

CHAPTER

19

Java Never Ends

19.1 MULTITHREADING 958

Example: A Nonresponsive GUI 959

Thread.sleep 959

The

getGraphics Method 963

Fixing a Nonresponsive Program Using Threads 964

Example: A Multithreaded Program 965

The Class

Thread 965

The

Runnable Interface

✜ 968

19.2 JAVABEANS 971

The Component Model 971

The JavaBeans Model 972

19.3 JAVA AND DATABASE CONNECTIONS 973

SQL 973

JDBC 975

CHAPTER SUMMARY 975
ANSWERS TO SELF-TEST EXERCISES 976
PROGRAMMING PROJECTS 976

5640_ch19.fm Page 957 Tuesday, February 10, 2004 4:11 PM

19

Java Never Ends

And thick and fast they came at last,
And more, and more, and more—

Lewis Carroll,

Through the Looking-Glass

INTRODUCTION

Of course there is only a finite amount of Java, but when you consider all the
standard libraries and other accompanying software, the amount of power and
the amount to learn seem to be endless. In this chapter we give you a brief
introduction to three topics to give you a flavor of some of the directions you
can take in extending your knowledge of Java. The three topics are multi-
threading, JavaBeans, and the interaction of Java with database systems.

PREREQUISITES

You really should cover most of the book before covering this chapter. How-
ever, Section 19.1 requires only Chapters 16 and 18 and their prerequisites.
Sections 19.2 and 19.3 require only Chapters 1 through 6. The Sections 19.1,
19.2, and 19.3 are independent of each other and may be read in any order.

Multithreading

“Can you do two things at once?”
“I have trouble doing one thing at once.”

Part of a job interview

A thread

 is a separate computation process. In Java, you can have programs
with multiple threads. You can think of the threads as computations that exe-
cute in parallel. On a computer with enough processors, the threads might
indeed execute in parallel. In most normal computing situations, the threads
do not really execute in parallel. Instead, the computer switches resources
between threads so that each thread in turn does a little bit of computing. To
the user this looks like the processes are executing in parallel.

You have already experienced threads. Modern operating systems allow you
to run more than one program at the same time. For example, rather than
waiting for your virus scanning program to finish its computation, you can go
on to, say, read your E-mail while the virus scanning program is still execut-
ing. The operating system is using threads to make this happen. There may or
may not be some work being done in parallel depending on your computer

19.1

thread

5640_ch19.fm Page 958 Tuesday, February 10, 2004 4:11 PM

Multithreading 959

Example

and operating system. Most likely the two computation threads are simply sharing
computer resources so that they take turns using the computer’s resources. When read-
ing your E-mail, you may or may not notice that response is slower because resources
are being shared with the virus scanning program. Your E-mail reading program is
indeed slowed down, but since humans are so much slower than computers, any appar-
ent slowdown is likely to be unnoticed.

A NONRESPONSIVE GUI

Display 19.1 contains a very simple action GUI. When the

"Start" button is clicked, the GUI draws
circles one after the other until a large portion of the window is filled with circles. There is 1/10 of a
second pause between the drawing of each circle. So, you can see the circles appear one after the
other. If you’re interested in Java programming, this can be pretty exciting for the first few cir-
cles, but it quickly becomes boring. You are likely to want to end the program early, but if you
click the close-window button, nothing will happen until the program is finished drawing all its
little circles. We will use threads to fix this problem, but first let’s understand this program, which
does not really use threads in any essential way, despite the occurrence of the word

Thread in
the program. We explain this Swing program in the next few subsections.

■

Thread.sleep

In Display 19.1 the following method invocation produces a 1/10 of a second pause
after drawing each of the circles:

doNothing(PAUSE);

which is equivalent to

doNothing(100);

The method

doNothing

 is a private helping method that does nothing except call the
method

Thread.sleep

 and take care of catching any thrown exception. So, the pause is
really created by the method invocation

Thread.sleep(100);

This is a static method in the class

Thread

 that pauses whatever thread includes the
invocation. It pauses for the number of milliseconds (thousandths of a second) given as
an argument. So, this pauses the computation of the program in Display 19.1 for 100
milliseconds or 1/10 of a second.

“Wait a minute,” you may think, “the program in Display 19.1 was not supposed to
use threads in any essential way.” That is basically true, but every Java program uses
threads in some way. If there is only one stream of computation, as in Display 19.1,

Thread.sleep

5640_ch19.fm Page 959 Tuesday, February 10, 2004 4:11 PM

960 Chapter 19 Java Never Ends

Display 19.1 Nonresponsive GUI (Part 1 of 3)

1 import javax.swing.JFrame;
2 import javax.swing.JPanel;
3 import javax.swing.JButton;
4 import java.awt.Container;
5 import java.awt.BorderLayout;
6 import java.awt.FlowLayout;
7 import java.awt.Graphics;
8 import java.awt.event.ActionListener;
9 import java.awt.event.ActionEvent;

10 /**
11 Packs a section of the frame window with circles, one at a time.
12 */
13 public class FillDemo extends JFrame implements ActionListener
14 {
15 public static final int WIDTH = 300;
16 public static final int HEIGHT = 200;
17 public static final int FILL_WIDTH = 300;
18 public static final int FILL_HEIGHT = 100;
19 public static final int CIRCLE_SIZE = 10;
20 public static final int PAUSE = 100; //milliseconds

21 private JPanel box;

22 public static void main(String[] args)
23 {
24 FillDemo gui = new FillDemo();
25 gui.setVisible(true);
26 }

27 public FillDemo()
28 {
29 setSize(WIDTH, HEIGHT);
30 setTitle("FillDemo");
31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

32 Container contentPane = getContentPane();
33 contentPane.setLayout(new BorderLayout());

5640_ch19.fm Page 960 Tuesday, February 10, 2004 4:11 PM

Multithreading 961

Display 19.1 Nonresponsive GUI (Part 2 of 3)

34 box = new JPanel();
35 contentPane.add(box, "Center");

36 JPanel buttonPanel = new JPanel();
37 buttonPanel.setLayout(new FlowLayout());
38 JButton startButton = new JButton("Start");
39 startButton.addActionListener(this);
40 buttonPanel.add(startButton);
41 contentPane.add(buttonPanel, "South");
42 }

43 public void actionPerformed(ActionEvent e)
44 {
45 fill();
46 }

47 public void fill()
48 {
49 Graphics g = box.getGraphics();

50 for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
51 for (int x = 0; x < FILL_WIDTH; x = x + CIRCLE_SIZE)
52 {
53 g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);
54 doNothing(PAUSE);
55 }
56 }

57 public void doNothing(int milliseconds)
58 {
59 try
60 {
61 Thread.sleep(milliseconds);
62 }
63 catch(InterruptedException e)
64 {
65 System.out.println("Unexpected interrupt");
66 System.exit(0);
67 }
68 }
69 }

Nothing else can happen until
actionPerformed returns, which
does not happen until fill returns.

Everything stops for 100
milliseconds (1/10 of a second).

5640_ch19.fm Page 961 Tuesday, February 10, 2004 4:11 PM

962 Chapter 19 Java Never Ends

then that is treated as a single thread by Java. So, threads are always used by Java, but
not in an interesting way until more than one thread is used.

You can safely think of the invocation of

Thread.sleep(milliseconds);

as a pause in the computation that lasts (approximately) the number of milliseconds given
as the argument. (If this invocation is in a thread of a multithreaded program, then the
pause, like anything else in the thread, applies only to the thread in which it occurs.)

Display 19.1 Nonresponsive GUI (Part 3 of 3)

RESULTING GUI (When started)

RESULTING GUI (While drawing circles)

RESULTING GUI (After all circles are drawn)

If you click the close-window button while
the circles are being drawn, the window will
not close until all the circles are drawn.

5640_ch19.fm Page 962 Tuesday, February 10, 2004 4:11 PM

Multithreading 963

The method

Thread.sleep

 can sometimes be handy even if you do not do any mul-
tithreaded programming. The class

Thread

 is in the package

java.lang

 and so requires
no import statement.

The method

Thread.sleep

 can throw an

InterruptedException

, which is a
checked exception—that is, it must be either caught in a

catch

 block or declared in a

throws

 clause. We do not discuss

InterruptedException

 in this book, leaving it for
more advanced books on multithreaded programming, but it has to do with one thread
interrupting another thread. We will simply note that an

InterruptedException

 may
be thrown by

Thread.sleep

 and so must be accounted for, in our case by a simple

catch

 block. The class

InterruptedException

 is in the

java.lang

 package and so
requires no import statement.

■ THE

getGraphics METHOD

The other new method in Display 19.1 is the

getGraphics

 method, which is used in
the following line from the method

fill

:

Graphics g = box.getGraphics();

Thread.sleep

Thread.sleep is a static method in the class

Thread that pauses the thread that includes the invo-
cation. It pauses for the number of milliseconds (thousandths of a second) given as an argument.

The method

Thread.sleep may throw an

InterruptedException, which is a checked excep-
tion and so must be either caught in a

catch block or declared in a

throws clause.

The classes

Thread and

InterruptedException are both in the package

java.lang, so nei-
ther requires any import statement.

Note that

Thread.sleep can be invoked in an ordinary (single thread) program of the kind we
have seen before this chapter. It will insert a pause in the single thread of that program.

SYNTAX:

Thread.sleep(Number_Of_Milliseconds

);

EXAMPLE:

try
{
 Thread.sleep(100); //Pause of 1/10 of a second
}
catch(InterruptedException e)
{
 System.out.println("Unexpected interrupt");
}

getGraphics

5640_ch19.fm Page 963 Tuesday, February 10, 2004 4:11 PM

964 Chapter 19 Java Never Ends

The

getGraphics

 method is almost self-explanatory. As we already noted in Chapter
18, almost every item displayed on the screen (more precisely, every

JComponent

) has an
associated

Graphics object. The method getGraphics is an accessor method that
returns the associated Graphics object (of the calling object for getGraphics), in this
case, the Graphics object associated with the panel box. This gives us a Graphics object
that can draw circles (or anything else) in the panel box.

We still need to say a bit more about why the program in Display 19.1 makes you
wait before it will respond to the close-window button, but otherwise this concludes
our explanation of Display 19.1. The rest of the code consists of standard things we
have seen before.

■ FIXING A NONRESPONSIVE PROGRAM USING THREADS

Now that we have explained the new items in the program in Display 19.1, we are
ready to explain why it is nonresponsive and to show you how to use threads to write a
responsive version of that program.

Recall that when you run the program in Display 19.1, it draws circles one after the
other to fill a portion of the frame. Although there is only a 1/10 of a second pause
between drawing each circle, it can still seem like it takes a long time to finish. So, you are
likely to want to abort the program and close the window early. But, if you click the close-
window button, the window will not close until the GUI is finished drawing all the circles.

Here is why the close-window button is nonresponsive: The method fill, which
draws the circles, is invoked in the body of the method actionPerformed. So, the
method actionPerformed does not end until after the method fill ends. And, until
the method actionPerformed ends, the GUI cannot go on to do the next thing, which
is probably to respond to the close-window button.

Here is how we fixed the problem: We have the method actionPerformed create a
new (independent) thread to draw the circles. Once actionPerformed has created this
new thread, the new thread is an independent process that proceeds on its own. The
method actionPerformed has nothing more to do with this new thread; the work of

getGraphics

Every JComponent has an associated Graphics object. The method getGraphics is an acces-
sor method that returns the associated Graphics object of its calling object.

SYNTAX:

Component.getGraphics();

EXAMPLE (SEE DISPLAY 19.1 FOR CONTEXT):

Graphics g = box.getGraphics();

5640_ch19.fm Page 964 Tuesday, February 10, 2004 4:11 PM

Multithreading 965

Example

actionPerformed is ended. So, the main thread (the one with actionPerformed) is
ready to move on to the next thing, which will probably be to respond promptly to a
click of the close-window button. At the same time, the new thread draws the circles.
So, the circles are drawn, but at the same time a click of the close-window button will
end the program. The program that implements this multithreaded solution is given in
the next Programming Example.

A MULTITHREADED PROGRAM

Display 19.2 contains a program that uses a main thread and a second thread to implement the
technique discussed in the previous subsection. The general approach was outlined in the previous
subsection, but we need to explain the Java code details. We do that in the next few subsections.

■ THE CLASS Thread

In Java, a thread is an object of the class Thread. The normal way to program a thread is
to define a class that is a derived class of the class Thread. An object of this derived class
will be a thread that follows the programming given in the definition of the derived
(thread) class.

Where do you do the programming of a thread? The class Thread has a method
named run. The definition of the method run is the code for the thread. When the
thread is executed, the method run is executed. Of course, the method defined in the
class Thread and inherited by any derived class of Thread does not do what you want
your thread to do. So, when you define a derived class of Thread, you override the defi-
nition of the method run to do what you want the thread to do.

In Display 19.2 the inner class Packer is a derived class of the class Thread. The method
run for the class Packer is defined to be exactly the same as the method fill in our previ-
ous, unresponsive GUI (Display 19.1). So, an object of the class Packer is a thread that
will do what fill does, namely draw the circles to fill up a portion of the window.

The method actionPerformed in Display 19.2 differs from the method actionPer-
formed in our older, nonresponsive program (Display 19.1) in that the invocation of
the method fill is replaced with the following:

Packer packerThread = new Packer();
packerThread.start();

This creates a new, independent thread named packerThread and starts it processing.
Whatever packerThread does, it does as an independent thread. The main thread can
then allow actionPerformed to end and the main thread will be ready to respond to
any click of the close-window button.

We only need to explain the method start and we will be through with our expla-
nation. The method start initiates the computation (process) of the calling thread. It

Thread

run()

start()

5640_ch19.fm Page 965 Tuesday, February 10, 2004 4:11 PM

966 Chapter 19 Java Never Ends

Display 19.2 Threaded Version of FillDemo (Part 1 of 2)

1 import javax.swing.JFrame;
2 import javax.swing.JPanel;
3 import javax.swing.JButton;
4 import java.awt.Container;
5 import java.awt.BorderLayout;
6 import java.awt.FlowLayout;
7 import java.awt.Graphics;
8 import java.awt.event.ActionListener;
9 import java.awt.event.ActionEvent;

10 public class ThreadedFillDemo extends JFrame implements ActionListener
11 {
12 public static final int WIDTH = 300;
13 public static final int HEIGHT = 200;
14 public static final int FILL_WIDTH = 300;
15 public static final int FILL_HEIGHT = 100;
16 public static final int CIRCLE_SIZE = 10;
17 public static final int PAUSE = 100; //milliseconds

18 private JPanel box;

19 public static void main(String[] args)
20 {
21 ThreadedFillDemo gui = new ThreadedFillDemo();
22 gui.setVisible(true);
23 }

24 public ThreadedFillDemo()
25 {
26 setSize(WIDTH, HEIGHT);
27 setTitle("Threaded Fill Demo");
28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

29 Container contentPane = getContentPane();
30 contentPane.setLayout(new BorderLayout());

31 box = new JPanel();
32 contentPane.add(box, "Center");

33 JPanel buttonPanel = new JPanel();
34 buttonPanel.setLayout(new FlowLayout());

The GUI produced is identical to the GUI produced by
Display 19.1 except that in this version the close-window
button works even while the circles are being drawn, so
you can end the GUI early if you get bored.

5640_ch19.fm Page 966 Tuesday, February 10, 2004 4:11 PM

Multithreading 967

Display 19.2 Threaded Version of FillDemo (Part 2 of 2)

35 JButton startButton = new JButton("Start");
36 startButton.addActionListener(this);
37 buttonPanel.add(startButton);
38 contentPane.add(buttonPanel, "South");
39 }

40 public void actionPerformed(ActionEvent e)
41 {
42 Packer packerThread = new Packer();
43 packerThread.start();
44 }

45 private class Packer extends Thread
46 {
47 public void run()
48 {
49 Graphics g = box.getGraphics();
50 for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
51 for (int x = 0; x < FILL_WIDTH; x = x + CIRCLE_SIZE)
52 {
53 g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);
54 doNothing(PAUSE);
55 }
56 }

57 public void doNothing(int milliseconds)
58 {
59 try
60 {
61 Thread.sleep(milliseconds);
62 }
63 catch(InterruptedException e)
64 {
65 System.out.println("Unexpected interrupt");
66 System.exit(0);
67 }
68 }
69 } //End Packer inner class

70 }

start “starts” the thread and calls run.

You need a thread object, even if
there are no instance variables in
the class definition of Packer.

run is inherited from Thread but needs to be
overridden. This definition of run is identical to
that of fill in Display 19.1.

5640_ch19.fm Page 967 Tuesday, February 10, 2004 4:11 PM

968 Chapter 19 Java Never Ends

performs some overhead associated with starting a thread and then it invokes the run
method for the thread. As we have already seen, the run method of the class Packer in
Display 19.2 draws the circles we want, so the invocation

packerThread.start();

does draw the circles we want, because it calls run. Note that you do not invoke run
directly. Instead, you invoke start, which does some other needed things and invokes run.

This ends our explanation of the multithreaded program in Display 19.2, but there
is still one, perhaps puzzling, thing about the class Packer that we should explain. The
definition of the class Packer includes no instance variables. So, why do we need to
bother with an object of the class Packer? Why not simply make all the methods static
and call them with the class name Packer? The answer is that the only way to get a new
thread is to create a new Thread object. The things inherited from the class Thread are
what the object needs to be a thread. Static methods do not a thread make. In fact, not
only will static methods not work, the compiler will not even allow you to define run to
be static. This is because run is inherited from Thread as a nonstatic method and that
cannot be changed to static when overriding a method definition. The compiler will
not let you even try to do this without creating an object of the class Packer.

■ THE Runnable INTERFACE ✜

There are times when you would rather not make a thread class a derived class of the
class Thread. The alternative to making your class a derived class of the class Thread is
to have your class instead implement the Runnable interface. The Runnable interface
has only one method heading:

public void run()

A class that implements the Runnable interface must still be run from an instance of the
class Thread. This is usually done by passing the Runnable object as an argument to the
thread constructor. The following is an outline of one way to do this:

public class ClassToRun extends SomeClass implements Runnable
{

 public void run()

THE Thread CLASS

A thread is an object of the class Thread. The normal way to program a thread is to define a class
that is a derived class of the class Thread. An object of this derived class will be a thread that fol-
lows the programming given in the definition of the derived (thread) class’s method named run.

Any thread class inherits the method start from the class Thread. An invocation of start by
an object of a thread class will start the thread and invoke the method run for that thread.

See Display 19.2 for an example.

run()

5640_ch19.fm Page 968 Tuesday, February 10, 2004 4:11 PM

Multithreading 969

Self-Test Exercises

 {
 //Fill this just as you would if ClassToRun
 //were derived from Thread.
 }

 public void startThread()
 {
 Thread theThread = new Thread(this);
 theThread.run();
 }

}

The above method startThread is not compulsory, but it is one way to produce a
thread that will in turn run the run method of an object of the class ClassToRun. In
Display 19.3 we have rewritten the program in Display 19.2 using the Runnable inter-
face. The program behaves exactly the same as the one in Display 19.2.

1. Since sleep is a static method, how can it possibly know what thread it needs to pause?

2. Where was polymorphism used in the program in Display 19.2? (Hint: We are looking for
an answer involving the class Packer.)

Display 19.3 The Runnable Interface (Part 1 of 3)

1 import javax.swing.JFrame;
2 import javax.swing.JPanel;
3 import javax.swing.JButton;
4 import java.awt.Container;
5 import java.awt.BorderLayout;
6 import java.awt.FlowLayout;
7 import java.awt.Graphics;
8 import java.awt.event.ActionListener;
9 import java.awt.event.ActionEvent;

10 public class ThreadedFillDemo2 extends JFrame
11 implements ActionListener, Runnable
12 {
13 public static final int WIDTH = 300;
14 public static final int HEIGHT = 200;
15 public static final int FILL_WIDTH = 300;
16 public static final int FILL_HEIGHT = 100;
17 public static final int CIRCLE_SIZE = 10;
18 public static final int PAUSE = 100; //milliseconds

5640_ch19.fm Page 969 Tuesday, February 10, 2004 4:11 PM

970 Chapter 19 Java Never Ends

Display 19.3 The Runnable Interface (Part 2 of 3)

19 private JPanel box;

20 public static void main(String[] args)
21 {
22 ThreadedFillDemo2 gui = new ThreadedFillDemo2();
23 gui.setVisible(true);
24 }

25 public ThreadedFillDemo2()
26 {
27 setSize(WIDTH, HEIGHT);
28 setTitle("Threaded Fill Demo");
29 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

30 Container contentPane = getContentPane();
31 contentPane.setLayout(new BorderLayout());

32 box = new JPanel();
33 contentPane.add(box, "Center");

34 JPanel buttonPanel = new JPanel();
35 buttonPanel.setLayout(new FlowLayout());

36 JButton startButton = new JButton("Start");
37 startButton.addActionListener(this);
38 buttonPanel.add(startButton);
39 contentPane.add(buttonPanel, "South");
40 }

41 public void actionPerformed(ActionEvent e)
42 {
43 startThread();
44 }

45 public void run()
46 {
47 Graphics g = box.getGraphics();
48 for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
49 for (int x = 0; x < FILL_WIDTH; x = x + CIRCLE_SIZE)
50 {
51 g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);
52 doNothing(PAUSE);
53 }
54 }

5640_ch19.fm Page 970 Tuesday, February 10, 2004 4:11 PM

JavaBeans 971

JavaBeans
Insert tab A into slot B.

Common assembly instruction

JavaBeans refers to a framework that facilitates software building by connecting soft-
ware components from diverse sources. Some of the components might be standard
existing pieces of software. Some might be designed for the particular application. Typ-
ically, the various components were designed and coded by different teams. If the com-
ponents are all designed within the JavaBeans framework, that simplifies the process of
integrating the components and means that the components produced can more easily
be reused for future software projects. JavaBeans have been widely used. For example,
the AWT and Swing packages were built within the JavaBeans framework.

■ THE COMPONENT MODEL

You are most likely to have heard the word “component” when shopping for a home
entertainment system. The individual pieces, such as a receiver/amplifier, DVD player,
speakers, and so forth, are called “components.” You connect the components to pro-
duce a working system, but you do not connect them in just any way. You must con-
nect them following the interface rules for each component. The speaker wire must

Display 19.3 The Runnable Interface (Part 3 of 3)

55 public void startThread()
56 {
57 Thread theThread = new Thread(this);
58 theThread.start();
59 }

60 public void doNothing(int milliseconds)
61 {
62 try
63 {
64 Thread.sleep(milliseconds);
65 }
66 catch(InterruptedException e)
67 {
68 System.out.println("Unexpected interrupt");
69 System.exit(0);
70 }
71 }
72 }

19.2

JavaBeans

5640_ch19.fm Page 971 Tuesday, February 10, 2004 4:11 PM

972 Chapter 19 Java Never Ends

Self-Test Exercises

connect to the correct plug, and there better be a plug for it to connect to. You may
think it is obvious that a receiver/amplifier needs to have connections for speakers; it is
obvious if the receiver/amplifier design is going to be used to make many identical
units for use by many different people. However, if you were only making one receiver/
amplifier for one home entertainment system, you might just “open the box” and con-
nect the wire inside. Software systems, unfortunately, are often constructed using the
“open the box” approach. The component model says that components should always
have well-defined connections for other components, which in our case will be other
software components, not speakers, but the idea is the same.

■ THE JAVABEANS MODEL

A component model specifies how components interact with one another. In the case
of JavaBeans, the software components (classes) are required to provide at least the fol-
lowing interface services or abilities:

1. Rules to Ensure Consistency in Writing Interfaces:
For example, the rules say, among other things, that the name of an accessor method
must begin with get and that the name of a mutator method must start with set.
This same rule has always been a style rule for us in this book, but it was a “should
do.” In the JavaBeans framework it becomes a “must do.” Of course, there are other
rules as well. This is just a sample rule.

2. An Event Handling Model:
This is essentially the event-handling model we presented for the AWT and Swing.
(Remember the AWT and Swing were done within the JavaBeans framework.)

3. Persistence:
Persistence means that an object has an identity that extends beyond one session.
For example, a JFrame of the kind we have seen so far may be used, and when you
are finished using it, it goes away. The next time you use it, it starts out completely
new, born again just as it started before. Persistence means the JFrame or other com-
ponent can retain information about its former use; its state is saved, for example, in
a database someplace.

4. Introspection:
Introspection is an enhancement of simple accessor and mutator methods. It includes
facilities to find out what access to a component is available as well as providing access.

5. Builder Support:
These are primarily IDEs (Integrated Development Environments) designed to con-
nect JavaBean components to produce a final application. Some examples are Sun’s
Bean Builder, Symantec’s Visual Cafe, and Borland’s JBuilder.

3. What is meant by persistence?

4. What event-handling model is used with JavaBeans?

event
handling

persistence

introspection

5640_ch19.fm Page 972 Tuesday, February 10, 2004 4:11 PM

Java and Database Connections 973

Java and Database Connections
It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (Sherlock Holmes), Scandal in Bohemia

As an example of how Java has been extended to interact with other software systems,
in this section, we will briefly describe how Java interacts with database management
systems. This is not a complete enough introduction to allow you to immediately start
writing Java code for database manipulations. The intent of this section is to let you
know what kinds of things are available to you for database programming in Java.

■ SQL

SQL is a standard for database access that has been adopted by virtually all database
vendors. The initials SQL stand for Structured Query Language. SQL is pronounced
either by saying the letters or by saying the word “sequel.” SQL is a language for formu-
lating queries for a relational database. SQL is not part of Java, but Java does have a
library (and accompanying implementation software) known as JDBC that allows you
to embed SQL commands in your Java code.

SQL works with relational databases. Most commercially available database manage-
ment systems are relational databases. A relational database can be thought of as a col-
lection of named tables with rows and columns, such as those shown in Display 19.4.
In this brief introduction we will not go into the details of the constraints on tables, but
to see that there are some constraints, note that in the three tables in Display 19.4, no
relationship is repeated. For example, if we had one entry for each book with all the
information—title, author, ISBN number1, and author’s URL—then there would be
two entries giving Dan Simmons’ URL, since he has two books in our database.

WHAT IS A JAVABEAN?

A JavaBean (often called a JavaBean component or simply a Bean) is a reusable software compo-
nent (Java class or classes) that satisfies the requirements of the JavaBeans framework and that
can be manipulated in an IDE designed for building applications out of Beans.

WHAT ARE ENTERPRISE JAVABEANS?

The Enterprise JavaBean framework extends the JavaBeans framework to more readily accommo-
date business applications.

19.3

SQL

5640_ch19.fm Page 973 Tuesday, February 10, 2004 4:11 PM

974 Chapter 19 Java Never Ends

The following is a sample SQL command:

SELECT Titles.Title, Titles.ISBN, BooksAuthors.Author_ID
FROM Titles, BooksAuthors
WHERE Titles.ISBN = BooksAuthors.ISBN

This will produce the table shown in Display 19.5. That table contains all titles with
matching ISBN number and author ID, given in Display 19.5. The ISBN number is the
bridge that connects the tables Titles and BooksAuthors.

1 The ISBN number is a unique identification number assigned to (almost) every book
published.

Display 19.4 Relational Database Tables

Names

AUTHOR AUTHOR_ID URL

Adams, Douglas 1 http:// ...

Simmons, Dan 2 http:// ...

Stephenson, Neal 3 http:// ...

Titles

TITLE ISBN

Snow Crash 0-553-38095-8

Endymion 0-553-57294-6

The Hitchhiker’s Guide to the
Galaxy

0-671-46149-4

The Rise of Endymion 0-553-57298-9

Books Authors

ISBN AUTHOR_ID

0-553-38095-8 3

0-553-57294-6 2

0-671-46149-4 1

0-553-57298-9 2

5640_ch19.fm Page 974 Tuesday, February 10, 2004 4:11 PM

Chapter Summary 975

Self-Test Exercises

■ JDBC

According to most authorities JDBC stands for “Java Database Connectivity.” It allows
you to insert SQL commands in your Java code. In order to use Java’s JDBC you need
to have JDBC and a database system compatible with JDBC installed. JDBC is avail-
able from Sun. Various Microsoft and Oracle database systems are among the many
commercially available database systems that are compatible with JDBC. Typically, you
need to download and install a JDBC driver for your database system.

Conceptually JDBC is simple: You establish a connection to a database system
(either on your computer or over the Internet) and execute SQL commands, and you
do this all within your Java code. The details are not trivial, but hopefully you now
know enough about JDBC to know whether you wish to study it further.

5. Give an SQL command to produce a table of book titles with corresponding author and
author ID from the table Result in Display 19.5 and one of the tables in Display 19.4.
Follow the example of an SQL command given in the text.

■ A thread is a separate computation process. A Java program can have multiple threads.

■ You use the class Thread to produce multiple threads.

■ The static method Thread.sleep inserts a pause into the thread in which it is
invoked.

■ JavaBeans refers to a framework for producing Java components that are easy to
combine with other JavaBean components to produce new applications.

■ Using JDBC, you can insert SQL database commands in your Java code.

Chapter Summary

Display 19.5 Result of SQL Command in Text

Result

TITLE ISBN AUTHOR_ID

Snow Crash 0-553-38095-8 3

Endymion 0-553-57294-6 2

The Hitchhiker’s Guide to the Galaxy 0-671-46149-4 1

The Rise of Endymion 0-553-57298-9 2

5640_ch19.fm Page 975 Tuesday, February 10, 2004 4:11 PM

976 Chapter 19 Java Never Ends

ANSWERS TO SELF-TEST EXERCISES

1. The invocation of Thread.sleep takes place inside a thread. Every action in Java takes place
inside some thread. Any action performed by a method invocation in a specific thread takes
place in that thread. Even if it does not know where it is, a method’s action takes place where
the method invocation is; if you were lost and yelled out, you might know where you are but
the yell would still be wherever it is you are.

2. The class Packer inherits the method start from the base class Thread and it is not over-
ridden. The method start invokes the method run, but when start is invoked by an
object of the class Packer, it is the definition of run that is given in the class Packer that is
used, not the definition of run given in the definition of Thread. That is exactly what is
meant by late binding or polymorphism.

3. Persistence means that a component’s state can be saved so that the next time it is used it
remembers what state it was in.

4. The same one that is used for Swing and AWT.

5. SELECT Result.Title, Names.Author, Result.Author_ID
FROM Result, Names
WHERE Result.Author_ID = Names.Author_ID

PROGRAMMING PROJECTS

1. Modify the GUI in Display 19.2 so that the circles are alternately red, white, and blue and
they fill the area from bottom to top instead of top to bottom.

2. Produce a GUI similar to the one in Display 19.2 except that instead of filling an area with
circles, it launches a ball (which is just a circle) and the ball bounce around inside a rectan-
gle. You get a moving ball by repeatedly erasing the ball and redrawing it at a location a lit-
tle further along its path. Look up the method setXORMode in the class Graphics. It will
take care of the erasing.

5640_ch19.fm Page 976 Tuesday, February 10, 2004 4:11 PM

project976a.html
project976b.html

	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text3: 19.3
	Text4: 19.4
	program project 19:
	3:
	4:

