is greater than 15000. Hence, you can replace the line

else if ((netIncome > 15000) && (netIncome <= 30000))

with the following, and the program will perform exactly the same:

else if (netIncome <= 30000)

MULTIWAY-if-else STATEMENT

SYNTAX:

if (Boolean_Expression_1)
 Statement_1
else if (Boolean_Expression_2)
 Statement_2

 .
 .
 .

else if (Boolean_Expression_n)
 Statement_n
else
 Statement_For_All_Other_Possibilities

5640_ch03.fm Page 99 Wednesday, February 11, 2004 2:05 PM

100 Chapter 3 Flow of Control

EXAMPLE:

if (numberOfPeople < 50)
 System.out.println("Less than 50 people");
else if (numberOfPeople < 100)
 System.out.println("At least 50 and less than 100 people");
else if (numberOfPeople < 200)
 System.out.println("At least 100 and less than 200 people");
else
 System.out.println("At least 200 people");

The Boolean expressions are checked in order until the first true Boolean expression is encoun-
tered and then the corresponding statement is executed. If none of the Boolean expressions is
true, then theStatement_For_All_Other_Possibilities is executed.

Display 3.1 Tax Program (Part 1 of 2)

1 import javax.swing.JOptionPane;

2 public class IncomeTax
3 {
4 public static void main(String[] args)
5 {
6 double netIncome, tax, fivePercentTax, tenPercentTax;

7 String netIncomeString =
8 JOptionPane.showInputDialog("Enter net income.\n"
9 + "Do not include a dollar sign or any commas.");

10 netIncome = Double.parseDouble(netIncomeString);

11 if (netIncome <= 15000)
12 tax = 0;
13 else if ((netIncome > 15000) && (netIncome <= 30000))
14 //tax = 5% of amount over $15,000
15 tax = (0.05*(netIncome − 15000));
16 else //netIncome > $30,000
17 {
18 //fivePercentTax = 5% of income from $15,000 to $30,000.
19 fivePercentTax = 0.05*15000;
20 //tenPercentTax = 10% of income over $30,000.
21 tenPercentTax = 0.10*(netIncome − 30000);
22 tax = (fivePercentTax + tenPercentTax);
23 }

24 JOptionPane.showMessageDialog(null, "Tax due = $" + tax);
25 System.exit(0);
26 }
27 }

5640_ch03.fm Page 100 Wednesday, February 11, 2004 2:05 PM

codes100.html

Branching Mechanism 101

Self-Test Exercises

5. What output will be produced by the following code?

int extra = 2;
if (extra < 0)

System.out.println("small");
else if (extra > 0)

System.out.println("large");
else

System.out.println("medium");

6. What would be the output in question 5 if the assignment were changed to the following?

int extra =

−

37;

7. What would be the output in question 5 if the assignment were changed to the following?

int extra = 0;

8. Write a multiway

if-else

 statement that classifies the value of an

int

 variable

n

 into one
of the following categories and writes out an appropriate message:

n < 0 or 0

≤

 n

<

 100 or n

≥

 100

Hint: Remember that the Boolean expressions are checked in order.

Display 3.1 Tax Program (Part 2 of 2)

WINDOW 1

WINDOW 2

5640_ch03.fm Page 101 Tuesday, February 17, 2004 5:21 PM

102 Chapter 3 Flow of Control

■ THE switch STATEMENT

The switch statement is the only other kind of Java statement that implements multi-
way branches. The syntax for a switch statement and a simple example are shown in
the box entitled “The switch Statement.”

When a switch statement is executed, one of a number of different branches is exe-
cuted. The choice of which branch to execute is determined by a controlling expression
given in parentheses after the keyword switch. Following this are a number of occur-
rences of the reserved word case followed by a constant and a colon. These constants
are called case labels. The controlling expression for a switch statement must be of one
of the types char, int, short, or byte. The case labels must all be of the same type as
the controlling expression. No case label can occur more than once, since that would
be an ambiguous instruction. There may also be a section labeled default:, which is
usually last.

When the switch statement is executed, the controlling expression is evaluated and
the computer looks at the case labels. If it finds a case label that equals the value of the
controlling expression, it executes the code for that case label.

 The switch statement ends when either a break statement is executed or the end of
the switch statement is reached. A break statement consists of the keyword break fol-
lowed by a semicolon. When the computer executes the statements after a case label, it
continues until it reaches a break statement. When the computer encounters a break
statement, the switch statement ends. If you omit the break statements, then after exe-
cuting the code for one case, the computer will go on to execute the code for the next
case.

Note that you can have two case labels for the same section of code, as in the fol-
lowing portion of a switch statement:

case 'A':
case 'a':
 System.out.println("Excellent. You need not take the final.");
 break;

Since the first case has no break statement (in fact, no statement at all), the effect is the
same as having two labels for one case, but Java syntax requires one keyword case for
each label, such as 'A' and 'a'.

If no case label has a constant that matches the value of the controlling expression,
then the statements following the default label are executed. You need not have a
default section. If there is no default section and no match is found for the value of the
controlling expression, then nothing happens when the switch statement is executed.
However, it is safest to always have a default section. If you think your case labels list all
possible outcomes, then you can put an error message in the default section.

The default case need not be the last case in a switch statement, but making it the
last case, as we have always done, makes the code clearer.

switch
statement

controlling
expression

break

default

5640_ch03.fm Page 102 Wednesday, February 11, 2004 2:05 PM

Branching Mechanism 103

THE switch STATEMENT

SYNTAX:

switch (Controlling_Expression)
{
 case Case_Label_1:
 Statement_Sequence_1
 break;
 case Case_Label_2:
 Statement_Sequence_2
 break;

 .
 .
 .

 case Case_Label_n:
 Statement_Sequence_n
 break;

 default:
 Default_Statement_Sequence
 break;

}

EXAMPLE:

int vehicleClass;
double toll;
 .
 .
 .
switch (vehicleClass)
{
 case 1:
 System.out.println("Passenger car.");
 toll = 0.50;
 break;
 case 2:
 System.out.println("Bus.");
 toll = 1.50;
 break;
 case 3:
 System.out.println("Truck.");
 toll = 2.00;
 break;
 default:
 System.out.println("Unknown vehicle class!");
 break;
}

The default case is optional.

If you forget this break, then passenger
cars will pay $1.50.

Each Case_Label is a constant of the same type as the
Controlling_Expression. The Controlling_Expression
must be of type char, int, short, or byte.

A break may be omitted. If there is no break,
execution just continues to the next case.

5640_ch03.fm Page 103 Wednesday, February 11, 2004 2:05 PM

104 Chapter 3 Flow of Control

A sample switch statement is shown in Display 3.2. Notice that the case labels
need not be listed in order and need not span a complete interval.

Pitfall

FORGETTING A break IN A switch STATEMENT

If you forget a break in a switch statement, the compiler will not issue an error message. You
will have written a syntactically correct switch statement, but it will not do what you intended it
to do. Notice the annotation in the example in the box entitled “The switch Statement.”

The last case in a switch statement does not need a break, but it is a good idea to include it
nonetheless. That way, if a new case is added after the last case, you will not forget to add a break
(because it is already there.) This advice about break statements also applies to the default case
when it is last. It is best to place the default case last, but that is not required by the Java lan-
guage, so there is always a possibility of somebody adding a case after the default case.

Self-Test Exercises

9. What is the output produced by the following code?

char letter = 'B';
switch (letter)
{
 case 'A':
 case 'a':
 System.out.println("Some kind of A.");
 case 'B':
 case 'b':
 System.out.println("Some kind of B.");
 break;
 default:
 System.out.println("Something else.");
 break;
}

10. What output will be produced by the following code?

int key = 1;
switch (key + 1)
{
 case 1:
 System.out.println("Apples");
 break;
 case 2:
 System.out.println("Oranges");
 break;

5640_ch03.fm Page 104 Wednesday, February 11, 2004 2:05 PM

Branching Mechanism 105

 case 3:
 System.out.println("Peaches");
 case 4:
 System.out.println("Plums");
 break;
 default:
 System.out.println("Fruitless");
}

11. What would be the output in question 10 if the first line were changed to the following?

int key = 3;

12. What would be the output in question 10 if the first line were changed to the following?

int key = 5;

Display 3.2 A switch Statement (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;
4
5 public class SwitchDemo
6 {
7 public static void main(String[] args) throws IOException
8 {
9 BufferedReader console = new BufferedReader(

10 new InputStreamReader(System.in));

11 System.out.println("Enter number of ice cream flavors:");
12 String numberString = console.readLine();
13 int numberOfFlavors = Integer.parseInt(numberString);

14 switch (numberOfFlavors)
15 {
16 case 32:
17 System.out.println("Nice selection.");
18 break;
19 case 1:
20 System.out.println("I bet it's vanilla.");
21 break;
22 case 2:
23 case 3:
24 case 4:
25 System.out.println(numberOfFlavors + " flavors");

Controlling expression

case labels

break statement

5640_ch03.fm Page 105 Wednesday, February 11, 2004 2:05 PM

codes105.html

106 Chapter 3 Flow of Control

■ THE CONDITIONAL OPERATOR ✜

You can embed a branch inside of an expression by using a ternary operator known as
the conditional operator (also called the ternary operator or arithmetic if). Its use is
reminiscent of an older programming style, and we do not advise using it. It is included
here for the sake of completeness (and in case you disagree with our programming
style).

Display 3.2 A switch Statement (Part 2 of 2)

26 System.out.println("is acceptable.");
27 break;
28 default:
29 System.out.println("I didn't plan for");
30 System.out.println(numberOfFlavors + " flavors.");
31 break;
32 }
33 }
34 }

SAMPLE DIALOGUE 1

Enter number of ice cream flavors:
1
I bet it's vanilla.

SAMPLE DIALOGUE 2

Enter number of ice cream flavors:
32
Nice selection.

SAMPLE DIALOGUE 3

Enter number of ice cream flavors:
3
3 flavors
is acceptable.

SAMPLE DIALOGUE 4

Enter number of ice cream flavors:
9
I didn't plan for
9 flavors.

conditional
operator

5640_ch03.fm Page 106 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 107

The conditional operator is a notational variant on certain forms of the if-else
statement. The following example illustrates the conditional operator. Consider the
if-else statement

if (n1 > n2)
 max = n1;
else
 max = n2;

 This can be expressed using the conditional operator as follows:

max = (n1 > n2) ? n1 : n2;

The expression on the right-hand side of the assignment statement is the condi-
tional operator expression:

(n1 > n2) ? n1 : n2

The ? and : together forms a ternary operator known as the conditional operator. A
conditional operator expression starts with a Boolean expression followed by a ? and
then followed by two expressions separated with a colon. If the Boolean expression is
true, then the value of the first of the two expressions is returned as the value of the
entire expression; otherwise, the value of the second of the two expressions is returned
as the value of the entire expression.

Boolean Expressions
“Contrariwise,” continued Tweedledee, “if it was so, it might be; and
if it were so, it would be; but as it isn’t, it ain’t. That’s logic.”

Lewis Carroll, Through the Looking-Glass

Now that we have motivated Boolean expressions by using them in if-else state-
ments, we go on to discuss them and the type boolean in more detail. A Boolean
expression is simply an expression that is either true or false. The name Boolean is
derived from George Boole, a 19th-century English logician and mathematician whose
work was related to these kinds of expressions.

■ SIMPLE BOOLEAN EXPRESSIONS

We have already been using simple Boolean expressions in if-else statements. The
simplest Boolean expressions are comparisons of two expressions, such as

time < limit

3.2

Boolean
expression

5640_ch03.fm Page 107 Wednesday, February 11, 2004 2:05 PM

108 Chapter 3 Flow of Control

and

balance <= 0

A Boolean expression does not need to be enclosed in parentheses to qualify as a Bool-
ean expression, although it does need to be enclosed in parentheses when it is used in
an if-else statement.

Display 3.3 shows the various Java comparison operators you can use to compare
two expressions.

Display 3.3 Java Comparison Operators

MATH
NOTATION

NAME JAVA
NOTATION

JAVA EXAMPLES

 = Equal to == x + 7 == 2*y
answer == 'y'

 ≠ Not equal to != score != 0
answer != 'y'

 > Greater than > time > limit

 ≥ Greater than or equal to >= age >= 21

 < Less than < pressure < max

 ≤ Less than or equal to <= time <= limit

Pitfall

USING = IN PLACE OF ==

Since the equal sign, =, is used for assignment in Java, something else was needed to indicate
equality. In Java, equality is indicated with two equal signs with no space between them, as in

if (yourScore == myScore)
 System.out.println("A tie.");

Fortunately, if you do use = in place of ==, Java will probably give you a compiler error message.
(The only case that does not give an error message is when the expression in parentheses happens
to form a correct assignment to a boolean variable.)

5640_ch03.fm Page 108 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 109

Pitfall

USING == WITH STRINGS

Although == correctly tests two values of a primitive type, such as two numbers, to see if they are
equal, it has a different meaning when applied to objects, such as objects of the class String.1

Recall that an object is something whose type is a class, such as a string. All strings are in the class
String (that is, are of type String), so == applied to two strings does not test to see whether
the strings are equal. To test two strings (or any two objects) to see if they have equal values, you
should use the method equals rather than ==. For example, suppose s1 and s2 are String vari-
ables that have been given values, and consider the statement

if (s1.equals(s2))
 System.out.println("They are equal strings.");
else
 System.out.println("They are not equal strings.");

If s1 and s2 name strings that contain the same characters in the same order, then the output will be

They are equal strings.

The notation may seem a bit awkward at first, because it is not symmetric between the two things
being tested for equality. The two expressions

s1.equals(s2)
s2.equals(s1)

are equivalent.

The method equalsIgnoreCase behaves similarly to equals, except that with equals-
IgnoreCase, the upper- and lowercase versions of the same letter are considered the same. For
example, "Hello" and "hello" are not equal because their first characters, 'H' and 'h', are
different characters. But they would be considered equal by the method equalsIgnoreCase.
For example, the following will output Equal ignoring case.:

if ("Hello".equalsIgnoreCase("hello"))
 System.out.println("Equal ignoring case.");

Notice that it is perfectly legal to use a quoted string with a String method, as in the preceding
use of equalsIgnoreCase. A quoted string is an object of type String and has all the methods
that any other object of type String has.

For the kinds of applications we are looking at in this chapter, you could also use == to test for
equality of objects of type String, and it would deliver the correct answer. However, there are
situations in which == does not correctly test strings for equality, so you should get in the habit of
using equals rather than == to test strings.

1 When applied to two strings (or any two objects), == tests to see if they are stored in the same
memory location, but we will not discuss that until Chapter 4. For now, we need only note that
== does something other than test for the equality of two strings.

5640_ch03.fm Page 109 Wednesday, February 11, 2004 2:05 PM

110 Chapter 3 Flow of Control

■ LEXICOGRAPHIC AND ALPHABETICAL ORDER

The method compareTo will test two strings to determine their lexicographic order.
Lexicographic ordering is similar to alphabetic ordering and is sometimes, but not
always, the same as alphabetic ordering. The easiest way to think about lexicographic
ordering is to think of it as being the same as alphabetic ordering but with the alphabet
ordered differently. Specifically, in lexicographic ordering, the letters and other charac-
ters are ordered as in the ASCII ordering, which is shown in Appendix 3.

If s1 and s2 are two variables of type String that have been given String values,
then

s1.compareTo(s2)

returns a negative number if s1 comes before s2 in lexicographic ordering, returns zero
if the two strings are equal, and returns a positive number if s2 comes before s1. Thus,

s1.compareTo(s2) < 0

returns true if s1 comes before s2 in lexicographic order and returns false otherwise.
For example, the following will produce correct output:

if (s1.compareTo(s2) < 0)
 System.out.println(
 s1 + " precedes " + s2 + " in lexicographic ordering");
else if (s1.compareTo(s2) > 0)

THE METHODS equals AND equalsIgnoreCase

When testing strings for equality, do not use ==. Instead, use either equals or equalsIgnore-
Case.

SYNTAX:

String.equals(Other_String)
String.equalsIgnoreCase(Other_String)

EXAMPLE:

String s1;
 .
 .
 .
if (s1.equals("Hello"))
 System.out.println("The string is Hello.");

else
 System.out.println("The string is not Hello.");

lexicographic
ordering

compareTo

5640_ch03.fm Page 110 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 111

 System.out.println(
 s1 + " follows " + s2 + " in lexicographic ordering");
else //s1.compareTo(s2) == 0
 System.out.println(s1 + " equals " + s2);

If you look at the ordering of characters in Appendix 3, you will see that all upper-
case letters come before all lowercase letters. For example, 'Z' comes before 'a' in lexi-
cographic order. So when comparing two strings consisting of a mix of lowercase and
uppercase letters, lexicographic and alphabetic ordering are not the same. However, as
shown in Appendix 3, all the lowercase letters are in alphabetic order. So for any two
strings of all lowercase letters, lexicographic order is the same as ordinary alphabetic
order. Similarly, in the ordering of Appendix 3, all the uppercase letters are in alpha-
betic order. So for any two strings of all uppercase letters, lexicographic order is the
same as ordinary alphabetic order. Thus, if you treat all uppercase letters as if they were
lowercase, then lexicographic ordering becomes the same as alphabetic ordering. This is
exactly what the method compareToIgnoreCase does. Thus, the following will produce
correct output:

if (s1.compareToIgnoreCase(s2) < 0)
 System.out.println(
 s1 + " precedes " + s2 + " in ALPHABETIC ordering");
else if (s1.compareToIgnoreCase(s2) > 0)
 System.out.println(
 s1 + " follows " + s2 + " in ALPHABETIC ordering");
else //s1.compareToIgnoreCase(s2) == 0
 System.out.println(s1 + " equals " + s2 + " IGNORING CASE");

The above code will compile and produce results no matter what characters are in
the strings s1 and s2. However, alphabetic order only makes sense, and the output only
makes sense, if the two strings consist entirely of letters.

The program in Display 3.4 illustrates some of the string comparisons we have just
discussed.

Self-Test Exercises

13. Suppose n1 and n2 are two int variables that have been given values. Write a Boolean
expression that returns true if the value of n1 is greater than or equal to the value of n2;
otherwise, it returns false.

14. Suppose n1 and n2 are two int variables that have been given values. Write an if-else
statement that outputs "n1" if n1 is greater than or equal to n2 and outputs "n2" other-
wise.

15. Suppose variable1 and variable2 are two variables that have been given values. How
do you test whether they are equal when the variables are of type int? How do you test
whether they are equal when the variables are of type String?

compareTo-
IgnoreCase

5640_ch03.fm Page 111 Wednesday, February 11, 2004 2:05 PM

112 Chapter 3 Flow of Control

Display 3.4 Comparing Strings

1 public class StringComparisonDemo
2 {
3 public static void main(String[] args)
4 {
5 String s1 = "Java isn't just for breakfast.";
6 String s2 = "JAVA isn't just for breakfast.";

7 if (s1.equals(s2))
8 System.out.println("The two lines are equal.");
9 else

10 System.out.println("The two lines are not equal.");

11 if (s2.equals(s1))
12 System.out.println("The two lines are equal.");
13 else
14 System.out.println("The two lines are not equal.");

15 if (s1.equalsIgnoreCase(s2))
16 System.out.println("But the lines are equal, ignoring case.");
17 else
18 System.out.println("Lines are not equal, even ignoring case.");

19 String s3 = "A cup of java is a joy forever.";
20 if (s3.compareToIgnoreCase(s1) < 0)
21 {
22 System.out.println("\"" + s3 + "\"");
23 System.out.println("precedes");
24 System.out.println("\"" + s1 + "\"");
25 System.out.println("in alphabetic ordering");
26 }
27 else
28 System.out.println("s3 does not precede s1.");
29 }
30 }

SAMPLE DIALOGUE

The two lines are not equal.
The two lines are not equal.
But the lines are equal, ignoring case.
"A cup of java is a joy forever."
precedes
"Java isn't just for breakfast."
in alphabetic ordering

5640_ch03.fm Page 112 Wednesday, February 11, 2004 2:05 PM

codes112.html

Boolean Expressions 113

■ BUILDING BOOLEAN EXPRESSIONS

You can combine two Boolean expressions using the “and” operator, which is spelled &&
in Java. For example, the following Boolean expression is true provided number is
greater than 2 and number is less than 7:

(number > 2) && (number < 7)

When two Boolean expressions are connected using an &&, the entire expression is true,
provided both of the smaller Boolean expressions are true; otherwise, the entire expres-
sion is false.

You can also combine two Boolean expressions using the “or” operator, which is
spelled || in Java. For example, the following is true provided count is less than 3 or
count is greater than 12:

(count < 3) || (count > 12)

16. Assume that nextWord is a String variable that has been given a String value consisting
entirely of letters. Write some Java code that outputs the message "First half of the
alphabet", provided nextWord precedes "N" in alphabetic ordering. If nextWord does
not precede "N" in alphabetic ordering, it outputs "Second half of the alphabet".
(Note that "N" uses double quotes to produce a String value, as opposed to using single
quotes to produce a char value.)

THE “AND” OPERATOR &&

You can form a more elaborate Boolean expression by combining two simpler Boolean expres-
sions using the “and” operator &&.

SYNTAX (FOR A BOOLEAN EXPRESSION USING &&):

(Boolean_Exp_1) && (Boolean_Exp_2)

EXAMPLE (WITHIN AN if-else STATEMENT):

if ((score > 0) && (score < 10))
 System.out.println("score is between 0 and 10.");
else
 System.out.println("score is not between 0 and 10.");

If the value of score is greater than 0 and the value of score is also less than 10, then the
first System.out.println statement will be executed; otherwise, the second System.out.
println statement will be executed.

&& means “and”

|| means “or”

5640_ch03.fm Page 113 Wednesday, February 11, 2004 2:05 PM

114 Chapter 3 Flow of Control

When two Boolean expressions are connected using an ||, the entire expression is true,
provided that one or both of the smaller Boolean expressions are true; otherwise, the
entire expression is false.

You can negate any Boolean expression using the ! operator. If you want to negate a
Boolean expression, place the expression in parentheses and place the ! operator in
front of it. For example, !(savings < debt) means “savings is not less than debt.” The
! operator can usually be avoided. For example,

!(savings < debt)

is equivalent to savings >= debt. In some cases you can safely omit the parentheses,
but the parentheses never do any harm. The exact details on omitting parentheses are
given in the subsection entitled “Precedence and Associativity Rules.”

THE “OR” OPERATOR ||

You can form a more elaborate Boolean expression by combining two simpler Boolean expres-
sions using the “or” operator ||.

SYNTAX (FOR A BOOLEAN EXPRESSION USING ||):

(Boolean_Exp_1) || (Boolean_Exp_2)

EXAMPLE (WITHIN AN if-else STATEMENT):

if ((salary > expenses) || (savings > expenses))
 System.out.println("Solvent");
else
 System.out.println("Bankrupt");

If salary is greater than expenses or savings is greater than expenses (or both), then the
first System.out.println statement will be executed; otherwise, the second Sys-
tem.out.println statement will be executed.

Self-Test Exercises

17. Write an if-else statement that outputs the word "Passed" provided the value of the
variable exam is greater than or equal to 60 and also the value of the variable programs-
Done is greater than or equal to 10. Otherwise, the if-else statement outputs the word
"Failed". The variables exam and programsDone are both of type int.

18. Write an if-else statement that outputs the word "Emergency" provided the value of
the variable pressure is greater than 100 or the value of the variable temperature is
greater than or equal to 212. Otherwise, the if-else statement outputs the word "OK".
The variables pressure and temperature are both of type int.

5640_ch03.fm Page 114 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 115

■ EVALUATING BOOLEAN EXPRESSIONS

Boolean expressions are used to control branch and loop statements. However, a Bool-
ean expression has an independent identity apart from any branch statement or loop
statement you might use it in. A Boolean expression returns either true or false. A
variable of type boolean can store the values true and false. Thus, you can set a vari-
able of type boolean equal to a Boolean expression. For example:

boolean madeIt = (time < limit) && (limit < max);

A Boolean expression can be evaluated in the same way that an arithmetic expres-
sion is evaluated. The only difference is that an arithmetic expression uses operations
such as +, *, and /, and produces a number as the final result, whereas a Boolean
expression uses relational operations such as ==, <, and Boolean operations such as &&,
||, !, and produces one of the two values true and false as the final result.

First let’s review evaluating an arithmetic expression. The same technique will work
in the same way to evaluate Boolean expressions. Consider the following arithmetic
expression:

(number + 1) * (number + 3)

Assume that the variable number has the value 2. To evaluate this arithmetic expression,
you evaluate the two sums to obtain the numbers 3 and 5, then you combine these two
numbers 3 and 5 using the * operator to obtain 15 as the final value. Notice that in per-
forming this evaluation, you do not multiply the expressions (number + 1) and (num-
ber + 3). Instead, you multiply the values of these expressions. You use 3; you do not
use (number + 1). You use 5; you do not use (number + 3).

The computer evaluates Boolean expressions the same way. Subexpressions are eval-
uated to obtain values, each of which is either true or false. In particular, ==, !=, <, <=,
and so forth operate on pairs of any primitive type to produce a Boolean value of true
or false. These individual values of true or false are then combined according to the
rules in the tables shown in Display 3.5. For example, consider the Boolean expression

!((count < 3) || (count > 7))

Pitfall

STRINGS OF INEQUALITIES

Do not use a string of inequalities such as min < result < max. If you do, your program will
produce a compiler error message. Instead you must use two inequalities connected with an &&,
as follows:

(min < result) && (result < max)

truth tables

5640_ch03.fm Page 115 Wednesday, February 11, 2004 2:05 PM

116 Chapter 3 Flow of Control

which might be the controlling expression for an if-else statement. Suppose the value
of count is 8. In this case (count < 3) evaluates to false and (count > 7) evaluates to
true, so the preceding Boolean expression is equivalent to

!(false || true)

Consulting the tables for || (which is labeled OR), the computer sees that the expres-
sion inside the parentheses evaluates to true. Thus, the computer sees that the entire
expression is equivalent to

!(true)

Consulting the tables again, the computer sees that !(true) evaluates to false, and so
it concludes that false is the value of the original Boolean expression.

A boolean variable, that is, one of type boolean, can be given the value of a Boolean
expression by using an assignment statement, in the same way that you use an assign-

Display 3.5 Truth Tables

AND

Exp_1 Exp_2 Exp_1 && Exp_2

true true true

true false false

false true false

false false false

OR

Exp_1 Exp_2 Exp_1 || Exp_2

true true true

true false true

false true true

false false false

NOT

Exp !(Exp)

true false

false true

boolean variables
in assignments

5640_ch03.fm Page 116 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 117

ment statement to set the value of an int variable or any other type of variable. For
example, the following sets the value of the boolean variable isPositive to false:

int number = −5;
boolean isPositive;
isPositive = (number > 0);

If you prefer, you can combine the last two lines as follows:

boolean isPositive = (number > 0);

The parentheses are not needed, but they do make it a bit easier to read.

Once a boolean variable has a value, you can use the boolean variable just as you
would use any other Boolean expression. For example,

boolean isPositive = (number > 0);
if (isPositive)
 System.out.println("The number is positive.");
else
 System.out.println("The number is negative or zero.");

is equivalent to

if (number > 0)
 System.out.println("The number is positive.");
else
 System.out.println("The number is negative or zero.");

Of course, this is just a toy example. It is unlikely that anybody would use the first of
the preceding two examples, but you might use something like it if the value of number,
and therefore the value of the Boolean expression, might change, as in the following
code, which could (by some stretch of the imagination) be part of a program to evalu-
ate lottery tickets:

boolean isPositive = (number > 0);
while (number > 0);
{
 System.out.println("Wow!");
 number = number − 1000;
}

THE BOOLEAN VALUES ARE true AND false

true and false are predefined constants of type boolean. (They must be written in lower-
case.) In Java, a Boolean expression evaluates to the boolean value true when it is satisfied and
evaluates to the boolean value false when it is not satisfied.

5640_ch03.fm Page 117 Wednesday, February 11, 2004 2:05 PM

118 Chapter 3 Flow of Control

if (isPositive)
 System.out.println("Your number is positive.");
else
 System.out.println("Sorry, number is not positive.");
System.out.println("Only positive numbers can win.");

■ SHORT-CIRCUIT AND COMPLETE EVALUATION

Java takes an occasional shortcut when evaluating a Boolean expression. Notice that in
many cases, you need to evaluate only the first of two subexpressions in a Boolean
expression. For example, consider the following:

(savings >= 0) && (dependents > 1)

If savings is negative, then (savings >= 0) is false, and, as you can see in the tables
in Display 3.5, when one subexpression in an && expression is false, then the whole
expression is false, no matter whether the other expression is true or false. Thus, if
we know that the first expression is false, there is no need to evaluate the second
expression. A similar thing happens with || expressions. If the first of two expressions
joined with the || operator is true, then you know the entire expression is true,
whether the second expression is true or false. In some situations, the Java language

true AND false ARE NOT NUMBERS

Many programming languages have traditionally used 1 and 0 for true and false. The latest
versions of most languages have changed things so that now most languages have a type like
boolean with values for true and false. However, even in these newer language versions, values
of type boolean will be automatically converted to integers and vice versa when context
requires it. In particular, C++ will automatically make such conversions.

In Java the values true and false are not numbers, nor can they be type cast to any numeric
type. Similarly, values of type int cannot be type cast to boolean values.

Tip

NAMING boolean VARIABLES

Name a boolean variable with a statement that will be true when the value of the boolean vari-
able is true, such as isPositive, pressureOK, and so forth. That way you can easily under-
stand the meaning of the boolean variable when it is used in an if-else statement, or other
control statement. Avoid names that do not unambiguously describe the meaning of the vari-
able’s value. Do not use names like numberSign, pressureStatus, and so forth.

5640_ch03.fm Page 118 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 119

can and does use these facts to save itself the trouble of evaluating the second subex-
pression in a logical expression connected with an && or an ||. Java first evaluates the
leftmost of the two expressions joined by an && or an ||. If that gives it enough infor-
mation to determine the final value of the expression (independent of the value of the
second expression), then Java does not bother to evaluate the second expression. This
method of evaluation is called short-circuit evaluation or lazy evaluation.

Now let’s look at an example using && that illustrates the advantage of short-circuit
evaluation, and let’s give the Boolean expression some context by placing it in an if
statement:

if ((kids != 0) && ((pieces/kids) >= 2))
 System.out.println("Each child may have two pieces!");

If the value of kids is not zero, this statement involves no subtleties. However, suppose
the value of kids is zero and consider how short-circuit evaluation handles this case.
The expression (kids != 0) evaluates to false, so there would be no need to evaluate
the second expression. Using short-circuit evaluation, Java says that the entire expres-
sion is false, without bothering to evaluate the second expression. This prevents a run-
time error, since evaluating the second expression would involve dividing by zero.

Java also allows you to ask for complete evaluation. In complete evaluation, when
two expressions are joined by an “and” or an “or,” both subexpressions are always evalu-
ated, and then the truth tables are used to obtain the value of the final expression. To
obtain complete evaluation in Java, you use & rather than && for “and” and use | in
place of || for “or.”

In most situations, short-circuit evaluation and complete evaluation give the same
result, but, as you have just seen, there are times when short-circuit evaluation can
avoid a run-time error. There are also some situations in which complete evaluation is
preferred, but we will not use those techniques in this book, and so we will always use
&& and || to obtain short-circuit evaluation.

■ PRECEDENCE AND ASSOCIATIVITY RULES

Boolean expressions (and arithmetic expressions) need not be fully parenthesized. If
you omit parentheses, Java follows precedence and associativity rules in place of the
missing parentheses. One easy way to think of the process is to think of the computer
adding parentheses according to these precedence and associativity rules. Some of the
Java precedence and associativity rules are given in Display 3.6. (A complete set of pre-
cedence and associativity rules is given in Appendix 2.) The computer uses precedence
rules to decide on where to insert parentheses, but the precedence rules do not differen-
tiate between two operators at the same precedence level, in which case it uses the asso-
ciativity rules to “break the tie.”

If one operator occurs higher on the list than another in the precedence table (Dis-
play 3.6), the higher-up one is said to have higher precedence. If one operator has
higher precedence than another, the operator of higher precedence is grouped with its

short-circuit
evaluation

complete
evaluation

precedence rules
associativity rules

higher precedence

5640_ch03.fm Page 119 Wednesday, February 11, 2004 2:05 PM

120 Chapter 3 Flow of Control

operands (its arguments) before the operator of lower precedence. For example, if the
computer is faced with the expression

balance * rate + bonus

it notices that * has a higher precedence than + and so it first groups the * and its oper-
ands, as follows:

(balance * rate) + bonus

Display 3.6 Precedence and Associativity Rules

Highest Precedence
 (Grouped First)

PRECEDENCE

From highest at top to lowest at bottom. Operators in the
same group have equal precedence.

ASSOCIATIVITY

Dot operator, array indexing, and
method invocation ., [], ()

Left to right

++ (postfix, as in x++), −− (postfix) Right to left

The unary operators: +, −,
++ (prefix, as in ++x), −− (prefix),
and !

Right to left

Type casts (Type) Right to left

The binary operators *, /, % Left to right

The binary operators +, − Left to right

The binary operators <, >, <=, >= Left to right

The binary operators ==, != Left to right

The binary operator & Left to right

The binary operator | Left to right

The binary operator && Left to right

The binary operator || Left to right

The ternary operator (conditional operator) ?: Right to left

Lowest Precedence
(Grouped Last) The assignment operators: =, *=, /=, %=, +=, −=, &=, |= Right to left

5640_ch03.fm Page 120 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 121

Next it groups the + with its operands to obtain the fully parenthesized expression

((balance * rate) + bonus)

Sometimes two operators have the same precedence, in which case the parentheses
are added using the associativity rules. To illustrate this, let’s consider another example:

bonus + balance * rate / correctionFactor − penalty

The operators * and / have higher precedence than either + or −, so the * and / are
grouped first. But the * and / have equal precedence, so the computer consults the
associativity rule for * and /, which says they associate from left to right, which means
the *, which is the leftmost of * and /, is grouped first. So the computer interprets the
expression as

bonus + (balance * rate) / correctionFactor − penalty

which in turn is interpreted as

bonus + ((balance * rate) / correctionFactor) − penalty

because / has higher precedence than either + or −.

But, this is still not fully parenthesized. The computer still must choose to group +
first or − first. According to the table, + and − have equal precedence, so the computer
must use the associativity rules, which say + and − are associated left to right. So, it
interprets the expression as

(bonus + ((balance * rate) / correctionFactor)) − penalty

which in turn is interpreted as the following fully parenthesized expression:

((bonus + ((balance * rate) / correctionFactor)) − penalty)

As you can see from studying the table in Display 3.6, most binary operators associ-
ate from left to right. But, the assignment operators associate from right to left. So,

number1 = number2 = number3

means

number1 = (number2 = number3)

which in turn is interpreted as the following fully parenthesized expression:

(number1 = (number2 = number3))

However, this fully parenthesized expression may not look like it means anything until
we explain a bit more about the assignment operator.

Although we do not advocate using the assignment operator, =, as part of a complex
expression, it is an operator that returns a value, just as + and * do. When an assignment

5640_ch03.fm Page 121 Wednesday, February 11, 2004 2:05 PM

122 Chapter 3 Flow of Control

operator, =, is used in an expression, it changes the value of the variable on the left-
hand side of the assignment operator and also returns a value, namely the new value of
the variable on the left-hand side of the expression. So, (number2 = number3) sets
number2 equal to the value of number3 and returns the value of number3. Thus,

number1 = number2 = number3

which is equivalent to

(number1 = (number2 = number3))

sets both number2 and number1 equal to the value of number3. It is best to not use
assignment statements inside of expressions, although simple chains of assignment
operators such as the following are clear and acceptable:

number1 = number2 = number3;

Although we discourage using expressions that combine the assignment operator and
other operators in complicated ways, let’s try to parenthesize one just for practice. Consider:

number1 = number2 = number3 + 7 * factor

The operator of highest precedence is *, and the operator of next-highest precedence is
+, so this expression is equivalent to

number1 = number2 = (number3 + (7 * factor))

which leaves only the assignment operators to group. They associate right to left, so the
fully parenthesized equivalent version of our expression is

(number1 = (number2 = (number3 + (7 * factor))))

(Note that there is no case where two operators have equal precedence but one asso-
ciates from left to right while the other associates from right to left. That must be true
or else there would be cases with conflicting instructions for inserting parentheses.)

The association of operands with operators is called binding. For example, when
parentheses determine which two expressions (two operands) are being added by a par-
ticular + sign, that is called binding the two operands to the + sign. A fully parenthe-
sized expression accomplishes binding for all the operators in an expression.

These examples should make it clear that it can be risky to depend too heavily on
the precedence and associativity rules. It is best to include most parentheses and only
omit parentheses in situations where the intended meaning is very obvious, such as a
simple combination of * and +, or a simple chain of &&’s or a simple chain of ||’s. The
following examples have some omitted parentheses but their meaning should be clear:

rate * time + lead
(time < limit) && (yourScore > theirScore) && (yourScore > 0)
(expenses < income) || (expenses < savings) || (creditRating > 0)

binding

5640_ch03.fm Page 122 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 123

Notice that the precedence rules include both arithmetic operators such as + and *
as well as Boolean operators such as && and ||. This is because many expressions com-
bine arithmetic and Boolean operations, as in the following simple example:

(number + 1) > 2 || (number + 5) < −3

If you check the precedence rules given in Display 3.6, you will see that this expression
is equivalent to

(((number + 1) > 2) || ((number + 5) < (−3)))

because > and < have higher precedence than ||. In fact, you could omit all the paren-
theses in the above expression and it would have the same meaning (but would be less
clear).

It may seem that once an expression is fully parenthesized, the meaning of the
expression is then determined. It would seem that to evaluate the expression, you (or
the computer) simply evaluate the inner expressions before the outer ones. So, in

((number + 1) > 2) || ((number + 5) < (−3))

first the expressions (number + 1), (number + 5), and (−3) are evaluated (in any order)
and then the > and < are evaluated and then the || is applied. That happens to work in
this simple case. In this case, it does not matter which of (number + 1), (number + 5),
and (−3) is evaluated first, but in certain other expressions it will be necessary to specify
which subexpression is evaluated first. The rules for evaluating a fully parenthesized
expression are (and indeed must be) more complicated than just evaluating inner
expressions before outer expressions.

For an expression with no side effects, the rule of performing inner parenthesized
expressions before outer ones is all you need. That rule will get you through most sim-
ple expressions, but for expressions with side effects, you need to learn the rest of the
story, which is what we do next.

The complications come from the fact that some expressions have side effects. When
we say an expression has side effects, we mean that in addition to returning a value, the
expression also changes something, such as the value of a variable. Expressions with the
assignment operator have side effects; pay = bonus, for example, changes the value of
pay. Increment and decrement operators have side effects; ++n changes the value of n.
In expressions that include operators with side effects, you need more rules.

For example, consider

((result = (++n)) + (other = (2*(++n))))

The parentheses seem to say that you or the computer should first do the two incre-
ment operators, ++n and ++n, but the parentheses do not say which of the two ++ns to
do first. If n has the value 2 and we do the leftmost ++n first, then the variable result is
set to 3 and the variable other is set to 8 (and the entire expression evaluates to 11). But
if we do the rightmost ++n first, then other is set to 6 and result is set to 4 (and the

side effects

5640_ch03.fm Page 123 Wednesday, February 11, 2004 2:05 PM

124 Chapter 3 Flow of Control

entire expression evaluates to 10). We need a rule to determine the order of evaluation
when we have a “tie” like this. However, rather than simply adding a rule to break such
“ties,” Java instead takes a completely different approach.

To evaluate an expression, Java use the following three rules:

Java first does binding; that is, it first fully parenthesizes the expression using prece-
dence and associativity rules, just as we have outlined.

Then it simply evaluates expressions left to right.

If an operator is waiting for its two (or one or three) operands to be evaluated, then
that operator is evaluated as soon as its operands have been evaluated.

We’ll first do an example with no side effects and then an example of an expression
with side effects. First the simple example. Consider the expression

6 + 7 * n − 12

and assume the value of n is 2. Using the precedence and associativity rules, we add
parentheses one pair at a time as follows:

6 + (7 * n) − 12

then

(6 + (7 * n)) − 12

and finally the fully parenthesized version

((6 + (7 * n)) − 12)

Next, we evaluate subexpressions left to right. (6 evaluates to 6 and 7 evaluates to 7,
but that’s so obvious we will not make a big deal of it.) The variable n evaluates to 2.
(Remember we assumed the value of n was 2.) So, we can rewrite the expression as

((6 + (7 * 2)) − 12)

The * is the only operator that has both of its operands evaluated, so it evaluates to 14
to produce

((6 + 14) − 12)

Now + has both of its operands evaluated, so (6 + 14) evaluates to 20 to yield

(20 − 12)

which in turn evaluates to 8. So 8 is the value for the entire expression.

This may seem like more work than it should be, but remember, the computer is
following an algorithm and proceeds step by step; it does not get inspired to make sim-
plifying assumptions.

5640_ch03.fm Page 124 Wednesday, February 11, 2004 2:05 PM

Boolean Expressions 125

Next, let’s consider an expression with side effects. In fact, let’s consider the one we
fully parenthesized earlier. Consider the following fully parenthesized expression and
assume the value of n is 2:

((result = (++n)) + (other = (2*(++n))))

Subexpressions are evaluated left to right. So, result is evaluated first. When used with
the assignment operator =, a variable simply evaluates to itself. So, result is evaluated
and waiting. Next, ++n is evaluated and it returns the value 3. So the expression is now
known to be equivalent to

((result = 3) + (other = (2*(++n))))

Now the assignment operator = has its two operands evaluated, so (result = 3) is eval-
uated. Evaluating (result = 3) sets the value of result equal to 3 and returns the
value 3. Thus, the expression is now known to be equivalent to

(3 + (other = (2*(++n))))

(and the side effect of setting result equal to 3 has happened). Proceeding left to right,
the next thing to evaluate is the variable other, which simply evaluates to itself, so you
need not rewrite anything.

Proceeding left to right, the next subexpression that can be evaluated is n, which
evaluates to 3. (Remember n has already been incremented once, so n now has the value
3.) Then ++ has its only argument evaluated, so it is ready to be evaluated. The evalua-
tion of (++n) has the side effect of setting n equal to 4 and evaluates to 4. So, the entire
expression is equivalent to

(3 + (other = (2*4)))

The only subexpression that has its operands evaluated is (2*4), so it is evaluated to 8
to produce

(3 + (other = 8))

Now the assignment operator, =, has both of its operands evaluated, so it evaluates to 8
and has the side effect of setting other equal to 8. Thus, we know the value of the
expression is

(3 + 8)

which evaluates to 11. So, the entire expression evaluates to 11 (and has the side effects
of setting result equal to 3, setting n equal to 4, and setting other equal to 8).

These rules also allow for method invocations in expressions. For example, in

(++n > 0) && (s.length() > n)

5640_ch03.fm Page 125 Wednesday, February 11, 2004 2:05 PM

126 Chapter 3 Flow of Control

the variable

n

 is incremented before

n

 is compared to

s.length()

. When we start defin-
ing and using more methods, you will see less-contrived examples of expressions that
include method invocations.

All of these rules for evaluating expressions are summarized in the box entitled
“Rules for Evaluating Expressions.”

RULES FOR EVALUATING EXPRESSIONS

Expressions are evaluated as follows:

1. Binding: Determine the equivalent fully parenthesized expression using the precedence and
associativity rules.

2. Proceeding left to right, evaluate whatever subexpressions you can evaluate. (These subex-
pressions will be operands or method arguments. For example, in simple cases they may be
numeric constants or variables.)

3. Evaluate each outer operation (and method invocation) as soon as all of its operands (all its
arguments) have been evaluated.

Self-Test Exercises

19. Determine the value,

true

 or

false

, of each of the following Boolean expressions, assum-
ing that the value of the variable

count

 is

0

 and the value of the variable

limit

 is

10

. (Give
your answer as one of the values

true

 or

false

.)

a.

(count == 0) && (limit < 20)

b.

count == 0 && limit < 20

c.

(limit > 20) || (count < 5)

d.

!(count == 12)

e.

(count == 1) && (x < y)

f.

(count < 10) || (x < y)

g.

!(((count < 10) || (x < y)) && (count >= 0))

h.

((limit/count) > 7) || (limit < 20)

i.

(limit < 20) || ((limit/count) > 7)

j.

((limit/count) > 7) && (limit < 0)

k.

(limit < 0) && ((limit/count) > 7)

5640_ch03.fm Page 126 Tuesday, February 17, 2004 5:22 PM

Loops 127

Loops
It is not true that life is one damn thing after another—
It’s one damn thing over and over.

Edna St. Vincent Millay,
Letter to Arthur Darison Ficke, October 24, 1930

Looping mechanisms in Java are similar to those in other high-level languages. The
three Java loop statements are the while statement, the do-while statement, and the
for statement. The same terminology is used with Java as with other languages. The
code that is repeated in a loop is called the body of the loop. Each repetition of the loop
body is called an iteration of the loop.

■ while STATEMENT AND do-while STATEMENT

The syntax for the while statement and its variant, the do-while statement, is given in
the box entitled “Syntax for while and do-while Statements.” In both cases, the multi-
statement body is a special case of the loop with a single-statement body. The multi-
statement body is a single compound statement. Examples of while and do-while
statements are given in Display 3.7.

 The important difference between the while and do-while loops involves when the
controlling Boolean expression is checked. With a while statement, the Boolean
expression is checked before the loop body is executed. If the Boolean expression evalu-
ates to false, then the body is not executed at all. With a do-while statement, the
body of the loop is executed first and the Boolean expression is checked after the loop
body is executed. Thus, the do-while statement always executes the loop body at least
once. After this start-up, the while loop and the do-while loop behave the same. After
each iteration of the loop body, the Boolean expression is again checked and if it is
true, then the loop is iterated again. If it has changed from true to false, then the
loop statement ends.

20. Does the following sequence produce a division by zero?

int j = −1;
if ((j > 0) && (1/(j+1) > 10))
 System.out.println(i);

21. Convert the following expression to an equivalent fully parenthesized expression:

bonus + day * rate / correctionFactor * newGuy − penalty

3.3

while and
do-while
compared

5640_ch03.fm Page 127 Wednesday, February 11, 2004 2:05 PM

128 Chapter 3 Flow of Control

Display 3.7 Demonstration of while Loops and do-while Loops (Part 1 of 2)

1 public class WhileDemo
2 {
3 public static void main(String[] args)
4 {
5 int countDown;

6 System.out.println("First while loop:");
7 countDown = 3;
8 while (countDown > 0)
9 {

10 System.out.println("Hello");
11 countDown = countDown − 1;
12 }

13 System.out.println("Second while loop:");
14 countDown = 0;
15 while (countDown > 0)
16 {
17 System.out.println("Hello");
18 countDown = countDown − 1;
19 }

20 System.out.println("First do-while loop:");
21 countDown = 3;
22 do
23 {
24 System.out.println("Hello");
25 countDown = countDown - 1;
26 }while (countDown > 0);

27 System.out.println("Second do-while loop:");
28 countDown = 0;
29 do
30 {
31 System.out.println("Hello");
32 countDown = countDown - 1;
33 }while (countDown > 0);
34 }
35 }

5640_ch03.fm Page 128 Wednesday, February 11, 2004 2:05 PM

codes128.html

Loops 129

The first thing that happens when a while loop is executed is that the controlling
Boolean expression is evaluated. If the Boolean expression evaluates to false at that
point, then the body of the loop is never executed. It may seem pointless to execute the
body of a loop zero times, but that is sometimes the desired action. For example, a
while loop is often used to sum a list of numbers, but the list could be empty. To be
more specific, a checkbook-balancing program might use a while loop to sum the val-
ues of all the checks you have written in a month—but you might take a month’s vaca-
tion and write no checks at all. In that case, there are zero numbers to sum and so the
loop is iterated zero times.

Display 3.7 Demonstration of while Loops and do-while Loops (Part 2 of 2)

SAMPLE DIALOGUE

First while loop:
Hello
Hello
Hello
Second while loop:
First do-while loop:
Hello
Hello
Hello
Second do-while loop:
Hello

A while loop can iterate its body
zero times.

A do-while loop always iterates its
body at least one time.

executing the
body zero times

SYNTAX FOR while AND do-while STATEMENTS

A while STATEMENT WITH A SINGLE-STATEMENT BODY:

while (Boolean_Expression)
 Statement

A while STATEMENT WITH A MULTI-STATEMENT BODY:

while (Boolean_Expression)
{
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
}

5640_ch03.fm Page 129 Wednesday, February 11, 2004 2:05 PM

130 Chapter 3 Flow of Control

Self-Test Exercises

22. What is the output produced by the following?

int n = 10;
while (n > 0)
{
 System.out.println(n);
 n = n

−

 3;
}

23. What output would be produced in question 22 if the

>

 sign were replaced with

<

?

24. What is the output produced by the following?

int n = 10;
do
{
 System.out.println(n);
 n = n

−

 3;
} while (n > 0);

25. What output would be produced in question 24 if the

>

 sign were replaced with

<

?

A do-while STATEMENT WITH A SINGLE-STATEMENT BODY:

do
 Statement
while (Boolean_Expression);

A do-while STATEMENT WITH A MULTI-STATEMENT BODY:

do
{
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
}while (Boolean_Expression);

Do not forget the
final semicolon.

5640_ch03.fm Page 130 Tuesday, February 17, 2004 5:22 PM

Loops 131

■ ALGORITHMS AND PSEUDOCODE

Dealing with the syntax rules of a programming language is not the hard part of solving
a problem with a computer program. The hard part is coming up with the underlying
method of solution. This method of solution is called an algorithm. An algorithm is a
set of precise instructions that leads to a solution. Some approximately equivalent
words to algorithm are recipe, method, directions, procedure, and routine.

26. What is the output produced by the following?

int n = −42;
do
{
 System.out.println(n);
 n = n − 3;
} while (n > 0);

27. What is the most important difference between a while statement and a do-while
statement?

Example

AVERAGING A LIST OF SCORES

Display 3.8 shows a program that reads in a list of scores and computes their average. It illustrates
a number of techniques that are commonly used with loops.

The scores are all nonnegative. This allows the program to use a negative number as an end
marker. Note that the negative number is not one of the numbers being averaged in. This sort of
end marker is known as a sentinel value. A sentinel value need not be a negative number, but it
must be some value that cannot occur as a “real” input value. For example, if the input list were a
list of even integers, then you could use an odd integer as a sentinel value.

To get the loop to end properly, we want the Boolean expression

 next >= 0

checked before adding in the number read. This way we avoid adding in the sentinel value. So,
we want the loop body to end with

nextString = keyboard.readLine();
next = Double.parseDouble(nextString.trim());

To make things work out, this in turn requires that we also place these two lines before the loop. A
loop often needs some preliminary statements to set things up before the loop is executed.

sentinel value

algorithm

5640_ch03.fm Page 131 Wednesday, February 11, 2004 2:05 PM

132 Chapter 3 Flow of Control

Display 3.8 Averaging a List of Scores (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;
4
5 public class Averager
6 {
7 public static void ain(String[] args) throws IOException
8 {
9 BufferedReader keyboard =

10 new BufferedReader(new InputStreamReader(System.in));

11 System.out.println("Enter a list of nonnegative scores.");
12 System.out.println("One number per line please.");
13 System.out.println("Mark the end with a negative number.");
14 System.out.println("I will compute their average.");

15 double next, sum = 0;
16 int count = 0;

17 String nextString = keyboard.readLine();
18 next = Double.parseDouble(nextString.trim());
19 while(next >= 0)
20 {
21 sum = sum + next;
22 count++;
23 nextString = keyboard.readLine();
24 next = Double.parseDouble(nextString.trim());
25 }

26 if (count == 0)
27 System.out.println("No scores entered.");
28 else
29 {
30 double average = sum/count;
31 System.out.println(count + " scores read.");
32 System.out.println("The average is " + average);
33 }
34 }
35 }

5640_ch03.fm Page 132 Wednesday, February 11, 2004 2:05 PM

codes132.html

Loops 133

An algorithm is normally written in a mixture of a programming language, in our
case Java, and English (or other human language). This mixture of programming lan-
guage and human language is known as pseudocode. Using pseudocode frees you from
worrying about fine details of Java syntax so that you can concentrate on the method of
solution. Underlying the program in Display 3.8 is an algorithm that can be expressed
as the following pseudocode:

Give the user instructions.
count = 0;
sum = 0;
Read a number and store it in a variable named next.
while(next >= 0)
{
 sum = sum + next;
 count++;
 Read a number and store it in next.
}
The average is sum/count provided count is not zero.
Output the results.

Note that when using pseudocode, we do not necessarily declare variables or worry
about fine syntax details of Java. The only rule is that the pseudocode be precise and
clear enough for a good programmer to convert the pseudocode to syntactically correct
Java code.

As you will see, significant programs are written not as a single algorithm, but as a
set of interacting algorithms; however, each of these algorithms is normally designed in
pseudocode unless the algorithm is exceedingly simple.

Display 3.8 Averaging a List of Scores (Part 2 of 2)

SAMPLE DIALOGUE

Enter a list of nonnegative scores.
One number per line please.
Mark the end with a negative number.
I will compute their average.
87.5
0
89
99.9
−1
4 scores read.
The average is 69.1.

Sentinel value

Note that the number −1 is not
averaged in with the other numbers.

pseudocode

5640_ch03.fm Page 133 Wednesday, February 11, 2004 2:05 PM

134 Chapter 3 Flow of Control

Tip

END OF INPUT CHARACTER ✜

The material presented in this Programming Tip uses a detail that is different on different operat-
ing systems, and so we will not use this material anywhere in this book outside of this Program-
ming Tip. It is nonetheless a very useful technique.

Display 3.8 averages a list of nonnegative numbers. The numbers are input one per line and the
end of the list is indicated by a negative number. This last negative number is known as a sentinel
value. This works fine when inputting a list of nonnegative numbers, but what if the list of num-
bers included positive numbers, negative numbers, and zero. In that case there is no number left
to serve as a sentinel value. There is, however, a way to signal the end of keyboard input that does
not involve any numbers or any ordinary text. This end of input signal can be used to mark the
end of an input list that might have numbers of any kind on the list.

The way you signal the end of a sequence of input lines is to input a certain control character on
the last input line. A control character is typed by holding down the Control key while typing in a
letter (or other character). For example, to input a Control-Z, you hold down the control key while
pressing the Z key. The control key is usually labeled Ctrl or something similar. Different operat-
ing systems used different control characters to indicate the end of input. Windows operating
systems normally use Control-Z to indicate the end of input. UNIX and Mac operating systems
normally use Control-D to indicate the end of input. Let’s call whatever control character is used
on your operating system the end of input character.

When the method readLine of the class BufferedReader reads a line consisting of the end of
input character, it returns the special value null, which is a defined constant that is part of the
Java language. We will say more about null in later chapters, but for what we need now, all you
need to know about null is

The value null can be stored in a variable of type String, but

The value null is not equal to any String value.

If nextString is a variable of type String, you use == (not equals) to test if nextString
contains null.

Any time you have a list of input lines read by the method readLine of the class Buffered-
Reader, you can use the end of input character as a sentinel value to mark the end of input. For
example, if you change the input loop in Display 3.8 to the following, the program will then aver-
age a list of any kinds of numbers: positive, negative, or zero:

System.out.println("Enter a list of scores.");
System.out.println("One number per line please.");
System.out.println("Mark the end with the end of input character.");
System.out.println("I will compute their average.");

double next, sum = 0;
int count = 0;

control character

end of input
character

5640_ch03.fm Page 134 Wednesday, February 11, 2004 2:05 PM

Loops 135

■ THE for STATEMENT

The third and final loop statement in Java is the for statement. The for statement is
most commonly used to step through some integer variable in equal increments. The
for statement is, however, a completely general looping mechanism that can do any-
thing that a while loop can do.

For example, the following for statement sums the integers 1 through 10:

sum = 0;
for (n = 1; n <= 10; n++)

sum = sum + n;

A for statement begins with the keyword for followed by three expressions in
parentheses that tell the computer what to do with the controlling variable(s). The
beginning of a for statement looks like the following:

for (Initialization; Boolean_Expression; Update)

String nextString = keyboard.readLine();
while(nextString != null)
{
 next = Double.parseDouble(nextString.trim());
 sum = sum + next;
 count++;
 nextString = keyboard.readLine();
}

Suppose the program is running on an operating system that uses Control-Z as the end of input
character. (If your operating system uses Control-D, simply use Control-D in place of Control-Z.)
Now, suppose the input loop is as in the previously displayed code and suppose the user inputs
the following four lines:

−1
0
4
Control-Z

The program will read and sum the three numbers −1, 0, and 4. Then the following line is exe-
cuted to read the fourth input line

nextString = keyboard.readLine();

The method readLine reads the line containing Control-Z and returns the special value null.
Since nextString is then equal to null, the while loop ends. The output will say the average is
1.0, which is the correct average of the three numbers entered.

The complete version of the program in Display 3.8 rewritten to use the end of input character is
in the file Averager2.java on the CD that comes with this book. extra code on CD

for statement

5640_ch03.fm Page 135 Wednesday, February 11, 2004 2:05 PM

136 Chapter 3 Flow of Control

The first expression tells how the variable, variables, or other things are initialized, the
second expression gives a Boolean expression that is used to check for when the loop
should end, and the last expression tells how the loop control variable or variables are
updated after each iteration of the loop body. The loop body is a single statement (typ-
ically a compound statement) that follows the heading we just described.

The three expressions at the start of a for statement are separated by two, and only
two, semicolons. Do not succumb to the temptation to place a semicolon after the
third expression. (The technical explanation is that these three things are expressions,
not statements, and so do not require a semicolon at the end.)

A for statement often uses a single int variable to control loop iteration and loop
ending. However, the three expressions at the start of a for statement may be any Java
expressions and, so, may involve more (or even fewer) than one variable, and the vari-
ables may be of any type.

The semantics of the for statement is given in Display 3.9. The syntax for a for
statement is given in Display 3.10. Display 3.10 also explains how the for statement
can be viewed as a notational variant of the while loop.

A variable may be declared in the heading of a for statement at the same time that it
is initialized. For example:

for (int n = 1; n < 10; n++)
 System.out.println(n);

THE for STATEMENT

SYNTAX:

for (Initializing; Boolean_Expression; Update)
 Body

The Body may be any Java statement, either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces, {}. Notice that the three things in
parentheses are separated by two, not three, semicolons.

You are allowed to use any Java expression for the Initializing and the Update expressions, so,
you may use more, or fewer, than one variable in the expressions; moreover, the variables may be
of any type.

EXAMPLE:

int next, sum = 0;
for (next = 0; next <= 10; next++)
{
 sum = sum + next;
 System.out.println("sum up to " + next + " is " + sum);
}

5640_ch03.fm Page 136 Wednesday, February 11, 2004 2:05 PM

Loops 137

Display 3.9 Semantics of the for Statement

for (Initialization; Boolean_Expression; Update)
 Body

End Body

true false

Initialization

Start

Update

Boolean_Expression

Display 3.10 for Statement Syntax and Alternate Semantics (Part 1 of 2)

for STATEMENT SYNTAX:

SYNTAX:

for (Initialization; Boolean_Expression; Update)
 Body

EXAMPLE:

for (number = 100; number >= 0; number−−)
 System.out.println(number
 + " bottles of beer on the shelf.");

5640_ch03.fm Page 137 Wednesday, February 11, 2004 2:05 PM

138 Chapter 3 Flow of Control

There are some subtleties to worry about when you declare a variable in the heading of
a for statement. These subtleties are discussed in Chapter 4 in the Programming Tip
subsection entitled “Declaring Variables in a for Statement.” It might be wise to avoid
such declarations within a for statement until you reach Chapter 4, but we mention it
here for reference value.

■ THE COMMA IN for STATEMENTS

A for loop can contain multiple initialization actions. Simply separate the actions with
commas, as in the following:

for (term = 1, sum = 0; term <= 10; term++)
 sum = sum + term;

Display 3.10 for Statement Syntax and Alternate Semantics (Part 2 of 2)

EQUIVALENT while LOOP:

EQUIVALENT SYNTAX:

Initialization;
while (Boolean_Expression)
{
 Body
 Update;
}

EQUIVALENT EXAMPLE:

number = 100;
while (number >= 0)
{
 System.out.println(number
 + " bottles of beer on the shelf.");

 number− −;
}

SAMPLE DIALOGUE

100 bottles of beer on the shelf.
99 bottles of beer on the shelf.

.
.
.

0 bottles of beer on the shelf.

5640_ch03.fm Page 138 Wednesday, February 11, 2004 2:05 PM

Loops 139

This for loop has two initializing actions. The variable term is initialized to 1 and the
variable sum is also initialized to 0. Note that you use a comma, not a semicolon, to sep-
arate the initialization actions.

You can also use commas to place multiple update actions in a for loop. This can
lead to a situation where the for loop has an empty body but still does something use-
ful. For example, the previous for loop can be rewritten to the following equivalent
version:

for (term = 1, sum = 0; term <= 10; sum = sum + term, term++)
 //Empty body;

This, in effect, makes the loop body part of the update action. We find that it makes
for a more readable style if you use the update action only for variables that control the
loop, as in the previous version of this for loop. We do not advocate using for loops
with no body, but if you do use a for loop with no body, annotate it with a comment
such as we did in the preceding for loop. As indicated in the upcoming subsection,
“Extra Semicolon in a for Statement,” a for loop with no body can also often occur as
the result of a programmer error.

The comma used in a for statement, as we just illustrated, is quite limited in how it
can be used. You can use it with assignment statements and with incremented and dec-
remented variables (such as term++ or term−−), but not with just any arbitrary state-
ments. In particular, both declaring variables and using the comma in for statements
can be troublesome. For example, the following is illegal:

for (int term = 1, double sum = 0; term <= 10; term++)
 sum = sum + term;

Even the following is illegal:

double sum;
for (int term = 1, sum = 0; term <= 10; term++)
 sum = sum + term;

Java will interpret

int term = 1, sum = 0;

as declaring both term and sum to be int variables and complain that sum is already
declared.

If you do not declare sum anyplace else (and it is acceptable to make sum an int vari-
able instead of a double variable), then the following, although we discourage it, is
legal:

for (int term = 1, sum = 0; term <= 10; term++)
 sum = sum + term;

The first part in parentheses (up to the semicolon) declares both term and sum to be int
variables and initializes both of them.

5640_ch03.fm Page 139 Wednesday, February 11, 2004 2:05 PM

140 Chapter 3 Flow of Control

It is best to simply avoid these possibly confusing examples. When using the comma
in a for statement, it’s safest to simply declare all variables outside the for statement. If
you declare all variables outside the for loop, the rules are no longer complicated.

A for loop can have only one Boolean expression to test for ending the for loop.
However, you can perform multiple tests by connecting the tests using && operators to
form one larger Boolean expression.

(C, C++, and some other programming languages have a general-purpose comma
operator. Readers who have programmed in one of these languages need to be warned
that, in Java, there is no comma operator. In Java the comma is a separator, not an
operator, and its use is very restricted compared to the comma operator in C and C++.)

Tip

REPEAT N TIMES LOOPS

The simplest way to produce a loop that repeats the loop body a predetermined number of times
is with a for statement. For example, the following is a loop that repeats its loop body three
times:

for (int count = 1; count <= 3; count++)
 System.out.println("Hip, Hip, Hurray");

The body of a for statement need not make any reference to a loop control variable, like the vari-
able count.

Pitfall

EXTRA SEMICOLON IN A for STATEMENT

You normally do not place a semicolon after the closing parenthesis at the beginning of a for
loop. To see what can happen, consider the following for loop:

If you did not notice the extra semicolon, you might expect this for loop to write Hello to the
screen 10 times. If you do notice the semicolon, you might expect the compiler to issue an error
message. Neither of those things happens. If you embed this for loop in a complete program, the
compiler will not complain. If you run the program, only one Hello will be output instead of 10
Hellos. What is happening? To answer that question, we need a little background.

One way to create a statement in Java is to put a semicolon after something. If you put a semico-
lon after number++, you change the expression

number++

for (int count = 1; count <= 10; count++);
 System.out.println("Hello");

Problem
semicolon

5640_ch03.fm Page 140 Wednesday, February 11, 2004 2:05 PM

Loops 141

into the statement

number++;

If you place a semicolon after nothing, you still create a statement. Thus, the semicolon by itself is
a statement, which is called the empty statement or the null statement. The empty statement
performs no action, but still it is a statement. Therefore, the following is a complete and legiti-
mate for loop, whose body is the empty statement:

for (int count = 1; count <= 10; count++);

This for loop is indeed iterated 10 times, but since the body is the empty statement, nothing hap-
pens when the body is iterated. This loop does nothing, and it does nothing 10 times! After com-
pleting this for loop, the computer goes on to execute the following, which writes Hello to the
screen one time:

System.out.println("Hello");

This same sort of problem can arise with a while loop. Be careful to not place a semicolon after
the closing parenthesis that encloses the Boolean expression at the start of a while loop. A do-
while loop has just the opposite problem. You must remember to always end a do-while loop
with a semicolon.

Pitfall

INFINITE LOOPS

A while loop, do-while loop, or for loop does not terminate as long as the controlling Boolean
expression evaluates to true. This Boolean expression normally contains a variable that will be
changed by the loop body, and usually the value of this variable eventually is changed in a way
that makes the Boolean expression false and therefore terminates the loop. However, if you
make a mistake and write your program so that the Boolean expression is always true, then the
loop will run forever. A loop that runs forever is called an infinite loop.

Unfortunately, examples of infinite loops are not hard to come by. First, let’s describe a loop that
does terminate. The following Java code will write out the positive even numbers less than 12.
That is, it will output the numbers 2, 4, 6, 8, and 10, one per line, and then the loop will end.

number = 2;
while (number != 12)
{
 System.out.println(number);
 number = number + 2;
}

empty statement

infinite loop

5640_ch03.fm Page 141 Wednesday, February 11, 2004 2:05 PM

142 Chapter 3 Flow of Control

■ NESTED LOOPS

It is perfectly legal to nest one loop statement inside another loop statement. For exam-
ple, the following nests one for loop inside another for loop:

int rowNum, columnNum;
for (rowNum = 1; rowNum <= 3; rowNum++)
{
 for (columnNum = 1; columnNum <= 2; columnNum++)
 System.out.print(" row " + rowNum + " column " + columnNum);
 System.out.println();
}

This produces the following output:

row 1 column 1 row 1 column 2
row 2 column 1 row 2 column 2
row 3 column 1 row 3 column 2

The value of number is increased by 2 on each loop iteration until it reaches 12. At that point, the
Boolean expression after the word while is no longer true, so the loop ends.

Now suppose you want to write out the odd numbers less than 12, rather than the even numbers.
You might mistakenly think that all you need to do is change the initializing statement to

number = 1;

But this mistake will create an infinite loop. Because the value of number goes from 11 to 13, the
value of number is never equal to 12, so the loop will never terminate.

This sort of problem is common when loops are terminated by checking a numeric quantity using
== or !=. When dealing with numbers, it is always safer to test for passing a value. For example,
the following will work fine as the first line of our while loop:

while (number < 12)

With this change, number can be initialized to any number and the loop will still terminate.

There is one subtlety about infinite loops that you need to keep in mind. A loop might terminate
for some input values but be an infinite loop for other values. Just because you tested your loop
for some program input values and found that the loop ended, that does not mean that it will not
be an infinite loop for some other input values.

A program that is in an infinite loop might run forever unless some external force stops it, so it is a
good idea to learn how to force a program to terminate. The method for forcing a program to stop
varies from operating system to operating system. The keystrokes Control-C will terminate a program
on many operating systems. (To type Control-C, hold down the Control key while pressing the C key.)

In simple programs, an infinite loop is almost always an error. However, some programs are
intentionally written to run forever, such as the main outer loop in an airline reservation program
that just keeps asking for more reservations until you shut down the computer (or otherwise ter-
minate the program in an atypical way).

nested loops

5640_ch03.fm Page 142 Wednesday, February 11, 2004 2:05 PM

Loops 143

For each iteration of the outer loop, the inner loop is iterated from beginning to end
and then one println statement is executed to end the line.

(It is best to avoid nested loops by placing the inner loop inside a method definition
and placing a method invocation inside the outer loop. Method definitions are covered
in Chapters 4 and 5.)

Self-Test Exercises

28. What is the output of the following?

for (int count = 1; count < 5; count++)
 System.out.print((2 * count) + " ");

29. What is the output of the following?

for (int n = 10; n > 0; n = n − 2)
 System.out.println("Hello " + n);

30. What is the output of the following?

for (double sample = 2; sample > 0; sample = sample − 0.5)
System.out.print(sample + " ");

31. Rewrite the following for statement as a while loop (and possibly some additional statements):

int n;
for (n = 10; n > 0; n = n − 2)
 System.out.println("Hello " + n);

32. What is the output of the following loop? Identify the connection between the value of n
and the value of the variable log.

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2)
 log++;
System.out.println(n + " " + log);

33. What is the output of the following loop? Comment on the code. (This is not the same as
the previous exercise.)

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2);
 log++;
System.out.println(n + " " + log);

34. Predict the output of the following nested loops:

int n, m;
for (n = 1; n <= 10; n++)

for (m = 10; m >= 1; m−−)
 System.out.println(n + " times " + m
 + " = " + n*m);

5640_ch03.fm Page 143 Wednesday, February 11, 2004 2:05 PM

144 Chapter 3 Flow of Control

■ THE

break AND

continue STATEMENTS

✜

In previous subsections, we described the basic flow of control for the

while

,

do-while

,
and

for

 loops. This is how the loops should normally be used and is the way they are
usually used. However, you can alter the flow of control in two ways, and in rare cases
these two ways can be useful and safe techniques. The two ways of altering the flow of
control are to insert a

break

 or

continue

 statement. The

break

 statement ends the
loop. The

continue

 statement ends the current iteration of the loop body. The

break

and

continue

 statements can be used with any of the Java loop statements.

We described the

break

 statement earlier when we discussed the

switch

 statement.
The

break

 statement consists of the keyword

break

 followed by a semicolon. When
executed, the

break

 statement ends the nearest enclosing

switch

 or

loop

 statement.

The

continue

 statement

 consists of the keyword

continue

 followed by a semicolon.
When executed, the

continue

 statement ends the current loop body iteration of the
nearest enclosing

loop

 statement.

One point that you should note when using the

continue

 statement in a

for

loop is
that the

continue

 statement transfers control to the update expression. So, any loop
control variable will be updated immediately after the

continue

 statement is executed.

Note that a

break

 statement completely ends the loop. In contrast, a

continue

 state-
ment merely ends one loop iteration and the next iteration (if any) continues the loop.

35. For each of the following situations, tell which type of loop (

while,

do-while

, or

for

)
would work best:

a. Summing a series, such as 1/2 + 1/3 + 1/4 + 1/5 + … + 1/10.

b. Reading in the list of exam scores for one student.

c. Reading in the number of days of sick leave taken by employees in a department.

36. What is the output of the following?

int number = 10;
while (number > 0)
{
 System.out.println(number);
 number = number + 3;
}

37. What is the output of the following?

int n, limit = 10;
for (n = 1; n < limit; n++)
{

System.out.println("n == " + n);
System.out.println("limit == " + limit);

 limit = n + 2;
}

break statement

continue
statement

5640_ch03.fm Page 144 Tuesday, February 17, 2004 5:23 PM

Loops 145

You never absolutely need a break or continue statement. Any code that uses a break
or continue statement can be rewritten to do the same thing but not use a break or con-
tinue statement. The continue statement can be particularly tricky and can make your
code hard to read. It may be best to avoid the continue statement completely or at least
use it on only very rare occasions. The use of the break and continue statements in
loops is controversial, with many experts saying they should never be used.

You can nest one loop statement inside another loop statement. When doing so,
remember that any break or continue statement applies to the innermost loop state-
ment containing the break or continue statement. If there is a switch statement inside
a loop, any break statement applies to the innermost loop or switch statement.

■ LOOP BUGS

There is a pattern to the kinds of mistakes you are most likely to make when program-
ming with loops. Moreover, there are some standard techniques you can use to locate
and fix bugs in your loops.

The two most common kinds of loop errors are unintended infinite loops and off-
by-one errors. We have already discussed infinite loops, but we still need to consider off-
by-one errors.

Self-Test Exercises

38. What is the output produced by the following?

int number = 10;
while (number > 0)
{
 number = number − 2;
 if (number == 4)
 break;
 System.out.println(number);
}
System.out.println("The end.");

39. What is the output produced by the following?

int number = 10;
while (number > 0)
{
 number = number − 2;
 if (number == 4)
 continue;
 System.out.println(number);
}
System.out.println("The end.");

nested loops

off-by-one error

5640_ch03.fm Page 145 Wednesday, February 11, 2004 2:05 PM

146 Chapter 3 Flow of Control

If your loop has an off-by-one error, that means the loop repeats the loop body one
too many times or one too few times. These sorts of errors can result from carelessness
in designing a controlling Boolean expression. For example, if you use less-than when
you should use less-than-or-equal, this can easily make your loop iterate the body the
wrong number of times.

Use of == to test for equality in the controlling Boolean expression of a loop can
often lead to an off-by-one error or an infinite loop. This sort of equality testing can
work satisfactorily for integers and characters, but is not reliable for floating-point
numbers. This is because the floating-point numbers are approximate quantities and ==
tests for exact equality. The result of such a test is unpredictable. When comparing
floating-point numbers, always use something involving less-than or greater-than, such
as <=; do not use == or !=. Using == or != to test floating-point numbers can produce
an off-by-one error or an unintended infinite loop or even some other type of error.
Even when using integer variables, it is best to avoid using == and =! and to instead use
something involving less-than or greater-than.

Off-by-one errors can easily go unnoticed. If a loop is iterated one too many times,
or one too few times, then the results might still look reasonable, but be off by enough
to cause trouble later on. Always make a specific check for off-by-one errors by compar-
ing your loop results to results you know to be true by some other means, such as a
pencil-and-paper calculation.

■ TRACING VARIABLES

One good way to discover errors in a loop or any kind of code is to trace some key vari-
ables. Tracing variables means watching the variables change value while the program
is running. Most programs do not output each variable’s value every time the variable
changes, but it can help you to debug your program if you can see all of these variable
changes.

Many IDEs (Integrated Development Environments) have a built-in utility that lets
you easily trace variables without making any changes to your program. These debug-
ging systems vary from one IDE to another. If you have such a debugging facility, it is
worth learning how to use it.

If you do not want to use such a debugging facility, you can trace variables by insert-
ing some temporary output statements in your program. For example, the following
code compiles but does still contain an error:

int n = 10;
int sum = 10;
while (n > 1)
{
 sum = sum + n;
 n−−;
}
System.out.println("The sum of the integers 1 to 10 is "
 + sum);

tracing variables

5640_ch03.fm Page 146 Wednesday, February 11, 2004 2:05 PM

Loops 147

 To find out what is wrong, you can trace the variables n and sum by inserting output
statements as follows:

int n = 10;
int sum = 10;
while (n > 1)
{
 sum = sum + n;
 n−−;
 System.out.println("n = " + n); //trace
 System.out.println("sum = " + sum); //trace
}
System.out.println("The sum of the integers 1 to 10 is "
 + sum);

After you have discovered the error and fixed the bugs in the code, you can remove the
trace statements or comment them out by preceding each trace statement with //.

■ ASSERTION CHECKS ✜

An assertion is a sentence that says (asserts) something about the state of your program.
An assertion must be a sentence that is either true or false and should be true if there
are no mistakes in your program. You can place assertions in your code by making
them comments. For example, all the comments in the following code are assertions:

int n = 0;
int sum = 0;
//n == 0 and sum == 0
while (n < 100)
{
 n++;
 sum = sum + n;
 //sum == 1 + 2 + 3 + ... + n
}
//sum == 1 + 2 + 3 + ... + 100

Note that each of these assertions can be either true or false, depending on the values of
n and sum, and they all should be true if the program is performing correctly.

Java has a special statement to check whether an assertion is true. An assertion check
statement has the following form:

assert Boolean_Expression;

If you compile and run your program in the proper ways, the assertion check behaves
as follows: If the Boolean_Expression evaluates to true, nothing happens, but if the
Boolean_Expression evaluates to false, the program ends and outputs an error message
saying that an assertion failed.

assertion

assertion check

assert

5640_ch03.fm Page 147 Wednesday, February 11, 2004 2:05 PM

148 Chapter 3 Flow of Control

For example, the previously displayed code can be written as follows, with the first
comment replaced by an assertion check:

int n = 0;
int sum = 0;
assert (n == 0) && (sum == 0);
while (n < 100)
{
 n++;
 sum = sum + n;
 //sum == 1 + 2 + 3 + ...+ n
}
//sum == 1 + 2 + 3 + ...+ 100

Note that we translated only one of the three comments into an assertion check.
Not all assertion comments lend themselves to becoming assertion checks. For exam-
ple, there is no simple way to convert the other two comments into Boolean expres-
sions. Doing so would not be impossible, but you would need to use code that would
itself be more complicated than what you would be checking.

You can turn assertion checking on and off. When debugging code, you can turn
assertion checking on so that a failed assertion will produce an error message. Once
your code is debugged, you can turn assertion checking off and your code will run
more efficiently.

A program or other class containing assertions must be compiled in a different way,
even if you do not intend to run it with assertion checking turned on. After all classes
used in a program are compiled, you can run the program with assertion checking
either turned on or turned off.

ASSERTION CHECKING

An assertion check is a Java statement consisting of the keyword assert followed by a Boolean
expression and a semicolon. If assertion checking is turned on and the Boolean expression in the
assertion check evaluates to false when the assertion check is executed, then your program will
end and output a suitable error message. If assertion checking is not turned on, then the assertion
check is treated as a comment.

SYNTAX:

assert Boolean_Expression;

EXAMPLE:

assert (n == 0) && (sum == 0);

5640_ch03.fm Page 148 Wednesday, February 11, 2004 2:05 PM

Loops 149

If you compile your classes using a one-line command, you would compile a class
with assertion checking as follows:

javac -source 1.4 YourProgram.java

You can then run your program with assertion checking turned on or off. The normal
way of running a program has assertion checking turned off. To run your program with
assertion checking turned on, you use the following command:

java -enableassertions YourProgram

If you are using an IDE, check the documentation for your IDE to see how to han-
dle assertion checking. If you do not find an entry for “assertion checking,” which is
likely, check to see how you set compile and run options. (With TextPad you can set
things up for assertion checking as follows: On the Configure menu, choose Prefer-
ences, then choose Compile Java from the Tools submenu and select the check box for
the “Prompt for parameters” option. On the same Tools submenu, choose the Run Java
Application command and set the “Prompt for parameters” option for it as well.2 After
you set these preferences, when you compile a class, a window will appear in which you
can enter options for the javac compile command (for example, -source 1.4). Simi-
larly, when you run a program, a window will appear in which you can enter options
for the java run command (for example, -enableassertions).)

2 If you are running applets, you also need to select the “Prompt for parameters” option for the
Run Java Applet command on the Tools submenu.

Self-Test Exercises

40. What is the bug in the code in the subsection “Tracing Variables”?

41. Add some suitable output statements to the following code so that all variables are traced:

int n, sum = 0;
for (n = 1; n < 10; n++)
 sum = sum + n;
System.out.println("1 + 2 + ...+ 9 + 10 == " + sum);

42. What is the bug in the following code? What do you call this kind of loop bug?

int n, sum = 0;
for (n = 1; n < 10; n++)
 sum = sum + n;
System.out.println("1 + 2 + ...+ 9 + 10 == " + sum);

43. Write an assertion check that checks to see that the value of the variable time is less than or
equal to the value of the variable limit. Both variables are of type int.

5640_ch03.fm Page 149 Wednesday, February 11, 2004 2:05 PM

150 Chapter 3 Flow of Control

■ The Java branching statements are the if-else statement and the switch statement.

■ A switch statement is a multiway branching statement. You can also form multiway
branching statements by nesting if-else statements to form a multiway if-else
statement.

■ Boolean expressions are evaluated similar to the way arithmetic expressions are eval-
uated. The value of a Boolean expression can be saved in a variable of type boolean.

■ The Java loop statements are the while, do-while, and for statements.

■ A do-while statement always iterates its loop body at least one time. Both a while
statement and a for statement might iterate its loop body zero times.

■ A for loop can be used to obtain the equivalent of the instruction “repeat the loop
body n times.”

■ Tracing variables is a good method for debugging loops.

■ An assertion check can be added to your Java code so that if the assertion is false,
then your program halts with an error message.

ANSWERS TO SELF-TEST EXERCISES

1. if (score > 100)
 System.out.println("High");
else
 System.out.println("Low");

2. if (savings > expenses)
{
 System.out.println("Solvent");
 savings = savings − expenses;
 expenses = 0;
}
else
{
 System.out.println("Bankrupt");
}

3. if (number > 0)
 System.out.println("Positive");
else
 System.out.println("Not positive");

4. if (salary < deductions)
{
 System.out.println("Crazy");
}

Chapter Summary

5640_ch03.fm Page 150 Wednesday, February 11, 2004 2:05 PM

Answers to Self-Test Exercises 151

else
{
 System.out.println("OK");
 net = salary − deductions;
}

5.large

6.small

7.medium

8. if (n < 0)
 System.out.println(n + " is less than zero.");
else if (n < 100)
 System.out.println(
 n + " is between 0 and 99 (inclusive).");
else
 System.out.println(n + " is 100 or larger.");

9.Some kind of B.

10.Oranges

11.Plums

12.Fruitless

13.n1 >= n2

14. if (n1 >= n2)
 System.out.println("n1");
else
 System.out.println("n2");

15. When the variables are of type int, you test for equality using ==, as follows:

variable1 == variable2

When the variables are of type String, you test for equality using the method equals, as
follows:

variable1.equals(variable2)

In some cases you might want to use equalsIgnoreCase instead of equals.

16. if (nextWord.compareToIgnoreCase("N") < 0)
 System.out.println("First half of the alphabet");
else
 System.out.println("Second half of the alphabet");

17. if ((exam >= 60) && (programsDone >= 10))
 System.out.println("Passed");
else
 System.out.println("Failed");

5640_ch03.fm Page 151 Wednesday, February 11, 2004 2:05 PM

152 Chapter 3 Flow of Control

18. if ((pressure > 100) || (temperature >= 212))
 System.out.println("Emergency");
else
 System.out.println("OK");

19. a. true.

b. true. Note that expressions a and b mean exactly the same thing. Because the operators ==
and < have higher precedence than &&, you do not need to include the parentheses. The
parentheses do, however, make it easier to read. Most people find the expression in a easier
to read than the expression in b, even though they mean the same thing.

c. true.

d. true.

e. false. Since the value of the first subexpression, (count == 1), is false, you know that
the entire expression is false without bothering to evaluate the second subexpression.
Thus, it does not matter what the values of x and y are. This is called short-circuit
evaluation, which is what Java does.

f. true. Since the value of the first subexpression, (count < 10), is true, you know that
the entire expression is true without bothering to evaluate the second subexpression. Thus,
it does not matter what the values of x and y are. This is called short-circuit evaluation,
which is what Java does.

g. false. Notice that the expression in g includes the expression in f as a subexpression. This
subexpression is evaluated using short-circuit evaluation as we described for f. The entire
expression in g is equivalent to

!((true || (x < y)) && true)

which in turn is equivalent to !(true && true), and that is equivalent to !(true),
which is equivalent to the final value of false.

h. This expression produces an error when it is evaluated because the first subexpression,
((limit/count) > 7), involves a division by zero.

i. true. Since the value of the first subexpression, (limit < 20), is true, you know that the
entire expression is true without bothering to evaluate the second subexpression. Thus, the
second subexpression,

((limit/count) > 7)

is never evaluated, so the fact that it involves a division by zero is never noticed by the
computer. This is short-circuit evaluation, which is what Java does.

j. This expression produces an error when it is evaluated because the first subexpression,
((limit/count) > 7), involves a division by zero.

5640_ch03.fm Page 152 Wednesday, February 11, 2004 2:05 PM

Answers to Self-Test Exercises 153

k. false. Since the value of the first subexpression, (limit < 0), is false, you know that
the entire expression is false without bothering to evaluate the second subexpression.
Thus, the second subexpression,

 ((limit/count) > 7)

is never evaluated, so the fact that it involves a division by zero is never noticed by the
computer. This is short-circuit evaluation, which is what Java does.

20. No. Since (j > 0) is false and Java uses short-circuit evaluation for &&, the expression
(1/(j+1) > 10) is never evaluated.

21. ((bonus + (((day * rate) / correctionFactor) * newGuy)) − penalty)

22. 10
7
4
1

23. There will be no output. Since n > 0 is false, the loop body is executed zero times.

24. 10
7
4
1

25. 10
A do-while loop always executes its body at least one time.

26. −42
A do-while loop always executes its body at least one time.

27. With a do-while statement, the loop body is always executed at least once. With a while
statement, there can be conditions under which the loop body is not executed at all.

28.2 4 6 8

29. Hello 10
Hello 8
Hello 6
Hello 4
Hello 2

30.2.0 1.5 1.0 0.5

31. n = 10;
while (n > 0)
{
 System.out.println("Hello " + n);
 n = n − 2;
}

5640_ch03.fm Page 153 Wednesday, February 11, 2004 2:05 PM

154 Chapter 3 Flow of Control

32. The output is: 1024 10. The second number is the log to the base 2 of the first number.
(If the first number is not a power of two, then only an approximation to the log base 2 is
produced.)

33. The output is: 1024 1. The semicolon after the first line of the for loop is probably a pit-
fall error.

34. The output is too long to reproduce here. The pattern is as follows:

1 times 10 = 10
1 times 9 = 9

.

.

.
1 times 1 = 1
2 times 10 = 20
2 times 9 = 18

.

.

.
2 times 1 = 2
3 times 10 = 30

.

.

.

35. a. A for loop

b. and c. Both require a while loop since the input list might be empty. (A for loop also
might possibly work, but a do-while loop definitely would not work.)

36. This is an infinite loop. The first few lines of output are
10
13
16
19
21

37. This is an infinite loop. The first few lines of output are
n == 1
limit == 10;
n == 2
limit == 3
n == 3
limit == 4
n == 4
limit == 5

38. 8
6
The end.

5640_ch03.fm Page 154 Wednesday, February 11, 2004 2:05 PM

Programming Projects 155

39. 8
6
2
0
The end.

40. If you look at the trace you will see that after one iteration the value of sum is 20. But the
value should be 10 + 9 or 19. This should lead you to think that the variable n is not dec-
remented at the correct time. Indeed, the bug is that the two statements

sum = sum + n;
n−−;

should be reversed to

n−−;
sum = sum + n;

41. int n, sum = 0;
for (n = 1; n < 10; n++)
{
 System.out.println("n == " + n + " sum == " + sum);
 //Above line is a trace.
 sum = sum + n;
}
System.out.println("After loop");//trace
System.out.println("n == " + n + " sum == " + sum);//trace
System.out.println("1 + 2 + ...+ 9 + 10 == " + sum);

If you study the output of this trace, you will see that 10 is never added in. This is a bug in
the loop.

42. This is the code you traced in the previous exercise. If you study the output of this trace,
you will see that 10 is never added in. This is an off-by-one error.

43.assert (time <= limit);

PROGRAMMING PROJECTS

1. It is difficult to make a budget that spans several years, because prices are not stable. If your
company needs 200 pencils per year, you cannot simply use this year’s price as the cost of
pencils two years from now. Due to inflation the cost is likely to be higher than it is today.
Write a program to gauge the expected cost of an item in a specified number of years. The
program asks for the cost of the item, the number of years from now that the item will be
purchased, and the rate of inflation. The program then outputs the estimated cost of the
item after the specified period. Have the user enter the inflation rate as a percentage, like

5640_ch03.fm Page 155 Wednesday, February 11, 2004 2:05 PM

project155.html

156 Chapter 3 Flow of Control

5.6 (percent). Your program should then convert the percent to a fraction, like 0.056, and
should use a loop to estimate the price adjusted for inflation.

2. You have just purchased a stereo system that cost $1,000 on the following credit plan: No
down payment, an interest rate of 18% per year (and hence 1.5% per month), and
monthly payments of $50. The monthly payment of $50 is used to pay the interest and
whatever is left is used to pay part of the remaining debt. Hence, the first month you pay
1.5% of $1,000 in interest. That is $15 in interest. So, the remaining $35 is deducted from
your debt, which leaves you with a debt of $965.00. The next month you pay interest of
1.5% of $965.00, which is $14.48. Hence, you can deduct $35.52 (which is $50 - $14.48)
from the amount you owe. Write a program that will tell you how many months it will
take you to pay off the loan, as well as the total amount of interest paid over the life of the
loan. Use a loop to calculate the amount of interest and the size of the debt after each
month. (Your final program need not output the monthly amount of interest paid and
remaining debt, but you may want to write a preliminary version of the program that does
output these values.) Use a variable to count the number of loop iterations and hence the
number of months until the debt is zero. You may want to use other variables as well. The
last payment may be less than $50 if the debt is small, but do not forget the interest. If you
owe $50, then your monthly payment of $50 will not pay off your debt, although it will
come close. One month’s interest on $50 is only 75 cents.

3. The Fibonacci numbers Fn are defined as follows: F0 is 1, F1 is 1, and

Fi+2 = Fi + Fi+1

i = 0, 1, 2, …. In other words, each number is the sum of the previous two numbers. The
first few Fibonacci numbers are 1, 1, 2, 3, 5, and 8. One place where these numbers occur
is as certain population growth rates. If a population has no deaths, then the series shows
the size of the population after each time period. It takes an organism two time periods to
mature to reproducing age, and then the organism reproduces once every time period. The
formula applies most straightforwardly to asexual reproduction at a rate of one offspring
per time period. In any event, the green crud population grows at this rate and has a time
period of five days. Hence, if a green crud population starts out as 10 pounds of crud, then
in five days there is still 10 pounds of crud; in ten days there is 20 pounds of crud, in fifteen
days 30 pounds, in twenty days 50 pounds, and so forth. Write a program that takes both
the initial size of a green crud population (in pounds) and a number of days as input, and
outputs the number of pounds of green crud after that many days. Assume that the popula-
tion size is the same for four days and then increases every fifth day. Your program should
allow the user to repeat this calculation as often as desired.

4. The value e x can be approximated by the sum:

1 + x + x 2/2! + x 3/3! + ... + xn/n!

5640_ch03.fm Page 156 Wednesday, February 11, 2004 2:05 PM

project156a.html
project156b.html
project156c.html

Programming Projects 157

Write a program that takes a value x as input and outputs this sum for n taken to be each of
the values 1 to 10, 50, and 100. Your program should repeat the calculation for new values
of x until the user says she or he is through. The expression n ! is called the factorial of n and
is defined as

n! = 1 * 2 * 3 * ... * n

Use variables of type double to store the factorials (or arrange your calculation to avoid
any direct calculation of factorials); otherwise, you are likely to produce integer overflow,
that is, integers larger than Java allows.

5640_ch03.fm Page 157 Wednesday, February 11, 2004 2:05 PM

	code links 1:
	code links 2:
	code links 3:
	code links 4:
	code links 5:
	program project 3:
	1:
	2:
	3:
	4:

