

CHAPTER

9

Exception Handling

9.1 EXCEPTION HANDLING BASICS 453

Example: A Toy Example of Exception Handling 453

try-throw-catch Mechanism 458

Exception Classes 463

Exception Classes from Standard Packages 463

Defining Exception Classes 465

Tip: An Exception Class Can Carry a Message of Any
Type 470

Tip: Preserve

getMessage 470

Multiple

catch Blocks 476

Pitfall: Catch the More Specific Exception First 478

9.2 THROWING EXCEPTIONS IN METHODS 481

Throwing an Exception in a Method 481

Declaring Exceptions in a

throws Clause 483

throws Clause in Derived Classes 485

When to Use Exceptions 486

IOException 487

Event-Driven Programming

✜ 488

9.3 MORE PROGRAMMING TECHNIQUES FOR
EXCEPTION HANDLING 492

Pitfall: Nested

try-catch Blocks 492

The

finally Block

✜ 492

Rethrowing an Exception

✜ 493

Exceptions to the Catch or Declare Rule 495

The

AssertionError Class

✜ 496

NumberFormatException 497

Tip: Exception Controlled Loops 497

ArrayIndexOutOfBoundsException 500

Example: Console Input Class

✜ 501

CHAPTER SUMMARY 509
ANSWERS TO SELF-TEST EXERCISES 509
PROGRAMMING PROJECTS 512

5640_ch09.fm Page 451 Wednesday, February 11, 2004 2:30 PM

9

Exception Handling

It’s the exception that proves the rule.

Common saying

INTRODUCTION

One way to divide the task of designing and coding a method is to code two
main cases separately: the case where nothing unusual happens and the case
where exceptional things happen. Once you have the program working for the
case where things always go smoothly, you can then code the second case
where exceptional things can happen. In Java, there is a way to mirror this
approach in your code. You write your code more or less as if nothing very
unusual happens. After that, you use the Java exception handling facilities to
add code for those exceptional cases.

The most important use of exceptions is to deal with methods that have
some special case that is handled differently depending on how the method is
used. For example, if there is a division by zero in the method, then it may
turn out that for some invocations of the method the program should end,
but for other invocations of the method something else should happen. Such a
method can be defined to throw an exception if the special case occurs, and
that exception will allow the special case to be handled outside of the method.
This allows the special case to be handled differently for different invocations
of the method.

In Java, exception handling proceeds as follows: Either some library soft-
ware or your code provides a mechanism that signals when something unusual
happens. This is called throwing an exception

. At another place in your pro-
gram you place the code that deals with the exceptional case. This is called
handling the exception

. This method of programming makes for cleaner
code. Of course, we still need to explain the details of how you do this in Java.

PREREQUISITES

Almost all of this chapter only uses material from Chapters 1 through 5 and
Chapter 7. The only exception is the subsection “

ArrayIndexOutOfBoundsEx-

ception

,” which also uses material from Chapter 6. However, that subsection
may be omitted if you have not yet covered Chapter 6. Chapter 8 is not
needed for this chapter.

throw exception

handle exception

5640_ch09.fm Page 452 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 453

Example

Exception Handling Basics

Well the program works for most cases. I didn’t know it had to
work for

that

case.

Computer Science Student,

Appealing a grade

Exception handling is meant to be used sparingly and in situations that are more
involved than what is reasonable to include in an introductory example. So, we will
teach you the exception handling details of Java by means of simple examples that
would not normally use exception handling. This makes a lot of sense for learning
about the exception handling details of Java, but do not forget that these first examples
are toy examples and, in practice, you would not use exception handling for anything
that simple.

A TOY EXAMPLE OF EXCEPTION HANDLING

Display 9.1 contains a simple program that might, by some stretch of the imagination, be used at a
dance studio. This program does not use exception handling, and you would not normally use
exception handling for anything this simple. The setting for use of the program is a dance lesson.
The program simply checks to see if there are more men than women or more women than men and
then announces how many partners each man or woman will have. The exceptional case is when
there are no men or no women or both. In that exceptional case, the dance lesson is canceled.

In Display 9.2 we have redone the program using exception handling. The keyword

try labels a
block known as the

try block, which is indicated in the display. Inside the

try block goes the
non-exceptional cases and checks for the exceptional cases. The exceptional cases are not han-
dled in the

try block, but if detected they are signaled by “throwing an exception.” The follow-
ing three lines taken from inside the multiway

if-else statement are the code for throwing the
exception:

throw new Exception("Lesson is canceled. No students.");
throw new Exception("Lesson is canceled. No men.");
throw new Exception("Lesson is canceled. No women.");

If the program does not encounter an exceptional case, then none of these statements that “throw
an exception” is executed. So, in that case we need not even know what happens when an excep-
tion is “thrown.” If no exception is “thrown,” then the code in the section labeled “

catch block”
is skipped and the program proceeds to the last statement, which happens to output

"Begin

the lesson." Now, let’s see what happens in an exceptional case.

If the number of men or the number of women is zero (or both), that is an exceptional case in this
program and results in an exception being thrown. To make things concrete, let’s say that the

9.1

try block

throwing an
exception

5640_ch09.fm Page 453 Wednesday, February 11, 2004 2:30 PM

454 Chapter 9 Exception Handling

Display 9.1 Handling a Special Case without Exception Handling (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DanceLesson
5 {
6 public static void main(String[] args) throws IOException
7 {
8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10 System.out.println("Enter number of male dancers:");
11 String menString = keyboard.readLine();
12 int men = Integer.parseInt(menString);

13 System.out.println("Enter number of female dancers:");
14 String womenString = keyboard.readLine();
15 int women = Integer.parseInt(womenString);

16 if (men == 0 && women == 0)
17 {
18 System.out.println("Lesson is canceled. No students.");
19 System.exit(0);
20 }
21 else if (men == 0)
22 {
23 System.out.println("Lesson is canceled. No men.");
24 System.exit(0);
25 }
26 else if (women == 0)
27 {
28 System.out.println("Lesson is canceled. No women.");
29 System.exit(0);
30 }

31 // women >= 0 && men >= 0
32 if (women >= men)
33 System.out.println("Each man must dance with " +
34 women/(double)men + " women.");
35 else
36 System.out.println("Each woman must dance with " +
37 men/(double)women + " men.");
38 System.out.println("Begin the lesson.");
39 }
40 }

Later in this chapter we
will finally explain this.

5640_ch09.fm Page 454 Wednesday, February 11, 2004 2:30 PM

codes454.html

Exception Handling Basics 455

number of men is zero, but the number of women is not zero. In that case the following statement
is executed, which is how Java throws an exception:

throw new Exception("Lesson is canceled. No men.");

Let’s analyze this statement. The following is the invocation of a constructor for the class

Excep-

tion, which is the standard Java package

java.lang.

new Exception("Lesson is canceled. No men.");

Display 9.1 Handling a Special Case without Exception Handling (Part 2 of 2)

SAMPLE DIALOGUE 1

Enter number of male dancers:
4
Enter number of female dancers:
6
Each man must dance with 1.5 women.
Begin the lesson.

SAMPLE DIALOGUE 2

Enter number of male dancers:
0
Enter number of female dancers:
0
Lesson is canceled. No students.

SAMPLE DIALOGUE 3

Enter number of male dancers:
0
Enter number of female dancers:
5
Lesson is canceled. No men.

SAMPLE DIALOGUE 4

Enter number of male dancers:
4
Enter number of female dancers:
0
Lesson is canceled. No women.

5640_ch09.fm Page 455 Wednesday, February 11, 2004 2:30 PM

456 Chapter 9 Exception Handling

try block

catch block

Display 9.2 Same Thing Using Exception Handling (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DanceLesson2
5 {
6 public static void main(String[] args) throws IOException
7 {
8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10 System.out.println("Enter number of male dancers:");
11 String menString = keyboard.readLine();
12 int men = Integer.parseInt(menString);

13 System.out.println("Enter number of female dancers:");
14 String womenString = keyboard.readLine();
15 int women = Integer.parseInt(womenString);

16 try
17 {
18 if (men == 0 && women == 0)
19 throw new Exception("Lesson is canceled. No students.");
20 else if (men == 0)
21 throw new Exception("Lesson is canceled. No men.");
22 else if (women == 0)
23 throw new Exception("Lesson is canceled. No women.");

24 // women >= 0 && men >= 0
25 if (women >= men)
26 System.out.println("Each man must dance with " +
27 women/(double)men + " women.");
28 else
29 System.out.println("Each woman must dance with " +
30 men/(double)women + " men.");
31 }
32 catch(Exception e)
33 {
34 String message = e.getMessage();
35 System.out.println(message);
36 System.exit(0);
37 }

38 System.out.println("Begin the lesson.");
39 }

40 }

This is just a toy example to learn Java syntax. Do not take it as
an example of good typical use of exception handling.

5640_ch09.fm Page 456 Wednesday, February 11, 2004 2:30 PM

codes456.html

Exception Handling Basics 457

Display 9.2 Same Thing Using Exception Handling (Part 2 of 2)

SAMPLE DIALOGUE 1

Enter number of male dancers:
4
Enter number of female dancers:
6
Each man must dance with 1.5 women.
Begin the lesson.

SAMPLE DIALOGUE 2

Enter number of male dancers:
0
Enter number of female dancers:
0
Lesson is canceled. No students.

SAMPLE DIALOGUE 3

Enter number of male dancers:
0
Enter number of female dancers:
5
Lesson is canceled. No men.

SAMPLE DIALOGUE 4

Enter number of male dancers:
4
Enter number of female dancers:
0
Lesson is canceled. No women.

Note that this dialog and the dialogs below do
not say "Begin the lesson".

5640_ch09.fm Page 457 Wednesday, February 11, 2004 2:30 PM

458 Chapter 9 Exception Handling

The created Exception object is not assigned to a variable, but rather is used as an (anonymous)
argument to the throw operator. (Anonymous arguments were discussed in Chapter 4.) The key-
word throw is an operator with syntax similar to the unary + or unary − operators. To make it look
more like an operator, you can write it with parentheses around the argument, as follows:

throw (new Exception("Lesson is canceled. No men."));

Although it is perfectly legal and sensible to include these extra parentheses, nobody does
include them.

To understand this process of throwing, you need to know two things: What is this Exception
class? And what does the throw operator do with the Exception object? The class Exception
is another class from the standard Java package java.lang. As you have already seen, the class
Exception has a constructor that takes a single String argument. The Exception object cre-
ated stores this String argument (in a private instance variable). As you will see, this String
argument can later be retrieved from the Exception object.

The throw operator causes a change in the flow of control and it delivers the Exception object
to a suitable place, as we are about to explain. When the throw operator is executed, the try
block ends immediately and control passes to the following catch block. (If it helps, you can
draw an analogy between the execution of the throw operator in a try block and the execution
of a break statement in a loop or switch statement.) When control is transferred to the catch
block, the Exception object that is thrown is plugged in for the catch block parameter e. So,
the expression e.getMessage() returns the string "Lesson is canceled. No men.". The
method getMessage() of the class Exception is an accessor method that retrieves the String
in the private instance variable of the Exception object—that is, the String used as an argu-
ment to the Exception constructor.

To see if you get the basic idea of how this exception throwing mechanism works, study the sam-
ple dialogs. The next few sections explain this mechanism in more detail.

■ try-throw-catch MECHANISM

The basic way of handling exceptions in Java consists of the try-throw-catch trio. The
general setup consists of a try block followed by one or more catch blocks. First let’s
describe what a try block is. A try block has the syntax

try
{
 Some_Code
}

This try block contains the code for the basic algorithm that tells what to do when
everything goes smoothly. It is called a try block because it “tries” to execute the case
where all goes smoothly.

Exception
class

throw operator

catch block

getMessage

try block

5640_ch09.fm Page 458 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 459

Now, if something exceptional does happen, you want to throw an exception, which
is a way of indicating that something unusual happened. So the basic outline, when we
add a throw, is as follows:

try
{
 Code_That_May_Throw_An_Exception
}

The following is an example of a try block with throw statements included (copied
from Display 9.2):

try
{
 if (men == 0 && women == 0)
 throw new Exception("Lesson is canceled. No students.");
 else if (men == 0)
 throw new Exception("Lesson is canceled. No men.");
 else if (women == 0)
 throw new Exception("Lesson is canceled. No women.");

 // women >= 0 && men >= 0
 if (women >= men)
 System.out.println("Each man must dance with " +
 women/(double)men + " women.");
 else
 System.out.println("Each woman must dance with " +
 men/(double)women + " men.");
}

This try block contains the following three throw statements:

throw new Exception("Lesson is canceled. No students.");
throw new Exception("Lesson is canceled. No men.");
throw new Exception("Lesson is canceled. No women.");

The value thrown is an argument to the throw operator and is always an object of some
exception class. The execution of a throw statement is called throwing an exception.

As the name suggests, when something is “thrown,” something goes from one place
to another place. In Java, what goes from one place to another is the flow of control as
well as the exception object that is thrown. When an exception is thrown, the code in
the surrounding try block stops executing and (normally) another portion of code,
known as a catch block, begins execution. The catch block has a parameter, and the
exception object thrown is plugged in for this catch block parameter. This executing of
the catch block is called catching the exception or handling the exception. When an
exception is thrown, it should ultimately be handled by (caught by) some catch block.

throw statement

throwing an
exception

catch block

handling an
exception

5640_ch09.fm Page 459 Wednesday, February 11, 2004 2:30 PM

460 Chapter 9 Exception Handling

In Display 9.2, the appropriate catch block immediately follows the try block. We
repeat the catch block in what follows:

catch(Exception e)
{
 String message = e.getMessage();
 System.out.println(message);
 System.exit(0);
}

This catch block looks very much like a method definition that has a parameter of a
type Exception. It is not a method definition, but in some ways, a catch block is like a
method. It is a separate piece of code that is executed when your program encounters
(and executes) the following (within the preceding try block):

throw new Exception(Some_String);

So, this throw statement is similar to a method call, but instead of calling a method,
it calls the catch block and says to execute the code in the catch block. A catch block
is often referred to as an exception handler.

Let’s focus on the identifier e in the following line from a catch block:

catch(Exception e)

That identifier e in the catch block heading is called the catch block parameter. Each
catch block can have at most one catch block parameter. The catch block parameter
does two things:

1. The catch block parameter is preceded by an exception class name that specifies
what type of thrown exception object the catch block can catch.

throw STATEMENT

SYNTAX:

throw new Exception_Class_Name(Possibly_Some_Arguments);

When the throw statement is executed, the execution of the surrounding try block is stopped
and (normally) control is transferred to a catch block. The code in the catch block is executed
next. See the box entitled “try-throw-catch” later in this chapter for more details.

EXAMPLE:

throw new Exception("Division by zero.");

exception handler

catch block
parameter

5640_ch09.fm Page 460 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 461

2. The catch block parameter gives you a name for the thrown object that is caught, so
you can write code in the catch block that does things with the thrown object that
is caught.

Although the identifier e is often used for the catch block parameter, this is not
required. You may use any non-keyword identifier for the catch block parameter just as
you can for a method parameter.

Let’s consider two possible cases of what can happen when a try block is executed:
(1.) no exception is thrown in the try block, and (2.) an exception is thrown in the try
block and caught in the catch block. (Later we will describe a third case where the
catch block does not catch the exception.)

If no exception is thrown, the code in the try block is executed to the end of the try
block, the catch block is skipped, and execution continues with the code placed
after the catch block.

If an exception is thrown in the try block, the rest of the code in the try block is
skipped and (in simple cases) control is transferred to a following catch block. The
thrown object is plugged in for the catch block parameter and the code in the catch

THE getMessage METHOD

Every exception has a String instance variable that contains some message, which typically
identifies the reason for the exception. For example, if the exception is thrown as follows:

throw new Exception(String_Argument);

then the string given as an argument to the constructor Exception is used as the value of this
String instance variable. If the object is called e, then the method call e.getMessage()
returns this string.

EXAMPLE:

Suppose the following throw statement is executed in a try block:

throw new Exception("Input must be positive.");

And suppose the following is a catch block immediately following the try block:

catch(Exception e)
{
 System.out.println(e.getMessage());
 System.out.println("Program aborted.");
 System.exit(0);
}

In this case, the method call e.getMessage() returns the string
"Input must be positive."

5640_ch09.fm Page 461 Wednesday, February 11, 2004 2:30 PM

462 Chapter 9 Exception Handling

block is executed. And then (provided the catch block code does not end the pro-
gram or do something else to end the catch block code prematurely), the code that
follows that catch block is executed.

catch BLOCK PARAMETER

The catch block parameter is an identifier in the heading of a catch block that serves as a
placeholder for an exception that might be thrown. When a (suitable) exception is thrown in the
preceding try block, that exception is plugged in for the catch block parameter. The identifier
e is often used for catch block parameters, but this is not required. You can use any legal (non-
keyword) identifier for a catch block parameter.

SYNTAX:

 catch(Exception_Class_Name Catch_Block_Parameter)
 {
 <Code to be performed if an exception of the named exception class is thrown in the try
block.>
 }

You may use any legal identifier for the Catch_Block_Parameter.

EXAMPLE:

In the following, e is the catch block parameter.

catch(Exception e)
{
 System.out.println(e.getMessage());
 System.out.println("Aborting program.");
 System.exit(0);

}

try-throw-catch

When used together, the try, throw, and catch statements are the basic mechanism for throw-
ing and catching exceptions. The throw statement throws the exception. The catch block
catches the exception. The throw statement is normally included in a try block. When the
exception is thrown, the try block ends and then the code in the catch block is executed. After
the catch block is completed, the code after the catch block(s) is executed (provided the
catch block has not ended the program or performed some other special action).

If no exception is thrown in the try block, then after the try block is completed, program execu-
tion continues with the code after the catch block(s). (In other words, if no exception is thrown,
the catch block(s) are ignored.)

5640_ch09.fm Page 462 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 463

■ EXCEPTION CLASSES

There are more exception classes than just the single class Exception. There are more
exception classes in the standard Java libraries and you can define your own exception
classes. All the exception classes in the Java libraries have—and the exception classes
you define should have—the following properties:

There is a constructor that takes a single argument of type String.

The class has an accessor method getMessage() that can recover the string given as
an argument to the constructor when the exception object was created.

■ EXCEPTION CLASSES FROM STANDARD PACKAGES

Numerous predefined exception classes are included in the standard packages that come
with Java. The names of predefined exceptions are designed to be self-explanatory. Some
sample predefined exceptions are

IOException
NoSuchMethodException
FileNotFoundException

SYNTAX:

 try
 {
 Some_Statements
 <Either some code with a throw statement or
 a method invocation that might throw an exception.>
 Some_More_Statements
 }
 catch(Exception_Class_Name Catch_Block_Parameter)
 {
 <Code to be performed if an exception of the named exception
 class is thrown in the try block.>
 }

You may use any legal identifier for the Catch_Block_Parameter; a common choice is e. The code in
the catch block may refer to the Catch_Block_Parameter. If there is an explicit throw statement, it
is usually embedded in an if statement or an if-else statement. There may be any number of
throw statements and/or any number of method invocations that may throw exceptions. Each
catch block can list only one exception, but there can be more than one catch block.

EXAMPLE:

See Display 9.2.

5640_ch09.fm Page 463 Wednesday, February 11, 2004 2:30 PM

464 Chapter 9 Exception Handling

Self-Test Exercises

You have already had some experience with the IOException class, which is in the
java.io package and requires that you import the IOException class with

import java.io.IOException;

The kind of use we have been making of the IOException class will be explained in
Section 9.2 of this chapter.

The predefined exception class Exception is the root class for all exceptions. Every
exception class is a descendant of the class Exception (that is, it is derived directly from
the class Exception or from a class that is derived from the class Exception, or it arises
from some longer chain of derivations ultimately starting with the class Exception).
You can use the class Exception itself, just as we did in Display 9.2, but you are even
more likely to use it to define a derived class of the class Exception. The class Excep-
tion is in the java.lang package and so requires no import statement.

1. What output is produced by the following code?

int waitTime = 46;

try
{
 System.out.println("Try block entered.");
 if (waitTime > 30)
 throw new Exception("Over 30.");
 else if (waitTime < 30)
 throw new Exception("Under 30.");
 else
 System.out.println("No exception.");
 System.out.println("Leaving try block.");
}
catch(Exception thrownObject)
{
 System.out.println(thrownObject.getMessage());
}
System.out.println("After catch block");

THE CLASS EXCEPTION

Every exception class is a descendent class of the class Exception. You can use the class Excep-
tion itself in a class or program, but you are even more likely to use it to define a derived class of
the class Exception. The class Exception is in the java.lang package and so requires no
import statement.

IOException

Exception

5640_ch09.fm Page 464 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 465

2. Suppose that in exercise 1 the line

int waitTime = 46;

were changed to

int waitTime = 12;

How would this affect the output?

3. In the code given in exercise 1, what are the throw statements?

4. What happens when a throw statement is executed? This is a general question. Tell what
happens in general, not simply what happens in the code in exercise 1 or some other sample
code.

5. In the code given in exercise 1, what is the try block?

6. In the code given in exercise 1, what is the catch block?

7. In the code given in exercise 1, what is the catch block parameter?

8. Is the following legal?

IOException exceptionObject =
 new IOException("Nothing to read!");

9. Is the following legal?

IOException exceptionObject =
 new IOException("Nothing to read!");
throw exceptionObject;

■ DEFINING EXCEPTION CLASSES

A throw statement can throw an exception object of any exception class. A common
thing to do is to define an exception class whose objects can carry the precise kinds of
information you want thrown to the catch block. An even more important reason for
defining a specialized exception class is so that you can have a different type to identify
each possible kind of exceptional situation.

Every exception class you define must be a derived class of some already defined
exception class. An exception class can be a derived class of any exception class in the
standard Java libraries or of any exception class that you have already successfully
defined. Our examples will be derived classes of the class Exception.

When defining an exception class, the constructors are the most important mem-
bers. Often there are no other members, other than those inherited from the base class.
For example, in Display 9.3, we’ve defined an exception class called DivisionByZe-
roException whose only members are a no-argument constructor and a constructor
with one String parameter. In most cases, these two constructors are all the exception

constructors

5640_ch09.fm Page 465 Wednesday, February 11, 2004 2:30 PM

466 Chapter 9 Exception Handling

class definition contains. However, the class does inherit all the methods of the class
Exception.1 In particular, the class DivisionByZeroException inherits the method
getMessage, which returns a string message. In the no-argument constructor, this
string message is set with the following, which is the first line in the no-argument con-
structor definition:

super("Division by Zero!");

This is a call to a constructor of the base class Exception. As we have already noted,
when you pass a string to the constructor for the class Exception, it sets the value of a
String instance variable that can later be recovered with a call to getMessage. The
method getMessage is an ordinary accessor method of the class Exception. The class
DivisionByZeroException inherits this String instance variable as well as the accessor
method getMessage.

For example, in Display 9.4, we give a sample program that uses this exception class.
The exception is thrown using the no-argument constructor, as follows:

throw new DivisionByZeroException();

This exception is caught in the catch block shown in Display 9.4. Consider the follow-
ing line from that catch block:

 System.out.println(e.getMessage());

1 Some programmers would prefer to derive the DivisionByZeroException class from the
predefined class ArithmeticException, but that would make it a kind of exception that you
are not required to catch in your code, so you would lose the help of the compiler in keeping
track of uncaught exceptions. For more details, see the subsection “Exceptions to the Catch or
Declare Rule” later in this chapter. If this footnote does not make sense to you, you can safely
ignore it.

Display 9.3 A Programmer-Defined Exception Class

1 public class DivisionByZeroException extends Exception
2 {
3 public DivisionByZeroException()
4 {
5 super("Division by Zero!");
6 }

7 public DivisionByZeroException(String message)
8 {
9 super(message);

10 }
11 }

You can do more in an exception
constructor, but this form is common.

super is an invocation of the constructor for
the base class Exception.

5640_ch09.fm Page 466 Wednesday, February 11, 2004 2:30 PM

codes466.html

Exception Handling Basics 467

Display 9.4 Using a Programmer-Defined Exception Class (Part 1 of 3)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DivisionDemoFirstVersion
5 {

6 public static void main(String[] args) throws IOException
7 {
8 try
9 {

10 BufferedReader keyboard = new BufferedReader(
11 new InputStreamReader(System.in));

12 System.out.println("Enter numerator:");
13 String numeratorString = keyboard.readLine();
14 int numerator = Integer.parseInt(numeratorString);
15 System.out.println("Enter denominator:");
16 String denominatorString = keyboard.readLine();
17 int denominator =
18 Integer.parseInt(denominatorString);

19 if (denominator == 0)
20 throw new DivisionByZeroException();

21 double quotient = numerator/(double)denominator;
22 System.out.println(numerator + "/"
23 + denominator
24 + " = " + quotient);
25 }
26 catch(DivisionByZeroException e)
27 {
28 System.out.println(e.getMessage());
29 secondChance();
30 }

31 System.out.println("End of program.");
32 }

33 public static void secondChance() throws IOException
34 {
35 BufferedReader keyboard = new BufferedReader(
36 new InputStreamReader(System.in));

We will present an improved version of this
program later in this chapter.

5640_ch09.fm Page 467 Wednesday, February 11, 2004 2:30 PM

codes467.html

468 Chapter 9 Exception Handling

This line produces the following output to the screen in Sample Dialogs 2 and 3:

Division by Zero!

The definition of the class DivisionByZeroException in Display 9.3 has a second
constructor with one parameter of type String. This constructor allows you to choose
any message you like when you throw an exception. If the throw statement in Display
9.4 had instead used the string argument

throw new DivisionByZeroException(
 "Oops. Shouldn’t divide by zero.");

Display 9.4 Using a Programmer-Defined Exception Class (Part 2 of 3)

37 System.out.println("Try again:");
38 System.out.println("Enter numerator:");
39 String numeratorString = keyboard.readLine();
40 int numerator = Integer.parseInt(numeratorString);
41 System.out.println("Enter denominator:");
42 System.out.println("Be sure the denominator is not zero.");
43 String denominatorString = keyboard.readLine();
44 int denominator = Integer.parseInt(denominatorString);

45 if (denominator == 0)
46 {
47 System.out.println("I cannot do division by zero.");
48 System.out.println("Aborting program.");
49 System.exit(0);
50 }

51 double quotient = ((double)numerator)/denominator;
52 System.out.println(numerator + "/"
53 + denominator
54 + " = " + quotient);
55 }

56 }

SAMPLE DIALOGUE 1

Enter numerator:
11
Enter denominator:
5
11/5 = 2.2
End of program.

Sometimes it is better to handle an exceptional
case without throwing an exception.

5640_ch09.fm Page 468 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 469

then in Sample Dialogs 2 and 3, the statement

System.out.println(e.getMessage());

would have produced the following output to the screen:

Oops. Shouldn’t divide by zero.

Notice that in Display 9.4, the try block is the normal part of the program. If all
goes normally, that is the only code that will be executed, and the dialog will be like the

Display 9.4 Using a Programmer-Defined Exception Class (Part 3 of 3)

SAMPLE DIALOGUE 2

Enter numerator:
11
Enter denominator:
0
Division by Zero!
Try again.
Enter numerator:
11
Enter denominator:
Be sure the denominator is not zero.
5
11/5 = 2.2
End of program.

SAMPLE DIALOGUE 3

Enter numerator:
11
Enter denominator:
0
Division by Zero!
Try again.
Enter numerator:
11
Enter denominator:
Be sure the denominator is not zero.
0
I cannot do division by zero.
Aborting program.

5640_ch09.fm Page 469 Wednesday, February 11, 2004 2:30 PM

470 Chapter 9 Exception Handling

Tip

Tip

one shown in Sample Dialog 1. In the exceptional case, when the user enters a zero for
a denominator, the exception is thrown and then is caught in the catch block. The
catch block outputs the message of the exception and then calls the method second-
Chance. The method secondChance gives the user a second chance to enter the input
correctly and then carries out the calculation. If the user tries a second time to divide
by zero, the method ends the program. The method secondChance is there only for this
exceptional case. So, we have separated the code for the exceptional case of a division
by zero into a separate method, where it will not clutter the code for the normal case.

AN EXCEPTION CLASS CAN CARRY A MESSAGE OF ANY TYPE

It is possible to define your exception classes so they have constructors that take arguments of
other types that are stored in instance variables. In such cases you would define accessor methods
for the value stored in the instance variable. For example, if that is desired, you can have an
exception class that carries an int as a message. In that case, you would need a new accessor
method name, perhaps getBadNumber(). An example of one such exception class is given in
Display 9.5.

PRESERVE getMessage

For all predefined exception classes, getMessage will return the string that is passed as an argu-
ment to the constructor (or will return a default string if no argument is used with the construc-
tor). For example, if the exception is thrown as follows:

throw new Exception("Wow, this is exceptional!");

then "Wow, this is exceptional!" is used as the value of the String instance variable of
the object created. If the object is called e, the method invocation e.getMessage() returns
"Wow, this is exceptional!" You want to preserve this behavior in the exception classes
you define.

For example, suppose you are defining an exception class named NegativeNumberException.
Be sure to include a constructor with a string parameter that begins with a call to super, as illus-
trated by the following constructor:

public NegativeNumberException(String message)
{
 super(message);
}

5640_ch09.fm Page 470 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 471

The call to

super is a call to a constructor of the base class. If the base class constructor handles
the message correctly, then so will a class defined in this way.

You should also include a no-argument constructor in each exception class. This no-argument
constructor should set a default value to be retrieved by

getMessage. The constructor should
begin with a call to

super, as illustrated by the following constructor:

public NegativeNumberException()
{
 super("Negative Number Exception!");
}

If

getMessage works as we described for the base class, then this sort of no-argument construc-
tor will work correctly for the new exception class being defined. A full definition of the class

NegativeNumberException is given in Display 9.7.

Display 9.5 An Exception Class with an int Message

1 public class BadNumberException extends Exception
2 {
3 private int badNumber;

4 public BadNumberException(int number)
5 {
6 super("BadNumberException");
7 badNumber = number;
8 }

9 public BadNumberException()
10 {
11 super("BadNumberException");
12 }

13 public BadNumberException(String message)
14 {
15 super(message);
16 }

17 public int getBadNumber()
18 {
19 return badNumber;
20 }
21 }

5640_ch09.fm Page 471 Tuesday, February 17, 2004 5:31 PM

codes471.html

472 Chapter 9 Exception Handling

Self-Test Exercises

10. Define an exception class called PowerFailureException. The class should have a con-
structor with no parameters. If an exception is thrown with this zero-argument constructor,
getMessage should return "Power Failure!" The class should also have a constructor
with a single parameter of type String. If an exception is thrown with this constructor,
then getMessage returns the value that was used as an argument to the constructor.

11. Define an exception class called TooMuchStuffException. The class should have a con-
structor with no parameters. If an exception is thrown with this zero-argument constructor,
getMessage should return "Too much stuff!". The class should also have a constructor
with a single parameter of type String. If an exception is thrown with this constructor,
then getMessage returns the value that was used as an argument to the constructor.

12. Suppose the exception class ExerciseException is defined as follows:

public class ExerciseException extends Exception
{
 public ExerciseException()
 {
 super("Exercise Exception thrown!");
 System.out.println("Exception thrown.");
 }

 public ExerciseException(String message)
 {
 super(message);
 System.out.println(
 "ExerciseException invoked with an argument.");
 }
}

What output would be produced by the following code (which is just an exercise and not
likely to occur in a program)?

ExerciseException e =
 new ExerciseException("Do Be Do");
System.out.println(e.getMessage());

The class ExerciseException is on the CD that comes with this text.

EXCEPTION OBJECT CHARACTERISTICS

The two most important things about an exception object are its type (the exception class) and a
message that it carries in an instance variable of type String. This string can be recovered with
the accessor method getMessage. This string allows your code to send a message along with an
exception object, so that the catch block can use the message.

extra code on CD

5640_ch09.fm Page 472 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 473

PROGRAMMER-DEFINED EXCEPTION CLASSES

You may define your own exception classes, but every such class must be a derived class of an
already existing exception class (either from one of the standard Java libraries or programmer
defined).

GUIDELINES:

■ If you have no compelling reason to use any other class as the base class, use the class Excep-
tion as the base class.

■ You should define two (or more) constructors, as described later in this list.

■ Your exception class inherits the method getMessage. Normally, you do not need to add any
other methods, but it is legal to do so.

■ You should start each constructor definition with a call to the constructor of the base class,
such as the following:

super("Sample Exception thrown!");

■ You should include a no-argument constructor, in which case the call to super should have a
string argument that indicates what kind of exception it is. This string can then be recovered
by using the getMessage method.

■ You should also include a constructor that takes a single string argument. In this case, the
string should be an argument in a call to super. That way, the string can be recovered with a
call to getMessage.

EXAMPLE:

public class SampleException extends Exception
{
 public SampleException()
 {
 super("Sample Exception thrown!");
 }

 public SampleException(String message)
 {
 super(message);
 }
}

The class SampleException is on the CD that comes with this text. extra code on CD

5640_ch09.fm Page 473 Wednesday, February 11, 2004 2:30 PM

474 Chapter 9 Exception Handling

13. Suppose the exception class TestException is defined as follows:

public class TestException extends Exception
{
 public TestException()
 {
 super("Test Exception thrown!");
 System.out.println(
 "Test exception thrown!!");
 }

 public TestException(String message)
 {
 super(message);
 System.out.println(
 "Test exception thrown with an argument!");
 }

 public void testMethod()
 {
 System.out.println("Message is " + getMessage());
 }
}

What output would be produced by the following code (which is just an exercise and not
likely to occur in a program)?

TestException exceptionObject = new TestException();
System.out.println(exceptionObject.getMessage());
exceptionObject.testMethod();

The class TestException is on the CD that comes with this text.

14. Suppose the exception class MyException is defined as follows:

public class MyException extends Exception
{
 public MyException()
 {
 super("My Exception thrown!");
 }

 public MyException(String message)
 {
 super("MyException: " + message);
 }
}

extra code on CD

5640_ch09.fm Page 474 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 475

What output would be produced by the following code (which is just an exercise and not
likely to occur in a program)?

int number;
try
{
 System.out.println("try block entered:");
 number = 42;
 if (number > 0)
 throw new MyException("Hi Mom!");
 System.out.println("Leaving try block.");
}

catch(MyException exceptionObject)
{
 System.out.println(exceptionObject.getMessage());
}
System.out.println("End of example.");

The class MyException is on the CD that comes with this text.

15. Suppose that in exercise 14 the catch block were changed to the following. (The type
MyException is replaced with Exception.) How would this affect the output?

catch(Exception exceptionObject)
{
 System.out.println(exceptionObject.getMessage());
}

16. Suppose that in exercise 14 the line

 number = 42;

were changed to

 number = −58;

How would this affect the output?

17. Although an exception class normally carries only a string message, you can define excep-
tion classes to carry a message of any type. For example, objects of the following type can
also carry a double “message” (as well as a string message):

public class DoubleException extends Exception
{
 private double doubleMessage;

extra code on CD

5640_ch09.fm Page 475 Wednesday, February 11, 2004 2:30 PM

476 Chapter 9 Exception Handling

 public DoubleException()
 {
 super("DoubleException thrown!");
 }

 public DoubleException(String message)
 {
 super(message);
 }

 public DoubleException(double number)
 {
 super("DoubleException thrown!");
 doubleMessage = number;
 }

 public double getNumber()
 {
 return doubleMessage;
 }
}

What output would be produced by the following code (which is just an exercise and not
likely to occur in a program)?

DoubleException e =
 new DoubleException(41.9);

System.out.println(e.getNumber());

System.out.println(e.getMessage());

The class DoubleException is on the CD that comes with this text.

18. Can you define an exception class as a derived class of the predefined class IOException,
or must a defined exception class be derived from the class Exception?

■ MULTIPLE catch BLOCKS

A try block can potentially throw any number of exception values, and they can be of
differing types. In any one execution of the try block, at most one exception will be
thrown (since a throw statement ends the execution of the try block), but different
types of exception values can be thrown on different occasions when the try block is
executed. Each catch block can only catch values of the exception class type given in the
catch block heading. However, you can catch exception values of differing types by
placing more than one catch block after a try block. For example, the program in Dis-
play 9.6 has two catch blocks after its try block. The class NegativeNumberException,
which is used in that program, is given in Display 9.7.

extra code on CD

5640_ch09.fm Page 476 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 477

Display 9.6 Catching Multiple Exceptions (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class MoreCatchBlocksDemo
5 {
6 public static void main(String[] args) throws IOException
7 {
8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10 try
11 {
12 System.out.println("How many pencils do you have?");
13 String pencilString = keyboard.readLine();
14 int pencils = Integer.parseInt(pencilString);

15 if (pencils < 0)
16 throw new NegativeNumberException("pencils");

17 System.out.println("How many erasers do you have?");
18 String eraserString = keyboard.readLine();
19 int erasers = Integer.parseInt(eraserString);
20 double pencilsPerEraser;

21 if (erasers < 0)
22 throw new NegativeNumberException("erasers");
23 else if (erasers != 0)
24 pencilsPerEraser = pencils/(double)erasers;
25 else
26 throw new DivisionByZeroException();

27 System.out.println("Each eraser must last through "
28 + pencilsPerEraser + " pencils.");
29 }

30 catch(NegativeNumberException e)
31 {
32 System.out.println("Cannot have a negative number of "
33 + e.getMessage());
34 }
35 catch(DivisionByZeroException e)
36 {
37 System.out.println("Do not make any mistakes.");
38 }

5640_ch09.fm Page 477 Wednesday, February 11, 2004 2:30 PM

codes477.html

478 Chapter 9 Exception Handling

Pitfall

CATCH THE MORE SPECIFIC EXCEPTION FIRST

When catching multiple exceptions, the order of the catch blocks can be important. When an
exception is thrown in a try block, the catch blocks are examined in order, and the first one that
matches the type of the exception thrown is the one that is executed. Thus, the following ordering
of catch blocks would not be good:

catch (Exception e)
{

Display 9.6 Catching Multiple Exceptions (Part 2 of 2)

39 System.out.println("End of program.");
40 }
41 }

SAMPLE DIALOGUE 1

How many pencils do you have?
5
How many erasers do you have?
2
Each eraser must last through 2.5 pencils
End of program.

SAMPLE DIALOGUE 2

How many pencils do you have?
−2
Cannot have a negative number of pencils
End of program.

SAMPLE DIALOGUE 3

How many pencils do you have?
5
How many erasers do you have?
0
Do not make any mistakes.
End of program.

5640_ch09.fm Page 478 Wednesday, February 11, 2004 2:30 PM

Exception Handling Basics 479

 .
 .
 .
}
catch(NegativeNumberException e)
{
 .
 .
 .
}

With this ordering, the catch block for NegativeNumberException would never be used,
because all exceptions are caught by the first catch block. Fortunately, the compiler will warn
you about this. The correct ordering is to reverse the catch blocks so that the more specific
exception comes before its parent exception class, as shown in the following:

catch(NegativeNumberException e)
{
 .
 .
 .
}
catch(Exception e)
{
 .
 .
 .
}

Display 9.7 The Class NegativeNumberException

1 public class NegativeNumberException extends Exception
2 {
3 public NegativeNumberException()
4 {
5 super("Negative Number Exception!");
6 }

7 public NegativeNumberException(String message)
8 {
9 super(message);

10 }
11 }

The second catch block can
never be reached.

5640_ch09.fm Page 479 Wednesday, February 11, 2004 2:30 PM

codes479.html

480 Chapter 9 Exception Handling

Self-Test Exercises

19. What output will be produced by the following code? (The definition of the class Nega-
tiveNumberException is given in Display 9.7.)

int n;
try
{
 n = 42;
 if (n > 0)
 throw new Exception();
 else if (n < 0)
 throw new NegativeNumberException();
 else
 System.out.println("Bingo!");
}

catch(NegativeNumberException e)
{
 System.out.println("First catch.");
}
catch(Exception e)
{
 System.out.println("Second catch.");
}
System.out.println("End of exercise.");

20. Suppose that in exercise 19 the line

n = 42;

were changed to

n = −42;

How would this affect the output?

21. Suppose that in exercise 19 the line

n = 42;

were changed to

n = 0;

How would this affect the output?

5640_ch09.fm Page 480 Wednesday, February 11, 2004 2:30 PM

Throwing Exceptions in Methods 481

Throwing Exceptions in Methods
buck n. Games. A counter or marker formerly passed from one
poker player to another to indicate an obligation, especially one’s
turn to deal.

The American Heritage Dictionary of the English Language, Third Edition

The buck stops here.

Harry S Truman (sign on Truman’s desk while he was president)

So far our examples of exception handling have been toy examples. We have not yet
shown any examples of a program that makes good and realistic use of exception han-
dling. However, now you know enough about exception handling to discuss more real-
istic uses of exception handling. This section explains the single most important
exception handling technique, namely throwing an exception in a method and catch-
ing it outside the method.

■ THROWING AN EXCEPTION IN A METHOD

Sometimes it makes sense to throw an exception in a method but not catch it in the
method. For example, you might have a method with code that throws an exception if
there is an attempt to divide by zero, but you may not want to catch the exception in
that method. Perhaps some programs that use that method should simply end if the
exception is thrown, and other programs that use the method should do something
else. So, you would not know what to do with the exception if you caught it inside the
method. In such cases, it makes sense to not catch the exception in the method defini-
tion, but instead to have any program (or other code) that uses the method place the
method invocation in a try block and catch the exception in a catch block that follows
that try block.

Look at the program in Display 9.8. It has a try block, but there is no throw state-
ment visible in the try block. The statement that does the throwing in that program is

if (bottom == 0)
 throw new DivisionByZeroException();

This statement is not visible in the try block. However, it is in the try block in terms
of program execution, because it is in the definition of the method safeDivide, and
there is an invocation of safeDivide in the try block.

The meaning of throws DivisionByZero in the heading of safeDivide is discussed
in the next subsection.

9.2

5640_ch09.fm Page 481 Wednesday, February 11, 2004 2:30 PM

482 Chapter 9 Exception Handling

We will present an even better version of
this program later in this chapter.

Display 9.8 Use of a throws Clause (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DivisionDemoSecondVersion
5 {
6 public static void main(String[] args) throws IOException
7 {
8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10
11 try
12 {
13 System.out.println("Enter numerator:");
14 String numeratorString = keyboard.readLine();
15 int numerator = Integer.parseInt(numeratorString);
16 System.out.println("Enter denominator:");
17 String denominatorString = keyboard.readLine();
18 int denominator =
19 Integer.parseInt(denominatorString);
20
21 double quotient = safeDivide(numerator, denominator);
22 System.out.println(numerator + "/"
23 + denominator
24 + " = " + quotient);
25 }
26 catch(DivisionByZeroException e)
27 {
28 System.out.println(e.getMessage());
29 secondChance();
30 }
31
32 System.out.println("End of program.");
33 }
34

35 public static double safeDivide(int top, int bottom)
36 throws DivisionByZeroException
37 {
38 if (bottom == 0)
39 throw new DivisionByZeroException();

40 return top/(double)bottom;
41 }

5640_ch09.fm Page 482 Tuesday, February 17, 2004 5:32 PM

codes482.html

Throwing Exceptions in Methods 483

■ DECLARING EXCEPTIONS IN A

throws CLAUSE

If a method does not catch an exception, then (in most cases) it must at least warn pro-
grammers that any invocation of the method might possibly throw an exception. This
warning is called a

throws clause,

 and including an exception class in a

throws

 clause is
called declaring the exception

. For example, a method that might possibly throw a

DivisionByZeroException

 and that does not catch the exception would have a heading
similar to the following:

public void sampleMethod() throws DivisionByZeroException

The part

throws DivisionByZeroException

 is a

throws

 clause

 stating that an invoca-
tion of the method

sampleMethod

 might throw a

DivisionByZeroException

.

Display 9.8 Use of a throws Clause (Part 2 of 2)

42 public static void secondChance() throws IOException
43 {
44 BufferedReader keyboard =
45 new BufferedReader(new InputStreamReader(System.in));

46 System.out.println("Try again.");
47 System.out.println("Enter numerator:");
48 String numeratorString = keyboard.readLine();
49 int numerator = Integer.parseInt(numeratorString);
50 System.out.println("Enter denominator:");
51 System.out.println("Be sure the denominator is not zero.");
52 String denominatorString = keyboard.readLine();
53 int denominator = Integer.parseInt(denominatorString);

54 if (denominator == 0)
55 {
56 System.out.println("I cannot do division by zero.");
57 System.out.println("Aborting program.");
58 System.exit(0);
59 }

60 double quotient = numerator/(double)denominator;
61 System.out.println(numerator + "/"
62 + denominator
63 + " = " + quotient);
64 }
65 }

 The input/output dialogs are
identical to those for the program in
Display 9.4.

throws clause
declaring an
exception

throws clause

5640_ch09.fm Page 483 Tuesday, February 17, 2004 5:32 PM

484 Chapter 9 Exception Handling

If there is more than one possible exception that can be thrown in the method defini-
tion, then the exception types are separated by commas, as illustrated in what follows:

public void sampleMethod()
 throws DivisionByZeroException, SomeOtherException

Most “ordinary” exceptions that might be thrown when a method is invoked must
be accounted for in one of two ways:

1. The possible exception can be caught in a

catch

block within the method defini-
tion.

2. The possible exception can be declared at the start of the method definition by plac-
ing the exception class name in a

throws

 clause (and letting whoever uses the
method worry about how to handle the exception).

This is often called the Catch or Declare Rule

. In any one method, you can mix the two
alternatives, catching some exceptions and declaring others in a

throws

 clause.

You already know about technique 1, handling exceptions in a

catch

 block. Tech-
nique 2 is a form of shifting responsibility (“passing the buck”). For example, suppose

yourMethod

 has a

throws

 clause as follows:

public void yourMethod() throws DivisionByZeroException

In this case,

yourMethod

 is absolved of the responsibility of catching any exceptions of
type

DivisionByZeroException

 that might occur when

yourMethod

 is executed. If,
however, there is another method,

myMethod

, that includes an invocation of

your-

Method

, then

myMethod

 must handle the exception. When you add a

throws

 clause to

yourMethod

, you are saying to

myMethod

, “If you invoke

yourMethod

, you must handle
any

DivisionByZeroException

 that is thrown.” In effect,

yourMethod

 has passed the
responsibility for any exceptions of type

DivisionByZeroException

 from itself to any
method that calls it.

Of course, if

yourMethod

 passes responsibility to

myMethod

 by including

Division-

ByZeroException

 in a

throws

 clause, then

myMethod

 may also pass the responsibility to
whoever calls it by including the same

throws

 clause in its definition. But in a well-
written program, every exception that is thrown should eventually be caught by a

catch

block in some method that does not just declare the exception class in a

throws

 clause.

When an exception is thrown in a method but not caught in that method, that
immediately ends the method invocation.

 Be sure to note that the

throws

 clause for a method is for exceptions that “get out-
side” the method. If they do not get outside the method, they do not belong in the

throws

 clause. If they get outside the method, they belong in the

throws

 clause no mat-
ter where they originate. If an exception is thrown in a

try

 block that is inside a method
definition and is caught in a

catch

 block inside the method definition, then its excep-
tion class need not be listed in the

throws

 clause. If a method definition includes an
invocation of another method and that other method can throw an exception that is not
caught, then the exception class of that exception should be placed in the

throws

 clause.

Catch or Declare
Rule

5640_ch09.fm Page 484 Friday, February 13, 2004 4:15 PM

Throwing Exceptions in Methods 485

In Display 9.8, we have rewritten the program from Display 9.4 so that the exception
is thrown in the method

safeDivide

. The method

main

 includes a call to the method

safeDivide

 and puts the call in a

try

 block. Because the method

safeDivide

 can throw
a

DivisionByZeroException

 that is not caught in the method

safeDivide

, we needed to
declare this in a

throws

 clause at the start of the definition of

safeDivide

. If we set up
our program in this way, the case in which nothing goes wrong is completely isolated
and easy to read. It is not even cluttered by

try

 blocks and

catch

 blocks.

■

throws CLAUSE IN DERIVED CLASSES

When you override a method definition in a derived class, it should have the same
exception classes listed in its

throws

 clause that it had in the base class, or it should have
a

throws

 clause whose exceptions are a subset of those in the base class

throws

 clause.
Put another way, when you override a method definition, you cannot add any excep-
tions to the

throws

 clause (but you can delete some exceptions if you want). This
makes sense, since an object of the derived class can be used anyplace an object of the
base class can be used, and so an overridden method must fit any code written for an
object of the base class.

throws CLAUSE

If you define a method that might throw exceptions of some particular class, then normally either
your method definition must include a

catch block that will catch the exception or you must
declare (that is, list) the exception class within a

throws clause, as described in what follows.

SYNTAX (COVERS MOST COMMON CASES):

public Type_Or_void

 Method

(Parameter_List

) throws List_Of_Exceptions
Body_Of_Method

EXAMPLE:

public void yourMethod(int n) throws IOException, MyException
{

.
 .
 .
}

THROWING AN EXCEPTION CAN END A METHOD

If a method throws an exception, and the exception is not caught inside the method, then the
method invocation ends immediately after the exception is thrown.

5640_ch09.fm Page 485 Friday, February 13, 2004 4:15 PM

486 Chapter 9 Exception Handling

■ WHEN TO USE EXCEPTIONS

So far, most of our examples of exception handling have been unrealistically simple. A
better guideline for how you should use exceptions is to separate throwing an exception
and catching the exception into separate methods. In most cases, you should include
any

throw

 statement within a method definition, list the exception class in a

throws

clause for that method, and place the

catch

 block in

a different method

. In outline
form, the technique is as follows:

public void yourMethod() throws YourException
{
 ...
 throw new YourException(<Maybe an argument.

>);
 ...
}

Then, when

yourMethod

 is used by some

otherMethod

, the

otherMethod

 must account
for the exception. For example:

public void otherMethod()
{
 ...
 try
 {
 ...
 yourMethod();
 ...
 }
 catch(YourException e)

WHAT HAPPENS IF AN EXCEPTION IS NEVER CAUGHT?

If every method up to and including the main method simply includes a throws clause for a par-
ticular class of exceptions, then it may turn out that an exception of that class is thrown but never
caught. In such cases, when an exception is thrown but never caught, either the program ends or
its performance may become unreliable. For GUI programs, such as those that use JOptionPane
or the other Swing classes we discuss in Chapter 16, if an exception is thrown but never caught,
then nothing happens, but if your code does not somehow account for the thrown exception, then
the user may be left in an unexplained situation. If your program does not use GUI classes and an
exception is thrown but never caught, then the program ends with an error message giving the
name of the exception class.

In a well-written program, every exception that is thrown should eventually be caught by a
catch block in some method.

5640_ch09.fm Page 486 Friday, February 13, 2004 4:15 PM

Throwing Exceptions in Methods 487

 {
 <Handle exception.>

 }
 ...
}

Even this kind of use of a throw statement should be reserved for cases where it is
unavoidable. If you can easily handle a problem in some other way, do not throw an excep-
tion. Reserve throw statements for situations in which the way the exceptional condition is
handled depends on how and where the method is used. If the way that the exceptional
condition is handled depends on how and where the method is invoked, then the best
thing to do is to let the programmer who invokes the method handle the exception. In
all other situations, it is preferable to avoid throwing exceptions. Let’s outline a sample
scenario of this kind of situation.

Suppose you are writing a library of methods to deal with patient monitoring sys-
tems for hospitals. One method might compute the patient’s average daily temperature
by accessing the patient’s record in some file and dividing the sum of the temperatures
by the number of times the temperature was taken. Now suppose these methods are
used for creating different systems to be used in different situations. What should hap-
pen if the patient’s temperature was never taken and so the averaging would involve a
divides by zero? In an intensive-care unit, this would indicate something is very wrong.
So for that system, when this potential division by zero would occur, an emergency
message should be sent out. However, for a system that is to be used in a less urgent set-
ting, such as outpatient care or even in some noncritical wards, it might have no signif-
icance and so a simple note in the patient’s record would suffice. In this scenario, the
method for doing the averaging of the temperatures should throw an exception when
this division by zero occurs, list the exception in the throws clause, and let each system
handle the exception case in the way that is appropriate to that system.

■ IOException

You should now be able to figure out why we use a throws clause with IOException in
any methods that use BufferedReader to read keyboard input, such as in the following
from Display 9.8:

public static void main(String[] args) throws IOException

WHEN TO THROW AN EXCEPTION

Exceptions should be reserved for situations where a method has an exceptional case and differ-
ent invocations of the method would handle the exceptional case differently. In this situation, you
would throw an exception in the method definition, not catch the exception in the method, but
list the exception in the throws clause for the method.

5640_ch09.fm Page 487 Friday, February 13, 2004 4:15 PM

488 Chapter 9 Exception Handling

Self-Test Exercises

or the following method heading from the same program:

 public static void secondChance() throws IOException

Most of the methods that deal with input using

BufferedReader

 can throw an

IOException

. So, when you do console input using

BufferedReader

, the method head-
ing must include the class

IOException

 in a

throws

clause

, or else the method must
have

catch

 blocks that catch any possible

IOException

. This will be discussed in more
detail in Chapter 10. However, we do note here that a well-written program would
catch any such

IOException

 in a suitable

catch

 block. In Display 9.9 we have rewritten
the program in Display 9.8 so that all

IOExceptions

 are caught.

■ EVENT-DRIVEN PROGRAMMING

✜

Exception handling is our first example of a programming methodology known as
event-driven programming

. With event-driven programming, objects are defined so
that they send events

, which are themselves objects, to other objects that handle the
events. Sending the event is called firing the event

. In exception handling, the event
objects are the exception objects. They are fired (thrown) by an object when the
object invokes a method that throws the exception. An exception event is sent to a

catch

 block, where it is handled. Of course, a

catch

 block is not exactly an object,
but the idea is the same. Also, our programs have mixed event-driven programming
(exception handling) with more traditional programming techniques. When we
study how you construct windowing systems using the Swing libraries (Chapter 16),
you will see examples of programming where the dominant technique is event-driven
programming.

22. What is the output produced by the following program?

public class Exercise
{
 public static void main(String[] args)
 {
 try
 {
 System.out.println("Trying");
 sampleMethod(98.6);
 System.out.println("Trying after call.");
 }
 catch(Exception e)

event-driven
programming

firing an event

5640_ch09.fm Page 488 Tuesday, February 17, 2004 5:33 PM

Throwing Exceptions in Methods 489

Display 9.9 Catching an IOException (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DivisionDemoThirdVersion
5 {
6 public static void main(String[] args)
7 {

8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10 try
11 {
12 System.out.println("Enter numerator:");
13 String numeratorString = keyboard.readLine();
14 int numerator = Integer.parseInt(numeratorString);
15 System.out.println("Enter denominator:");
16 String denominatorString = keyboard.readLine();
17 int denominator =
18 Integer.parseInt(denominatorString);

19 double quotient = safeDivide(numerator, denominator);
20 System.out.println(numerator + "/"
21 + denominator
22 + " = " + quotient);
23 }
24 catch(DivisionByZeroException e)
25 {
26 System.out.println(e.getMessage());
27 secondChance();
28 }
29 catch(IOException e)
30 {
31 System.out.println("IO Problem. Aborting program.");
32 System.exit(0);
33 }
34 System.out.println("End of program.");
35 }

No throws clause

This constructor invocation does not throw any exceptions.

Yes, we will give another, better version of
this program later in the chapter.

The readLine method may
throw an IOException.

safeDivide may throw a DivisionByZeroException

5640_ch09.fm Page 489 Friday, February 13, 2004 4:15 PM

codes489.html

490 Chapter 9 Exception Handling

Display 9.9 Catching an IOException (Part 2 of 2)

36 public static double safeDivide(int top, int bottom)
37 throws DivisionByZeroException
38 {
39 if (bottom == 0)
40 throw new DivisionByZeroException();

41 return top/(double)bottom;
42 }

43 public static void secondChance()
44 {
45 BufferedReader keyboard =
46 new BufferedReader(new InputStreamReader(System.in));

47 try
48 {
49 System.out.println("Try again.");
50 System.out.println("Enter numerator:");
51 String numeratorString = keyboard.readLine();
52 int numerator = Integer.parseInt(numeratorString);
53 System.out.println("Enter denominator:");
54 System.out.println(
55 "Be sure the denominator is not zero.");
56 String denominatorString = keyboard.readLine();
57 int denominator = Integer.parseInt(denominatorString);

58 if (denominator == 0)
59 {
60 System.out.println("I cannot do division by zero.");
61 System.out.println("Aborting program.");
62 System.exit(0);
63 }

64 double quotient = numerator/(double)denominator;
65 System.out.println(numerator + "/" + denominator
66 + " = " + quotient);
67 }
68 catch(IOException e)
69 {
70 System.out.println("IO Problem. Aborting program.");
71 System.exit(0);
72 }
73 }
74 }

 The input/output dialogs are
identical to those for the program in
Display 9.4.

No throws clause

The readLine method may throw
an IOException.

5640_ch09.fm Page 490 Tuesday, February 17, 2004 5:33 PM

Throwing Exceptions in Methods 491

 {
 System.out.println("Catching.");
 }

 System.out.println("End program.");
 }

 public static void sampleMethod(double test)
 throws Exception
 {
 System.out.println("Starting sampleMethod.");
 if (test < 100)
 throw new Exception();
 }
}

The class Exercise is on the CD that comes with this text.

23. Suppose that in exercise 22 the line

 sampleMethod(98.6);

in the try block were changed to

 sampleMethod(212);

How would this affect the output?

24. Correct the following method definition by adding a suitable throws clause:

public static void doStuff(int n)
{
 if (n < 0)
 throw new Exception("Negative number.");
}

25. What happens if an exception is thrown inside a method invocation but the exception is
not caught inside the method?

26. Suppose there is an invocation of method A inside of method B, and an invocation of
method B inside of method C. When method C is invoked, this leads to an invocation of
method B, and that in turn leads to an invocation of method A. Now, suppose that method
A throws an exception but does not catch it within A. Where might the exception be
caught? In B? In C? Outside of C?

extra code on CD

5640_ch09.fm Page 491 Friday, February 13, 2004 4:15 PM

492 Chapter 9 Exception Handling

Pitfall

More Programming Techniques for
Exception Handling

Only use this in exceptional circumstances.

Warren Peace, The Lieutenant’s Tool

In this section we present a number of the finer points about programming with excep-
tion handling in Java. We also define and explain a class called ConsoleIn for doing
simple keyboard input.

NESTED try-catch BLOCKS

You can place a try block and its following catch blocks inside a larger try block or inside a
larger catch block. On rare occasions this may be useful, but it is almost always better to place
the inner try catch blocks inside a method definition and place an invocation of the method in
the outer try or catch block (or maybe just eliminate one or more try blocks completely).

If you place a try block and its following catch blocks inside a larger catch block, you will
need to use different names for the catch block parameters in the inner and outer blocks. This
has to do with how Java handles nested blocks of any kind. Remember, try blocks and catch
blocks are blocks.

If you place a try block and its following catch blocks inside a larger try block, and an excep-
tion is thrown in the inner try block but is not caught in the inner catch blocks, then the excep-
tion is thrown to the outer try block for processing and might be caught in one of its catch
blocks.

■ THE finally BLOCK ✜

The finally block contains code to be executed whether or not an exception is thrown
in a try block. The finally block, if used, is placed after a try block and its following
catch blocks. The general syntax is as follows:

try
{
 ...
}
catch(ExceptionClass1 e)
{
 ...

9.3

5640_ch09.fm Page 492 Friday, February 13, 2004 4:15 PM

More Programming Techniques for Exception Handling 493

Self-Test Exercises

}
.
.
.
catch(ExceptionClassLast e)
{
 ...
}
finally
{
 < Code to be executed whether or not an exception is thrown or caught.>
}

Now, suppose that the try-catch-finally blocks are inside a method definition.
(After all, every set of try-catch-finally blocks is inside of some method, even if it is
only the method main.) There are three possibilities when the code in the try-catch-
finally blocks is run:

1. The try block runs to the end and no exception is thrown. In this case, the finally
block is executed after the try block.

2. An exception is thrown in the try block and is caught in one of the catch blocks
positioned after the try block. In this case, the finally block is executed after the
catch block is executed.

3. An exception is thrown in the try block and there is no matching catch block in the
method to catch the exception. In this case, the method invocation ends and the
exception object is thrown to the enclosing method. However, the finally block is
executed before the method ends. Note that you cannot account for this last case
simply by placing code after the catch blocks.

■ RETHROWING AN EXCEPTION ✜

A catch block can contain code that throws an exception. In rare cases you may find it
useful to catch an exception and then, depending on the string produced by getMessage
or depending on something else, decide to throw the same or a different exception for
handling further up the chain of exception handling blocks.

27. Can you have a try block and corresponding catch blocks inside another larger try
block?

28. Can you have a try block and corresponding catch blocks inside another larger catch
block?

29. ✜ What is the output produced by the following program? What would the output be if the
argument to exerciseMethod were −42 instead of 42? What would it be if the argument

5640_ch09.fm Page 493 Friday, February 13, 2004 4:15 PM

494 Chapter 9 Exception Handling

were 0 instead of 42? (The class NegativeNumberException is defined in Display 9.7, but
you need not review that definition to do this exercise.)

public class FinallyDemo
{
 public static void main(String[] args)
 {
 try
 {
 exerciseMethod(42);
 }
 catch(Exception e)
 {
 System.out.println("Caught in main.");
 }
 }

 public static void exerciseMethod(int n) throws Exception
 {
 try
 {
 if (n > 0)
 throw new Exception();
 else if (n < 0)
 throw new NegativeNumberException();
 else
 System.out.println("No Exception.");
 System.out.println("Still in sampleMethod.");
 }
 catch(NegativeNumberException e)
 {
 System.out.println("Caught in sampleMethod.");
 }

 finally
 {
 System.out.println("In finally block.");
 }
 System.out.println("After finally block.");
 }
}

The class FinallyDemo is on the CD that comes with this text.extra code on CD

5640_ch09.fm Page 494 Friday, February 13, 2004 4:15 PM

More Programming Techniques for Exception Handling 495

■ EXCEPTIONS TO THE CATCH OR DECLARE RULE

As we already noted, in most “ordinary” cases, an exception must either be caught in a
catch block or declared in a throws clause. That is the Catch or Declare Rule, but there
are exceptions to this rule. There are some classes whose exceptions you do not need to
account for in this way (although you can catch them in a catch block if you want to).
These are typically exceptions that result from errors of some sort. They usually indi-
cate that your code should be fixed, not that you need to add a catch block. You do not
write a throw statement for these exceptions. They are often thrown by methods in
standard library classes, but it would be legal to throw one of these exceptions in the
code you write.

Exceptions that are descendents of the class RuntimeException do not need to be
accounted for in a catch block or throws clause. There is also another category of
classes that are called Error classes and that behave like exception classes in that they
can be thrown and caught in a catch block. However, you are not required to account
for Error objects in a catch block or throws clause. The situation is diagrammed as a
class hierarchy in Display 9.10. All the classes shown in blue follow the Catch or
Declare Rule, which says that if their objects are thrown, then they must either be
caught in a catch block or declared in a throws clause. All the classes shown in yellow
are exempt from the Catch or Declare Rule.

Exception classes that follow the Catch or Declare Rule are often called checked
exceptions. Exceptions that are exempt from the Catch or Declare Rule are often called
unchecked exceptions.

You need not worry too much about which exceptions you do and do not need to
declare in a throws clause. If you fail to account for some exception that Java requires
you to account for, the compiler will tell you about it, and you can then either catch it
or declare it in a throws clause.

CATCH OR DECLARE RULE

Most “ordinary” exceptions that might be thrown when a method is invoked must be accounted
for in one of two ways:

1. The possible exception can be caught in a catch block within the method definition.

2. The possible exception can be declared at the start of the method definition by placing the
exception class name in a throws clause.

This rule is called the Catch or Declare Rule.

Exceptions that must follow the Catch or Declare Rule are often called checked exceptions. Dis-
play 9.10 explains which methods are checked exceptions (and so must follow the Catch or Declare
Rule) and which throwable objects are exempt from the Catch or Declare Rule.

checked and
unchecked
exceptions

5640_ch09.fm Page 495 Friday, February 13, 2004 4:15 PM

496 Chapter 9 Exception Handling

■ THE AssertionError CLASS ✜

When we discussed the assert operator and assertion checking in Chapter 3, we said
that if your program contains an assertion check and the assertion check fails, your pro-
gram will end with an error message. That statement is more or less true, but it is incom-
plete. What happens is that an object of the class AssertionError is thrown. If it is not
caught in a catch block, your program ends with an error message. However, if you wish,
you can catch it in a catch block, although that is not a very common thing to do. The
AssertionError class is in the java.lang package and so requires no import statement.

As the name suggests, the class AssertionError is derived from the class Error, so
you are not required to either catch it in a catch block or declare it in a throws clause.

Display 9.10 Hierarchy of Throwable Objects

Exception

Throwable

Exceptions
that must either be caught

in a catch block or
declared in a throws clause.

Exceptions that
do not need to

be accounted for in a
catch block or throws clause.

Errors, all of
which do not need
to be accounted for
in a catch block or
throws clause.

These are checked
exceptions, which means
they are subject to the
Catch or Declare Rule.

Error

All descendents of the class Throwable can
be thrown and caught in a catch block.

RuntimeException

5640_ch09.fm Page 496 Friday, February 13, 2004 4:15 PM

More Programming Techniques for Exception Handling 497

Tip

■ NumberFormatException

Methods that process String arguments as if they were numbers will often throw a
NumberFormatException if a String argument does not correctly represent a Java num-
ber of the requisite type. NumberFormatException is in the standard Java package
java.lang and so requires no import statement. NumberFormatException is a descen-
dent class of RuntimeException, so you need not account for a NumberFormatExcep-
tion by catching it in a catch block or declaring it in a throws clause. However, you
are allowed to catch a NumberFormatException in a catch block and that can some-
times be useful. For example, the method Integer.parseInt will throw a NumberFor-
matException if its argument is not a well-formed Java int numeral string. The
method inputInt in Display 9.11 prompts the user for an int input value and uses
Integer.parseInt to convert the input string to an int value. If the input string is not
a correctly formed int numeral string, then a NumberFormatException is thrown and
caught in a catch block, which causes the surrounding loop body to be repeated so that
the user is asked to reenter the input.

EXCEPTION CONTROLLED LOOPS

Sometimes when an exception is thrown, such as a NumberFormatException for an ill-formed
input string, you want your code to simply repeat some code so that the user (or whatever) can
get things right on a second or subsequent try. One way to set up your code to repeat a loop every
time a particular exception is thrown is as follows:

boolean done = false;

while (! done)
{
 try
 {
 <Code that may throw an exception in the class Exception_Class.>
 done = true; //Will end the loop.
 <Possibly more code.>
 }
 catch(Exception_Class e)
 {
 <Some code.>
 }
}

Note that if an exception is thrown in the first piece of code in the try block, then the try block
ends before the line that sets done to true is executed and so the loop body is repeated. If no
exception is thrown, then done is set to true and the loop body is not repeated.

5640_ch09.fm Page 497 Friday, February 13, 2004 4:15 PM

498 Chapter 9 Exception Handling

Display 9.11 Catching a NumberFormatException (Part 1 of 3)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class DivisionDemoFinalVersion
5 {
6 public static void main(String[] args)
7 {
8 int numerator = inputInt("Enter numerator:");
9 int denominator = 0; //to keep compiler happy

10 boolean done = false;

11 while (! done)
12 {
13 try
14 {
15 denominator = inputInt("Enter denominator:");
16 double quotient = safeDivide(numerator, denominator);
17 done = true;
18 System.out.println(numerator + "/" + denominator
19 + " = " + quotient);
20 }
21 catch(DivisionByZeroException e)
22 {
23 System.out.println("Cannot divide by zero.");
24 System.out.println("Try again.");
25 }
26 }

27 System.out.println("End of program.");
28 }

29 public static double safeDivide(int top, int bottom)
30 throws DivisionByZeroException
31 {
32 if (bottom == 0)
33 throw new DivisionByZeroException();
34 return top/(double)bottom;
35 }
36 public static int inputInt(String prompt)
37 {
38 BufferedReader keyboard =
39 new BufferedReader(new InputStreamReader(System.in));

Not executed if
safeDivide
throws an exception.

safeDivide can throw a
DivisionByZeroException.

5640_ch09.fm Page 498 Friday, February 13, 2004 4:15 PM

codes498.html

More Programming Techniques for Exception Handling 499

Display 9.11 Catching a NumberFormatException (Part 2 of 3)

40 String numeralString = null; //to keep compiler happy
41 int inputValue = 0; //to keep compiler happy
42 boolean done = false;

43 while (! done)
44 {
45 try
46 {
47 System.out.println(prompt);
48 numeralString = keyboard.readLine();
49 inputValue = Integer.parseInt(numeralString);
50 done = true;
51 }
52 catch(NumberFormatException e)
53 {
54 System.out.println(numeralString
55 + " is not a valid input.");
56 System.out.println("Try again.");
57 }
58 catch(IOException e)
59 {
60 System.out.println("IO Problem. Aborting program.");
61 System.exit(0);
62 }
63 }

64 return inputValue;

65 }

66 }

SAMPLE DIALOGUE 1

Enter numerator:
2000
Enter denominator:
1000
2000/1000 = 2.0
End of program.

readLine can throw an IOException.

parseInt can throw a
NumberFormatException.

Not executed if an
exception is thrown.

5640_ch09.fm Page 499 Friday, February 13, 2004 4:15 PM

500 Chapter 9 Exception Handling

Display 9.11 contains two examples of such loops, one for DivisionByZeroException and one
for NumberFormatException. Minor variations on this outline can accommodate a range of
different situations for which you want to repeat code on throwing an exception.

■ ArrayIndexOutOfBoundsException

You should read Section 6.1 of Chapter 6, which covers array basics, before reading this
short subsection. If you have not yet covered some of Chapter 6, you can omit this sec-
tion and return to it at a later time.

If your program attempts to use an array index that is out of bounds, an ArrayIn-
dexOutOfBoundsException is thrown and your program ends, unless the exception is
caught in a catch block. ArrayIndexOutOfBoundsException is a descendent of the class

Display 9.11 Catching a NumberFormatException (Part 3 of 3)

SAMPLE DIALOGUE 2

Enter numerator:
2,000
2,000 is not a valid input.
Try again.
Enter numerator:
2,000.00
2,000.00 is not a valid input.
Try again.
Enter numerator:
2 thousand
2 thousand is not a valid input.
Try again.
Enter numerator:
2000
Enter denominator:
0
Cannot divide by zero.
Try again.
Enter denominator:
1,000
1,000 is not a valid input.
Try again.
Enter denominator:
1000
2000/1000 = 2.0
End of program.

5640_ch09.fm Page 500 Friday, February 13, 2004 4:15 PM

More Programming Techniques for Exception Handling 501

Example

Self-Test Exercises

RuntimeException and so need not be caught or accounted for in a throws clause. This
sort of exception normally indicates that there is something wrong with your code and
means that you need to fix your code, not catch an exception. Thus, an ArrayIndex-
OutOfBoundsException normally functions more like a run-time error message than a
regular exception.

ArrayIndexOutOfBoundsException is in the standard Java package java.lang and so
requires no import statement should you decide to use it by name.

30. Would you get a compiler error message if you omit the following catch block from the
method inputInt in Display 9.11? If you would not get a compiler error message, would
you sometimes get a run-time error message? Explain your answers.

catch(NumberFormatException e)
{
 System.out.println(numeralString
 + " is not a valid input.");
 System.out.println("Try again.");
}

31. Would you get a compiler error message if you omit the following catch block from the
method inputInt in Display 9.11? If you would not get a compiler error message, would
you sometimes get a run-time error message? Explain your answers.

catch(IOException e)
{
 System.out.println("IO Problem. Aborting program.");
 System.exit(0);
}

CONSOLE INPUT CLASS ✜

Java has no class to gracefully handle simple console input (that is, text input entered at the key-
board). However, it is easy to define such a class. One such class is the class ConsoleIn given in
Display 9.12. Now that you understand exception handling, you can easily understand the defini-
tion of ConsoleIn. Use of the class ConsoleIn was described in an stared section of Chapter 2.
In this Programming Example subsection, we explain details of the code for ConsoleIn.

The class ConsoleIn uses the object System.in to do its input and then processes the input so
that it passes the data on to your program as values of type int, double, or other standard

constructor

5640_ch09.fm Page 501 Friday, February 13, 2004 4:15 PM

502 Chapter 9 Exception Handling

Display 9.12 Definition of the Class ConsoleIn (Part 1 of 4)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 /**
5 Class for robust keyboard input.
6 If the user enters an improper input, that is, an input of the wrong type
7 or a blank line when the line should be nonblank, then the user is given
8 an error message and is prompted to reenter the input.
9 */

10 public class ConsoleIn
11 {
12 private static final BufferedReader inputObject =
13 new BufferedReader(new InputStreamReader(System.in));

14 /**
15 Reads a line of text and returns that line as a String value.
16 This will read the rest of a line if the line is already
17 partially read.
18 */
19 public static String readLine()
20 {
21 String inputLine = null;

22 try
23 {
24 inputLine = inputObject.readLine();
25 }
26 catch(IOException e)
27 {
28 System.out.println("Fatal Error.Aborting.");
29 System.exit(0);
30 }

31 return inputLine;
32 }

5640_ch09.fm Page 502 Friday, February 13, 2004 4:15 PM

codes502.html

More Programming Techniques for Exception Handling 503

Display 9.12 Definition of the Class ConsoleIn (Part 2 of 4)

33 /**
34 The user is supposed to enter a whole number of type int on a line by
35 itself. There may be whitespace before and/or after the number.
36 Returns the number entered as a value of type int. The rest of the line
37 is discarded. If the input is not entered correctly, then in most cases,
38 the user will be asked to reenter the input. In particular, incorrect
39 number formats and blank lines result in a prompt to reenter the input.
40 */
41 public static int readLineInt()
42 {
43 String inputString = null;
44 int number = 0;//To keep the compiler happy.
45 boolean done = false;

46 while (! done)
47 {
48 try
49 {
50 inputString = readLine();
51 number = Integer.parseInt(inputString.trim());
52 done = true;
53 }
54 catch (NumberFormatException e)
55 {
56 System.out.println(
57 "Input number is not in correct format.");
58 System.out.println("The input number must be");
59 System.out.println("a whole number written as an");
60 System.out.println("ordinary numeral, such as 42.");
61 System.out.println("Do not include a plus sign.");
62 System.out.println("Minus signs are OK,");

63 System.out.println("Try again.");
64 System.out.println("Enter a whole number:");
65 }
66 }

67 return number;
68 }

5640_ch09.fm Page 503 Friday, February 13, 2004 4:15 PM

504 Chapter 9 Exception Handling

Display 9.12 Definition of the Class ConsoleIn (Part 3 of 4)

69 /**
70 The user is supposed to enter a number of type double on a line by itself.
71 There may be whitespace before and/or after the number.
72 Returns the number entered as a value of type double. The rest of the line
73 is discarded. If the input is not entered correctly, then in most cases,
74 the user will be asked to reenter the input. In particular, incorrect
75 number formats and blank lines result in a prompt to reenter the input.
76 */
77 public static double readLineDouble()
78 {
79 String inputString = null;
80 double number = 0;//To keep the compiler happy.
81 boolean done = false;

82 while (! done)
83 {
84 try
85 {
86 inputString = readLine();
87 number = Double.parseDouble(inputString.trim());
88 done = true;
89 }
90 catch (NumberFormatException e)
91 {
92 System.out.println("Input number is not in correct format.");
93 System.out.println("The input number must be");
94 System.out.println("an ordinary number either with");
95 System.out.println("or without a decimal point,");
96 System.out.println("such as 42 or 41.999");
97 System.out.println("Try again.");
98 System.out.println("Enter a number:");
99 }

100 }

101 return number;
102 }

 <The methods readLineFloat, readLineByte, readLineShort, and readLineLong
 are minor variations on readLineInt and readLineDouble with only the obvious changes
 for each number type. The complete code for all these methods is given in Appendix 5.>

5640_ch09.fm Page 504 Friday, February 13, 2004 4:15 PM

More Programming Techniques for Exception Handling 505

Display 9.12 Definition of the Class ConsoleIn (Part 4 of 4)

103 /**
104 Returns the first nonwhitespace character on the input line. The rest of the line
105 is discarded. If the line contains only whitespace, the user is asked to reenter.
106 */
107 public static char readLineNonwhiteChar()
108 {
109 boolean done = false;
110 String inputString = null;
111 char nonWhiteChar = ' ';//To keep the compiler happy.

112 while (! done)
113 {
114 inputString = readLine();
115 inputString = inputString.trim();
116 if (inputString.length() == 0)
117 {
118 System.out.println("Input is not correct.");
119 System.out.println("The input line must contain at");
120 System.out.println("least one non-whitespace character.");
121 System.out.println("Try again.");
122 System.out.println("Enter input:");
123 }
124 else
125 {
126 nonWhiteChar = inputString.charAt(0);
127 done = true;
128 }
129 }

130 return nonWhiteChar;
131 }

132 /**
133 Input should consist of a single word on a line, possibly surrounded by
134 whitespace. The line is read and discarded. If the input word is "true" or
135 "t", then true is returned. If the input word is "false" or "f", then false
136 is returned. Uppercase and lowercase letters are considered equal. If the
137 user enters anything else, the user is asked to reenter the input.
138 */
139 public static boolean readLineBoolean()
140 <The rest of the definition of the method readLineBoolean is Self-Test Exercise 32.>
141 }

5640_ch09.fm Page 505 Friday, February 13, 2004 4:15 PM

506 Chapter 9 Exception Handling

types. In previous programs (most recently in Display 9.11), we’ve used input objects of the fol-
lowing form:

BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));

The class ConsoleIn uses just such an input object, but the input object is a private static vari-
able, declared and initialized as follows:

private static final BufferedReader inputObject =
 new BufferedReader(new InputStreamReader(System.in));

All input is then read by static methods that use this inputObject.

The method readLine of the class ConsoleIn is invoked as follows:

someStringVariable = ConsoleIn.readLine();

Inside the definition of the method readLine, the actual reading of an input line is done by the
object inputObject as follows:

inputLine = inputObject.readLine();

What is new in the readLine method of ConsoleIn is that the programmer using the read-
Line in ConsoleIn need not worry about IOExceptions. All possible IOExceptions are
caught inside the method readLine of ConsoleIn.

The method readLineInt obtains the int value input as follows:

inputString = readLine();
number = Integer.parseInt(inputString.trim());

Then the int value number is returned. This is the same way that we read int values in previous
programs, most recently in Display 9.11. In fact, the method readLineInt of the class Con-
soleIn is almost the same as the method inputInt in Display 9.11. Like the method inputInt,
the method readLineInt catches any NumberFormatException and asks the user to reenter
the input if an exception is thrown.

One thing that we added to readLineInt that was not in the method inputInt (Display 9.11) is
the invocation of the String method trim(). This invocation of trim() removes extra leading
and trailing whitespace and so makes a NumberFormatException less likely.

The method readLineDouble is essentially the same as readLineInt except that it uses Dou-
ble.parseDouble instead of Integer.parseInt. The methods readLineFloat, read-
LineByte, readLineShort, and readLineLong are also similar minor variations on
readLineInt. In fact, they are so similar that we have not given the code for them in Display
9.12. You should easily be able to write the code using readLineInt as a model, but if need be
you can find the missing code in Appendix 5.

The method readLineBoolean is left as a routine Self-Test Exercise (Self-Test Exercise 32).

readLine

readLineInt

readLine–
Double

readLine-
Boolean

5640_ch09.fm Page 506 Friday, February 13, 2004 4:15 PM

More Programming Techniques for Exception Handling 507

The method readLineNonwhiteChar reads the entire line and removes the leading and trailing
whitespace as follows:

inputString = readLine();
inputString = inputString.trim();

The method readLineNonwhiteChar needs to return only the first character in inputString.
It uses the String method charAt to obtain that character as follows:

nonWhiteChar = inputString.charAt(0);

The value nonWhiteChar is then returned by readLineNonwhiteChar.

This discussion of readLineNonwhiteChar has so far assumed that the user entered at least one
nonwhitespace character. If the user enters only whitespace characters, then the string input-
String will have length zero. The method readLineNonwhiteChar tests for length zero and
asks the user to reenter the input in that case.

A sample use of the class ConsoleIn is given in Display 9.13. An addition example can be found
in Display 2.9 of Chapter 2.

readLine-
NonwhiteChar

Display 9.13 Keyboard Input with ConsoleIn (Part 1 of 2)

1 public class ConsoleInDemo
2 {
3 public static void main(String[] args)
4 {
5 char ans;

6 do
7 {
8 System.out.println("Enter width of lot in feet:");
9 double width = ConsoleIn.readLineDouble();

10 System.out.println("Enter length of lot in feet:");
11 double length = ConsoleIn.readLineDouble();

12 double area = width*length;

13 System.out.println("A lot that is " + width
14 + " feet wide");
15 System.out.println("and " + length + " feet long");
16 System.out.println("has an area of " + area
17 + " square feet.");

The file ConsoleIn.class must be in the
same directory as this program.

5640_ch09.fm Page 507 Friday, February 13, 2004 4:15 PM

codes507.html

508 Chapter 9 Exception Handling

Self-Test Exercises

32. Complete the definition of the method readLineBoolean of the class ConsoleIn in Dis-
play 9.12.

Display 9.13 Keyboard Input with ConsoleIn (Part 2 of 2)

18 System.out.println("Repeat calculation? (y/n)");
19 ans = ConsoleIn.readLineNonwhiteChar();
20 } while (Character.toLowerCase(ans) == 'y');

21 System.out.println("End of program.");
22 }
23 }

SAMPLE DIALOGUE

Enter width of lot in feet:
50.7 ft.
Input number is not in correct format
The input number must be
an ordinary number either with
or without a decimal point,
such as 42 or 42.999
Try again.
Enter a number:
50.7
Enter length of lot in feet:
100.6
A lot that is 50.7 feet wide
and 100.6 feet long
has an area of 5100.42 square feet.
Repeat Calculation? (y/n)
yes
Enter width of lot in feet:
50
Enter length of lot in feet:
100
A lot that is 50.0 feet wide
and 100.0 feet long
has an area of 5000.0 square feet.
Repeat Calculation? (y/n)
N
End of program.

5640_ch09.fm Page 508 Friday, February 13, 2004 4:15 PM

Answers to Self-Test Exercises 509

■ Exception handling allows you to design and code the normal case for your program
separately from the code that handles exceptional situations.

■ An exception can be thrown in a try block. Alternatively, an exception can be
thrown in a method definition that does not include a try block (or does not
include a catch block to catch that type of exception). In this case, an invocation of
the method can be placed in a try block.

■ An exception is caught in a catch block.

■ A try block must be followed by at least one catch block and can be followed by
more than one catch block. If there are multiple catch blocks, always list the catch
block for a more specific exception class before the catch block for a more general
exception class.

■ The best use of exceptions is to throw an exception in a method (but not catch it in
the method), but to only do this when the way the exception is handled will vary
from one invocation of the method to another. There is seldom any other situation
that can profitably benefit from throwing an exception.

■ If an exception is thrown in a method but not caught in that method, then, in most
“ordinary” cases, the exception type must be listed in the throws clause for that
method.

ANSWERS TO SELF-TEST EXERCISES

1. Try block entered.
Over 30.
After catch block

2. The output would then be

Try block entered.
Under 30.
After catch block

3. There are two throw statements:

throw new Exception("Over 30.");
throw new Exception("Under 30.");

4. When a throw statement is executed, that is the end of the enclosing try block. No other
statements in the try block are executed, and control passes to the following catch
block(s). When we say that control passes to the following catch block, we mean that the
exception object that is thrown is plugged in for the catch block parameter and the code
in the catch block is executed.

Chapter Summary

5640_ch09.fm Page 509 Friday, February 13, 2004 4:15 PM

510 Chapter 9 Exception Handling

5. try
{
 System.out.println("Try block entered.");
 if (waitTime > 30)
 throw new Exception("Over 30.");
 else if (waitTime < 30)
 throw new Exception("Under 30.");
 else
 System.out.println("No exception.");
 System.out.println("Leaving try block.");
}

6. catch(Exception thrownObject)
{
 System.out.println(thrownObject.getMessage());
}

7. thrownObject

8. Yes, it is legal.

9. Yes, it is legal.

10. public class PowerFailureException extends Exception
{
 public PowerFailureException()
 {
 super("Power Failure!");
 }

 public PowerFailureException(String message)
 {
 super(message);
 }
}

11. public class TooMuchStuffException extends Exception
{
 public TooMuchStuffException()
 {
 super("Too much stuff!");
 }

 public TooMuchStuffException(String message)
 {
 super(message);
 }
}

5640_ch09.fm Page 510 Friday, February 13, 2004 4:15 PM

Answers to Self-Test Exercises 511

12. ExerciseException invoked with an argument.
Do Be Do

13. Test exception thrown!!
Test Exception thrown!
Message is Test Exception thrown!

14. try block entered:
MyException: Hi Mom!
End of example.

15. The output would be the same.

16. The output would then be

try block entered:
Leaving try block.
End of example.

17. 41.9
DoubleException thrown!

18. Yes, you can define an exception class as a derived class of the class IOException.

19. Second catch.
End of exercise.

20. The output would then be

First catch.
End of exercise.

21. The output would then be

Bingo!
End of exercise.

22. Trying
Starting sampleMethod.
Catching.
End program.

23. The output would then be

Trying
Starting sampleMethod.
Trying after call.
End program.

5640_ch09.fm Page 511 Friday, February 13, 2004 4:15 PM

512 Chapter 9 Exception Handling

24. public static void doStuff(int n) throws Exception
{
 if (n < 0)
 throw new Exception("Negative number.");
}

25. If a method throws an exception and the exception is not caught inside the method, then
the method invocation ends immediately after the exception is thrown. If the method invo-
cation is inside a try block, then the exception is thrown to a matching catch block, if
there is one. If there is no catch block matching the exception, then the method invoca-
tion ends as soon as that exception is thrown.

26. It might be caught in method B. If it is not caught in method B, it might be caught in
method C. If it is not caught in method C, it might be caught outside of method C.

27. Yes, you can have a try block and corresponding catch blocks inside another larger try
block.

28. Yes, you can have a try block and corresponding catch blocks inside another larger catch
block.

29. Caught in main.
In finally block.

If the argument to sampleMethod were −42 instead of 42, the output would be

Caught in sampleMethod.
In finally block.
After finally block.

30. You would not get a compiler error message because the class NumberFormatException is
a descendent of the class RuntimeException and so need not be caught in a catch block
or accounted for in a throws clause. If you do eliminate this catch block and a Number-
FormatException is thrown, then your program would give a run-time error message.

31. If you omit the IOException catch block from the method inputInt in Display 9.11,
you would get a compiler error message saying that a possible IOException must be
accounted for by either a catch block or by being listed in a throws clause.

32. See Appendix 5 for the complete definition.

PROGRAMMING PROJECTS

1. Write a program that converts dates from numerical month/day/year format to normal
“month day, year” format. (for example, 12/25/2000 corresponds to December 25, 2000).
You will define three exception classes, one called MonthException, another called

5640_ch09.fm Page 512 Friday, February 13, 2004 4:15 PM

project512.html

Programming Projects 513

DayException, and a third called YearException. If the user enters anything other than
a legal month number (integers from 1 to 12), your program will throw and catch a
MonthException and ask the user to reenter the month. Similarly, if the user enters any-
thing other than a valid day number (integers from 1 to either 28, 29, 30, or 31, depending
on the month and year), then your program will throw and catch a DayException and ask
the user to reenter the day. If the user enters a year that is not in the range 1000 to 3000
(inclusive), then your program will throw and catch a YearException and ask the user to
reenter the year. (There is nothing very special about the numbers 1000 and 3000 other
than giving a good range of likely dates.) See Self-Test Exercise 20 in Chapter 4 for details
on leap years.

2. Write a program that can serve as a simple calculator. This calculator keeps track of a single
number (of type double) that is called result and that starts out as 0.0. Each cycle allows
the user to repeatedly add, subtract, multiply, or divide by a second number. The result of
one of these operations becomes the new value of result. The calculation ends when the
user enters the letter R for “result” (either in uppercase or lowercase). The user is allowed to
do another calculation from the beginning as often as he or she wants. Use the ConsoleIn
class from Display 9.12 for input.

The input format is shown in the following sample dialog. If the user enters any operator
symbol other than +, −, *, or /, then an UnknownOperatorException is thrown and the
user is asked to reenter that line of input. Defining the class UnknownOperatorException
is part of this project.

Calculator is on.
result = 0.0
+5
result + 5.0 = 5.0
new result = 5.0
*2.2
result * 2.2 = 11.0
updated result = 11.0
% 10
% is an unknown operation.
Reenter, your last line:
* 0.1
result * 0.1 = 1.1
updated result = 1.1
r
Final result = 1.1
Again? (y/n)
yes
result = 0.0
+10
result + 10.0 = 10.0
new result = 10.0
/2

5640_ch09.fm Page 513 Friday, February 13, 2004 4:15 PM

project513.html

514 Chapter 9 Exception Handling

result / 2.0 = 5.0
updated result = 5.0
r
Final result = 5.0
Again? (y/n)
N
End of Program

5640_ch09.fm Page 514 Friday, February 13, 2004 4:15 PM

project514.html

	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text3: 9.3
	code links 2:
	code links 3:
	code links 4:
	code links 5:
	code links 7:
	code links 8:
	code links 9:
	code links 10:
	code links 11:
	code links 12:
	code links 1:
	program project 9:
	1:
	2:
	3:

