THE EXPERT'S VOICE* IN .NET ; -
e
3 #

il ' 5 W
. 3 i
1.- f '-‘ (]
by o -
S
Pt g !
- —

Expert

VB 2005

Business Objects

Architect, design, amd depelop iighily scafabie and
rainfainadle object-orented business applicarions,

SECOND EDITION

Rockford Lhotka

Apress

Expert VB 2005
Business Objects
Second Edition

Rockford Lhotka

Apress’

Expert VB 2005 Business Objects, Second Edition
Copyright © 2006 by Rockford Lhotka

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-631-9
ISBN-10 (pbk): 1-59059-631-5
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell

Technical Reviewer: Petar Kozul

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editor: Damon Larson

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: April Eddy

Indexer: John Collin

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

In memory of my Grandmother, Evylyn,
a true angel on earth, who now rests in heaven.

Contents at a Glance

AboUt the AUTNOT ... XV
About the Technical ReVIEWETr Xvi
ACKNOWIBAGMENTS . .. o Xvii
INrOdUCTION .. Xix
CHAPTER 1 Distributed Architecture................. 1
CHAPTER 2 Framework Design. 35
CHAPTER 3 Business Framework Implementation 93
CHAPTER 4 Data Access and Security 163
CHAPTER 5 Completing the Framework................... 239
CHAPTER 6 Object-Oriented Application Design 325
CHAPTER 7 Using the CSLA .NETBase Classes...................c.coovviiviinn.. 365
CHAPTER 8 Business Object Implementation................................... 407
CHAPTER 9 Windows Forms Ul........ 465
CHAPTER10 WebFormsUl 515
CHAPTER 11 Web Services Interface..........................., 567
CHAPTER 12 Implementing Remote Data Portal Hosts............................ 607
INDEX o 627

Contents

AboUt the AUTNOr .. . XV
About the Technical ReVIEWETr Xvi
ACKNOWIBAOMENES Xvii
INrOdUCTION .. Xix
CHAPTER 1 Distributed Architecture 1
Logical and Physical Architecture i 1

Complexity 3

Relationship Between Logical and Physical Models 4

A 5-Layer Logical Architecture.co i 8

Applying the Logical Architecture 13

TheWay Ahead i 18

Managing Business LogiC.. ... 18

Potential Business Logic Locations 18

Business ODjECtSo 22

Mobile Objectso 25

Architectures and Frameworks. 33

CONCIUSION 33

CHAPTER 2 Framework Design .. 35
Basic Design Goals ... 36

N-Level Undo Capability L 37

Tracking Broken BusinessRulesl 40

Tracking Whether the Object Has Changed 4

Strongly Typed Collections of Child Objects......................... 4

Simple and Abstract Model for the Ul Developer 43

Supporting DataBinding.............. 47

Object Persistence and Object-Relational Mapping................... 50

Custom Authentication ... 57

Integrated Authorization 58

vii

viii CONTENTS

CHAPTER 3

Framework Design. 58
Business Object Creationt 59
N-Level Undo Functionality................ ..., 64
Data Binding Support 67
Validation Rules 68
DataPortal 4l
Custom Authenticationl 84
Integrated Authorizationl 85
Helper Typesand Classes. ...t 86

Namespace Organization ...t 89

CONCIUSION ..o 91

Business Framework Implementation..................... ... 93

Setting Up the CSLA .NET Project.o i 94
Creating the Directory Structure. 95
Supporting Localization. i 95

Csla.Core Namespaceo.v ittt 96
IBusinessObjectInterfacel 97
IUndoableObject Interface.co i 97
I[EditableCollection Interfaceol 98
IReadOnlyObject Interface.coiii it 99
IReadOnlyCollection Interface. 99
ICommandObject Interface............. il 99
ObjectCloner Class.oui i 99
BindableBase Class.......... ...t 100
NotUndoableAttribute Class ..., 104
UndoableBase Class ...t 104
BusinessBase Class. ... 112
ReadOnlyBindingList Class................ ..., 130

Csla.Validation Namespace.cooiiiiiiiiiiiiann, 131
RuleHandler Delegatecco i 132
RUIBAIGS Classo 132
RuleMethod Class 133
ValidationRules Class ...t 134
BrokenRule Class. ... 137
BrokenRulesCollection Classcooiiiiiiiiin... 137
ValidationExceptionco i 138

Csla.Security Namespaceot 139
RolesForProperty Class. ... 139
AccessType Enum 140

AuthorizationRules Class. 140

CHAPTER 4

CONTENTS
CslaNamMeSPACEottt 143
BusinessBase Class. ... 143
BusinessListBase Class.t 146
ReadOnlyBase Classc.ooiiiiiii i 159
ReadOnlyListBase Classcovviiiiiiiiiieanns, 160
CONCIUSION 161
Data Access and Security 163
Data Portal Design 164
Channel Adapter and Message Router Patterns..................... 165
Distributed Transaction Support. L 168
Context and Location Transparencyc.covveevenn... 170
Enhancing the Base Classes.o, 173
Factory Methods and Criteria..........................cooi.n.. 175
Save Methods. 176
Data Portal Methods i 178
Csla.MethodCaller Class 181
Csla.Server.CallMethodExceptionccooii... 187
Csla.RunLocalAttribute Class 188
Csla.DataPortalEventArgs Class. ..., 188
Csla.DataPortal Class ...t 189
Csla.Server.IDataPortalServerl 197
Csla.DataPortalClient.IDataPortalProxy 198
Csla.DataPortalClient.LocalProxy.................coooiiiiiin... 198
Csla.DataPortalClient.RemotingProxy 200
Csla.Server.Hosts.RemotingPortal 202
Csla.DataPortalClient.EnterpriseServicesProxy. 204
Csla.Server.Hosts.EnterpriseServicesPortal 206
Csla.DataPortalClient.WebServicesProxy 210
Csla.Server.Hosts.WebServicePortal 213
Distributed Transaction Support.co i 215
Csla.TransactionalTypes 215
Csla.TransactionalAttribute. 215
Csla.Server.DataPortal L. 216
Csla.Server.ServicedDataPortal 220
Csla.Server.TransactionalDataPortal 221
Message ROUter. 222
Csla.CriteriaBasecooiriii 223

Csla.Server.SimpleDataPortal. 223

ix

X

CONTENTS

CHAPTER 5

CHAPTER 6

Context and Location Transparency.coovveineinennnnn.. 229
Csla.Server.DataPortalContextoo.as. 229
Csla.Server.DataPortalResult 232
Csla.Server.DataPortalExceptionl 233
Csla.ApplicationContext. 233

CONCIUSION 238

Completing the Framework................................... 239

Additional Base Classes ...t 240
CommandBase. ... 240
NameValueListBase..............l 243

Custom Authentication i 247
BusinessPrincipalBase 250

Sorting ColleCtions. 251
SortedBindingList. 252

Date Handling. 267
SmartDate. 268

Common Business RUIES. 277
CommoOnRUIES 278

Data ACCESS . .. ot 281
SafeDataReader................. .. 281
DataMapper 285

Reporting 290
ObjectAdapter. 291

Windows DataBinding 299
ReadWriteAuthorization. i 299
BindingSourceRefresh. 306

Web Forms DataBinding. i 307
CslaDataSourcet 309
CslaDataSourceViewt 311
CslaDataSourceDesigner.oeiiiii e 314
CslaDesignerDataSourceView ..., 314
ObjectSchema 318
ObjectViewSchema i 319
ObjectFieldInfo. ... 320

CONCIUSION 323

Object-Oriented Application Design 325

Application Requirements.co i 326

USE CaSBS. . . ottt 327

CHAPTER 7

CHAPTER 8

CONTENTS
ObjeCt DESIgNo 330
Initial Design. 330
Revisingthe Design. 332
Custom Authentication 343
Using CSLA INETo 344
Database Design 347
Creating the Databases. 348
PTracker Databasec i 349
Security Database 362
CONCIUSION .. .o 363
Using the CSLA .NET Base Classes 365
Business Object Life Cycle ... 365
ObjectCreation. i 366
ObjectRetrievalco i 369
Updating Editable Objects. i 371
Disposing and Finalizing Objects, 376
Business Class Structure i 378
Common Features 378
Class Structures. 383
CONCIUSION 405
Business Object Implementation............................. 407
ProjectTracker Objects i 407
Setting Upthe Project 408
Business Class Implementation.................., 410
ProJeCt . 410
ProjectReSOUIrCES. 431
ProjectResourCe. 436
ASSigNmeENnt. 441
RoleList. 443
Resource and Related Objects, 445
ProjectList and ResourceListol 448
ROIES . .. 451
ROlE . .. 454
Implementing Exists Methods 456
Custom Authentication 458
PTPrincipal 458
PTldentity 460

CONCIUSION ...\ 464

Xi

Xii CONTENTS

CHAPTER 9

CHAPTER 10

CHAPTER 11

Windows Forms Ul ... 465
Interface Design. 465
User Control Framework............. i 467
User Control Design. ..o 469
Application Configuration i 469
PTWinProjectSetup 472
User Control Framework 472
WinPart 472
MainForm 474
Login Form 480
Business Functionality. 482
MainForm 482
RolesEdit. 485
Project List 494
ProjectEdit 497
CONCIUSION 513
WebForms Ul... 515
Web Development and Objects. 515
State Management. 517
Stateonthe Web Server............. 518
Transferring State to or fromthe Client............................ 520
StateinaFileorDatabase il 521
Interface DesSigN.o 522
Application Configuration i, 525
PTWeb Site Setup ... 527
MasterPage. 528
LoginPage 533
Business Functionality.............. 540
RolesEdit Form.o 540
ProjectList Form. 550
ProjectEdit Form. 554
CONCIUSION 565
Web Services Interface 567
Overview of Web Services. 568
The SOAP Standardo i 568
Message-Based Communication................................. 569
SOAP and Web Services 569

SOAP, Web Services, and the .NET Framework. 570

CHAPTER 12

CONTENTS
Web Servicesand SOA 571
Services vs. Components 571
Designing a Web Services Interface 575
Component-Based vs. Service-Oriented Design 575
Grouping Web Methods into Web Services......................... 576
Returning and AcceptingData 577
Authentication 579
Web Service Implementation 581
Application Configuration L. 581
PTWebService Site Setup 583
PTSEIVICE . .o 585
Authentication 585
Component-Based Web Methods. 589
Service-Oriented Web Methods 592
Web Service Consumer Implementation................................ 596
ASimple SmartClient............ 599
CONCIUSION ... 605
Implementing Remote Data Portal Hosts.................... 607
Data Portal Channel Comparison ..ot 608
Factors for Comparison. ...t 608
NETRemMOting . ..o 611
Implementation 612
WeED SerVICES 615
Implementation 616
ENterprise SErviCeS 618
Creating the Proxy/Host Assembly................ 618
ClientSetup 625
CONCIUSION 626

Xiii

About the Author

ROCKFORD LHOTKA is the author of numerous books, including Expert C# 2005
Business Objects. He is a Microsoft regional director, a Microsoft MVP, and an
INETA speaker. Rockford speaks at many conferences and user groups around
the world, and is a columnist for MSDN Online. Rockford is the principal tech-
nology evangelist for Magenic Technologies (www.magenic.com), one of the
nation’s premiere Microsoft gold certified partners dedicated to solving today’s
most challenging business problems using 100-percent Microsoft tools and
technology.

Xv

XVi

About the Technical Reviewer

PETAR KOZUL is a senior consultant for ComputerPro, a Melbourne-based company focused on
providing IT management, consulting, and enterprise solutions. He is the author of ActiveObjects,
a suite of extensions for the CSLA .NET framework (http://csla.kozul.info). As an active member
of the CSLA community, he has been using the framework since its inception. He graduated from
the Royal Melbourne Institute of Techology (RMIT) with a degree in computer science. Petar has
over 11 years experience in software design and development, with his primary focus on object-
oriented solutions using Microsoft technologies. He has worked in several countries, including
Croatia, Bosnia and Hercegovina, and Australia. His work has spanned a variety of industries in
both the public and private sectors, including gaming, retail, medicine, and government.

Acknowledgments

This book started as a revision, and ended up being almost a complete rewrite to cover all the
changes in .NET 2.0 and Visual Studio 2005. Thus, it turned into a really a big project, and I want
to thank a number of people who helped make it come to fruition.

First, I'd like to thank my wife and sons for their love, patience, and support over the past
many years. Without you, this would have been impossible! Moreover, I owe my wife special thanks
for helping with the editing process, as she saved me many hours of work during my least favorite
part of the writing process.

I'd also like to thank Greg Frankenfield and Paul Fridman for making Magenic such an awesome
place to work. The support that you and the rest of Magenic have provided has been great, and I appre-
ciate it very much! It is an honor to work with everyone there.

Special thanks to Brant Estes, a fellow Magenic employee who ported the original code into C#
and kept it in sync with the VB code over the past few months. You saved me untold amounts of
time—thank you, Brant!

The Magenic Managed Services Organization (MSO) team did a lot of testing and is largely
responsible for the unit tests included with the framework. This fine group of people helped identify
and eliminate numerous bugs and played a key role in keeping the VB and C# code bases in sync.

Thank you to Steve Lasker at Microsoft for helping figure out solutions to some Windows Forms
data binding issues, and to Bill McCarthy for helping wrap the answer to one of those issues into the
BindingSourceRefresh control.

The Apress editorial team put in a lot of time and effort and really helped shape this book into
what you see here. I owe them all a debt of gratitude for their fine work.

Finally, I'd like to thank the scores of people who've sent me emails of support or encouragement,
or just plain asked when the book would be done. The great community that has grown around these
books and the CSLA .NET framework is wonderful, and I thank you all! T hope you find this book to be
as rewarding to read as it has been for me to write.

Code well and have fun!

Xvii

Introduction

This book is about application architecture, design, and development in .NET using object-
oriented concepts. The focus is on business-focused objects called business objects, and how to
implement them to work in various distributed environments, including web and client/server
configurations. The book makes use of a great many .NET technologies, object-oriented design
and programming concepts, and distributed architectures.

The first half of the book walks through the process of creating a framework to support
object-oriented application development in .NET. This will include a lot of architectural con-
cepts and ideas. It will also involve some in-depth use of advanced .NET techniques to create
the framework.

The second half of the book makes use of the framework to build a sample application with
several different interfaces. If you wish, it’s perfectly possible to skip the first half of the book and
simply make use of the framework to build object-oriented applications.

One of my primary goals in creating the CSLA .NET framework was to simplify .NET devel-
opment. Developers using the framework in this book don’t need to worry about the details of
underlying technologies such as remoting, serialization, or reflection. All of these are embedded
in the framework so that a developer using it can focus almost entirely on business logic and
application design, rather than getting caught up in “plumbing” issues.

From .NET 1.0 to 2.0

This book is a major update to the previous edition: Expert One-on-One Visual Basic .NET Business
Objects. This updated book takes advantage of new features of .NET 2.0 and applies lessons learned
from using .NET 1.0 and 1.1 over the past few years.

This book is nearly identical to the Expert C# 2005 Business Objects book—the only difference
between the two books is the syntax of the programming languages.

Both the VB and C# books are the most recent expressions of concepts I've been working on for
nearly a decade. My goal all along has been to enable the productive use of object-oriented design
in distributed n-tier applications. Over the years, both the technologies and my understanding and
expression of the concepts have evolved greatly.

The VB 5 and 6 books that started this whole process discussed how to use VB, COM, DCOM,
MTS, and COM+ to create applications using object-oriented techniques. (Or at least they were as
object-oriented as was possible in VB 5/6 and COM.) They also covered the concept of distributed
objects, whereby a given object is “spread” over multiple machines in a physical n-tier environment.
In COM, this isn't a trivial thing to implement, and so these books included a fair amount of discus-
sion relating to object state and state serialization techniques.

The end result was an architecture that I called CSLA (which stands for component-based,
scalable, logical architecture). Over the years, I've received hundreds of emails from people who
have used CSLA as a basis for their own architectures as they’ve built applications ranging from
small, single-user programs to full-blown enterprise applications that power major parts of their
businesses.

In .NET, the idea of distributed objects has given way to the more appropriate idea of mobile
objects, where objects actually move between computers in an n-tier environment. At a high level,

Xix

XX

INTRODUCTION

the architecture is comparable, but mobile objects provide a far more powerful way to implement
object-oriented designs in distributed environments.

I've also received a handful of emails from people for whom CSLA .NET wasn’t successful, but
this isn’t surprising. To use CSLA .NET effectively, you must become versed in object-oriented and
component-based design, understand the concept of distributed objects, and develop a host of
other skills. The mobile object architecture has many benefits, but it’s not the simplest or the easi-
est to understand.

Designing CSLA .NET

One of the characteristics of .NET is that it often provides several ways to solve the same problem.
Some of the approaches available will be better than others, but the best one for a given problem
may not be immediately obvious. Before writing the .NET 1.0 books, I spent a lot of time trying vari-
ous approaches to distributing objects. Although a variety have proven to work, in the end I've
arrived at the one that best matches my original goals.

Before I discuss those goals, I think it's important to talk about one other issue that I wrestled
with when writing this book. Given the large number of people using the concepts and code from
the previous edition of the book, I wanted to preserve backward compatibility whenever possible.
At the same time, this new edition of the book is an opportunity to not only use .NET 2.0 features,
but also to apply lessons learned by using .NET over the past several years.

Applying those lessons means that using the new concepts and code requires changes to exist-
ing business objects and user interface code. I don’t take backward compatibility lightly, yet it is
important to advance the concepts to keep up with changes in technology and my views on both
object-oriented and distributed computing.

When possible, I have minimized the impact on existing code, so the transition shouldn't be
overly complex for most applications.

I have a specific set of goals for the architecture and the book. These goals are important,
because they'’re key to understanding why I made many of the choices I did in terms of which
.NET technologies to use, and how to use them. The goals are as follows:

» To support a fully object-oriented programming model
¢ To allow the developer to use the architecture without jumping through hoops
* To enable high scalability
e To enable high performance
* To provide all the capabilities and features of the original CSLA, namely
* N-level undo on a per-object basis (edit, cancel, apply)
e Management of validation rules
* Management of authorization rules
e Support for many types of Ul based on the same objects
e Support for data binding in Windows and Web Forms

¢ Integration with distributed transaction technologies such as Enterprise Services and
System.Transactions

¢ To simplify .NET by handling complex issues like serialization, remoting, and reflection

* To use the tools provided by Microsoft, notably IntelliSense and the Autocomplete feature in
Visual Studio .NET

INTRODUCTION

Of these, saving the developer from jumping through hoops—that is, allowing him or her to
do “normal” programming—has probably had the largest impact. To meet all these goals without
a framework, the developer would have to write a lot of extra code to track business rules, imple-
ment n-level undo, and support serialization of object data. All this code is important, but adds
nothing to the business value of the application.

Fortunately, .NET offers some powerful technologies that help to reduce or eliminate much
of this “plumbing” code. If those technologies are then wrapped in a framework, a business devel-
oper shouldn’t have to deal with them at all. In several cases, this goal of simplicity drove my
architectural decisions. The end result is that the developer can, for the most part, simply write
a normal C# class and have it automatically enjoy all the benefits of n-level undo, business rule
tracking, and so forth.

It has taken a great deal of time and effort, but I've certainly enjoyed putting this architecture
and this book together, and I hope that you will find it valuable during the development of your
own applications.

What’s Covered in This Book?

This book covers the thought process behind the CSLA .NET 2.0 architecture, describes the
construction of the framework that supports the architecture, and demonstrates how to create
Windows Forms, Web Forms, and Web Services applications based on business objects written
using the framework.

Chapter 1 is an introduction to some of the concepts surrounding distributed architectures,
including logical and physical architectures, business objects, and distributed objects. Perhaps
more importantly, this chapter sets the stage, showing the thought process that results in the
remainder of the book.

Chapter 2 takes the architecture described at the end of Chapter 1 and uses it as the starting
point for a code framework that enables the goals described earlier. By the end, you'll have seen
the design process for the objects that will be implemented in Chapters 4 and 5; but before that,
there’s some other business to attend to.

Chapters 3 through 5 are all about the construction of the CSLA .NET framework itself. If
you're interested in the code behind n-level undo, mobile object support, validation rules, auth-
orization rules, and object persistence, then these are the chapters for you. In addition, they make
use of some of the more advanced and interesting parts of the .NET Framework, including remot-
ing, serialization, reflection, .NET security, Enterprise Services, System.Transactions, strongly
named assemblies, dynamically loaded assemblies, application configuration files, and more.

The rest of the book then focuses on creating an application that makes use of the architecture
and framework. Even if you're not particularly interested in learning all the lower-level .NET con-
cepts from Chapters 3 through 5, you can take the framework and build applications based on it
by reading Chapters 6 through 12.

In Chapter 6, I discuss the requirements of a sample application and create its database. The
sample application uses SQL Server and creates not only tables but also stored procedures in order
to enable retrieval and updating of data.

Chapter 7 discusses how to use each of the primary base classes in the CSLA .NET framework
to create your own business objects. The basic code structure for editable and read-only objects,
as well as collections and name/value lists, is discussed.

Chapter 8 creates the business objects for the application. This chapter really illustrates how
you can use the framework to create a powerful set of business objects rapidly and easily for an
application. The end result is a set of objects that not only model business entities, but also support
n-level undo, data binding, and various physical configurations that can optimize performance,
scalability, security, and fault tolerance, as discussed in Chapter 1.

XXi

XXii

INTRODUCTION

Chapter 9 demonstrates how to create a Windows Forms interface to the business objects.
Chapter 10 covers the creation of a Web Forms or an ASPNET interface with comparable
functionality.

In Chapter 11, Web Services is used to provide a programmatic interface to the business objects
that any web service client can call.

Finally, Chapter 12 shows how to set up application servers using .NET Remoting, Enterprise
Services, and Web Services. These application servers support the CSLA .NET framework and can be
used interchangeably from the Windows Forms, Web Forms, and Web Services applications created
in Chapters 8 through 11.

By the end, you'll have a framework that supports object-oriented application design in a prac-
tical, pragmatic manner. The framework implements a logical model that you can deploy in various
physical configurations to optimally support Windows, web, and Web Services clients.

Framework License

LICENSE AND WARRANTY
The CSLA .NET framework is Copyright 2006 by Rockford Lhotka.
You can use this Software for any noncommercial purpose, including distributing derivative works.
You can use this Software for any commercial purpose, except that you may not use it, in whole or
in part, to create a commercial framework product.

In short, you can use CSLA .NET and modify it to create other commercial or business software,
you just can't take the framework itself, modify it, and sell it as a product.

In return, the owner simply requires that you agree:

This Software License Agreement (“Agreement”) is effective upon your use of CSLA .NET
(“Software”).

1. Ownership. The CSLA .NET framework is Copyright 2006 by Rockford Lhotka, Eden Prairie,
MN, USA.

2. Copyright Notice. You must not remove any copyright notices from the Software source
code.

3. License. The owner hereby grants a perpetual, non-exclusive, limited license to use the
Software as set forth in this Agreement.

4. Source Code Distribution. If you distribute the Software in source code form, you must do
so only under this License (i.e., you must include a complete copy of this License with your
distribution).

5. Binary or Object Distribution. You may distribute the Software in binary or object form with
no requirement to display copyright notices to the end user. The binary or object form must
retain the copyright notices included in the Software source code.

6. Restrictions. You may not sell the Software. If you create a software development framework
based on the Software as a derivative work, you may not sell that derivative work. This does
not restrict the use of the Software for creation of other types of non-commercial or com-
mercial applications or derivative works.

7. Disclaimer of Warranty. The Software comes “as is,” with no warranties. None whatsoever.
This means no express, implied, statutory, or other warranty, including without limitation,
warranties of merchantability or fitness for a particular purpose, noninfringement, or the
presence or absence of errors, whether or not discoverable. Also, you must pass this dis-
claimer on whenever you distribute the Software.

INTRODUCTION

8. Liability. Neither Rockford Lhotka nor any contributor to the Software will be liable for any
of those types of damages known as indirect, special, consequential, incidental, punitive,
or exemplary related to the Software or this License, to the maximum extent the law per-
mits, no matter what legal theory it’s based on. Also, you must pass this limitation of
liability on whenever you distribute the Software.

9. Patents. If you sue anyone over patents that you think may apply to the Software for a
person’s use of the Software, your license to the Software ends automatically.

The patent rights, if any, licensed hereunder, only apply to the Software, not to any
derivative works you make.

10. Termination. Your rights under this License end automatically if you breach it in any way.

Rockford Lhotka reserves the right to release the Software under different license terms or
to stop distributing the Software at any time. Such an election will not serve to withdraw
this Agreement, and this Agreement will continue in full force and effect unless terminated
as stated above.

11. Governing Law. This Agreement shall be construed and enforced in accordance with the
laws of the state of Minnesota, USA.

12. No Assignment. Neither this Agreement nor any interest in this Agreement may be assigned
by licensee without the prior express written approval of developer.

13. Final Agreement. This Agreement terminates and supersedes all prior understandings or
agreements on the subject matter hereof. This Agreement may be modified only by a further
writing that is duly executed by both parties.

14. Severability. If any term of this Agreement is held by a court of competent jurisdiction
to be invalid or unenforceable, then this Agreement, including all of the remaining terms,
will remain in full force and effect as if such invalid or unenforceable term had never been
included.

15. Headings. Headings used in this Agreement are provided for convenience only, and shall
not be used to construe meaning or intent.

What You Need to Use This Book

The code in this book has been verified to work against Microsoft Visual Studio 2005 Profes-
sional, and therefore against version 2.0 of the .NET Framework. The database is a SQL Server
Express database, and SQL Server Express is included with Visual Studio 2005 Professional. The
Enterprise version of VS 2005 and the full version of SQL Server are useful, but not necessary.

In order to run the tools and products listed previously, you'll need at least one PC with
Windows 2000, Windows Server 2003, or Windows XP Professional Edition installed. To test CSLA
.NET’s support for multiple physical tiers, of course, you'll need an additional PC (or you can use
Virtual PC or a similar tool) for each tier that you wish to add.

Conventions

I've used a number of different styles of text and layout in this book to differentiate between dif-
ferent kinds of information. Here are some examples of the styles used, and an explanation of
what they mean.

xxiii

XXiv INTRODUCTION

Code has several fonts. If I'm talking about code in the body of the text, I use a fixed-width font
like this: foreach. Ifit’s a block of code that you can type as a program and run, on the other hand,
then it will appear as follows:

if (Thread.CurrentPrincipal.Identity.IsAuthenticated)
{

pnlUser.Text = Thread.CurrentPrincipal.Identity.Name;
EnableMenus();

Sometimes, you'll see code in a mixture of styles, like this:

dgProjects.DataSource = ProjectlList.GetProjectlist();
DataBind();

// Set security
System.Security.Principal.IPrincipal user;
user = Threading.Thread.CurrentPrincipal;

When this happens, the code with a normal font is code you're already familiar with, or code
that doesn’t require immediate action. Lines in bold font indicate either new additions to the code
since you last looked at it, or something that I particularly want to draw your attention to.

Tip Advice, hints, and background information appear in this style.

Note Important pieces of information are included as notes, like this.

Bullets appear indented, with each new bullet marked as follows:

e Important words are in italics.

How to Download Sample Code for This Book

Visit the Apress website at www.apress.com, and locate the title through the Search facility. Open the
book’s detail page and click the Source Code link. Alternatively, on the left-hand side of the Apress
homepage, click the Source Code link, and select the book from the text box that appears.
Download files are archived in a zipped format, and need to be extracted with a decompression
program such as WinZip or PKUnzip. The code is typically arranged with a suitable folder structure,
so make sure that your decompression software is set to use folder names before extracting the files.

Author and Community Support

The books and CSLA .NET framework are also supported by both the author and a large user
community.

The author maintains a website with answers to frequently asked questions, updates to the
framework, an online discussion forum, and additional resources. Members of the community have
created additional support websites and tools to assist in the understanding and use of CSLA .NET
and related concepts.

For information and links to all these resources, visit www. lhotka.net/cslanet.

CHAPTER 1

Distributed Architecture

Object—oriented design and programming are big topics—there are entire books devoted solely
to the process of object-oriented design, and other books devoted to using object-oriented pro-
gramming in various languages and on various programming platforms. My focus in this book isn’t
to teach the basics of object-oriented design or programming, but rather to show how they may be
applied to the creation of distributed .NET applications.

It can be difficult to apply object-oriented design and programming effectively in a physically
distributed environment. This chapter is intended to provide a good understanding of the key
issues surrounding distributed computing as it relates to object-oriented development. I'll cover
a number of topics, including the following:

* How logical n-tier architectures help address reuse and maintainability

* How physical n-tier architectures impact performance, scalability, security, and fault
tolerance

» The difference between data-centric and object-oriented application models
* How object-oriented models help increase code reuse and application maintainability

» The effective use of objects in a distributed environment, including the concepts of
anchored and mobile objects

¢ The relationship between an architecture and a framework

This chapter provides an introduction to the concepts and issues surrounding distributed, object-
oriented architecture. Throughout this book, you'll be exploring an n-tier architecture that may be
physically distributed across multiple machines. The book will show how to use object-oriented
design and programming techniques to implement a framework supporting this architecture. After
that, a sample application will be created to demonstrate how the architecture and the framework
support development efforts.

Logical and Physical Architecture

In today’s world, an object-oriented application must be designed to work in a variety of physical
configurations. Even the term “application” has become increasingly blurry due to all the hype
around service-oriented architecture (SOA). If you aren't careful, you can end up building appli-
cations by combining several applications, which is obviously very confusing.

When I use the term “application” in this book, I'm referring to a set of code, objects, or com-
ponents that’s considered to be part of a single, logical unit. Even if parts of the application are in
different .NET assemblies or installed on different machines, all the code is viewed as being part
of a singular application.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Although such an application might run on a single machine, it's more likely that the applica-
tion will run on a web server, or be split between a smart client and an application server. Given
these varied physical environments, we're faced with the following questions:

* Where do the objects reside?
* Are the objects designed to maintain state, or should they be stateless?

¢ How is object-to-relational mapping handled when retrieving or storing data in the
database?

* How are database transactions managed?

Before getting into discussing some answers to these questions, it’s important to fully understand
the difference between a physical architecture and a logical architecture. After that, I'll define objects
and mobile objects, and show how they fit into the architectural discussion.

When most people talk about n-tier applications, they’re talking about physical models in
which the application is spread across multiple machines with different functions: a client, a web
server, an application server, a database server, and so on. And this isn’t a misconception—these
are indeed n-tier systems. The problem is that many people tend to assume there’s a one-to-one
relationship between the tiers in a logical model and the tiers in a physical model, when in fact
that’s not always true.

A physical n-tier architecture is quite different from a logical n-tier (or n-layer) architecture.
The latter has nothing to do with the number of machines or network hops involved in running the
application. Rather, a logical architecture is all about separating different types of functionality.
The most common logical separation is into a Ul layer, a business layer, and a data layer that may
exist on a single machine, or on three separate machines—the logical architecture doesn’t define
those details.

Note There is a relationship between an application’s logical and physical architectures: the logical architec-
ture always has at least as many layers as the physical architecture has tiers. There may be more logical layers
than physical ones (because one physical tier can contain several logical layers), but never fewer.

The sad reality is that many applications have no clearly defined logical architecture. Often the
logical architecture merely defaults to the number of physical tiers. This lack of a formal, logical
design causes problems because it reduces flexibility. If a system is designed to operate in two or
three physical tiers, then changing the number of physical tiers at a later date is typically very diffi-
cult. However, if you start by creating a logical architecture of three layers, you can switch more
easily between one, two, or three physical tiers later on.

Additionally, having clean separation between these layers makes your application more main-
tainable because changing one layer often has minimal impact on the other layers. Nowhere is this
truer than with the Presentation layer, where the ability to switch between Windows Forms, Web Forms,
Web Services, and future technologies like Windows Presentation Foundation (Avalon) is critical.

The flexibility to choose your physical architecture is important because the benefits gained by
employing a physical n-tier architecture are different from those gained by employing a logical n-layer
architecture. A properly designed logical n-layer architecture provides the following benefits:

* Logically organized code

e Easier maintenance

* Better reuse of code

¢ Better team-development experience

* Higher clarity in coding

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

On the other hand, a properly chosen physical n-tier architecture can provide the following
benefits:

e Performance
e Scalability
e Fault tolerance

e Security

It goes almost without saying that if the physical or logical architecture of an application is
designed poorly, there will be a risk of damaging the things that would have been improved had
the job been done well.

Complexity

Experienced designers and developers often view a good n-tier architecture as a way of simplifying
an application and reducing complexity, but this isn't necessarily the case. It's important to recog-
nize that n-tier designs (logical and/or physical) are typically more complex than single-tier designs.
Even novice developers can visualize the design of a form or a page that retrieves data from a file
and displays it to the user, but novice developers often struggle with 2-tier designs, and are hope-
lessly lost in n-tier environments.

With sufficient experience, architects and developers typically find that the organization and
structure of an n-tier model reduces complexity for large applications. However, even a veteran
n-tier developer will often find it easier to avoid n-tier models when creating a simple form to dis-
play some simple data.

The point here is that n-tier architectures only simplify the process for large applications or
complex environments. They can easily complicate matters if all you're trying to do is create a small
application with a few forms that will be running on someone’s desktop computer. (Of course, if that
desktop computer is one of hundreds or thousands in a global organization, then the environment
may be so complex that an n-tier solution provides simplicity.)

In short, n-tier architectures help to decrease or manage complexity when any of these are true:

e The application is large or complex.

* The application is one of many similar or related applications that when combined may
be large or complex.

e The environment (including deployment, support, and other factors) is large or complex.
On the other hand, n-tier architectures can increase complexity when all of these are true:

* The application is small or relatively simple.

¢ The application isn’t part of a larger group of enterprise applications that are similar or
related.

¢ The environment isn't complex.

Something to remember is that even a small application is likely to grow, and even a simple
environment will often become more complex over time. The more successful your application,
the more likely that one or both of these will happen. If you find yourself on the edge of choosing
an n-tier solution, it’s typically best to go with it. You should expect and plan for growth.

This discussion illustrates why n-tier applications are viewed as relatively complex. There are
alot of factors, technical and non-technical, that must be taken into account. Unfortunately, it isn't
possible to say definitively when n-tier does and doesn't fit. In the end, it’s a judgment call that you,

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

as an application architect, must make, based on the factors that affect your particular organiza-
tion, environment, and development team.

Relationship Between Logical and Physical Models

Architectures such as Windows Distributed interNet Architecture (Windows DNA), represent a
merger of logical and physical models. Such mergers seem attractive because they appear so sim-
ple and straightforward, but typically they aren’t good in practice—they can lead people to design
applications using a logical or physical architecture that isn't best suited to their needs.

Note To be fair, Windows DNA didn’t mandate that the logical and physical models be the same. Unfortunately,
almost all of the printed material (even the mousepads) surrounding Windows DNA included diagrams and pictures
that illustrated the “proper” Windows DNA implementation as an intertwined blur of physical and logical architec-
ture. Although some experienced architects were able to separate the concepts, many more didn’t, and created
some horrendous results.

The Logical Model

When you're creating an application, it’s important to start with a logical architecture that clarifies
the roles of all components, separates functionality so that a team can work together effectively, and
simplifies overall maintenance of the system. The logical architecture must also include enough lay-
ers so that you have flexibility in choosing a physical architecture later on.

Traditionally, you would devise at least a 3-layer logical model that separates the interface, the
business logic, and the data-management portions of the application. Today that’s rarely sufficient,
because the “interface” layer is often physically split into two parts (browser and web server), and
the “logic” layer is often physically split between a client or web server and an application server.
Additionally, there are various application models that have been used to break the traditional Busi-
ness Logic layer into multiple parts—model-view-controller and facade-data-logic being two of the
most popular at the moment.

This means that the logical layers are governed by the following rules:

* The logical architecture includes layers in order to organize components into discrete roles.
* The logical architecture must have at least as many layers as the anticipated physical deploy-

ment will have tiers.

Following these rules, most modern applications have four to six logical layers. As you'll see,
the architecture used in this book includes five logical layers.

The Physical Model

By ensuring that the logical model has enough layers to provide flexibility, you can configure your
application into an appropriate physical architecture that will depend on your performance, scala-
bility, fault tolerance, and security requirements. The more physical tiers included, the worse the
performance will be; but there is the potential to increase scalability, security, and/or fault tolerance.

Performance and Scalability

The more physical tiers there are, the worse the performance? That doesn’t sound right, but if you
think it through, it makes perfect sense: performanceis the speed at which an application responds
to a user. This is different from scalability, which is a measure of how performance changes as load

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

(such as increased users) is added to an application. To get optimal performance—that is, the fastest
possible response time for a given user—the ideal solution is to put the client, the logic, and the data
on the user’s machine. This means no network hops, no network latency, and no contention with
other users.

If you decide that you need to support multiple users, you might consider putting application
data on a central file server. (This is typical with Access and dBASE systems, for example.) However,
this immediately affects performance because of contention on the data file. Furthermore, data access
now takes place across the network, which means you've introduced network latency and network
contention, too. To overcome this problem, you could put the data into a managed environment such
as SQL Server or Oracle. This will help to reduce data contention, but you're still stuck with the net-
work latency and contention problems. Although improved, performance for a given user is still
nowhere near what it was when everything ran directly on that user’s computer.

Even with a central database server, scalability is limited. Clients are still in contention for the
resources of the server, with each client opening and closing connections, doing queries and updates,
and constantly demanding the CPU, memory, and disk resources that are being used by other clients.
You can reduce this load by shifting some of the work to another server. An application server, possibly
running Enterprise Services or Internet Information Services (IIS), can provide database connection
pooling to minimize the number of database connections that are opened and closed. It can also per-
form some data processing, filtering, and even caching to offload some work from the database server.

These additional steps provide a dramatic boost to scalability, but again at the cost of perform-
ance. The user’s request now has fwo network hops, potentially resulting in double the network latency
and contention. For a single user, the system gets slower; but it is able to handle many times more users
with acceptable performance levels.

In the end, the application is constrained by the most limiting resource. This is typically the speed
of transferring data across the network—but if the database or application server is underpowered, it
can become so slow that data transfer across the network isn't an issue. Likewise, if the application
does extremely intense calculations and the client machines are slow, then the cost of transferring the
data across the network to a relatively idle high-speed server can make sense.

Security

Security is a broad and complex topic, but by narrowing the discussion solely to consider how
it's affected by physical n-tier decisions, it becomes more approachable. The discussion is no
longer about authentication or authorization as much as it is about controlling physical access
to the machines on which portions of the application will run. The number of physical tiers in
an application has no impact on whether users can be authenticated or authorized, but physical
tiers can be used to increase or decrease physical access to the machines on which the applica-
tion executes.

For instance, in a 2-tier Windows Forms or Web Forms application, the machine running the
UI code must have credentials to access the database server. Switching to a 3-tier model in which
the data access code runs on an application server means that the machine running the UI code
no longer needs those credentials, potentially making the system more secure.

Security requirements vary radically based on the environment and the requirements of
your application. A Windows Forms application deployed only to internal users may need rela-
tively little security, but a Web Forms application exposed to anyone on the Internet may need
extensive security.

To alarge degree, security is all about surface area: how many points of attack are exposed from
the application? The surface area can be defined in terms of domains of trust.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Security and Internal Applications

Internal applications are totally encapsulated within a domain of trust: the client and all servers are
running in a trusted environment. This means that virtually every part of the application is exposed
to a potential hacker (assuming that the hacker can gain physical access to a machine on the net-
work in the first place). In a typical organization, hackers can attack the client workstation, the web
server, the application server, and the database server if they so choose. Rarely are there firewalls or
other major security roadblocks within the context of an organization’s LAN.

Note Obviously, there is security. It is common to use Windows domain or Active Directory (AD) security on the
clients and servers, but there’s nothing stopping someone from attempting to communicate directly with any of
these machines. Within a typical LAN, users can usually connect through the network to all machines due to a lack
of firewall or physical barriers.

Because the internal environment is so exposed to start with, security should have little impact
on the decisions regarding the number of physical tiers for the application. Increasing or decreasing
the number of tiers will rarely have much impact on a hacker’s ability to compromise the applica-
tion from a client workstation on the LAN.

An exception to this rule comes when someone can use an application’s own web services to
access its servers in invalid ways. This problem was particularly acute with DCOM, because there
were browsers that end users could use to locate and invoke server-side services. Thanks to COM,
users could use Microsoft Excel to locate and interact with server-side COM components, thereby
bypassing the portions of the application that were supposed to run on the client. This meant that
the applications were vulnerable to power users who could use server-side components in ways
their designers never imagined!

This problem is rapidly transferring to web services as Microsoft Office and other end-user
applications start to allow power users to call web services from within macros. I expect to find
power users calling web services in unexpected ways in the very near future.

The services in this book will be designed to prevent casual usage of the objects, even if a power
user were to gain access to the service from their application.

In summary, although security shouldn’t cause an increase or decrease in the number of physi-
cal tiers for internal applications, it should inform your design choices when exposing services from
server machines.

Security and External Applications

For external applications, things are entirely different. This is really where SOA comes into play.
Service orientation (SO) is all about assembling an “application” that spans trust boundaries.
When part of your application is deployed outside your own network, that certainly crosses at
least a security (trust) boundary.

In a client/server model, this would be viewed as a minimum of two tiers, since the client work-
station is physically separate from any machines running behind the firewall.

But really, SO offers a better way to look at the problem: there are two totally separate appli-
cations. The client runs one application, and another application runs on your server. These two
applications communicate with each other through clearly defined messages, and neither appli-
cation is privy to the internal implementation of the other.

This provides a good way to deal with not only the security trust boundary, but also with the
semantic trust boundary. What I mean by this is that the server application assumes that any data
coming from the client application is flawed: either maliciously or due to a bug in the client. Even
if the client has security access to interact with your server, the server application cannot assume
that the semantic meaning of the data coming from the client is valid.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

In short, because the client workstations are outside the domain of trust, you should assume
that they’re compromised and potentially malicious. You should assume that any code running on
those clients will run incorrectly or not at all; in other words, the client input must be completely
validated as it enters the domain of trust, even if the client includes code to do the validation.

Note I've had people tell me that this is an overly paranoid attitude, but I've been burned this way too many
times. Any time an interface is exposed (Windows, web, XML, and so on) so that clients outside your control can
use it, you should assume that the interface will be misused. Often, this misuse is unintentional—for example,
someone may write a buggy macro to automate data entry. That’s no different than if they made a typo while
entering the data by hand, but user-entered data is always validated before being accepted by an application.
The same must be true for automated data entry as well, or your application will fail.

This scenario occurs in three main architectures: smart/rich clients, web pages with DHTML/
JavaScript, and AJAX-style web pages.

If you deploy a Windows Forms client application to external workstations, it should be designed
as a stand-alone application that calls your server application through web services. Chapter 11 shows
how you can do this with the object-oriented concepts in this book.

If you use JavaScript in your web pages to validate data or otherwise provide a richer experience
for the user, your web UI code on the web server should assume that the browser didn’t do anything
it was supposed to. It is far too easy for a user to subvert your client-side JavaScript—as such, nothing
running in the browser can be trusted.

And of course, more recently, web developers have started creating AJAX web pages that contain
a lot of JavaScript code and do callbacks to the server through web services or specialized web pages.
AJAX is an attempt to make browser-based applications approach the richness available to Windows
applications. The same rules apply here: the code running in the browser should be viewed as a sepa-
rate application that is not trusted by the server application.

In these latter two cases, it is important to realize that JavaScript is not object-oriented and is
not at the same level of technology as .NET on the web server. You can apply the object-oriented
concepts from this book on your web server, but the JavaScript and AJAX concepts in the browser
are far more limited.

Asyou'll see, the object-oriented concepts and techniques shown in this book can be used to cre-
ate smart client applications that call web services on your servers. They can be used to create those
web services. They can also be used to create Web Forms applications, in which those web pages may
use simple HTML, more complex client-side JavaScript, or even AJAX-based technologies.

Fault Tolerance
Fault tolerance is achieved by identifying points of failure and providing redundancy. Typically,
applications have numerous points of failure. Some of the most obvious are as follows:
¢ The network feed to your user’s buildings
* The power feed to your user’s buildings
e The network feed and power feed to your data center
e The primary DNS host servicing your domain
* Your firewall, routers, switches, etc.
* Your web server
e Your application server
* Your database server
* Your internal LAN

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

In order to achieve high levels of fault tolerance, you need to ensure that if any one of these
fails, some system will instantly kick in and fill the void. If the data center power goes out, a gen-
erator kicks in. If a bulldozer cuts your network feed, you'll need to have a second network feed
coming in from the other side of the building, and so forth.

Considering some of the larger and more well-known outages of major websites in the past
couple of years, it's worth noting that most of them occurred due to construction work cutting net-
work or power feeds, or because their ISP or external DNS provider went down or was attacked.
That said, there are plenty of examples of websites going down due to local equipment failure. The
reason why the high-profile failures are seldom due to this type of problem is because large sites
make sure to provide redundancy in these areas.

Clearly, adding redundant power, network, ISB, DNS, or LAN hardware will have little impact
on application architecture. Adding redundant servers, on the other hand, will affect the n-tier
application architecture—or at least the application design. Each time a physical tier is added, you
need to ensure that you add redundancy to the servers in that tier. Thus, adding a fault-tolerant
physical tier always means adding at least fwo servers to the infrastructure.

The more physical tiers, the more redundant servers there are to configure and maintain. This
is why fault tolerance is typically expensive to achieve.

Not only that, but to achieve fault tolerance through redundancy, all servers in a tier must also
be logically identical at all times. For example, at no time can a user be tied to a specific server, so
no single server can ever maintain any user-specific information. As soon as a user is tied to a spe-
cific server, that server becomes a point of failure for that user. The result is that the user loses fault
tolerance.

Achieving a high degree of fault tolerance isn't easy. It requires a great deal of thought and effort
to locate all points of failure and make them redundant. Having fewer physical tiers in an architec-
ture can assist in this process by reducing the number of tiers that must be made redundant.

To summarize, the number of physical tiers in an architecture is a trade-off between per-
formance, scalability, security, and fault tolerance. Furthermore, the optimal configuration for a
web application isn’t the same as the one for an intranet application with smart client machines.
If an application framework is to have any hope of broad appeal, it needs flexibility in the physi-
cal architecture so that it can support web and smart clients effectively, as well as provide both
with optimal performance and scalability. Beyond that, it needs to work well in a service-oriented
environment to create both client and server applications that interact through message-based
communication.

A 5-Layer Logical Architecture

This book will explore a 5-layer logical architecture and show how you can implement it using
object-oriented concepts. Once the logical architecture has been created, it will be configured into
various physical architectures in order to achieve optimal results for Windows Forms, Web Forms,
and Web Services interfaces.

Note If you get any group of architects into a room and ask them to describe their ideal architecture, each one
will come up with a different answer. | make no pretense that this architecture is the only one out there, nor do |
intend to discuss all the possible options. My aim here is to present a coherent, distributed, object-oriented archi-
tecture that supports Windows, web, and Web Services interfaces.

In the framework used in this book, the logical architecture comprises the five layers shown in
Figure 1-1.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

| Presentation |

| u |

| Business Logic |

| Data Access |

| Data Storage and Management |

Figure 1-1. The 5-layer logical architecture

Remember that the benefit of a logical n-layer architecture is the separation of functionality
into clearly defined roles or groups, in order to increase clarity and maintainability. Let’s define each
of the layers more carefully.

Presentation

At first, it may not be clear why I've separated presentation from the user interface (UI). Certainly,
from a Windows perspective, presentation and Ul are one and the same: They are graphical user
interface (GUI) forms with which the user can interact.

From a web perspective (or from that of terminal-based programming), the distinction is proba-
bly quite clear. Typically, the browser merely presents information to the user and collects user input.
In that case, all of the actual interaction logic—the code written to generate the output, or to interpret
user input—runs on the web server (or mainframe), and not on the client machine.

Of course, in today’s world, the browser might run JavaScript or even richer client-side code. But
as discussed earlier in the chapter, none of this code can be trusted. It must be viewed as being a sepa-
rate application that interacts with your application as it runs on the server. So even with code
running in the browser, your application’s UI code is running on your web server.

Knowing that the logical model must support both smart and web-based clients (along with
even more limited clients, such as cell phones or other mobile devices), it's important to recognize
that in many cases, the presentation will be physically separate from the UI logic. In order to
accommodate this separation, it is necessary to design the applications around this concept.

Note The types of presentation technologies continue to multiply, and each comes with a new and relatively
incompatible technology with which we must work. It’s virtually impossible to create a programming framework
that entirely abstracts presentation concepts. Because of this, the architecture and framework will merely support
the creation of varied presentations, not automate their creation. Instead, the focus will be on simplifying the other
tiers in the architecture, for which technology is more stable.

User Interface

Now that I've addressed the distinction between presentation and U, the latter’s purpose is proba-
bly fairly clear. This layer includes the logic to decide what the user sees, the navigation paths, and
how to interpret user input. In a Windows Forms application, this is the code behind the form. Actu-
ally, it’s the code behind the form in a Web Forms application, too, but here it can also include code
that resides in server-side controls; logically, that’s part of the same layer.

9

10

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

In many applications, the UI code is very complex. For a start, it must respond to the user’s
requests in a nonlinear fashion. (It is difficult to control how users might click controls, or enter or
leave the forms or pages.) The UI code must also interact with logic in the business layer to validate
user input, to perform any processing that’s required, or to do any other business-related action.

Basically, the goal is to write UI code that accepts user input and then provides it to the busi-
ness layer, where it can be validated, processed, or otherwise manipulated. The UI code must then
respond to the user by displaying the results of its interaction with the business layer. Was the user’s
data valid? If not, what was wrong with it? And so forth.

In .NET, the UI code is almost always event-driven. Windows Forms code is all about respond-
ing to events as the user types and clicks the form, and Web Forms code is all about responding to
events as the browser round-trips the user’s actions back to the web server. Although both Windows
Forms and Web Forms technologies make heavy use of objects, the code that is typically written
into the Ul isn't object-oriented as much as procedural and event-based.

That said, there’s great value in creating frameworks and reusable components that will sup-
port a particular type of UL When creating a Windows Forms UI, developers can make use of visual
inheritance and other object-oriented techniques to simplify the creation of the forms. When creat-
ing a Web Forms UlI, developers can use ASPNET user controls and custom server controls to
provide reusable components that simplify page development.

Because there’s such a wide variety of Ul styles and approaches, I won't spend much time deal-
ing with UI development or frameworks in this book. Instead, I'll focus on simplifying the creation
of the Business Logic and Data Access layers, which are required for any type of UL

Business Logic

Business logic includes all business rules, data validation, manipulation, processing, and security
for the application. One definition from Microsoft is as follows: “The combination of validation
edits, login verifications, database lookups, policies, and algorithmic transformations that consti-
tute an enterprise’s way of doing business.”!

Note Again, while you may implement validation logic to run in a browser or other external client, that code
can’t be trusted. You must view the logic that runs under your control in the business layer as being the only real
validation logic.

The business logic mustreside in a separate layer from the UI code. While you may choose
to duplicate some of this logic in your Ul code to provide a richer user experience, the business
layer must implement all the business logic, because it is the only point of central control and
maintainability.

I believe that this particular separation between the responsibilities of the business layer and UI
layer is absolutely critical if you want to gain the benefits of increased maintainability and reusability.
This is because any business logic that creeps into the Ul layer will reside within a specific UI, and will
not be available to any other Uls that might be created later.

Any business logic written into (say) a Windows Ul is useless to a web or Web Services inter-
face, and must therefore be written into those as well. This instantly leads to duplicated code,
which is a maintenance nightmare. Separation of these two layers can be done through tech-
niques such as clearly defined procedural models, or object-oriented design and programming.

1. MSDN, “Business rule” definition, “Enterprise Glossary.” See http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/vsentpro/html/veovrb.asp.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

In this book, I'll show how to use object-oriented concepts to help separate the business logic
from the UL

Itis important to recognize that a typical application will use business logic in a couple differ-
ent ways. Most applications have some user interaction, such as forms in which the user views or
enters data into the system. Most applications also have some very non-interactive processes, such
as posting invoices, relieving inventory, or calculating insurance rates.

Ideally, the Business Logic layer will be used in a very rich and interactive way when the
user is directly entering data into the application. For instance, when a user is entering a sales
order, he or she expects that the validation of data, the calculation of tax, and the subtotaling of
the order will happen literally as they type. This implies that the business layer can be physically
deployed on the client workstation or on the web server to provide the high levels of interactivity
users desire.

To support non-interactive processes, on the other hand, the Business Logic layer often
needs to be deployed onto an application server, or as close to the database server as possible.
For instance, the calculation of an insurance rate can involve extensive database lookups along
with quite a bit of complex business processing. This is the kind of thing that should occur behind
the scenes on a server, not on a user’s desktop.

Fortunately, it is possible to deploy a logical layer on multiple physical tiers. Doing this does
require some up-front planning and technical design, as you'll see in Chapter 2. The end result,
however, is a single business layer that is potentially deployed on both the client workstation (or
web server) and on the application server. This allows the application to provide high levels of
interactivity when the user is working directly with the application, and efficient back-end pro-
cessing for non-interactive processes.

Data Access

Data access code interacts with the Data Management layer to retrieve, insert, update, and remove
information. The Data Access layer doesn't actually manage or store the data; it merely provides an
interface between the business logic and the database.

Data access gets its own logical layer for much the same reason that the presentation is split
from the UI In some cases, data access will occur on a machine that’s physically separate from the
one on which the UI and/or business logic is running. In other cases, data access code will run on
the same machine as the business logic (or even the UI) in order to improve performance or fault
tolerance.

Note It may sound odd to say that putting the Data Access layer on the same machine as the business logic
can increase fault tolerance, but consider the case of web farms, in which each web server is identical to all the
others. Putting the data access code on the web servers provides automatic redundancy of the Data Access layer
along with the Business Logic and Ul layers.

Adding an extra physical tier just to do the data access makes fault tolerance harder to implement, because it
increases the number of tiers in which redundancy needs to be implemented. As a side effect, adding more physi-
cal tiers also reduces performance for a single user, so it’s not something that should be done lightly.

Logically defining data access as a separate layer enforces a separation between the business
logic and any interaction with a database (or any other data source). This separation provides the
flexibility to choose later whether to run the data access code on the same machine as the business
logic, or on a separate machine. It also makes it much easier to change data sources without affect-
ing the application. This is important because it enables switching from one database vendor to
another at some point.

1

12

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

This separation is useful for another reason: Microsoft has a habit of changing data access
technologies every three years or so, meaning that it is necessary to rewrite the data access code to
keep up (remember DAO, RDO, ADO 1.0, ADO 2.0, and now ADO.NET?). By isolating the data access
code into a specific layer, the impact of these changes is limited to a smaller part of the application.

Data access mechanisms are typically implemented as a set of services, with each service being
a procedure that’s called by the business logic to retrieve, insert, update, or delete data. Although
these services are often constructed using objects, it's important to recognize that the designs for
an effective Data Access layer are really quite procedural in nature. Attempts to force more object-
oriented designs for relational database access often result in increased complexity or decreased
performance. I think the best approach is to implement the data access as a set of methods, but
encapsulate those methods within objects to keep them logically organized.

Note If you're using an object database instead of a relational database, then of course the data access code
may be very object-oriented. Few of us get such an opportunity, however, because almost all data is stored in
relational databases.

Sometimes the Data Access layer can be as simple as a series of methods that use ADO.NET
directly to retrieve or store data. In other circumstances, the Data Access layer is more complex, pro-
viding a more abstract or even metadata-driven way to get at data. In these cases, the Data Access
layer can contain a lot of complex code to provide this more abstract data access scheme. The frame-
work created in this book doesn’t restrict how you implement your Data Access layer. The examples
in the book will work directly against ADO.NET, but you could also use a metadata-driven Data
Access layer if you prefer.

Another common role for the Data Access layer is to provide mapping between the object-
oriented business logic and the relational data in a data store. A good object-oriented model is
almost never the same as a good relational database model. Objects often contain data from mul-
tiple tables, or even from multiple databases; or conversely, multiple objects in the model can
represent a single table. The process of taking the data from the tables in a relational model and
getting it into the object-oriented model is called object-relational mapping (ORM), and I'll have
more to say on the subject in Chapter 2.

Data Storage and Management

Finally, there’s the Data Storage and Management layer. Database servers such as SQL Server and
Oracle often handle these tasks, but increasingly, other applications may provide this functionality,
too, via technologies such as Web Services.

What'’s key about this layer is that it handles the physical creation, retrieval, update, and deletion
of data. This is different from the Data Access layer, which requests the creation, retrieval, update, and
deletion of data. The Data Management layer actually implements these operations within the context
of a database or a set of files.

The business logic (via the Data Access layer) invokes the Data Management layer, but the
layer often includes additional logic to validate the data and its relationship to other data. Some-
times, this is true relational data modeling from a database; other times, it’s the application of
business logic from an external application. What this means is that a typical Data Management
layer will include business logic that is also implemented in the Business Logic layer. This time,
the replication is unavoidable because relational databases are designed to enforce relational
integrity; and that’s just another form of business logic.

In summary, whether you're using stored procedures in SQL Server, or web service calls to
another application, data storage and management is typically handled by creating a set of services

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

or procedures that can be called as needed. Like the Data Access layer, it's important to recognize
that the designs for data storage and management are typically very procedural.
Table 1-1 summarizes the five layers and their roles.

Table 1-1. The Five Logical Layers and the Roles They Provide

Layer Roles
Presentation Renders display and collects user input.
Ul Acts as an intermediary between the user and the business logic,

taking user input and providing it to the business logic, then
returning results to the user.

Business Logic Provides all business rules, validation, manipulation, processing,
and security for the application.

Data Access Acts as an intermediary between the business logic and data
management. Also encapsulates and contains all knowledge of
data access technologies (such as ADO.NET), databases, and data
structures.

Data Storage and Management Physically creates, retrieves, updates, and deletes data in a per-
sistent data store.

Everything I've talked about to this point is part of a logical architecture. Now it’s time to move
on and see how it can be applied in various physical configurations.

Applying the Logical Architecture

Given this 5-layer logical architecture, it should be possible to configure it into one, two, three, four,
or five physical tiers in order to gain performance, scalability, security, or fault tolerance to various
degrees, and in various combinations.

Note In this discussion, it is assumed that there is total flexibility to configure which logical layer runs where.
In some cases, there are technical issues that prevent the physical separation of some layers. Fortunately, there
are fewer such issues with the .NET Framework than there were with COM-based technologies.

There are a few physical configurations that I want to discuss in order to illustrate how the logical
model works. These are common and important setups that are encountered on a day-to-day basis.

Optimal Performance Smart Client

When so much focus is placed on distributed systems, it’s easy to forget the value of a single-tier
solution. Point of sale, sales force automation, and many other types of application often run in
stand-alone environments. However, the benefits of the logical n-layer architecture are still desir-
able in terms of maintainability and code reuse.

It probably goes without saying that everything can be installed on a single client workstation.
An optimal performance smart client is usually implemented using Windows Forms for the presen-
tation and UI, with the business logic and data access code running in the same process and talking
to an Access (JET) or Microsoft SQL Server Express database. The fact that the system is deployed
on a single physical tier doesn't compromise the logical architecture and separation, as shown in
Figure 1-2.

13

14

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Presentation
ul
Business Logic
Data Access
Data Storage/Management

Figure 1-2. The five logical layers running on a single machine

I think it’s very important to remember that n-layer systems can run on a single machine in
order to support the wide range of applications that require stand-alone machines. It’s also worth
pointing out that this is basically the same as 2-tier, “fat-client” physical architecture; the only dif-
ference in that case is that the Data Storage and Management tier would be running on a central
database server, such as SQL Server or Oracle, as shown in Figure 1-3.

Presentation
Ul
Business Logic
Data Access

Data Storage/Management

Figure 1-3. The five logical layers with a separate database server

Other than the location of the data storage, this is identical to the single-tier configuration, and
typically the switch from single-tier to 2-tier revolves around little more than changing the database
configuration string for ADO.NET.

High-Scalability Smart Client

Single-tier configurations are good for stand-alone environments, but they don’t scale well. To sup-
port multiple users, it is common to use 2-tier configurations. I've seen 2-tier configurations support
more than 350 concurrent users against SQL Server with very acceptable performance.

Going further, it is possible to trade performance to gain scalability by moving the Data
Access layer to a separate machine. Single or 2-tier configurations give the best performance, but
they don’t scale as well as a 3-tier configuration would. A good rule of thumb is that if you have
more than 50 to 100 concurrent users, you can benefit by making use of a separate server to han-
dle the Data Access layer.

Another reason for moving the Data Access layer to an application server is security. Since the
Data Access layer contains the code that directly interacts with the database, the machine on which
it runs must have credentials to access the database server. Rather than having those credentials on
the client workstation, they can be moved to an application server. This way, the user’s computer
won't have the credentials to interact directly with the database server, thus increasing security.

It is also possible to put the Business Logic layer on the application server. This is very useful
for non-interactive processes such as batch updates or data-intensive business algorithms. Yet, at
the same time, most applications allow for user interaction, and so there is a very definite need to
have the Business Logic layer running on the client workstation to provide high levels of inter-
activity for the user.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

As discussed earlier in the chapter, it is possible to deploy the same logical layer onto multiple
physical tiers. Using this idea, the Data Access layer can be put on an application server, and the Busi-
ness Logic layer on both the client workstation and the application server, as shown in Figure 1-4.

Presentation
Ul
Business Logic

Business Logic
Data Access

Data Storage/Management

Figure 1-4. The five logical layers with separate application and database servers

Putting the Data Access layer on the application server centralizes all access to the database
on a single machine. In .NET, if the connections to the database for all users are made using the
same user ID and password, you'll get the benefits of connection pooling for all your users. What
this means immediately is that there will be far fewer connections to the database than there
would be if each client machine connected directly. The actual reduction depends on the specific
application, but often it means supporting 150 to 200 concurrent users with just two or three
database connections!

Of course, all user requests now go across an extra network hop, thereby causing increased
latency (and therefore decreased performance). This performance cost translates into a huge scala-
bility gain, however, because this architecture can handle many more concurrent users than a 2-tier
physical configuration.

With the Business Logic layer deployed on both the client and server, the application is able to
fully exploit the strengths of both machines. Validation and a lot of other business processing can
run on the client workstation to provide a rich and highly interactive experience for the user, while
non-interactive processes can efficiently run on the application server.

If well designed, such an architecture can support thousands of concurrent users with ade-
quate performance.

Optimal Performance Web Client

As with a Windows Forms application, the best performance is received from a web-based applica-
tion by minimizing the number of physical tiers. However, the trade-off in a web scenario is
different: in this case, it is possible to improve performance and scalability at the same time, but at
the cost of security, as I will demonstrate.

To get optimal performance in a web application, it is desirable to run most of the code in a
single process on a single machine, as shown in Figure 1-5.

The Presentation layer must be physically separate because it’s running in a browser, but the
UI, Business Logic, and Data Access layers can all run on the same machine, in the same process.
In some cases, you might even put the Data Management layer on the same physical machine,
though this is only suitable for smaller applications.

This minimizes network and communication overhead and optimizes performance. Figure 1-6
shows how it is possible to get very good scalability, because the web server can be part of a web
farm in which all the web servers are running the same code.

15

16

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Presentation

Ul
Business Logic
Data Access

Data Storage/Management

Figure 1-5. The five logical layers as used for web applications

Presentation
ul ul
Business Logic | | Business Logic
Data Access Data Access

Data Storage/Management

Figure 1-6. The five logical layers deployed on a load-balanced web farm

This setup provides very good database-connection pooling because each web server will be
(potentially) servicing hundreds of concurrent users, and all database connections on a web server
are pooled.

Note In COM-based technologies such as ASP and Visual Basic 6, this configuration was problematic, because
running COM components in the same process as ASP pages had drawbacks in terms of the manageability and
stability of the system. Running the COM components in a COM+ server application addressed the stability issues,
but at the cost of performance. These issues have been addressed in .NET, however, so this configuration is highly
practical when using ASP.NET and other .NET components.

Unless the database server is getting overwhelmed with connections from the web servers
in the web farm, a separate application server will rarely provide gains in scalability. If a separate
application server is needed, there will be a reduction in performance because of the additional
physical tier. (Hopefully, there will be a gain in scalability, because the application server can
consolidate database connections across all the web servers.) It is important to consider fault
tolerance in this case, because redundant application servers may be needed in order to avoid
a point of failure.

Another reason for implementing an application server is to increase security, and that’s the
topic of the next section.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

High-Security Web Client

As discussed in the earlier section on security, there will be many projects in which it’s dictated that
a web server can never talk directly to a database. The web server must run in a “demilitarized zone”
(DMZ), sandwiched between the external firewall and a second internal firewall. The web server
must communicate with another server through the internal firewall in order to interact with the
database or any other internal systems.

As with the 3-tier Windows client scenario, there is tremendous benefit to also having the
Business Logic layer deployed on both the web server and the application server. Such a deploy-
ment allows the Web Forms UI code to interact closely with the business logic when appropriate,
while non-interactive processes can simply run on the application server.

This is illustrated in Figure 1-7, in which the dashed lines represent the firewalls.

Presentation

ul
Business Logic

Business Logic
Data Access

Data Storage/Management

Figure 1-7. The five logical layers deployed in a secure web configuration

Splitting out the Data Access layer and running it on a separate application server increases the
security of the application. However, this comes at the cost of performance—as discussed earlier, this
configuration will typically cause a performance degradation of around 50 percent. Scalability, on the
other hand, is fine: like the first web configuration, it can be achieved by implementing a web farm in
which each web server runs the same Ul and business logic code, as shown in Figure 1-8.

Presentation

ul ul
Business Logic | | Business Logic

Business Logic
Data Access

Data Storage/Management

Figure 1-8. The five logical layers in a secured environment with a web farm

17

18

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

The Way Ahead

After implementing the framework to support this 5-layer architecture, I'll create a sample application
with three different interfaces: Windows Forms, Web Forms, and Web Services. This will give you the
opportunity to see firsthand how the framework supports the following models:

e High-scalability smart client
e Optimal performance web client

e Optimal performance web service

Due to the way the framework is implemented, switching to any of the other models just discussed
will require only configuration file changes. The result is that you can easily adapt your application to
any of the physical configurations without having to change your code.

Managing Business Logic

At this point, you should have a good understanding of logical and physical architectures, and how a
5-layer logical architecture can be configured into various n-tier physical architectures. In one way or
another, all of these layers will use or interact with the application’s data. That’s obviously the case for
the Data Management and Data Access layers, but the Business Logic layer must validate, calculate,
and manipulate data; the UI transfers data between the Business Logic and Presentation layers (often
performing formatting or using the data to make navigational choices); and the Presentation layer
displays data to the user and collects new data as it’s entered.

In an ideal world, all of the business logic would exist in the Business Logic layer, but in reality,
this is virtually impossible to achieve. In a web-based UI, validation logic is often included in the
Presentation layer, so that the user gets a more interactive experience in the browser. Unfortunately,
any validation that’s done in the web browser is unreliable, because it’s too easy for a malicious user
to bypass that validation. Thus, any validation done in the browser must be rechecked in the Busi-
ness Logic layer as well.

Similarly, most databases enforce referential integrity, and often some other rules, too. Further-
more, the Data Access layer will very often include business logic to decide when and how data should
be stored or retrieved from databases and other data sources. In almost any application, to a greater or
a lesser extent, business logic gets scattered across all the layers.

There’s one key truth here that’s important: for each piece of application data, there’s a fixed set
of business logic associated with that data. If the application is to function properly, the business
logic must be applied to that data at least once. Why “at least”? Well, in most applications, some of
the business logic is applied more than once. For example, a validation rule applied in the Presenta-
tion layer can be reapplied in the UI layer or Business Logic layer before data is sent to the database
for storage. In some cases, the database will include code to recheck the value as well.

Now;, I'd like to look at some of the more common options. I'll start with three popular (but
flawed) approaches. Then I'll discuss a compromise solution that’s enabled through the use of
mobile objects; such as the ones supported by the framework I'll create later in the book.

Potential Business Logic Locations

Figure 1-9 illustrates common locations for validation and manipulation business logic in a typical
application. Most applications have the same logic in at least a couple of these locations.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

| Presentation [Data'—aidation

Validation

Manipulation
Validation

| Business Logic L Data e nipulation]

| Data Access [Dafa s

Validation

:

| ul

:

| Data Storage

Figure 1-9. Common locations for business logic in applications

Business logic is put in a Web Presentation layer to give the user a more interactive experi-
ence—and put into a Windows UI for the same reason. The business logic is rechecked in the web
UI (on the web server) because the browser isn’t trustworthy. And database administrators put the
logic into the database (via stored procedures and other database constructs) because they don’t
trust any application developers!

The result of all this validation is a lot of duplicated code, all of which has to be debugged, main-
tained, and somehow kept in sync as the business needs (and thus logic) change over time. In the real
world, the logic is almost never really kept in sync, and so developers must constantly debug and main-
tain the code in a near-futile effort to make all of these redundant bits of logic agree with each other.

One solution is to force all of the logic into a single layer, thereby making the other layers as
“dumb” as possible. There are various approaches to this, although (as you’ll see) none of them
provide an optimal solution.

Business Logic in the Data Management Tier

The classic approach is to put all logic into the database as the single, central repository. The pres-
entation and UI then allow the user to enter absolutely anything (because any validation would be
redundant), and the Business Logic layer now resides inside the database. The Data Access layer
does nothing but move the data into and out of the database, as shown in Figure 1-10.

Presentation [Data |
ul
Data Access [Data

L]

Business Logic Dot Validation
Data Storage Manipulation

Figure 1-10. Validation and business logic in the Data Management tier

The advantage of this approach is that the logic is centralized, but the drawbacks are plentiful.
For starters, the user experience is totally non-interactive. Users can’t get any results, or even confir-
mation that their data is valid, without round-tripping the data to the database for processing. The
database server becomes a performance bottleneck, because it’s the only thing doing any actual

19

20

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

work. Unfortunately, the hardest physical tier to scale up for more users is the database server, since
it is difficult to use load-balancing techniques on it. The only real alternative is to buy bigger and
bigger server machines.

Business Logic in the Ul Tier

Another common approach is to put all of the business logic into the UI The data is validated and
manipulated in the UI, and the Data Storage layer just stores the data. This approach, as shown in
Figure 1-11, is very common in both Windows and web environments, and has the advantage that
the business logic is centralized into a single tier (and of course, one can write the business logic in
alanguage such as C# or VB .NET).

Presentation [Data

ul [Da Validation
Business Logic

Data Access [Data
Data Storage

Figure 1-11. Business logic deployed with only the UI

Unfortunately, in practice, the business logic ends up being scattered throughout the Ul and
intermixed with the UT code itself, thereby decreasing readability and making maintenance more
difficult. Even more importantly, business logic in one form or page isn’t reusable when subsequent
pages or forms are created that use the same data. Furthermore, in a web environment, this archi-
tecture also leads to a totally non-interactive user experience, because no validation can occur in
the browser. The user must transmit his or her data to the web server for any validation or manipu-
lation to take place.

Note ASPNET Web Forms’ validation controls at least allow for basic data validation in the UI, with that valida-
tion automatically extended to the browser by the Web Forms technology itself. Though not a total solution, this is
a powerful feature that does help.

Business Logic in the Middle (Business and Data Access) Tier

Still another option is the classic UNIX client/server approach, whereby the Business Logic and
Data Access layers are merged, keeping the Presentation, UI, and Data Storage tiers as “dumb” as
possible (see Figure 1-12).

Unfortunately, once again, this approach falls afoul of the non-interactive user experience
problem: the data must round-trip to the Business Logic/Data Access tier for any validation or
manipulation. This is especially problematic if the Business Logic/Data Access tier is running on
a separate application server, because then you're faced with network latency and contention
issues, too. Also, the central application server can become a performance bottleneck, because
it'’s the only machine doing any work for all the users of the application.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Presentation E)'El

ul [Data
Business Logic [Data Va!ldatuqn
Data Access Manipulation

Data Storage [Data

Figure 1-12. Business logic deployed on only the application server

Sharing Business Logic Across Tiers

I wish this book included the secret that allows you to write all your logic in one central location,
thereby avoiding all of these awkward issues. Unfortunately, that’s not possible with today’s technol-
ogy: putting the business logic only on the client, application server, or database server is problematic,
for all the reasons given earlier. But something needs to be done about it, so what's left?

What's left is the possibility of centralizing the business logic in a Business Logic layer that’s
deployed on the client (or web server), so that it’s accessible to the Ul layer; and in a Business Logic
layer that’s deployed on the application server, so that it’s able to interact efficiently with the Data
Access layer. The end result is the best of both worlds: a rich and interactive user experience and
efficient high-performance back-end processing when interacting with the database (or other data
source).

In the simple cases in which there is no application server, the Business Logic layer is deployed
only once: on the client workstation or web server, as shown in Figure 1-13.

Presentation

Ul
Business Logic [Da gt lots
| Data Access

| Data Storage

Figure 1-13. Business logic centralized in the Business Logic layer

Ideally, this business logic will run on the same machine as the UI code when interacting with
the user, but on the same machine as the data access code when interacting with the database. (As
discussed earlier, all of this could be on one machine or a number of different machines, depending
on your physical architecture.) It must provide a friendly interface that the UT developer can use to
invoke any validation and manipulation logic, and it must also work efficiently with the Data Access
tier to get data in and out of storage.

The tools for addressing this seemingly intractable set of requirements are mobile business
objects that encapsulate the application’s data along with its related business logic. It turns out that
a properly constructed business object can move around the network from machine to machine
with almost no effort on your part. The .NET Framework itself handles the details, and you can
focus on the business logic and data.

21

22

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

By properly designing and implementing mobile business objects, you allow the .NET Frame-
work to pass your objects across the network by value, thereby automatically copying them from
one machine to another. This means that with little extra code, you can have your business logic
and business data move to the machine where the UI tier is running, and then shift to the machine
where the Data Access tier is running when data access is required.

At the same time, if you're running the Ul tier and Data Access tier on the same machine, then
the .NET Framework doesn’t move or copy your business objects. They're used directly by both tiers
with no performance cost or extra overhead. You don’t have to do anything to make this happen,
either— NET automatically detects that the object doesn’t need to be copied or moved, and thus
takes no extra action.

The Business Logic layer becomes portable, flexible, and mobile, and adapts to the physical envi-
ronment in which you deploy the application. Due to this, you're able to support a variety of physical
n-tier architectures with one code base, whereby your business objects contain no extra code to sup-
port the various possible deployment scenarios. What little code you need to implement to support
the movement of your objects from machine to machine will be encapsulated in a framework, leaving
the business developer to focus purely on the development of business logic.

Business Objects

Having decided to use business objects and take advantage of .NET’s ability to move objects
around the network automatically, it's now time to discuss business objects in more detail. I will
discuss exactly what they are and how they can help you to centralize the business logic pertain-
ing to your data.

The primary goal when designing any kind of software object is to create an abstract represen-
tation of some entity or concept. In ADO.NET, for example, a DataTable object represents a tabular
set of data. DataTables provide an abstract and consistent mechanism by which you can work with
anytabular data. Likewise, a Windows Forms TextBox control is an object that represents the con-
cept of displaying and entering data. From the application’s perspective, there is no need to have any
understanding of how the control is rendered on the screen, or how the user interacts with it. It’s
just an object that includes a Text property and a handful of interesting events.

Key to successful object design is the concept of encapsulation. This means that an object is
a black box: it contains logic and data, but the user of the object doesn't know what data or how the
logic actually works. All they can do is interact with the object.

Note Properly designed objects encapsulate both behavior or logic and the data required by that logic.

If objects are abstract representations of entities or concepts that encapsulate both data and
its related logic, what then are business objects?

Note Business objects are different from regular objects only in terms of what they represent.

Object-oriented applications are created to address problems of one sort or another. In the
course of doing so, a variety of different objects are often used. Some of these objects will have no
direct connection with the problem at hand (DataTable and TextBox objects, for example, are just
abstract representations of computer concepts). However, there will be others that are closely
related to the area or domain in which you're working. If the objects are related to the business
for which you're developing an application, then they’re business objects.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

For instance, if you're creating an order entry system, your business domain will include things
such as customers, orders, and products. Each of these will likely become business objects within
your order entry application—the Order object, for example, will provide an abstract representation
of the order being placed by a customer.

Note Business objects provide an abstract representation of entities or concepts that are part of the business
or problem domain.

Business Objects As Smart Data

I've already discussed the drawbacks of putting business logic into the Ul tier, but I haven't thor-
oughly discussed the drawback of keeping the data in a generic representation such as a DataSet
object. The data in a DataSet (or an array or XML document) is unintelligent, unprotected, and
generally unsafe. There’s nothing to prevent anyone from putting invalid data into any of these
containers, and there’s nothing to ensure that the business logic behind one form in the applica-
tion will interact with the data in the same way as the business logic behind another form.

A DataSet or an XML document with an XSD (XML Schema Definition) might ensure that text
cannot be entered where a number is required, or that a number cannot be entered where a date
is required. At best, it might enforce some basic relational-integrity rules. However, there’s no way
to ensure that the values match other criteria, or that calculations or other processing is done
properly against the data, without involving other objects. The data in a DataSet, an array, or an
XML document isn't self-aware; it’s not able to apply business rules or handle business manipu-
lation or processing of the data.

The data in a business object, however, is what I like to call “smart data.” The object not
only contains the data, but also includes all the business logic that goes along with that data.
Any attempt to work with the data must go through this business logic. In this arrangement,
there is much greater assurance that business rules, manipulation, calculations, and other pro-
cessing will be executed consistently everywhere in the application. In a sense, the data has
become self-aware, and can protect itself against incorrect usage.

In the end, an object doesn'’t care whether it's used by a Windows Forms U], a batch-processing
routine, or a web service. The code using the object can do as it pleases; the object itself will ensure
that all business rules are obeyed at all times.

Contrast this with a DataSet or an XML document, in which the business logic doesn’t reside in
the data container, but somewhere else—typically, a Windows form or a web form. If multiple forms
or pages use this DataSet, there is no assurance that the business logic is applied consistently. Even
if you adopt a standard that says that UI developers must invoke methods from a centralized class
to interact with the data, there’s nothing preventing them from using the DataSet directly. This may
happen accidentally, or because it was simply easier or faster to use the DataSet than to go through
some centralized routine.

Note With consistent use of business objects, there’s no way to bypass the business logic. The only way to the
data is through the object, and the object always enforces the rules.

So, a business object that represents an invoice will include not only the data pertaining to
the invoice, but also the logic to calculate taxes and amounts due. The object should understand
how to post itself to a ledger, and how to perform any other accounting tasks that are required.
Rather than passing raw invoice data around, and having the business logic scattered throughout

23

24

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

the application, it is possible to pass an Invoice object around. The entire application can share
not only the data, but also its associated logic. Smart data through objects can dramatically
increase the ability to reuse code, and can decrease software-maintenance costs.

Anatomy of a Business Object

Putting all of these pieces together, you get an object that has an interface (a set of properties and
methods), some implementation code (the business logic behind those properties and methods),
and state (the data). This is illustrated in Figure 1-14.

Object Interface

{>> <c> Object Behavior
<c> Object Data

Figure 1-14. A business object composed of state, implementation, and interface

The hiding of the data and the implementation code behind the interface are keys to the
successful creation of a business object. If the users of an object are allowed to “see inside” it,
they will be tempted to cheat, and to interact with the logic or data in unpredictable ways. This
danger is the reason that it will be important to take care when using the public keyword as you
build your classes.

Any property, method, event, or field marked as public will be available to the users of objects
created from the class. For example, you might create a simple class such as the following:

Public Class Project

Private mId As Guid = Guid.NewGuid
Private mName As String = ""

Public ReadOnly Property Id() As Guid
Get
Return mId
End Get
End Property

Public Property Name() As String

Get
Return mName

End Get

Set(ByVal value As String)
If Len(value) > 50 Then

Throw New Exception(“"Name too long")

End If

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

mName = value
End Set
End Property

End Class

This defines a business object that represents a project of some sort. All that is known at the
moment is that these projects have an ID value and a name. Notice, though, that the fields contain-
ing this data are Private—you don’t want the users of your object to be able to alter or access them
directly. If they were Public, the values could be changed without the object’s knowledge or permis-
sion. (The mName field could be given a value that’s longer than the maximum of 50 characters, for
example.)

The properties, on the other hand, are Public. They provide a controlled access point to the
object. The Id property is read-only, so the users of the object can’t change it. The Name property
allows its value to be changed, but enforces a business rule by ensuring that the length of the new
value doesn't exceed 50 characters.

Note None of these concepts are unique to business objects—they’re common to all objects, and are central
to object-oriented design and programming.

Mobile Objects

Unfortunately, directly applying the kind of object-oriented design and programming I've been talk-
ing about so far is often quite difficult in today’s complex computing environments. Object-oriented
programs are almost always designed with the assumption that all the objects in an application can
interact with each other with no performance penalty. This is true when all the objects are running
in the same process on the same computer, but it’s not at all true when the objects might be running in
different processes, or even on different computers.

Earlier in this chapter, I discussed various physical architectures in which different parts of
an application might run on different machines. With a high-scalability smart client architecture,
for example, there will be a client, an application server, and a data server. With a high-security
web client architecture, there will be a client, a web server, an application server, and a data
server. Parts of the application will run on each of these machines, interacting with each other
as needed.

In these distributed architectures, you can’t use a straightforward object-oriented design,
because any communication between classic fine-grained objects on one machine and similar
objects on another machine will incur network latency and overhead. This translates into a per-
formance problem that simply can’t be ignored. To overcome this problem, most distributed
applications haven't used object-oriented designs. Instead, they consist of a set of procedural
code running on each machine, with the data kept in a DataSet, an array, or an XML document
that’s passed around from machine to machine.

This isn't to say that object-oriented design and programming is irrelevant in distributed
environments—just that it becomes complicated. To minimize the complexity, most distributed
applications are object-oriented within a tier, but between tiers they follow a procedural or serv-
ice-based model. The end result is that the application as a whole is neither object-oriented nor
procedural, but a blend of both.

Perhaps the most common architecture for such applications is to have the Data Access layer
retrieve the data from the database into a DataSet. The DataSet is then returned to the client (or the
web server). The code in the forms or pages then interacts with the DataSet directly, as shown in
Figure 1-15.

25

26

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Presentation E)'El

ul b Validation
Business Logic

Data Access [Datal—
Manipulation

Data Storage [Data

Figure 1-15. Passing a DataSet between the Business Logic and Data Access layers

This approach has the maintenance and code-reuse flaws that I've talked about, but the fact
is that it gives pretty good performance in most cases. Also, it doesn’t hurt that most program-
mers are pretty familiar with the idea of writing code to manipulate a DataSet, so the techniques
involved are well understood, thus speeding up development.

A decision to stick with an object-oriented approach should be undertaken carefully. It’s all
too easy to compromise the object-oriented design by taking the data out of the objects running
on one machine, sending the raw data across the network, and allowing other objects to use that
data outside the context of the objects and business logic. Such an approach would break the
encapsulation provided by the logical business layer.

Mobile objects are all about sending smart data (objects) from one machine to another, rather
than sending raw data.

Through its remoting, serialization, and deployment technologies, the .NET Framework con-
tains direct support for the concept of mobile objects. Given this ability, you can have your Data
Access layer (running on an application server) create a business object and load it with data from
the database. You can then send that business object to the client machine (or web server), where
the UI code can use the object (as shown in Figure 1-16).

| Presentation

| ul
. . Validation
| Business Logic ﬁmﬁl-

| Data Access
| Data Storage

Figure 1-16. Using a business object to centralize business logic

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

In this architecture, smart data, in the form of a business object, is sent to the client, rather
than raw data. Then the UI code can use the same business logic as the data access code. This
reduces maintenance, because you're not writing some business logic in the Data Access layer,
and some other business logic in the Ul layer. Instead, all of the business logic is consolidated
into a real, separate layer composed of business objects. These business objects will move across
the network just like the DataSet did earlier, but they’ll include the data and its related business
logic—something the DataSet can'’t easily offer.

Note In addition, business objects will typically move across the network more efficiently than the DataSet.
The approach in this book will use a binary transfer scheme that transfers data in about 30 percent of the size of
data transferred using the DataSet. Also, the business objects will contain far less metadata than the DataSet,
further reducing the number of bytes transferred across the network.

Effectively, you're sharing the Business Logic layer between the machine running the Data
Access layer and the machine running the UT layer. As long as there is support for mobile objects,
this is an ideal solution: it provides code reuse, low maintenance costs, and high performance.

A New Logical Architecture

Being able to directly access the Business Logic layer from both the Data Access layer and the UI
layer opens up a new way to view the logical architecture. Though the Business Logic layer remains
a separate concept, it’s directly used by and tied into both the UI and Data Access layers, as shown
in Figure 1-17.

Presentation

ul
Business Logic

Data Access

Data Storage and Management

Figure 1-17. The Business Logic layer tied to the UI and Data Access layers

The Ul layer can interact directly with the objects in the Business Logic layer, thereby relying
on them to perform all validation, manipulation, and other processing of the data. Likewise, the
Data Access layer can interact with the objects as the data is retrieved or stored.

If all the layers are running on a single machine (such as a smart client), then these parts will
run in a single process and interact with each other with no network or cross-processing overhead.
In more distributed physical configurations, the Business Logic layer will run on both the client and
the application server, as shown in Figure 1-18.

27

28

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Presentation/Ul | Presentation
Business Logic el

Data Access | ul |

oo Business Logic

Data Storage/Management

Data Access |

Data Storage/Management

Figure 1-18. Business logic shared between the Ul and Data Access layers

Local, Anchored, and Mobile Objects

Normally, one might think of objects as being part of a single application, running on a single
machine in a single process. A distributed application requires a broader perspective. Some of
the objects might only run in a single process on a single machine. Others may run on one
machine, but may be called by code running on another machine. Still others may be mobile
objects: moving from machine to machine.

Local Objects

By default, .NET objects are local. This means that ordinary .NET objects aren’t accessible from out-
side the process in which they were created. Without taking extra steps in your code, it isn't possible
to pass objects to another process or another machine (a procedure known as marshaling), either
by value or by reference.

Anchored Objects

In many technologies, including COM, objects are always passed by reference. This means that
when you “pass” an object from one machine or process to another, what actually happens is that
the object remains in the original process, and the other process or machine merely gets a pointer,
or reference, back to the object, as shown in Figure 1-19.

Other Machine Gets a Reference to Object

7 DY
+

+
o)

Original Process or Machine Other Process or Machine

Figure 1-19. Calling an object by reference

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

By using this reference, the other machine can interact with the object. Because the object is still
on the original machine, however, any property or method calls are sent across the network, and the
results are returned back across the network. This scheme is only useful if the object is designed so
that it can be used with very few method calls; just one is ideal! The recommended designs for MTS or
COM-+ objects call for a single method on the object that does all the work for precisely this reason,
thereby sacrificing “proper” object-oriented design in order to reduce latency.

This type of object is stuck, or anchored, on the original machine or process where it was cre-
ated. An anchored object never moves; it’s accessed via references. In .NET, an anchored object is
created by having it inherit from MarshalByRefObject:

Public Class MyAnchoredClass
Inherits MarshalByRefObject
End Class

From this point on, the NET Framework takes care of the details. Remoting can be used to pass
an object of this type to another process or machine as a parameter to a method call, for example,
or to return it as the result of a function.

Mobile Objects

The concept of mobile objects relies on the idea that an object can be passed from one process to
another, or from one machine to another, by value. This means that the object is physically copied
from the original process or machine to the other process or machine, as shown in Figure 1-20.

Object Is Copied to Other Machine

e Y
+ + + +
40 ey
Original Process or Machine Other Process or Machine

Figure 1-20. Passing a physical copy of an object across the network

Because the other machine gets a copy of the object, it can interact with the object locally. This
means that there’s effectively no performance overhead involved in calling properties or methods
on the object—the only cost was in copying the object across the network in the first place.

Note One caveat here is that transferring a large object across the network can cause a performance problem.
Returning a DataSet that contains a great deal of data can take a long time. This is true of all mobile objects,
including business objects. You need to be careful in your application design in order to avoid retrieving very large
sets of data.

29

30

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Objects that can move from process to process or from machine to machine are mobile
objects. Examples of mobile objects include the DataSet and the business objects created in this
book. Mobile objects aren’t stuck in a single place, but can move to where they’re most needed.
To create one in .NET, add the <Serializable()> attribute to your class definition. You may also
optionally implement the ISerializable interface. I'll discuss this further in Chapter 2, but the
following illustrates the start of a class that defines a mobile object:

<Serializable()> _
Public Class MyMobileClass

End Class

Again, the .NET Framework takes care of the details, so an object of this type can be simply
passed as a parameter to a method call or as the return value from a function. The object will be
copied from the original machine to the machine where the method is running.

It is important to understand that the code for the object isn’t automatically moved across
the network. Before an object can move from machine to machine, both machines must have the
.NET assembly containing the object’s code installed. Only the object’s serialized data is moved
across the network by .NET. Installing the required assemblies is often handled by ClickOnce or
other .NET deployment technologies.

When to Use Which Mechanism

The .NET Framework supports all three of the mechanisms just discussed, so you can choose to
create your objects as local, anchored, or mobile, depending on the requirements of your design.
As you might guess, there are good reasons for each approach.

Windows Forms and Web Forms objects are all local—theyre inaccessible from outside the
processes in which they were created. The assumption is that other applications shouldn’'t be
allowed to just reach into your program and manipulate your UI objects.

Anchored objects are important because they will always run on a specific machine. If you
write an object that interacts with a database, you'll want to ensure that the object always runs
on a machine that has access to the database. Because of this, anchored objects are typically
used on application servers.

Many business objects, on the other hand, will be more useful if they can move from the
application server to a client or web server, as needed. By creating business objects as mobile
objects, you can pass smart data from machine to machine, thereby reusing your business logic
anywhere the business data is sent.

Typically, anchored and mobile objects are used in concert. Later in the book, I'll show how
to use an anchored object on the application server to ensure that specific methods are run on
that server. Then mobile objects will be passed as parameters to those methods, which will cause
those mobile objects to move from the client to the server. Some of the anchored server-side
methods will return mobile objects as results, in which case the mobile object will move from
the server back to the client.

Passing Mobile Objects by Reference

There’s a piece of terminology here that can get confusing. So far, I've loosely associated anchored
objects with the concept of “passing by reference,” and mobile objects as being “passed by value.”
Intuitively, this makes sense, because anchored objects provide a reference, though mobile objects
provide the actual object (and its values). However, the terms “by reference” and “by value” have
come to mean other things over the years.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

The original idea of passing a value “by reference” was that there would be just one set of data—
one object—and any code could get a reference to that single entity. Any changes made to that entity
by any code would therefore be immediately visible to any other code.

The original idea of passing a value “by value” was that a copy of the original value would be
made. Any code could get a copy of the original value, but any changes made to that copy weren’t
reflected in the original value. That makes sense, because the changes were made to a copy, not to
the original value.

In distributed applications, things get a little more complicated, but the previous definitions
remain true: an object can be passed by reference so that all machines have a reference to the same
object on a server. And an object can be passed by value so that a copy of the object is made. So far, so
good. However, what happens if you mark an object as <Serializable()> (i.e., mark it as a mobile
object), and then intentionally pass it by reference? It turns out that the object is passed by value, but
the .NET Framework attempts to provide the illusion that the object was passed by reference.

To be more specific, in this scenario, the object is copied across the network just as if it were
being passed by value. The difference is that the object is then returned back to the calling code
when the method is complete, and the reference to the original object is replaced with a reference
to this new version, as shown in Figure 1-21.

Object Is Copied to Other Machine

'y
§
CE +
4N Wt L
&4 s
&
Original Process or Machine Other Process or Machine

Object Is Copied Back When Method Is Complete

Figure 1-21. Passing a copy of the object to the server and getting a copy back

This is potentially very dangerous, since other references to the original object continue to
point to that original object—only this one particular reference is updated. You can potentially
end up with two different versions of the same object on the machine, with some references
pointing to the new one and some to the old one.

Note If you pass a mobile object by reference, you must always make sure to update all references to use the
new version of the object when the method call is complete.

31

32

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

You can choose to pass a mobile object by value, in which case it’s passed one way: from the
caller to the method. Or you can choose to pass an mobile object by reference, in which case it’s
passed two ways: from the caller to the method and from the method back to the caller. If you
want to get back any changes the method makes to the object, use “by reference.” If you don’t
care about or don’t want any changes made to the object by the method, use “by value.”

Note that passing a mobile object by reference has performance implications—it requires
that the object be passed back across the network to the calling machine, so it’s slower than
passing by value.

Complete Encapsulation

Hopefully, at this point, your imagination is engaged by the potential of mobile objects. The flexi-
bility of being able to choose between local, anchored, and mobile objects is very powerful, and
opens up new architectural approaches that were difficult to implement using older technologies
such as COM.

I've already discussed the idea of sharing the Business Logic layer across machines, and it’s
probably obvious that the concept of mobile objects is exactly what’s needed to implement such
a shared layer. But what does this all mean for the design of the layers? In particular, given a set
of mobile objects in the business layer, what’s the impact on the UT and Data Access layers with
which the objects interact?

Impact on the UI Layer

What it means for the UI layer is simply that the business objects will contain all the business
logic. The UI developer can code each form or page using the business objects, thereby relying
on them to perform any validation or manipulation of the data. This means that the UI code can
focus entirely on displaying the data, interacting with the user, and providing a rich, interactive
experience.

More importantly, because the business objects are mobile, they’ll end up running in the same
process as the Ul code. Any property or method calls from the UI code to the business object will
occur locally without network latency, marshaling, or any other performance overhead.

Impact on the Data Access Layer

A traditional Data Access layer consists of a set of methods or services that interact with the data-
base, and with the objects that encapsulate data. The data access code itself is typically outside the
objects, rather than being encapsulated within the objects. This, however, breaks encapsulation,
since it means that the objects’ data must be externalized to be handled by the data access code.

The framework created in this book allows for the data access code to be encapsulated within
the business objects, or externalized into a separate set of objects. As you'll see in Chapter 7, there
are both performance and maintainability benefits to including the data access code directly inside
each business object. However, there are security and manageability benefits to having the code
external.

Either way, the concept of a Data Access layer is of key importance. Maintaining a strong logi-
cal separation between the data access code and business logic is highly beneficial, as discussed
earlier in this chapter. Obviously, having a totally separate set of data access objects is one way to
clearly implement a Data Access layer. However, logical separation doesn’t require putting the logic
in separate classes. It is enough to put the data access code in clearly defined data access methods.
As long as no data access code exists outside those methods, separation is maintained.

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

Architectures and Frameworks

The discussion so far has focused mainly on architectures: logical architectures that define the sep-
aration of responsibilities in an application, and physical architectures that define the locations
where the logical layers will run in various configurations. I've also discussed the use of object-
oriented design and the concepts behind mobile objects.

Although all of these are important and must be thought through in detail, you really don’t
want to have to go through this process every time you need to build an application. It would be
preferable to have the architecture and design solidified into reusable code that could be used to
build all your applications. What you want is an application framework. A framework codifies an
architecture and design in order to promote reuse and increase productivity.

The typical development process starts with analysis, followed by a period of architectural
discussion and decision making. Next comes the application design: first, the low-level concepts
to support the architecture, and then the business-level concepts that actually matter to the end
users. With the design completed, developers typically spend a fair amount of time implementing
the low-level functions that support the business coding that comes later.

All of the architectural discussions, decision making, designing, and coding can be a lot of fun.
Unfortunately, it doesn't directly contribute anything to the end goal of writing business logic and
providing business functionality. This low-level supporting technology is merely “plumbing” that
must exist in order to create actual business applications. It’s an overhead that in the long term you
should be able to do once, and then reuse across many business application-development efforts.

In the software world, the easiest way to reduce overhead is to increase reuse, and the best way
to get reuse out of an architecture (both design and coding) is to codify it into a framework.

This doesn’t mean that application analysis and design are unimportant—quite the opposite!
People typically spend far too little time analyzing business requirements and developing good
application designs to meet those business needs. Part of the reason is that they often end up
spending substantial amounts of time analyzing and designing the “plumbing” that supports the
business application, and then run out of time to analyze the business issues themselves.

What I'm proposing here is to reduce the time spent analyzing and designing the low-level
plumbing by creating a framework that can be used across many business applications. Is the
framework created in this book ideal for every application and every organization? Certainly not!
You'll have to take the architecture and the framework and adapt them to meet your organiza-
tion’s needs. You may have different priorities in terms of performance, scalability, security, fault
tolerance, reuse, or other key architectural criteria. At the very least, though, the remainder of
this book should give you a good start on the design and construction of a distributed, object-
oriented architecture and framework.

Conclusion

In this chapter, I've focused on the theory behind distributed systems—specifically, those based
on mobile objects. The key to success in designing a distributed system is to keep clear the dis-
tinction between a logical and a physical architecture.

Logical architectures exist to define the separation between the different types of code in an
application. The goal of a good logical architecture is to make code more maintainable, under-
standable, and reusable. A logical architecture must also define enough layers to enable any
physical architectures that may be required.

A physical architecture defines the machines on which the application will run. An application
with several logical layers can still run on a single machine. You also might configure that same

33

34

CHAPTER 1 © DISTRIBUTED ARCHITECTURE

logical architecture to run on various client and server machines. The goal of a good physical archi-
tecture is to achieve the best trade-off between performance, scalability, security, and fault tolerance
within your specific environment.

The trade-offs in a physical architecture for a smart client application are very different from
those for a web application. AWindows application will typically trade performance against scala-
bility, and a web application will typically trade performance against security.

In this book, I'll be using a 5-layer logical architecture consisting of presentation, UI, busi-
ness logic, data access, and data storage. Later in the book, this architecture will be used to create
Windows, web, and Web Services applications, each with a different physical architecture. The
next chapter will start the process of designing the framework that will make this possible.

CHAPTER 2

Framework Design

In Chapter 1, I discussed some general concepts about physical and logical n-tier architecture,
including a 5-layer model for describing systems logically. In this chapter, I'll take that 5-layer logi-
cal model and expand it into a framework design. Specifically, this chapter will map the logical
layers against the technologies illustrated in Figure 2-1.

Presentation = Windows/Web/Mobile
ul — Windows Forms/Web Forms/
Web Services
Business Logic = .NET Business Objects
Data Access = Busiross Oplects
Data Storage = SQL Server

Figure 2-1. Mapping the logical layers to technologies

The framework itself will focus on the Business Logic and Data Access layers. This is primarily due
to the fact that there are already powerful technologies for building Windows, web (browser-based and
Web Services), and mobile Uls and presentations. Also, there are already powerful data-storage options
available, including SQL Server, Oracle, DB2, XML documents, and so forth.

Recognizing that these preexisting technologies are ideal for building the Presentation and UI
layers, as well as for handling data storage, allows business developers to focus on the parts of the
application that have the least technological support, where the highest return on investment
occurs through reuse. Analyzing, designing, implementing, testing, and maintaining business logic
is incredibly expensive. The more reuse achieved, the lower long-term application costs become.
The easier it is to maintain and modify this logic, the lower costs will be over time.

35

36

CHAPTER 2 © FRAMEWORK DESIGN

Note This is not to say that additional frameworks for Ul creation or simplification of data access are bad ideas.
0On the contrary, such frameworks can be very complementary to the ideas presented in this book; and the combi-
nation of several frameworks can help lower costs even further.

When I set out to create the architecture and framework discussed in this book, I started with
the following set of high-level guidelines:

» Simplify the task of creating object-oriented applications in a distributed .NET environment.

e The Windows, web, and Web Services interface developer should never see or be aware of
SQL, ADO.NET, or other raw data concepts, but should instead rely on a purely object-
oriented model of the problem domain.

* Business object developers should be able to use “natural” coding techniques to create their
classes—that is, they should employ everyday coding using fields, properties, and methods.
Little or no extra knowledge should be required.

¢ The business classes should provide total encapsulation of business logic, including valida-
tion, manipulation, calculation, security, and data access. Everything pertaining to an entity
in the problem domain should be found within a single class.

 Itshould be relatively easy to create code generators, or templates for existing code-
generation tools, to assist in the creation of business classes.

* Provide an n-layer logical architecture that can be easily reconfigured to run on one to four
physical tiers.

e Use complex features in .NET—but those should be largely hidden and automated
(remoting, serialization, security, deployment, and so forth).

¢ The concepts present in version 1.x of the framework from the .NET 1.x Framework should
carry forward, including object-undo capabilities, broken rule tracking, and object-state
tracking (IsNew, IsDirty, IsDeleted).

In this chapter, I'll focus on the design of a framework that allows business developers to make
use of object-oriented design and programming with these guidelines in mind. Having walked
through the design of the framework, Chapters 3 through 5 will dive in and implement the frame-
work itself, focusing first on the parts that support UI development, and then on providing scalable
data access and object-relational mapping for the objects. Before I get into the design of the frame-
work, however, let’s discuss some of the specific goals I was attempting to achieve.

Basic Design Goals

When creating object-oriented applications, the ideal situation is that any nonbusiness objects
will already exist. This includes Ul controls, data access objects, and so forth. In that case, all
developers need to do is focus on creating, debugging, and testing the business objects them-
selves, thereby ensuring that each one encapsulates the data and business logic needed to make
the application work.

As rich as the .NET Framework is, however, it doesn’t provide all the nonbusiness objects
needed in order to create most applications. All the basic tools are there, but there’s a fair amount
of work to be done before you can just sit down and write business logic. There’s a set of higher-
level functions and capabilities that are often needed, but aren’t provided by .NET right out of
the box.

CHAPTER 2 © FRAMEWORK DESIGN

These include the following:

¢ N-level undo capability

* Tracking broken business rules to determine whether an object is valid

e Tracking whether an object’s data has changed (is it “dirty”?)

* Strongly typed collections of child objects (parent-child relationships)

e Asimple and abstract model for the UI developer

* Full support for data binding in both Windows Forms and Web Forms

e Saving objects to a database and getting them back again

e Custom authentication

 Integrated authorization rules

e Other miscellaneous features

In all of these cases, the .NET Framework provides all the pieces of the puzzle, but they
must be put together to match your specialized requirements. What you don’t want to do, how-
ever, is to have to put them together for every business object or application. The goal is to put
them together once, so that all these extra features are automatically available to all the business
objects and applications.

Moreover, because the goal is to enable the implementation of object-oriented business systems,
the core object-oriented concepts must also be preserved:

e Abstraction
e Encapsulation
e Polymorphism

e Inheritance

The result will be a framework consisting of a number of classes. The design of these classes will
be discussed in this chapter, and their implementation will be discussed in Chapters 3 through 5.

Tip The Diagrams folder in the Cs1a project in the code download includes FullCsla.cd, which shows all
the framework classes in a single diagram. You can also get a PDF document showing that diagram from www.
lhotka.net/cslanet/csla20.aspx.

Before getting into the details of the framework’s design, let’s discuss the desired set of features
in more detail.

N-Level Undo Capability

Many Windows applications provide their users with an interface that includes OK and Cancel but-
tons (or some variation on that theme). When the user clicks an OK button, the expectation is that
any work the user has done will be saved. Likewise, when the user clicks a Cancel button, he expects
that any changes he’s made will be reversed or undone.

Simple applications can often deliver this functionality by saving the data to a database when
the user clicks OK, and discarding the data when they click Cancel. For slightly more complex appli-
cations, the application must be able to undo any editing on a single object when the user presses
the Esc key. (This is the case for a row of data being edited in a DataGridView: if the user presses Esc,
the row of data should restore its original values.)

37

38

CHAPTER 2 © FRAMEWORK DESIGN

When applications become much more complex, however, these approaches won't work.
Instead of simply undoing the changes to a single row of data in real time, you may need to be able
to undo the changes to a row of data at some later stage.

Note It is important to realize that the n-level undo capability implemented in the framework is optional and is
designed to incur no overhead if it is not used.

Consider the case of an Invoice object that contains a collection of LineItem objects. The Invoice
itself contains data that the user can edit, plus data that’s derived from the collection. The TotalAmount
property of an Invoice, for instance, is calculated by summing up the individual Amount properties of
its LineItem objects. Figure 2-2 illustrates this arrangement.

| Invoice 3
Class

[= Properties
25 Tokalamount

&7 Lineltems

(LineItems 3
Class

= Methods
0 SumAmaounts

7 Lineltem

(LineItem 3
Class

[= Properties

ﬁ Armount

Figure 2-2. Relationship between the Invoice, Lineltems, and Lineltem classes

The UI may allow the user to edit the LineItem objects, and then press Enter to accept the
changes to the item, or Esc to undo them. However, even if the user chooses to accept changes
to some LineItem objects, they can still choose to cancel the changes on the Invoice itself. Of
course, the only way to reset the Invoice object to its original state is to restore the states of the
LineItem objects as well; including any changes to specific LineItem objects that might have
been “accepted” earlier.

As if this weren't enough, many applications have more complex hierarchies of objects and
subobjects (which I'll call child objects). Perhaps the individual LineItem objects each have a col-
lection of Component objects beneath them. Each one represents one of the components sold to
the customer that make up the specific line item, as shown in Figure 2-3.

CHAPTER 2 © FRAMEWORK DESIGN

| Invoice 3
Class

[= Properties
25 Tokalamount

&7 Lineltems

(" LineItems 3
Class

= Methods
0 SumAmaounts

7 Lineltem

(LineItem 3
Class

[= Properties

ﬁ Armount

& Components

[Components @&
Class

|

& Component

[Component @&
Class

Figure 2-3. Class diagram showing a more complex set of class relationships

Now things get even more complicated. If the user edits a Component object, those changes ulti-
mately impact the state of the Invoice object itself. Of course, changing a Component also changes
the state of the LineItem object that owns the Component.

The user might accept changes to a Component, but cancel the changes to its parent LineItem
object, thereby forcing an undo operation to reverse accepted changes to the Component. Or in an even
more complex scenario, the user may accept the changes to a Component and its parent LineItem, only
to cancel the Invoice. This would force an undo operation that reverses all those changes to the child
objects.

Implementing an undo mechanism to support such n-level scenarios isn't trivial. The applica-
tion must implement code to take a snapshot of the state of each object before it’s edited, so that
changes can be reversed later on. The application might even need to take more than one snapshot
of an object’s state at different points in the editing process, so that the object can revert to the
appropriate point based on when the user chooses to accept or cancel any edits.

Note This multilevel undo capability flows from the user’s expectations. Consider a typical word processor,
in which the user can undo multiple times to restore the content to ever-earlier states.

39

40

CHAPTER 2 © FRAMEWORK DESIGN

And the collection objects are every bit as complex as the business objects themselves. The
application must handle the simple case in which a user edits an existing LineItem, but it must also
handle the case in which a user adds a new LineItem and then cancels changes to the parent or
grandparent, resulting in the new LineItem being discarded. Equally, it must handle the case in
which the user deletes a LineItem and then cancels changes to the parent or grandparent, thereby
causing that deleted object to be restored to the collection as though nothing had ever happened.

N-level undo is a perfect example of complex code that shouldn't be written into every busi-
ness object. Instead, this functionality should be written once, so that all business objects support
the concept and behave the way we want them to. This functionality will be incorporated directly
into the business object framework—but at the same time, the framework must be sensitive to the
different environments in which the objects will be used. Although n-level undo is of high impor-
tance when building sophisticated Windows user experiences, it’s virtually useless in a typical web
environment.

In web-based applications, the user typically doesn’'t have a Cancel button. They either
accept the changes, or navigate away to another task, allowing the application to simply discard
the changed object. In this regard, the web environment is much simpler, so if n-level undo isn’t
useful to the web UI developer, it shouldn’t incur any overhead if it isn’t used. The framework
design will take into account that some Ul types will use the concept, though others will simply
ignore it.

N-level undo is optional and won't incur any overhead if it isn’t used by the UI developer.

Tracking Broken Business Rules

Alot of business logic involves the enforcement of business rules. The fact that a given piece of data
is required is a business rule. The fact that one date must be later than another date is a business
rule. Some business rules are the result of calculations, though others are merely toggles. In any
case, a business or validation rule is either broken or not. And when one or more rules are broken,
the object is invalid.

Because all rules ultimately return a Boolean value, it is possible to abstract the concept of
validation rules to a large degree. Every rule is implemented as a bit of code. Some of the code
might be trivial, such as comparing the length of a string and returning false if the value is zero.
Other code might be more complex, involving validation of the data against a lookup table or
through a numeric algorithm. Either way, a rule can be expressed as a method that returns a
Boolean result.

The .NET Framework provides the Delegate concept, making it possible to formally define
a method signature for a type of method. A Delegate defines a reference type (an object) that repre-
sents a method. Essentially, delegates turn methods into objects, allowing you to write code that
treats the method like an object; and of course they also allow you to invoke the method.

I'll use this capability in the framework to formally define a method signature for all validation
rules. This will allow the framework to maintain a list of validation rules for each object, enabling
relatively simple application of those rules as appropriate. With that done, every object can easily
maintain a list of the rules that are broken at any point in time.

Note There are commercial business rule engines and other business rule products that strive to take the
business rules out of the software and keep it in some external location. Some of these are powerful and valu-
able. For most business applications, however, the business rules are typically coded directly into the software.
When using object-oriented design, this means coding them into the objects.

A fair number of business rules are of the toggle variety: required fields, fields that must be a
certain length (no longer than, no shorter than), fields that must be greater than or less than other

CHAPTER 2 © FRAMEWORK DESIGN 4

fields, and so forth. The common theme is that business rules, when broken, immediately make the
object invalid. In short, an object is valid if no rules are broken, but invalid if any rules are broken.

Rather than trying to implement a custom scheme in each business object in order to keep track
of which rules are broken and whether the object is or isn't valid at any given point, this behavior can
be abstracted. Obviously, the rules themselves are often coded into an application, but the tracking of
which rules are broken and whether the object is valid can be handled by the framework.

Tip Defining a validation rule as a method means you can create libraries of reusable rules for your application.
The framework in this book actually includes a small library with some of the most common validation rules so you
can use them in applications without having to write them at all.

The result is a standardized mechanism by which the developer can check all business objects
for validity. The UI developer should also be able to retrieve a list of currently broken rules to dis-
play to the user (or for any other purpose).

Additionally, this provides the underlying data required to implement the System.
ComponentModel. IDataErrorInfo interface defined by the .NET Framework. This interface is used
by the ErrorProvider and DataGridView controls in Windows Forms to automate the display of
validation errors to the user.

The list of broken rules is obviously linked to the framework’s n-level undo capability. If the
user changes an object’s data so that the object becomes invalid, but then cancels the changes, the
original state of the object must be restored. The reverse is true as well: an object may start out
invalid (perhaps because a required field is blank), so the user must edit data until it becomes valid.
If the user later cancels the object (or its parent, grandparent, etc.), then the object must become
invalid once again, because it will be restored to its original invalid state.

Fortunately, this is easily handled by treating the broken rules and validity of each object as
part of that object’s state. When an undo operation occurs, not only is the object’s core state
restored, but so is the list of broken rules associated with that state. The object and its rules are
restored together.

Tracking Whether the Object Has Changed

Another concept is that an object should keep track of whether its state data has been changed.
This is important for the performance and efficiency of data updates. Typically, data should only
be updated into the database if the data has actually changed. It’s a waste of effort to update the
database with values it already has! Although the UI developer could keep track of whether any
values have changed, it’s simpler to have the object take care of this detail, and it allows the object
to better encapsulate its behaviors.

This can be implemented in a number of ways, ranging from keeping the previous values of all
fields (allowing comparisons to see if they've changed), to saying that any change to a value (even
“changing” it to its original value) will result in the object being marked as having changed.

Rather than having the framework dictate one cost over the other, it will simply provide a
generic mechanism by which the business logic can tell the framework whether each object has
been changed. This scheme supports both extremes of implementation, allowing you to make a
decision based on the requirements of a specific application.

Strongly Typed Collections of Child Objects

The .NET Framework includes the System.Collections.Generic namespace, which contains a num-
ber of powerful collection objects, including List(0f T),Dictionary(0f TKey, TValue), and others.

42

CHAPTER 2 © FRAMEWORK DESIGN

There’s also System.ComponentModel.BindinglList(Of T), which provides collection behaviors and
full support for data binding.

A Short Primer on Generics

Generic types are a new feature in .NET 2.0. A generic type is a template that defines a set of
behaviors, but the specific data type is specified when the type is used rather than when it is
created. Perhaps an example will help.

Consider the ArraylList collection type. It provides powerful list behaviors, but it stores all
its items as type Object. While you can wrap an ArraylList with a strongly typed class, or create
your own collection type in many different ways, the items in the list are always stored in mem-
ory as type object.

The new List(0f T) collection type has the same behaviors as ArrayList, but it is strongly
typed—all the way to its core. The type of the indexer, enumerator, Remove (), and other methods
are all defined by the generic type parameter, T. Even better, the items in the list are stored in
memory as type T, not type Object.

So what is T? It is the type provided when the List(0f T) is created. For instance:

Dim myList As New List(Of Integer)

In this case, T is Integer, meaning that myList is a strongly typed list of Integer values. The
public properties and methods of myList are all of type Integer, and the values it contains are
stored internally as Integer values.

Not only do generic types offer type safety due to their strongly typed nature, but they typically
offer substantial performance benefits because they avoid storing values as type Object.

Strongly Typed Collections of Child Objects

Sadly, the basic functionality provided by even the generic collection classes isn’t enough to inte-
grate fully with the rest of the framework. As mentioned previously, the business objects need to
support some relatively advanced features, such as undo capabilities. Following this line of reason-
ing, the n-level undo capabilities discussed earlier must extend into the collections of child objects,
thereby ensuring that child object states are restored when an undo is triggered on the parent
object. Even more complex is the support for adding and removing items from a collection, and
then undoing the addition or the removal if an undo occurs later on.

Also, a collection of child objects needs to be able to indicate if any of the objects it contains
are dirty. Although the business object developer could easily write code to loop through the child
objects to discover whether any are marked as dirty, it makes a lot more sense to put this func-
tionality into the framework’s collection object. That way, the feature is simply available for use.
The same is true with validity: if any child object is invalid, then the collection should be able to
report that it’s invalid. If all child objects are valid, then the collection should report itself as being
valid.

As with the business objects themselves, the goal of the business framework will be to make
the creation of a strongly typed collection as close to normal .NET programming as possible,
while allowing the framework to provide extra capabilities common to all business objects. What
I'm defining here are two sets of behaviors: one for business objects (parent and/or child) and
one for collections of business objects. Though business objects will be the more complex of the
two, collection objects will also include some very interesting functionality.

CHAPTER 2 © FRAMEWORK DESIGN

Simple and Abstract Model for the UI Developer

At this point, I've discussed some of the business object features that the framework will support.
One of the key reasons for providing these features is to make the business object support
Windows- and web-style user experiences with minimal work on the part of the UT developer.

In fact, this should be an overarching goal when you're designing business objects for a system.
The Ul developer should be able to rely on the objects to provide business logic, data, and related
services in a consistent manner.

Beyond all the features already covered are the issues of creating new objects, retrieving
existing data, and updating objects in some data store. I'll discuss the process of object persist-
ence later in the chapter, but first this topic should be considered from the UI developer’s
perspective. Should the UI developer be aware of any application servers? Should they be aware
of any database servers? Or should they simply interact with a set of abstract objects? There are
three broad models to choose from:

e Ul-in-charge

e Object-in-charge

* Class-in-charge

To a greater or lesser degree, all three of these options hide information about how objects are
created and saved and allow us to exploit the native capabilities of .NET. In the end, I'll settle on the

option that hides the most information (keeping development as simple as possible) and best
allows you to exploit the features of .NET.

Note Inevitably, the result will be a compromise. As with many architectural decisions, there are good argu-
ments to be made for each option. In your environment, you may find that a different decision would work better.
Keep in mind, though, that this particular decision is fairly central to the overall architecture of the framework, so
choosing another option will likely result in dramatic changes throughout the framework.

To make this as clear as possible, the following discussion will assume the use of a physical
n-tier configuration, whereby the client or web server is interacting with a separate application
server, which in turn interacts with the database. Although not all applications will run in such
configurations, it will be much easier to discuss object creation, retrieval, and updating in this
context.

Ul-in-Charge
One common approach to creating, retrieving, and updating objects is to put the UI in charge of
the process. This means that it’s the UI developer’s responsibility to write code that will contact the
application server in order to retrieve or update objects.

In this scheme, when a new object is required, the UI will contact the application server and
ask it for a new object. The application server can then instantiate a new object, populate it with
default values, and return it to the UI code. The code might be something like this:

Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Dim cust As Customer = svr.CreateCustomer

Here the object of type AppServer is anchored, so it always runs on the application server. The
Customer object is mobile, so although it’s created on the server, it’s returned to the UT by value.

43

44

CHAPTER 2 © FRAMEWORK DESIGN

Note This code example uses the .NET Remoting technology to contact a web server and have it instantiate
an object on the server. In Chapter 4, you’ll see how to do this with Web Services and Enterprise Services as
well. Sometime late in 2006, Microsoft plans to release the Windows Communication Foundation (WCF), code-
name Indigo, to replace and update all these technologies. The design in Chapter 4 will leave the door open to
easily add support for WCF when it becomes available.

This may seem like a lot of work just to create a new, empty object, but it’s the retrieval of
default values that makes it necessary. If the application has objects that don’t need default val-
ues, or if you're willing to hard-code the defaults, you can avoid some of the work by having the
Ul simply create the object on the client workstation. However, many business applications have
configurable default values for objects that must be loaded from the database; and that means
the application server must load them.

Retrieving an existing object follows the same basic procedure. The UI passes criteria to the
application server, which uses the criteria to create a new object and load it with the appropriate
data from the database. The populated object is then returned to the UI for use. The UI code might
be something like this:

Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Dim cust As Customer = svr.GetCustomer(myCriteria)

Updating an object happens when the UI calls the application server and passes the object to
the server. The server can then take the data from the object and store it in the database. Because
the update process may result in changes to the object’s state, the newly saved and updated object
is then returned to the UL The UI code might be something like this:

Dim svr As AppServer = _
(Type(Activator.GetObject (GetType(AppServer),
"http://myserver/myroot/appserver.rem"), AppServer)
cust = svr.UpdateCustomer(cust)

Overall, this model is straightforward—the application server must simply expose a set of
services that can be called from the UI to create, retrieve, update, and delete objects. Each object
can simply contain its business logic, without the object developer having to worry about appli-
cation servers or other details.

The drawback to this scheme is that the UT code must know about and interact with the
application server. If the application server is moved, or some objects come from a different server,
then the UI code must be changed. Moreover, if a Windows Ul is created to use the objects, and
then later a web Ul is created that uses those same objects, you'll end up with duplicated code.

Both types of UI will need to include the code in order to find and interact with the application
server.

The whole thing is complicated further if you consider that the physical configuration of the
application should be flexible. It should be possible to switch from using an application server
to running the data access code on the client just by changing a configuration file. If there’s code
scattered throughout the UI that contacts the server any time an object is used, then there will
be a lot of places where developers might introduce a bug that prevents simple configuration file
switching.

CHAPTER 2 © FRAMEWORK DESIGN

Object-in-Charge
Another option is to move the knowledge of the application server into the objects themselves.

The UI can just interact with the objects, allowing them to load defaults, retrieve data, or update
themselves. In this model, simply using the New keyword creates a new object:

Dim cust As New Customer

Within the object’s constructor, you would then write the code to contact the application
server and retrieve default values. It might be something like this:

Public Sub New()
Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Dim values() As Object = svr.GetCustomerDefaults

Copy the values into our local fields
End Sub

Notice that the above code does nottake advantage of the built-in support for passing an
object by value across the network. Ideally, the code would look more like this:

Public Sub New()
Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Me = svr.CreateCustomer
End Sub

But it won't work because you can’t change the value of Me. While the compiler won’'t complain,
at runtime the value won't be set.

This means you're left to retrieve the data in some other manner (Array, Hashtable, DataSet,
an XML document, or some other data structure) and then load it into the object’s fields. The end
result is that you have to write code on both the server and in the business class in order to manu-
ally copy the data values.

Given that both the UlI-in-charge and class-in-charge techniques avoid all this extra coding,
let’s just abort the discussion of this option and move on.

Class-in-Charge (Factory Pattern)

The UlI-in-charge approach uses .NET’s ability to pass objects by value, but requires the UI devel-
oper to know about and interact with the application server. The object-in-charge approach enables
a very simple set of UI code, but makes the object code prohibitively complex by making it virtually
impossible to pass the objects by value.

The class-in-charge option provides a good compromise by providing reasonably simple
UI code that’s unaware of application servers, while also allowing the use of .NET’s ability to pass
objects by value, thus reducing the amount of “plumbing” code needed in each object. Hiding
more information from the UT helps create a more abstract and loosely coupled implementation,
thus providing better flexibility.

45

46 CHAPTER 2 © FRAMEWORK DESIGN

Note The class-in-charge approach is a variation on the Factory design pattern, in which a “factory” method is
responsible for creating and managing an object. In many cases, these factory methods are Shared methods that
may be placed directly into a business class—hence the class-in-charge moniker.'

In this model, I'll make use of the concept of Shared factory methods on a class. A Shared
method can be called directly, without requiring an instance of the class to be created first. For
instance, suppose that a Customer class contains the following code:

<Serializable()> _
Public Class Customer

Public Shared Function NewCustomer() As Customer
Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Return svr.CreateCustomer
End Function
End Class

Then the UT code could use this method without first creating a Customer object, as follows:
Dim cust As Customer = Customer.NewCustomer

A common example of this tactic within the .NET Framework itself is the Guid class, whereby
a Shared method is used to create new Guid values, as follows:

Dim myGuid As Guid = Guid.NewGuid

This accomplishes the goal of making the UI code reasonably simple; but what about the
Shared method and passing objects by value? Well, the NewCustomer () method contacts the appli-
cation server and asks it to create a new Customer object with default values. The object is created
on the server and then returned back to the NewCustomer () code, which is running on the client.
Now that the object has been passed back to the client by value, the method simply returns it to
the UI for use.

Likewise, you can create a Shared method in the class in order to load an object with data from
the data store, as shown:

Public Shared Function GetCustomer(ByVal criteria As String) As Customer

Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Return svr.GetCustomer(criteria)
End Function

Again, the code contacts the application server, providing it with the criteria necessary to load
the object’s data and create a fully populated object. That object is then returned by value to the
GetCustomer () method running on the client, and then back to the UT code.

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley, 1995).

CHAPTER 2 © FRAMEWORK DESIGN

As before, the UI code remains simple:
Dim cust As Customer = Customer.GetCustomer(myCriteria)

The class-in-charge model requires that you write Shared factory methods in each class, but
keeps the UI code simple and straightforward. It also takes full advantage of .NET'’s ability to pass
objects across the network by value, thereby minimizing the plumbing code in each object. Overall,
it provides the best solution, which will be used (and explained further) in the chapters ahead.

Supporting Data Binding

For more than a decade, Microsoft has included some kind of data binding capability in its devel-
opment tools. Data binding allows developers to create forms and populate them with data with
almost no custom code. The controls on a form are “bound” to specific fields from a data source
(such as a DataSet or a business object).

With .NET 2.0, Microsoft has dramatically improved data binding for both Windows Forms
and Web Forms. The primary benefits or drivers for using data binding in .NET development
include the following:

» Data binding offers good performance, control, and flexibility.
¢ Data binding can be used to link controls to properties of business objects.
e Data binding can dramatically reduce the amount of code in the UL

¢ Data binding is sometimes faster than manual coding, especially when loading data into
list boxes, grids, or other complex controls.

Of these, the biggest single benefit is the dramatic reduction in the amount of UI code that
must be written and maintained. Combined with the performance, control, and flexibility of .NET
data binding, the reduction in code makes it a very attractive technology for UI development.

In both Windows Forms and Web Forms, data binding is read-write, meaning that an element
of a data source can be bound to an editable control so that changes to the value in the control will
be updated back into the data source as well.

Data binding in .NET 2.0 is very powerful. It offers good performance with a high degree of
control for the developer. Given the coding savings gained by using data binding, it’s definitely
a technology that needs to be supported in the business object framework.

Enabling the Objects for Data Binding

Although data binding can be used to bind against any object or any collection of homogeneous
objects, there are some things that object developers can do to make data binding work better.
Implementing these “extra” features enables data binding to do more work for us, and provide the
user with a superior experience. The .NET DataSet object, for instance, implements these extra
features in order to provide full data binding support to both Windows Forms and Web Forms
developers.

The IEditableObject Interface

All editable business objects should implement the interface called System.ComponentModel.
IEditableObject. This interface is designed to support a simple, one-level undo capability, and is
used by simple forms-based data binding and complex grid-based data binding alike.

In the forms-based model, IEditableObject allows the data binding infrastructure to notify
the business object before the user edits it, so that the object can take a snapshot of its values.
Later, the application can tell the object whether to apply or cancel those changes, based on the

47

48

CHAPTER 2 © FRAMEWORK DESIGN

user’s actions. In the grid-based model, each of the objects is displayed in a row within the grid.
In this case, the interface allows the data binding infrastructure to notify the object when its row
is being edited, and then whether to accept or undo the changes based on the user’s actions. Typi-
cally, grids perform an undo operation if the user presses the Esc key, and an accept operation if
the user presses Enter or moves off that row in the grid by any other means.

The INotifyPropertyChanged Interface

Editable business objects need to raise events to notify data binding any time their data values
change. Changes that are caused directly by the user editing a field in a bound control are sup-
ported automatically—however, if the object updates a property value through code, rather than
by direct user editing, the object needs to notify the data binding infrastructure that a refresh of
the display is required.

The .NET Framework defines System.ComponentModel.INotifyPropertyChanged, which should
be implemented by any bindable object. This interface defines the PropertyChanged event that data
binding can handle to detect changes to data in the object.

The IBindingList Interface

All business collections should implement the interface called System.ComponentModel.
IBindingList. The simplest way to do this is to have the collection classes inherit from System.
ComponentModel.BindinglList(Of T). This generic class implements all the collection interfaces
required to support data binding:

e IBindinglist
e Ilist

e ICollection
e IEnumerable
e ICancelAddNew

* IRaiseItemChangedEvents

As you can see, being able to inherit from BindinglList(0f T) is very valuable. Otherwise, the
business framework would need to manually implement all these interfaces.

This interface is used in grid-based binding, in which it allows the control that’s displaying the
contents of the collection to be notified by the collection any time an item is added, removed, or
edited, so that the display can be updated. Without this interface, there’s no way for the data bind-
ing infrastructure to notify the grid that the underlying data has changed, so the user won't see
changes as they happen.

Along this line, when a child object within a collection changes, the collection should notify
the UT of the change. This implies that every collection object will listen for events from its child
objects (via INotifyPropertyChanged), and in response to such an event will raise its own event
indicating that the collection has changed.

Events and Serialization

The events that are raised by business collections and business objects are all valuable. Events
support the data binding infrastructure and enable utilization of its full potential. Unfortunately,
there’s a conflict between the idea of objects raising events and the use of .NET serialization via
the <Serializable()> attribute.

CHAPTER 2 © FRAMEWORK DESIGN

When an object is marked as <Serializable()>, the .NET Framework is told that it can pass
the object across the network by value. As part of this process, the object will be automatically con-
verted into a byte stream by the .NET runtime. It also means that any other objects referenced by
the object will be serialized into the same byte stream, unless the field representing it is marked
with the <NonSerialized()> attribute. What may not be immediately obvious is that events create
an object reference behind the scenes.

When an object declares and raises an event, that event is delivered to any object that has a
handler for the event. Windows Forms often handle events from objects, as illustrated in Figure 2-4.

[|

Dim obj As New MyObject
AddHandler obj.myevent, AddressOf Me.myHandler

+g+
<+
bens

Figure 2-4. A Windows form referencing a business object

How does the event get delivered to the handling object? Well, it turns out that behind every
event is a delegate—a strongly typed reference that points back to the handling object. This means
that any object that raises events can end up with bidirectional references between the object and
the other object/entity that is handling those events, as shown in Figure 2-5.

||

Dim obj As New MyObject
AddHandler obj.myevent, AddressOf Me.myHandler

Event
Delegate

— >
<«

+g+
<+
by

Figure 2-5. Handling an event on an object causes a back reference to the form.

Even though this back reference isn't visible to developers, it's completely visible to the .NET
serialization infrastructure. When serializing an object, the serialization mechanism will trace
this reference and attempt to serialize any objects (including forms) that are handling the events!

49

50

CHAPTER 2 © FRAMEWORK DESIGN

Obviously, this is rarely desirable. In fact, if the handling object is a form, this will fail outright
with a runtime error, because forms aren'’t serializable.

Note If any non-serializable object handles events that are raised by a serializable object, you’ll be unable to
serialize the object because the .NET runtime serialization process will error out.

Solving this means marking the events as <NonSerialized()>. It turns out that this requires
a bit of special syntax when dealing with events. Specifically, a more explicit block structure must be
used to declare the event. This approach allows manual declaration of the delegate field so that it is
possible to mark that field as <NonSerialized()>. The BindinglList(Of T) class already declares its
event in this manner, so this issue only pertains to the implementation of INotifyPropertyChanged
(or any custom events you choose to declare in your business classes).

The IDataErrorInfo Interface

Earlier, I discussed the need for objects to implement business rules and expose information about
broken rules to the UL The System.ComponentModel.IDataErrorInfo interface is designed to allow
data binding to request information about broken validation rules from a data source.

Given that the object framework will already help the objects manage a list of all currently bro-
ken validation rules, you'll already have the tools needed to easily implement IDataErrorInfo. This
interface defines two methods. The first allows data binding to request a text description of errors
at the object level, while the second provides a text description of errors at the property level.

By implementing this interface, the objects will automatically support the feedback mechanisms
built into the Windows Forms DataGridView and ExrrorProvider controls.

Object Persistence and Object-Relational Mapping

One of the biggest challenges facing a business developer building an object-oriented system is that
a good object model is almost never the same as a good relational data model. Because most data is
stored in relational databases using a relational model, we're faced with the significant problem of
translating that data into an object model for processing, and then changing it back to a relational
model later on to persist the data from the objects back into the data store.

Note The framework in this book doesn’t require a relational model, but since that is the most common data
storage technology, | focus on it quite a bit. You should remember that the concepts and code shown in this chap-
ter can be used against XML files, object databases, or almost any other data store you are likely to use.

Relational vs. Object Modeling

Before going any further, let’s make sure we're in agreement that object models aren’t the same as
relational models. Relational models are primarily concerned with the efficient storage of data, so
that replication is minimized. Relational modeling is governed by the rules of normalization, and
almost all databases are designed to meet at least the third normal form. In this form, it’s quite
likely that the data for any given business concept or entity is split between multiple tables in the
database in order to avoid any duplication of data.

Object models, on the other hand, are primarily concerned with modeling behavior, not data.
It’s not the data that defines the object, but the role the object plays within your business domain.

CHAPTER 2 © FRAMEWORK DESIGN

Every object should have one clear responsibility and a limited number of behaviors focused on ful-
filling that responsibility.

Tip |1 recommend the book Object Thinking, by David West (DV-Microsoft Professional, 2004), for some
good insight into behavioral object modeling and design. Though my ideas differ somewhat from those in
Object Thinking, | use many of the concepts and language from that book in my own object-oriented design
work and in this book.

For instance, a Customer object may be responsible for adding and editing customer data.

A CustomerInfo object in the same application may be responsible for providing read-only access
to customer data. Both objects will use the same data from the same database and table, but they
provide different behaviors.

Similarly, an Invoice object may be responsible for adding and editing invoice data. But
invoices include some customer data. A naive solution is to have the Invoice object make use of
the aforementioned Customer object, but that’s not a good answer. That Customer object should only
be used in the case where the application is adding or editing customer data—something that isn’t
occurring while working with invoices. Instead, the Invoice object should directly interact with the
customer data that it needs to do its job.

Through these two examples, it should be clear that sometimes multiple objects will use the
same relational data. In other cases, a single object will use relational data from different data enti-
ties. In the end, the same customer data is being used by three different objects. The point, though,
is that each one of these objects has a clearly defined responsibility that defines the object’s behav-
ior. Data is merely a resource that the object needs to implement that behavior.

Behavioral Object-Oriented Design

It is a common trap to think that data in objects needs to be normalized like it is in a database.
A better way to think about objects is to say that behavior should be normalized. The goal of object-
oriented design is to avoid replication of behavior, not data.

Note In object-oriented design, behavior should be normalized, not data.

At this point, most people are struggling. Most developers have spent years programming
their brains to think relationally, and this view of object-oriented design flies directly in the face
of that conditioning. Yet the key to the successful application of object-oriented design is to
divorce object thinking from relational or data thinking.

Perhaps the most common objection at this point is this: if two objects (say, Customer and
Invoice) both use the same data (say, the customer’s name), how do you make sure that consistent
business rules are applied to that data? And this is a good question.

The answer is that the behavior must be normalized. Business rules are merely a form of
behavior. The business rule specifying that the customer name value is required, for instance, is just
a behavior associated with that particular value.

Earlier in the chapter, I discussed the idea that a validation rule can be reduced to a method
defined by a Delegate. A Delegate is just an object that points to a method, so it is quite possible to
view the Delegate itself as the rule. Following this train of thought, every rule then becomes an
object.

Behavioral object-oriented design relies heavily on the concept of collaboration. Collaboration
is the idea that an object should collaborate with other objects to do its work. If an object starts to

51

CHAPTER 2 © FRAMEWORK DESIGN

become complex, you can break the problem into smaller, more digestible parts by moving some
of the sub-behaviors into other objects that collaborate with the original object to accomplish the
overall goal.

In the case of a required customer name value, there’s a Rule object that defines that behavior.
Both the Customer and Invoice objects can collaborate with that Rule object to ensure that the rule
is consistently applied. As you can see in Figure 2-6, the actual rule is only implemented once, but
is used as appropriate—effectively normalizing that behavior.

It could be argued that the CustomerName concept should become an object of its own, and
that this object would implement the behaviors common to the field. While this sounds good in
an idealistic sense, it has serious performance and complexity drawbacks when implemented on
development platforms such as .NET. Creating a custom object for every field in your application
can rapidly become overwhelming, and such an approach makes the use of technologies like data
binding very complex.

My approach of normalizing the rules themselves provides a workable compromise—
providing a high level of code reuse while still offering good performance and allowing the
application to take advantage of all the features of the .NET platform.

(customer €5 Invoice ¥
Class Class

(NameRequiredRule 63
& NameRequredrule | Class S MameRequiredRule
= Methods

‘i CustomerhameRequired

Figure 2-6. Normalizing the customer name required behavior

In fact, the idea that a string value is required is so pervasive that it can be normalized to a
general StringRequired rule that can be used by any object with a required property anywhere in
an application. In Chapter 5, I'll implement a CommonRules class containing several common vali-
dation rules of this nature.

Object-Relational Mapping

If object models aren'’t the same as relational models (or some other data models that we might be
using), some mechanism is needed by which data can be translated from the Data Storage and
Management layer up into the object-oriented Business Logic layer.

Note This is a well-known issue within the object-oriented community. It is commonly referred to as the
impedance mismatch problem, and one of the best discussions of it can be found in David Taylor’s book,
Object Technology: A Manager's Guide, 2nd Edition (Addison-Wesley, 1997).

Several object-relational mapping (ORM) products exist for the .NET platform from various
vendors. In truth, however, most ORM tools have difficulty working against object models defined
using behavioral object-oriented design. Unfortunately, most of the ORM tools tend to create

CHAPTER 2 © FRAMEWORK DESIGN

“superpowered” DataSet equivalents, rather than true behavioral business objects. In other words,
they create a data-centric representation of the business data and wrap it with business logic.

The difference between such a data-centric object model and what I am proposing in this
book are subtle but important. Behavioral object modeling creates objects that are focused on
the object’s behavior, not on the data it contains. The fact that objects contain data is merely a
side effect of implementing behavior; the data is not the identity of the object. Most ORM tools,
by contrast, create objects based around the data, with the behavior being a side effect of the
data in the object.

Beyond the philosophical differences, the wide variety of mappings you might need and the
potential for business logic to drive variations in the mapping from object to object make it virtu-
ally impossible to create a generic ORM product that can meet everyone’s needs.

Consider the Customer object example discussed earlier. While the customer data may come
from one database, it is totally realistic to consider that some data may come from SQL Server while
other data comes through screen-scraping a mainframe screen. It’s also quite possible that the busi-
ness logic will dictate that some of the data is updated in some cases, but not in others. Issues like
these are virtually impossible to solve in a generic sense, and so solutions almost always revolve
around custom code. The most a typical ORM tool can do is provide support for simple cases, in
which objects are updated to and from standard, supported, relational data stores. At most, they’ll
provide hooks with which their behavior can be customized. Rather than trying to build a generic
ORM product as part of this book, I'll aim for a much more attainable goal.

The framework in this book will define a standard set of four methods for creating, retrieving,
updating, and deleting objects. Business developers will implement these four methods to work
with the underlying data management tier by using ADO.NET, the XML support in .NET, Web Ser-
vices, or any other technology required to accomplish the task. In fact, if you have an ORM (or some
other generic data access) product, you'll often be able to invoke that tool from these four methods
just as easily as using ADO.NET directly.

Note The approach taken in this book and the associated framework is very conducive to code generation.
Many people use code generators to automate the process of building common data access logic for their
objects—thus achieving high levels of productivity while retaining the ability to create a behavioral object-
oriented model.

The point is that the framework will simplify object persistence to the point at which all
developers need to do is implement these four methods in order to retrieve or update data. This
places no restrictions on the object’s ability to work with data, and provides a standardized per-
sistence and mapping mechanism for all objects.

Preserving Encapsulation

AsInoted at the beginning of the chapter, one of my key goals is to design this framework to pro-
vide powerful features while following the key object-oriented concepts, including encapsulation.

Encapsulation is the idea that all of the logic and data pertaining to a given business entity is
held within the object that represents that entity. Of course, there are various ways in which one
can interpret the idea of encapsulation—nothing is ever simple!

One approach is to encapsulate business data and logic in the business object, and then
encapsulate data access and ORM behavior in some other object: a persistence object. This pro-
vides a nice separation between the business logic and data access, and encapsulates both types
of behavior, as shown in Figure 2-7.

53

54

CHAPTER 2 © FRAMEWORK DESIGN

o 4 g
T ([T «—>
+ +

Busi.ness Persistence Data
Object Object Store

Figure 2-7. Separation of ORM logic into a persistence object

Although there are certainly some advantages to this approach, there are drawbacks, too.
The most notable of these is that it can be challenging to efficiently get the data from the persist-
ence object into or out of the business object. For the persistence object to load data into the
business object, it must be able to bypass business and validation processing in the business
object, and somehow load raw data into it directly. If the persistence object tries to load data
into the object using the object’s public properties, you'll run into a series of issues:

e The data already in the database is presumed valid, so a lot of processing time is wasted
unnecessarily revalidating data. This can lead to a serious performance problem when
loading a large group of objects.

e There’s no way to load read-only property values. Objects often have read-only properties for
things such as the primary key of the data, and such data obviously must be loaded into the
object, but it can't be loaded via the normal interface (if that interface is properly designed).

e Sometimes properties are interdependent due to business rules, which means that some
properties must be loaded before others or errors will result. The persistence object would
need to know about all these conditions so that it could load the right properties first. The
result is that the persistence object would become very complex, and changes to the busi-
ness object could easily break the persistence object.

On the other hand, having the persistence object load raw data into the business object breaks
encapsulation in a big way, because one object ends up directly tampering with the internal fields of
another. This could be implemented using reflection, or by designing the business object to expose its
private fields for manipulation. But the former is slow, and the latter is just plain bad object design: it
allows the UT developer (or any other code) to manipulate these fields, too. That’s just asking for the
abuse of the objects, which will invariably lead to code that’s impossible to maintain.

A much better approach, therefore, is to view encapsulation to mean that all the logic for
the business entity should be in the object—that is, the logic to support the UI developer (vali-
dation, calculation, and so on) and the data access logic. This way, the object encapsulates all
responsibility for its data—it has sole control over the data from the moment it leaves the data-
base until the time it returns to the database, as shown in Figure 2-8.

+ +

<3>
Business Data
Object Store

Figure 2-8. Business object directly managing persistence to the data store

CHAPTER 2 © FRAMEWORK DESIGN

This is a simpler way of doing things, because it keeps all of the logic for the entity within the
boundaries of a single object, and all the code within the boundaries of a single class. Any time
there’s a need to alter, enhance, or maintain the logic for an entity, you know exactly where to find
it. There’s no ambiguity regarding whether the logic is in the business object, the persistence
object, or possibly both—there’s only one object.

The new approach also has the benefit of providing optimal performance. Because the data
access code is inside the object, that code can interact directly with the object’s Private instance
fields. There’s no need to break encapsulation, or to resort to trickery such as reflection (or deal
with the resulting performance issues).

The drawback to this approach is that the data access code ends up inside the business class;
potentially blurring the line between the Business Logic layer and the Data Access layer in the
n-layer logical model. The framework will help to mitigate this by formally defining four methods
into which the data access code will be written, providing a clear and logical location for all data
access code within each object.

On balance, then, I prefer this second view, because it allows total encapsulation of all data and
logic pertaining to a business entity with very high performance. Better still, this is accomplished
using techniques and technologies that are completely supported within the .NET Framework, with-
out the need to resort to any complex or hard-to-code workarounds (such as using reflection to load
the data).

That said, the framework directly supports the idea of having a separate persistence object that
implements the Data Access layer. If you choose to take such an approach, it is up to you to deter-
mine how to transfer the data from the persistence object into the business object. You may choose
to use reflection to load field values directly, you may pass XML documents or data transfer objects
(DTOs) between the two objects, or you may simply open an ADO.NET DataReader and hand it back
to the business object.

Supporting Physical N-Tier Models

The question that remains, then, is how to support physical n-tier models if the UI-oriented and
data-oriented behaviors reside in one object?

Ul-oriented behaviors almost always involve a lot of properties and methods—a very fine-
grained interface with which the UI can interact in order to set, retrieve, and manipulate the
values of an object. Almost by definition, this type of object musz run in the same process as the
Ul code itself, either on the Windows client machine with Windows Forms, or on the web server
with Web Forms.

Conversely, data-oriented behaviors typically involve very few methods: create, fetch,
update, and delete. They must run on a machine where they can establish a physical connection
to the database server. Sometimes, this is the client workstation or web server, but often it means
running on a physically separate application server.

This point of apparent conflict is where the concept of mobile objects enters the picture. It’s pos-
sible to pass a business object from an application server to the client machine, work with the object,
and then pass the object back to the application server so that it can store its data in the database. To
do this, there needs to be some black-box component running as a service on the application server
with which the client can interact. This black-box component does little more than accept the object
from the client, and then call methods on the object to retrieve or update data as required. But the
object itself does all the real work. Figure 2-9 illustrates this concept, showing how the same physical
business object can be passed from application server to client, and vice versa, via a generic router
object that’s running on the application server.

In Chapter 1, I discussed anchored and mobile objects. In this model, the business object is
mobile, meaning that it can be passed around the network by value. The router object is anchored,
meaning that it will always run on the machine where it’s created.

55

56

CHAPTER 2 © FRAMEWORK DESIGN

In the framework, I'll refer to this router object as a data portal. It will act as a portal for all
data access for all the objects. The objects will interact with this portal in order to retrieve default
values (create), fetch data (read), update or insert data (update), and remove data (delete). This
means that the data portal will provide a standardized mechanism by which objects can perform
all CRUD operations.

The end result will be that each business class will include a factory method that the UI can
call in order to load an object based on data from the database, as follows:

Public Shared Function GetCustomer(ByVal customerId As String) As Customer
Return DataPortal.Fetch(Of Customer)(New Criteria(customerId))
End Function

Client Machine Application Database
Server Server

//

+
<&
Business Business
Object Object

Figure 2-9. Passing a business object to and from the application server

The actual data access code will be contained within each of the business objects. The data
portal will simply provide an anchored object on a machine with access to the database server,
and will invoke the appropriate CRUD methods on the business objects themselves. This means
that the business object will also implement a method that will be called by the data portal to
actually load the data. That method will look something like this:

Private Sub DataPortal Fetch(ByVal criteria As Criteria)
' Code to load the object's fields with data goes here
End Sub

The UI won't know (or need to know) how any of this works, so in order to create a Customer
object, the UI will simply write code along these lines:

Dim cust As Customer = Customer.GetCustomer("ABC")

The framework, and specifically the data portal, will take care of all the rest of the work,
including figuring out whether the data access code should run on the client workstation or on
an application server.

Using the data portal means that all the logic remains encapsulated within the business
objects, while physical n-tier configurations are easily supported. Better still, by implementing
the data portal correctly, you can switch between having the data access code running on the
client machine and placing it on a separate application server just by changing a configuration

CHAPTER 2 © FRAMEWORK DESIGN

file setting. The ability to change between different physical configurations with no changes to
code is a powerful, valuable feature.

Custom Authentication

Application security is often a challenging issue. Applications need to be able to authenticate the
user, which means that they need to verify the user’s identity. The result of authentication is not
only that the application knows the identity of the user, but that the application has access to the
user’s role membership and possibly other information about the user—collectively, I'll refer to
this as the user’s profile data. This profile data can be used by the application for various purposes,
most notably authorization.

The framework directly supports integrated security. This means that you can use objects
within the framework to determine the user’s Windows identity and any domain or Active Direc-
tory (AD) groups to which they belong. In some organizations, this is enough: all the users of the
organization’s applications are in the Windows NT domain or AD, and by having them log in to a
workstation or a website using integrated security, the applications can determine the user’s iden-
tity and roles (groups).

In other organizations, applications are used by at least some users who are not part of the
organization’s NT domain or AD. They may not even be members of the organization in question.
This is very often the case with web and mobile applications, but it’s surprisingly common with
Windows applications as well. In these cases, you can’t rely on Windows integrated security for
authentication and authorization.

To complicate matters further, the ideal security model would provide user profile and role
information not only to server-side code, but also to the code on the client. Rather than allowing
the user to attempt to perform operations that will generate errors due to security at some later
time, the UT should gray out the options, or not display them at all. This requires that the devel-
oper have consistent access to the user’s identity and profile at all layers of the application,
including the UI, Business Logic, and Data Access layers.

Remember that the layers of an application may be deployed across multiple physical tiers.
Due to this fact, there must be a way of transferring the user’s identity information across tier
boundaries. This is often called impersonation.

Implementing impersonation isn’t too hard when using Windows integrated security, but it’s
often problematic when relying solely on, say, COM+ role-based security, because there’s no easy
way to make the user’s COM+ role information available to the UI developer.

Note In May 2002, Juval Lowy wrote an article for MSDN magazine in which he described how to create
custom .NET security objects that merge NT domain or AD groups and COM+ roles so that both are available to
the application.?

The business framework will provide support for both Windows integrated security and cus-
tom authentication, in which you define how the user’s credentials are validated and the user’s
profile data and roles are loaded. This custom security is a model that you can adapt to use any
existing security tables or services that already exist in your organization. The framework will rely
on Windows itself to handle impersonation when using Windows integrated or AD security, and
will handle impersonation itself when using custom authentication.

2. Juval Lowy, “Unify the Role-Based Security Models for Enterprise and Application Domains with .NET”
(MSDN, May 2002). See http://msdn.microsoft.com/msdnmag/issues/02/05/rolesec.

57

58

CHAPTER 2 © FRAMEWORK DESIGN

Integrated Authorization

Applications also need to be able to authorize the user to perform (or not perform) certain opera-
tions, or view (or not view) certain data. Such authorization is typically handled by associating
users with roles, and then indicating which roles are allowed or disallowed for specific behaviors.

Note Authorization is just another type of business logic. The decisions about what a user can and can’t do or
can and can’t see within the application are business decisions. Although the framework will work with the .NET
Framework classes that support authentication, it’s up to the business objects to implement the rules themselves.

Earlier, I discussed authentication and how the framework will support both Windows inte-
grated or AD authentication, and custom authentication. Either way, the result of authentication is
that the application has access to the list of roles (or groups) to which the user belongs. This infor-
mation can be used by the application to authorize the user as defined by the business.

While authorization can be implemented manually within the application’s business code,
the business framework can help formalize the process in some cases. Specifically, objects must
use the user’s role information to restrict what properties the user can view and edit. There are
also common behaviors—such as loading, deleting, and saving an object—that are subject to
authorization.

As with validation rules, authorization rules can be distilled to a set of fairly simple yes/no
answers. A user either can or can't read a given property. The business framework will include
code to help a business object developer easily restrict which object properties a user can or can't
read or edit. In Chapters 7 and 8, you'll also see a common pattern that can be implemented by
all business objects to control whether an object can be retrieved, deleted, or saved.

Not only does this business object need access to this authorization information, but the UI
does as well. Ideally, a good UI will change its display based on how the current user is allowed to
interact with an object. To support this concept, the business framework will help the business
objects expose the authorization rules such that they are accessible to the UI layer without dupli-
cating the authorization rules themselves.

Framework Design

So far, I've been focused on the major goals for the framework. Having covered the guiding prin-
ciples, let’s move on to discuss the design of the framework so it can meet these goals. In the rest
of this chapter, I'll walk through the various classes that will combine to create the framework.
After covering the design, Chapters 3 through 5 will dive into the implementation of the frame-
work code.

A comprehensive framework can be a large and complex entity. There are usually many
classes that go into the construction of a framework, even though the end users of the frame-
work—the business developers—only use a few of those classes directly. The framework
discussed here and implemented in Chapters 3 through 5 accomplishes the goals I've just dis-
cussed, along with enabling the basic creation of object-oriented n-tier business applications.
For any given application or organization, this framework will likely be modified and enhanced
to meet specific requirements. This means that the framework will grow as you use and adapt
it to your environment.

The CSLA .NET framework contains a lot of classes and types, which can be overwhelming if
taken as a whole. Fortunately, it can be broken down into smaller units of functionality to better
understand how each part works. Specifically, the framework can be divided into the following
functional groups:

CHAPTER 2

* Business object creation

* N-level undo functionality

e Data binding support

e Validation rules

* A data portal enabling various physical configurations
¢ Transactional and nontransactional data access

¢ Authentication and authorization

* Helper types and classes

FRAMEWORK DESIGN

For each functional group, I'll focus on a subset of the overall class diagram, breaking it down
into more digestible pieces.

Business Object Creation

First, it's important to recognize that the key classes in the framework are those that business
developers will use as they create business objects, but that these are a small subset of what’s
available. In fact, many of the framework classes are never used directly by business developers.

Figure 2-10 shows only those classes the business developer will typically use.

i) IEditableCollection

ICloneable (P ICommandObject
| BusinessBase(Of T) ¥l | | BusinessListBase(Of T, C) ¥ | | CommandBase
i Generic MustInherit Class i Generic MustInherit Class i MustInherit Class
é - BusinessBase ‘

| BindingList(Of C)

ICloneable
IReadOnlyObject

IReadOnlyCollection
ICloneable

{" ReadoniyBase(0f T)
i Generic MustInherit Class
i

[«

[ReadonlyListBasa(Of T, €)
i Generic MustInherit Class
§ = ReadOnlyBindingList(Of C)

ICloneable
IBusinessObject

| MameValuelListBase(Of K, V)
: Generic MustInherit Class
= ReadOnlyBindingList(Of NameValuePair)

¥}
H
H

Figure 2-10. Framework classes used directly by business developers

Obviously, the business developer may periodically interact with other classes as well, but
these are the ones that will be at the center of most activity. Classes or methods that the business
developer shouldn’t have access to will be scoped to prevent accidental use.

Table 2-1 summarizes each class and its intended purpose.

59

60

CHAPTER 2 © FRAMEWORK DESIGN

Table 2-1. Business Framework Base Classes

Class Purpose

BusinessBase(Of T) Inherit from this class to create a single editable business object
such as Customer, Order, or OrderLineItem.

BusinessListBase(Of T, () Inherit from this class to create an editable collection of business
objects such as PaymentTerms or OrderLineItems.

CommandBase Inherit from this class to implement a command that should run
on the application server, such as implementation of a
Customer.Exists or an Order.ShipOrder command.

ReadOnlyBase(Of T) Inherit from this class to create a single read-only business object
such as OrderInfo or ProductStatus.

ReadOnlyListBase(Of T, C) Inherit from this class to create a read-only collection of objects
such as CustomerList or OrderList.

NameValuelistBase(Of K, V) Inherit from this class to create a read-only collection of
key/value pairs (typically for populating drop-down list controls)
such as PaymentTermsCodes or CustomerCategories.

Let’s discuss each class in a bit more detail.

BusinessBase

The BusinessBase class is the base from which all editable (read-write) business objects will be
created. In other words, to create a business object, inherit from BusinessBase, as shown here:

<Serializable()> _
Public Class Customer
Inherits BusinessBase(0f Customer)

End Class

When creating a subclass, the business developer must provide the specific type of new busi-
ness object as a type parameter to BusinessBase(0f T). This allows the generic BusinessBase type
to expose strongly typed methods corresponding to the specific business object type.

Behind the scenes, BusinessBase(0f T) inherits from Csla.Core.BusinessBase, which imple-
ments the majority of the framework functionality to support editable objects. The primary reason
for pulling the functionality out of the generic class into a normal class is to enable polymorphism.

Polymorphism is what allows you to treat all subclasses of a type as though they were an
instance of the base class. For instance, all Windows Forms—Form1, Form2, and so forth—can all
be treated as type Form. You can write code like this:

Dim form As Form = New Form2
form. Show()

This is polymorphic behavior, in which the variable form is of type Form, but references an
object of type Form2. The same code would work with Form1, because both inherit from the base
type Form.

It turns out that generic types are not polymorphic like normal types.

Another reason for inheriting from a non-generic base class is to make it simpler to cus-
tomize the framework. If needed, you can create alternative editable base classes starting with
the functionality in Core.BusinessBase.

Csla.Core.BusinessBase and the classes from which it inherits provide all the functionality
discussed earlier in this chapter, including n-level undo, tracking of broken rules, “dirty” tracking,
object persistence, and so forth. It supports the creation of root (top-level) objects and child

CHAPTER 2 © FRAMEWORK DESIGN

objects. Root objects are objects that can be retrieved directly from and updated or deleted within
the database. Child objects can only be retrieved or updated in the context of their parent object.

Note Throughout this book, it is assumed that you are building business applications, in which case almost all
objects are ultimately stored in the database at one time or another. Even if an object isn’t persisted to a database,
you can still use BusinessBase to gain access to the n-level undo, validation rule tracking, and “dirty” tracking
features built into the framework.

For example, an Invoice is typically a root object, though the LineItem objects contained by an
Invoice object are child objects. It makes perfect sense to retrieve or update an Invoice, but it makes
no sense to create, retrieve, or update a LineItem without having an associated Invoice. To make this
distinction, BusinessBase includes a method that can be called to indicate that the object is a child
object: MarkAsChild(). By default, business objects are assumed to be root objects, unless this
method is invoked. This means that a child object might look like this:

<Serializable()>
Public Class Child
Inherits BusinessBase(0f Child)

Private Sub New()
MarkAsChild()
End Sub
End Class

The BusinessBase class provides default implementations of the data access methods that
exist on all root business objects. These methods will be called by the data portal mechanism.
These default implementations all raise an error if they’re called. The intention is that the busi-
ness objects can opt to override these methods if they need to support, create, fetch, insert,
update, or delete operations. The names of these methods are as follows:

e DataPortal Create()

e DataPortal Fetch()

e DataPortal Insert()

e DataPortal Update()

e DataPortal DeleteSelf()

e DataPortal Delete()

Though Overridable implementations of these methods are in the base class, developers
will typically implement strongly typed versions of DataPortal Create(), DataPortal Fetch(),
and DataPortal Delete(), as they all accept a criteria object as a parameter. The Overridable
methods declare this parameter as type Object, of course; but a business object will typically
want to use the actual data type of the criteria object itself. This is discussed in more detail in
Chapters 7 and 8.

The data portal also supports three other (optional) methods for pre- and post-processing and
exception handling. The names of these methods are as follows:

e DataPortal OnDataPortallInvoke()

e DataPortal OnDataPortallInvokeComplete()

e DataPortal OnDataPortalException()

61

62

CHAPTER 2 © FRAMEWORK DESIGN

BusinessBase provides a great deal of functionality to the business objects, whether root or
child. Chapter 3 will cover the implementation of BusinessBase itself, and Chapters 7 and 8 will
show how to create business objects using BusinessBase.

BusinessListBase

The BusinessListBase class is the base from which all editable collections of business objects will
be created. Given an Invoice object with a collection of LineItem objects, BusinessListBase will be
the base for creating that collection:

<Serializable()> _
Public Class LineItems
Inherits BusinessListBase(Of LineItems, LineItem)

End Class

When creating a subclass, the business developer must provide the specific types of their
new business collection, and the child objects the collection contains, as type parameters to
BusinessListBase(Of T, C).This allows the generic type to expose strongly typed methods cor-
responding to the specific business collection type and the type of the child objects.

The result is that the business collection automatically has a strongly typed indexer, along
with strongly typed Add() and Remove () methods. The process is the same as if the object had
inherited from System.ComponentModel.BindinglList(0Of T), except that this collection will include
all the functionality required to support n-level undo, object persistence, and the other business
object features.

Note BusinesslistBase inherits from System.ComponentModel.Bindinglist(0Of T),so it starts with
all the core functionality of a data-bindable .NET collection.

The BusinessListBase class also defines the data access methods and the MarkAsChild()
method discussed in the previous BusinessBase section. This allows retrieval of a collection of
objects directly (rather than a single object at a time), if that’s what is required by the application
design.

CommandBase

Most applications consist not only of interactive forms or pages (which require editable objects
and collections), but also of non-interactive processes. In a 1- or 2-tier physical model, these
processes run on the client workstation or web server, of course. But in a 3-tier model, they
should run on the application server to have optimal access to the database server or other
back-end resources.

Common examples of non-interactive processes include tasks as simple as checking to see if
a specific customer or product exists, and as complex as performing all the back-end processing
required to ship an order or post an invoice.

The CommandBase class provides a clear starting point for implementing these types of behav-
iors. A command object is created on the client and initialized with the data it needs to do its work
on the server. It is then executed on the server through the data portal. Unlike other objects, how-
ever, command objects implement a special execute method:

DataPortal Execute()

CHAPTER 2 © FRAMEWORK DESIGN

The optional pre-, post-, and exception data portal methods can also be implemented if desired.
But the DataPortal Execute() method is the important one, since that is where the business devel-
oper writes the code to implement the non-interactive back-end processing.

I'll make use of CommandBase in Chapter 8 when implementing the sample application objects.

ReadOnlyBase

Sometimes, applications don’t want to expose an editable object. Many applications have objects
that are read-only or display-only. Read-only objects need to support object persistence only for
retrieving data, not for updating data. Also, they don’t need to support any of the n-level undo or
other editing-type behaviors, because they're created with read-only properties.

For editable objects, there’s BusinessBase, which has a property that can be set to indicate
whether it’s a parent or child object. The same base supports both types of objects, allowing
dynamic switching between parent and child at runtime.

Making an object read-only or read-write is a bigger decision, because it impacts the interface
of the object. A read-only object should only include read-only properties as part of its interface,
and that isn't something you can toggle on or off at runtime. By implementing a specific base class
for read-only objects, they can be more specialized, and have less overhead.

The ReadOnlyBase class is used to create read-only objects, as follows:

<Serializable()> _
Public Class StaticContent
Inherits ReadOnlyBase(Of StaticContent)

End Class

Classes shouldn't implement any read-write properties. Were they to do so, it would be entirely
up to the code in the object to handle any undo, persistence, or other features for dealing with the
changed data. If an object has editable properties, it should subclass from BusinessBase.

ReadOnlyListBase

Not only do applications sometimes need read-only business objects, but they also commonly
require immutable collections of objects. The ReadOnlyListBase class lets you create strongly typed
collections of objects whereby the object and collection are both read-only.

<Serializable()> _
Public Class Staticlist
Inherits ReadOnlylListBase(Of StaticlList, ChildType)

End Class

As with ReadOnlyBase, this object supports only the retrieval of data. It has no provision for
updating data or handling changes to its data. While the child objects in such a collection may
inherit from ReadOnlyBase, they don’'t have to. More commonly, the child objects in a read-only
collection are just simple .NET objects that merely expose read-only properties.

NameValueListBase

The NameValuelistBase class is designed specifically to support the idea of lookup tables or lists of
read-only key/value data such as categories, customer types, product types, and so forth. The goal
of this class is to simplify the process of retrieving such data and displaying it in common controls
like drop-down lists, combo boxes, and other list controls.

63

CHAPTER 2 © FRAMEWORK DESIGN

<Serializable()> _
Public Class Codelist
Inherits NameValuelListBase(Of Integer, String)

End Class

While the business developer does need to create a specific class for each type of name/value
data, inheriting from this base class largely trivializes the process.

N-Level Undo Functionality

The implementation of n-level undo functionality is quite complex, and involves heavy use of
reflection. Fortunately, we can use inheritance to place the implementation in a base class, so that
no business object needs to worry about the undo code. In fact, to keep things cleaner, this code is
in its own base class, separate from any other business object behaviors, as shown in Figure 2-11.

3

IBusinessObject
Interface
P [ﬁ —
IUndoableObject ¥)
Interface
= IBusinessObject
() 1UndoableObject ?
== - T - =
NotUndoableAttribute [| UndoableBase ¥ | IEditableCollection ¥
NotInheritable Class i MustInherit Class i Interface
= Attribute ' - BindableBase i = IUndoableObject
| y
() IEditableObject
ICloneable
IDataErrorInfo
L
- e e
IEditableObject 53 | BusinessBase
Interface i MustInherit Class
= |+ UndoableBase
1
() IEditableCollection
I[Cloneable
BusinessBase(OfT) 53 BusinessListBase(Of T, C) ¥

i Generic MustInherit Class
= BindingList(Of C)

Generic MustInherit Class ‘
- BusinessBase

Figure 2-11. Separating n-level undo into Core.UndoableBase

At first glance, it might appear that you could use .NET serialization to implement undo
functionality: what easier way to take a snapshot of an object’s state than to serialize it into a byte
stream? Unfortunately, this isn’t as easy as it might sound, at least when it comes to restoring the
object’s state.

Taking a snapshot of a <Serializable()> object is easy, and can be done with code similar to
this:

CHAPTER 2 © FRAMEWORK DESIGN

<Serializable()> _
Public Class Customer

Public Function Snapshot() As Byte()
Using m As New MemoryStream
Dim f As New BinaryFormatter

f.Serialize(m, Me)
m.Position = 0
return m.ToArray()
End Using
End Function
End Class

This converts the object into a byte stream, returning that byte stream as an array of type
Byte. That part is easy—it’s the restoration that’s tricky. Suppose that the user now wants to undo
the changes, requiring that the byte stream be restored back into the object. The code that deserial-
izes a byte stream looks like this:

<Serializable()> _
Public Class Customer

Public Function Deserialize(ByVal state As Byte()) As Customer
Using m As New MemoryStream(state)
Dim f As New BinaryFormatter

Return CType(f.Deserialize(m), Customer)
End Using
End Function
End Class

Notice that this function returns a new customer object. It doesn’t restore the existing object’s
state; it creates a new object. Somehow, you would have to tell any and all code that has a refer-
ence to the existing object to use this new object. In some cases, that might be easy to do, but it
isn’t always trivial. In complex applications, it’s hard to guarantee that other code elsewhere in the
application doesn’t have a reference to the original object—and if you don’t somehow get that code
to update its reference to this new object, it will continue to use the old one.

What'’s needed is some way to restore the object’s state in place, so that all references to the
current object remain valid, but the object’s state is restored. This is the purpose of the
UndoableBase class.

UndoableBase

The BusinessBase class inherits from UndoableBase, and thereby gains n-level undo capabilities.
Because all business objects inherit from BusinessBase, they too gain n-level undo. Ultimately,
the n-level undo capabilities are exposed to the business object and to UI developers via three
methods:

e Beginkdit() tells the object to take a snapshot of its current state, in preparation for being
edited. Each time BeginEdit() is called, a new snapshot is taken, allowing the state of the
object to be trapped at various points during its life. The snapshot will be kept in memory
so the data can be easily restored to the object if CancelEdit() is called.

e CancelEdit() tells the object to restore the object to the most recent snapshot. This effec-
tively performs an undo operation, reversing one level of changes. If CancelEdit() is called
the same number of times as BeginEdit(), the object will be restored to its original state.

65

66

CHAPTER 2 © FRAMEWORK DESIGN

o ApplyEdit() tells the object to discard the most recent snapshot, leaving the object’s current
state untouched. It accepts the most recent changes to the object. If ApplyEdit() is called the
same number of times as BeginEdit(), all the snapshots will be discarded, essentially mak-
ing any changes to the object’s state permanent.

Sequences of BeginEdit(), CancelEdit(), and ApplyEdit() calls can be combined to respond
to the user’s actions within a complex Windows Forms UI. Alternatively, you can totally ignore these
methods, taking no snapshots of the object’s state. In such a case, the object will incur no overhead
from n-level undo, but it also won't have the ability to undo changes. This is common in web appli-
cations in which the user has no option to cancel changes. Instead, the user simply navigates away
to perform some other action or view some other data.

Supporting Child Objects

As it traces through a business object to take a snapshot of the object’s state, UndoableBase may
encounter child objects. For n-level undo to work for complex objects as well as simple objects, any
snapshot of object state must extend down through all child objects as well as the parent object.

I discussed this earlier with the Invoice and LineItem example. When BeginEdit() is called on
an Invoice, it must also take snapshots of the states of all its LineItem objects, because they’re tech-
nically part of the state of the Invoice object itself. To do this while preserving encapsulation, each
individual object takes a snapshot of its own state so that no object data is ever made available out-
side the object—thus preserving encapsulation for each object.

In that case, UndoableBase simply calls a method on the child object to cascade the
BeginEdit(), CancelEdit(), or ApplyEdit() call to that object. It is then up to the individual child
object to take a snapshot of its own data. In other words, each object is responsible for managing
its own state, including taking a snapshot and potentially restoring itself to that snapshot later.

UndoableBase implements Core.IUndoableObject, which simplifies the code in the class. This
interface defines the methods required by UndoableBase during the undo process.

A child object could also be a collection derived from BusinessListBase. Notice that
BusinessListBase implements the Core.IEditableCollection interface, which inherits from the
Core.IUndoableObject interface.

NotUndoableAttribute

The final concept to discuss regarding n-level undo is the idea that some data might not be sub-
ject to being in a snapshot. Taking a snapshot of an object’s data takes time and consumes
memory—if the object includes read-only values, there’s no reason to take a snapshot of them.
Because the values can't be changed, there’s no benefit in restoring them to the same value in
the course of an undo operation.

To accommodate this scenario, the framework includes a custom attribute named
NotUndoableAttribute, which you can apply to fields within your business classes, as follows:

<NotUndoable()> _
Private mReadonlyData As String

The code in UndoableBase simply ignores any fields marked with this attribute as the snapshot
is created or restored, so the field will always retain its value regardless of any calls to BeginEdit(),
CancelEdit(), or ApplyEdit() on the object.

CHAPTER 2 © FRAMEWORK DESIGN

Data Binding Support

As I discussed earlier in the chapter, the .NET data binding infrastructure directly supports the
concept of data binding to objects and collections. However, an object can provide more complete
behaviors by implementing a few interfaces in the framework base classes. Table 2-2 lists the
interfaces and their purposes.

Table 2-2. .NET Data Binding Interfaces

Interface Purpose

IBindinglist Defines data binding behaviors for collections, including change noti-
fication, sorting, and filtering (implemented by BindingList(0f T))

ICancelAddNew Defines data binding behaviors for collections to allow data binding
to cancel the addition of a new child object (implemented by
Bindinglist(0f T))

IRaiseItemChangedEvents Indicates that a collection object will raise a ListChanged event to
indicate that one of its child objects has raised a PropertyChanged
event (implemented by BindinglList(0f T))

IEditableObject Defines single-level undo behavior for a business object, allowing the
object to behave properly with in-place editing in a DataGridView

INotifyPropertyChanged Defines an event allowing an object to notify data binding when a
property has been changed

IDataErrorInfo Defines properties used by the DataGridView and ExrrorProvider con-
trols to automatically show descriptions of broken validation rules
within the object

The IBindinglList interface is a well-defined interface that (among other things) raises a single
event to indicate that the contents of a collection have changed. Fortunately, there’s the System.
ComponentModel.BindinglList(Of T) base class that already implements this interface, so virtually
no effort is required to gain these benefits.

The System.ComponentModel.INotifyPropertyChanged interface members are a bit more com-
plex. This interface defines a single PropertyChanged event that a business object should raise any
time a property value is changed. As discussed earlier, in a serializable object, events must be
declared using a more explicit syntax than normal so the delegate references can be marked as
<NonSerialized()>.

The BindableBase class exists to encapsulate this event declaration and related functionality.
This acts as the ultimate base class for BusinessBase(0f T), while BindinglList(0f T) is the base
class for BusinessListBase(0f T, C), as shown in Figure 2-12.

Combined with implementing System.ComponentModel.IEditableObject and System.
ComponentModel. IDataErrorInfo in BusinessBase, the objects can now fully support data binding
in both Windows Forms and Web Forms.

While BusinessListBase won't support sorting of a collection, Chapter 5 will implement
a SortedBindinglist class that provides a sorted view against any collection derived from
IList(0f T) (which in turn means any BindinglList(0f T)). Such a sorted view provides superior
performance and stability as compared to directly sorting a collection in place.

67

CHAPTER 2 © FRAMEWORK DESIGN

(P INotifyPropertyChanged

BindableBase ¥ ‘
MustInherit Class i

Q IUndoableObject
L

UndoableBase]
i MustInherit Class i N
| = BindableBase | IB.mdmgLISt
i i IList
) AN ICollection
IEditableObject IEnumerable
ICloneable | ICancelAddNew
IDataErrorInfo IRaiseItemChangedEvents
L
BusinessBase ¥ v BindingList(Of T) ¥
| MustInherit Class i Generic Class
i - UndoableBase i = Collection(Of T)
1 i L |
IEditableCollection
ICloneable |
BusinessBase(Of T) @} BusinesslListBase(Of T, C) (¥
| Generic MustInherit Class ! i Generic MustInherit Class

; —+ BusinessBase i i = BindingList(Of C)
i |

Figure 2-12. Class diagram with BindableBase and BindingList(Of T)

Validation Rules

Recall that one of the framework’s goals is to simplify the tracking of broken business rules. An
important side benefit of this is that the UI developer will have read-only access to the list of broken
rules, which means that the descriptions of the broken rules can be displayed to the user in order to
explain what’s making the object invalid.

The support for tracking broken business rules will be available to all editable business objects,
so it’s implemented at the BusinessBase level in the framework.

To provide this functionality, each business object will have an associated collection of broken
business rules.

Additionally, a “rule” is defined as a method that returns a Boolean value indicating whether
the business requirement was met. In the case that the result is False (the rule is broken), a rule also
returns a text description of the problem for display to the user.

To automate this process, each business object will have an associated list of rule methods for
each property in the object.

Figure 2-13 illustrates all the framework classes required to implement both the management
of rule methods and maintenance of the list of broken rule descriptions.

CHAPTER 2 © FRAMEWORK DESIGN

ValidationRules 3\1
Class =
RuleHandler ¥ BrokenRulesCollection 4
Delegate Class

- ReadOnlyBindingList(Of BrokenRule)
Br ¥
Class
RuleArgs ¥
Class

RuleMethod ¥
Class

3

Class.
=P Exception

LValidation Exception

CommonRules ¥
Module

Figure 2-13. Classes implementing the validation rules behavior

A business object taps into this functionality through methods exposed on BusinessBase.
The end result is that a business property is always coded in a consistent manner. In the follow-
ing example, the highlighted line of code triggers the validation rules behavior:

Public Property Name() As String
Get
If CanReadProperty() Then
Return mName
Else
Throw New System.Security.SecurityException("Property get not allowed")
End Get
Set(Byval value As String)
If CanWriteProperty() Then
If mName <> value Then
mName = value
PropertyHasChanged()
End If
Else
Throw New System.Security.SecurityException("Property set not allowed")
End If
End Set
End Property

You'll see more complete use of the validation rules functionality in Chapter 8, during the
implementation of the sample application.

There are three types of functionality displayed in Figure 2-13. The ValidationRules,
RuleHandler, RuleArgs, and ValidationException classes manage the rule methods associated with
the properties of an object. The BrokenRulesCollection and BrokenRule classes maintain a list of
currently broken validation rules for an object. Finally, the CommonRules class implements a set
of commonly used validation rules, such as StringRequired.

69

70

CHAPTER 2 © FRAMEWORK DESIGN

Managing Rule Methods
Business rules are defined by a specific method signature as declared in the RuleHandler delegate:

Public Delegate Function RuleHandler(_
ByVal target As Object, ByVal e RuleArgs) As Boolean

Each business object contains an instance of the ValidationRules object, which in turn main-
tains a list of rules for each property in the business object. Within ValidationRules, there is an
optimized data structure that is used to efficiently store and access a list of rules for each property.
This allows the business object to request that validation rules for a specific property be executed;
or that all rules for all properties be executed.

Each rule method returns a Boolean value to indicate whether the rule was satisfied. If a rule
is broken, it returns False. A RuleArgs object is passed to each rule method. This object includes
aDescription property that the rule can set to describe the nature of a broken rule.

AsValidationRules executes each rule method, it watches for a response. When it gets a nega-
tive response, it adds an item to the BrokenRulesCollection for the business object. On the other
hand, a positive response causes removal of any corresponding item in BrokenRulesCollection.

Finally, there’s the ValidationException class. A ValidationException is not thrown when
arule is broken, since the broken rule is already recorded in BrokenRulesCollection. Instead,
ValidationException is thrown by BusinessBase itself in the case that there’s an attempt to save
the object to the database when it’s in an invalid state.

Maintaining a List of Broken Rules

The ValidationRules object maintains a list of rule methods associated with an object. It also exe-
cutes those methods to check the rules, either for a specific property or for all properties. The end
result of that process is that descriptions for broken rules are recorded into the
BrokenRulesCollection associated with the business object.

The BrokenRulesCollection is alist of BrokenRule objects. Each BrokenRule object represents
avalidation rule that is currently broken by the data in the business object. These BrokenRule
objects are added and removed from the collection by ValidationRules as part of its normal
processing.

The BusinessBase class uses its BrokenRulesCollection to implement an IsValid property.
IsValid returns True only if BrokenRulesCollection contains no items. If it does contain items,
then the object is in an invalid state.

The primary point of interest with the BusinessRulesCollection is that it is designed to not
only maintain a list of current broken rules, but also to provide read-only access to the UL This is
the reason for implementing a specialized collection object that can change its own data, but that
the Ul sees as being read-only. On top of that, the base class implements support for data binding
so that the Ul can display a list of broken rule descriptions to the user by simply binding the col-
lection to a list or grid control.

Additionally, the implementation of IDataErrorInfo makes use of the BrokenRulesCollection
to return error text for the object or for individual properties. Supporting this interface allows the
DataGridView and ErrorProvider controls to automatically display validation error text to the user.

Implementing Common Rules

If you consider the validation rules applied to most properties, there’s a set of common behaviors
that occur time and time again. For example, there’s the idea that a string value is required, or that
a string has a maximum length.

CHAPTER 2 © FRAMEWORK DESIGN

Rather than requiring every business application to implement these same behaviors over and
over again, you can have them be supplied by the framework. As you'll see in Chapter 3, the imple-
mentation will make use of reflection—so there’s a performance cost. If your particular application
finds that performance cost to be too high, you can always do what you would have done anyway—
that is, write the rule implementation directly into the application. In most cases, however, the
benefit of code reuse will outweigh the small performance cost incurred by reflection.

Data Portal

Supporting object persistence—the ability to store and retrieve an object from a database—can be
quite complex. I discussed this earlier in the chapter when talking about basic persistence and the
concept of ORM.

As you'll see in Chapter 8, business objects will either encapsulate data access logic within the
objects, or they will delegate the data access behavior to a persistence object. At the same time,
however, you don’t want to be in a position in which a change to your physical architecture requires
every business object in the system to be altered. The ability to easily switch between having the
data access code run on the client machine and having it run on an application server is the goal;
with that change driven by a configuration file setting.

On top of this, when using an application server, not every business object in the application
should be directly exposed by the server. This would be a maintenance and configuration night-
mare, because it would require updating configuration information on all client machines any time
a business object is added or changed.

Note This is a lesson learned from years of experience with DCOM and MTS/COM-+. Exposing large numbers of
components, classes, and methods from a server almost always results in a tightly coupled and fragile relationship
between clients and the server.

Instead, it would be ideal if there were one consistent entry point to the application server, so
that every client could simply be configured to know about that single entry point and never have to
worry about it again. This is exactly what the data portal concept provides, as shown in Figure 2-14.

Client

DataPortal

Figure 2-14. The data portal provides a consistent entry point to the application server.

7

72 CHAPTER 2 © FRAMEWORK DESIGN

The data portal provides a single point of entry and configuration for the server. It manages
communication with the business objects while they're on the server running their data access
code. Additionally, the data portal concept provides the following other key benefits:

» Centralized security when calling the application server

e A consistent object persistence mechanism (all objects persist the same way)

* Abstraction of the network transport between client and server (enabling support for
remoting, Web Services, Enterprise Services, and future protocols)

* One point of control to toggle between running the data access code locally and via
remoting

The data portal functionality is designed in several parts, as shown in Table 2-3.

Table 2-3. Parts of the Data Portal Concept

Area Functionality

Client-side DataPortal Functions as the primary entry point to the data portal infrastructure,
for use by code in business objects

Client-side proxy classes Implement the channel adapter pattern to abstract the underlying
network protocol from the application

Message objects Transfer data to and from the server, including security information,
application context, the business object’s data, the results of the call,
and any server-side exception data

Server-side host classes Expose single points of entry for different server hosts, such as remot-
ing, Web Services, and Enterprise Services

Server-side data portal Implements transactional and nontransactional data access behav-
iors, delegating all actual data access to appropriate business objects

Let’s discuss each area of functionality in turn.

Client-Side DataPortal

The client-side DataPortal is implemented as a Module, which means that any Public methods
it exposes become available to business object code without the need to create a DataPortal
object. The methods it provides are Create(), Fetch(), Update(), Delete(), and Execute().
Business objects and collections use these methods to retrieve and update data, or in the case
of a CommandBase-derived object, to execute server code on the server.

The client-side DataPortal has a great deal of responsibility, however, since it contains the
code to read and act on the client’s configuration settings. These settings control whether the
“server-side” data portal components will actually run on the server or locally on the client. It
also looks at the business object itself, since a <RunLocal()> attribute can be used to force per-
sistence code to run on the client, even if the configuration says to run it on the server.

Either way, the client-side DataPortal always delegates the call to the server-side data portal,
which handles the actual object persistence behaviors.

However, if the client configuration indicates that the server-side data portal will really run
on a server, the configuration will also specify which network transport should be used. It is the
client-side DataPortal that reads that configuration and loads the appropriate client-side proxy
object. That proxy object is then responsible for handling the network communication.

As an object is implemented, its code will use the client-side DataPortal to retrieve and update
the object’s information. An automatic result is that the code in the business object won't need to

CHAPTER 2 © FRAMEWORK DESIGN

know about network transports or whether the application is deployed into a 1-, 2-, or n-tier physi-
cal environment. The business object code always looks something like this:

Public Shared Function GetCustomer(ByVal id As String) As Customer
Return DataPortal.Fetch(Of Customer)(New Criteria(id))
End Function

An even more important outcome is that any UI code using these business objects will look
something like this:

Dim cust As Customer = Customer.GetCustomer(myId)

Neither of these code snippets changes, regardless of whether you've configured the server-
side data portal to run locally, or on a remote server via remoting, Web Services, Enterprise Services,
or (in the future) WCE All that changes is the application’s configuration file.

Client-Side Proxies

While it is the client-side DataPortal that reads the client configuration to determine the appropri-
ate network transport, the client-side proxy classes actually take care of the details of each network
technology. There is a different proxy class for each technology: remoting, Web Services, and Enter-
prise Services.

The design also allows for a business application to provide its own proxy class to use other
protocols. This means you can write your own TCP sockets protocol if you are so inclined.

The remoting and Web Services proxies use the HTTP protocol for communication across the
network. This makes both of them firewall- and Internet-friendly. The Enterprise Services proxy
uses DCOM for communication across the network. This is substantially faster than HTTP, but
harder to configure for firewalls or the Internet. Both HTTP and DCOM can be configured to
encrypt data on the wire and so provide quite high levels of security if needed.

Every client-side proxy has a corresponding server-side host class. This is because each trans-
port protocol requires that both ends of the network connection use the same technology.

The client-side DataPortal simply creates an instance of the appropriate client-side proxy and
then delegates the request (Create, Fetch, Update, Delete, or Execute) to the proxy object. The proxy
object is responsible for establishing a network connection to the server-side host object and dele-
gating the call across the network.

The proxy must also pass other message data, such as security and application context, to the
server. Similarly, the proxy must receive data back from the server, including the results of the oper-
ation, application context information, and any exception data from the server.

To this last point, if an exception occurs on the server, the full exception details are returned
to the client. This includes the nature of the exception, any inner exceptions, and the stack trace
related to the exception. Ideally, this exception information will be used on the client to rethrow the
exception, giving the illusion that the exception flowed naturally from the code on the server back
to the code on the client.

Message Objects

When the client-side DataPortal calls the server-side data portal, several types of information are
passed from client to server. Obviously, the data method call (Create, Update, Insert, etc.) itself is
transferred from client to server. But other information is also included, as follows:

* Client-side context data (such as the client machine’s culture setting)

e Application-wide context data (as defined by the application)

» The user’s principal and identity security objects (if using custom security)

73

74

CHAPTER 2 © FRAMEWORK DESIGN

Client-side context data is passed one way, from the client to the server. This information may
include things like the client workstation’s culture setting—thus allowing the server-side code to
also use that context when servicing requests for that user. This can be important for localization
of an application when a server may be used by workstations in different nations.

Application-wide context data is passed both from client to server and from server back to
client. You may use this context data to pass arbitrary application-specific data between client and
server on each data portal operation. This can be useful for debugging, as it allows you to build up
a trace log of the call as it goes from client to server and back again.

If the application is using custom authentication, then the custom principal and identity
objects representing the user are passed from client to server. This means the code on the server
will run under the same security context as the client. If you are using Windows integrated or AD
security, then Windows itself can be configured to handle the impersonation.

When the server-side data portal has completed its work, the results are returned to the client.
Other information is also included, as follows:

* Application-wide context data (as defined by the application)

¢ Details about any server-side exception that may have occurred

Again, the application-wide context data is passed from client to server and from server to
client.

If an exception occurs on the server, the details about that exception are returned to the client.
This is important for debugging, as it means you get the full details about any issues on the server.
It is also important at runtime, since it allows you to write exception handling code on the client to
gracefully handle server-side exceptions—including data-oriented exceptions such as duplicate
key or concurrency exceptions.

All the preceding bulleted items are passed to and from the server on each data portal opera-
tion. Keeping in mind that the data portal supports several verbs, it is important to understand
what information is passed to and from the server to support each verb. This is listed in Table 2-4.

Table 2-4. Data Passed to and from the Server for Data Portal Operations

Verb To Server From Server

Create Type of object to create and (optional) New object loaded with default values
criteria about new object

Fetch Criteria for desired object Object loaded with data

Update Object to be updated Object after update (possibly containing

changed data)

Delete Criteria for object to be deleted Nothing

Execute Object to be executed (must derive from Object after execution (possibly contain-
CommandBase) ing changed data)

Notice that the Create, Fetch, and Delete operations all require criteria information about the
object to be created, retrieved, or removed. At a minimum, the criteria object must specify the type
of object you are trying to create, retrieve, or delete. It may also contain any other data you need to
describe your particular business object. A criteria object can be created one of two ways:

¢ By creating a nested class within your business class

* By creating a class that inherits from CriteriaBase

CHAPTER 2 © FRAMEWORK DESIGN

When a criteria class is nested within a business class, the .NET type system can be used to
easily determine the type of class in which the criteria is nested. The CriteriaBase class, on the
other hand, directly includes a property you must set, indicating the type of the business object.

In either case, your criteria class should include properties containing any specific information
you need in order to identify the specific object to be created, retrieved, or removed.

Server-Side Host Objects

I've already discussed the client-side proxy objects and how each one has a corresponding server-
side host object. In Chapter 4, I'll create three host objects, one for each protocol: remoting, Web
Services, and Enterprise Services. It is also possible to add new host objects without altering the
core framework, providing broad extensibility. Any new host object would need a corresponding
client-side proxy, of course.

Server-side host objects are responsible for two things: first, they must accept inbound
requests over the appropriate network protocol from the client, and those requests must be passed
along to the server-side data portal components; second, the host object is responsible for running
inside the appropriate server-side host technology.

Microsoft provides a couple server-side host technologies for hosting application server code:
Internet Information Services (IIS) and Enterprise Services.

It is also possible to write your own Windows service that could act as a host technology, but
I strongly recommend against such an approach. By the time you write the host and add in secu-
rity, configuration, and management support, you'll have recreated most or all of either IIS or
Enterprise Services. Worse, you'll have opened yourself up for unforeseen security and stability
issues.

The remoting and Web Services host objects are designed to run within the IIS host. This way,
they can take advantage of the management, stability, and security features inherent in IIS. The
Enterprise Services host object is designed to run within Enterprise Services, taking advantage of
its management, stability, and security features.

Both IIS and Enterprise Services provide a robust process model and thread management, and
so provide very high levels of scalability.

Server-Side Data Portal

At its core, the server-side data portal components provide an implementation of the message
router design pattern. The server-side data portal accepts requests from the client and routes those
requests to an appropriate handler—in this case, a business object.

Note 1say “server-side” here, but keep in mind that the server-side data portal components may run either
on the client workstation or on a remote server. Refer to the client-side DataPortal discussion regarding how this
selection is made. The data portal is implemented to minimize overhead as much as possible when configured to
run locally or remotely, so it is appropriate for use in either scenario.

For Create, Fetch, and Delete operations, the server-side data portal requires type information
about your business object. Typically, this is provided via the criteria object. For update and execute
operations, the business object itself is passed to the server-side data portal.

But the server-side data portal is more than a simple message router. It also provides optional
access to the transactional technologies available within .NET, namely Enterprise Services
(MTS/COM+) and the new System.Transactions namespace.

75

76

CHAPTER 2

FRAMEWORK DESIGN

The business framework defines a custom attribute named TransactionalAttribute that can
be applied to methods within business objects. Specifically, you can apply it to any of the data
access methods that your business object might implement to create, fetch, update, or delete data,
or to execute server-side code. This allows you to use one of three models for transactions, as listed

in Table 2-5.

Table 2-5. Transaction Options Supported by the Data Portal

Option

Description

Transactional Attribute

Manual

Enterprise Services

System.Transactions

You are responsible for imple-
menting your own transactions
using ADO.NET, stored proce-
dures, etc.

Your data access code will run
within a COM+ distributed
transactional context, providing
distributed transactional support

Your data access code will run
within a TransactionScope from
System.Transactions, automatic-
ally providing basic or distributed
transactional support as required

None or <Transactional
(TransactionalTypes.Manual)>

<Transactional
(TransactionalTypes.
EnterpriseServices)>

<Transactional
(TransactionalTypes.
TransactionScope)>

This means that in the business object, there may be an update method (overriding the one
in BusinessBase) marked to be transactional:

<Transactional(TransactionalTypes.TransactionScope)> _

Protected Overrides Sub DataPortal_Update()

End Sub

Data update code goes here

At the same time, the object might have a fetch method in the same class that’s not

transactional:

Private Sub DataPortal_Fetch(ByVal criteria As Criteria)
Data retrieval code goes here

End Sub

This facility means that you can control transactional behavior at the method level, rather
than at the class level. This is a powerful feature, because it means that you can do your data
retrieval outside of a transaction to get optimal performance, and still do updates within the
context of a transaction to ensure data integrity.

The server-side data portal examines the appropriate method on the business object
before it routes the call to the business object itself. If the method is marked as
<Transactional(TransactionalTypes.EnterpriseServices)>, then the call is routed to a
ServicedDataPortal object that is configured to require a COM+ distributed transaction. The
ServicedDataPortal then calls the SimpleDataPortal, which delegates the call to your business
object, but only after it is running within a distributed transaction.

If the method is marked with <Transactional(TransactionalTypes.TransactionScope)>,
the call is routed to a TransactionalDataPortal object that is configured to run within a System.
Transactions.TransactionScope. A TransactionScope is powerful because it provides a lightweight
transactional wrapper in the case that you are updating a single database; but it automatically
upgrades to a distributed transaction if you are updating multiple databases. In short, you get

CHAPTER 2 © FRAMEWORK DESIGN

the benefits of COM+ distributed transactions if you need them, but you don't pay the performance
penalty if you don’t need them. Either way, your code is transactionally protected.

If the method doesn't have the attribute, or is marked as <Transactional(TransactionalTypes.
Manual)>, the call is routed directly to the SimpleDataPortal, as illustrated in Figure 2-15.

(F' IDataPortalServer

(" servicedDataPortal ®
Class
=+ ServicedCompaonert
EnterpriseServices
(F' IDataPartalServer (]j IDataPortalServer
| DataPortal ¥ (SimpleDataPortal 63
Class . Class
Manual
TransactionScope . (]j IDataPortalServer

Clasz

TransactionalDataPortal ® J

Figure 2-15. Routing calls through transactional wrappers

Data Portal Behaviors

Now that you have a grasp of the areas of functionality required to implement the data portal con-
cept, let’s discuss the specific data behaviors the data portal will support. The behaviors were listed
earlier, in Table 2-4.

Create

The “create” operation is intended to allow the business objects to load themselves with values that
must come from the database. Business objects don’t need to support or use this capability, but if
they need to initialize default values, then this is the mechanism to use.

There are many types of applications for which this is important. For instance, order entry
applications typically have extensive defaulting of values based on the customer. Inventory man-
agement applications often have many default values for specific parts, based on the product family
to which the part belongs. Medical records also often have defaults based on the patient and physi-
cian involved.

When the Create() method of the DataPortal is invoked, it’s passed a Criteria object. As I've
explained, the data portal will either use reflection against the Criteria object or will rely on the
type information in CriteriaBase to determine the type of business object to be created. Using that
information, the data portal will then use reflection to create an instance of the business object
itself. However, this is a bit tricky, because all business objects will have Private or Protected con-
structors to prevent direct creation by code in the UI:

<Serializable()> _
Public Class Employee
Inherits BusinessBase(Of Employee)

77

78 CHAPTER 2 © FRAMEWORK DESIGN

Private Sub New()
' prevent direct creation
End Sub

<Serializable()> _
Private Class Criteria
Private mSsn As String
Public ReadOnly Property Ssn() As String
Get
Return mSsn
End Get

End Property

Public Sub New(ByVal ssn As String)
mSsn = ssn
End Sub
End Class

End Class

Business objects will expose Shared factory methods to allow the UI code to create or retrieve
objects. Those factory methods will invoke the client-side DataPortal. (I discussed this “class-in-
charge” concept earlier in the chapter.) As an example, an Employee class may have a Shared factory
method, such as the following:

Public Shared Function NewEmployee() As Employee
Return DataPortal.Create(Of Employee)()
End Function

Notice that no Employee object is created on the client here. Instead, the factory method asks
the client-side DataPortal for the Employee object. The client-side DataPortal passes the call to the
server-side data portal. If the data portal is configured to run remotely, the business object is cre-
ated on the server; otherwise, the business object is created locally on the client.

Even though the business class has only a Private constructor, the server-side data portal uses
reflection to create an instance of the class.

The alternative is to make the constructor Public—in which case the UI developer will need to
learn and remember that they must use the Shared factory methods to create the object. Making the
constructor Private provides a clear and direct reminder that the UT developer must use the Shared
factory method, thus reducing the complexity of the interface for the UT developer. Keep in mind
that notimplementing the default constructor won't work either, because in that case, the compiler
provides a Public default constructor on your behalf.

Once the server-side data portal has created the business object, it calls the business object’s
DataPortal Create() method, passing the Criteria object as a parameter. At this point, code inside
the business object is executing, so the business object can do any initialization that’s appropriate
for a new object. Typically, this will involve going to the database to retrieve any configurable
default values.

When the business object is done loading its defaults, the server-side data portal returns the
fully created business object back to the client-side DataPortal. If the two are running on the same
machine, this is a simple object reference; but if they’re configured to run on separate machines,
then the business object is serialized across the network to the client (that is, it'’s passed by value),
so the client machine ends up with a local copy of the business object. The UML sequence diagram
in Figure 2-16 illustrates this process.

You can see how the Ul interacts with the business object class (the Shared factory method),
which then creates a Criteria object and passes it to the client-side DataPortal. The client-side
DataPortal then delegates the call to the server-side data portal (which may be running locally or

CHAPTER 2

FRAMEWORK DESIGN

remotely, depending on the configuration). The server-side data portal then creates an instance of
the business object itself, and calls the business object’s DataPortal Create() method so it can pop-
ulate itself with default values. The resulting business object is then ultimately returned to the UI.

Alternatively, the DataPortal Create() method could request the default data values from a
persistence object in another assembly, thus providing a clearer separation between the Business
Logic and Data Access layers.

In a physical n-tier configuration, remember that the Criteria object starts out on the client
machine and is passed by value to the application server. The business object itself is created on
the application server, where it’s populated with default values. It’s then passed back to the client
machine by value. This architecture truly takes advantage of the mobile object concept.

1
New

v
’

DataPortaI:Create(criteria)

ul BusinessObjectClass Criteria BusinessObject DataPortal DataPortalServer
T T T T T T
1 1 1 1 1 1
1 . . 1 1 1 1 1
, CreateBusinessObject , 1 ' f 1
D e : : :
|—)l 1 1 1
! Create(criteria) | , .
. 1 Create(criteria) 1
1 1
1 1
D !
< :

BusinessObject

.

Figure 2-16. UML sequence diagram for the creation of a new business object

Fetch

Retrieving a preexisting object is very similar to the creation process just discussed. Again, a
Criteria object is used to provide the data that the object will use to find its information in the
database. The Criteria class is nested within the business object class and/or inherits from
CriteriaBase, so the server-side data portal code can determine the type of business object
desired and then use reflection to create an instance of the class.

The UML sequence diagram in Figure 2-17 illustrates all of this.

79

80 CHAPTER 2 © FRAMEWORK DESIGN

ul BusinessObjectClass Criteria BusinessObject DataPortal DataPortalServer
T T T T T T
1 1 1 1 1 1
1 1 1 1 1 1
' GetBusinessObject) ! ' ' ' '
1 1 NeW 1 1 1 1
1 |—)| o 1 1 1
. . , Fetch(criteria) , }: .
' X X : | Fetch(criteria) \ |
' ' ' ‘ New '
: : : < . — .
i 1 1 L DataPortal_Fetch(criteria) 1
1 1 1 1 |(T 1
; ; ! ! 1 BusinessObject|,
! ! ' BusinessObject !

L I I T T T T] I -

1

, Normalinteraction

2

Figure 2-17. UML sequence diagram for the retrieval of an existing business object

The Ul interacts with the factory method, which in turn creates a Criteria object and passes it
to the client-side DataPortal code. The client-side DataPortal determines whether the server-side
data portal should run locally or remotely, and then delegates the call to the server-side data portal
components.

The server-side data portal uses reflection to determine the assembly and type name for the
business class and creates the business object itself. After that, it calls the business object’s
DataPortal Fetch() method, passing the Criteria object as a parameter. Once the business object
has populated itself from the database, the server-side data portal returns the fully populated busi-
ness object to the UL

Alternatively, the DataPortal Fetch() method could delegate the fetch request to a persistence
object from another assembly, thus providing a clearer separation between the Business Logic and
Data Access layers.

As with the “create” process, in an n-tier physical configuration, the Criteria object and
business object move by value across the network as required. You don't have to do anything spe-
cial beyond marking the classes as <Serializable()>—the .NET runtime handles all the details
on your behalf.

Update

The update process is a bit different from the previous operations. In this case, the Ul already has
a business object with which the user has been interacting, and this object needs to save its data
into the database. To achieve this, all editable business objects have a Save() method (as part of
the BusinessBase class from which all business objects inherit). The Save() method calls the
DataPortal to do the update, passing the business object itself, Me, as a parameter.

The thing to remember when doing updates is that the object’s data will likely change as a
result of the update process. Any changed data must be placed back into the object.

There are two common scenarios illustrating how data changes during an update. The first is
when the database assigns the primary key value for a new object. That new key value needs to be
put into the object and returned to the client. The second scenario is when a timestamp is used to
implement optimistic first-write-wins concurrency. In this case, every time the object’s data is

CHAPTER 2 © FRAMEWORK DESIGN

inserted or updated, the timestamp value must be refreshed in the object with the new value from
the database. Again, the updated object must be returned to the client.

This means that the update process is bidirectional. It isn't just a matter of sending the data to
the server to be stored, but also a matter of returning the object from the server after the update has
completed, so that the UT has a current, valid version of the object.

Due to the way .NET passes objects by value, it may introduce a bit of a wrinkle into the overall
process. When passing the object to be saved over to the server, NET makes a copy of the object
from the client onto the server, which is exactly what is desired. However, after the update is com-
plete, the object must be returned to the client. When an object is returned from the server to the
client, a new copy of the object is made on the client, which isn’t really the desired behavior.

Figure 2-18 illustrates the initial part of the update process.

Client Machine Application Database
Server Server
4+t +
4] —> Y @
/ <& & ++
ul Original Business DataPortal
Object
<3>
e) > -
&
Business
Object

Figure 2-18. Sending a business object to the data portal to be inserted or updated

The Ul has a reference to the business object and calls its Save () method. This causes the busi-
ness object to ask the data portal to save the object. The result is that a copy of the business object is
made on the server, where it can save itself to the database. So far, this is pretty straightforward.

Note Notice that the business object has a Save () method, but the data portal infrastructure has methods
named Update (). Although this is a bit inconsistent, remember that the business object is being called by Ul
developers, and I've found that it’s more intuitive for the typical Ul developer to call Save() than Update(), espe-
cially since the Save() call can trigger an Insert, an Update, or even a Delete operation.

However, once this part is done, the updated business object is returned to the client, and the
Ul must update its references to use the newly updated object instead, as shown in Figure 2-19.

This is fine, too—but it'’s important to keep in mind that you can’t continue to use the old busi-
ness object; you must update all object references to use the newly updated object. Figure 2-20 is a
UML sequence diagram that shows the overall update process.

81

82 CHAPTER 2 © FRAMEWORK DESIGN

Client Machine Application Database
Server Server
. +
+ﬁ)—>{'a %
+ <&
ul Original Business / DataPortal
Object
T~/ n S
e, g,) T
Updated Business Business
Object Object

Figure 2-19. Data portal returning the inserted or updated business object to the Ul

ul BusinessObject DataPortal DataPortalServer

A
Normal interaction 2 1

'
1
1
1
. Save !) : ,
! 1+ 7 1Update(businessObject) 1
1 ' NI 1
! P! d ! Update(businessObiject) !
1
: Say DataPortal_Update ;
1 A T)) 1
: o ' BusinessObject _ |
] { ' BusinessObject !
1
! SREEREEEELEE

1
1 > Update objeclt references
1
i Normal interaction} :
1

1
1
1 A
1
1

Figure 2-20. UML sequence diagram for the updating of a business object

You can see that the Ul calls the Save() method on the business object, which results in a call
to the client-side DataPortal’s Update() method, passing the business object as a parameter. As
usual, the client-side DataPortal determines whether the server-side data portal is running locally
or remotely, and then delegates the call to the server-side data portal.

The server-side data portal then simply calls the DataPortal Update() method on the business
object so that the object can save its data into the database. If the object were a new object, then
DataPortal Insert() would have been called, and if the object had been marked for deletion, then
DataPortal DeleteSelf() would have been called.

CHAPTER 2 © FRAMEWORK DESIGN

These methods may implement the code to insert, update, or delete the object directly within
the business class, or they may delegate the call to a persistence object in another assembly.

At this point, two versions of the business object exist: the original version on the client and
the newly updated version on the application server. However, the best way to view this is to
think of the original object as being obsolete and invalid at this point. Only the newly updated
version of the object is valid.

Once the update is done, the new version of the business object is returned to the UT; the UI
can then continue to interact with the new business object as needed.

Note The Ul must update any references from the old business object to the newly updated business object as
soon as the new object is returned from the data portal.

In a physical n-tier configuration, the business object is automatically passed by value to the
server, and the updated version is returned by value to the client. If the server-side data portal is
running locally, however, simple object references are passed. This avoids the overhead of seriali-
zation and so forth.

Delete

The final operation, and probably the simplest, is to delete an object from the database. The frame-
work actually supports two approaches to deleting objects.

The first approach is called deferred deletion. In this model, the object is retrieved from the
database and is marked for deletion by calling a Delete() method on the business object. Then the
Save() method is called to cause the object to update itself to the database (thus actually doing the
Delete operation). In this case, the data will be deleted by the DataPortal DeleteSelf() method.

The second approach, called immediate deletion, consists of simply passing criteria data to
the server, where the object is deleted immediately within the DataPortal Delete() method.

This second approach provides superior performance because you don't need to load the
object’s data and return it to the client. Instead, you simply pass the criteria fields to the server,
where the object deletes its data.

The framework supports both models, providing you with the flexibility to allow either or both
in your object models, as you see fit.

Deferred deletion follows the same process as the update process I just discussed, so let’s
explore immediate deletion. In this case, a Criteria object is created to describe the object to be
deleted, and the data portal is invoked to do the deletion. Figure 2-21 is a UML diagram that illus-
trates the process.

Because the data has been deleted at this point, you have nothing to return to the UI, so the
overall process remains pretty straightforward. As usual, the client-side DataPortal delegates the
call to the server-side data portal. The server-side data portal creates an instance of the business
object and invokes its DataPortal Delete() method, providing the Criteria object as a parameter.

The business logic to do the deletion itself is encapsulated within the business object, along
with all the other business logic relating to the object. Alternatively, the business object could dele-
gate the deletion request to a persistence object in another assembly.

83

84

CHAPTER 2 © FRAMEWORK DESIGN

BusinessObject DataPortal DataPortalServer

ul BusinessObjectClass Criteria
|
1
1

>

T

1

DeleteBusinessObject , X
» 1

! New !

|

Delete(criteria)

1 Delete(criteria)

T
1 1
taltly DataPortal_Delete(criteria)
‘

1
1
1
1
1
1
1 -
1
1
1
1
1
1

Figure 2-21. UML sequence diagram for immediate deletion of a business object

Custom Authentication

As discussed earlier in the chapter, many environments include users who aren’t part of a Windows
domain or AD. In such a case, relying on Windows integrated security for the application is prob-
lematic at best, and you're left to implement your own security scheme. Fortunately, the NET
Framework includes several security concepts, along with the ability to customize them to imple-
ment your own security as needed.

The following discussion applies to you only in the case that Windows integrated security
doesn’t work for your environment. In such a case, you'll typically maintain a list of users and their
roles in a database, or perhaps in an LDAP server. The custom authentication concepts discussed
here will help you integrate the application with that preexisting security database.

Custom Principal and Identity Objects

The .NET Framework includes a couple of built-in principal and identity objects that support
Windows integrated security or generic security. You can also create your own principal and iden-
tity objects by creating classes that implement the IPrincipal and IIdentity interfaces from the
System.Security.Principal namespace.

Implementations of principal and identity objects will be specific to your environment and
security requirements. However, the framework will include a BusinessPrincipalBase class to
streamline the process.

When you create a custom principal object, it must inherit from BusinessPrincipalBase. Code
in the data portal ensures that only a WindowsPrincipal or BusinessPrincipalBase object is passed
between client and server, depending on the application’s configuration.

In many cases, your custom principal object will require very little code. The base class already
implements the IPrincipal interface, and it is quite likely that you'll only need to implement the
IsInRole() method to fit your needs.

However, you will need to implement a custom identity object that implements IIdentity.
Typically, this object will populate itself with user profile information and a list of user roles from
a database. Essentially, this is just a read-only business object, and so you'll typically inherit from
ReadOnlyBase. Such an object might be declared like this:

CHAPTER 2 © FRAMEWORK DESIGN

<Serializable()> _
Public Class CustomIdentity
Inherits ReadOnlyBase(Of CustomIdentity)

Implements IIdentity

' implement here
End Class

You'll also need to implement a Login method that the UI code can call to initiate the process
of authenticating the user’s credentials (username and password) and loading data into the custom
identity object. This is often best implemented as a Shared factory method on the custom principal
class. In many cases, this factory method will look something like this:

Public Shared Sub Login(ByVal username As String, ByVal password As String)
Dim identity As CustomIdentity = _
CustomIdentity.GetIdentity(username, password)
If identity.IsAuthenticated Then
Dim principal As IPrincipal = New CustomPrincipal(identity)
Csla.ApplicationContext.User = principal
End If
End Sub

The GetIdentity method is a normal factory method in CustomIdentity that just calls the
data portal to load the object with data from the database. A corresponding Logout method may
look like this:

Public Shared Sub Logout()
Dim identity As CustomIdentity = CustomIdentity.UnauthenticatedIdentity()
Dim principal As IPrincipal = New CustomPrincipal(identity)
Csla.ApplicationContext.User = principal

End Sub

The UnauthenticatedIdentity() method is actually a variation on the factory concept, but in
this case, it probably doesn'’t use the data portal. Instead, it merely needs to create an instance of
CustomIdentity, in which IsAuthenticated returns False.

Integrated Authorization

Virtually all applications rely on some form of authorization. At the very least, there is typically
control over which users have access to the application at all. But more commonly, applications
need to restrict which users can view or edit specific bits of data at either the object or property
level. This is often accomplished by assigning users to roles and then specifying which roles are
allowed to view or edit various data.

To help control whether the current user can view or edit individual properties, the business
framework will allow the business developer to specify the roles that are allowed or denied the
ability to view or edit each property. Typically, these role definitions will be set up as the object is
created, and they may be hard-coded into the object or loaded from a database, as you choose.

With the list of allowed and denied roles established, the framework is able to implement
CanReadProperty() and CanWriteProperty() methods that can be called within each property’s get
and set code. The result is that a typical property looks like this:

85

86 CHAPTER 2 © FRAMEWORK DESIGN

Public Property Name() As String
Get
CanReadProperty(True)
return mName
End Get
Set(ByVal value As String)
CanliriteProperty(True)
If mName <> value Then
mName = value
PropertyHasChanged()
End If
End Set
End Property

The CanReadProperty() and CanWriteProperty() methods check the current user’s roles against
the list of roles allowed and denied read and write access to this particular property. If the authori-
zation rules are violated, a security exception is thrown; otherwise, the user is allowed to read or
write the property. There are other overloads of these methods as well, offering variation in coding
simplicity, control, and performance. These will be fully explored in Chapter 3.

The CanReadProperty() and CanWriteProperty() methods are Public in scope. This is impor-
tant because it allows code in the Ul layer to ask the object about the user’s permissions to read and
write each property. The Ul can use this information to alter its display to give the user visual cues
as appropriate. In Chapter 9, you'll see how this capability can be exploited by an extender control
in Windows Forms to eliminate most authorization code in a typical application. While the story
isn't quite as compelling in Web Forms, Chapter 10 will demonstrate how to leverage this capability
in a similar manner.

Helper Types and Classes

Most business applications require a set of common behaviors not covered by the concepts dis-
cussed thus far. These behaviors are a grab bag of capabilities that can be used to simplify common
tasks that would otherwise be complex. These include the items listed in Table 2-6.

Table 2-6. Helper Types and Classes

Type or Class Description

SafeDataReader Wraps any IDataReader (such as SqlDataReader) and converts all null
values from the database into non-null empty or default values

ObjectAdapter Fills a DataSet or DataTable with information from an object or a collection
of objects

DataMapper Maps data from an IDictionary to an object’s properties, or from one

object’s properties to another object’s properties

SmartDate Implements a DateTime data type that understands how to translate values
transparently between DateTime and string representations, and also
understands the concept of an empty date

SortedBindinglist Provides a sorted view of any IList(0f T); if the underlying collection is
editable, then the view will also be editable

Let’s discuss each of these in turn.

CHAPTER 2 © FRAMEWORK DESIGN

SafeDataReader

Most of the time, applications don't care about the difference between a null value and an empty
value (such as an empty string or a zero)—but databases often do. When retrieving data from a
database, an application needs to handle the occurrence of unexpected null values with code such
as the following:

If dr.IsDBNull(idx) Then
myValue = ""
Else
myValue = dr.GetString(idx)
End If

Clearly, doing this over and over again throughout the application can get very tiresome. One
solution is to fix the database so that it doesn't allow nulls when they provide no value, but this is
often impractical for various reasons.

Note Here’s one of my pet peeves: allowing nulls in a column in which you care about the difference between
a value that was never entered and the empty value ("", or 0, or whatever) is fine. Allowing nulls in a column
where you don’t care about the difference merely complicates your code for no good purpose, thereby decreasing
developer productivity and increasing maintenance costs.

As a more general solution, the framework includes a utility class that uses SqlDataReader (or
any IDataReader implementation) in such a way that you never have to worry about null values
again. Unfortunately, the SqlDataReader class isn’t inheritable—it can’'t be subclassed directly.
Instead, it is wrapped using containment and delegation. The result is that your data access code
works the same as always, except that you never need to write checks for null values. If a null
value shows up, SafeDataReader will automatically convert it to an appropriate empty value.

Obviously, if you do care about the difference between a null and an empty value, you can
just use a regular SqlDataReader to retrieve the data. In this case, .NET 2.0 includes the new
Nullable(Of T) generic type that helps manage null database values. This new type is very valu-
able when you do care about null values: when business rules dictate that an “empty” value like
0 is different from null.

ObjectAdapter

Many reporting technologies, such as Crystal Reports, don't offer the ability to generate a report
directly against objects. Unfortunately, these technologies are designed to only generate reports
directly against a database or DataSet; yet many applications need to generate reports against
business objects, leaving the developer in a difficult position.

The ObjectAdapter implements a Fill() method that copies data from an object or a collection
of objects into a DataTable or a DataSet. The resulting DataSet can then be used as a data source for
reporting technologies that can’t run directly against objects.

While not useful for large sets of data, this technology can be very useful for generating small
printouts against small amounts of data. For a more complete discussion of ObjectAdapter and
reporting with objects, see Chapter 5.

DataMapper

In Chapter 10, you will see how to implement an ASPNET Web Forms UT on top of business objects.
This chapter will make use of the new data binding capabilities in Web Forms 2.0. In this technol-
ogy, the Insert and Update operations provide the data from the form in IDictionary objects

87

88

CHAPTER 2 © FRAMEWORK DESIGN

(name/value pairs). The values in these name/value pairs must be loaded into corresponding prop-
erties in the business object. You end up writing code much like this:

cust.Name = e.Values("Name").ToString
cust.Address1l = e.Values("Address1").ToString
cust.City = e.Values("City").ToString

Similarly, in Chapter 11, you'll see how to implement a Web Services interface on top of busi-
ness objects. When data is sent or received through a web service, it goes through a proxy object:
an object with properties containing the data, but no other logic or code. Since the goal is to get
the data into or out of a business object, this means copying the data from one object’s properties
to the other. You end up writing code much like this:

cust.Name = message.Name
cust.Address1 = message.Addressi
cust.City = message.City

In both cases, this is repetitive, boring code to write. One alternative, though it does incur
a performance hit, is to use reflection to automate the copy process. This is the purpose of the
DataMapper class: to automate the copying of data to reduce all those lines of code to one simple
line. It is up to you whether to use DataMapper in your applications.

SmartDate

Dates are a perennial development problem. Of course, there’s the DateTime data type, which
provides powerful support for manipulating dates, but it has no concept of an “empty” date. The
trouble is that many applications allow the user to leave date fields empty, so you need to deal
with the concept of an empty date within the application.

On top of this, date formatting is problematic—rather, formatting an ordinary date value is
easy, but again you're faced with the special case whereby an “empty” date must be represented by
an empty string value for display purposes. In fact, for the purposes of data binding, we often want
any date properties on the objects to be of type String so that the user has full access to the various
data formats as well as the ability to enter a blank date into the field.

Dates are also a challenge when it comes to the database: the date data types in the database
don’t understand the concept of an empty date any more than .NET does. To resolve this, date
columns in a database typically do allow null values, so a null can indicate an empty date.

Note Technically, this is a misuse of the nul1 value, which is intended to differentiate between a value that
was never entered and one that’s empty. Unfortunately, we’re typically left with no choice, because there’s no way
to put an empty date value into a date data type.

You may be able to use Nullable(Of DateTime) as a workable data type for your date values.
But even that isn’t always perfect, because Nullable(Of DateTime) doesn’t offer specialized format-
ting and parsing capabilities for working with dates. Nor does it really understand the concept of
an empty date: it isn’'t possible to compare actual dates with empty dates, yet that is often a busi-
ness requirement.

The SmartDate type is an attempt to resolve this issue. Repeating the problem with
SqlDataReader, the DateTime data type isn't inheritable, so SmartDate can't just subclass DateTime to
create a more powerful data type. Instead, it uses containment and delegation to create a new type
that provides the capabilities of the DateTime data type while also supporting the concept of an
empty date.

CHAPTER 2 © FRAMEWORK DESIGN

This isn't as easy at it might at first appear, as you'll see when the SmartDate class is implemented
in Chapter 5. Much of the complexity flows from the fact that applications often need to compare an
empty date to a real date, but an empty date might be considered very small or very large. You'll see an
example of both cases in the sample application in Chapter 8.

The SmartDate class is designed to support these concepts, and to integrate with the
SafeDataReader so that it can properly interpret a null database value as an empty date.

SortedBindingList

The business framework will base its collections on BindinglList(0f T), thus automatically support-
ing data binding as well as collection behaviors. The BindingList(0f T) class is an implementation
of the IBindinglList interface. This interface not only defines basic data binding behaviors, but also
exposes methods for sorting the contents of the collection. Unfortunately, BindingList(0f T)
doesn’t implement this sorting behavior.

It would be possible to implement the sorting behaviors directly within the BusinessListBase
and ReadOnlyBindingList classes. Unfortunately, it turns out that sorting a collection in place is
somewhat complex. The complexity arises because IBindinglList also supports the idea of remov-
ing the sort—thus presumably returning the collection’s contents to their original order. That
necessitates keeping a list of the original position of all items when a sort is applied. Add to this
the question of where to position newly added items, and things can get quite complex.

ADO.NET provides one possible solution through its use of DataView objects that are used
to provide sorted views of a DataTable. Taking a cue from ADO.NET, SortedBindinglList provides
a sorted view of any IList(Of T) collection, including all collection objects that inherit from
BindinglList(Of T).Byimplementing a sorted view, all the complexity of manipulating the origi-
nal collection is avoided. The original collection remains intact and unchanged, and
SortedBindinglist just provides a sorted view of the collection.

That said, SortedBindinglList will provide an editable view of a collection if the original source
collection is editable. In other words, editing a child object in a SortedBindinglList directly edits the
child object in the source collection. Similarly, adding or removing an item from a
SortedBindinglist directly adds or removes the item from the original collection.

Namespace Organization

At this point, I've walked through all the classes that will make up the business framework. Given
that there are quite a few classes and types required to implement the framework, there’s a need to
organize them for easier discovery and use. The solution for this is to organize the types into a set
of namespaces.

Namespaces allow you to group classes together in meaningful ways so that you can program
against them more easily. Additionally, namespaces allow different classes to have the same name
as long as they’re in different namespaces. From a business perspective, you might use a scheme
like the following:

MyCompany .MyApplication.FunctionalArea.Class

A convention like this immediately indicates that the class belongs to a specific functional area
within an application and organization. It also means that the application could have multiple
classes with the same names:

MyCompany .MyApplication.Sales.Product
MyCompany .MyApplication.Manufacturing.Product

89

90

CHAPTER 2 © FRAMEWORK DESIGN

It’s quite likely that the concept of a “product” in sales is different from that in manufacturing,
and this approach allows reuse of class names to make each part of the application as clear and self-
documenting as possible.

The same is true when you're building a framework. Classes should be grouped in meaningful
ways so that they’'re comprehensible to the end developer. Additionally, use of the framework can
be simplified for the end developer by putting little-used or obscure classes in separate name-
spaces. This way, the business developer doesn't typically see them via IntelliSense.

Consider the UndoableBase class, which isn't intended for use by a business developer: it exists
for use within the framework only. Ideally, when business developers are working with the frame-
work, they won't see UndoableBase via IntelliSense unless they go looking for it by specifically
navigating to a specialized namespace. The framework has some namespaces that are to be used
by end developers, and others that are intended for internal use.

All the namespaces in the framework are prefixed with component-based, scalable, logical
architecture (CSLA).

Note CSLA was the name of the COM-based business object framework about which | wrote in the mid-to-late
1990s. In many ways, this book brings the basic concepts and capabilities of that architecture into the .NET envi-
ronment. In fact, .NET enables the CSLA concepts, though COM has often hindered them.

Table 2-7 lists the namespaces used in the CSLA .NET framework.

Table 2-7. Namespaces Used in the CSLA .NET Framework

Namespace Description

Csla Contains the types most commonly used by business developers

Csla.Core Contains the types that provide core functionality for the framework;
not intended for use by business developers

Csla.Data Contains the optional types used to support data access operations;
often used by business developers, web UI developers, and web service
developers

Csla.DataPortalClient Contains the types that support the client-side DataPortal behaviors;
used when creating a custom data portal proxy

Csla.Properties Contains code generated by Visual Studio for the Csla project; not
intended for use by business developers

Csla.Security Contains the types supporting authorization; used when creating a cus-
tom principal object

Csla.Server Contains the types supporting the server-side data portal behaviors;
not intended for use by business developers

Csla.Server.Hosts Contains the types supporting server-side data portal hosts; used when
creating a custom data portal host

Csla.Validation Contains the types supporting validation and business rules; often used
when creating rule methods

Csla.Web Contains the CslaDataSource control; used by web UI developers

Csla.Web.Design Contains the supporting types for the CslaDataSource control; not

intended for use by business developers

Csla.WebServiceHost Contains the Web Services data portal host; not intended for use by
business developers

Csla.Windows Contains controls to assist with Windows Forms data binding; used by
Windows Ul developers

CHAPTER 2 © FRAMEWORK DESIGN

For instance, the primary base classes intended for use by business developers go into the Csla
namespace itself. They are named as follows:

e (sla.BusinessBase(Of T)

e (sla.BusinesslListBase(0f T, C)

e (sla.ReadOnlyBase(Of T)

e (sla.ReadOnlylListBase(Of T, C)

e (sla.NameValuelistBase(Of K, V)

e (sla.CommandBase

The rest of the classes and types in the framework are organized into the remaining name-
spaces based on their purposes. You'll see how they all fit and are implemented in Chapters 3
through 5.

The end result is that a typical business developer can simply use the Cs1a namespace as
follows:

using Csla;

and all the developer will see are the classes intended for use during business development. All
the other classes and concepts within the framework are located in other namespaces, and there-
fore won’t appear in IntelliSense by default, unless the developer specifically imports those
namespaces.

When using custom authentication, you'll likely import the Csla.Security namespace. But
if you're not using that feature, you can ignore those classes and they won'’t clutter up the devel-
opment experience. Similarly, Csla.Data and Csla.Validation may be used in some cases, as
you'll see in Chapter 8. If the types they contain are useful, they can be brought into a class with
an Imports statement; otherwise, they are safely out of the way.

Conclusion

This chapter has examined some of the key design goals for the CSLA .NET business framework.
The key design goals include the following:

* N-level undo capability

e Tracking broken validation rules to tell if an object is valid

* Tracking whether an object’s data has changed (whether or not it’s “dirty”)

e Support for strongly typed collections of child objects

* Providing a simple and abstract model for the UI developer

¢ Full support for data binding in both Windows Forms and Web Forms

* Saving objects to a database and getting them back again

e Custom authentication

¢ Integrated authorization

e Other miscellaneous features

I've also walked you through the design of the framework itself, providing a high-level glimpse

into the purpose and rationale behind each of the classes that will make it up. With each class, I dis-
cussed how it relates back to the key goals to provide the features and capabilities of the framework.

91

92

CHAPTER 2 © FRAMEWORK DESIGN

The chapter closed by defining the namespaces that contain the framework classes. This way,
they’re organized so that they're easily understood and used.

Chapter 3 will implement the portions of the framework primarily geared toward supporting
the Ul and data binding. Then, Chapter 4 will implement the data portal and object persistence.
Chapter 5 will wrap up loose ends by implementing the helper classes, such as SmartDate,
SafeDataReader, and others.

With the framework complete, the rest of the book will walk through the design and imple-
mentation of a sample application using object-oriented concepts and the CSLA .NET framework.
Those chapters will explore how the framework functions and how it meets the goals set forth in
this chapter.

CHAPTER 3

Business Framework
Implementation

In Chapter 1, I discussed the concepts behind the use of business objects and distributed objects.
In Chapter 2, I explored the design of the business framework. In this chapter, we're going to start
creating the CSLA .NET framework. The focus in this chapter is on the functionality required to sup-
port editable and read-only objects and collections. Specifically, the goal is to create the following
classes, along with all supporting classes and functionality:

e (sla.BusinessBase(Of T)
e (sla.BusinesslListBase(Of T, C)
e (sla.ReadOnlyBase(Of T)
e (sla.ReadOnlylListBase(Of T, C)

These four base classes are the primary classes from which most business objects will inherit.
Chapter 5 will cover the other base classes: CommandBase and NameValuelListBase.

BusinessBase and BusinessListBase rely on quite a number of other classes. For instance,
Csla.BusinessBase inherits from Csla.Core.BusinessBase, which inherits from
Csla.Core.UndoableBase. It also makes use of the ValidationRules and AuthorizationRules classes.

The end result is that this chapter will cover the creation of the four base classes, plus the types
and classes in the Csla.Core namespace and most of the types from the Csla.Validation and Csla.
Security namespaces. Table 3-1 lists all the classes discussed in this chapter.

Table 3-1. Classes Required to Support Editable and Read-Only Business Objects

Type Description
Csla.Core.IBusinessObject Interface implemented by all editable and read-only
base classes
Csla.Core.IUndoableObject Interface implemented by all editable base classes
Csla.Core.IEditableCollection Interface implemented by all editable collection base
classes
Csla.Core.IReadOnlyObject Interface implemented by all read-only base classes
Csla.Core.IReadOnlyCollection Interface implemented by all read-only collection
base classes
Csla.Core.ICommandObject Interface implemented by CommandBase
Csla.Core.ObjectCloner Clones any serializable object
Continued

93

94

CHAPTER 3

Table 3-1. Continued

BUSINESS FRAMEWORK IMPLEMENTATION

Type Description

Csla.Core.BindableBase Implements INotifyPropertyChanged

Csla.NotUndoableAttribute Used to mark a field such that n-level undo ignores
the field’s value

Csla.Core.UndoableBase Implements n-level undo functionality

Csla

Csla

Csla
Csla

Csla
Csla

Csla

Csla

Csla

Csla

Csla

Csla

Csla

Csla

.Core.BusinessBase
.Core.ReadOnlyBindinglist

.Validation.RuleHandler
.Validation.RuleArgs

.Validation.RuleMethod
.Validation.ValidationRules

.Validation.BrokenRule
.Validation.BrokenRulesCollection
.Security.RolesForProperty

.Security.AuthorizationRules

.BusinessBase
.BusinesslistBase
.ReadOnlyBase

.ReadOnlyListBase

Implements editable object functionality and data
binding support

Inherits from Bindinglist(0f T) to implement read-
only behaviors
Defines the method signature for rule methods

Defines the arguments passed to a rule handler
method

Contains information about a rule method
Maintains a list of rules associated with each object
property

Represents a single broken rule in the
BrokenRulesCollection

Maintains a list of currently broken validation rules
for a business object

Maintains a list of roles allowed or denied access for
a specific object property

Maintains a list of roles allowed or denied access for
all object properties by using RolesForProperty
objects

Base class from which editable business classes will
inherit

Base class from which editable business collection
classes will inherit

Base class from which read-only business classes will
inherit

Base class from which read-only business collection
classes will inherit

implementation of each assembly and class.

The reasoning behind the existence of these classes, and the explanation of how they’re organ-
ized into namespaces, were covered in Chapter 2. In this chapter, I'll focus mostly on the actual

This chapter will cover the creation of each class in turn. Obviously, this is a lot to cover, so the
chapter will only include the critical code from each class. You'll want to download the code for the
book from the Apress website (www.apress.com) so you can see each complete class or type as it is

discussed.

Setting Up the CSLA .NET Project

Open Visual Studio 2005 and create a new Class Library project named Csla. I recommend imme-
diately saving the project using File » Save All. Make sure the option to create a directory for the

solution is checked, as shown in Figure 3-1.

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

Save Project

Mame: | Csla |
Location: | c:ivisual Studio Projects v| [Browse. ..]
Solution Mame: | Csla | Create directory for solution

| save J[Cancel]

Figure 3-1. Saving the blank Csla solution

Of course, the Class1.vb file needs to be removed in preparation for adding the classes that
belong to the framework.

Creating the Directory Structure

To keep all the source files in the project organized, the project needs a set of folders. Table 3-2 lists
the folders to add to the project.

Table 3-2. Folders in the Csla Project

Folder Purpose

Core Contains the Csla.Core types

Data Contains the Csla.Data types

DataPortal Contains files in the Csla namespace that are part of the data portal func-

tionality (see Chapter 4)

DataPortal\Client Contains Csla.DataPortal, along with the Csla.DataPortalClient proxy
classes (see Chapter 4)

DataPortal\Hosts Contains the Csla.Server.Hosts host classes (see Chapter 4)

DataPortal\Server Contains the Csla. Server types that implement the server-side data portal
functionality (see Chapter 4)

Security Contains the Csla.Security types

Validation Contains the Csla.Validation types

By organizing the various files into folders, the project will be far easier to create and manage.
Some of the folders listed here won't be used until Chapter 4, but it is worth getting them all set up
now to be ready.

There’s an additional Diagrams folder in the code download, containing many of the diagrams
(or pieces of them at least) used to create the graphics in this book.

Supporting Localization

The CSLA .NET framework supports localization. For a framework, the key to supporting localiza-
tion is to avoid using any string literal values that might be displayed to the end user. The .NET
Framework and Visual Studio 2005 offer features to assist in this area through the use of resources.

In the Solution Explorer window, double-click on the Properties node under the Csla proj-
ect to bring up the project’s properties windows. Click on the Resources tab to navigate to the
built-in resource editor. Figure 3-2 shows this editor with several of the string resources from
Resources.resx.

96 CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

~Csla* - X
Application Strings - |_1 Add Resource -)(Remove Resource | - -
Compile
Mame | Yalue Comment [|
Debug » BusinessPrincipalExc Principal must be of bype BusinessPrincipal, not
Referona ChangelnvalidExcep Changing an element is an invalid operation
hildDeleteExceptio) =20 ok directly mark a child object For deletion - use its
TR
Resources ClearInvalidExceptic Clear is an invalid operation
Settings CreateMotSupported Invalid operation - create not allowed E
DeletehotSupported Invalid operation - delete not allowed
Siging ErrorReadingyalueE: Error reading value:

\ ExecuteMotSupportd Invalid operation - execute naot allowed
Failed failed

FailedOnserver failed on the server

FetchMotSupportedt Invalid operation - Fetch not allowed

GetIdvalueCantBei GetIdvalue must not return Mothing

InsertInvalidExcepti Insert is an invalid operation

InsertMotSupported| Invalid operation - insert not allowed

MethodCallFalled | method call Failed

MethodhotImplemern not implemented

MoapplyEditChildExo ApplyEdit is not walid on a child object
MoBeginEditChildEx o BeginEdit is not walid on a child object
MoCancelEditChildEx CancelEdit is not walid on a child object

MNoDeleteRootExcepl Invalid For root objects - use Delete instead

Figure 3-2. Visual Studio resource editor

The complete set of resources is available in the Resources.resx file in the download. Addi-
tionally, a number of people around the world have been kind enough to translate the resources
to various languages. As this is an ongoing process, please refer to www. lhotka.net/cslanet/
download.aspx for updates to the framework and resource files.

Now that the basic project has been set up, let’s walk through each class or type in turn. To keep
things organized, I'll follow the basic order from Table 3-1 (with a couple of exceptions). This way,
the namespaces can be built one at a time.

Csla.Core Namespace

The Csla.Core namespace contains types that are not intended for business developers. Rather,
these types are intended for use by the CSLA .NET framework itself. This is a primary motivation
for putting them into their own namespace—to help keep them out of sight of business develop-
ers during normal development.

These types may also be useful to people who wish to extend the framework. For instance,
Core.BusinessBase could easily act as a starting point for creating some different or more advanced
BusinessBase-style class. Likewise, Core.ReadOnlyBindinglList is useful as a base for creating any
type of read-only collection that supports data binding.

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

IBusinessObject Interface

Generic types like BindingList(0f T) are very powerful because they allow a developer to easily
create a strongly typed instance of the generic type. For instance

Dim myStringlist As Bindinglist(Of String)
defines a strongly typed collection of type String. Similarly
Dim myIntList As BindinglList(Of Integer)

defines a strongly typed collection of type Integer. Since both myStringlist and myIntList are “of
type” BindinglList(Of T), you might think they are polymorphic—that you could write one method
that could act on both fields. But you can’t. Generic types are notinherited, and thus do not come
from the same type. This is highly counterintuitive at first glance, but nonetheless is a fact of life
when working with generic types.

Since CSLA .NET makes use of generic types (BusinessBase(0f T),BusinessListBase(0Of T, (),
etc.), this is a problem. There are cases in which a UI developer will want to treat all business objects
the same—or at least be able to use the .NET type system to determine whether an object is a busi-
ness object or not.

In order to treat instances of a generic type polymorphically, or to do type checks to see if those
instances come from the same type, the generic type must inherit from a non-generic base class or
implement a non-generic interface. In the case of BindingList(0f T), the generic type implements
IBindingList. So both myStringlist and myIntList can be treated as IBindinglList types.

To provide this type of polymorphic behavior to CSLA .NET business objects, all business base
classes will implement Csla.Core.IBusinessObject. This, then, is the ultimate base type for all busi-
ness objects. Here’s the code for IBusinessObject:

Namespace Core

Public Interface IBusinessObject
End Interface

End Namespace

Notice that this interface has no members (methods, properties, etc). This is because there are
no common behaviors across both read-only and editable business objects. The interface remains
incredibly useful, however, because it allows code to easily detect whether an object is a business
object, through code like this:

If TypeOf theObject Is Csla.Core.IBusinessObject Then
' theObject is a business object
End If

The next couple of interfaces will have more members.

IUndoableObject Interface

In the same way that IBusinessObject provides a form of polymorphism and commonality
across all business objects, IUndoableObject does the same thing for editable business objects—
specifically those that inherit from BusinessBase(Of T) and BusinessListBase(0f T, C).

This polymorphic ability will be of critical importance in the implementation of UndoableBase
later in the chapter. UndoableBase needs to be able to treat all editable objects the same in order to
implement the n-level undo functionality.

97

98 CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

Here’s the code for IUndoableObject:

Namespace Core

Public Interface IUndoableObject
Inherits IBusinessObject

Sub CopyState()

Sub UndoChanges()

Sub AcceptChanges()
End Interface

End Namespace

First notice that this interface inherits from the IBusinessObject interface. This means that all
editable objects implementing this interface will automatically be business objects in the broader
sense.

All editable objects support n-level undo. The n-level undo support implemented by
UndoableBase requires that every object implement the three methods listed in this interface.

Putting these methods in an interface is a double-edged sword. On one hand, it clearly defines
the methods and will make it easier to implement UndoableBase. On the other hand, these methods
are now potentially available to any code using a business object. In other words, a UI developer
could write code to call these methods—almost certainly causing nasty bugs and side effects,
because these methods aren’t designed for public use.

This is a difficult design decision when building frameworks. In this case, the benefits of having
a common interface for use by UndoableBase appears to outweigh the potential risk of a UI devel-
oper doing something foolish by calling the methods directly.

To help minimize this risk, the actual implementation methods in the base classes will keep
these methods Private. That way, they can only be called by directly casting the object to the
IUndoableObject type.

IEditableCollection Interface

While a BusinessListBase(Of T, C) isboth a business object and an editable object, it is also a col-
lection. It turns out that collections need one extra behavior beyond a simple editable object, so the
IEditableCollection interface adds that extra method:

Namespace Core

<System.Diagnostics.CodeAnalysis.SuppressMessage(_

"Microsoft.Naming", "CA1711:IdentifiersShouldNotHaveIncorrectSuffix")> _
Public Interface IEditableCollection

Inherits IUndoableObject

Sub RemoveChild(ByVal child As Core.BusinessBase)
End Interface

End Namespace

The RemoveChild() method will be important later in the chapter, during the implementation
of BusinessBase and BusinesslListBase, and specifically for the implementation of the System.
ComponentModel.IEditableObject interface. This interface has some tricky requirements for inter-
action between a child object in a collection and the collection itself.

Also notice the SuppressMessage attribute applied to the interface. Some versions of Visual Stu-
dio 2005 offer a code-analysis feature. This is a powerful feature that can be used to proactively find

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

bugs and other problems with your code. It applies a set of naming standards to your code as part
of its analysis, which is often good. Sometimes, however, you don’t want to follow the recommenda-
tion. In that case, this attribute can be applied to tell code analysis to be silent on a specific issue.
You'll see this type of attribute used here and there throughout the code in Chapters 3 through 5.

IReadOnlyObject Interface

In the same way that IBusinessObject provides a form of polymorphism and commonality across
all business objects, IReadOnlyObject does the same thing for read-only business objects—
specifically those that inherit from ReadOnlyBase(0f T).

It turns out that all read-only objects support a method for authorization: CanReadProperty ().
This method is defined in the interface as follows:

Public Interface IReadOnlyObject

Inherits IBusinessObject

Function CanReadProperty(ByVal propertyName As String) As Boolean
End Interface

The CanReadProperty() method will be discussed later in the chapter.

IReadOnlyCollection Interface

The IReadOnlyCollection interface exists purely to support polymorphism for read-only collection
objects that inherit from ReadOnlyListBase(0f T, C).As such, itis an empty interface.

Public Interface IReadOnlyCollection
Inherits IBusinessObject
End Interface

You can use this interface to easily determine if a business object is a read-only collection as
needed within your business or UI code.

ICommandObject Interface

The final common interface is ICommandObject. Like IReadOnlyCollection, this is an empty
interface:

Public Interface ICommandObject
Inherits IBusinessObject
End Interface

Again, you can use this interface to easily determine if a business object inherits from
CommandBase within your business or UI code.

ObjectCloner Class

All read-only and editable objects will implement the System.ICloneable interface. This interface
defines a Clone () method that returns an exact copy of the original object. Also remember that all
business objects will be mobile objects: marked with the <Serializable()> attribute.

99

100

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

Tip The primary reason I'm including this cloning implementation is to reinforce the concept that business
objects and any objects they reference must be serializable. Having implemented a Clone () method as part of
the framework, it becomes very easy to create a test harness that attempts to clone each of your business objects,
clearly establishing that they are all totally serializable.

Creating a clone of a serializable object is easily accomplished through the use of the
BinaryFormatter object in the System.Runtime.Serialization.Formatters.Binary namespace.
Still, the implementation is a few lines of code. Rather than replicating this code in every base class,
it can be centralized in a single object. All the base classes can then collaborate with this object to
perform the clone operation.

The class contains the following code:

Namespace Core
Friend Module ObjectCloner
Public Function Clone(ByVal obj As Object) As Object

Using buffer As New MemoryStream()
Dim formatter As New BinaryFormatter()

formatter.Serialize(buffer, obj)
buffer.Position = 0
Dim temp As Object = formatter.Deserialize(buffer)
Return temp
End Using

End Function
End Module

End Namespace

This code is implemented in a Module, as there is no reason to create an instance of the class.
Also notice that it has a scope of Friend, making it only available to classes within the CSLA .NET
framework.

The Clone() method itself uses the BinaryFormatter to serialize the object’s state into an in-
memory buffer. All objects referenced by the business object are also automatically serialized into
the same buffer. The combination of an object and all the objects it references, directly or indirectly,
is called an object graph.

The in-memory buffer is immediately deserialized to create a copy of the original object graph.
The buffer is then disposed, as it could consume a fair amount of memory, depending on the size of
the fields in your objects.

The resulting copy is returned to the calling code.

BindableBase Class

Editable objects that derive from Csla.BusinessBase will support data binding. One key interface
for Windows Forms data binding is System.ComponentModel. INotifyPropertyChanged. This interface
simply declares a single event: PropertyChanged.

In Chapter 2, I discussed the issue of serializing objects that declare events. If a non-
serializable object handles the event, then serialization will fail, because it will attempt to serialize

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

the non-serializable object. Having just discussed the ObjectCloner class, it is clear that all business
objects must be serializable.

To avoid this issue, events must be declared in a more complex manner than normal. Specifi-
cally, they must be declared using a block structure such that it is possible to manually declare the
delegate field. That way, the field can be marked with the <NonSerialized()> attribute to prevent
serialization from attempting to serialize a non-serializable event handler.

To be slightly more clever, the implementation can maintain two delegate fields, one serializ-
able and one not. As event handlers are added, the code can check to see if the handler is contained
within a serializable object or not, and can add the event handler to the appropriate delegate.

All this functionality is encapsulated in Csla.Core.BindableBase. This is the base class from
which Csla.BusinessBase will ultimately derive. Here’s the code:

Namespace Core

<Serializable()> _
Public MustInherit Class BindableBase

Implements System.ComponentModel.INotifyPropertyChanged
Protected Sub New()
End Sub

<NonSerialized()> _
Private mNonSerializableHandlers As PropertyChangedEventHandler
Private mSerializableHandlers As PropertyChangedEventHandler

<System.Diagnostics.CodeAnalysis.SuppressMessage(_
"Microsoft.Design", "CA1062:ValidateArgumentsOfPublicMethods")> _
Public Custom Event PropertyChanged As PropertyChangedEventHandler _
Implements INotifyPropertyChanged.PropertyChanged
AddHandler(ByVal value As PropertyChangedEventHandler)

If value.Method.IsPublic AndAlso _
(value.Method.DeclaringType.IsSerializable OrElse _
value.Method.IsStatic) Then
mSerializableHandlers = _

DirectCast(System.Delegate.Combine(_
mSerializableHandlers, value), PropertyChangedEventHandler)
Else
mNonSerializableHandlers = _
DirectCast(System.Delegate.Combine(_
mNonSerializableHandlers, value), PropertyChangedEventHandler)
End If
End AddHandler

RemoveHandler (ByVal value As PropertyChangedEventHandler)

If value.Method.IsPublic AndAlso _
(value.Method.DeclaringType.IsSerializable OrElse _
value.Method.IsStatic) Then
mSerializableHandlers = DirectCast(_

System.Delegate.Remove(_
mSerializableHandlers, value), PropertyChangedEventHandler)

101

102 CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

Else
mNonSerializableHandlers = DirectCast(_
System.Delegate.Remove(_
mNonSerializableHandlers, value), PropertyChangedEventHandler)
End If
End RemoveHandler

RaiseEvent(ByVal sender As Object, ByVal e As PropertyChangedEventArgs)
Dim nonSerializableHandlers As PropertyChangedEventHandler = _
mNonSerializableHandlers
If nonSerializableHandlers IsNot Nothing Then
nonSerializableHandlers.Invoke(sender, e)
End If
Dim serializableHandlers As PropertyChangedEventHandler = _
mSerializableHandlers
If serializableHandlers IsNot Nothing Then
serializableHandlers.Invoke(sender, e)
End If
End RaiseEvent
End Event

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnIsDirtyChanged()

OnUnknownPropertyChanged()
End Sub

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnUnknownPropertyChanged()

Dim properties() As PropertyInfo = _
Me.GetType.GetProperties(BindingFlags.Public Or BindingFlags.Instance)
For Each item As PropertyInfo In properties
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(item.Name))
Next

End Sub

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnPropertyChanged(ByVal propertyName As String)
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(propertyName))
End Sub

End Class

End Namespace

It's important that this class is marked as <Serializable()>. Ultimately, all business objects
will be serializable, and that means that any classes they inherit from must also be marked as
such. Also, the class is declared as MustInherit. This means that an instance of this class can’t be
created directly.

Before declaring the event itself, the code declares two delegate fields. These fields will hold
delegate references to all event handlers registered to receive the PropertyChanged event:

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

<NonSerialized()> _
Private mNonSerializableHandlers As PropertyChangedEventHandler
Private mSerializableHandlers As PropertyChangedEventHandler

Notice that one is declared with the <NonSerialized()> attribute, while the other is not. The
BinaryFormatter will ignore the first one and all objects referenced by that delegate field. Objects
referenced by the second field will be serialized as normal.

The event declaration uses a block structure, including AddHandler, RemoveHandler, and
RaiseEvent sections. Notice how the code in the AddHandler and RemoveHandler sections checks
to see if the event handler is contained within a serializable object:

If value.Method.IsPublic AndAlso

(value.Method.DeclaringType.IsSerializable OrkElse _
value.Method.IsStatic) Then

If the event handler is contained in a serializable object, it is added or removed from the serial-
izable delegate; otherwise it is added or removed from the non-serialized delegate.

The thing about events and inheritance is that an event can only be raised by code in the
class in which it is declared. This is because the event member can only be accessed directly
from the class in which it is defined. It can’t be raised by code in classes that inherit from this
class. This means that business objects can't raise the PropertyChanged event directly, even
though that is the goal. To solve this problem, the code follows a standard .NET design pattern
by creating a Protected method that in turn raises the event:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnPropertyChanged(ByVal propertyName As String)
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(propertyName))
End Sub

Any classes that inherit from the base class can call this method when they want to raise the
event.

This method is marked with the <EditorBrowsable()> attribute, indicating that this is an
advanced method. In VB, this means that the method appears in the All tab in IntelliSense, and
won't appear in the Common tab. In C#, this means that the method won’t appear in IntelliSense
unless the IDE is set to show advanced members.

The OnUnknownPropertyChanged() method covers a special case, different from the
OnPropertyChanged() method. Where OnPropertyChanged() raises the PropertyChanged event for
a single property, OnUnknownPropertyChanged() raises the event for all properties of the object:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnUnknownPropertyChanged()

Dim properties() As PropertyInfo = _
Me.CetType.GetProperties(BindingFlags.Public Or BindingFlags.Instance)
For Each item As PropertyInfo In properties
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(item.Name))
Next

End Sub

There are a number of cases in which the object’s state will change in such a way that it isn’t
possible to know which properties actually changed. In that case, this blanket notification approach
ensures that data binding is aware that something changed, so the UI updates as needed.

103

104

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

To do this, the method uses reflection to get a list of all the Public properties on the business
object, and then raises the PropertyChanged event for each item in the list. Since only Public proper-
ties can be bound through data binding, this ensures that data binding will refresh any properties
that are bound to the UI. The result is a base class that allows business objects to raise the
PropertyChanged event, thereby supporting data binding and serialization.

NotUndoableAttribute Class

As discussed in Chapter 2, editable business objects and collections will support n-level undo
functionality. Sometimes, however, objects may have values that shouldn’t be included in the
snapshot that’s taken before an object is edited. (These may be read-only values, or recalculated
values, or values that are simply so big—large images, perhaps—that you choose not to support
undo for them.)

The custom attribute NotUndoable is used to allow a business developer to indicate that a field
shouldn’t be included in the undo operation.

The UndoableBase class, which will implement the n-level undo operations, will detect whether
this attribute has been placed on any fields. If so, it will simply ignore that field within the undo
process, neither taking a snapshot of its value nor restoring it in the case of a cancel operation.

Note Since this attribute will be used by business developers as they write normal business code, it will be
in the Cs1a namespace along with all the other types intended for use directly by business developers. It is also in
the main project directory rather than in the Core subdirectory.

The NotUndoableAttribute class contains the following code:

<AttributeUsage(AttributeTargets.Field)> _
Public NotInheritable Class NotUndoableAttribute
Inherits Attribute

End Class

The <AttributeUsage()> attribute specifies that this attribute can be applied only to fields.
Beyond that, the <NotUndoable()> attribute is merely a marker to indicate that certain actions
should (or shouldn’t) be taken by the n-level undo implementation, so there’s no real code here
atall.

UndoableBase Class

The UndoableBase class is where all the work to handle n-level undo for an object will take place.
This is pretty complex code that makes heavy use of reflection to find all the fields in each busi-
ness object, take snapshots of their values, and then (potentially) restore their values later in the
case of an undo operation.

Remember, nothing requires the use of n-level undo. In many web scenarios, as demon-
strated in Chapter 10, there’s no need to use these methods at all. A flat UI with no Cancel button
has no requirement for undo functionality, so there’s no reason to incur the overhead of taking a
snapshot of the object’s data. On the other hand, when creating a complex Windows Forms UI
that involves modal dialog windows to allow editing of child objects (or even grandchild objects),
it is often best to call these methods to provide support for the OK and Cancel buttons on each of
the dialog windows.

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

Tip Typically, a snapshot of a business object’s fields is taken before the user or an application is allowed
to interact with the object. That way, you can always undo back to that original state. The BusinessBase and
BusinessListBase classes will include a BeginEdit () method that will trigger the snapshot process, a
CancelEdit() method to restore the object’s state to the last snapshot, and an ApplyEdit() method to commit
any changes since the last snapshot.

The reason this snapshot process is so complex is that the values of all fields in each object
must be copied, and each business object is essentially composed of several classes all merged
together through inheritance and aggregation. This causes problems when classes have fields
with the same names as fields in the classes they inherit from, and it causes particular problems
if a class inherits from another class in a different assembly.

Since this will be a base class from which Csla.BusinessBase will ultimately derive, it must be
marked as <Serializable()>. It should also be declared as MustInherit, so that no one can create
an instance of this class directly. All business objects need to utilize the INotifyPropertyChanged
interface implemented in BindableBase so they’ll inherit from that, too. Finally, the n-level undo
functionality relies on the Csla.Core.IUndoableObject interface, so that will be implemented in
this class (and in BusinessListBase later in the chapter):

<Serializable()> _
Public MustInherit Class UndoableBase
Inherits Csla.Core.BindableBase

Implements IUndoableObject

End Class

With that base laid down, I can start to discuss how to implement the undo functionality. There
are three operations involved: taking a snapshot of the object state, restoring the object state in case
of an undo, and discarding the stored object state in case of an accept operation.

Additionally, if this object has child objects that implement Csla.Core.IUndoableObject, those
child objects must also perform the store, restore, and accept operations. To achieve this, any time
the algorithm encounters a field that’s derived from either of these types, it will cascade the opera-
tion to that object so it can take appropriate action.

The three operations will be implemented by a set of three methods:

* CopyState()
¢ UndoChanges()
 AcceptChanges()

CopyState

The CopyState() method will take a snapshot of the object’s current data and store it in a System.
Collections.Generic.Stack(0f T) object.

Stacking the Data

Since this is an implementation of n-level undo capability, each object could end up storing a
number of snapshots. As each undo or accept operation occurs, it will get rid of the most recent
snapshot stored; this is the classic behavior of a “stack” data structure. Fortunately, the .NET
Framework includes a prebuilt Stack(0f T) class that implements the required functionality.

It is declared as follows:

105

106

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

<NotUndoable()> _
Private mStateStaStack(Of T)ck As New Stack(Of Byte())

This field is marked as <NotUndoable()> to prevent taking a snapshot of previous snapshots.
CopyState() should just record the fields that contain actual business data. Once a snapshot has
been taken of the object’s data, the snapshot will be serialized into a single byte stream. That byte
stream is then put on the stack. From there, it can be retrieved and deserialized to perform an
undo operation if needed.

Taking a Snapshot of the Data

The process of taking a snapshot of each field value in an object is a bit tricky. Reflection is used
to walk through all the fields in the object. During this process, each field is checked to determine
if it has the <NotUndoable()> attribute. If so, the field is ignored.

The big issue is that field names may not be unique within an object. To see what I mean, con-
sider the following two classes:

Public Class BaseClass
Dim mId As Integer
End Class

Public Class SubClass
Inherits BaseClass

Dim mId As Integer

End Class

Here, each class has its own field named mId—and in most circumstances, that’s not a prob-
lem. However, when using reflection to walk through all the fields in a SubClass object, it will
return fwomld fields: one for each of the classes in the inheritance hierarchy.

To get an accurate snapshot of an object’s data, CopyState() needs to accommodate this
scenario. In practice, this means prefixing each field name with the name of the class to which
it belongs. Instead of two mId fields, the result is BaseClass!mId and SubClass!mId. The use of an
exclamation point for a separator is arbitrary, but some character is necessary to separate the
class name from the field name.

As if this weren’t complex enough, reflection works differently with classes that are subclassed
from other classes in the same assembly than with classes that are subclassed from classes in a dif-
ferent assembly. If in the example above, BaseClass and SubClass are in the same assembly, one
technique can be used, but if they’re in different assemblies, a different technique will be necessary.
Of course, CopyState() should deal with both scenarios so the business developer doesn’t have to
worry about these details.

Note Not all the code for UndoableBase is listed in the book. I’'m only covering the key parts of the algorithm.
For the rest of the code, please refer to the download.

The following method deals with all of the preceding issues. I'll walk through how it works after
the listing.

CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

<EditorBrowsable(EditorBrowsableState.Never)s _
Protected Friend Sub CopyState() Implements IUndoableObject.CopyState

Dim currentType As Type = Me.GetType
Dim state As New HybridDictionary()
Dim fields() As FieldInfo

Dim field As FieldInfo

Dim fieldName As String

Do
' get the list of fields in this type
fields = currentType.GetFields(_
BindingFlags.NonPublic Or _
BindingFlags.Instance Or _
BindingFlags.Public)

For Each field In fields
' make sure we process only our variables
If field.DeclaringType Is currentType Then
' see if this field is marked as not undoable
If Not NotUndoableField(field) Then
' the field is undoable, so it needs to be processed
Dim value As Object = field.GetValue(Me)

If GetType(Csla.Core.IUndoableObject). _
IsAssignableFrom(field.FieldType) Then
make sure the variable has a value
If Not value Is Nothing Then
' this is a child object, cascade the call
DirectCast(value, IUndoableObject).CopyState()
End If

Else
' this is a normal field, simply trap the value
fieldName = field.DeclaringType.Name & "!" & field.Name

state.Add(fieldName, value)
End If
End If

End If
Next

currentType = currentType.BaseType

Loop Until currentType Is GetType(UndoableBase)
' serialize the state and stack it
Using buffer As New MemoryStream
Dim formatter As New BinaryFormatter
formatter.Serialize(buffer, state)
mStateStack.Push(buffer.ToArray)
End Using
CopyStateComplete()

107

108 CHAPTER 3 © BUSINESS FRAMEWORK IMPLEMENTATION

End Sub
Protected Overridable Sub CopyStateComplete()

End Sub

This method is scoped as Protected Friend, which is a bit unusual. The method needs
Protected scope because BusinessBase will subclass UndoableBase, and the BeginEdit() method
in BusinessBase will need to call CopyState(). That part is fairly straightforward.

The method also needs Friend scope, however, because child business objects will be con-
tained within business collections. When a collection needs to take a snapshot of its data, what
that really means is that the objects within the collection need to take snapshots of their data.
BusinessListBase will include code that goes through all the business objects it contains, telling
each business object to take a snapshot of its state. This will be done via the CopyState() method,
which means that BusinessListBase needs the ability to call this method, too. Since it’s in the
same project, this is accomplished with Friend scope.

To take a snapshot of data, there needs to be somewhere to store th