
CHAPTER 4
Defining Classes I

4.1 CLASS DEFINITIONS 160

Instance Variables and Methods 164

More about Methods 166

Tip: Any Method Can Be Used as a void Method 173

Local Variables 174

Blocks 174

Tip: Declaring Variables in a for Statement 175

Parameters of a Primitive Type 176

Pitfall: Use of the Terms “Parameter” and
“Argument” 181

The this Parameter 182

Simple Cases with Class Parameters 185

Methods that Return a Boolean Value 185

The Methods equals and toString 187

Tip: Testing Methods 191

Recursive Methods 192

4.2 INFORMATION HIDING AND
ENCAPSULATION 192

public and private Modifiers 193

Example: Yet Another Date Class 194

Accessor and Mutator Methods 199

Preconditions and Postconditions 201

Tip: A Class Has Access to Private Members of All
Objects of the Class 201

4.3 OVERLOADING 202

Rules for Overloading 203

Pitfall: Overloading and Automatic Type
Conversion 206

Pitfall: You Cannot Overload Based on the Type
Returned 208

4.4 CONSTRUCTORS 210

Constructor Definitions 210

Tip: You Can Invoke Another Method in a
Constructor 218

Example: The Final Date Class 219

Tip: Include a No-Argument Constructor 219

Default Variable Initializations 221

An Alternative Way to Initialize Instance
Variables 221

The StringTokenizer Class 221

CHAPTER SUMMARY 226
ANSWERS TO SELF-TEST EXERCISES 227
PROGRAMMING PROJECTS 231

5640_ch04.fm Page 159 Wednesday, February 11, 2004 2:14 PM

4 Defining Classes I

This is the exciting part.
This is like the Supremes.
See the way it builds up?

Attributed to Frank Zappa

INTRODUCTION

Classes are the single most important language feature that facilitates object-
oriented programming (OOP), the dominant programming methodology in
use today. You have already been using predefined classes. String and Buff-
eredReader are two of the classes we have used. An object is a value of a class
type and is referred to as an instance of the class. An object differs from a value
of a primitive type in that it has methods (actions) as well as data. For exam-
ple, "Hello" is an object of the class String. It has the characters in the string
as its data and also has a number of methods, such as length.

You already know how to use classes, objects, and methods. This chapter
tells you how to define classes and their methods. In Java, the act of program-
ming consists of defining a number of classes. Every program is a class; all
helping software consists of classes; all programmer-defined types are classes;
classes are central to Java.

PREREQUISITES

This chapter uses material from Chapters 1, 2, and 3.

Class Definitions
The Time has come the walrus said
to talk of many things
of shoes and ships and sealing wax
of cabbages and kings.

Lewis Carroll, Through the Looking-Glass

A Java program consists of objects, from various classes, interacting with one
another. Before we go into the details of how you define classes, let’s review
some of the general properties of classes. A value of a class type is called an
object. An object is usually referred to as an object of the class or as an

4.1

object

5640_ch04.fm Page 160 Wednesday, February 11, 2004 2:14 PM

Class Definitions 161

instance of the class rather than as a value of the class, but it is a value of the class type.
An object is a value of the class type much like a value, such as 5, of a primitive type,
like int, is a value of a variable of that type. However, an object typically has multiple
pieces of data and has methods (actions) it can take. Each object can have different data
but all objects of a class have the same types of data and all objects in a class have the
same methods. We tend to speak of the data and methods as belonging to the object,
and that is an acceptable point of view. The data certainly does belong to the object,
but since all objects in a class have the same methods, it also would be correct to say the
methods belong to the class. To make this abstract discussion come alive, we need a
sample definition.

Display 4.1 contains a definition for a class named DateFirstTry and a program that
demonstrates using the class. Objects of this class represent dates like December 31,
2006 and July 4, 1776. This class is unrealistically simple, but it will serve to introduce
you to the syntax for a class definition. Each object of this class has three pieces of data:
a string for the month name, an integer for the day of the month, and another integer
for the year. The objects have only one method, which is named writeOutput. Both the
data items and the methods are sometimes called members of the object, because they
belong to the object. The data items are also sometimes called fields. We will call the
data items instance variables and call the methods methods.

The following three lines from the start of the class definition define three instance
variables (three data members):

public String month; //always 3 letters long, as in Jan, Feb, etc.
public int day;
public int year; //a four digit number.

The word public simply means that there are no restrictions on how these instance
variables are used. Each of these lines declares one instance variable name. You can
think of an object of the class as a complex item with instance variables inside of it. So,
you can think of an instance variable as a smaller variable inside each object of the class.
In this case, the instance variables are called month, day, and year.

An object of a class is typically named by a variable of the class type. For example,
the program DateFirstTryDemo in Display 4.1 declares the two variables date1 and
date2 to be of type DateFirstTry, as follows:

DateFirstTry date1, date2;

A CLASS IS A TYPE

If A is a class, then the phrases "bla is of type A," "bla is an instance of the class A," and "bla is
an object of the class A" mean the same thing.

instance

method

field
member

instance variable

5640_ch04.fm Page 161 Wednesday, February 11, 2004 2:14 PM

162 Chapter 4 Defining Classes I

Display 4.1 A Simple Class

1 public class DateFirstTry
2 {
3 public String month; //always 3 letters long, as in Jan, Feb, etc.
4 public int day;
5 public int year; //a four digit number.

6 public void writeOutput()
7 {
8 System.out.println(month + " " + day + ", " + year);
9 }

10 }

1 public class DateFirstTryDemo
2 {
3 public static void main(String[] args)
4 {
5 DateFirstTry date1, date2;
6 date1 = new DateFirstTry();
7 date2 = new DateFirstTry();
8 date1.month = "Dec";
9 date1.day = 31;

10 date1.year = 2006;
11 System.out.println("date1:");
12 date1.writeOutput();

13 date2.month = "Jul";
14 date2.day = 4;
15 date2.year = 1776;
16 System.out.println("date2:");
17 date2.writeOutput();
18 }
19 }

SAMPLE DIALOGUE

date1
Dec 31, 2006
date2
Jul 4, 1776

Later in this chapter we will see that
these three public modifiers should
be replaced with private.

This class definition goes in a file named
DateFirstTry.java.

This class definition (program) goes in a file named
DateFirstTryDemo.java.

5640_ch04.fm Page 162 Wednesday, February 11, 2004 2:14 PM

codes162.html

Class Definitions 163

This gives us variables of the class DateFirstTry, but so far there are no objects of the
class. Objects are class values that are named by the variables. To obtain an object, you
must use the new operator to create a “new” object. For example, the following creates
an object of the class DateFirstTry and names it with the variable date1:

date1 = new DateFirstTry();

We will discuss this kind of statement in more detail later in this chapter when we dis-
cuss something called a constructor. For now simply note that

Class_Variable = new Class_Name();

creates a new object of the specified class and associates it with the class variable.1 Since
the class variable now names an object of the class, we will often refer to the class vari-
able as an object of the class. (This is really the same usage as when we refer to an int
variable n as “the integer n,” even though the integer is, strictly speaking, not n but the
value of n.)

Unlike what we did in Display 4.1, the declaration of a class variable and the cre-
ation of the object are more typically combined into one statement as follows:

DateFirstTry date1 = new DateFirstTry();

1 For many the word “new” suggests a memory allocation. As we will see, the new operator does
indeed produce a memory allocation.

THE new OPERATOR

The new operator is used to create an object of a class and associate the object with a variable that
names it.

SYNTAX:

Class_Variable = new Class_Name();

EXAMPLE:

DateFirstTry date;
date = new DateFirstTry();

which is usually written in the following equivalent form:

DateFirstTry date = new DateFirstTry();

new

5640_ch04.fm Page 163 Wednesday, February 11, 2004 2:14 PM

164 Chapter 4 Defining Classes I

■ INSTANCE VARIABLES AND METHODS

We will illustrate the details about instance variables using the class and program in
Display 4.1. Each object of the class DateFirstTry has three instance variables, which
can be named by giving the object name followed by a dot and the name of the
instance variable. For example, the object date1 in the program DateFirstTryDemo has
the following three instance variables:

date1.month
date1.day
date1.year

Similarly, if you replace date1 with date2, you obtain the three instance variables for
the object date2. Note that date1 and date2 together have a total of six instance vari-
ables. The instance variables date1.month and date2.month, for example, are two dif-
ferent (instance) variables.

The instance variables in Display 4.1 can be used just like any other variables. For
example, date1.month can be used just like any other variable of type String. The
instance variables date1.day and date1.year can be used just like any other variables
of type int. Thus, although the following is not in the spirit of the class definition, it is
legal and would compile:

date1.month = “Hello friend.”;

More likely assignments to instance variables are given in the program DateFirstTry-
Demo.

The class DateFirstTry has only one method, which is named writeOutput. We
reproduce the definition of the method here:

public void writeOutput()
{
 System.out.println(month + " " + day + ", " + year);
}

All method definitions belong to some class and all method definitions are given
inside the definition of the class to which they belong. A method definition is divided
into two parts, a heading and a method body, as illustrated by the annotation on the
method definition. The word void means this is a method for performing an action as
opposed to producing a value. We will say more about method definitions later in this
chapter (including some indication of why the word void was chosen to indicate an
action). You have already been using methods for predefined classes. The way you
invoke a method from a class definition you write is the same as how you do it for a
predefined class. For example, the following from the program DateFirstTryDemo is an
invocation of the method writeOutput with date1 as the calling object:

date1.writeOutput();

Heading
Body

heading
body

5640_ch04.fm Page 164 Wednesday, February 11, 2004 2:14 PM

Class Definitions 165

This invocation is equivalent to execution of the method body. So, this invocation is
equivalent to

System.out.println(month + " " + day + ", " + year);

However, we need to say more about exactly how this is equivalent. If you simply
replace the method invocation with this System.out.println statement, you will get a
compiler error message. Note that within the definition for the method writeOutput,
the names of the instance variables are used without any calling object. This is because
the method will be invoked with different calling objects at different times. When an

FILE NAMES AND LOCATIONS

Remember a file must be named the same as the class it contains with an added .java at the
end. For example, a class named MyClass must be in a file named MyClass.java.

We will eventually see other ways to arrange files, but at this point, your program and all the
classes it uses should be in the same directory (same folder).

CLASS DEFINITION

The following shows the form of a class definition that is most commonly used; however, it is legal
to intermix the method definitions and the instance variable declarations.

SYNTAX:

public class Class_Name
{
 Instance_Variable_Declaration_1
 Instance_Variable_Declaration_2
 . . .
 Instance_Variable_Declaration_Last

 Method_Definition_1
 Method_Definition_2
 . . .
 Method_Definition_Last
}

EXAMPLES:

See Displays 4.1 and 4.2.

5640_ch04.fm Page 165 Wednesday, February 11, 2004 2:14 PM

166 Chapter 4 Defining Classes I

instance variable is used in a method definition, it is understood to be the instance vari-
able of the calling object. So in the program DateFirstTryDemo,

date1.writeOutput();

is equivalent to

System.out.println(date1.month + " " + date1.day
 + ", " + date1.year);

Similarly,

date2.writeOutput();

is equivalent to

System.out.println(date2.month + " " + date2.day

 + ", " + date2.year);

■ MORE ABOUT METHODS

As we noted for predefined methods, methods of the classes you define are of two
kinds: methods that return (compute) some value and methods that perform an action
other than returning a value. For example, the method println of the object Sys-
tem.out is an example of a method that performs an action other than returning a
value; in this case, the action is to write something to the screen. The method readLine
of the class BufferedReader, introduced in Chapter 2, is a method that returns a value;
in this case, the value returned is the string of characters typed in by the user. A method
that performs some action other than returning a value is called a void method. This
same distinction between void methods and methods that return a value applies to
methods in the classes you define. The two kinds of methods require slight differences
in how they are defined.

Self-Test Exercises

1. Write a method called makeItNewYears that could be added to the class DateFirstTry in
Display 4.1. The method makeItNewYears has no parameters and sets the month instance
variable to "Jan" and the day instance variable to 1. It does not change the year instance vari-
able.

2. Write a method called yellIfNewYear that could be added to the class DateFirstTry in
Display 4.1. The method yellIfNewYear has no parameters and outputs the string "Hur-
rah!" provided the month instance variable has the value "Jan" and the day instance vari-
able has the value 1. Otherwise, it outputs the string "Not New Year's Day.".

5640_ch04.fm Page 166 Wednesday, February 11, 2004 2:14 PM

Class Definitions 167

Both kinds of methods have a method heading and a method body, both of which
are similar but not identical for the two kinds of methods. The method heading for a
void method is of the form

public void Method_Name(Parameter_List)

The method heading for a method that returns a value is

public Type_Returned Method_Name(Parameter_List)

Later in the chapter we will see that public may sometimes be replaced by a more
restricted modifier and that it is possible to add additional modifiers, but these tem-
plates will do for now. For now, our examples will have an empty Parameter_List.

If a method returns a value, then it can return different values in different situations,
but all values returned must be of the same type, which is specified as the type returned.
For example, if a method has the heading

public double myMethod()

then the method always returns a value of type double, and the heading

public String yourMethod()

indicates a method that always returns a value of type String.

The following is a void method heading:

public void ourMethod()

Notice that when the method returns no value at all, we use the keyword void in place
of a type. If you think of void as meaning “no returned type,” the word void begins to
make sense.

An invocation of a method that returns a value can be used as an expression any-
place that a value of the Type_Returned can be used. For example, suppose anObject is an
object of a class with methods having our sample heading; in that case, the following
are legal:

double d = anObject.myMethod();
String aStringVariable = anObject.yourMethod();

A void method does not return a value, but simply performs an action, so an invo-
cation of a void method is a statement. A void method is invoked as in the following
example:

anObject.ourMethod();

Note the ending semicolon.

invocation

5640_ch04.fm Page 167 Wednesday, February 11, 2004 2:14 PM

168 Chapter 4 Defining Classes I

So far, we have avoided the topic of parameter lists by only giving examples with
empty parameter lists, but note that parentheses are required even for an empty param-
eter list. Parameter lists will be discussed later in this chapter.

The body of a void method definition is simply a list of declarations and statements
enclosed in a pair of braces, {}. For example, the following is a complete void method
definition:

public void ourMethod()
{
 System.out.println("Hello");
 System.out.println("from our method.");
}

The body of a method that returns a value is the same as the body of a void method
but with one additional requirement. The body of a method that returns a value must
contain at least one return statement. A return statement is of the form

return Expression;

where Expression can be any expression that evaluates to something of the Type_Returned,
which is listed in the method heading. For example, the following is a complete defini-
tion of a method that returns a value:

public String yourMethod()//not quite right yet
{
 BufferedReader keyboard = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.println(“Enter a line of text”);
 String result = keyboard.readLine();
 return result + “ was entered.”;
}

Notice that a method that returns a value can do other things besides returning a value,
but style rules dictate that whatever else it does should be related to the value returned.

As noted in the comment, the definition of the method yourMethod is not quite cor-
rect yet. Just as you need the phrase throws IOException on the main method of a pro-
gram that uses the method readline of the class BufferedReader, you also need the
same magic formula on the heading of any other method that uses the method read-
line of the class BufferedReader. So, the complete and correct definition is

public String yourMethod() throws IOException
{
 BufferedReader keyboard = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.println("Enter a line of text");
 String result = keyboard.readLine();
 return result + " was entered.";

}

body

return
statement

throws
IOException

5640_ch04.fm Page 168 Wednesday, February 11, 2004 2:14 PM

Class Definitions 169

We should also note that if there is an invocation of the method yourMethod inside the
definition of another method (including the possibility of the main method), then that
method (the one that contains an invocation of yourMethod) in effect contains an invoca-
tion of readLine and so that method also requires the phrase throws IOException.

A return statement always ends a method invocation. Once the return statement is
executed, the method ends and any remaining statements in the method definition are
not executed.

throws IOEXCEPTION

Any method (including the method main) that contains an invocation of the method readLine
of the class BufferedReader must have the following phrase at the end of the method heading:

throws IOException

This will be explained in Chapter 9 when we cover exceptions, and we will then see how to do
things other than adding this phrase. Until then the phrase throws IOException is just a
magic formula that must be there.

return STATEMENTS

The definition of a method that returns a value must have one or more return statements.
A return statement specifies the value returned by the method and it ends the method
invocation.

SYNTAX:

return Expression;

EXAMPLE:

public int getYear()
{
 return year;
}

A void method definition need not have a return statement. However, a return statement can
be used in a void method to cause the method to immediately end. The form for a return
statement in a void method is

return;

5640_ch04.fm Page 169 Wednesday, February 11, 2004 2:14 PM

170 Chapter 4 Defining Classes I

If you want to end a void method before it runs out of statements, you can use a
return statement without any expression, as follows:

return;

A void method need not have any return statements, but you can place a return state-
ment in a void method if there are situations that require the method to end before all
the code is executed.

Although it may seem that we have lost sight of the fact, all these method definitions
must be inside of some class definition. Java does not have any stand-alone methods
that are not in any class. Display 4.2 rewrites the class given in Display 4.1 but this
time we have added a more diverse set of methods.

METHOD DEFINITIONS

There are two kinds of methods: methods that return a value and methods, known as void meth-
ods, that perform some action other than returning a value.

DEFINITION OF A METHOD THAT RETURNS A VALUE:

SYNTAX:

public Type_Returned Method_Name(Parameter_List)
{
 <List of statements, at least one of which
 must contain a return statement.>
}

If there are no Parameters, then the parentheses are empty.

EXAMPLE:

public int getDay()
{
 return day;
}

 void METHOD DEFINITION:

SYNTAX:

public void Method_Name(Parameter_List)
{
 <List of statements>
}

If there are no Parameters, then the parentheses are empty.

return in a
void method

5640_ch04.fm Page 170 Wednesday, February 11, 2004 2:14 PM

Class Definitions 171

EXAMPLE:

public void writeOutput()
{
 System.out.println(month + " " + day + ", " + year);
}

All method definitions are inside of some class definition. See Display 4.2 to see these example
method definitions in the context of a class.

When an instance variable name is used in a method definition, it refers to an instance variable of
the calling object.

Display 4.2 A Class with More Methods (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DateSecondTry
5 {
6 private String month; //always 3 letters long, as in Jan, Feb, etc.
7 private int day;
8 private int year; //a four digit number.

9 public void writeOutput()
10 {
11 System.out.println(month + " " + day + ", " + year);
12 }

13 public void readInput() throws IOException
14 {
15 BufferedReader keyboard;
16 keyboard = new BufferedReader(
17 new InputStreamReader(System.in));
18 System.out.println("Enter month, day, and year on three lines:");
19 month = keyboard.readLine();
20 day = Integer.parseInt(keyboard.readLine());
21 year = Integer.parseInt(keyboard.readLine());
22 }

23 public int getDay()
24 {
25 return day;
26 }

The significance of the modifier private is
discussed in the subsection “public and
private Modifiers” in Section 4.2 a bit later
in this chapter.

5640_ch04.fm Page 171 Wednesday, February 11, 2004 2:14 PM

codes171.html

172 Chapter 4 Defining Classes I

Display 4.2 A Class with More Methods (Part 2 of 2)

27 public int getYear()
28 {
29 return year;
30 }
31 public int getMonth()
32 {
33 if (month.equals("Jan"))
34 return 1;
35 else if (month.equals("Feb"))
36 return 2;
37 else if (month.equals("Mar"))
38 return 3;
39 else if (month.equals("Apr"))
40 return 4;
41 else if (month.equals("May"))
42 return 5;
43 else if (month.equals("Jun"))
44 return 6;
45 else if (month.equals("Jul"))
46 return 7;
47 else if (month.equals("Aug"))
48 return 8;
49 else if (month.equals("Sep"))
50 return 9;
51 else if (month.equals("Oct"))
52 return 10;
53 else if (month.equals("Nov"))
54 return 11;
55 else if (month.equals("Dec"))
56 return 12;
57 else
58 {
59 System.out.println("Fatal Error");
60 System.exit(0);
61 return 0; //Needed to keep the compiler happy
62 }
63 }

64 }

5640_ch04.fm Page 172 Wednesday, February 11, 2004 2:14 PM

Class Definitions 173

Tip

ANY METHOD CAN BE USED AS A void METHOD

A method that returns a value can also perform some action besides returning a value. If you want
that action, but do not need the returned value, you can invoke the method as if it were a void
method and the returned value will simply be discarded. For example, the following contains two
invocations of the method readLine(), which returns a value of type String. Both are legal.

BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));
 . . .
String inputString = keyboard.readLine();
 . . .
System.out.println("Press Enter to continue with program.");
keyboard.readLine(); //Reads a line and discards it.

Self-Test Exercises

3. Write a method called getNextYear that could be added to the class DateSecondTry in
Display 4.2. The method getNextYear returns an int value equal to the value of the year
instance variable plus one.

4. Consider the following method definition that might occur in some class:

public void echoLine() throws IOException
{
 BufferedReader keyboard = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.println("Enter a line of text");
 String line = keyboard.readLine();
 System.out.println("You entered " + line);
}

Now suppose the same class also has the following method:

public void echo2Lines()
{
 echoLine();
 echoLine():
}

Is the definition of echo2Lines correct as written or do you need to add the phrase
throws IOException to the first line of echo2Lines?

5640_ch04.fm Page 173 Wednesday, February 11, 2004 2:14 PM

174 Chapter 4 Defining Classes I

■ LOCAL VARIABLES

Look at the definition of the method readInput() given in Display 4.2. That method
definition includes the declaration of a variable called keyboard. A variable declared
within a method is called a local variable. It is called local because its meaning is local
to—that is, confined to—the method definition. If you have two methods and each of
them declares a variable of the same name—for example, if both were named key-
board—they would be two different variables that just happen to have the same name.
Any change that is made to the variable named keyboard within one method would
have no effect upon the variable named keyboard in the other method.

As we noted in Chapter 1, the main part of a program is itself a method. All variables
declared in main are variables local to the method main. If a variable declared in main
happens to have the same name as a variable declared in some other method, then they
are two different variables that just happen to have the same name. Thus, all the vari-
ables we have seen so far are either local variables or instance variables. There is only
one more kind of variable in Java, which is known as a static variable. Static variables
will be discussed in Chapter 5.

■ BLOCKS

The terms block and compound statement mean the same thing, namely, a set of Java
statements enclosed in braces, {}. However, programmers tend to use the two terms in
different contexts. When you declare a variable within a compound statement, the
compound statement is usually called a block.

If you declare a variable within a block, that variable is local to the block. This
means that when the block ends, all variables declared within the block disappear. In

LOCAL VARIABLE

A variable declared within a method definition is called a local variable. If two methods each
have a local variable of the same name, they are two different variables that just happen to have
the same name.

GLOBAL VARIABLES

Thus far, we have discussed two kinds of variables: instance variables, whose meaning is confined
to an object of a class, and local variables, whose meaning is confined to a method definition.
Some other programming languages have another kind of variable called a global variable,
whose meaning is confined only to the program. Java does not have these global variables.

local variable

compound
statement

block

5640_ch04.fm Page 174 Wednesday, February 11, 2004 2:14 PM

Class Definitions 175

many programming languages, you can even use that variable’s name to name some
other variable outside of the block. However, in Java, you cannot have two variables with
the same name inside of a single method definition. Local variables within blocks can
sometimes create problems in Java. It is sometimes easier to declare the variables out-
side the block. If you declare a variable outside of a block, you can use it both inside
and outside the block, and it will have the same meaning both inside the block and
outside the block.

BLOCKS

A block is another name for a compound statement—that is, a list of statements enclosed in
braces. However, programmers tend to use the two terms in different contexts. When you declare
a variable within a compound statement, the compound statement is usually called a block. The
variables declared in a block are local to the block, and so these variables disappear when the
execution of the block is completed. However, even though the variables are local to the block,
their names cannot be used for anything else within the same method definition.

Tip

DECLARING VARIABLES IN A for STATEMENT

You can declare a variable (or variables) within the initialization portion of a for statement, as in
the following:

int sum = 0;
for (int n = 1; n < 10; n++)
 sum = sum + n;

If you declare n in this way, the variable n will be local to the for loop. This means that n cannot be
used outside of the for loop. For example, the following use of n in the System.out.println
statement is illegal:

for (int n = 1; n < 10; n++)
 sum = sum + n;
System.out.println(n);//Illegal

Declaring variables inside a for loop can sometimes be more of a nuisance than a helpful feature.
We tend to avoid declaring variables inside a for loop except for very simple cases that have no
potential for confusion.

5640_ch04.fm Page 175 Wednesday, February 11, 2004 2:14 PM

176 Chapter 4 Defining Classes I

■ PARAMETERS OF A PRIMITIVE TYPE

All the method definitions we have seen thus far had no parameters, which was indi-
cated by an empty set of parentheses in the method heading. Parameters are like a
blank that is filled in with a particular value when the method is invoked. (What we are
calling parameters are also called formal parameters.) The value that is plugged in for the
parameter is called an argument. (Some programmers use the term actual parameters
for what we are calling arguments.) We have already used arguments with predefined
methods. For example, the string "Hello" is the argument to the method println in
the following method invocation:

System.out.println("Hello");

Display 4.3 contains the definition of a method named setDate that has the three
parameters newMonth, newDay, and newYear. It also contains the definition of a method
named monthString that has one parameter of type int.

The items plugged in for the parameters are called arguments and are given in paren-
theses at the end of the method invocation. For example, in the following call from
Display 4.3, the integers 6 and 17 and the variable year are the arguments plugged in
for newMonth, newDay, and newYear, respectively:

date.setDate(6, 17, year);

When you have a method invocation like the preceding, the argument (such as 6) is
plugged in for the corresponding formal parameter (such as newMonth) everywhere that the
parameter occurs in the method definition. After all the arguments have been plugged in for
their corresponding parameters, the code in the body of the method definition is executed.

The following invocation of the method monthString occurs within the definition
of the method setDate in Display 4.3:

month = monthString(newMonth);

The argument is newMonth, which is plugged in for the parameter monthNumber in the
definition of the method monthString.

Self-Test Exercises

5. Write a method called happyGreeting that could be added to the class DateSecondTry
in Display 4.2. The method happyGreeting writes the string "Happy Days!" to the
screen a number of times equal to the value of the instance variable day. For example, if the
value of day is 3, then it writes the following to the screen:

Happy Days!
Happy Days!
Happy Days!

Use a local variable.

 parameter

argument

5640_ch04.fm Page 176 Wednesday, February 11, 2004 2:14 PM

Class Definitions 177

Display 4.3 Methods with Parameters (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DateThirdTry
5 {
6 private String month; //always 3 letters long, as in Jan, Feb, etc.
7 private int day;
8 private int year; //a four digit number.

9 public void setDate(int newMonth, int newDay, int newYear)
10 {
11 month = monthString(newMonth);
12 day = newDay;
13 year = newYear;
14 }

15 public String monthString(int monthNumber)
16 {
17 switch (monthNumber)
18 {
19 case 1:
20 return "Jan";
21 case 2:
22 return "Feb";
23 case 3:
24 return "Mar";
25 case 4:
26 return "Apr";
27 case 5:
28 return "May";
29 case 6:
30 return "Jun";
31 case 7:
32 return "Jul";
33 case 8:
34 return "Aug";
35 case 9:
36 return "Sep";
37 case 10:
38 return "Oct";
39 case 11:
40 return "Nov";
41 case 12:
42 return "Dec";

The significance of the modifier private is
discussed in the subsection “public and
private Modifiers” in Section 4.2.

A better version of setDate will be
given later in this chapter when we
define DateFourthTry.

This is the file DateThirdTry.java.

5640_ch04.fm Page 177 Wednesday, February 11, 2004 2:14 PM

codes177.html

178 Chapter 4 Defining Classes I

Note that each of the formal parameters must be preceded by a type name, even if
there is more than one parameter of the same type. Corresponding arguments must
match the type of their corresponding formal parameter, although in some simple cases
an automatic type cast might be performed by Java. For example, if you plug in an
argument of type int for a parameter of type double, then Java will automatically type
cast the int value to a value of type double. The following list shows the type casts that
Java will automatically perform for you. An argument in a method invocation that is of
any of these types will automatically be type cast to any of the types that appear to its
right if that is needed to match a formal parameter.2

byte —> short —> int —> long —> float —> double

2 An argument of type char will also be converted to a matching number type, if the formal
parameter is of type int or any type to the right of int in our list of types.

Display 4.3 Methods with Parameters (Part 2 of 2)

43 default:
44 System.out.println("Fatal Error");
45 System.exit(0);
46 return "Error"; //to keep the compiler happy
47 }
48 }

 <The rest of the method definitions are identical to the ones given in Display 4.2.>
49 }

1 public class DateThirdTryDemo
2 {
3 public static void main(String[] args)
4 {
5 DateThirdTry date = new DateThirdTry();
6 int year = 1882;
7 date.setDate(6, 17, year);
8 date.writeOutput();
9 }

10 }

SAMPLE DIALOGUE

Jun 17, 1882

This is the file
DateThirdTryDemo.java.

This is the file DateThirdTry.java.

The variable year is NOT plugged in for the parameter
newYear in the definition of the method setDate.
Only the value of year, namely 1882, is plugged in for
the parameter newYear.

5640_ch04.fm Page 178 Wednesday, February 11, 2004 2:14 PM

Class Definitions 179

Note that this is exactly the same as the automatic type casting we discussed in
Chapter 1 for storing values of one type in a variable of another type. The more general
rule is that you can use a value of any of the listed types anywhere that Java expects a
value of a type further down on the list.

Note that the correspondence of the parameters and arguments is determined by
their order in the lists in parentheses. In a method invocation, there must be exactly the
same number of arguments in parentheses as there are formal parameters in the method
definition heading. The first argument in the method invocation is plugged in for the
first parameter in the method definition heading, the second argument in the method
invocation is plugged in for the second parameter in the heading of the method defini-
tion, and so forth. This is diagrammed in Display 4.4.

It is important to note that only the value of the argument is used in this substitution pro-
cess. If an argument in a method invocation is a variable (such as year in Display 4.3), it is

Display 4.4 Correspondence Between Formal Parameters and Arguments

public class DateThirdTry
{
 private String month; //always 3 letters long, as in Jan, Feb, etc.
 private int day;
 private int year; //a four digit number.

 public void setDate(int newMonth, int newDay, int newYear)
 {
 month = monthString(newMonth);
 day = newDay;
 year = newYear;
 }
 ...

public class DateThirdTryDemo
{
 public static void main(String[] args)
 {
 DateThirdTry date = new DateThirdTry();
 int year = 1882;
 date.setDate(6, 17, year);
 date.writeOutput();
 }
}

This is in the file
DateThirdTryDemo.java.
This is the file for a program that uses the
class DateThirdTry.

The arrows show which argument is
plugged in for which formal parameter.

This is in the file DateThirdTry.java.

Only the value of year, namely
1882, is plugged in for the
parameter newYear.

5640_ch04.fm Page 179 Wednesday, February 11, 2004 2:14 PM

180 Chapter 4 Defining Classes I

the value of the variable that is plugged in, not the variable name. For example, in Display
4.3 the value of the variable year (that is, 1882) is plugged in for the parameter new-
Year. The variable year is not plugged in to the body of the method setDate. Because
only the value of the argument is used, this method of plugging in arguments for for-
mal parameters is known as the call-by-value mechanism. In Java, this is the only
method of substitution that is used with parameters of a primitive type, such as int,
double, and char. As you will eventually see, this is, strictly speaking, also the only
method of substitution that is used with parameters of a class type. However, there are
other differences that make parameters of a class type appear to use a different substitu-
tion mechanism. But for now, we are concerned only with parameters and arguments
of primitive types, such as int, double, and char. (Although the type String is a class
type, you will not go far wrong if you consider it to behave like a primitive type when
an argument of type String is plugged in for its corresponding parameter. However,

PARAMETERS OF A PRIMITIVE TYPE

Parameters are given in parentheses after the method name in the heading of a method defini-
tion. A parameter of a primitive type, such as int, double, or char, is a local variable. When
the method is invoked, the parameter is initialized to the value of the corresponding argument
in the method invocation. This mechanism is known as the call-by-value parameter mecha-
nism. The argument in a method invocation can be a literal constant, like 2 or 'A'; a variable;
or any expression that yields a value of the appropriate type. This is the only kind of parameter
that Java has for parameters of a primitive type. (Parameters of a class type are discussed in
Chapter 5.)

main IS A void METHOD

The main part of a program is a void method, as indicated by its heading:

public static void main(String[] args)

The word static will be explained in Chapter 5. The identifier args is a parameter of type
String[], which is the type for an array of strings. Arrays are discussed in Chapter 6, and you
need not be concerned about them until then. In what we are doing in this book, we never use the
parameter args. Since args is a parameter, you may replace it with any other non-keyword
identifier and your program will have the same meaning. Aside from possibly changing the name
of the parameter args, the heading of the main method must be exactly as shown above.
Although we will not be using the parameter args, we will tell you how to use it in Chapter 6.

A program in Java is just a class that has a main method. When you give a command to run a Java
program, the run-time system invokes the method main.

call-by-value

5640_ch04.fm Page 180 Wednesday, February 11, 2004 2:14 PM

Class Definitions 181

for most class types, you need to think a bit differently about how arguments are
plugged in for parameters. We discuss parameters of a class type in Chapter 5.)

In most cases, you can think of a parameter as a kind of blank, or placeholder, that is
filled in by the value of its corresponding argument in the method invocation. How-
ever, parameters are more than just blanks that are filled in with the argument values
for the method. A parameter is actually a local variable. When the method is invoked,
the value of an argument is computed and the corresponding parameter, which is a
local variable, is initialized to this value. Occasionally, it is useful to use a parameter as a
local variable.

Pitfall

USE OF THE TERMS “PARAMETER” AND “ARGUMENT”

The use of the terms parameter and argument that we follow in this book is consistent with com-
mon usage, but people also often use the terms parameter and argument interchangeably.
When you see the terms parameter and argument, you must determine their exact meaning from
context. Many people use the term parameter for both what we call parameters and what we call
arguments. Other people use the term argument both for what we call parameters and what we
call arguments. Do not expect consistency in how people use these two terms.

The term formal parameter is often used for what we describe as a parameter. We will sometimes
use the term formal parameter for emphasis. The term actual parameter is often used for what we
call an argument. We do not use the term actual parameter in this book, but you will encounter it
in other books.

Self-Test Exercises

6. Write a method called fractionDone that could be added to the class DateThirdTry in
Display 4.3. The method fractionDone has a parameter targetDay of type int (for a day
of the month) and returns a value of type double. The value returned is the value of the day
instance variable divided by the int parameter targetDay. (So it returns the fraction of the
time passed so far this month where the goal is reaching the targetDay.) Do floating-point
division, not integer division. To get floating-point division, copy the value of the day
instance variable into a local variable of type double and use this local variable in place of
the day instance variable in the division. (You may assume the parameter targetDay is a
valid day of the month that is greater than the value of the day instance variable.)

7. Write a method called advanceYear that could be added to the class DateThirdTry in
Display 4.3. The method advanceYear has one parameter of type int. The method
advanceYear increases the value of the year instance variable by the amount of this one
parameter.

parameters as
local variables

formal parameter
actual parameter

5640_ch04.fm Page 181 Wednesday, February 11, 2004 2:14 PM

182 Chapter 4 Defining Classes I

■ THE this PARAMETER

As we noted earlier, if today is of type DateSecondTry (Display 4.2), then

today.writeOutput();

is equivalent to

System.out.println(today.month + " " + today.day
 + ", " + today.year);

This is because, although the definition of writeOutput reads

public void writeOutput()
{
 System.out.println(month + " " + day + ", " + year);
}

8. Suppose we redefine the method setDate in Display 4.3 to the following:

public void setDate(int newMonth, int newDay, int newYear)
{
 month = monthString(newMonth);
 day = newDay;
 year = newYear;
 System.out.println("Date changed to "
 + newMonth + " " + newDay + ", " + newYear);
}

Indicate all instances of newMonth that have their value changed to 6 in the following
invocation (also from Display 4.3):

date.setDate(6, 17, year);

9. Is the following a legal method definition that could be added to the class DateThirdTry
in Display 4.3?

public void multiWriteOutput(int count)
{
 while (count > 0)
 {
 writeOutput();
 count−−;
 }
}

10. Consider the definition of the method monthString in Display 4.3. Why are there no
break statements in the switch statement?

5640_ch04.fm Page 182 Wednesday, February 11, 2004 2:14 PM

Class Definitions 183

it really means

public void writeOutput()
{
 System.out.println(<the calling object>.month + " "
 + <the calling object>.day + ", " + <the calling object>.year);
}

The instance variables are understood to have <the calling object>. in front of them.
Sometimes it is handy, and on rare occasions even necessary, to have an explicit name
for the calling object. Inside a Java method definition, you can use the keyword this as
a name for the calling object. So, the following is a valid Java method definition that is
equivalent to the one we are discussing:

public void writeOutput()
{
 System.out.println(this.month + " " + this.day
 + ", " + this.year);
}

The definition of writeOutput in Display 4.2 could be replaced by this completely
equivalent version. Moreover, this version is in some sense the true version. The version
without the this and a dot in front of each instance variable is just an abbreviation for
this version. However, the abbreviation of omitting the this is used frequently. The
keyword this is known as the this parameter.

There is one common situation that requires the use of the this parameter. You
often want to have the parameters in a method such as setDate to be the same as the
instance variables. A first, incorrect, try at doing this is the following rewriting of the
method setDate from Display 4.3:

public void setDate(int month, int day, int year) //Not corrrect
{
 month = monthString(month);
 day = day;
 year = year;
}

THE this PARAMETER

Within a method definition, you can use the keyword this as a name for the calling object. If an
instance variable or another method in the class is used without any calling object, then this is
understood to be the calling object.

this parameter

5640_ch04.fm Page 183 Wednesday, February 11, 2004 2:14 PM

184 Chapter 4 Defining Classes I

This rewritten version does not do what we want. When you declare a local variable in
a method definition, then within the method definition that name always refers to the
local variable. A parameter is a local variable, so this rule applies to parameters. Con-
sider the following assignment statement in our rewritten method definition:

day = day;

Both the identifiers day refer to the parameter named day. The identifier day does not
refer to the instance variable day. All occurrences of the identifier day refer to the
parameter day. This is often described by saying the parameter day masks or hides the
instance variable day. Similar remarks apply to the parameters month and year.

This rewritten method definition of the method setDate will produce a compiler
error message because the following attempts to assign a String value to the int vari-
able (the parameter) month:

month = monthString(month);

However, in many situations, this sort of rewriting will produce a method definition
that will compile but that will not do what it is supposed to do.

To correctly rewrite the method setDate, we need some way to say “the instance
variable month” as opposed to the parameter month. The way to say “the instance vari-
able month” is this.month. Similar remarks apply to the other two parameters. So, the
correct rewriting of the method setDate is as follows:

public void setDate(int month, int day, int year)
{
 this.month = monthString(month);
 this.day = day;
 this.year = year;
}

This version is completely equivalent to the version in Display 4.3.

Self-Test Exercises

11. The method writeOutput in Display 4.2 uses the instance variables month, day, and
year, but gives no object name for these instance variables. Every instance variable must
belong to some object. To what object or objects do these instance variables in the defini-
tion of writeOutput belong?

12. Rewrite the definitions of the methods getDay and getYear in Display 4.2 using the this
parameter.

13. Rewrite the method getMonth in Display 4.2 using the this parameter.

mask a variable

5640_ch04.fm Page 184 Wednesday, February 11, 2004 2:14 PM

Class Definitions 185

■ SIMPLE CASES WITH CLASS PARAMETERS

Methods can have parameters of a class type. Parameters of a class type are more subtle
and more powerful than parameters of a primitive type. We will discuss parameters of
class types in detail in Chapter 5. In the meantime, we will occasionally use a class type
parameter in very simple situations. For these very simple cases, you need not know
any details about class type parameters except that, in some sense or another, the class
argument is plugged in for the class parameter.

■ METHODS THAT RETURN A BOOLEAN VALUE

There is nothing special about methods that return a value of type boolean. The type
boolean is a primitive type, just like the types int and double. A method that returns a
value of type boolean must have a return statement of the form

return Boolean_Expression;

So, an invocation of a method that returns a value of type boolean returns either true
or false. It thus makes sense to use an invocation of such a method to control an if-
else statement, to control a while loop, or anyplace else that a Boolean expression is
allowed. Although there is nothing new here, people who have not used boolean val-
ued methods before sometimes find them to be uncomfortable. So, we will go through
one small example.

The following is a method definition that could be added to the class DateThirdTry
in Display 4.3:

public boolean isBetween(int lowYear, int highYear)
{
 return ((year > lowYear) && (year < highYear));
}

Consider the following lines of code:

DateThirdTry date = new DateThirdTry();
date.setDate(1, 2, 3001);
if (date.isBetween(2000, 4000))
 System.out.println("The date is between the years 2000 and 4000");
else
 System.out.println(
 "The date is not between the years 2000 and 4000");

The expression date.isBetween(2000, 4000) is an invocation of a method that
returns a boolean value—that is, returns one of the two values true and false. So, it
makes perfectly good sense to use it as the controlling Boolean expression in an if-
else statement. The expression year in the definition of isBetween really means

5640_ch04.fm Page 185 Wednesday, February 11, 2004 2:14 PM

186 Chapter 4 Defining Classes I

this.year and this stands for the calling object. In date.isBetween(2000, 4000) the
calling object is date. So, this returns the value

(date.year > lowYear) && (date.year < highYear)

But, 2000 and 4000 are plugged in for the parameters lowYear and highYear, respec-
tively. So, this expression is equivalent to

(date.year > 2000) && (date.year < 4000)

Thus, the if-else statement is equivalent to3

if ((date.year > 2000) && (date.year < 4000))
 System.out.println("The date is between the years 2000 and 4000.");
else
 System.out.println(
 "The date is not between the years 2000 and 4000.");

So, the output produced is

The date is between the years 2000 and 4000.

Another example of a boolean valued method, which we will in fact add to our date
class, is shown below:

public boolean precedes(DateFourthTry otherDate)
{
 return ((year < otherDate.year) ||
 (year == otherDate.year && getMonth() < otherDate.getMonth()) ||
 (year == otherDate.year && month.equals(otherDate.month)
 && day < otherDate.day));
}

The version of our date class with this method is given in Display 4.5. The other new
methods in that class will be discussed shortly in the subsection entitled “The Methods
equals and toString.” Right now, let’s discuss this new method named precedes.

An invocation of the method precedes has the following form, where date1 and
date2 are two objects of our date class:

date1.precedes(date2)

3 Later in this chapter we will see that: Since year is marked private, it is not legal to write
date.year in a program, but the meaning of such an expression is clear even if you cannot
include it in a program.

5640_ch04.fm Page 186 Wednesday, February 11, 2004 2:14 PM

Class Definitions 187

This is a Boolean expression that returns true if date1 comes before date2. Since it is a
Boolean expression it can be used anyplace a Boolean expression is allowed, such as to
control an if-else or while statement. For example,

if (date1.precedes(date2))
 System.out.println("date1 comes before date2.");
else
 System.out.println("date2 comes before or is equal to date1.");

The return statement in the definition of the method precedes may look intimi-
dating, but is really straightforward. It says that date1.precedes(date2) returns true,
provided one of the following three conditions is satisfied:

date1.year < date2.year

date1.year equals date2.year and date1.month comes before date2.month

date1 and date2 have the same year and month and also
 date1.day < date2.day.

If you give it a bit of thought, you will realize that date1 precedes date2 in time pre-
cisely when one of these three conditions is satisfied.

■ THE METHODS equals AND toString

There are certain methods that Java expects to be in all, or almost all, classes. This is
because some of the standard Java libraries have software that assumes such methods
are defined. Two of these methods are equals and toString. Therefore, you should
include such methods and be certain to spell their names exactly as we have done. Use
equals, not same or areEqual. Do not even use equal without the s. Similar remarks
apply to the toString method. After we have developed more material, we will explain
this in more detail. In particular, we will then explain how to give a better method def-
inition for equals. For now, just get in the habit of including them.

The method equals is a boolean valued method to compare two objects of the class
to see if they satisfy the intuitive notion of “being equal.” So, the heading should be

public boolean equals(Class_Name Parameter_Name)

Display 4.5 contains definitions of the methods equals and toString that we might
add to our date class, which is now named DateFourthTry. The heading of that equals
method is

public boolean equals(DateFourthTry otherDate)

When you use the method equals to compare two objects of the class DateFourth-
Try, one object is the calling object and the other object is the argument, like so

date1.equals(date2)

equals

5640_ch04.fm Page 187 Wednesday, February 11, 2004 2:14 PM

188 Chapter 4 Defining Classes I

Display 4.5 A Class with Methods equals and toString

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DateFourthTry
5 {
6 private String month; //always 3 letters long, as in Jan, Feb, etc.
7 private int day;
8 private int year; //a four digit number.

9 public String toString()
10 {
11 return (month + " " + day + ", " + year);
12 }

13 public void writeOutput()
14 {
15 System.out.println(month + " " + day + ", " + year);
16 }

17 public boolean equals(DateFourthTry otherDate)
18 {
19 return ((month.equals(otherDate.month))
20 && (day == otherDate.day) && (year == otherDate.year));
21 }

22 public boolean precedes(DateFourthTry otherDate)
23 {
24 return ((year < otherDate.year) ||
25 (year == otherDate.year && getMonth() < otherDate.getMonth()) ||
26 (year == otherDate.year && month.equals(otherDate.month)
27 && day < otherDate.day));
28 }

 <The rest of the method definitions are identical to the ones in DateThirdTry in Display 4.3.>

29 }

This is the method equals
in the class String.

This is the method equals in the
class DateFourthTry.

5640_ch04.fm Page 188 Wednesday, February 11, 2004 2:14 PM

codes188.html

Class Definitions 189

or equivalently

date2.equals(date1)

Since the method equals returns a value of type boolean, you can use an invocation
of equals as the Boolean expression in an if-else statement, as shown in Display 4.6.
Similarly, you can also use it anyplace else that a Boolean expression is allowed.

There is no absolute notion of “equality” that you must follow in your definition of
equals. You can define the method equals any way you wish, but to be useful it should
reflect some notion of “equality” that is useful for the software you are designing. A
common way to define equals for simple classes of the kind we are looking at now is to
say equals returns true if each instance variable of one object equals the corresponding
instance variable of the other object. This is how we defined equals in Display 4.5.

Display 4.6 Using the Methods equals and toString

1 public class EqualsAndToStringDemo
2 {
3 public static void main(String[] args)
4 {
5 DateFourthTry date1 = new DateFourthTry(),
6 date2 = new DateFourthTry();
7 date1.setDate(6, 17, 1882);
8 date2.setDate(6, 17, 1882);

9 if (date1.equals(date2))
10 System.out.println(date1 + " equals " + date2);
11 else
12 System.out.println(date1 + " does not equal " + date2);

13 date1.setDate(7, 28, 1750);

14 if (date1.precedes(date2))
15 System.out.println(date1 + " comes before " + date2);
16 else
17 System.out.println(date2 + " comes before or is equal to "
18 + date1);
19 }
20 }

SAMPLE DIALOGUE

Jun 17, 1882 equals Jun 17, 1882
Jul 28, 1750 comes before Jun 17, 1882

These are equivalent to
date1.toString().

These are equivalent to
date2.toString().

5640_ch04.fm Page 189 Wednesday, February 11, 2004 2:14 PM

codes189.html

190 Chapter 4 Defining Classes I

If the definition of equals in Display 4.5 seems less than clear, it may help to rewrite
it as follows using the this parameter:

public boolean equals(DateFourthTry otherDate)
{
 return (((this.month).equals(otherDate.month))
 && (this.day == otherDate.day) && (this.year == otherDate.year));
}

So if date1 and date2 are objects of the class DateFourthTry, then date1.equals
(date2) returns true provided the three instance variables in date1 have values that are
equal to the three instance variables in date2.

Also, note that the method in the definition of equals that is used to compare
months is not the equals for the class DateFourthTry but the equals for the class
String. You know this because the calling object, which is this.month, is of type
String.

(Remember we use the equals method of the class String because == does not work
correctly for comparing String values. This was discussed in the Pitfall section of
Chapter 3 entitled “Using == with Strings.”)

(In Chapter 7, you will see that there are reasons to make the definition of the
equals method a bit more involved. But, the spirit of what an equals method should
be is very much like what we are now doing, and it is the best we can do with what we
know so far.)

The method toString should be defined so that it returns a String value that repre-
sents the data in the object. One nice thing about the method toString is that it makes
it easy to output an object to the screen. If date is of type DateFourthTry, then you can
output the date to the screen as follows:

System.out.println(date.toString());

In fact, System.out.println was written so that it will automatically invoke toString()
if you do not include it. So, the object date can also be output by the following simpler
and equivalent statement:

System.out.println(date);

This means that the method writeOutput in Display 4.5 is superfluous and could
safely be omitted from the class definition.

If you look at Display 4.6, you will see that toString is called automatically even if
the object is connected to some other string with a +, as in

System.out.println(date1 + " equals " + date2);

In this case, it is really the plus operator that causes the automatic invocation of
toString(). So, the following is also legal:

String s = date1 + " equals " + date2;

toString

println used
with objects

+ used
with objects

5640_ch04.fm Page 190 Wednesday, February 11, 2004 2:14 PM

Class Definitions 191

The preceding is equivalent to

String s = date1.toString() + " equals " + date2.toString();

THE METHODS equals AND toString

Usually, your class definitions should contain an equals method and a toString method.

An equals method compares the calling object to another object and should return true when
the two objects are intuitively equal. When comparing objects of a class type, you normally use
the method equals, not ==.

The toString method should return a string representation of the data in the calling object. If a
class has a toString method, then you can use an object of the class as an argument to the
methods System.out.println and System.out.print.

See Display 4.5 for an example of a class with equals and toString methods.

Tip

TESTING METHODS

Each method should be tested in a program in which it is the only untested program. If you test
methods this way, then when you find an error, you will know which method contains the error. A
program that does nothing but test a method is called a driver program.

If one method contains an invocation of another method in the same class, this can complicate the
testing task. One way to test a method is to first test all the methods invoked by that method and
then test the method itself. This is called bottom-up testing.

It is sometimes impossible or inconvenient to test a method without using some other method that
has not yet been written or has not yet been tested. In this case, you can use a simplified version
of the missing or untested method. These simplified methods are called stubs. These stubs will
not necessarily perform the correct calculation, but they will deliver values that suffice for testing,
and they are simple enough that you can have confidence in their performance. For example, the
following is a possible stub:

/**
 Computes the probability of rain based on temperature, barometric pressure,
 and relative humidity. Returns the probability as a fraction between 0 and 1.
*/
public double rainChance(double temperature,
 double pressure, double humidity)
{
 return 0.5;//Not correct but good enough for a stub.
}

driver program

bottom-up testing

stub

5640_ch04.fm Page 191 Wednesday, February 11, 2004 2:14 PM

192 Chapter 4 Defining Classes I

■ RECURSIVE METHODS

Java does allow recursive method definitions. Recursive methods are covered in Chap-
ter 11. If you do not know what recursive methods are, there is no need to be con-
cerned until you reach that chapter. If you want to read about recursive methods early,
you can read Sections 11.1 and 11.2 of Chapter 11 after you complete Chapter 5.

Information Hiding and Encapsulation
We all know—the Times knows—but we pretend we don’t.

Virginia Woolf, Monday or Tuesday

Information hiding means that you separate the description of how to use a class and
the implementation details such as how the class methods are defined. You do this so
that a programmer who uses the class does not need to know the implementation
details of the class definition. The programmer who uses the class can consider the
implementation details as hidden since he or she need not look at them. Information
hiding is a way of avoiding information overloading. It keeps the information needed
by a programmer using the class within reasonable bounds. Another term for informa-
tion hiding is abstraction. The use of the term abstraction for information hiding
makes sense if you think about it a bit. When you abstract something you are discard-
ing some of the details.

THE FUNDAMENTAL RULE FOR TESTING METHODS

Every method should be tested in a program in which every other method in the testing program
has already been fully tested and debugged.

Self-Test Exercises

14. In the definition of precedes in Display 4.5, we used

month.equals(otherDate.month)

to test whether two months are equal, but we used

getMonth() < otherDate.getMonth()

to test whether one month comes before another. Why did we use month in one case and
getMonth in another case?

15. What is the fundamental rule for testing methods?

recursive method

4.2

information hiding

abstraction

5640_ch04.fm Page 192 Wednesday, February 11, 2004 2:14 PM

Information Hiding and Encapsulation 193

Encapsulation means grouping software into a unit in such a way that it is easy to
use because there is a well-defined simple interface. So, encapsulation and information
hiding are two sides of the same coin.

Java has a way of officially hiding details of a class definition. To hide details, you
mark them as private, a concept we discuss next.

■ public AND private MODIFIERS

Compare the instance variables in Displays 4.1 and 4.2. In Display 4.1 each instance
variable is prefaced with the modifier public. In Display 4.2 each instance variable is
prefaced with the modifier private. The modifier public means that there are no
restrictions on where the instance variable can be used. The modifier private means
that the instance variable cannot be accessed by name outside of the class definition.

For example, the following would produce a compiler error message if used in a program:

DateSecondTry date = new DateSecondTry();
date.month = "Jan";
date.day = 1;
date.year = 2006;

ENCAPSULATION

Encapsulation means that the data and the actions are combined into a single item (in our case,
a class object) and that the details of the implementation are hidden. The terms information hid-
ing and encapsulation deal with the same general principle: If a class is well designed, a pro-
grammer who uses a class need not know all the details of the implementation of the class but
need only know a much simpler description of how to use the class.

 API

The term API stands for application programming interface. The API for a class is a description of
how to use the class. If your class is well designed, using the encapsulation techniques we discuss
in this book, then a programmer who uses your class need only read the API and need not look at
the details of your code for the class definition.

ADT

The term ADT is short for abstract data type. An ADT is a data type that is written using good
information-hiding techniques.

encapsulation

public
private

5640_ch04.fm Page 193 Wednesday, February 11, 2004 2:14 PM

194 Chapter 4 Defining Classes I

In fact, any one of the three assignments would be enough to trigger a compiler error.
This is because, as shown in Display 4.2, each of the instance variables month, day, and
year is labeled private.

If, on the other hand, we had used the class DateFirstTry from Display 4.1 instead
of the class DateSecondTry in the preceding code, then the code would be legal and
would compile and run with no error messages. This is because, in the definition of
DateFirstTry (Display 4.1), each of the instance variables month, day, and year is
labeled public.

It is considered good programming practice to make all instance variables private. As
we will explain a little later in this chapter, this is intended to simplify the task of any
programmer using the class. But before we say anything about how, on balance, this
simplifies the job of a programmer who uses the class, let’s see how it complicates the
job of a programmer who uses the class.

Once you label an instance variable as private, there is then no way to change its
value (nor to reference the instance variable in any other way), except by using one of
the methods belonging to the class. Note that even when an instance variable is private,
you can still access it through methods of the class. For the class DateSecondTry, you
can change the values of the instance variables with the method readInput and you can
obtain the values of the instance variables with the methods whose names start with
get. So, the qualifier private does not make it impossible to access the instance vari-
ables. It just makes it illegal to use their names, which can be a minor nuisance.

The modifiers public and private before a method definition have a similar mean-
ing. If the method is labeled public, there are no restrictions on its usage. If the
method is labeled private, the method can only be used in the definition of another
method of the same class.

Any instance variable can be labeled either public or private. Any method can be
public or private. However, normal good programming practices require that all
instance variables be private and typically most methods be public. Normally, a method
is private only if it is being used solely as a helping method in the definition of other
methods.

Example

YET ANOTHER DATE CLASS

Display 4.7 contains another, much improved, definition of a class for a date. Note that all
instance variables are private and that two methods are private. We made the methods dateOK
and monthString private because they are just helping methods used in the definitions of other
methods. A user of the class DateFifthTry would not (in fact, cannot) use either of the methods
dateOK or monthString. This is all hidden information that need not concern a programmer

5640_ch04.fm Page 194 Wednesday, February 11, 2004 2:14 PM

Information Hiding and Encapsulation 195

using the class. The method monthString was public in previous versions of our date classes
because we had not yet discussed the private modifier. It is now marked private because it is
just a helping method.

Note that the class DateFifthTry uses the method dateOK to make sure that any changes to
instance variables make sense. You cannot use any methods, such as readInput or setDate, to
set the instance variables so that they represent an impossible date like January 63, 2005. If you
try to do so, your program would end with an error message. (To make our definition of the
method dateOK simple, we did not check for certain impossible dates, such as February 31, but it
would be easy to exclude these dates as well.)

The methods dateOK and equals each return a value of type boolean. That means they return a
value that is either true or false and so can be used as the Boolean expression in an if-else
statement, while statement, or other loop statement. This is illustrated by the following, which is
taken from the definition of the method setDate in Display 4.7:

if (dateOK(month, day, year))
{
 this.month = monthString(month);
 this.day = day;
 this.year = year;
}
else
{
 System.out.println("Fatal Error");
 System.exit(0);
}

Note that, although all the instance variables are private, a programmer using the class can still
change or access the value of an instance variable using the methods that start with set or get.
This is discussed more fully in the next subsection, “Accessor and Mutator Methods.”

Note that there is a difference between what we might call the inside view and the outside view of
the class DateFifthTry. A date like July 4, 1776 is represented inside the class object as the
string value "Jul" and the two int values 4 and 1776. But, if a programmer using the same
class object asks for the date using getMonth, getDay, and getYear, he or she will get the three
int values 7, 4, and 1776. From inside the class, a month is a string value, but from outside the
class, a month is an integer. The description of the data in a class object need not be a simple
direct description of the instance variables.

Note that the method definitions in a class need not be given in any particular order. In particu-
lar, it is perfectly acceptable to give the definition the method dateOK after the definitions of
methods that use dateOK. Indeed, any ordering of the method definitions is acceptable. Use
whatever order seems to make the class easiest to read. (Those who come to Java from certain
other programming languages should note that there is no kind of forward reference needed
when a method is used before it is defined.)

5640_ch04.fm Page 195 Wednesday, February 11, 2004 2:14 PM

196 Chapter 4 Defining Classes I

Display 4.7 Yet Another Date Class (Part 1 of 4)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DateFifthTry
5 {
6 private String month; //always 3 letters long, as in Jan, Feb, etc.
7 private int day;
8 private int year; //a four digit number.

9 public void writeOutput()

10 {
11 System.out.println(month + " " + day + ", " + year);
12 }

13 public void readInput() throws IOException
14 {
15 boolean tryAgain = true;
16 BufferedReader keyboard = new BufferedReader(
17 new InputStreamReader(System.in));
18 while (tryAgain)
19 {
20 System.out.println(
21 "Enter month, day, and year on three lines.");
22 System.out.println(
23 "Enter month, day, and year as three integers.");

24 int monthInput = Integer.parseInt(keyboard.readLine());
25 int dayInput = Integer.parseInt(keyboard.readLine());
26 int yearInput = Integer.parseInt(keyboard.readLine());
27 if (dateOK(monthInput, dayInput, yearInput))
28 {
29 setDate(monthInput, dayInput, yearInput);
30 tryAgain = false;
31 }
32 else
33 System.out.println("Illegal date. Reenter input.");
34 }
35 }
36 public void setDate(int month, int day, int year)
37 {
38 if (dateOK(month, day, year))
39 {
40 this.month = monthString(month);
41 this.day = day;
42 this.year = year;
43 }

Note that this version of
readInput checks to see that the
input is reasonable.

5640_ch04.fm Page 196 Wednesday, February 11, 2004 2:14 PM

codes196.html

Information Hiding and Encapsulation 197

Display 4.7 Yet Another Date Class (Part 2 of 4)

44 else
45 {
46 System.out.println("Fatal Error");
47 System.exit(0);
48 }
49 }

50 public void setMonth(int monthNumber)
51 {
52 if ((monthNumber <= 0) || (monthNumber > 12))
53 {
54 System.out.println("Fatal Error");
55 System.exit(0);
56 }
57 else
58 month = monthString(monthNumber);
59 }

60 public void setDay(int day)
61 {
62 if ((day <= 0) || (day > 31))
63 {
64 System.out.println("Fatal Error");
65 System.exit(0);
66 }
67 else
68 this.day = day;
69 }
70 public void setYear(int year)
71 {
72 if ((year < 1000) || (year > 9999))
73 {
74 System.out.println("Fatal Error");
75 System.exit(0);
76 }
77 else
78 this.year = year;
79 }

80 public boolean equals(DateFifthTry otherDate)
81 {
82 return ((month.equals(otherDate.month))
83 && (day == otherDate.day) && (year == otherDate.year));
84 }

Within the definition of DateFifthTry, you can directly access
private instance variables of any object of type DateFifthTry.

5640_ch04.fm Page 197 Wednesday, February 11, 2004 2:14 PM

198 Chapter 4 Defining Classes I

Display 4.7 Yet Another Date Class (Part 3 of 4)

85 public boolean precedes(DateFifthTry otherDate)
86 {
87 return ((year < otherDate.year) ||
88 (year == otherDate.year && getMonth() < otherDate.getMonth()) ||
89 (year == otherDate.year && month.equals(otherDate.month)
90 && day < otherDate.day));
91 }

 <The definitions of the following methods are the same as in Display 4.2 and Display 4.5:
 getMonth, getDay, getYear, and toString.>

92 private boolean dateOK(int monthInt, int dayInt, int yearInt)
93 {
94 return ((monthInt >= 1) && (monthInt <= 12) &&
95 (dayInt >= 1) && (dayInt <= 31) &&
96 (yearInt >= 1000) && (yearInt <= 9999));
97 }

98 private String monthString(int monthNumber)
99 {

100 switch (monthNumber)
101 {
102 case 1:
103 return "Jan";
104 case 2:
105 return "Feb";
106 case 3:
107 return "Mar";
108 case 4:
109 return "Apr";
110 case 5:
111 return "May";
112 case 6:
113 return "Jun";
114 case 7:
115 return "Jul";
116 case 8:
117 return "Aug";
118 case 9:
119 return "Sep";
120 case 10:
121 return "Oct";
122 case 11:
123 return "Nov";

Within the definition of DateFifthTry, you can directly access
private instance variables of any object of type DateFifthTry.

5640_ch04.fm Page 198 Wednesday, February 11, 2004 2:14 PM

Information Hiding and Encapsulation 199

■ ACCESSOR AND MUTATOR METHODS

You should always make all instance variables in a class private. But, you may some-
times need to do something with the data in a class object. The special-purpose meth-
ods, such as toString, equals, and any input methods, will allow you to do many
things with the data in an object. But, sooner or later you will want to do something
with the data for which there are no special-purpose methods. How can you do any-
thing new with the data in an object? The answer is that you can do anything that you
might reasonably want (and that the class design specifications consider to be legiti-
mate), provided you equip your classes with suitable accessor and mutator methods.
These are methods that allow you to access and change the data in an object, usually in
a very general way. Accessor methods allow you to obtain the data. In Display 4.7, the
methods getMonth, getDay, and getYear are accessor methods. The accessor methods
need not literally return the values of each instance variable, but they must return
something equivalent to those values. For example, the method getMonth returns the
number of the month, even though the month is stored in a String instance variable.
Although it is not required by the Java language, it is a generally accepted good pro-
gramming practice to spell the names of accessor methods starting with get.

Mutator methods allow you to change the data in a class object. In Display 4.7, the
methods whose names begin with the word set are mutator methods. It is a generally
accepted good programming practice to use names that begin with the word set for
mutator methods. Your class definitions will typically provide a complete set of public

Self-Test Exercises

16. Following the style guidelines given in this book, when should an instance variable be
marked private?

17. Following the style guidelines given in this book, when should a method be marked pri-
vate?

Display 4.7 Yet Another Date Class (Part 4 of 4)

124 case 12:
125 return "Dec";
126 default:
127 System.out.println("Fatal Error");
128 System.exit(0);
129 return "Error"; //to keep the compiler happy
130 }
131 }

132 }

accessor methods

mutator methods

5640_ch04.fm Page 199 Wednesday, February 11, 2004 2:14 PM

200 Chapter 4 Defining Classes I

accessor methods and typically at least some public mutator methods. There are, how-
ever, important classes, such as the class String, that have no public mutator methods.

At first glance, it may look as if accessor and mutator methods defeat the purpose of
making instance variables private, but if you look carefully at the mutator methods in
Display 4.7, you will see that the mutator and accessor methods are not equivalent to
making the instance variables public. Notice the mutator methods, that is, the ones
that begin with set. They all test for an illegal date and end the program with an error
message if there is an attempt to set the instance variables to any illegal values. If the
variables were public you could set the data to values that do not make sense for a date,
such as January 42, 1930. With mutator methods, you can control and filter changes to
the data. (As it is, you can still set the data to values that do not represent a real date,
such as February 31, but as we already noted, it would be easy to exclude these dates as
well. We did not exclude these dates to keep the example simple. See Self-Test Exercise
20 for a more complete date check method.)

The way that a well-designed class definition uses private instance variables and
public accessor and mutator methods to implement the principle of encapsulation is
diagrammed in Display 4.8.

Display 4.8 Encapsulation

Implementation details
hidden in the capsule:

Private instance variables

Private constants

Private methods

Bodies of public and
private method definitions

Programmer who
uses the class

An encapsulated class

A class definition should have
 no public instance variables.

Interface available to a
programmer using the class:

Comments

Headings of public accessor,
mutator, and other methods

Public defined constants

5640_ch04.fm Page 200 Wednesday, February 11, 2004 2:14 PM

Information Hiding and Encapsulation 201

■ PRECONDITIONS AND POSTCONDITIONS

One good way to write a method comment is to break it down into two kinds of infor-
mation, called the precondition and the postcondition. The precondition states what is
assumed to be true when the method is called. The method should not be used and
cannot be expected to perform correctly unless the precondition holds. The post-
condition describes the effect of the method call; that is, the postcondition tells what
will be true after the method is executed in a situation in which the precondition holds.
For a method that returns a value, the postcondition will describe the value returned by
the method.

For example, the following is an example of a method heading from Display 4.7
with a precondition and postcondition added:

/**
 Precondition: All instance variables of the calling object have values.
 Postcondition: The data in the calling object has been written to the screen.
*/
public void writeOutput()

You do not need to know the definition of the method writeOutput to use this
method. All that you need to know to use this method is given by the precondition and

Tip

A CLASS HAS ACCESS TO PRIVATE MEMBERS OF ALL OBJECTS OF THE CLASS

Consider the definition of the method equals for the class DateFifthTry, given in Display 4.7
and repeated below:

public boolean equals(DateFifthTry otherDate)
{
 return ((month.equals(otherDate.month))
 && (day == otherDate.day) && (year == otherDate.year));
}

You might object that otherDate.month, otherDate.day, and otherDate.year are illegal
since month, day, and year are private instance variables of some object other than the calling
object. Normally that objection would be correct. However, the object otherDate is of the same
type as the class being defined, so this is legal. In the definition of a class, you can access private
members of any object of the class, not just private members of the calling object.

Similar remarks apply to the method precedes in the same class. In one place in the definition of
precedes we used otherDate.getMonth() rather than otherDate.month only because we
wanted the month as an integer instead of a string. We did, in fact, use otherDate.month else-
where in the definition of precedes.

precondition

postcondition

5640_ch04.fm Page 201 Wednesday, February 11, 2004 2:14 PM

202 Chapter 4 Defining Classes I

postcondition. (The importance of this is more dramatic when the definition of the
method is longer than that of writeOutput.)

When the only postcondition is a description of the value returned, programmers
usually omit the word Postcondition, as in the following example:

/**
 Precondition: All instance variables of the calling object have values.
 Returns a string describing the data in the calling object.
*/
public String toString()

Some programmers choose not to use the words precondition and postcondition in
their method comments. However, whether you use the words or not, you should
always think in terms of precondition and postcondition when designing a method and
when deciding what to include in the method comment.

Overloading
A good name is better than precious ointment...

Ecclesiastes 7:1

Two (or more) different classes can have methods with the same name. For example,
many classes have a method named toString. It is easy to see why this is acceptable.
The type of the calling object allows Java to decide which definition of the method
toString to use. It uses the definition of toString given in the definition of the class
for the calling object. You may be more surprised to learn that two or more methods in
the same class can have the same method name. This is called overloading and is the
topic of this section.

Self-Test Exercises

18. List all the accessor methods in the class DateFifthTry in Display 4.7.

19. List all the mutator methods in the class DateFifthTry in Display 4.7.

20. Write a better version of the method dateOK with three int parameters (Display 4.7). This
better version checks for the correct number of days in each month and does not just allow
31 days in any month. It will help to define another helping method named leapYear,
which takes an int argument for a year and returns true if the year is a leap year. February
has 29 days in leap years and only 28 days in other years. Use the following rule for deter-
mining if the year is a leap year: A year is a leap year if it is divisible by 4 but is not divisible
by 100 or if it is divisible by 400.

4.3

overloading

5640_ch04.fm Page 202 Wednesday, February 11, 2004 2:14 PM

Overloading 203

■ RULES FOR OVERLOADING

In Display 4.9 we have added two methods named setDate to our date class so that
there is a total of three methods named setDate. This is an example of overloading the
method name setDate. On the following three lines we display the headings of these
three methods:

public void setDate(int month, int day, int year)
public void setDate(String month, int day, int year)
public void setDate(int year)

Notice that each method has a different parameter list. The first two differ in the type
of their first parameter. The last one differs from the other two by having a different
number of parameters.

The name of a method and the list of parameter types in the heading of the method
definition is called the method signature. The signatures for these three method defini-
tions are

setDate(int, int, int)
setDate(String, int, int)
setDate(int)

When you overload a method name, each of the method definitions in the class must
have a different signature.

SIGNATURE

The signature of a method consists of the method name and the list of types for parameters that
are listed in the heading of the method name.

EXAMPLE:

If a method has the heading

public int computeSomething(int n1, double x1,
 double x2, String name);

then the signature is

computeSomething(int, double, double, String)

Note that the return type is not part of the method signature.

method signature

5640_ch04.fm Page 203 Wednesday, February 11, 2004 2:14 PM

204 Chapter 4 Defining Classes I

In Display 4.9 we also overloaded the method name dateOK so that there are two differ-
ent methods named dateOK. The two signatures for the two methods named dateOK are

dateOK(int, int, int)
dateOK(String, int, int)

Display 4.9 Overloading Method Names (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DateSixthTry
5 {
6 private String month; //always 3 letters long, as in Jan, Feb, etc.
7 private int day;
8 private int year; //a four digit number.

9 public void setDate(int monthInt, int day, int year)
10 {
11 if (dateOK(monthInt, day, year))
12 {
13 this.month = monthString(monthInt);
14 this.day = day;
15 this.year = year;
16 }
17 else
18 {
19 System.out.println("Fatal Error");
20 System.exit(0);
21 }
22 }

23 public void setDate(String monthString, int day, int year)
24 {
25 if (dateOK(monthString, day, year))
26 {
27 this.month = monthString;
28 this.day = day;
29 this.year = year;
30 }
31 else
32 {
33 System.out.println("Fatal Error");
34 System.exit(0);
35 }
36 }

There are three different methods
named setDate. (One is in Part 2
of this Display.)

5640_ch04.fm Page 204 Wednesday, February 11, 2004 2:14 PM

codes204.html

Overloading 205

OVERLOADING

Within one class, you can have two (or more) definitions of a single method name. This is called
overloading the method name. When you overload a method name, any two definitions of the
method name must have different signatures; that is, any two definitions of the method name
must either have different numbers of parameters or some parameter position must be of differ-
ing types in the two definitions.

Display 4.9 Overloading Method Names (Part 2 of 2)

37 public void setDate(int year)
38 {
39 setDate(1, 1, year);
40 }

41 private boolean dateOK(int monthInt, int dayInt, int yearInt)
42 {
43 return ((monthInt >= 1) && (monthInt <= 12) &&
44 (dayInt >= 1) && (dayInt <= 31) &&
45 (yearInt >= 1000) && (yearInt <= 9999));
46 }

47 private boolean dateOK(String monthString, int dayInt, int yearInt)
48 {
49 return (monthOK(monthString) &&
50 (dayInt >= 1) && (dayInt <= 31) &&
51 (yearInt >= 1000) && (yearInt <= 9999));
52 }

53 private boolean monthOK(String month)
54 {
55 return (month.equals("Jan") || month.equals("Feb") ||
56 month.equals("Mar") || month.equals("Apr") ||
57 month.equals("May") || month.equals("Jun") ||
58 month.equals("Jul") || month.equals("Aug") ||
59 month.equals("Sep") || month.equals("Oct") ||
60 month.equals("Nov") || month.equals("Dec"));
61 }

 <The rest of the methods are the same as in Display 4.7, except that
 the parameter to equals and precedes is, of course, of type DateSixthTry.>

62 }

Two different methods
named dateOK

Two different methods
named setDate

5640_ch04.fm Page 205 Wednesday, February 11, 2004 2:14 PM

206 Chapter 4 Defining Classes I

Display 4.10 gives a simple example of a program using the overloaded method
name setDate. Note that for each invocation of a method named setDate, only one of
the definitions of setDate has a signature that matches the types of the arguments.

Pitfall

OVERLOADING AND AUTOMATIC TYPE CONVERSION

Automatic type conversion of arguments (such as converting an int to a double when the
parameter is of type double) and overloading can sometimes interact in unfortunate ways. So,
you need to know how these two things interact.

For example, consider the following method that might be added to the class DateSixthTry in
Display 4.9:

public void increase(double factor)
{
 year = (int)(year + factor*year);
}

Display 4.10 Using an Overloaded Method Name

1 public class OverloadingDemo
2 {

3 public static void main(String[] args)
4 {
5 DateSixthTry date1 = new DateSixthTry(),
6 date2 = new DateSixthTry(),
7 date3 = new DateSixthTry();

8 date1.setDate(1, 2, 2007);
9 date2.setDate("Feb", 2, 2007);

10 date3.setDate(2007);

11 System.out.println(date1);
12 System.out.println(date2);
13 System.out.println(date3);
14 }
15 }

SAMPLE DIALOGUE

Jan 2, 2007
Feb 2, 2007
Jan 1, 2007

5640_ch04.fm Page 206 Wednesday, February 11, 2004 2:14 PM

codes206.html

Overloading 207

If you add this method to the class DateSixthTry, then the following presents no problems,
where date is an object of type DateSixthTry that has been set to some date:

date.increase(2);

The int value of 2 is type cast to the double value 2.0 and the value of date.year is changed
as follows:

date.year = (int)(date.year + 2.0*date.year);

(Since year is private in the class DateSixthTry, you cannot write this in a program that uses
the class DateSixthTry, but the meaning of this expression is clear.)

So far, so good. But, now suppose we also add the following method definition to the class
DateSixthTry:

public void increase(int term)
{
 year = year + term;
}

This is a valid overloading because the two methods named increase take parameters of differ-
ent types.

With both of these methods named increase added to the class, the following now behaves dif-
ferently:

date.increase(2);

If Java can find an exact match of types, it will use the method definition with an exact match
before it tries to do any automatic type casts. So now, the displayed invocation of
date.increase is equivalent to

date.year = date.year + 2;

However, if you meant to use an argument of 2.0 for date.increase and instead used 2,
counting on an automatic type cast, then this is not what you want.

OVERLOADING AND AUTOMATIC TYPE CONVERSION

Java always looks for a method signature that exactly matches the method invocation before it
tries to use automatic type conversion. If Java can find a definition of a method that exactly
matches the types of the arguments, it will use that definition. Only after it fails to find an exact
match will Java try automatic type conversions to find a method definition that matches the (type
cast) types of the method invocation.

5640_ch04.fm Page 207 Wednesday, February 11, 2004 2:14 PM

208 Chapter 4 Defining Classes I

It is best to avoid overloading where there is a potential for interacting dangerously with auto-
matic type casting, as in the examples discussed in this Pitfall section.

In some cases of overloading, a single method invocation can be resolved in two different ways,
depending on how overloading and type conversion interact. Such ambiguous method invoca-
tions are not allowed in Java and will produce an error message. For example, you can overload a
method named doSomething by giving two definitions that have the following two method
headings in a SampleClass:

public class SampleClass
{
 public void doSomething(double n1, int n2)
 .
 .
 .
 public void doSomething(int n1, double n2)
 .
 .
 .

Such overloading is legal, but there is a problem. Suppose aSampleObject is an object of type
SampleClass. An invocation such as the following will produce an error message, because Java
cannot decide which overloaded definition of doSomething to use:

aSampleObject.doSomething(5, 10);

Java cannot decide whether it should convert the int value 5 to a double value and use the first
definition of doSomething, or convert the int value 10 to a double value and use the second
definition. In this situation, the Java compiler issues an error message indicating that the method
invocation is ambiguous.

The following two method invocations are allowed:

aSampleObject.doSomething(5.0, 10);
aSampleObject.doSomething(5, 10.0);

However, such situations, while legal, are confusing and should be avoided.

Pitfall

YOU CANNOT OVERLOAD BASED ON THE TYPE RETURNED

Note that the signature of a method lists only the method name and the types of the parameters
and does not include the type returned. When you overload a method name, any two methods
must have different signatures. The type returned has nothing to do with the signature of a
method. For example, a class could not have two method definitions with the following headings:

public class SampleClass2
{

5640_ch04.fm Page 208 Wednesday, February 11, 2004 2:14 PM

Overloading 209

 public int computeSomething(int n)

 .
 .
 .
 public double computeSomething(int n)
 .
 .
 .

If you think about it, there is no way that Java could allow this sort of overloading. Suppose
anObject is an object of the class SampleClass2, then in the following assignment, Java could
not decide which of the above two method definitions to use:

double answer = anObject.computeSomething(10);

Either a value of type int or a value of type double can legally be assigned to the variable
answer. So, either method definition could be used. Because of such problems, Java says it is ille-
gal to have both of these method headings in the same class.

Self-Test Exercises

21. What is the signature of each of the following method headings?

public void doSomething(int p1, char p2, int p3)
public void setMonth(int newMonth)
public void setMonth(String newMonth)
public int amount(int balance, double duration)
public double amount(int balance, double duration)

22. Consider the class DateSixthTry in Display 4.9. Would it be legal to add two method
definitions with the following two method headings to the class DateSixthTry?

public void setMonth(int newMonth)
public void setMonth(String newMonth)

23. Consider the class DateSixthTry in Display 4.9. Would it be legal to add two method
definitions with the following two method headings to the class DateSixthTry?

public void setMonth(int newMonth)
private void setMonth(int newMonth)

24. Consider the class DateSixthTry in Display 4.9. Would it be legal to add two method
definitions with the following two method headings to the class DateSixthTry?

public int getMonth()
public String getMonth()

5640_ch04.fm Page 209 Wednesday, February 11, 2004 2:14 PM

210 Chapter 4 Defining Classes I

Constructors
Well begun is half done.

Proverb

You often want to initialize the instance variables for an object when you create the
object. As we will see later in this book, there are other initializing actions you might
also want to take, but initializing instance variables is the most common sort of initial-
ization. A constructor is a special variety of method that is designed to perform such ini-
tialization. In this section, we tell you how to define and use constructors.

■ CONSTRUCTOR DEFINITIONS

Although you may not have realized it, you have already been using constructors every
time you used the new operator to create an object, as in the following example:

DateSixthTry date1 = new DateSixthTry();

The expression new DateSixthTry() is an invocation of a constructor. A constructor is
a special variety of method that, among other things, must have the same name as the
class. So, the first occurrence of DateSixthTry in the above code is a class name and the
second occurrence of DateSixthTry is the name of a constructor. If you add no con-
structor definitions to your class, then Java automatically creates a constructor that
takes no arguments. We have been using this automatically provided constructor up
until now. The automatically provided constructor creates the object but does little
else. It is preferable to define your own constructors so that you can have the construc-
tor initialize instance variables as you want or do whatever other initialization actions
you want.

In Display 4.11 we have rewritten our date class one last time by adding five con-
structors. Since this is our final date class, we have included all method definitions in
the display so you can see the entire class definition. (We have omitted writeOutput
because it would be superfluous, as noted in the earlier subsection entitled “The Meth-
ods equals and toString.”)

YOU CANNOT OVERLOAD OPERATORS IN JAVA

Many programming languages, such as C++, allow you to overload operators, such as +, so that
the operator can be used with objects of some class you define, as well as being used for such
things as numbers. You cannot do this in Java. If you want to have an “addition” in your class,
you must use a method name, such as add, and ordinary method syntax; you cannot define oper-
ators, such as the + operator, to work with objects of a class you define .

4.4

constructor

5640_ch04.fm Page 210 Wednesday, February 11, 2004 2:14 PM

Constructors 211

Display 4.11 A Class with Constructors (Part 1 of 5)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class Date
5 {
6 private String month; //always 3 letters long, as in Jan, Feb, etc.
7 private int day;
8 private int year; //a four digit number.

9 public Date()
10 {
11 month = "Jan";
12 day = 1;
13 year = 1000;
14 }

15 public Date(int monthInt, int day, int year)
16 {
17 setDate(monthInt, day, year);
18 }

19 public Date(String monthString, int day, int year)
20 {
21 setDate(monthString, day, year);
22 }

23 public Date(int year)
24 {
25 setDate(1, 1, year);
26 }

27 public Date(Date aDate)
28 {
29 if (aDate == null)//Not a real date.
30 {
31 System.out.println("Fatal Error.");
32 System.exit(0);
33 }

 <Definition of this constructor continues in Part 2.>

34 month = aDate.month;
35 day = aDate.day;
36 year = aDate.year;
37 }

No-argument constructor

This is our final definition of a class
whose objects are dates.

We will have more to say about
this constructor in Chapter 5.
Although you have had enough
material to use this constructor,
you need not worry about it until
Section 5.3 of Chapter 5.

A constructor usually initializes all
instance variables, even if there is not
a corresponding parameter.

You can invoke another method
inside a constructor definition.

5640_ch04.fm Page 211 Wednesday, February 11, 2004 2:14 PM

codes211.html

212 Chapter 4 Defining Classes I

Display 4.11 A Class with Constructors (Part 2 of 5)

38 public void setDate(int monthInt, int day, int year)
39 {
40 if (dateOK(monthInt, day, year))
41 {
42 this.month = monthString(monthInt);
43 this.day = day;
44 this.year = year;
45 }
46 else
47 {
48 System.out.println("Fatal Error");
49 System.exit(0);
50 }
51 }

52 public void setDate(String monthString, int day, int year)
53 {
54 if (dateOK(monthString, day, year))
55 {
56 this.month = monthString;
57 this.day = day;
58 this.year = year;
59 }
60 else
61 {
62 System.out.println("Fatal Error");
63 System.exit(0);
64 }
65 }

66 public void setDate(int year)
67 {
68 setDate(1, 1, year);
69 }
70 public void setYear(int year)
71 {
72 if ((year < 1000) || (year > 9999))
73 {
74 System.out.println("Fatal Error");
75 System.exit(0);
76 }
77 else
78 this.year = year;
79 }

The mutator methods, whose names begin with set,
are used to reset the data in an object after the object
has been created using new and a constructor.

5640_ch04.fm Page 212 Wednesday, February 11, 2004 2:14 PM

Constructors 213

Display 4.11 A Class with Constructors (Part 3 of 5)

80 public void setMonth(int monthNumber)
81 {
82 if ((monthNumber <= 0) || (monthNumber > 12))
83 {
84 System.out.println("Fatal Error");
85 System.exit(0);
86 }
87 else
88 month = monthString(monthNumber);
89 }

90 public void setDay(int day)
91 {
92 if ((day <= 0) || (day > 31))
93 {
94 System.out.println("Fatal Error");
95 System.exit(0);
96 }
97 else
98 this.day = day;
99 }

100 public int getMonth()
101 {
102 if (month.equals("Jan"))
103 return 1;
104 else if (month.equals("Feb"))
105 return 2;
106 else if (month.equals("Mar"))
107 return 3;
 . . .

 <The omitted cases are obvious, but if need be, you can see all the cases in Display 4.2.>
 . . .

108 else if (month.equals("Oct"))
109 return 10;
110 else if (month.equals("Nov"))
111 return 11;
112 else if (month.equals("Dec"))
113 return 12;
114 else
115 {
116 System.out.println("Fatal Error");
117 System.exit(0);
118 return 0; //Needed to keep the compiler happy
119 }
120 }

5640_ch04.fm Page 213 Wednesday, February 11, 2004 2:14 PM

214 Chapter 4 Defining Classes I

Display 4.11 A Class with Constructors (Part 4 of 5)

121 public int getDay()
122 {
123 return day;
124 }

125 public int getYear()
126 {
127 return year;
128 }

129 public String toString()
130 {
131 return (month + " " + day + ", " + year);
132 }
133 public boolean equals(Date otherDate)
134 {
135 return ((month.equals(otherDate.month))
136 && (day == otherDate.day) && (year == otherDate.year));
137 }

138 public boolean precedes(Date otherDate)
139 {
140 return ((year < otherDate.year) ||
141 (year == otherDate.year && getMonth() < otherDate.getMonth()) ||
142 (year == otherDate.year && month.equals(otherDate.month)
143 && day < otherDate.day));
144 }

145 public void readInput() throws IOException
146 {
147 boolean tryAgain = true;
148 BufferedReader keyboard = new BufferedReader(
149 new InputStreamReader(System.in));
150 while (tryAgain)
151 {
152 System.out.println(
153 "Enter month, day, and year on three lines.");
154 System.out.println(
155 "Enter month, day, and year as three integers.");

156 int monthInput = Integer.parseInt(keyboard.readLine());
157 int dayInput = Integer.parseInt(keyboard.readLine());
158 int yearInput = Integer.parseInt(keyboard.readLine());
159 if (dateOK(monthInput, dayInput, yearInput))
160 {

We have omitted the method writeOutput because it
would be superfluous, as noted in the subsection entitled
“The Methods equals and toString.”

The method equals of the class String

5640_ch04.fm Page 214 Wednesday, February 11, 2004 2:14 PM

Constructors 215

Display 4.11 A Class with Constructors (Part 5 of 5)

161 setDate(monthInput, dayInput, yearInput);
162 tryAgain = false;
163 }
164 else
165 System.out.println("Illegal date. Reenter input.");
166 }
167 }

168 private boolean dateOK(int monthInt, int dayInt, int yearInt)
169 {
170 return ((monthInt >= 1) && (monthInt <= 12) &&
171 (dayInt >= 1) && (dayInt <= 31) &&
172 (yearInt >= 1000) && (yearInt <= 9999));
173 }

174 private boolean dateOK(String monthString, int dayInt, int yearInt)
175 {
176 return (monthOK(monthString) &&
177 (dayInt >= 1) && (dayInt <= 31) &&
178 (yearInt >= 1000) && (yearInt <= 9999));
179 }

180 private boolean monthOK(String month)
181 {
182 return (month.equals("Jan") || month.equals("Feb") ||
183 month.equals("Mar") || month.equals("Apr") ||
184 month.equals("May") || month.equals("Jun") ||
185 month.equals("Jul") || month.equals("Aug") ||
186 month.equals("Sep") || month.equals("Oct") ||
187 month.equals("Nov") || month.equals("Dec"));
188 }

189 private String monthString(int monthNumber)
190 {
191 switch (monthNumber)
192 {
193 case 1:
194 return "Jan";
 . . .
 <The omitted cases are obvious, but if need be, you can see all the cases in Display 4.7.>
 . . .
195 default:
196 System.out.println("Fatal Error");
197 System.exit(0);
198 return "Error"; //to keep the compiler happy
199 }
200 }
201 }

The private methods need not be last, but
that’s as good a place as any.

5640_ch04.fm Page 215 Wednesday, February 11, 2004 2:14 PM

216 Chapter 4 Defining Classes I

In Display 4.11 we have used overloading to create five constructors for the class
Date. It is normal to have more than one constructor. Since every constructor must
have the same name as the class, all the constructors in a class must have the same
name. So, when you define multiple constructors, you must use overloading.

Note that when you define a constructor, you do not give any return type for the
constructor; you do not even use void in place of a return type. Also notice that con-
structors are normally public.

All the constructor definitions in Display 4.11 initialize all the instance variables,
even if there is no parameter corresponding to that instance variable. This is normal. In
a constructor definition you can do pretty much anything that you can do in any ordi-
nary method definition, but normally you only do initialization tasks like initialization
of instance variables.

When you create a new object with the operator new, you must always include the
name of a constructor after the operator new. This is the way you invoke a constructor.
As with any method invocation, you list any arguments in parentheses after the con-
structor name (which is the same as the class name). For example, suppose you want to
use new to create a new object of the class Date defined in Display 4.11. You might do
so as follows:

Date birthday = new Date("Dec", 16, 1770);

This is a call to the constructor for the class Date that takes three arguments: one of
type String and two of type int. This creates a new object to represent the date
December 16, 1770 and sets the variable birthday so that it names this new object.
Another example is the following:

Date newYearsDay = new Date(3000);

This creates a new object to represent the date January 1, 3000 and sets the variable
newYearsDay so that it names this new object.

A constructor can be called only when you create a new object with the operator
new. An attempt to call a constructor in any other way, such as the following, is illegal:

birthday.Date("Jan", 27, 1756); //Illegal!

Since you cannot call a constructor for an object after it is created, you need some
other way to change the values of the instance variables of an object. That is the pur-
pose of the setDate methods and other methods that begin with set in Display 4.11.
If birthday already names an object that was created with new, you can change the val-
ues of the instance variables as follows:

birthday.setDate("Jan", 27, 1756);

Although it is not required, such methods that reset instance variables normally are
given names that start with set.

constructor
arguments

resetting object
values

5640_ch04.fm Page 216 Wednesday, February 11, 2004 2:14 PM

Constructors 217

Although you cannot use a constructor to reset the instance variables of an already cre-
ated object, you can do something that looks very similar to that. The following is legal:

Date birthday = new Date("Dec", 16, 1770);
 .
 .
 .
birthday = new Date("Jan", 27, 1756);

However, the second invocation of the constructor does not simply change the values
of instance variables for the object. Instead, it discards the old object and allocates stor-
age for a new object before setting the instance variables. So, for efficiency (and occa-
sionally for other reasons we have not yet discussed) it is preferable to use a method like
setDate to change the data in the instance variables of an already created object.

Display 4.12 contains a demonstration program for the constructors defined in Dis-
play 4.11.

CONSTRUCTOR

A constructor is a variety of method that is called when an object of the class is created using
new. Constructors are used to initialize objects. A constructor must have the same name as the
class to which it belongs. Arguments for a constructor are given in parentheses after the class
name, as in the following examples:

EXAMPLES:

Date birthday = new Date("Dec", 16, 1770),
 theDate = new Date(2008);

A constructor is defined very much like any ordinary method except that it does not have a type
returned and does not even include a void in the constructor heading. See Display 4.11 for exam-
ples of constructor definitions.

IS A CONSTRUCTOR REALLY A METHOD?

There are differing opinions on whether or not a constructor should be called a method. Most
authorities call a constructor a method but emphasize that it is a very special kind of method with
many properties not shared with other kinds of methods. Some authorities say a constructor is a
method-like entity but not, strictly speaking, a method. All authorities agree about what a con-
structor is; the only disagreement is over whether or not it should be referred to as a method.
Thus, this is not a major issue. However, whenever you hear a phrase like “all methods” you should
make sure it does or does not include constructors. To avoid confusion we try to use the phrase
“constructors and methods” when we want to include constructors.

5640_ch04.fm Page 217 Wednesday, February 11, 2004 2:14 PM

218 Chapter 4 Defining Classes I

Tip

YOU CAN INVOKE ANOTHER METHOD IN A CONSTRUCTOR

It is perfectly legal to invoke another method within the definition of a constructor. For example,
several of the constructors in Display 4.11 invoke a mutator method to set the values of the
instance variables. This is legal because the first action taken by a constructor is to (automati-
cally) create an object with instance variables. You do not write any code to create this object.
Java creates it automatically when the constructor is invoked. Any method invocation in the body
of the constructor definition has this object as its calling object.

You can even include an invocation of one constructor within the definition of another construc-
tor. However, we will not discuss the syntax for doing that in this chapter. It will be covered in
Chapter 7.

Display 4.12 Use of Constructors

1 public class ConstructorsDemo
2 {
3 public static void main(String[] args)
4 {
5 Date date1 = new Date("Dec", 16, 1770),
6 date2 = new Date(1, 27, 1756),
7 date3 = new Date(1882),
8 date4 = new Date();

9 System.out.println("Whose birthday is " + date1 + "?");
10 System.out.println("Whose birthday is " + date2 + "?");
11 System.out.println("Whose birthday is " + date3 + "?");
12 System.out.println("The default date is " + date4 + ".");
13 }
14 }

SAMPLE DIALOGUE

Whose birthday is Dec 16, 1770?
Whose birthday is Jan 27, 1756?
Whose birthday is Jan 1, 1882?
The default date is Jan 1, 1000.

5640_ch04.fm Page 218 Wednesday, February 11, 2004 2:14 PM

codes218.html

Constructors 219

Tip

INCLUDE A NO-ARGUMENT CONSTRUCTOR

A constructor that takes no arguments is called a no-argument constructor or no-arg con-
structor. If you define a class and include absolutely no constructors of any kind, then a no-
argument constructor will be automatically created. This no-argument constructor does not do
much else but it does give you an object of the class type. So, if the definition of the class
MyClass contains absolutely no constructor definitions, then the following is legal:

MyClass myObject = new MyClass();

If your class definition includes one or more constructors of any kind, then no constructor is gen-
erated automatically. So, for example, suppose you define a class called YourClass. If you
include one or more constructors that each take one or more arguments, but you do not include a
no-argument constructor in your class definition, then there is not a no-argument constructor
and the following is illegal:

YourClass yourObject = new YourClass();

The problem with the above declaration is that it asks the compiler to invoke the no-argument
constructor, but there is no no-argument constructor in this case.

To avoid problems, you should normally include a no-argument constructor in any class you
define. If you do not want the no-argument constructor to initialize any instance variables, you
can simply give it an empty body when you implement it. The following constructor definition is
perfectly legal. It does nothing but create an object (and, as we will see later in this chapter, set
the instance variables equal to default values):

public MyClass()
{/*Do nothing.*/}

A no-argument constructor is also known as a default constructor. However, the term default
constructor is misleading since, as we have explained, a no-argument constructor is not always
provided by default. There is now a movement to replace the term default constructor with the
term no-argument constructor, but you will frequently encounter the term default constructor.

Example

THE FINAL DATE CLASS

The final version of our class for a date is given in Display 4.11. We will be using this class Date
again in Chapter 5.

no-argument
constructor

default
constructor

5640_ch04.fm Page 219 Wednesday, February 11, 2004 2:14 PM

220 Chapter 4 Defining Classes I

NO-ARGUMENT CONSTRUCTOR

A constructor with no parameters is called a no-argument constructor. If your class definition
contains absolutely no constructor definitions, then Java will automatically create a no-argument
constructor. If your class definition contains one or more constructor definitions, then Java does
not automatically generate any constructor; in this case, what you define is what you get. Most of
the classes you define should include a definition of a no-argument constructor.

Self-Test Exercises

25. If a class is named CoolClass, what names are allowed as names for constructors in the
class CoolClass?

26. Suppose you have defined a class like the following for use in a program:

public class YourClass
{
 private int information;

private char moreInformation;

 public YourClass(int newInfo, char moreNewInfo)
 {
 <Details not shown.>
 }

public YourClass()
 {
 <Details not shown.>
 }

public void doStuff()
 {
 <Details not shown.>
 }
}

Which of the following are legal in a program that uses this class?

YourClass anObject = new YourClass(42, 'A');
YourClass anotherObject = new YourClass(41.99, 'A');
YourClass yetAnotherObject = new YourClass();
yetAnotherObject.doStuff();
YourClass oneMoreObject;
oneMoreObject.doStuff();
oneMoreObject.YourClass(99, 'B');

27. What is a no-argument constructor? Does every class have a no-argument constructor?
What is a default constructor?

5640_ch04.fm Page 220 Wednesday, February 11, 2004 2:14 PM

Constructors 221

■ DEFAULT VARIABLE INITIALIZATIONS

Local variables are not automatically initialized in Java, so you must explicitly initialize
a local variable before using it. Instance variables, on the other hand, are automatically
initialized. Instance variables of type boolean are automatically initialized to false.
Instance variables of other primitive types are automatically initialized to the zero of
their type. Instance variables of a class type are automatically initialized to null, which
is a kind of placeholder for an object that will be filled in later. We will discuss null in
Chapter 5. Although instance variables are automatically initialized, we prefer to always
explicitly initialize them in a constructor, even if the initializing value is the same as the
default initialization. That makes the code clearer.

■ AN ALTERNATIVE WAY TO INITIALIZE INSTANCE VARIABLES

Instance variables are normally initialized in constructors, and that is where we prefer
to initialize them. However, there is an alternative. You can initialize instance variables
when you declare them in a class definition, as illustrated by the following:

public class Date
{
 private String month = "Jan";
 private int day = 1;
 private int year = 1000;

If you initialize instance variables in this way, you may or may not want to define con-
structors. But, if you do define any constructors, it is usually best to define a no-argu-
ment constructor even if the body of the no-argument constructor is empty.

■ THE StringTokenizer CLASS

The StringTokenizer class is used to recover the words in a multi-word string. It is
often used when reading input. However, when we covered input in Chapter 2 we
could not cover the StringTokenizer class because its use normally involves knowledge
of loops and constructors, two topics that we had not yet covered. We now have cov-
ered enough material to explain the StringTokenizer class.

When reading keyboard input either with JOptionPane or with BufferedReader
and readLine, the input is always produced as a string value corresponding to a com-
plete line of input. The class StringTokenizer can be used to decompose this string
into words so that you can treat input as multiple items on a single line.

The class StringTokenizer is in the standard Java package (library) java.util. To
tell Java where to find the class StringTokenizer, any class or program that uses the
class StringTokenizer must contain the following (or something similar) at the start of
the file:

import java.util.StringTokenizer; import

5640_ch04.fm Page 221 Wednesday, February 11, 2004 2:14 PM

222 Chapter 4 Defining Classes I

Perhaps the most common use of the StringTokenizer class is to decompose a line
of input. However, the StringTokenizer class can be used to decompose any string.
The following example illustrates a typical way that the class StringTokenizer is used:

StringTokenizer wordFactory =
 new StringTokenizer("A single word can be critical.");
while (wordFactory.hasMoreTokens())
{
 System.out.println(wordFactory.nextToken());
}

This will produce the following output:

A
single
word
can
be
critical.

The constructor invocation

new StringTokenizer("A single word can be critical.")

produces a new object of the class StringTokenizer. The assignment statement

StringTokenizer wordFactory =
 new StringTokenizer("A single word can be critical.");

gives this StringTokenizer object the name wordFactory. You may use any string in
place of "A single word can be critical." and any variable name in place of word-
Factory. The StringTokenizer object created in this way can be used to produce the
individual words in the string used as the argument to the StringTokenizer construc-
tor. These individual words are called tokens.

The method nextToken returns the first token (word) when it is invoked for the first
time, returns the second token when it is invoked the second time, and so forth. If your
code invokes nextToken after it has returned all the tokens in its string, then your pro-
gram will halt and issue an error message.

The method hasMoreTokens is a method that returns a value of type boolean; that
is, it returns either true or false. Thus, an invocation of hasMoreTokens, such as

wordFactory.hasMoreTokens()

tokens

nextToken

hasMore-
Tokens

5640_ch04.fm Page 222 Wednesday, February 11, 2004 2:14 PM

Constructors 223

is a Boolean expression, and so can be used to control a while loop. The method has-
MoreTokens returns true as long as nextToken has not yet returned all the tokens in the
string, and it returns false after the method nextToken has returned all the tokens in
the string.

When the constructor for StringTokenizer is used with a single argument, as in the
preceding example, the tokens are substrings of nonwhitespace characters, and the
whitespace characters are used as the separators for the tokens. Any string of one or
more whitespace characters is considered a separator. Thus, in the preceding example,
the last token produced by the method nextToken is "critical.", including the
period, because the period is not a whitespace character and so is not a separator.

You can specify your own set of separator characters. When you give your own set of
separator characters, you give a second argument to the constructor for StringToken-
izer. The second argument is a string consisting of all the separator characters. Thus, if
you want your separators to consist of the blank, new-line character, period, and
comma, you could proceed as in the following example:

StringTokenizer wordfactory2 =
 new StringTokenizer("Give me the word, my friend.", " \n.,");
while (wordfactory2.hasMoreTokens())
{
 System.out.println(wordfactory2.nextToken());
}

This will produce the output

Give
me
the
word
my
friend

Notice that the period and comma are not part of the tokens produced, because they
are now token separators. Also note that the string of token separators is the second
argument to the constructor.

Some of the methods for the class StringTokenizer are summarized in Display
4.13. A sample use of StringTokenizer is given in Display 4.14 .

choosing
delimiters

5640_ch04.fm Page 223 Wednesday, February 11, 2004 2:14 PM

224 Chapter 4 Defining Classes I

Self-Test Exercises

28. What would be the last line in the dialog in Display 4.14 if the user entered the following
input line instead of the one shown in Display 4.14? (The comma is omitted.)

41.98 42

29. What would be the last line in the dialog in Display 4.14 if the user entered the following
input line instead of the one shown in Display 4.14?

1, 2, 3, 4

30. What would be the last line in the dialog in Display 4.14 if the user entered the following
input line instead of the one shown in Display 4.14?

1, 2, buckle my shoe.

31. What would be the last line in the dialog in Display 4.14 if the user entered the following
input line instead of the one shown in Display 4.14?

one, two, buckle my shoe.

Display 4.13 Some Methods in the Class StringTokenizer

1 Exceptions are covered in Chapter 9. You can ignore any reference to NoSuchElementException until you reach
Chapter 9. We include it here for reference value only.

The class StringTokenizer is in the java.util package.

public StringTokenizer(String theString)

Constructor for a tokenizer that will use whitespace characters as separators when finding tokens in
theString.

public StringTokenizer(String theString, String delimiters)

Constructor for a tokenizer that will use the characters in the string delimiters as separators when
 finding tokens in theString.

public boolean hasMoreTokens()

Tests whether there are more tokens available from this tokenizer's string. When used in conjunction with
nextToken, it returns true as long as nextToken has not yet returned all the tokens in the string;
returns false otherwise.

public String nextToken()

Returns the next token from this tokenizer’s string. (Throws NoSuchElementException if there are no
more tokens to return.)1

public int countTokens()

Returns the number of tokens remaining to be returned by nextToken.

5640_ch04.fm Page 224 Wednesday, February 11, 2004 2:14 PM

Constructors 225

Display 4.14 Use of the StringTokenizer Class

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;
4 import java.util.StringTokenizer;

1 public class StringTokenizerDemo
2 {
3 public static void main(String[] args) throws IOException
4 {
5 BufferedReader keyboard = new BufferedReader(
6 new InputStreamReader(System.in));

7 System.out.println("Enter two numbers on a line.");
8 System.out.println("Place a comma between the numbers.");
9 System.out.println("Extra blank space is OK.");

10 String inputLine = keyboard.readLine();

11 String delimiters = ", "; //Comma and blank space
12 StringTokenizer numberFactory =
13 new StringTokenizer(inputLine, delimiters);

14 double number1 = 0,
15 number2 = 0; //Initialized to keep compiler happy
16 if (numberFactory.countTokens() >= 2)
17 {
18 number1 = Double.parseDouble(numberFactory.nextToken());
19 number2 = Double.parseDouble(numberFactory.nextToken());
20 }
21 else
22 {
23 System.out.println("Fatal Error.");
24 System.exit(0);
25 }
26 System.out.print("You input is ");
27 System.out.println(number1 + " and " + number2);
28 }
29 }

SAMPLE DIALOGUE

Enter two numbers on a line.
Place a comma between the numbers.
Extra blank space is OK.
 41.98, 42
You input is 41.98 and 42.0

Note that the comma and space are
delimiters, but the period is not.

5640_ch04.fm Page 225 Wednesday, February 11, 2004 2:14 PM

codes225.html

226 Chapter 4 Defining Classes I

■ Objects have both instance variables and methods. A class is a type whose values are
objects. All objects in a class have the same methods and the same types of instance
variables.

■ There are two main kinds of methods: methods that return a value and void meth-
ods. (Some specialized methods, such as constructors, are neither void methods nor
methods that return a value.)

■ When defining a method, the this parameter is a name used for the calling object.

■ Normally, your classes should each have both an equals method and a toString
method.

■ If an instance variable or method is marked private, then it cannot be directly refer-
enced anyplace except in the definition of a method of the same class.

■ Outside of the class in which it is defined, a private instance variable can be accessed
via accessor methods and changed via mutator methods.

■ A variable declared in a method is said to be a local variable. The meaning of a local
variable is confined to the method in which it is declared. The local variable goes
away when a method invocation ends. The name of a local variable can be reused for
something else outside of the method in which it is declared.

■ A parameter is like a blank in a method definition that is filled in with an argument
when the method is invoked. A parameter is actually a local variable that is initial-
ized to the value of the corresponding argument. This is known as the call-by-value
parameter-passing mechanism.

■ If a variable is used as an argument to a method, then only the value of the variable,
not the variable itself, is plugged in to the corresponding parameter.

■ Encapsulation means that the data and the actions are combined into a single item
(in our case, a class object) and that the details of the implementation are hidden.
Making all instance variables private is part of the encapsulation process.

■ A class can have two (or more) different definitions for the same method name,
provided the two definitions have different numbers of parameters or some parame-
ters of differing types. This is called overloading the method name.

■ A constructor is a variety of method that is called when you create an object of the
class using new. A constructor is intended to be used to perform initialization tasks
such as initializing instance variables. A constructor must have the same name as the
class to which it belongs.

■ A constructor with no parameters is called a no-argument constructor. If your class
definition includes no constructor definitions at all, then Java will automatically
provide a no-argument constructor. If your class definition contains any constructor
definitions at all, then no additional constructors are provided by Java. Your class
definitions should usually include a no-argument constructor.

■ The class StringTokenizer can be used to extract the tokens (words) from a string.

Chapter Summary

5640_ch04.fm Page 226 Wednesday, February 11, 2004 2:14 PM

Answers to Self-Test Exercises 227

ANSWERS TO SELF-TEST EXERCISES

1. public void makeItNewYears()
{
 month = "Jan";
 day = 1;
}

2. public void yellIfNewYear()
{
 if ((month == "Jan") && (day == 1))
 System.out.println("Hurrah!");
 else
 System.out.println("Not New Year’s Day.");
}

3. public int getNextYear()
{
 return year++;
}

4. You need to add the phrase throws IOException to the first line of echo2Lines. The
correct definition is

public void echo2Lines() throws IOException
{
 echoLine();
 echoLine():
}

5. public void happyGreeting()
{
 int count;
 for (count = 1; count <= day; count++)
 System.out.println("Happy Days!");
}

6. public double fractionDone(int targetDay)
{
 double doubleDay = day;
 return doubleDay/targetDay;
}

7. public void advanceYear(int increase)
{
 year = year + increase;
}

5640_ch04.fm Page 227 Wednesday, February 11, 2004 2:14 PM

228 Chapter 4 Defining Classes I

8. The instances of newMonth that have their values changed to 6 are indicated in color below:

public void setDate(int newMonth, int newDay, int newYear)
{
 month = monthString(newMonth);
 day = newDay;
 year = newYear;
 System.out.println("Date changed to "
 + newMonth + " " + newDay + ", " + newYear);
}

The point being emphasized here is that all instances of newMonth have their values
changed to 6. Technically speaking, the parameter newMonth is a local variable. So, there is
only one local variable named newMonth whose value is changed to 6, but the net effect, in
this case, is the same as replacing all occurrences of newMonth with 6.

9. Yes, it is legal. The point being emphasized here is that the parameter count is a local vari-
able and so can have its value changed, in this case by the decrement operator.

10. Each case has a return statement. A return statement always ends the method invoca-
tion, and hence ends the execution of the switch statement. So, a break statement would
be redundant.

11. They are assumed to be instance variables of the calling object.

12. public int getDay()
{
 return this.day;
}

public int getYear()
{
 return this.year;
}

13. public int getMonth()
{
 if (this.month.equals("Jan"))
 return 1;
 else if (this.month.equals("Feb"))
 return 2;
 else if (this.month.equals("Mar"))
 return 3;
 else if (this.month.equals("Apr"))
 return 4;
 else if (this.month.equals("May"))
 return 5;
 else if (this.month.equals("Jun"))
 return 6;
 else if (this.month.equals("Jul"))
 return 7;

5640_ch04.fm Page 228 Wednesday, February 11, 2004 2:14 PM

Answers to Self-Test Exercises 229

 else if (this.month.equals("Aug"))
 return 8;
 else if (this.month.equals("Sep"))
 return 9;
 else if (this.month.equals("Oct"))
 return 10;
 else if (this.month.equals("Nov"))
 return 11;
 else if (this.month.equals("Dec"))
 return 12;
 else
 {
 System.out.println("Fatal Error");
 System.exit(0);
 return 0; //Needed to keep the compiler happy
 }
 }

14. The instance variable month contains a string, so we used month with equals. It would
have been just as good to use

getMonth() == otherDate.getMonth()

We used getMonth() with the less-than sign because it is of type int and so works with
the less-than sign. The instance variable month is of type String and does not work with
the less-than sign.

15. Every method should be tested in a program in which every other method in the testing
program has already been fully tested and debugged.

16. All instance variables should be marked private.

17. Normally, a method is private only if it is being used solely as a helping method in the def-
inition of other methods.

18. getMonth, getDay, and getYear.

19. setDate, setMonth, setDay, and setYear.

20. private boolean dateOK(int monthInt, int dayInt, int yearInt)
 {
 if ((yearInt < 1000) || (yearInt > 9999))
 return false;

 switch (monthInt)
 {
 case 1:
 return (dayInt >= 1) && (dayInt <= 31);
 case 2:
 if (leapYear(yearInt))
 return (dayInt >= 1) && (dayInt <= 29);
 else

5640_ch04.fm Page 229 Wednesday, February 11, 2004 2:14 PM

230 Chapter 4 Defining Classes I

 return (dayInt >= 1) && (dayInt <= 28);
 case 3:
 return (dayInt >= 1) && (dayInt <= 31);
 case 4:
 return (dayInt >= 1) && (dayInt <= 30);
 case 5:
 return (dayInt >= 1) && (dayInt <= 31);
 case 6:
 return (dayInt >= 1) && (dayInt <= 30);
 case 7:
 return (dayInt >= 1) && (dayInt <= 31);
 case 8:
 return (dayInt >= 1) && (dayInt <= 31);
 case 9:
 return (dayInt >= 1) && (dayInt <= 30);
 case 10:
 return (dayInt >= 1) && (dayInt <= 31);
 case 11:
 return (dayInt >= 1) && (dayInt <= 30);
 case 12:
 return (dayInt >= 1) && (dayInt <= 31);
 default:
 System.out.println("Fatal Error");
 System.exit(0);
 return false; //to keep the compiler happy
 }
 }

 /**
 Returns true if yearInt is a leap year.
 */
 private boolean leapYear(int yearInt)
 {
 return ((yearInt % 4 == 0) && (yearInt % 100 != 0))
 || (yearInt % 400 == 0);
 }

21. doSomething(int, char, int)
setMonth(int)
setMonth(String)
amount(int, double)
amount(int, double)

22. Yes, it is legal because they have different signatures. This is a valid example of overloading.

23. No, it would be illegal because they have the same signature.

24. No, it would be illegal. You cannot overload on the basis of the type of the returned value.

25. If a class is named CoolClass, then all constructors must be named CoolClass.

5640_ch04.fm Page 230 Wednesday, February 11, 2004 2:14 PM

Programming Projects 231

26. YourClass anObject = new YourClass(42, 'A');//Legal
YourClass anotherObject = new YourClass(41.99, 'A');//Not legal
YourClass yetAnotherObject = new YourClass();//Legal
yetAnotherObject.doStuff();//Legal
YourClass oneMoreObject;//Legal
oneMoreObject.doStuff();//Not legal
oneMoreObject.YourClass(99, 'B');//Not legal

27. A no-argument constructor is a constructor with no parameters. If you define a class and
define some constructors but do not define a no-argument constructor, then the class will
have no no-argument constructor. Default constructor is another name for no-argument
constructor.

28. The last line would be the same. Since the blank space is a delimiter, a blank space is
enough to separate the tokens "41.98" and "42".

29. You input 1.0 and 2.0
The extra tokens in the input line are just not used.

30. You input 1.0 and 2.0
The extra tokens in the input line are not used, so it does not matter what they are.

31. The first two tokens are "one" and "two", but the following line of the program ends the
program with an error message:

number1 = Double.parseDouble(numberFactory.nextToken());

The token "one" cannot be converted to a value of type double by the method
Double.parseDouble.

PROGRAMMING PROJECTS

1. Define a class called Counter whose objects count things. An object of this class records a
count that is a nonnegative integer. Include methods to set the counter to 0, to increase the
count by 1, and to decrease the count by 1. Be sure that no method allows the value of the
counter to become negative. Include an accessor method that returns the current count
value and a method that outputs the count to the screen. There will be no input method or
other mutator methods. The only method that can set the counter is the one that sets it to
zero. Also, include a toString method and an equals method. Write a program (or pro-
grams) to test all the methods in your class definition.

2. Write a grading program for a class with the following grading policies:

a. There are three quizzes, each graded on the basis of 10 points.

b. There is one midterm exam, graded on the basis of 100 points.

c. There is one final exam, graded on the basis of 100 points.

5640_ch04.fm Page 231 Wednesday, February 11, 2004 2:14 PM

project231.html

232 Chapter 4 Defining Classes I

The final exam counts for 40 percent of the grade. The midterm counts for 35 percent of
the grade. The three quizzes together count for a total of 25 percent of the grade. (Do not
forget to convert the quiz scores to percentages before they are averaged in.)

Any grade of 90 or more is an A, any grade of 80 or more (but less than 90) is a B, any
grade of 70 or more (but less than 80) is a C, any grade of 60 or more (but less than 70) is
a D, and any grade below 60 is an F. The program will read in the student’s scores and out-
put the student’s record, which consists of three quiz scores and two exam scores as well as
the student’s overall numeric score for the entire course and final letter grade.

Define and use a class for the student record. The class should have instance variables for
the quizzes, midterm, final, overall numeric score for the course, and final letter grade. The
overall numeric score is a number in the range 0 to 100, which represents the weighted
average of the student’s work. The class should have methods to compute the overall
numeric grade and the final letter grade. These last methods will be void methods that set
the appropriate instance variables. Your class should have a reasonable set of accessor and
mutator methods, an equals method, and a toString method, whether or not your pro-
gram uses them. You may add other methods if you wish.

3. Write a Temperature class that has two instance variables: a temperature value (a floating-
point number) and a character for the scale, either 'C' for Celsius or 'F' for Fahrenheit.
The class should have four constructor methods: one for each instance variable (assume
zero degrees if no value is specified and Celsius if no scale is specified), one with two
parameters for the two instance variables, and a no-argument constructor (set to zero
degrees Celsius). Include (1) two accessor methods to return the temperature, one to return
the degrees Celsius, the other to return the degrees Fahrenheit—use the following formulas
to write the two methods, and round to the nearest tenth of a degree:

degreesC = 5(degreesF − 32)/9
degreesF = (9(degreesC)/5) + 32

(2) three mutator methods, one to set the value, one to set the scale ('F' or 'C'), and one
to set both; (3) three comparison methods, an equals method to test whether two temper-
atures are equal, one method to test whether one temperature is greater than another, and
one method to test whether one temperature is less than another (note that a Celsius tem-
perature can be equal to a Fahrenheit temperature as indicated by the above formulas); and
(4) a suitable toString method. Then write a driver program (or programs) that tests all
the methods. Be sure to use each of the constructors, to include at least one true and one
false case for each of the comparison methods, and to test at least the following temperature
equalities: 0.0 degrees C = 32.0 degrees F, −40.0 degrees C = −40.0 degrees F, and 100.0
degrees C = 212.0 degrees F.

4. Redefine the class Date in Display 4.11 so that the instance variable for the month is of
type int instead of type String. None of the method headings will change in any way. In
particular, no String type parameters will change to int type parameters. You must rede-
fine the methods to make things work out. Any program that uses the Date class from Dis-
play 4.11 should be able to use your Date class without any changes in the program. In

5640_ch04.fm Page 232 Wednesday, February 11, 2004 2:14 PM

project232a.html
project232b.html

Programming Projects 233

particular, the program in Display 4.12 should work the same whether the Date class is
defined as in Display 4.11 or is defined as you do it for this project. Write a test program
(or programs) that tests each method in your class definition.

5. Define a class whose objects are records on animal species. The class will have instance vari-
ables for the species name, population, and growth rate. The growth rate is a percentage
that can be positive or negative and can exceed 100 percent. Include a suitable collection of
constructors, mutator methods, and accessor methods. Also, include a toString method
and an equals method. Also, include a boolean valued method named endangered that
returns true when the growth rate is negative and returns false otherwise. Write a test
program (or programs) that tests each method in your class definition.

5640_ch04.fm Page 233 Wednesday, February 11, 2004 2:14 PM

project233.html

	code links 2:
	code links 3:
	code links 4:
	code links 5:
	code links 6:
	code links 7:
	code links 8:
	code links 9:
	code links 1:
	code links 12:
	code links 13:
	program project 4:
	1:
	3:
	4:
	5:

