firrays

6.1 INTRODUCTION TO ARRAYS 306

Creating and Accessing Arrays 307

The length Instance Variable 311

Tip: Use for Loops with Arrays 3

Pitfall: Array Indices Always Start with Zero 312
Pitfall: Array Index Out of Bounds 313
Initializing Arrays 313

Pitfall: An Array of Characters Is Not a String 315

6.2 ARRAYS AND REFERENCES 316
Arrays Are Objects 316

Pitfall: Arrays with a Class Base Type 318
Arrays Parameters 319

Pitfall: Use of = and == with Arrays 323
Arguments for the Method main [326
Methods that Return an Array 327

6.3 PROGRAMMING WITH ARRAYS 329
Partially Filled Arrays 329
Example: A Class for Partially Filled Arrays 333

Tip: Accessor Methods Need Not Simply Return
Instance Variables 339

Privacy Leaks with Array Instance Variables 340
A Preview of Vectors 342
Example: Sorting an Array 342

6.‘.. MULTIDIMENSIONAL ARRAYS 346
Multidimensional Array Basics 346
Using the length Instance Variable 350
Ragged Arrays [351

Multidimensional Array Parameters and Returned
Values 352

Example: A Grade Book Class 353
CHAPTER SUMMARY 359

ANSWERS TO SELF-TEST EXERCISES 360
PROGRAMMING PROJECTS 367

6 firrays

Memory is necessary for all the operations of reason.

Blaise Pascal, Pensées

INTRODUCTION

An array is a data structure used to process a collection of data that is all of the
same type, such as a list of numbers of type double or a list of strings. In this
chapter we introduce you to the basics of defining and using arrays in Java.

PREREQUISITES

Section 6.1 requires only Chapters 1 through 3 and Section 4.1 of Chapter 4.
Indeed, much less than all of Section 4.1 is needed. All you really need from
Section 4.1 is to have some idea of what an object is and what an instance
variable is.

The remaining sections require Chapters 1 through 5 with the exception
that Section 5.4 on packages and javadoc is not required.

Introduction to flrrays

It is a capital mistake to theorize
before one has data.

Sir Arthur Conan Doyle,
Scandal in Bohemia (Sherlock Holmes)

Suppose we wish to write a program that reads in five test scores and performs
some manipulations on these scores. For instance, the program might com-
pute the highest test score and then output the amount by which each score
falls short of the highest. The highest score is not known until all five scores
are read in. Hence, all five scores must be retained in storage so that after the
highest score is computed each score can be compared to it. To retain the five
scores, we will need something equivalent to five variables of type int. We
could use five individual variables of type int, but keeping track of five vari-
ables is hard, and we may later want to change our program to handle 100
scores; certainly, keeping track of 100 variables is impractical. An array is the
perfect solution. An behaves like a list of variables with a uniform nam-
ing mechanism that can be declared in a single line of simple code. For exam-
ple, the names for the five individual variables we need might be scorefo1,

Introduction to Arrays 307

score[1], score[2], score[3], and score[4]. The part that does not change, in this
case score, is the name of the array. The part that can change is the integer in the
square brackets [].

CREATING AND ACCESSING ARRAYS

In Java, an array is a special kind of object, but it is often more useful to think of an
array as a collection of variables all of the same type. For example, an array that behaves
like a collection of five variables of type double can be created as follows:

double[] score = new double[5];

This is like declaring the following to be five variables of type doub1e:
score[0], score[l], score[2], score[3], score[4]

These individual variables that together make up the array are referred to in a variety of
different ways. We will call them , though they are also sometimes
called or of the array. The number in square brackets is
called an ora . In Java, indices are numbered starting with o, not starting
with 1 or any number other than e. The number of indexed variables in an array is called
the or of the array. When an array is created, the length of the array is given
in square brackets after the array base type. The indexed variables are then numbered
(also using square brackets) starting with e and ending with the integer that is one less
than the length of the array.

The following

double[] score = new double[5];

is really shorthand for the following two statements:

double[] score;
score = new double[5];

The first statement declares the variable score to be of the array type double[]. The
second statement creates an array with five indexed variables of type double and makes
the variable score a name for the array. You may use any expression that evaluates to a
nonnegative int value in place of the 5 in square brackets. In particular you can fill a
variable with a value read from the keyboard and use the variable in place of the 5. In
this way the size of the array can be determined when the program is run.

An array can have indexed variables of any type, but they must all be of the same
type. This type is called the of the array. In our example, the base type of the
array score is double. To declare an array with base type int, simply use the type name
int instead of double when the array is declared and created. The base type of an array
can be any type. In particular it can be a class type.

308

Chapter 6 Arrays

DECLARING AND CREATING AN ARRAY

You declare an array name and create an array in almost the same way that you create and name
objects of classes. There is only a slight difference in the syntax.

SYNTAX:
Base_Type[] Array_Name = new Base_Type[Length];

The Length may be given as any expression that evaluates to a nonnegative integer. In particular
Length can be an int variable.

EXAMPLES:

char[] 1line = new char[80];
double[] reading = new double[300];
Person[] specimen = new Person[100];

Personis a class.

Each of the five indexed variables of our example array score can be used just like
any other variable of type double. For example, all of the following are allowed in Java:

score[3] = 32;
score[0] = score[3] + 10;
System.out.println(score[0]);

The five indexed variables of our sample array score are more than just five plain
old variables of type double. That number in square brackets is part of the indexed vari-
able’s name. So, your program can compute the name of one of these variables. Instead
of writing an integer constant in the square brackets, you can use any expression that
evaluates to an integer that is at least @ and at most 4. So, the following is allowed:

System.out.println(score[index] + " is at position " + index);

where index is a variable of type int that has been given one of the values o, 1, 2, 3, or 4.

When we refer to these indexed variables grouped together into one collective item,
we will call them an array. So, we can refer to the array named score (without using
any square brackets).

The program in Display 6.1 shows an example of using our sample array score as
five indexed variables, all of type double.

Note that the program can compute the name of an indexed variable by using a vari-
able as the index, as in the following for loop:

for (index = 0; index < 5; index++)
System.out.println(score[index] + " differs from max by
+ (max — score[index]));

Introduction to Arrays 309

An Array Used in a Program (Part 1 of 2) e

w

O 00N O U1 B

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class ArrayOfScores
{
/7':7‘:
Reads in 5 scores and shows how much each
score differs from the highest score.
*/
public static void main(String[] args) throws IOException
{
BufferedReader keyboard =
new BufferedReader(new InputStreamReader(System.in));
double[] score = new double[5];
int index;
double max; This form of input is covered in
String inputLine; Chapter 2, Section 2.3.

System.out.println("Enter 5 scores, ong per line:");
score[0] = stringToDouble(keyboard.readlLine());
max = score[0];
for (index = 1; index < 5; index++)
{

score[index] = stringToDouble(keyboard.readLine());

if (score[index] > max)

max = score[index];

//max is the largest of the values score[0],..., score[index].
3

System.out.println("The highest score is + max) ;

System.out.println("The scores are:");

for (index = 0; index < 5; index++)
System.out.println(score[index] + " differs from max by

+ (max — score[index]));

"

3
private static double stringToDouble(String stringObject)
{
return Double.parseDouble(stringObject.trim());
}

¥ The methods parseDouble and trim are
discussed in Chapter 5 in the subsection entitled
“Wrapper Classes.”

codes309.html

310 Chapter 6 Arrays

An Array Used in a Program (Part 2 of 2)

SAMPLE DIALOGUE

Enter 5 scores, one per line:
80

99.9

75

100

85.5

The highest score is 100

The scores are:

80.0 differs from max by 20
99.9 differs from max by 0.1
75.0 differs from max by 25
100.0 differs from max by 0.0
85.5 differs from max by 14.5

A Common Way to Visualize an Array:

80 99.9 75 100

85.

Do not confuse the three ways to use the square brackets [] with an array name.
First, the square brackets can be used to create a type name, such as the double[] in the

following:

double[] score;

Second, the square brackets can be used with an integer value as part of the special

syntax Java uses to create a new array, as in

score = new double[5];

The third use of square brackets is to name an indexed variable of the array, such as

score[0] OrF score[3], as illustrated by the following line:

max = scorel[0];

Introduction to Arrays 31

As we mentioned previously, the integer inside the square brackets can be any
expression that evaluates to a suitable integer, as illustrated by the following:

int next = 1;
score[next + 3] = 100;
System.out.println(

"Score at position 4 is

+ score[next + 3]);

Note that, in the preceding code, score[next + 3] and score[4] are the same
indexed variable, because next + 3 evaluates to 4.

THE length INSTANCE VARIABLE

In Java an array is considered to be an object, and, like other objects, it might have
instance variables. As it turns out, an array has only one public instance variable, which
is named length. The instance variable length is automatically set to the size of the
array when the array is created. For example, if you create an array as follows,

double[] score = new double[5];

then score.length has a value of 5.

The 1ength instance variable can be used to make your program clearer by replacing
an unnamed constant, such as 5, whose meaning may not be obvious, with a meaning-
ful name like score.1length. In Display 6.2 we have rewritten the program in Display
6.1 using the 1ength instance variable.

The 1length instance variable cannot be changed by your program (other than by
creating a new array with another use of new).! For example, the following is illegal:

score.length = 10;//I1legal

Use for LOOPS WITH ARRAYS

The second for loop in Display 6.2 illustrates a common way to step through an entire array
using a for loop:

for (index = 0; index < score.length; index++)
System.out.println(score[index] + " differs from max by
+ (max — score[index]));

The for loop is ideally suited for performing array manipulations.

1 The technical details are as follows: The instance variable length is created when the array is
created and is declared to be public final int.

312 Chapter 6 Arrays

The Length Instance Variable e (JUDEM"ATE

This class also contains the method

1 import java.io.BufferedReader; stringToDouble, even though it is not shown
2 import java.io.InputStreamReader; The method stringToDouble is defined in
3 import java.io.IOException; Display 6.1.
4 public class ArrayOfScores2 The sample dialog is the same as in Display 6.1.
5
6 /**
7 Reads in 5 scores and shows how much each
8 score differs from the highest score.
9 */
10 public static void main(String[] args) throws IOException
11 {
12 BufferedReader keyboard =
13 new BufferedReader(new InputStreamReader(System.in));
14 double[] score = new double[5];
15 int index;
16 double max;
17 String inputline;
18 System.out.println("Enter " + score.length + " scores, one per line:");
19 score[0] = stringToDouble(keyboard.readlLine());
20 max = score[0];
21 for (index = 1; index < score.length; index++)
22 {
23 score[index] = stringToDouble(keyboard.readLine());
24 if (score[index] > max)
25 max = score[index];
26 //max is the largest of the values score[0],..., score[index].
27 }
28 System.out.println("The highest score is " + max);
29 System.out.println("The scores are:");
30 for (index = 0; index < score.length; index++)
31 System.out.println(score[index] + " differs from max by "
32 + (max — score[index]));
33 }
34 %
Pitfall

ARRAY INDICES ALWAYS START WITH ZERO

The indices of an array always start with @ and end with the integer that is one less than the size of the
aray.

codes312.html

Introduction to Arrays 313

Pitfall

ARRAY INDEX OUT OF BOUNDS

The most common programming error made when using arrays is attempting to use a nonexistent
array index. For example, consider the following:

int[] a = new int[6];

When using the array a, every index expression must evaluate to one of the integers 0 through 5.
For example, if your program contains the indexed variable a[1], the i must evaluate to one of
the six integers 0, 1, 2, 3, 4, or 5. If 1 evaluates to anything else, that is an error. When an index
expression evaluates to some value other than those allowed by the array declaration, the index is
said to be out of bounds. If your program attempts to use an array index that is out of bounds,
then your program will end with an error message.? Note that this is a run-time error message, not
a compiler error message.

Array indices get out of bounds most commonly at the first or last iteration of a loop that pro-
cesses the array. So, it pays to carefully check all array processing loops to be certain that they
begin and end with legal array indices.

INITIALIZING ARRAYS

An array can be initialized when it is declared. When initializing the array, the values
for the various indexed variables are enclosed in braces and separated with commas.
The expression with the braces is placed on the right-hand side of an assignment oper-
ator. For example:

int[] age = {2, 12, 1};

The array length (size) is automatically set to the number of values in the braces. So,
this initializing declaration is equivalent to the following statements:

int[] age = new int[3];

agel[0] = 2;
age[1] = 12;
age[2] = 1;

You can also initialize array elements using a for loop. For example:

double[] reading = new double[100];

int index;

for (index = 0; index < reading.length; index++)
reading[index] = 42.0;

2 Technically speaking, an ArrayIndexOutOfBoundsException is thrown. We will discuss
exceptions in Chapter 9. Until you learn about handling exceptions, exceptions will simply
appear as error conditions to you.

314 Chapter 6 Arrays

If you do not initialize the elements of an array, they will automatically be initialized
to a default value for the base type. The default values are the usual ones. For numeric
types the default value is the zero of the type. (For base type char the default value is the
nonprintable zeroth character (char)e, not the space character.) For the type boolean
the default value is false. For class types, the default value is nu11. For example, if you
do not initialize an array of doubles, each element of the array will be initialized to 0. 0.

Self-Test Exercises

1. In the array declaration

String[] word = new String[5];
what is

. the array name?

a
b. the base type?

(3]

the length of the array?
d. the range of values an index accessing this array can have?
e. one of the indexed variables (or elements) of this array?

2. In the array:
double[] score = new double[10];

what is
a. the value of score.length?
b. the first index of score?
c. the last index of score?
3. What is the output of the following code?
char[] letter = {'a', 'b', 'c'};

for (int index = 0; index < letter.length; index++)
System.out.print(letter[index] + ", ");

4. What is the output of the following code?

double[] a = {1.1, 2.2, 3.3};
System.out.printlnCa[0] + " " + a[1] + " " + a[2]);
a[1] = a[2];

System.out.println(a[0] + " " + a[1] + " " + a[2]);

Introduction to Arrays 315

5. What is wrong with the following piece of code?

int[] sampleArray = new int[10];
for (int index = 1; index <= sampleArray.length; index++)
sampleArray[index] = 3*index;

6. Suppose we expect the elements of the array a to be ordered so that
al[06] < a[l] < a[2] <...

However, to be safe we want our program to test the array and issue a warning in case it
turns out that some elements are out of order. The following code is supposed to output
such a warning, but it contains a bug; what is the bug?

double[] a = new double[10];
<Some code to fill the array a goes here.>
for (int index = 0; index < a.length; index++)
if (a[index] > a[index + 1])
System.out.println("Array elements " + index +
" and " + (index + 1) + " are out of order.");

Pitfall

AN ARRAY OF CHARACTERS IS NOT A STRING

An array of characters, such as the array a created below, is conceptually a list of characters and
so is conceptually like a string:

Chqr[] q={'A', ! ', 'B" l.i"l 'g'! ! '! 'Hll l.i"l '!'};

However, an array of characters, like a, is not an object of the class String. In particular, the fol-
lowing is illegal in Java:

String s = a;

Similarly, you cannot normally use an array of characters, like a, as an argument for a parameter
of type String.

It is, however, easy to convert an array of characters to an object of type String. The class
String has a constructor that has a single parameter of type char[]. So, you can obtain a
String value corresponding to an array of characters, like a, as follows:

String s = new String(a);

The object s will have the same sequence of characters as the array a. The object s is an independent
copy; any changes made to a will have no effect on s. Note that this always uses the entire array a.

316

Chapter 6 Arrays

There is also a String constructor that allows you to specify a subrange of an array of characters
a. For example,

String s2 = new String(a, 2, 3);

produces a String object with 3 characters from the array a starting at index 2. So, if a is as
above, then

System.out.println(s2);
outputs
Big

Although an array of characters is not an object of the class String, it does have some things in
common with String objects. For example, you can output an array of characters using
println, as follows,

System.out.println(a);
which produces the output
A Big Hi!

provided a is as given above.

firrays and References

A little more than kin, and less than kind.

William Shakespeare, Hamlet

Just like a variable of one of the class types you've seen, a variable of an array type holds
a reference. In this section we explore the consequences of this fact, including a discus-
sion of array parameters. We will see that arrays are objects and that array types can be
considered class types, but somewhat different kinds of class types. Arrays and the
kinds of classes we've seen before this chapter are a little more than kin, and less than

kind.

ARRAYS ARE OBJECTS

There are two ways to view an array: as a collection of indexed variables, and as a single
item whose value is a collection of values of the base type. In Section 6.1 we discussed
using arrays as a collection of indexed variables. We will now discuss arrays from the

second point of view.

Arrays and References 317

An array can be viewed as a single item whose value is a collection of values of the
base type. An array variable (as opposed to an array indexed variable) names the array as
a single item. For example, the following declares a variable of an array type:

double[] a;

This variable a can and will contain a single value. The expression

new double[10]

creates an array object and stores the object in memory. The following assignment
statement places a reference to (the memory address of) this array object in the vari-
able a:

a = new double[10];

Typically we combine all this into a single statement as follows:

double[] a = new double[10];

Notice that this is almost exactly the same as the way that we view objects of a class
type. In Java, an array is considered an object. Whenever Java documentation says that
something applies to objects, that means that it applies to arrays as well as objects of the
class types we've seen up to now. You will eventually see examples of methods that can
take arguments that may be objects of any kind. These methods will accept array
objects as arguments as well as objects of an ordinary class type. Arrays are somewhat
peculiar in how they relate to classes. Some authorities say array types are not classes
and some authorities say they are classes. But, all authorities agree that the arrays them-
selves are objects. Given that arrays are objects, it seems that one should view array
types as classes, and we will do so. However, although an array type double[] is a class,
the syntax for creating an array object is a bit different. To create an array, you use the
following syntax:

double a = new double[10];

You can view the expression new double[10] as an invocation of a constructor that uses
a nonstandard syntax. (The nonstandard syntax was used to be consistent with the syn-
tax used for arrays in older programming languages.)

As we have already seen, every array has an instance variable named 1ength, which is
a good example of viewing an array as an object. As with any other class type, array
variables contain memory addresses, or, as they are usually called in Java, references. So
array types are reference types.3

Since an array is an object, you might be tempted to think of the indexed variables
of an array, such as a[e1, a[11, and so forth, as being instance variables of the object.

3 In many programming languages, such as C++, arrays are also reference types just as they are
in Java. So, this detail about arrays is not peculiar to Java.

318 Chapter 6 Arrays

This is actually a pretty good analogy, but it is not literally true. Indexed variables are
not instance variables of the array. Indexed variables are a special kind of variable pecu-
liar to arrays. The only instance variable in an array is the length instance variable.

An array object is a collection of items of the base type. Viewed as such, an array is
an object that can be assigned with the assignment operator and plugged in for a
parameter of an array type. Since an array type is a reference type, the behaviors of
arrays with respect to assignment =, ==, and parameter passing mechanisms are the
same as what we have already described for classes. In the next few subsections we dis-
cuss these details about arrays.

ARRAYS ARE OBJECTS

In Java, arrays are considered to be objects, and, although there is some disagreement on this
point, you can safely view an array type as a class type.

ARRAY TYPES ARE REFERENCE TYPES

A variable of an array type holds the address of where the array object is stored in memory. This
memory address is called a reference to the array object.

Pitfall

ARRAYS WITH A CLASS BASE TYPE

The base type of an array can be of any type, including a class type. For example, suppose Date
is a class and consider the following:

Date[] holidayList = new Date[20];

This creates the 20 indexed variables holidayList[0], holidayList[1], ..., holi-
datList[19]. It is important to note that this creates 20 indexed variables of type Date. This
does not create 20 objects of type Date. (The index variables are automatically initialized to
null, not to an object of the class Date.) Like any other variable of type Date, the indexed vari-
ables require an invocation of a constructor using new to create an object. One way to complete
the initialization of the array holidayList is as follows:

Date[] holidayList = new Date[20];
for (int 1 = 0; i < holidayList.length; i++)
holidayList[i] = new Date();

Arrays and References 319

If you omit the for loop (and do not do something else more or less equivalent), then when you
run your code, you will undoubtedly get an error message indicating a "null pointer exception.”
If you do not use new to create an object, an indexed variable like holidayList[i] is justa
variable that names no object and hence cannot be used as the calling object for any method.
Whenever you are using an array with a class base type and you get an error message referring to
a “null pointer exception,” it is likely that your indexed variables do not name any objects and
you need to add something like the above for loop.

ARRAY PARAMETERS

You can use both array indexed variables and entire arrays as arguments to methods,
although they are different types of parameters. We first discuss array indexed variables
as arguments to methods.

An indexed variable can be an argument to a method in exactly the same way that
any variable of the array base type can be an argument. For example, suppose a pro-
gram contains the following declarations:

double n =
double[] a
int 1i;

0;

= new double[10];

If myMethod takes one argument of type double, then the following is legal:
myMethod(n) ;

Since an indexed variable of the array a is also a variable of type doub1e, just like n, the
following is equally legal:

myMethod(a[3]);

There is one subtlety that does apply to indexed variables used as arguments. For
example, consider the following method call:

myMethod(a[i]);

If the value of 1 is 3, then the argument is a[3]. On the other hand, if the value of 1 is
0, then this call is equivalent to the following:

myMethod(a[0]);

The indexed expression is evaluated to determine exactly which indexed variable is
given as the argument.
You can also define a method that has a formal parameter for an entire array so that

when the method is called, the argument that is plugged in for this formal parameter is
an entire array. Whenever you need to specify an array type, the type name has the

320

Chapter 6 Arrays

ARRAY INDEXED VARIABLES AS ARGUMENTS

An array indexed variable can be used as an argument anyplace that a variable of the array’s
base type can be used. For example, suppose you have the following:

double[] a = new double[10];

Indexed variables such as a[3] and a[index] can then be used as arguments to any method
that accepts a double as an argument.

form Base_Type[1, SO this is how you specify a parameter type for an entire array, For
example, the method doubleArrayElements, given in what follows, will accept any
array of double as its single argument:

public class SampleClass

{
public static void doubleArrayElements(double[] a)
{
int 1i;
for (i = 0; i < a.length; i++)
ali]l = al[il*2;
}
<The rest of the class definition goes here.>
}

To illustrate this, suppose you have the following in some method definition,

double[] a new double[10];
double[] b = new double[30];

and suppose that the elements of the arrays a and b have been given values. Both of the
following are then legal method invocations:

SampleClass.doubleArrayElements(a);
SampleClass.doubleArrayElements(b);

Note that no square brackets are used when you give an entire array as an argument to
a method.

An array type is a reference type just as a class type is, so, as with a class type argu-
ment, a method can change the data in an array argument. To phrase it more precisely,
a method can change the values stored in the indexed variables of an array argument.
This is illustrated by the preceding method doubleArrayElements.

An array type determines the base type of an array argument that may be plugged in
for the parameter, but it does not specify the length of the array. An array knows its

Arrays and References 321

length and stores it in the length instance variable. The same array parameter can be
replaced with array arguments of different lengths. Note that the preceding method
doubleArrayElements can take an array of any length as an argument.

ARRAY PARAMETERS AND ARRAY ARGUMENTS

An argument to a method may be an entire array. Array arguments are like objects of a class, in
that the method can change the data in an array argument; that is, a method can change the val-
ues stored in the indexed variables of an array argument. A method with an array parameter is
defined and invoked as illustrated by the following examples. Note that the array parameter
specifies the base type of the array, but not the length of the array.

EXAMPLES (OF ARRAY PARAMETERS):

public class AClass

{
public static void listChars(char[] a)
{
int 1i;
for (i = 0; i < a.length; i++)
System.out.println(a[i] + " ");
}
public static void zeroAll(int[] anArray)
{
int 1i;
for (i = 0; i < anArray.length; i++)
anArray[i] = 0;
3
b

ExXAMPLES (OF ARRAY ARGUMENTS):

char[] c = new char[10];
int[] a = new int[10]; Note that arrays a and b have
int[] b new int[20]; different lengths. Also note that no
square brackets are used with array
<Some code to fill the arrays goes here.> arguments.

AClass.listChars(c);
AClass.zeroAll(a);
AClass.zeroAll(b);

322

Self-Test Exercises

7.

10.

Chapter 6 Arrays

Consider the following class definition:

public class SomeClass

{
public static void doSomething(int n)
{
<Some code goes in here.>
3

<The rest of the definition is irrelevant to this question.>
Which of the following are acceptable method calls?

int[] a = {4, 5, 6};

int number = 2;
SomeClass.doSomething(number) ;
SomeClass.doSomething(a[2]);
SomeClass.doSomething(a[3]);
SomeClass.doSomething(a[number]) ;
SomeClass.doSomething(a) ;

. Write a method definition for a static void method called oneMore, which has a formal

parameter for an array of integers and increases the value of each array element by one.
(The definition will go in some class, but you need only give the method definition.)

. Write a method named outOfOrder that takes as a parameter an array of double and

returns a value of type int. This method will test the array for being out of order, meaning
that the array violates the condition:

al0] <= a[l] <= a[2] <= ...

The method returns -1 if the elements are not out of order; otherwise, it returns the index
of the first element of the array that is out of order. For example, consider the declaration

double[] a={1.2, 2.1, 3.3, 2.5, 4.5,
7.9, 5.4, 8.7, 9.9, 1.0};

In the array above, a[2] and a[3] are the first pair out of order, and a[3] is the first
element out of order, so the method returns 3. If the array were sorted, the method would
return —1.

What is wrong with the following method definition? It will compile but does not work as
you might hope.

public static void doubleSize(int[] a)
{

a = new int[a.length * 2];

Arrays and References 323

Pitfall

USE OF = AND == WITH ARRAYS

Array types are reference types; that is, an array variable contains the memory address of the
array it names. The assignment operator copies this memory address. For example, consider the
following code:

double[] a = new double[10];
double[] b = new double[10];
int 1i;
for (i = 0; i1 < a.length; i++)
a[il = 1i;
b = a;
System.out.println("a[2] = " + a[2] + " b[2] = " + b[2]);
a[2] = 42;
System.out.println("a[2] = " + a[2] + " b[2] = " + b[2]);

This will produce the following output:

al[2]
al2]

2.0 b[2] = 2.0
42.0 b[2] = 42.0

The assignment statement b = a; copies the memory address from a to b so that the array vari-
able b contains the same memory address as the array variable a. After the assignment statement,
a and b are two different names for the same array. Thus, when we change the value of a[2], we
are also changing the value of b[2].

Unless you want two array variables to be two names for the same array (and on rare occasions
you do want this), you should not use the assignment operator with arrays. If you want the arrays
a and b in the preceding code to be different arrays with the same values in each index position,
then instead of the assignment statement

b = a;

you need to use something like the following:

int 1i;
for (i = 0; (i < a.length) & (i < b.length); i++)
b[i] = a[il;

Note that the above code will not make b an exact copy of a, unless a and b have the same length.

The equality operator == does not test two arrays to see if they contain the same values. It tests
two arrays to see if they are stored in the same location in the computer’s memory. For example,
consider the following code:

int[] c
int[] d

new int[10];
new int[10];

324 Chapter 6 Arrays
int 1i;
for (i = 0; i < c.length; i++)
c[i] = 1i;
for (i = 0; 1 < d.length; i++)
dfi] = 1i;
if (c == d)
System.out.println("c and d are equal by ==.");
else
System.out.println("c and d are not equal by ==.");
This produces the output
c and d are not equal by ==
even though c and d contain the same integers in the same indexed variables. A comparison
using == will say they are not equal because == only checks the contents of the array variables c
and d, which are memory addresses, and c and d contain different memory addresses.
If you want to test two arrays to see if they contain the same elements, then you can define an
equalArrays method for the arrays, just as you defined an equals method for a class. Display
6.3 contains one possible definition of equalArrays for arrays in a small demonstration class.
AP
)DEN/
Testing Arrays for Equality (Part 1 of 2) e ("‘ DEM&TE
1 public class DifferentEquals
2
3 /7‘:7‘:
4 A demonstration to see how == and an equalArrays method are different.
5 :':/
6 public static void main(String[] args)
7 {
8 int[] ¢ = new int[10];
9 int[] d = new int[10];
) . The arrays c and d contain the
10 nt L . . same integers in each index
11 for (i = 0; .1 < c.length; i++) position.
12 cfi] = 1i;
13 for (i = 0; i < d.length; i++)
14 dfi] = 1i;

codes324.html

15
16
17
18

19

20
21
22
23
24
25

26
27

28

29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44

45

}

Arrays and References

Testing Arrays for Equality (Part 2 of 2)

if (c == d)

System.out.println("c and d are equal by ==.");
else

System.out.println("c and d are not equal by ==.");

System.out.println("== only tests memory addresses.");

if (equalArrays(c, d))
System.out.println(
"c and d are equal by the equalArrays method.");
else
System.out.println(
"c and d are not equal by the equalArrays method.");

System.out.println(
"An equalArrays method is usually a more useful test.");

3
public static boolean equalArrays(int[] a, int[] b)
{
if (a.length !'= b.length)
return false;
else
{
int i = 0;
while (i < a.length)
{
if (a[i] !'= b[i])
return false;
i++;
}
}
return true;
}

SAMPLE DIALOGUE

c and d are not equal by ==.

== only tests memory addresses.

c and d are equal by the equalArrays method.

An equalArrays method is usually a more useful test.

325

326

Chapter 6 Arrays

ARGUMENTS FOR THE METHOD main

The heading for the main method of a program looks as if it has a parameter for an
array of base type of String:

public static void main(String[] args)

The identifier args is in fact a parameter of type string[1. Since args is a parameter, it
could be replaced by any other non-keyword identifier. The identifier args is tradi-
tional, but it is perfectly legal to use some other identifier.

We have never given main an array argument, or any other kind of argument, when
we ran any of our programs. So, what did Java use as an argument to plug in for args?
If no argument is given when you run your program, then a default empty array of
strings is automatically provided as a default argument to main when you run your
program.

It is possible to run a Java program in a way that provides an argument to plug in for
this array of string parameters. You do not provide it as an array. You provide any
number of string arguments when you run the program, and those string arguments
will automatically be made elements of the array argument that is plugged in for args
(or whatever name you use for the parameter to main). This is normally done by run-
ning the program from the command line of the operating system, like so:

java YourProgram Do Be Do

This will set args[0] to "Do", args[1] t0 "Be", args[2] t0 "Do", and args.length
to 3. These three indexed variables can be used in the method main, as in the following
sample program:

public class YourProgram

{
public static void main(String[] args)
{
System.out.println(args[1] + " " + args[0]
+ " " + args[1]);
3
}

If the above program is run from the command line as follows,
java YourProgram Do Be Do

the output produced by the program will be
Be Do Be

Be sure to note that the argument to main is an array of strings. If you want numbers,
you must convert the string representations of the numbers to values of a number type
or types.

Arrays and References 327

THE METHOD main HAS AN ARRAY PARAMETER
The heading for the main method of a program is as follows:
public static void main(String[] args)

The identifier args is a parameter for an array of base type String. The details are explained in
the text.

METHODS THAT RETURN AN ARRAY

In Java, a method may return an array. You specify the return type for a method that
returns an array in the same way that you specify a type for an array parameter. For
example, the following is an example of a method that returns an array:

public static char[] upperCaseVersion(char[] a)

{
char[] temp = new char[a.length];
char 1i;
for (i = 0; i < a.length; i++)
temp[i] = Character.toUpperCase(al[il);
return temp;
}

Self-Test Exercises

11. Give the definition of a method called halfArray that has a single parameter for an array
of base type double and that returns another array of base type double that has the same
length and in which each element has been divided by 2.0. Make it a static method. To
test it, you can add it to any class or, better yet, write a class with a test program in the
method main.

12. What is wrong with the following method definition? It is an alternate definition of the
method by the same name defined in the previous subsection. It will compile.

public static char[] upperCaseVersion(char[] a)
{
char 1i;
for (i = 0; i1 < a.length; i++)
a[i] = Character.toUpperCase(a[i]);
return a;

328

Chapter 6 Arrays

RETURNING AN ARRAY

A method can return an array. The details are basically the same as for a method that returns an
object of a class type.

SYNTAX (FOR A TYPICAL WAY OF RETURNING AN ARRAY):

public static Base_Type[] Method_Name(Parameter_List)

{
Base_Type[] temp = new Base_Type[Array._Size]
<Some code to fill temp goes here.>
return temp;

3

The method need not be static and need not be public. You do not necessarily need to use a local
array variable like temp.

EXAMPLE (ASSUMED TO BE IN A CLASS DEFINITION):

public static int[] incrementedArray(int[] a, int increment)

{
int[] temp = new int[a.length];
int 1i;
for (i = 0; i < a.length; i++)
temp[i] = a[i] + increment;
return temp;

ARRAY TYPE NAMES

Whenever you need an array type name, whether for the type of an array variable declaration, the
type of an array parameter, or the type for a method that returns an array, you specify the type
name in the same way.

SYNTAX:
Base_Typel]
EXAMPLES:

double[] a = new double[10];
int[] giveIntArray(char[] arrayParameter)

L cas b

6.3

o 1 N N =

O 00 N

10
11
12
13

14
15

Programming with Arrays 329

Programming with flrrays
Never trust to general impressions, my boy
but concentrate yourself upon details.

Sir Arthur Conan Doyle,
A Case of Identity (Sherlock Holmes)

In this section we discuss partially filled arrays and discuss how to use arrays as class
instance variables.

PARTIALLY FILLED ARRAYS

Often the exact size needed for an array is not known when a program is written or the
size may vary from one run of the program to another. One common and easy way to
handle this situation is to declare the array to be of the largest size the program could pos-
sibly need. The program is then free to use as much or as little of the array as is needed.

Partially filled arrays require some care. The program must keep track of how much
of the array is used and must not reference any indexed variable that has not been given
a meaningful value. The program in Display 6.4 illustrates this point. The program
reads in a list of golf scores and shows how much each score differs from the average.
This program will work for lists as short as 1 score, as long as 10 scores, and of any
length in between. The scores are stored in the array score, which has 10 indexed variables,

Partially Filled Array (Part 1 of 4) e CODEMATE

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException; penalty. Try it sometime.)
public class GolfScores

{
public static final int MAX_NUMBER_SCORES = 10;

/ *k

Shows differences between each of a list of golf scores and their average.

7'\‘/

public static void main(String[] args) throws IOException
{

new double[MAX_NUMBER_SCORES];

0;

double[] score
int numberUsed

System.out.println("This program reads golf scores and shows");
System.out.println("how much each differs from the average.");

Contrary to normal practice, this allows fractional scores, like
71.5. However, this makes it a better example for our purposes.
(Anyway, when I play golf, losing a ball is only half a stroke

codes329.html

330

Chapter 6 Arrays

Partially Filled Array (Part 2 of 4)

16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

41
42
43

44
45

46
47
48
49
50

}

System.out.println("Enter golf scores:");
numberUsed = fillArray(score);
showDifference(score, numberUsed);

/ ek

Reads values into the array a. Returns the number of values placed in the array a.

%/

p
{

}

ublic static int fillArray(double[] a) throws IOException

System.out.println("Enter up to " + a.length

+ " nonnegative numbers, one per line.™);
System.out.println("Mark the end of the list with a negative number.");
BufferedReader keyboard =

new BufferedReader(new InputStreamReader(System.in));

double next;

int index = 0;

next = stringToDouble(keyboard.readLine());
while ((next >= 0) && (index < a.length))

{
a[index] = next;
index++;
next = stringToDouble(keyboard.readLine());
//index is the number of array indexed variables used so far.
}

//index is the total number of array indexed variables used.

if (next >= 0)
System.out.println("Could only read in
+ a.length + " input values.");

return index; <——__ Thevalue of index is the number of
values stored in the array.

/ ek

Precondition: numberUsed <= a.length.
a[0] through a[numberUsed-1] have values.
Returns the average of numbers a[0@] through a[numberUsed-1].

7':/

Programming with Arrays 33l

Partially Filled Array (Part 3 of 4)

51

53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

public static double computeAverage(double[] a, int numberUsed)

{

double total = 0;

for (int index = 0; index < numberUsed; index++)
total = total + a[index];

if (numberUsed > 0)

{
return (total/numberUsed);
}
else
{
System.out.println("ERROR: Trying to average 0 numbers.");
System.out.println("computeAverage returns 0.");
return 0;
}

private static double stringToDouble(String stringObject)

{

/ K%

Precondition: numberUsed <= a.length.

return Double.parseDouble(stringObject.trim());

The first numberUsed indexed variables of a have values.

Postcondition: Gives screen output showing how much each of the first
numberUsed elements of the array a differ from their average.

public static void showDifference(double[] a, int numberUsed)

{

double average = computeAverage(a, numberUsed);
System.out.println("Average of the " + numberUsed

+ " scores = " + average);
System.out.println("The scores are:");
for (int index = 0; index < numberUsed; index++)
System.out.println(a[index] + " differs from average by "

+ (a[index] - average));

332 Chapter 6 Arrays

Partially Filled Array (Part 4 of 4)

SAMPLE DIALOGUE

This program reads golf scores and shows

how much each differs from the average.

Enter golf scores:

Enter up to 10 nonnegative numbers, one per line.
Mark the end of the list with a negative number.
69

74

68

-1

Average of the 3 scores = 70.3333

The scores are:

69.0 differs from average by —-1.33333

74.0 differs from average by 3.66667

68.0 differs from average by —2.33333

but the program uses only as much of the array as it needs. The variable numberused
keeps track of how many elements are stored in the array. The elements (that is, the
scores) are stored in positions score[0] through score[numberUsed — 1]. The details
are very similar to what they would be if numberUsed were score.length and the entire
array were used. Note that the variable numberused usually must be an argument to any
method that manipulates the partially filled array. For example, the methods showDif-
ference and computeAverage Use the argument numberUsed to ensure that only mean-
ingful array indices are used.

Self-Test Exercises

13. Complete the definition of the following method that could be added to the class Golf-
Scores in Display 6.4:

Precondition: numberUsed <= argumentArray.length;

the first numberUsed indexed variables of argumentArray
have values.

Returns an array of length numberUsed whose ith element

is argumentArray[i] - adjustment.
=Y
public static double[] differenceArray(

double[] argumentArray, int numberUsed, double adjustment)

14. Rewrite the class GolfScores from Display 6.4 using the method differenceArray
from exercise 13.

Programming with Arrays 333

15. Rewrite the class Gol1fScores from Display 6.4 making the array of scores a static variable.
Also, make the int variable numberUsed a static variable. Start with Display 6.4, not with the
answer to exercise 14. Hint: All, or at least most, methods will have no parameters.

Example

A CLASS FOR PARTIALLY FILLED ARRAYS

If you are going to use some array in a disciplined way, such as using the array as a partially filled
array, then it is often best to create a class that has the array as an instance variable and to have
the constructors and methods of the class provide the needed operations as methods. For exam-

ple, in Display 6.5 we have written a class for a partially filled array of doubles. In Display 6.6 we
have rewritten the program in Display 6.4 using this class.

In Display 6.6 we have written the code to be exactly analogous to that of Display 6.4 so that you
could see how one program mirrors the other. However, this resulted in occasionally recomputing
a value several times. For example, the method computeAverage has the following expression
three times:

a.getNumberOfElements ()

Since the PartiallyFilledArray a is not changed in this method, these each return the same
value. Some programmers advocate computing this value only once and saving the value in a
variable. These programmers would use something like the following for the definition of com—
puteAverage rather than what we used in Display 6.6. The variable numberOfElementsIna is
used to save a value so it need not be recomputed.

public static double computeAverage(PartiallyFilledArray a)
{
double total = 0;
double numberOfElementsIna = a.getNumberOfElements();
for (int index = 0; index < numberOfElementsIna; index++)
total = total + a.getElement(index);
if (numberOfElementsIna > 0)

{
return (total/numberOfElementsIna);
}
else
{
System.out.println(

"ERROR: Trying to average 0 numbers.");
System.out.println("computeAverage returns 0.");
return 0;

}

334 Chapter 6 Arrays

This is not likely to produce a noticeable difference in the efficiency of the program in Display 6.6,
but if the number of elements in the PartiallyFilledArray were large so that the for loop
would be executed many times, it might make a difference in a situation where efficiency is critical.

CODEMATE

Partially Filled Array Class (Part 1 of 4)

A
2 Class for a partially filled array of doubles. The class enforces the
3 following invariant: All elements are at the beginning of the array in
4 locations 0, 1, 2, and so forth up to a highest index with no gaps.
5 %/
6 public class PartiallyFilledArray
7
8 private int maxNumberElements; //Same as a.length
9 private double[] a;
10 private int numberUsed; //Number of indices currently in use
11 J**
12 Sets the maximum number of allowable elements to 10.
13 */
14 PartiallyFilledArray()
15 {
16 maxNumberElements = 10;
17 a = new double[maxNumberElements];
18 numberUsed = 0;
19 }
20 Vo
21 Precondition arraySize > 0.
22 */
23 PartiallyFilledArray(int arraySize)
24 {
25 if (arraySize <= 0)
26 {
27 System.out.println("Error Array size zero or negative.");
28 System.exit(0);
29 }
30 maxNumberElements = arraySize;
31 a = new double[maxNumberElements];
32 numberUsed = 0;

33 }

codes334.html

Programming with Arrays 335

Partially Filled Array Class (Part 2 of 4)

34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70

71
72

PartiallyFilledArray(PartiallyFilledArray original)

{
if (original == null)
{
System.out.println("Fatal Error: aborting program.");
System.exit(0);
1 Note that the instance variable a is
maxNumberElements = a copy of orignal.a. The
original.maxNumberElements; following would not be correct:
numberUsed = original.numberUsed; a = Oflg}nql.a;
a = new double[maxNumberElements]; This point is discussed in the
for (int i = 0; i < numberUsed; i++) subsection entitled “Privacy Leaks
a[i] = original.a[i]; with Array Instance Variables.”
}
/:': *
Adds newElement to the first unused array position.
¥* /
public void add(double newElement)
{
if (numberUsed >= a.length)
{
System.out.println("Error: Adding to a full array.");
System.exit(0);
}
else
{
a[numberUsed] = newElement;
numberUsed++;
}
}
public double getElement(int index)
{
if (index < 0 || index >= numberUsed)
{

System.out.println("Error:I1llegal or unused index.");
System.exit(0);
}

return al[index];

336 Chapter 6 Arrays

Partially Filled Array Class (Part 3 of 4)

73 /7':7‘:

74 index must be an index in use or the first unused index.
75 */

76 public void resetElement(int index, double newValue)

77 {

78 if (index < 0 || index >= maxNumberElements)

79 {

80 System.out.println("Error:I1legal index.");

81 System.exit(0);

82 }

83 else if (index > numberUsed)

84 {

85 System.out.println(

86 "Error: Changing an index that is too large.");
87 System.exit(0);

88 }

89 else

90 a[index] = newVdalue;

91 }

92 public void deletelLast()

93 {

94 if (empty())

95 {

96 System.out.println("Error:Deleting from an empty array.");
97 System.exit(0);

98 }

99 else

100 numberUsed——;

101 }

102 [**

103 Deletes the element in position index. Moves down all elements with
104 indices higher than the deleted element.

105 */

106 public void delete(int index)

107 {

108 if (index < 0 || index >= numberUsed)

109 {

110 System.out.println("Error:Illegal or unused index.");
111 System.exit(0);

112 }

113 for (int i = index; i < numberUsed; i++)

114 afi] = a[i + 1];

115 numberUsed——;

116 }

Programming with Arrays 337

Partially Filled Array Class (Part 4 of 4)

117 public boolean empty()
118 {
119 return (numberUsed == 0);
120 }
121 public boolean full()
122 {
123 return (numberUsed == maxNumberElements);
124 }
125 public int getMaxCapacity()
126 {
127 return maxNumberElements;
128 }
129
130 public int getNumberOfElements()
131 {
132 return numberUsed;
133 }
134 3}
g P
Display 6.4 Redone Using the Class PartiallyFilledArray (Part 1 of 3) e L“D}LM&TE
1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException; Sample dialog is the same as in Display 6. 4.
4 JE*
5 Demonstrates Using the class PartiallyFilledArray,
6 */
7 public class GolfScoresVersion2
8 {
9 public static final int MAX_NUMBER_SCORES = 10;
10 Vais
11 Shows the differences between each of a list of golf scores and their average.
12 */
13 public static void main(String[] args) throws IOException
14 {
15 PartiallyFilledArray score =
16 new PartiallyFilledArray (MAX_NUMBER_SCORES) ;

codes337.html

338 Chapter 6 Arrays
Display 6.4 Redone Using the Class PartiallyFilledArray (Part 2 of 3)
17 System.out.println("This program reads golf scores and shows");
18 System.out.println("how much each differs from the average.™);
19 System.out.println("Enter golf scores:");
20 fillArray(score);
21 showDifference(score);
22 }
23 /%%
24 Reads values into the PartiallyFilledArray a.
25 A
26 public static void fillArray(PartiallyFilledArray a) throws IOException
27 {
28 System.out.println("Enter up to " + a.getMaxCapacity()
29 + " nonnegative numbers, one per line.");
30 System.out.println("Mark the end of the list with a negative number");
31 BufferedReader keyboard = new BufferedReader(
32 new InputStreamReader(System.in));
33 double next = stringToDouble(keyboard.readLine());
34 while ((next >= 0) && (!a.full()))
35 {
36 a.add(next);
37 next = stringToDouble(keyboard.readlLine());
38 }
39 if (next >= 0)
40 System.out.println("Could only read in "
41 + a.getMaxCapacity() + " input values.™);
42 }
43 private static double stringToDouble(String stringObject)
44 {
45 return Double.parseDouble(stringObject.trim());
46 }
47 /7':7‘:
48 Returns the average of numbers in the PartiallyFilledArray a.
49
50 public static double computeAverage(PartiallyFilledArray a)
51 {
52 double total = 0;
53 for (int index = 0; index < a.getNumberOfElements(); index++)
54 total = total + a.getElement(index);

55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79

80

Programming with Arrays 339

Display 6.4 Redone Using the Class PartiallyFilledArray (Part 3 of 3)

if (a.getNumberOfElements() > 0)

{
return (total/a.getNumberOfElements());
}
else
{
System.out.println("ERROR: Trying to average O numbers.");
System.out.println("computeAverage returns 0.");
return 0;
}
}
Ve

Gives screen output showing how much each of the
elements in the PartiallyFilledArray a differ from the average.
*/
public static void showDifference(PartiallyFilledArray a)
{
double average = computeAverage(a);
System.out.println("Average of the " + a.getNumberOfElements()
+ " scores = " + average);
System.out.println("The scores are:");
for (int index = 0; index < a.getNumberOfElements(); index++)
System.out.println(a.getElement(index) + " differs from average by
+ (a.getElement(index) — average));

ACCESSOR METHODS NEED NOT SIMPLY RETURN INSTANCE VARIABLES

Note that in the class PartiallyFilledArray in Display 6.5, there is no accessor method that
returns a copy of the entire instance variable a. The reason that was not done is that, when the
class is used as intended, a user of the class PartiallyFilledArray would have no need for
the entire array a. That is an implementation detail. The other methods that start with get allow a
programmer using the class to obtain all the data that he or she needs.

340

Chapter 6 Arrays

PRIVACY LEAKS WITH ARRAY INSTANCE VARIABLES

In Chapter 5 we explained why it is a compromise of privacy for a class to have an acces-
sor (or other method) that returns a reference to a private mutable object. As we noted
there, an accessor method should instead return a reference to a deep copy of the private
object. (See the Pitfall subsection of Chapter 5 entitled “Privacy Leaks.”) At the time we
had in mind returning the contents of a private instance variable of a class type. How-
ever, the lesson applies equally well to private instance variables of an array type.

For example, suppose that, despite what we said in the previous Programming Tip,
you decide that you want an accessor method for the array instance variable in the class
PartiallyFilledArray in Display 6.5. You might be tempted to define the accessor
method as follows:

public double[] getInsideArray()// Problematic version
{

return aj;

}

As indicated in the comment, this definition has a problem. The problem is that this
accessor method allows a programmer to change the array object named by the private
instance variable a in ways that bypass the checks built into the mutator methods of the
class PartiallyFilledArray. To see why this is true suppose we had added this definition
of the method getInsideArray to the class PartiallyFilledArray, and consider the fol-
lowing code:

PartiallyFilledArray leakyArray =
new PartiallyFilledArray(10);
double[] arrayName = leakyArray.getInsideArray();

The variable arrayName and the private instance variable a now contain the same refer-
ence, so both arrayName and the private instance variable a name the same array. Using
arrayName as a name for the array named by the private instance variable a, we can now
fill the indexed variables of a in any order and need not fill the array starting at the first
element. This violates the spirit of the private modifier for the array instance variable
a. For this reason, the accessor method getInsideArray should return a deep copy of
the array named by the private instance variable a. A safe definition of getInsideArray
is the following:

public double[] getInsideArray()// Good version
{
//Recall that maxNumberElements == a.length.
double[] temp = new double[maxNumberElements];
for (int i = 0; i < maxNumberElements; i++)
temp[i] = a[il;
return temp;

Programming with Arrays 34l

If a private instance variable is an array type that has a class as its base type, then you
need to be sure to make copies of the class objects in the array when you make a copy
of the array. This is illustrated by the toy class in Display 6.7.

Display 6.7 also includes a copy constructor. As illustrated in that display, the copy
constructor should make a completely independent copy of the array instance variable
(that is, a deep copy) in the same way that the accessor method does. This same point is
also illustrated by the copy constructor in Display 6.5.

Accessor Method for an Array Instance Variable e L UDEM&TE

NOoO VA WN R

o]

10
11
12
13

14
15
16
17
18
19
20

21
22
23
24
25
26
27

28

Demonstrates the correct way to define an accessor
method to a private array of class objects.

7‘:/

public class ToyExample
{

The class Date is defined in Display 4.1, but you
do not need to know the details of the definition

. to understand the point of this example.
private Date[] a; P f P

public ToyExample(int arraySize)

{
a = new Datel[arraySize];
for (int 1 = 0; i < arraySize; i++)
a[i] = new Date();
}

/ Copy constructor for ToyExample

public ToyExample(ToyExample object)

{
int lengthOfArrays = object.a.length;
this.a = new Date[lengthOfArrays];
for (int i = 0; 1 < lengthOfArrays; i++) Copy constructor for Date
this.a[i] = new Date(object.a[il);«—
}
public Date[] getDateArray() -e— Accessor method
{
Date[] temp = new Datel[a.length];
for (int 1 = 0; i < a.length; i++)
temp[i] = new Date(a[il);—=———_ Copy constructor for Date
return temp;
}

<There presumably are other methods that are not shown,
but they are irrelevant to the point at hand.>

codes341.html

342 Chapter 6 Arrays

A PREVIEW OF VECTORS

Java and many other programming languages have objects known as vectors, which are
very much like objects of our class PartiallyFilledArray in Display 6.5. However,
even after you learn about vectors, there will still be situations where the class Partial-
lyFilledArray is preferable to vectors. We will discuss vectors in Chapter 15.

Self-Test Exercises

16. Define a method named removeAl1 that can be added to the class PartialyFilledAr—
ray. The method removeAll has no parameters. When invoked the method removeAll
deletes all the elements in its calling object.

17. Define a method named increaseCapacity that can be added to the class Partially-
FilledArray in Display 6.5. The method has one int parameter named newCapacity
that increases the capacity of the PartialyFilledArray so that it can hold up to newCa-
pacity numbers. If newCapacity is less than or equal to maxNumberOfElements, then
the method does nothing. If newCapacity is greater than maxNumberOfElements, then
maxNumberElements is set equal to newCapacity and a new array of length newCapac—
ity is created for the array instance variable a. The old values of the array instance variable
are copied to the newly created array.

Example

SORTING AN ARRAY

In this example we define a method called sort that will sort a partially filled array of numbers so
that they are ordered from smallest to largest.

The procedure sort has one array parameter a. The array a will be partially filled, so there is an
additional formal parameter called numberUsed, which tells how many array positions are used.
Thus, the heading for the method sort will be

public static void sort(double[] a, int numberUsed)

The method sort rearranges the elements in array a so that after the method call is completed,
the elements are sorted as follows:

al0] < a[l] € a[2] £ ... £ a[numberUsed — 1]

The algorithm we use to do the sorting is called . It is one of the easiest of the sort-
ing algorithms to understand.

Programming with Arrays 343

One way to design an algorithm is to rely on the definition of the problem. In this case the prob-
lem is to sort an array a from smallest to largest. That means rearranging the values so that a[0]
is the smallest, a[1] the next smallest, and so forth. That definition yields an outline for the
selection sort algorithm:

for (int index = 0; index < numberUsed; index++)
Place the indexth smallest element in a[index]

There are many ways to realize this general approach. The details could be developed by using
two arrays and copying the elements from one array to the other in sorted order, but using one
array should be both adequate and economical. Therefore, the method sort uses only the one
array containing the values to be sorted. The method sort rearranges the values in the array a by
interchanging pairs of values. Let us go through a concrete example so that you can see how the
algorithm works.

Consider the array shown in Display 6.8. The selection sort algorithm will place the smallest value
in a[0]. The smallest value is the value in a[4]. So, the algorithm interchanges the values of
a[0] and a[4]. The algorithm then looks for the next smallest element. The value in a[0] is now
the smallest element, so the next smallest element is the smallest of the remaining elements a[1],
al[2], a[3],..., a[9]. In the example in Display 6.8 the next smallest element is in a[6], so the
algorithm interchanges the values of a[1] and a[6]. This positioning of the second smallest ele-
ment is illustrated in the fourth and fifth array pictures in Display 6.8. The algorithm then posi-
tions the third smallest element, and so forth. As the sorting proceeds, the beginning array
elements are set equal to the correct sorted values. The sorted portion of the array grows by add-
ing elements one after the other from the elements in the unsorted end of the array. Notice that
the algorithm need not do anything with the value in the last indexed variable, a[9], because
once the other elements are positioned correctly, a[9] must also have the correct value. After all,
the correct value for a[9] is the smallest value left to be moved, and the only value left to be
moved is the value that is already in a[9].

The definition of the method sort, included in a class, is given in Display 6.9. sort uses the
method indexOfSmallest to find the index of the smallest element in the unsorted end of the
array, then it does an interchange to move this next smallest element down into the sorted part of
the array.

The method interchange, shown in Display 6.9, is used to interchange the values of indexed
variables. For example, the following call will interchange the values of a[0] and a[4]:

interchange(0, 4, a);

A sample use of the sort method is given in Display 6.10.

344 Chapter 6 Arrays

Display 6.8 Selection Sort

/ Unsorted array

al6] a[1] af2] al3] al4] al5] al6] a[7] al8] al9]

8 6 11 17 3 15 5 19 28 12

N

8 6 11 17 3 15 5 19 28 12

<~

3 6 11 17 8 15 5 19 28 12
y T

3 6 11 17 8 15 5 19 28 12
w

3 5 11 17 8 15 6 19 28 12

3 5 6 8 11 12 15 17 19 28

Self-Test Exercises

18. How would you need to change the method sort in Display 6.9 so that it can sort an array
of values of type double into decreasing order, instead of increasing order?

19. If an array of int values has a value that occurs twice (like b[0] == 42 and b[7] == 42)
and you sort the array using the method SelectionSort.sort, will there be one or two
copies of the repeated value after the array is sorted?

Programming with Arrays 345

Display 6.9 Selection Sort Class (Part 1 of 2) e (‘”DL““Th

1 public class SelectionSort
2 {
3 Ve
4 Precondition: numberUsed <= a.length;
5 The first numberUsed indexed variables have values.
6 Action: Sorts a so that a[0] <= a[l] <= ... <= a[numberUsed - 1].
7 */
8 public static void sort(double[] a, int numberUsed)
9 {
10 int index, indexOfNextSmallest;
11 for (index = 0; index < numberUsed — 1; index++)
12 {//Place the correct value in a[index]:
13 indexOfNextSmallest = indexOfSmallest(index, a, numberUsed);
14 interchange(index, indexOfNextSmallest, a);
15 //al0] <= a[l] <=...<= al[index] and these are the smallest
16 //of the original array elements. The remaining positions
17 //contain the rest of the original array elements.
18 }
19 }
20 Vo
21 Returns the index of the smallest value among
22 a[startIndex], a[startIndex+l], ... a[numberUsed - 1]
23 */
24 private static int indexOfSmallest(int startIndex,
25 double[] a, int numberUsed)
26 {
27 double min = a[startIndex];
28 int indexOfMin = startIndex;
29 int index;
30 for (index = startIndex + 1; index < numberUsed; index++)
31 if (a[index] < min)
32 {
33 min = a[index];
34 index0fMin = index;
35 //min is smallest of a[startIndex] through a[index]
36 }
37 return index0fMin;

38 }

codes345.html

346 Chapter 6 Arrays

Selection Sort Class (Part 2 of 2)

/7‘:7‘:
Precondition: i and j are legal indices for the array a.
Postcondition: Values of a[i] and a[j] have been interchanged.

* /
private static void interchange(int i, int j, double[] a)
{
double temp;
temp = a[il;
ali] = aljl;
al[j] = temp; //original value of ali]
}

6., [Multidimensional firrays

Two indices are better than one.

Anonymous

Java allows you to declare arrays with more than one index. In this section we describe
these multidimensional arrays.

MULTIDIMENSIONAL ARRAY BASICS

It is sometimes useful to have an array with more than one index, and this is allowed in
Java. The following creates an array of characters called page. The array page has two
indices: the first index ranging from e to 29 and the second from e to 99.

char[]1[] page = new char[30][100];
This is equivalent to the following two steps:

char[1[]1 page;
page = new char[30][100];

The indexed variables for this array each have two indices. For example, page[0][0],
page[15][321, and page[291[99] are three of the indexed variables for this array. Note
that each index must be enclosed in its own set of square brackets. As was true of the
one-dimensional arrays we have already seen, each indexed variable for a multidimen-
sional array is a variable of the base type, in this case the type char.

1
2
3
4
5

O 00 N O

10
11
12

13
14
15
16
17
18

Multidimensional Arrays 347

Demonstration of the SelectionSort Class e (JODEMATE

public class SelectionSortDemo

{

}

public static void main(String[] args)

{
double[] b = {7.7, 5.5, 11, 3, 16, 4.4, 20, 14, 13, 423};

System.out.println("Array contents before sorting:");
int 1i;
for (1 = 0; i < b.length; i++)

System.out.print(b[i] + " ");
System.out.println();

SelectionSort.sort(b, b.length);

System.out.println("Sorted array values:");

for (i = 0; i < b.length; i++)
System.out.print(b[i] + " ");

System.out.println();

SAMPLE DIALOGUE

Array contents before sorting:

7.7 5.5 11.0 3.0 16.0 4.4 20.0 14.0 13.0 42.0
Sorted array values:

3.0 4.4 5.5 7.7 11.0 13.0 14.0 16.0 20.0 42.0

An array may have any number of indices, but perhaps the most common number
of indices is two. A two-dimensional array can be visualized as a two-dimensional dis-
play with the first index giving the row and the second index giving the column. For
example, the array indexed variables of the two-dimensional array a declared and cre-
ated as

char[][] a = new char[5][12];

can be visualized as follows:

afe]fe], alel[1], al6][2], ..., a[6][11]
a[1][e], al1][1], a[1][2], ..., a[1][11]
af2][e], a[2]1[1], a[2][2], ..., a[2][11]
a[31[e1, a[31[1], al3]1[21, ..., a[3]1[11]

al4]1[0], a[41[1], al41[2], ..., a[4][11]

codes347.html

348

Chapter 6 Arrays

You might use the array a to store all the characters on a (very small) page of text that
has five lines (numbered O through 4) and 12 characters on each line (numbered 0
through 11).

DECLARING AND CREATING A MULTIDIMENSIONAL ARRAY

You declare a multidimensional array variable and create a multidimensional array object in
basically the same way that you create and name a one-dimensional array. You simply use as
many square brackets as there are indices.

SYNTAX:
Base_Type[]...[]1 Variable_Name = new Base_Type[Llength_i]...[Length_n];
EXAMPLES:

char[]1[] a = new char[5][12];

char[]1[] page = new char[30][100];
double[][] table = new double[100][10];
int[J[]1[] figure new int[10][20][30];
Person[][] entry new Person[10][10];

Personis a class.

In Java, a two-dimensional array, such as a, is actually an array of arrays. The above
array a is actually a one-dimensional array of size 5, whose base type is a one-dimensional
array of characters of size 12. This is diagrammed in Display 6.11. As shown in that dis-
play, the array variable a contains a reference to a one-dimensional array of length 5 and
with a base type of char[]; that is, the base type of a is the type for an entire one-
dimensional array of characters. Each indexed variable a[e1, a[1], and so forth con-
tains a reference to a one-dimensional array of characters.

A three-dimensional array is an array of arrays of arrays, and so forth for higher
dimensions.

Normally, the fact that a two-dimensional array is an array of arrays need not con-
cern you, and you can usually act as if the array a is actually an array with two indices
(rather than an array of arrays, which is harder to keep track of). There are, however,
some situations where a two-dimensional array looks very much like an array of arrays.
For example, you will see that when using the instance variable 1ength, you must think
of a two-dimensional array as an array of arrays.

Multidimensional Arrays

Display 6.11 Two-Dimensional Array as an Array of Arrays

349

char[][] a = new char[5][12];

Code that fills the array is not shown.

a 1]1[2
Blank entries contain the al1]l2]
N space (blank) character.
h 6 1 2 3 4 5 6 7 11
alo]
—| 0 n C e u p o
ali] <—//
—| a t i m e
al2]
— | t h e r e w e
al[3]
— | t h r e e 1 i 1 e
al4]
— | p r o g r a m m s

We will see that these can and should

int row, column; be replaced with expressions involving
for (row = 0; row <®M the length instance variable.

{
for (column = 0; column < column++)
System.out.print(a[row] [Column]);
System.out.println(Q);
}
Produces the following output:
Once upon
a time

there were
three little
programmers.

350 Chapter 6 Arrays

USING THE length INSTANCE VARIABLE
Suppose you want to fill all the elements in the following two-dimensional array with 'z':

char[][] page = new char[30][100];
You can use a nested for loop such as the following:

int row, column;
for (row = 0; row < page.length; row++)
for (column = 0; column < page[row].length; column++)
page[row] [column] = 'Z';

Let’s analyze this nested for loop in a bit more detail. The array page is actually a
one-dimensional array of length 30, and each of the 30 indexed variables page[6]
through page[29] is a one-dimensional array with base type char and with a length
of 100. That is why the first for loop is terminated using page.length. For a two-
dimensional array like page, the value of 1ength is the number of first indices or, equiv-
alently, the number of rows—in this case, 30. Now let’s consider the inside for loop.

The o™ row in the two-dimensional array page is the one-dimensional array page[0],
and it has page[0].1ength entries. More generally, page[row] is a one-dimensional array
of chars, and it has page [row] . length entries. That is why the inner for loop is terminated
using page [row] . length. Of course, in this case, page[0] . length, page[1].1length, and so
forth through to page[29].1ength are all equal and all equal to 10e. (If you read the
optional section entitled “Ragged Arrays,” you will see that these need not all be equal.)

Self-Test Exercises

20. What is the output produced by the following code?

int[][] myArray = new int[4][4];
int index1l, index2;
for (indexl = 0; indexl < myArray.length; index1++)
for (index2 = 0;
index2 < myArray[index1].length; index2++)
myArray[index1] [index2] = index2;
for (indexl = 0; indexl < myArray.length; indexl++)
{
for (index2 = 0;
index2 < myArray[index1].length; index2++)
System.out.print(myArray[index1] [index2] + " ");
System.out.println();

Multidimensional Arrays 351

21. Write code that will fill the array a (declared and created below) with numbers typed in at
the keyboard. The numbers will be input five per line, on four lines.

int[][] a = new int[4][5];

Hint: It will help to use the class StringTokenizer.

22. Write a method definition for a static void method called echo such that the following
method call will echo the input described in exercise 21, and will echo it in the same format
as we specified for the input (that is, four lines of five numbers per line):

Class_Name.echo(a) ;

RAGGED ARRAYS

There is no need for each row in a two-dimensional array to have the same number of
entries. Different rows can have different numbers of columns. These sorts of arrays are
called

To help explain the details, let’s start with an ordinary, nonragged two-dimensional
array, created as follows:

double[][] a = new double[3][5];

This is equivalent to the following:

double[][] a;

a = new double[3][];
al[0] = new double[5];
a[l] = new double[5];
al2] new double[5];

The line
a = new double[3][];

makes a the name of an array with room for 3 entries, each of which can be an array of
doubles that can be of any length. The next three lines each create an array of doubles
of length 5 to be named by a[061, a[11, and a[2]. The net result is a two-dimensional
array of base type double with three rows and five columns.

If you want, you can make each of a[e], a[1], and a[2] a different length. The fol-
lowing code makes a ragged array b in which each row has a different length:

double[I[] b;

b = new double[3][];
b[0] = new double[5];
b[1] = new double[10];
b[2] new double[4];

352 Chapter 6 Arrays

There are situations in which you can profitably use ragged arrays, but most applica-
tions do not require them. However, if you understand ragged arrays, you will have a
better understanding of how all multidimensional arrays work in Java.

MULTIDIMENSIONAL ARRAY PARAMETERS AND RETURNED VALUES

Methods may have multidimensional array parameters and may have a multidimen-
sional array type as the type for the value returned. The situation is similar to that of
the one-dimensional case, except that you use more square brackets when specifying
the type name. For example, the following method will display a two-dimensional
array in the usual way as rows and columns:*

public static void showMatrix(int[][] a)

{
int row, column;
for (row = 0; row < a.length; row++)
{
for (column = 0; column < a[row].length; column++)
System.out.print(a[row] [column] + " ");
System.out.println();
}
}

If you want to return a multidimensional array, you use the same kind of type spec-
ification as you use for a multidimensional array parameter. For example, the following
method returns a two-dimensional array with base type double:

Precondition: Each dimension of a is at least

the value of size.

The array returned is the same as the size-by-size
upper-left corner of the array a.

:’:/
public static double[][] corner(double[][] a, int size)
{
double[][] temp = new double[size][size];
int row, column;
for (row = 0; row < size; row++)
for (column = 0; column < size; column++)
temp[row] [column] = a[row] [column];
return temp;
}

4 It is worth noting that this method works fine for ragged arrays.

Multidimensional Arrays 353

Example

A GRADE Book CLASS

Display 6.12 contains a class for grade records in a class whose only recorded scores are quiz
scores. An object of this class has three array instance variables. One is a two-dimensional array
named grade that records the grade of each student on each quiz. For example, the score that
student number 4 received on quiz number 1 is recorded in grade[3] [0]. Since the student
numbers and quiz numbers start with 1 and the array indices start with 0, we subtract one from
the student number or quiz number to obtain the corresponding array index.

All the raw data is in the array grade, but two other arrays hold computed data. The array stu—
dentAverage is used to record the average quiz score for each of the students. For example, the
program will set studentAverage[0] equal to the average of the quiz scores received by stu-
dent 1, studentAverage[1] equal to the average of the quiz scores received by student 2, and
so forth. The array quizAverage will be used to record the average score for each quiz. For
example, the program will set quizAverage[0] equal to the average of all the student scores for
quiz 1, quizAverage[1] will record the average score for quiz 2, and so forth. Display 6.13 illus-
trates the relationship between the arrays grade, studentAverage, and quizAverage. In that
display, we have shown some sample data for the array grade. The data in grade, in turn, deter-
mine the values that are stored in studentAverage and in quizAverage. Display 6.13 also
shows these computed values for studentAverage and quizAverage. The two arrays stu—
dentAverage and quizAverage are created and filled by the constructor that creates the
GradeBook object. (The constructors do this by calling private helping methods.)

The no-argument constructor for the class GradeBook obtains the data for the array instance
variable grade via a dialog with the user. Although this is not my favorite way to define a no-
argument constructor, some programmers like it and you should see an example of it. Another
alternative would be to have a no-argument constructor that essentially does nothing and then
have an input method that sets all the instance variables including creating the array objects.

A very simple demonstration program along with the dialog it produces is given in Display 6.14.

Self-Test Exercises

23. Write a method definition for a method with the following heading. The method is to be
added to the class GradeBook in Display 6.12.

Returns the grade that student numbered studentNumber
received on quiz number quizNumber.

*/

public int getGrade(int studentNumber, int quizNumber)

354 Chapter 6 Arrays
™ -~ I
A Grade Book Class (Part 1 of 4) e LUDEMJ‘TE
1 import java.io.BufferedReader;
2 1import java.io.InputStreamReader;
3 import java.io.IOException;
4 public class GradeBook
5 {
6 private int numberOfStudents; // Same as studentAverage.length.
7 private int numberOfQuizzes; // Same as quizeAverage.length.
8 private int[][] grade; //numberOfStudents rows and numberOfQuizzes columns.
9 private double[] studentAverage;
10 private double[] quizAverage;
11 public GradeBook(int[][] a)
12 {
13 if (a.length == 0 || a[0].length == 0)
14 {
15 System.out.println("Empty grade records. Aborting.");
16 System.exit(0);
17 }
18 numberOfStudents = a.length;
19 numberO0fQuizzes = a[0].length;
20 fillGrade(a);
21 fillStudentAverage();
22 fillQuizAverage();
23 }
24 public GradeBook(GradeBook book)
25 {
26 numberOfStudents = book.numberOfStudents;
27 number0fQuizzes = book.numberOfQuizzes;
28 fillGrade(book.grade);
29 fillStudentAverage();
30 fillQuizAverage();
31 }
32 public GradeBook() throws IOException
33 {
34 BufferedReader keyboard = new BufferedReader(
35 new InputStreamReader(System.in));

codes354.html

36
37

38
39

40

41
42
43
44
45
46
47
48
49
50
51

52
53
54

55
56
57
58

59
60
61

62
63
64
65
66
67
68
69
70

Multidimensional Arrays 355

A Grade Book Class (Part 2 of 4)

System.out.println("Enter number of students:");
numberOfStudents = stringToInt(keyboard.readlLine());

System.out.println("Enter number of quizzes:");
numberOfQuizzes = stringToInt(keyboard.readlLine());

grade = new int[numberOfStudents][number0fQuizzes];

for (int studentNumber = 1;
studentNumber <= numberOfStudents; studentNumber++)

for (int quizNumber = 1;
quizNumber <= numberOfQuizzes; quizNumber++)

{
System.out.println("Enter score for student number "
+ studentNumber);
System.out.println("on quiz number " + quizNumber);
grade[studentNumber — 1][quizNumber - 1] =
stringToInt(keyboard.readlLine());
}
fillStudentAverage();
fillQuizAverage();
3
private static int stringToInt(String stringObject)
{
return Integer.parselnt(stringObject.trim());
3

This class should have more accessor and mutator
methods, but we have omitted them to save space. See
Self-Test Exercises 23 through 26.

private void fillGrade(int[][] a)
{

grade = new int[numberOfStudents] [number0fQuizzes];

for (int studentNumber = 1;
studentNumber <= numberOfStudents; studentNumber++)

{
for (int quizNumber = 1;
quizNumber <= numberOfQuizzes; quizNumber++)
grade[studentNumber] [quizNumber] =
a[studentNumber] [quizNumber];
}

356

Chapter 6 Arrays

A Grade Book Class (Part 3 of 4)

71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105

106
107
108
109

/ *%
Fills the array studentAverage using the data from the array grade.
* /
private void fillStudentAverage()
{

studentAverage = new double[numberOfStudents];

for (int studentNumber = 1;
studentNumber <= numberOfStudents; studentNumber++)
{//Process one studentNumber:
double sum = 0;
for (int quizNumber = 1;
quizNumber <= numberOfQuizzes; quizNumber++)
sum = sum + grade[studentNumber — 1][quizNumber — 1];
//sum contains the sum of the quiz scores for student number studentNumber.
studentAverage[studentNumber — 1] = sum/numberOfQuizzes;
//Average for student studentNumber is studentAverage[studentNumber — 1]

/ *%
Fills the array quizAverage using the data from the array grade.
* /

private void fillQuizAverage()

{
quizAverage = new double[numberOfQuizzes];
for (int quizNumber = 1; quizNumber <= numberOfQuizzes; quizNumber++)
{//Process one quiz (for all students):
double sum = 0;
for (int studentNumber = 1;
studentNumber <= numberOfStudents; studentNumber++)
sum = sum + grade[studentNumber — 1][quizNumber - 1];
//sum contains the sum of all student scores on quiz number quizNumber.
quizAverage[quizNumber — 1] = sum/numberOfStudents;
//Average for quiz quizNumber is the value of quizAverage[quizNumber — 1]
}
}

public void display()

{
for (int studentNumber = 1;
studentNumber <= numberOfStudents; studentNumber++)

Multidimensional Arrays 357

A Grade Book Class (Part 4 of 4)

110 {//Display for one studentNumber:

111 System.out.print("Student " + studentNumber + " Quizzes: ");

112 for (int quizNumber = 1;

113 quizNumber <= numberOfQuizzes; quizNumber++)

114 System.out.print(grade[studentNumber — 1][quizNumber — 1] + " ");
115 System.out.println(" Ave = " + studentAverage[studentNumber — 1]);
116 }

117 System.out.println("Quiz averages: ");

118 for (int quizNumber = 1; quizNumber <= numberOfQuizzes; quizNumber++)
119 System.out.print("Quiz " + quizNumber

120 + " Ave = " + quizAverage[quizNumber — 1] + " ");
121 System.out.println();

122 }

123}

The Two-Dimensional Array grade

= N ™ studentAverage

N N N

3 > 3

5 & & /{///
student; ——— 10 10 10 |—»| 10.0 studentAverage[0]
student 2 ——— 2 0 1 | 1.0 studentAverage[1]
student3 ——— 8 6 9 b | 7.7 studentAverage[2]
student j ——— 8 4 10 f—>»| 7.3 studentAverage[3]

Y Y Y
quizAverage —s=! 7.0 5.0 7.5

quizAverage[0]
quizAverage[1]
quizAverage[2]

358 Chapter 6 Arrays

(A) ConMATE

Demonstration of the Class GradeBook

1 import java.io.IOException;

2

3 public class GradeBookDemo

4

5 public static void main(String[] args) throws IOException
6 {

7 GradeBook book = new GradeBook();

8 book.display();

9 }

10 }

SAMPLE DIALOGUE

Enter number of students:

4

Enter number of quizzes:

3

Enter score for student number 1
on quiz number 1

10

Enter score for student number 1
on quiz number 2

10

<The rest of the input dialog is omitted to save space.>

Student 1 Quizzes: 10 10 10 Ave = 10.0

Student 2 Quizzes: 2 0 1 Ave 1.0

Student 3 Quizzes: 6 9 Ave = 7.66666666667
Student 4 Quizzes: 4 10 Ave = 7.33333333333

Quiz averages:

Quiz 1 Ave = 7.0 Quiz 2 Ave = 5.0 Quiz 3 Ave = 7.5

8
8

24. Write a method definition for a method with the following heading. The method is to be
added to the class GradeBook in Display 6.12.

Changes the grade for student number studentNumber
on quiz number quizNumber to newGrade.
*/
public void changeGrade(int studentNumber,
int quizNumber, int newGrade))

codes358.html

Chapter Summary 359

25. Write a method definition for a method with the following heading. The method is to be
added to the class GradeBook in Display 6.12.

Returns an array with the average quiz score for each student.
:‘:/
public double[] getStudentAverages()

26. Write a method definition for a method with the following heading. The method is to be
added to the class GradeBook in Display 6.12.

Returns an array with the average score for each quiz.
7‘:/
public double[] getQuizAverages()

Chapter Summary

= An array can be used to store and manipulate a collection of data that is all of the
same type.

= The indexed variables of an array can be used just like any other variables of the base
type of the array.

= Arrays are objects that are created with new just like the class objects we discussed
before this chapter (although there is a slight difference in the syntax used).

= A for loop is a good way to step through the elements of an array and perform
some program action on each indexed variable.

= The most common programming error made when using arrays is to attempt to
access a nonexistent array index. Always check the first and last iterations of a loop
that manipulates an array to make sure it does not use an index that is illegally small
or illegally large.

= The indexed variables of an array can be used as an argument to be plugged in for a
parameter of the array’s base type.

= A method can have parameters of an array type. When the method is invoked, an
entire array is plugged in for the array parameter.

= A method may return an array as the value returned by the method.

= When using a partially filled array, your program needs an additional variable of
type int to keep track of how much of the array is being used.

= An instance variable of a class can be of an array type.

= If you need an array with more than one index, you can use a multidimensional
array, which is actually an array of arrays.

360

Chapter 6 Arrays

ANSWERS TO SELF-TEST EXERCISES

1.

a. word

b. String

c. 5

d. 0 through 4 inclusive

e. any of the following would be correct:
word[0], word[1], word[2], word[3], word[4]

.a 10

b. 0
c. 9

.a, b, c,

1.1 2.2
1.1 3.3

3.3
1 3.3

. The for loop uses indices 1 through sampleArray.length, but the correct indices are 0

through sampleArray.length — 1. The last index, sampleArray.length, is out of
bounds. What was probably intended is the following:

int[] sampleArray = new int[10];
for (int index = 0; index < sampleArray.length; index++)
sampleArray[index] = 3*index;

. The last value of index is a.length — 1, which is the last index of the array. However,

when index has the value a.length — 1, a[index + 1] has an index that is out of bounds
since index + 1 is one more than the largest array index. The for loop ending condition
should instead be index < a.length — 1.

. SomeClass.doSomething(number); //Legal.

SomeClass.doSomething(a[2]); //Legal.
SomeClass.doSomething(a[3]); //Illegal. Index out of bounds.
SomeClass.doSomething(a[number]); //Legal.
SomeClass.doSomething(a); //Illegal.

. public static void oneMore(int[] a)

{
for (int i = 0; 1 < a.length; i++)
ali] = a[i] + 1;
}

. public static int outOfOrder(double[] a)

{
for (int index = 0; index < a.length — 1; index++)
if (a[index] > al[index + 1])

10.

11.

12.

13.

14.

Answers to Self-Test Exercises 361

return (index + 1);
return — 1;

}

This method is legal but pointless. When invoked, it has no effect on its argument. The
parameter a is a local variable that contains a reference. The reference does indeed get
changed to a reference to an array of double the size of the argument, but that reference
goes away when the method ends. A method can change the values of the indexed
variables of its argument, but it cannot change the reference in the array variable used as
an argument.

public static double[] halfArray(double[] a)
{
double[] temp = new double[a.length];
for (int 1 = 0; 1 < a.length; i++)
temp[i] = a[i]/2.0;
return temp;

}

The method will compile and run. However, it will change the values of its array argument.
If you want to change the values in the array argument, a void method would make more

sense. If you want to return an array, you should probably return a new array (as in the ver-
sion in the previous subsection), not return a changed version of the argument array.

Precondition: numberUsed <= argumentArray.length;
the first numberUsed indexed variables of argumentArray
have values.
Returns an array of length numberUsed whose ith element
is argumentArray[i] - adjustment.
*/
public static double[] differenceArray(
double[] argumentArray, int numberUsed, double adjustment)
{

double[] temp = new double[numberUsed];

for (int i = 0; i < numberUsed; i++)

temp[i] = argumentArray[i] — adjustment;
return temp;

}

The only changes are to add the method differenceArray and to rewrite the method
showD1ifference as follows (the complete class definition is in the file GolfScoresExer-
cise.java on the accompanying CD):

public static void showDifference(double[] a,
int numberUsed)
{
double average = computeAverage(a, numberUsed);
System.out.println("Average of the " + numberUsed

+ " scores = " + average);

362 Chapter 6 Arrays

double[] difference =
differenceArray(a, numberUsed, average);
System.out.println("The scores are:");
for (int index = 0; index < numberUsed; index++)
System.out.println(a[index] +
" differs from average by
+ difference[index]);

}

15. The main differences are to remove parameters, replace the array name a by score, and
make the method fillArray a void method. This code is in the file GolfScoresStatic—
Exercise.java on the accompanying CD.

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class GolfScoresStaticExercise
{
public static final int MAX_NUMBER_SCORES = 10;
private static double[] score =
new double[MAX_NUMBER_SCORES];
private static int numberUsed = 0;

/ *%
Shows differences between each of a list of golf scores
and their average.

* /
public static void main(String[] args) throws IOException
{

System.out.println(

"This program reads golf scores and shows");
System.out.println(

"how much each differs from the average.™);
System.out.println("Enter golf scores:");
fillArray(Q);
showDifference();

}
/ *k
Reads values into the array score.
* /
public static void fillArray() throws IOException
{

System.out.println("Enter up to " + score.length

+ nonnegative numbers, one per line.");

Vi

Precondition: numberUsed <= score.length.
score[0] through score[numberUsed-1] have values.
Returns the average of numbers ascore[0] through
score[numberUsed-1].

Answers to Self-Test Exercises

System.out.println(
"Mark the end of the list with a negative number.");
BufferedReader keyboard = new BufferedReader(
new InputStreamReader(System.in));

double next;
int index = 0;
next = stringToDouble(keyboard.readLine());
while ((next >= 0) && (index < score.length))
{

score[index] = next;

index++;

next = stringToDouble(keyboard.readLine());

//index is the number of

//array indexed variables used so far.
}

//index is the total number of array indexed variables used.

if (next >= 0)
System.out.println("Could only read in
+ score.length + " input values.");

numberUsed = index;

public static double computeAverage()

{

double total = 0;

for (int index = 0; index < numberUsed; index++)
total = total + score[index];

if (numberUsed > 0)

{
return (total/numberUsed);
3
else
{
System.out.println(

"ERROR: Trying to average 0 numbers.");
System.out.println("computeAverage returns 0.");
return 0;

3

363

364 Chapter 6 Arrays

private static double stringToDouble(String stringObject)

{
}

Vil
Precondition: numberUsed <= score.length.
The first numberUsed indexed variables of score have values.
Postcondition: Gives screen output showing how much each of the
first numberUsed elements of the array a differ from the average.

return Double.parseDouble(stringObject.trim());

public static void showDifference()

double average = computeAverage();
System.out.println("Average of the " + numberUsed
+ " scores = " + average);
System.out.println("The scores are:");
for (int index = 0; index < numberUsed; index++)
System.out.println(score[index] +
" differs from average by

+ (score[index] — average));

16. public void removeAll()

numberUsed = 0;

17. public void increaseCapacity(int newCapacity)

{
}
}
{
}
{
}

if (newCapacity > numberUsed)

maxNumberElements = newCapacity;

double[] temp = new double[newCapacity];

for (int 1 = 0; i < a.length; i++)
temp[i] = a[il;

a = temp;

}//else do nothing.

18. All you need to do to make your code work for sorting into decreasing order is to replace
the < with > in the following line of the definition of indexOfSmallest:

if (a[index] < min)

However, to make your code easy to read, you should also rename the method
index0fSmallest t0 indexOflLargest, rename the variable min to max, and rename the
variable index0fMin to index0fMax. You should also rewrite some of the comments to
reflect these changes.

Answers to Self-Test Exercises 365

. If an array has a value that occurs more than once and you sort the array using the method
SelectionSort.sort, then there will be as many copies of the repeated value after the
array is sorted as there originally were in the array.

. The answer is given along with the answer to exercise 22.

. This program is on the CD that comes with this book.

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;

public class DoubleExerciseAnswer
{
public static final int ROWS = 4;
public static final int COLUMNS = 5 ;

public static void main(String[] args) throws IOException
{
//Answer to Self-Test Exercise 21:
BufferedReader keyboard = new BufferedReader(
new InputStreamReader(System.in));
int[][] a = new int[ROWS] [COLUMNS];
String inputLine;

System.out.println("Enter " + ROWS*COLUMNS +
" numbers, " + COLUMNS + " per line, on "
+ ROWS + " lines:");
int row, column;
for (row = 0; row < ROWS; row++)

{

inputLine = keyboard.readLine();

StringTokenizer numberlList =

new StringTokenizer(inputLine);
for (column = 0; column < COLUMNS; column++)
alrow] [column] =
Integer.parseInt(numberList.nextToken());

}

System.out.println("You entered:");
echo(a);

366

Chapter 6 Arrays

//Answer to Self-Test Exercise 22:
public static void echo(int[][] a)

{
int row, column;
for (row = 0; row < a.length; row++)
{
for (column = 0; column < al[row].length; column++)
System.out.print(alrow] [column] + " ");
System.out.println(Q);
}
}

}

23. If the array indices are out of bounds, then Java will halt the program with an error mes-
sage, so no other checks on the parameters are needed.

Returns the grade that student numbered studentNumber
received on quiz number quizNumber.
:‘r/
public int getGrade(int studentNumber, int quizNumber)
{
return grade[studentNumber][quizNumber];

}

24. If the array indices are out of bounds, then Java will halt the program with an error mes-
sage, so no other checks on the parameters are needed.

Changes the grade for student number studentNumber
on quiz number quizNumber to newGrade.
*/
public void changeGrade(int studentNumber,
int quizNumber, int newGrade)
{

grade[studentNumber] [quizNumber] = newGrade;

Returns an array with the average quiz score for each student.
:‘:/
public double[] getStudentAverages()
{
int arraySize = studentAverage.length;
double[] temp = new double[arraySize];
for (int i = 0; i < arraySize; i++)
temp[i] = studentAverage[i];
return temp;

Programming Projects

Returns an array with the average score for each quiz.
* /
public double[] getQuizAverages()

{
int arraySize = quizAverage.length;
double[] temp = new double[arraySize];
for (int 1 = 0; 1 < arraySize; i++)
temp[i] = quizAverage[i];
return temp;
}

PROGRAMMING PROJECTS

L) ConiALTE

1. Write a program that reads in the average monthly rainfall for a city for each month of the

year and then reads in the actual monthly rainfall for each of the previous 12 months. The
program then prints out a nicely formatted table showing the rainfall for each of the previ-
ous 12 months as well as how much above or below average the rainfall was for each
month. The average monthly rainfall is given for the months January, February, and so
forth, in order. To obtain the actual rainfall for the previous 12 months, the program first
asks what the current month is and then asks for the rainfall figures for the previous 12
months. The output should correctly label the months. There are a variety of ways to deal
with the month names. One straightforward method is to code the months as integers and
then do a conversion to a string for the month name before doing the output. A large
switch statement is acceptable in an output method. The month input can be handled in
any manner you wish so long as it is relatively easy and pleasant for the user. Include a loop
that allows the user to repeat this entire calculation until the user requests that the program
end.

. Write a static method called deleteRepeats that has a partially filled array of characters as

a formal parameter and that deletes all repeated letters from the array. Since a partially
filled array requires two arguments, the method will actually have two formal parameters:
an array parameter and a formal parameter of type int that gives the number of array posi-
tions used. When a letter is deleted, the remaining letters are moved one position to fill in
the gap. This will create empty positions at the end of the array so that less of the array is
used. Since the formal parameter is a partially filled array, a second formal parameter of
type int will tell how many array positions are filled. This second formal parameter cannot
be changed by a Java method, so have the method return the new value for this parameter.
For example, consider the following code:

char a[10];
al@] = 'a';
a[l] = 'b';

al[2] = 'a';

367

project367.html

368

O

Chapter 6 Arrays

al3] = 'c';
int size = 4;
size = deleteRepeats(a, size);

After this code is executed, the value of a[0] is 'a", the value of a[1] is 'b", the value of
a[2]is 'c', and the value of size is 3. (The value of a[3] is no longer of any concern,
since the partially filled array no longer uses this indexed variable.) You may assume that
the partially filled array contains only lowercase letters. Write a suitable test program for
your method.

The standard deviation of a list of numbers is a measure of how much the numbers deviate
from the average. If the standard deviation is small, the numbers are clustered close to the
average. If the standard deviation is large, the numbers are scattered far from the average.
The standard deviation of a list of numbers n,, n,, ny, and so forth is defined as the square
root of the average of the following numbers:

(n; - @)% (n, - a)?, (n; - a)?, and so forth.

The number a is the average of the numbers ny, n,, ns, and so forth.

Define a static method that takes a partially filled array of numbers as its argument and
returns the standard deviation of the numbers in the partially filled array. Since a partially
filled array requires two arguments, the method will actually have two formal parameters,
an array parameter and a formal parameter of type int that gives the number of array posi-
tions used. The numbers in the array will be of type double. Write a suitable test program
for your method.

. Write a program that reads numbers from the keyboard into an array of type int[]. You

may assume that there will be 50 or fewer entries in the array. Your program allows any
number of numbers to be entered up to 50 numbers. The output is to be a two-column
list. The first column is a list of the distinct array elements; the second column is the count
of the number of occurrences of each element. The list should be sorted on entries in the
first column, largest to smallest.

For the array

-123-12411-121-1123423-12
the output should be

N Count
4 2
3 3
2 2
1 4
-1 1
-12 4

. An array can be used to store large integers one digit at a time. For example, the integer

1234 could be stored in the array a by setting a[0] to 1, a[1] to 2, a[2] to 3,and a[3] to

project368.html

O

Programming Projects 369

4. However, for this exercise you might find it more useful to store the digits backward;
that is, place 4 in a[0], 3ina[1], 2 ina[2],and 1 in a[3]. In this exercise you will write
a program that reads in two positive integers that are 20 or fewer digits in length and then
outputs the sum of the two numbers. Your program will read the digits as values of type
char so that the number 1234 is read as the four characters '1', '2', '3',and '4'. After
they are read into the program, the characters are changed to values of type int. The digits
will be read into a partially filled array, and you might find it useful to reverse the order of
the elements in the array after the array is filled with data from the keyboard. (Whether or
not you reverse the order of the elements in the array is up to you. It can be done either way
and each way has its advantages and disadvantages.) Your program will perform the addi-
tion by implementing the usual paper-and-pencil addition algorithm. The result of the
addition is stored in an array of size 20 and the result is then written to the screen. If the
result of the addition is an integer with more than the maximum number of digits (that is,
more than 20 digits), then your program should issue a message saying that it has encoun-
tered “integer overflow.” You should be able to change the maximum length of the integers
by changing only one named constant. Include a loop that allows the user to continue to
do more additions until the user says the program should end.

Design a class called BubbleSort that is similar to the class SelectionSort given in Dis-
play 6.9. The class BubbleSort will be used in the same way as the class SelectionSort,
but it will use the bubble sort algorithm.

The bubble sort algorithm checks all adjacent pairs of elements in the array from the begin-
ning to the end and interchanges any two elements that are out of order. This process is
repeated until the array is sorted. The algorithm is as follows:

Bubble Sort Algorithm to Sort an Array a
Repeat the following until the array a is sorted:

for (index = 0; index < a.length — 1; index++)
if (a[index] > a[index + 1])
Interchange the values of a[index] and a[index + 1].

The bubble sort algorithm is good for sorting an array that is “almost sorted.” It is not
competitive to other sorting methods for most other situations.

. Enhance the definition of the class PartiallyFilledArray (Display 6.5) in the following

way: When the user attempts to add one additional element and there is no room in the array
instance variable a, the user is allowed to add the element. The object creates a second array
that is twice the size of the array a, copies values from the array a to the user’s new array,
makes this array (or more precisely its reference) the new value of a, and then adds the ele-
ment to this new larger array a. Hence, this new class will have no limit (other than the
physical size of the computer) to how many numbers it can hold. The instance variable
maxNumberElements remains and the method getMaxCapacity is unchanged, but these
now refer to the currently allocated memory and not to an absolute upper bound. Write a
suitable test program.

project369.html

370

O

Chapter 6 Arrays

. Write a program that will allow two users to play tic-tac-toe. The program should ask for moves

alternately from player X and player O. The program displays the game positions as follows:

N AR
co 1 N
o o w

The players enter their moves by entering the position number they wish to mark. After
each move, the program displays the changed board. A sample board configuration is

O & X
o U1 X
o o O

Write a program to assign passengers seats in an airplane. Assume a small airplane with seat
numberings as follows:

A B

NoO v WN R
> > > > >

W W W W W W
NN NOnNON
O O OO oOo

A cD

The program should display the seat pattern, with an 'X' marking the seats already
assigned. For example, after seats 1A, 2B, and 4C are taken, the display should look like:

NoOoO Vv WN R
> > > > > > X
W W W W w X W
NONOXNON0N
O O OO oO oo

After displaying the seats available, the program prompts for the seat desired, the user types
in a seat, and then the display of available seats is updated. This continues until all seats are
filled or until the user signals that the program should end. If the user types in a seat that is
already assigned, the program should say that that seat is occupied and ask for another
choice.

project370.html

	code links 2:
	code links 1:
	code links 4:
	code links 6:
	code links 7:
	code links 3:
	program project 6:
	1:
	2:
	6:
	9:

	code links 8:
	code links 9:

