12

UMIL and Patterns

12.1 UML 612 Restrictions on the Sorting Pattern 622
History of UML 613 Efficiency of the Sorting Pattern [625
UML Class Diagrams 613 Tip: Pragmatics and Patterns 626

Class Interactions 614 Pattern Formalism 626

Inheritance Diagrams 614 CHAPTER SUMMARY 626

More UML 616 ANSWERS TO SELF-TEST EXERCISES 627

PROGRAMMING PROJECTS 629
12.2 PATTERNS 617

Adaptor Pattern [617
The Model-View-Controller Pattern [] 618
Example: A Sorting Pattern 618

172 UML and Patterns

Einstein argued that there must be simplified explana-
tions of nature, because God is not capricious or arbi-
trary. No such faith comforts the software engineer.
Much of the complexity that he must master is arbi-
trary complexity.

F. Brooks, “No Silver Bullet: Essence and Accidents
of Software Engineering,” IEEE Computer, April 1987

INTRODUCTION

UML and patterns are two software design tools that apply no matter what
programming language you are using, as long as the language provides for
classes and related facilities for object-oriented programming (OOP). This
chapter presents a very brief introduction to these two topics. This chapter
contains no new details about the Java language.

UML is a graphical language that is used for designing and documenting
software created within the OOP framework.

A pattern in programming is very similar to a pattern in any other context.
It is a kind of template or outline of a software task that can be realized as dif-
ferent code in different, but similar, applications.

PREREQUISITES

12.1

Section 12.1 on UML and Section 12.2 on patterns can be read in either
order. None of this chapter is needed for the rest of the chapters in this book.

Section 12.1 on UML uses material from Chapters 1-5 and Chapter 7 on
inheritance.

Section 12.2 on patterns uses material from Chapters 1-7 and Chapter 11.

UML

One picture is worth a thousand words.

Chinese proverb

Most people do not think in Java or in any other programming language. As
a result, computer scientists have always sought to produce more human-
oriented ways of representing programs. One widely used representation is

UML 613

pseudocode, which is a mixture of a programming language like Java and a natural lan-
guage like English. To think about a programming problem without needing to worry
about the syntax details of a language like Java, you can simply relax the syntax rules
and write in pseudocode. Pseudocode has become a standard tool used by program-
mers, but pseudocode is a linear and algebraic representation of programming. Com-
puter scientists have long sought to give software design a graphical representation. To
this end, a number of graphical representation systems for program design have been
proposed, used, and ultimately found to be wanting. Terms like flowchart, structure dia-
gram, and many more names of graphical program representations are today only rec-
ognized by those of the older generation. Today’s candidate for a graphical
representation formalism is the (or). UML was
designed to reflect and be used with the OOP philosophy. It is too early to say whether
or not UML will stand the test of time, but it is off to a good start. A number of com-
panies have adopted the UML formalism to use in their software design projects.

HISTORY OF UML

UML developed along with OOP. As the OOP philosophy became more and more
commonly used, different groups developed their own graphical or other representations
for OOP design. In 1996, Grady Booch, Ivar Jacobson, and James Rumbaugh released
an early version of UML. UML was intended to bring together the various different
graphical representation methods to produce a standardized graphical representation
language for object-oriented design and documentation. Since that time, UML has been
developed and revised in response to feedback from the OOP community. Today the
UML standard is maintained and certified by the Object Management Group (OMG),
a nonprofit organization that promotes the use of object-oriented techniques.

UML CLASS DIAGRAMS

Classes are central to OOP and the is the easiest of the UML graphical
representations to understand and use. Display 12.1 shows the class diagram for a class
to represent a square. The diagram consists of a box divided into three sections. (The
colors are optional and not standardized.) The top section has the class name, Square.
The next section has the data specification for the class. In this example there are three
pieces of data (three instance variables), a value of type double giving the length of a
side, and two more values of type double giving the x and y coordinates of the center of
the square. The third section gives the actions (class methods). The notation for
method entries is not identical to that of a Java method heading but it contains the
same information. A minus sign indicates a private member. So, for the class Square, all
data is private. A plus sign indicates a public member. A sharp (#) indicates a protected
member. A tilde (~) indicates package access. So, for the class Square, the class diagram
shows two public methods and one protected method. A class diagram need not give a
complete description of the class. When you do not need all the members in a class for
the analysis at hand, you do not list all the members in the class diagram. Missing
members are indicated with an ellipsis (three dots).

inheritance
diagram

arrows

614

Chapter 12 UML and Patterns

A UML Class Diagram

— side: double
— xCoordinate: double
— yCoordinate: double

+ resize(double newSide): void
+ move(double newX, double newY): void
erase(): void

CLASS INTERACTIONS

Class diagrams by themselves are of little value, since they simply repeat the class inter-
face, possibly with ellipses. To understand a design, you need to indicate how objects of
the various classes interact. UML has various ways to indicate class interactions; for
example, various sorts of annotated arrows indicate the information flow from one class
object to another. UML also has annotations for class groupings into packages, annota-
tions for inheritance, and annotations for other interactions. Moreover, UML is exten-
sible. If what you want and need is not in UML, you can add it to UML. Of course,
this all takes place inside a prescribed framework so that different software developers
can understand each other’s UML. One of the most fundamental of class interactions is
inheritance, which is discussed in the next subsection.

INHERITANCE DIAGRAMS

Display 12.2 shows a possible inheritance diagram for some classes used in a univer-
sity’s record-keeping software. Note that the class diagrams are incomplete. You nor-
mally show only as much of the class diagram as you need for the design task at hand.
Note that the arrow heads point up from a derived class to its base class.

The arrows also help in locating method definitions. If you are looking for a method
definition for some class, the arrows show the path you (or the computer) should fol-
low. If you are looking for the definition of a method used by an object of the class
Undergraduate, you first look in the definition of the class undergraduate; if it is not
there, you look in the definition of student; if it is not there, you look in the definition
of the class Person.

Display 12.3 shows some possible additional details of the inheritance hierarchy for
the two classes Person and one of its derived classes, Student. Suppose s is an object of

UML 615

Display 12.2 A Class Hierarchy in UML Notation

Arrows go from a derived
class to its base class.

the class student. The diagram in Display 12.3 tells you that you can find the defini-
tion of

s.toString();

and
s.set("Joe Student", 4242);

in the class student, but the definition of
s.setName("Josephine Student");

is found in the definition of the class Person.

616 Chapter 12 UML and Patterns

Display 12.3 Some Details of a UML Class Hierarchy

— name: String

setName(String newName): void
getName(): String

toString(): String

sameName (Person otherPerson)): boolean

+ + + +

— studentNumber: int

+ set(String newName,
int newStudentNumber): void
+ getStudentNumber(): int
+ setStudentNumber(
int newStudentNumber): void
+ toString(): String
+ equals(Object otherObject): boolean

MORE UML

This is just a hint of what UML is all about. If you are interested in learning more, con-
sult one of the many available references on UML.

Self-Test Exercises

1. Draw a class diagram for a class whose objects represent circles. Use Display 12.1 as a model.

2. Suppose aStudent is an object of the class Student. Based on the inheritance diagram in
Display 12.3, where will you find the definition of the method sameName used in the fol-
lowing invocation, which compares aStudent and another object named someStudent?
Explain your answer.

Student someStudent =
new Student("Joe Student", 7777);

12.2

Patterns 617

if (aStudent.sameName(someStudent))
System.out.println("wow");

3. Suppose aStudent is an object of the class Student. Based on the inheritance diagram in
Display 12.3, where will you find the definition of the method used in the following invo-
cation? Explain your answer.

aStudent.setNumber(4242);

Patterns

I bid him look into the lives of men as though into a mirror,
and from others to take an example for himself.

Terence (Publius Terentius Afer) 190-159 B.C., Adelphoe

are design outlines that apply across a variety of software applications. To be
useful, the pattern must apply across a variety of situations. To be substantive, the pat-
tern must make some assumptions about the domain of applications to which it
applies. For example, one well-known pattern is the pattern. A
is a class (or other construct) whose objects hold multiple pieces of data. One
example of a container is an array. Other examples, which will be discussed later in this
book, are vectors and linked lists. Any class or other construct designed to hold multi-
ple values can be viewed as a container. For example, a String value can be viewed as a
container that contains the characters in the string. Any construct that allows you to
cycle through all the items in a container is an . For example, an array index is
an iterator for an array. It can cycle through the array as follows:

for (int i; i < a.length; i++)
Do something with a[i]

The index variable i is the iterator. The Container-Iterator pattern describes how an
iterator is used on a container.

In this brief chapter we can give you only a taste of what patterns are all about. In
this section we will discuss a few sample patterns to let you see what patterns look like.
There are many more known and used patterns and many more yet to be explicated.
This is a new and still developing field of software engineering.

ADAPTOR PATTERN [J

The pattern transforms one class into a different class without changing the
underlying class but merely by adding a new interface. (The new interface replaces the
old interface of the underlying class.) For example, in Chapter 11 we mentioned the

618

Chapter 12 UML and Patterns

stack data structure, which is used to, among other things, keep track of recursion.
One way to create a stack data structure is to start with an array and add the stack inter-
face. The Adaptor pattern says start with a container, like an array, and add an inter-
face, like the stack interface.

THE MODEL-VIEW-CONTROLLER PATTERN [

The pattern is a way of separating the 1/0O task of an applica-
tion from the rest of the application. The Model part of the pattern performs the heart
of the application. The View part is the output part; it displays a picture of the Model’s
state. The Controller is the input part; it relays commands from the user to the Model.
Normally, each of the three interacting parts is realized as an object with responsibilities
for its own tasks. The Model-View-Controller pattern is an example of a divide-and-
conquer strategy. One big task is divided into three smaller tasks with well-defined
responsibilities. Display 12.4 gives a diagram of the Model-View-Controller pattern.

As a very simple example, the Model might be a container class, such as an array. The
View might display one element of the array. The Controller gives commands to display
the element at a specified index. The Model (the array) notifies the View to display a
new element whenever the array contents change or a different index location is given.

Any application can be made to fit the Model-View-Controller pattern, but it is par-
ticularly well suited to GUI (Graphical User Interface) design projects where the View
can indeed be a visualization of the state of the Model. (A GUI interface is simply a win-
dowing interface of the form you find in most modern software applications, as opposed
to the simple text 1/0O we have used so far in this book.) For example, the Model might
be an object to represent your list of computer desktop object names. The View could
then be a GUI object that produces a screen display of your desktop icons. The Control-
ler relays commands to the Model (which is a desktop object) to add or delete names.
The Model object notifies the View object when the screen needs to be updated.

We have presented the Model-View-Controller pattern as if the user were the Con-
troller. That was done primarily to simplify the examples. The Controller need not be
under the direct control of the user, but could be some other kind of software or hard-
ware component.

Example

A SORTING PATTERN

The most efficient sorting algorithms all seem to follow a similar pattern. Expressed recursively, they
divide the list of elements to be sorted into two smaller lists, recursively sort the two smaller lists,
and then recombine the two sorted lists to obtain the final sorted list. In Display 12.5 this pattern is
expressed as pseudocode (in fact, almost correct Java code) for a method to sort an array into
increasing order using the < operator.

Our sorting pattern uses a divide-and-conquer strategy. It divides the entire collection of ele-
ments to be sorted into two smaller collections, sorts the smaller collections by recursive calls,

Patterns 619

Display 12.4 Model-View-Controller Pattern

datal
data2

Notify actionl() Manipulate
action2()

update()

Display 12.5 Divide-and-Conquer Sorting Pattern

1 /7’:7‘:

2 Precondition: Interval a[begin] through al[end] of a have elements.

3 Postcondition: The values in the interval have

4 been rearranged so that a[begin] <= a[begin+l] <= ... <= al[end].

5 %/

6 public static void sort(Type[] a, int begin, int end)

7 1 To get a correct Java method

8 if ((end - begin) >= 1) definition Type must be replaced

9 { with a suitable type name.

10 int splitPoint = split(a, begin, end);

11 sort(a, begin, splitPoint); Different definitions for the methods
12 sort(a, splitPoint + 1, end); splitand join will give different
13 join(a, begin, splitPoint, end); realizations of this pattern.

14 }//else sorting one (or fewer) elements so do nothing.

15 3}

and then combines the two sorted collections to obtain the final sorted array. The following is the
heart of our sorting pattern:

int splitPoint = split(a, begin, end);
sort(a, begin, splitPoint);

sort(a, splitPoint + 1, end);

join(a, begin, splitPoint, end);

620

Chapter 12 UML and Patterns

Although the pattern does impose some minimum requirements on the methods split and
join, the pattern does not say exactly how the methods split and join are defined. Different
definitions of split and join will yield different sorting algorithms.

The method split rearranges the elements in the interval a[begin] through a[end] and
divides the rearranged interval at a split point, splitPoint. The two smaller intervals
a[begin] through a[splitPoint] and [splitPoint + 1] through a[end] are then sorted
by a recursive call to the method sort. Note that the split method both rearranges the ele-
ments in the array interval a[begin] through a[end] and returns the index splitPoint that
divides the interval. After the two smaller intervals are sorted, the method join then combines
the two sorted intervals to obtain the final sorted version of the entire larger interval.

The pattern says nothing about how the method split rearranges and divides the interval
a[begin] through a[end]. In a simple case, split might simply choose a value splitPoint
between begin and end and divide the interval into the points before splitPoint and the
points after splitPoint, with no rearranging. We will see an example that realizes the sorting
pattern by defining split this way. On the other hand, the method split could do something
more elaborate like move all the “small” elements to the front of the array and all the “large”
elements toward the end of the array. This would be a step on the way to fully sorting the values.
We will also see an example that realizes the sorting pattern in this second way.

The simplest realization of this sorting pattern is the merge sort realization given in Display 12.6. In
this realization the array base type, Type, is specialized to the type double. The merge sort is an
example where the definition of split is very simple. It simply divides the array into two intervals
with no rearranging of elements. The join method is more complicated. After the two subintervals
are sorted, the method join merges the two sorted subintervals, copying elements from the array
to a temporary array. The merging starts by comparing the smallest elements in each smaller
sorted interval. The smaller of these two elements is the smallest of all the elements in either sub-
interval and so it is moved to the first position in the temporary array. The process is then repeated
with the remaining elements in the two smaller sorted intervals to find the next smallest element,
and so forth. A demonstration of using the merge sort version of sort is given in Display 12.7.

There is a trade-off between the complexity of the methods split and join. You can make
either of them simple at the expense of making the other more complicated. For merge sort,
split wassimple and join was complicated. We next give a realization where split is compli-
cated and join is simple.

Display 12.8 gives the quick sort realization of our sorting pattern for the type double.

In the quick sort realization, the definition of split is quite sophisticated. An arbitrary value in
the array is chosen; this value is called the splitting value. In our realization, we chose a[begin]
as the splitting value, but any value will do equally well. The elements in the array are rearranged
so that all those elements that are less than or equal to the splitting value are at the front of the
array, all the values that are greater than the splitting value are at the other end of the array, and
the splitting value is placed so that it divides the entire array into these smaller and larger ele-
ments. Note that the smaller elements are not sorted and the larger elements are not sorted, but
all the elements before the splitting value are smaller than any of the elements after the splitting
value. The smaller elements are sorted by a recursive call, the larger elements are sorted by
another recursive call, and then these two sorted segments are combined with the join method.

Patterns 621

™ -~ ~i -
Display 12.6 Merge Sort Realization of Sorting Pattern (Part 1 of 2) e (‘“DL““Th
1 /7’:7':
2 Class that realizes the divide-and-conquer sorting pattern and
3 uses the merge sort algorithm.
4 */
5 public class MergeSort
6 {
7 Vass
8 Precondition: Interval a[begin] through a[end] of a have elements.
9 Postcondition: The values in the interval have
10 been rearranged so that a[begin] <= a[begin+l] <= ... <= al[end].
11 %/
12 public static void sort(double[] a, int begin, int end)
12 { if (Cend - begin) >= 1) The method sort is identical to the version in the pattern
15 { (Display 12.5) except that Type is replaced with double.
16 int splitPoint = split(a, begin, end);
17 sort(a, begin, splitPoint);
18 sort(a, splitPoint + 1, end);
19 join(a, begin, splitPoint, end);
20 }//else sorting one (or fewer) elements so do nothing.
21 }
22 private static int split(double[] a, int begin, int end)
23 {
24 return ((begin + end)/2);
25 }
26 private static void join(double[] a, int begin, int splitPoint, int end)
27 {
28 double[] temp;
29 int intervalSize = (end — begin + 1);
30 temp = new double[intervalSize];
31 int nextLeft = begin; //index for first chunk
32 int nextRight = splitPoint + 1; //index for second chunk
33 int i = 0; //index for temp
34 //Merge till one side is exhausted:
35 while ((nextLeft <= splitPoint) && (nextRight <= end))
36 {
37 if (a[nextLeft] < a[nextRight])
38 {
39 temp[i] = a[nextLeft];
40 i++; nextLeft++;

41 }

codes621.html

622

42
43
44
45
46
47

48
49
50
51
52

53
54
55
56
57

58
59
60

61

Chapter 12 UML and Patterns

Merge Sort Realization of Sorting Pattern (Part 2 of 2)

else

{

temp[i] = a[nextRight];
i++; nextRight++;
}
}
while (nextLeft <= splitPoint)//Copy rest of left chunk, if any.
{
temp[i] = a[nextLeft];
i++; nextLeft++;
}
while (nextRight <= end) //Copy rest of right chunk, if any.
{
temp[i] = a[nextRight];
i++; nextRight++;
}

for (i = 0; i < intervalSize; i++)
a[begin + i] = temp[i];

In this case, the join method is as simple as it could be. It does nothing. Since the sorted smaller
elements all precede the sorted larger elements, the entire array is sorted.

A demonstration program for the quick sort method sort in Display 12.8 is given in the file
QuickSortDemo. java on the accompanying CD.

(Both the merge sort and the quick sort realizations can be done without the use of a second tem-
porary array, temp. However, that detail would only distract from the message of this example. In
a real application, you may or may not, depending on details, want to consider the possibility of
doing a sort realization without the use of the temporary array.)

RESTRICTIONS ON THE SORTING PATTERN

The sorting pattern, like all patterns, has some restrictions on where it applies. As we
formulated the sorting pattern, it applies only to types for which the < operator is
defined and it applies only to sorting into increasing order; it does not apply to sorting
into decreasing order. However, this is a result of our simplifying details to make the

1
2
3
4
5

O 00 N O

10

11
12
13
14
15
16
17

Patterns 623

Using the MergeSort Class e CODEMATE

public class MergeSortDemo

{

}

public static void main(String[] args)

{
double[] b = {7.7, 5.5, 11, 3, 16, 4.4, 20, 14, 13, 423};

System.out.println("Array contents before sorting:");
int 1i;
for (1 = 0; i < b.length; i++)

System.out.print(b[i] + " ");
System.out.println();

MergeSort.sort(b, 0, b.length-1);
System.out.println("Sorted array values:");
for (1 = 0; i < b.length; i++)
System.out.print(b[i] + " ");
System.out.println();

SAMPLE DIALOGUE

Array contents before sorting:

7.7 5.5 11.0 3.0 16.0 4.4 20.0 14.0 13.0 42.0
Sorted array values:

3.0 4.4 5.5 7.7 11.0 13.0 14.0 16.0 20.0 42.0

presentation clearer. You can make the pattern more general by replacing the < operator
with a boolean valued method called compare that has two arguments of the base type
of the array and that returns true or false depending on whether the first “comes
before” the second. Then, the only restriction is that the compare method must have a
reasonable definition.t This sort of generalization is discussed in Chapter 13 in the sub-
section entitled “The Comparable Interface.”

1 The technical requirement is that the compare method be a total ordering, a concept discussed in
Chapter 13. Essentially, all common orderings that you might want to sort by are total orderings.

The Comparable interface has a method compareTo, which is slightly different from compare.
However, the method we described as compare can easily be defined using the method comp-
areTo as a helping method.

codes623.html

624 Chapter 12 UML and Patterns

Display 12.8 Quick Sort Realization of Sorting Pattern (Part 1 of 2)
1 /:’::‘r

2 Class that realizes the divide-and-conquer sorting pattern and
3 uses the quick sort algorithm.
4 */
5 public class QuickSort
6 {
7 /7':7‘:
8 Precondition: Interval a[begin] through al[end] of a have elements.
9 Postcondition: The values in the interval have
10 been rearranged so that a[begin] <= a[begin+l] <= ... <= al[end].
11 */
12 public static void sort(double[] a, int begin, int end)
12 { if ((end - begin) >= 1) The method sort is identical to the version in the pattern
15 { (Display 12.5) except that Type is replaced with double.
16 int splitPoint = split(a, begin, end);
17 sort(a, begin, splitPoint);
18 sort(a, splitPoint + 1, end);
19 join(a, begin, splitPoint, end);
20 }//else sorting one (or fewer) elements so do nothing.
21 }
22 private static int split(double[] a, int begin, int end)
23 {
24 double[] temp;
25 int size = (end - begin + 1);
26 temp = new double[size];
27 double splitValue = a[begin];
28 int up = 0;
29 int down = size — 1;
30 //Note that a[begin] = splitValue is skipped.
31 for (int i = begin + 1; 1 <= end; i++)
32 {
33 if (a[i] <= splitValue)
34 {
35 temp[up] = a[i];
36 up++;
37 }
38 else
39 {
40 temp[down] = a[i];
41 down——;
42 }

43 }

codes624.html

44

45

46
47
48

49
50

51
52

53
54
55
56
57

58

Patterns 625

Quick Sort Realization of Sorting Pattern (Part 2 of 2)

//0 <= up = down < size
temp[up] = a[begin]; //Positions the split value, spliV.

//temp[i] <= splitValue for i < up
// templ[up] = splitValue
// temp[i] > splitValue for i > up

for (int 1 = 0; i < size; i++)
a[begin + i] = temp[i];

return (begin + up);

}

private static void join(double[] a, int begin,
int splitPoint, int end)
{
//Nothing to do.
}

EFFICIENCY OF THE SORTING PATTERN [

Essentially any sorting algorithm can be realized using this sorting pattern. However,
the most efficient implementations are those for which the sp1it method divides the
array into two substantial size chunks, such as half and half, or one-forth and three-
fourths. A realization of sp1it that divides the array into one or a very few elements
and the rest of the array will not be very efficient.

For example, the merge sort realization of split divides the array into two roughly
equal parts, and merge sort is indeed very efficient. It can be shown (although we will
not do so here) that merge sort has a worst-case running time that is the best possible
“up to an order of magnitude.”

The quick sort realization of sp1it divides the array into two portions that might be
almost equal or might be very different in size depending on the choice of a splitting
value. Since in extremely unfortunate cases the split might be very uneven for most
cases, the worst-case running time for quick sort is not as fast as that of merge sort.
However, in practice, quick sort turns out to be a very good sorting algorithm and usu-
ally preferable to merge sort.

Section sort, which we discussed in Chapter 5, divides the array into two pieces, one
with a single element and one with the rest of the array interval. (See Self-Test Exercise
4.) Because of this uneven division, selection sort has a poor running time, although it
does have the virtue of simplicity.

626

Self-Test Exercises

4. Give an implementation of the divide-and-conquer sorting pattern (Display 12.5) that will

Chapter 12 UML and Patterns

PRAGMATICS AND PATTERNS

You should not feel compelled to follow all the fine details of a pattern. Patterns are guides, not
requirements. For example, we did the quick sort implementation by exactly following the pat-
tern. We did this to have a clean example. In practice we would have taken some liberties. Notice
that, with quick sort, the join method does nothing. In practice we would simply eliminate the
calls to join. These calls incur overhead and accomplish nothing. Other optimizations can also be
done once the general pattern of the algorithm is clear.

PATTERN FORMALISM

There is a well-developed body of techniques for using patterns. We will not go into
the details here. The UML discussed in Section 10.1 is one formalism used to express
patterns. The place within the software design process of patterns and any specific for-
malisms for patterns is not yet clear. However, it is clear that the basic idea of patterns,
as well as certain pattern names, such as Model-View-Controller, have become standard
and useful tools for software design.

realize the selection sort algorithm (Display 6.9) for an array with base type double.

5. Which of the following would give the fastest run time when an array is sorted using the

quick sort algorithm: a fully sorted array, an array of random values, or an array sorted from
largest to smallest (that is, sorted backward)? Assume all arrays are of the same size and have
the same base type.

Chapter Summary

= The Unified Modeling Language (UML) is a graphical representation language for
object-oriented software design.

= Patterns are design principles that apply across a variety of software applications.

= The patterns discussed in this chapter are the Container-Iterator, Adaptor, Model-
View-Controller, and Divide-and-Conquer Sorting patterns.

= UML is one formalism that can and is used to express patterns.

Answers to Self-Test Exercises 627

ANSWERS TO SELF-TEST EXERCISES

1. There are many correct answers. Below is one:

— radius: double
— centerX: double
— centerY: double

+ resize(double newRadius): void
+ move(double newX, double newY): void
erase(): void

2. The method sameName is not listed in the class diagram for Student. So, you follow the
arrow to the class diagram for Person. The method sameName with a single parameter of
type Person is in the class diagram for Person. Since you know a Student is a Person,
you know that this definition works for the method sameName with a single parameter of
type Student. So, the definition used for the method sameName is in the class definition of
Person

3. You start at the class diagram for Student. The method setStudentNumber with a sin-
gle parameter of type int is in the class diagram for Student, so you need look no fur-
ther. The definition used for the method setStudentNumber is in the class definition of
Student

4. The code for this is also on the CD that comes with this book. This code is in the file
SelectionSort.java. A demonstration program is in the file SelectionSort-
Demo. java. extra code on CD

public class SelectionSort
{
public static void sort(double[] a,
int begin, int end)
{
if ((end - begin) >= 1)
{
int splitPoint = split(a, begin, end);
sort(a, begin, splitPoint);
sort(a, splitPoint + 1, end);
join(a, begin, splitPoint, end);
}//else sorting one (or fewer) elements
//so do nothing.

628 Chapter 12 UML and Patterns

private static int split(double[] a,
int begin, int end)

{
int index = indexO0fSmallest(begin, a, end);
interchange(begin,index, a);
return begin;
}

private static void join(double[] a, int begin,
int splitPoint, int end)
{
//Nothing to do.
}

private static int indexOfSmallest(int startIndex,
double[] a, int endIndex)
{
double min = a[startIndex];
int indexO0fMin = startIndex;
int index;
for (index = startIndex + 1;
index < endIndex; index++)
if (a[index] < min)
{
min = a[index];
indexOfMin = index;
//min is smallest of a[startIndex]
//through a[index]
}

return indexOfMin;

private static void interchange(int i, int j, double[] a)
{

double temp;

temp = a[i];

alil = al[jl;

al[j] = temp; //original value of ali]

Programming Projects 629

5. An array of random values would have the fastest run time, since it would divide the array
segments into approximately equal subarrays most of the time. The other two cases would
give approximately the same running time and would be significantly slower, because the
algorithms would always divide an array segment into very unequal size pieces, one piece
with only one element and one piece with the rest of the elements. It is ironic but true that
our version of the quick sort algorithms has its worst behavior on an already sorted array.
There are variations on the quick sort algorithms that perform well on a sorted array. For
example, choosing the middle element as the splitting value will give good performance on
an already sorted array. But, whatever splitting value you choose, there will always be a few
cases with slow running time.

PROGRAMMING PROJECTS

T . 1. Recode the QuickSort class implementation by adding two efficiency improvements to
e LUDEMATE the method sort: (1) Eliminate the calls to join, since it accomplishes nothing. (2) Add
code for the special case of an array of exactly two elements and make the general case apply
to arrays of three or more elements.

v, . 2. Redo the QuickSort class so that it chooses the splitting point as follows: The splitting
[) CODEMATE

point is the middle (in size) of the first element, the last element, and an element at approx-
imately the middle of the array. This will make a very uneven split less likely.

3. Redo the QuickSort class to have the modifications given for projects 1 and 2.

For additional online Programming
Projects, click the CodeMate icons beloy

12.4 e

project629c.html
project629a.html
project629b.html

	code links 1:
	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text3: 12.4
	program project 1:
	3:

	code links 2:
	code links 3:
	program project 12:
	1:
	2:

