THE EXPERT’S VOICE® IN .NET

Pro
NET 2.0 Windows
Forms and Custom
Controlsin VB 2005

Create modern user interfaces for Windows applications.

Matthew MacDonald

Foreword by Shawn Burke
Development Manager, Windows Forms Team, Microsoft Corporation

Apress’

Pro .NET 2.0 Windows
Forms and Custom
Controls in VB 2005

Matthew MacDonald

APIess®

Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005
Copyright © 2006 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-694-4
ISBN-10 (pbk): 1-59059-694-3
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Manish Jayaswal

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour

Copy Edit Manager: Nicole LeClerc

Copy Editor: Heather Lang

Assistant Production Director: Kari Brooks-Copony

Senior Production Editor: Laura Cheu

Compositor: Susan Glinert Stevens

Proofreader: Liz Berry

Indexer: Michael Brinkman

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

For Hamid and Razia

Contents at a Glance

FOrBWOIT ..ot e e XXV
ADOUt The AUTNOT . ..o e e XXVii
About the Technical REVIBWET i e e et ie e XXix
ACKNOWIBAgMENTS ..ottt i e i XXXi
INtrodUCHION ... e XXXiii
PART 1 Windows Forms Fundamentals
CHAPTER 1 User Interface Architecturel 3
CHAPTER2 Control BasiCS.............cooviiiiiiiiii i M
CHAPTER 3 FOrms ... 71
CHAPTER4 TheClassicControls ..., 109
CHAPTER 5 Imagesand Resourcescvieviiiiiinnnnnns. 151
CHAPTERG6 Listsand Treescccoiiiiiiiiiiiii i 173
CHAPTER7 Drawing withGDI+ i, 209
CHAPTER 8 DataBindingccoiiiiii 263
PART 2 Custom Controls
CHAPTER9 Custom Control Basicscooiiiiiiiiiiiin.. 321
CHAPTER10 UserControls ...t 337
CHAPTER 11 Derived Controls ...ttt 365
CHAPTER 12 Owner-Drawn Controlst 389
CHAPTER 13 Design-Time Support for Custom Controls 425

Vi

PART 3

CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17

PART 4

CHAPTER 18
CHAPTER 19
CHAPTER 20

CHAPTER 21

CHAPTER 22

PART 5

CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26

APPENDIX A
APPENDIX B

Modern Controls

Tool, Menu, and Status Stripsooiiiiiit,
The DataGridView ...,
Soundand Videoccooiiiiiiiii
The WebBrowseroiiiiii e

Windows Forms Techniques

Validation and Masked Editing
Multiple and Single Document Interfaces
Multithreading ...
Dynamic Interfaces and Layout Engines
Help Systems

Advanced Custom Controls

Skinned Forms and Animated Buttons
Dynamic Drawing with a Design Surface
Custom Extender Providerscocoiiiiiiiint
Advanced Design-Time Supportcoviiintt,
Creating Usable Interfacescccoiiiiiint,
CHCKONGE e

Contents

FOrBWOIT ..ot e e XXV

AboUt the AUTNOT e e XXvii

About the Technical REVIBWETot e e it XXix

ACKNOWIBAgMENTS ..ottt i e i XXXi

INtrodUCHION ... e XXXiii
PART 1 Windows Forms Fundamentals

CHAPTER 1 User Interface Architecture 3

Classes and ObJECESvvve e e i i 4

The Roles 0f Classesovveiiii i i 4

Classes and TYPES ..o vv vt it it i i i i e nneans 4

User Interface Classesin NETccoviiiiiiiiiiiinnnnnns. 8

Controls Are Classes.vvve i i i 9

Controls Can Contain Other Controlscoovvunt. 9

Controls Can Extend Other Controls.......................... 12

Inheritance and the Form Classcoiie.. 13

Accessing Controls. e 15

COmMPONENES ..ot e 17

Interactingwitha Controlot 19

Overriding Methods ... i 19

The View-Mediator Patternt 20

SmartControls ...t 21

SMaAt FOrMS . ..ot i e e 22

Visual Studioovvi e 22

Generating User-Interface Code in Visual Studio 24

The Component Trayovvvreiii it i i eieennns 26

The Hidden DesignerCodeccovviviiiiiinnninnnn.. 27

The Application Framework.cccoiiiiii ot 30

Designing Windows Forms Applications 34

Encapsulationci i e 34

Developing iNTiers. ..o 37

The LastWord e e 40

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

ControlBasicscccoiiiiiiiiiiiii M
The Windows Forms Packageccoviiiiiiiiineiinn.n 41
The NETSolution..... ..o e 42
The Control Classooviireiii ittt et neens 43
Control Relations.c.v v e e 46
Windows XP Styles. 46
Positionand Size ... 48
Overlapping Controlsccvvrii i 50
C0l0r et e e 52
AlphaBlending ... e e 55
Fontsand Text.o e i 56
SystemFonts. ... 57
Large FontS e 57
ACCESS KBYS .. vttt e e 58
Focus and the Tab Sequence, 59
Responding to the Mouse and Keyboard 61
Handlingthe Keyboard., 61
Handlingthe Mouse 65
A Mouse/Keyboard Exampleccoevveiiiinnninann.. 67
MOUSE CUISOIS v e vttt vttt it i ienaeeeans 68
Low-Level Membersot e 69
The LastWord e e 70
FOrms 71
The FOrmM Classvv it et i ettt eneens 71
Form Size and Position. 74
Scrollable FOrms. e 79
ShowingaFormoviii i e e 81
Custom Dialog Windowsccoiiiiiiiiiiiii e 81
Forminteraction.......... ... 84
Form OWnershipc.ooeii i 88
Prebuilt Dialogsovvii i e 90
Resizable FOrmso e 93
The Problem of Sizeoo i 94
Minimum and Maximum Form Size 95
ANChOriNg. ... e 95
DOCKING .. v e e e 99

AULOSIZING ..o v e e 100

CHAPTER 4

CHAPTER 5

CONTENTS

Splitting Windowsvveii i 103
Building Split Windows with Panels 105
Other SplitWindows. ... 106

ThelastWordoiiii i e e 108

The Classic Controls 109

The Classic Control Galleryccvviiiiiiiiiineiieenn.. 109
Labels. ... e 109
LinkLabel. ... e 110
Button. ... e 112
TeXtBOX ..o e e 113
RichTeXtBOX. . ..ot e e e i 115
CheckBox and RadioButtonccovvvinivnnn.. 120
PICtUrEBOX . .ot e 121
List CONtrolsvv vt e e 121
Other Domain Controls.t i 125

TheDate Controls ..o e 127
The DateTimePicker. ...t 128
MonthCalendar ..ot 130

Container Controls ..ot e 132
The TabControlo i 133

AutoCompleteo e e 135

Drag-and-Drop ... e 137
“Fake” Drag-and-Drop.ccvviiiiiiiniii i 137
Authentic Drag-and-Drop ..., 138

Extender Providers ... e 141

The Notifylcon ... e e 144

ActiveX Controls ..o e 147
Should You Import ActiveX Controls?........................ 148

ThelastWordoiiii i e e 149

Images and Resources 151

TheImage Classovvve it i it ie e eens 151
Common Controlsand Imagesccovvivvinnnn... 152
ThelmageList. ... e 155

RESOUICES ..\ttt i e e 158
Adding a Type-Safe Resource.............c.covvivinnnnnn, 159
How Type-Safe Resources Work.ccovivviniinn.n, 161
FOrm ResOUrCeS e 163

Creating Additional Resource Files.......................... 165

CONTENTS

CHAPTER 6

CHAPTER 7

Localizationooviiii i e 166
Creating a Localizable Forml 166
How Localization Works. ...t 168
The Last Wordovviii e e e i 171
ListsandTreesl 173
ListView BasiCSvvviviii i e 173
ViewMOdesS. e 173
More Advanced ListViewsSccoviiiiiiiiiiiii i 181
ListView Sortingovvivi i e 182
Label Editingcovii i e 186
ListView Grouping. . ..vvvve vt e i i 187
Searchingand Hit Testing, 188
ListView Virtualizationt 189
TreeView BasiCsvvveiiiii i e e 193
TreeView Structure. ... 194
TreeView Navigation...............ccoiiiiiiiiiii i, 196
ManipulatingNodes 199
Selecting NOdeS e 200
More Advanced TreeViewsc.ccoviiiiiiiiiiiniennnns. 202
Node Picturescooviii i e 203
Expanding and Collapsing Levels........................... 204
TreeView Drag-and-Drop...........covviiiiiii i, 205
The Last Wordovriii i e e i 208
Drawing withGDI+ 209
Understanding GDI+vvee e i i 210
Paint Sessions with GDI+cc i 211
Accessing the Graphics Object. ...ttt 211
Paintingand Repainting. ...t 212
Refreshesand Updatescciiiii i, 214
Paintingand Resizing..............cooiiiii i 216
The GraphicS Classo ve it i i it ie e e 217
Rendering Mode and Antialiasing......................... .. 219
PeNS . o e 221
BrUSNES ..o e 225
Drawing TeXt.o e 230

The GraphicsPath 233

CHAPTER 8

CONTENTS

More-Advanced GDI+ccoviii i 235
AlphaBlendingc.ooviiiiii i e 235
ClipPINg et e 237
Coordinate Systems and Transformations.................... 239
Performinga Screen Capturecoiiiiiiiia.. 242

Optimizing GDI+ Painting 243
Painting and Debugging. ... 243
Double Buffering. ..o 244
Painting Portionsof aWindow 248
HitTesting e i 251

Painting Windows Controls ..., 254
The ControlPaint Class. ..., 255
Visual Styles .. ovv v e 256
Visual Style Support. ... 257
Drawing with the VisualStyleRenderer....................... 258
Using a Control Renderer.ovvveviivieiieennennnns 260

The LastWord e i 261

DataBinding 263

Introducing DataBindingcoiiii i 264
NETDataBinding. ..o 264

BasicDataBindingciiiiiiiii 266
Data ConSUMEIS cve it i e i i aaa s 266
Data Providers. ..o 267
A Data Access Component ..., 267
Binding to a List (Complex Binding) 270
Binding to a Grid (Complex Binding)................covvu.n. 272
Binding to Any Control (Simple Binding) 273
Unusual Single-Value Binding................ooooiiii ... 274

Common Data-Binding Scenariosc.vvvvievirvinennenns 276
Updating with Data Binding...................ccoiiiit 276
Formatting Data with a Format String 277
Formatting Data with the Format and Parse Events............ 279
Advanced Conversions.cvvieiie it iiienens 281
Creatingalookup Tablecccoiiiiiiiiinnn.,,. 284

Row Validation and Changes...............cccvivviiinnnn, 285

Xi

Xii

CONTENTS

PART 2

CHAPTER 9

Data Binding EXposed ... e 286
Navigation with Data Binding L 288
Reacting to Record Navigation 289
Creating Master-Detail Forms.cciviiieevnnn.., 290
Creating a New Binding Context............................ 292
ValidatingBound Data ...t 293

Binding to Custom Objects ... 295
Overriding ToString()vveev i e 299
Supporting Grid Binding. ... 300

Automatic DataBindingco i 303
Binding Directly to a Database (Table Adapters)............... 303
Using a Strongly Typed DataSet............................ 309
Binding Directly to a Custom Object......................... 310

Data-Aware Controlscoviieiiiiii i e 312
A Decoupled TreeView with Just-in-Time NodeS 314

The Last Wordovniii e e e i 317

Custom Controls

Custom Control Basics 321
Understanding Custom Controlsccooviiieiant. 321
Types of Custom Controlscoviviiiiiin.t, 322
Custom Componentsoevvrii i 324
Control Projects . ..o e e 326
The Library Project. ... 326
The Disposable Pattern ... 328
The Client Project ... e e 330
Automatic Toolbox Support.........ccviiiii i 330
Customizingthe ToolboXc.ovvvviii it 331
The GAC ..o e e e 333
CreatingaKey....covvv i i e 334
Applying a Key to a Control Assembly 334
Attaching Keys in Visual Studio. 335
Installing a Controlinthe GAC.cv i, 335

TheLastWordcoviiii e 336

CONTENTS

CHAPTER 10 UserControlsiiiiiiiiit. 337
Understanding User Controlsc.oviieiiiiieiiennnnns 337
The Progress User Controlcccoviiiiiiiiinn.,, 338

Creating the Progress User Control 338
Testing the Progress User Controlccovvinnnn, 340
The Back Door.cooii i i 341
User Control Designovvve et i eaeas 342
An Automatic ProgressBar ..., 343
The Bitmap Thumbnail Viewerc.cciiiiiiiiiean... 345
Creating the BitmapViewer User Control 345
Testing the BitmapViewer Control 351
BitmapViewer Events.............. ..o i 352
Performance Enhancements and Threading 354
Simplifying Layout ...t 356
User Controls and Dynamic Interfaces 356
The Wizard Model.cooviiiii i 357
The Wizard Step . ..o vttt e i 358
The Wizard Controller.t 360
Testingthe Wizardcc i 363
The Last Wordovniii e e e i 364

CHAPTER 11 DerivedControls ... 365

Understanding Derived Controlsccoiviiiin... 365
Extending Controlsccovieiiii i 366
Derived Controls or User Controls?.............covvevnann.. 367

The ProjectTree Control ...t 368
TheDataClasscovviiiiii i 369
NOdE IMageS oot e e 371
NODE GrOUPS . .o e vttt e i et 372
Adding Projects. ... e 373
Project Selection. ... 375
ACustomTreeNodecoiiiiiiii i 376
Design-Time Support.covii i e 377

The DirectoryTree Controlc.ccoviiiiiiiiii i 377
Filingthe Tree ovei i e 378

Directory Selection.ovvviiii i 380

xiii

Xiv

CONTENTS

CHAPTER 12

CHAPTER 13

Deriving FOrms ... i e 380
ASimple Derived Formo 381
Making an Ancestor Control Available 383
Adding a Property in the Ancestor Form 383
DealingwithEvents ... 384

ThelastWord e 387

Owner-Drawn Controls 389

Understanding Owner-Drawn Controlscovvinvinnnn, 389
A Simple Owner-Drawn ListBoXovviivinnnnnnn, 390
A More Advanced Owner-Drawn ListBox..................... 391
An Owner-Drawn TreeViewcccoveiiiie ... 396

Owner-Drawn Custom Controlsccoiiieiiiinennnn.. 403
Double Buffering. ..o 404
The MarqueeLabel Control.c.covviiiiiiiiinnn, 404
The GradientPanel Control....................ccoiinat. 407
The SimpleChart Controlcciiiiiiiiiiiin., 411
The CollapsiblePanel Control. ..., 417

The Last Wordovniii e e e i 423

Design-Time Support for Custom Controls 425

Design-Time BasiCsccooviiiiiiir i, 425
The KeyPlayers ... i 426
Basic Attributes. 427
Attributes and Inheritance ool 431
The Toolbox Bitmap ... e 431
Debugging Design-Time Supportcoovviiiiin.n, 433

Code Serialization ...t 437
Basic Serialization 437
Default Values.coovv i i e 439
Making Serialization Decisions Programmatically 440
Serialization Type . ..o vii i e 442
Batch Initializationo i 443

Localizable Properties ...t 445

PART 3

CHAPTER 14

CONTENTS

TYPE CONVEISION .\ vttt ettt e it et it i ae e 447
Dealing with Nested Objects ...t 447
Creatinga Type Converter.............coiiiiiiieinnnn.. 449
Attaching a Type Converter.........coovieiiiiieiinnnnnns 452
The ExpandableObjectConverter.................coviui... 454
Creating a Nested Object with a Constructor 457
Custom Serialization with CodeDOM 459
Providing Standard Values. ..., 459

TYPE Editors . ..o e 462
Using Prebuilt Type Editorst 463
Using Custom Type Editorscoiiiiiiiat, 465

The LastWord e i 474

Modern Controls

Tool, Menu, and Status Strips 477
TOOIStHIP BaSICS .+ ivvit i e e e 477
The ToolStripltem 479
The ToolStripContainer.cooviiie i 487
The StatusStripand MenuStrip ..., 492
CreatingaStatusBarcoiiiiiiiii i 493
ToOIStHiP MENUS .« .. e v i 495
Main MEBNUS . ..ottt e e e e 499
Context MEBNUSeii i e i i i 501
ToolStrip Customization ...t 502
Hosting Other Controls in the ToolStrip 503
Taking Control of OverflowMenus 508
Allowing Runtime Customization 510
Customizing the ToolStrip Renderingccvviviiinn.n. 512
The ToolStripManagerccoiiiiii e 513
Customizinga Rendererovviiii it ii e 515
Changing the Colors of the ProfessionalToolStripRenderer. 517

The LastWordoov it e 518

Xv

XVi

CONTENTS

CHAPTER 15

CHAPTER 16

The DataGridView .. 519
The DataGrid LEgacyc.vvreeinriine i iiiieenneannns 519
Introducing the DataGridViewccciiiiiiint. 520
The DataGridView and Very Large Data Sources 521
Bare-Bones Data-Bindingc i 522
The DataGridView Objects.............covviiiiiiiin.n, 524
ColumnHeaderscovvviiiii i 527
Creatingan Unbound Gridovviiiiii et 528
Cell Selection.ooviii e 530
Navigation Events. ... 533
Column-Based Sorting.........covvv i 534
Formatting the DataGridView ...t 536
Columnand RoW ReSizing........covvvvviiiiiiie e 536
DataGridView Styles . ..o e 543
Custom Cell Formatting. ...t 546
Hiding, Moving, and Freezing Columns 548
Using Image Columnsccoiiiiiiiiiii e, 549
Using Button Columns ...t 553
Editing and Validation with the DataGridView 555
EditingEvents 557
Default Values for New Rowsccooiiiiiiiin.t, 557
Handling Errors. ... e 558
Validating Input. ... 560
Constraining Choices with a List Column. 562
DataGridView Customizationot 564
Custom Cell Painting ...t 564
Custom Cells. ..o e 567
Custom Cell Edit Controlsccovviieinn.... 570
The LastWord e i i 575
SoundandVideoll. 577
The SoundPlayer ...t e e 577
Synchronous and Asynchronous Playback 578
System Sounds.t 580
Advanced Media with DirectShow 581
Using Quart.dll Through Interopot 581
Playing MP3, MIDI, WMA, and More......................... 582
Showing MPEG and Other Video Types 586

TheLastWordcoviiii e 588

CHAPTER 17

PART 4

CHAPTER 18

CONTENTS

The WebBrowser ..., 589
WebBrowser BasiCsc.ovviiiiiiiiiii i 589
NavigatingtoaPagec.ccoiiiiii i, 590
WebBrowser EVentScoveiiiiii i 592
A WebBrowser Example. ... 593
Printing, Saving, and Fine-Tuning........................... 595
Blending Web and Windows Interfaces 597
BuildaDOMTreeot 597
Extract ATLINKS . ..o i i 600
Scripting a Web Page with NETCode 602
Scriptingan HTMLForm ...t 605
ThelastWord ... e e 607

Windows Forms Techniques

Validation and Masked Editing 611
Validating at the Right Timet 611
Validation Events ... 613
The Validation Event Sequence.....................coett 613
Handling ValidationEvents il t 615
Closing a Form with Validating 616
The ErrorProviderooiiiii i e e 617
Showing ErrorIconsoovei i e 618
Customizing Errorlcons.ccooviiiiiii it 619
Regular EXpressionsc.vvviii it cie e 621
Regular Expression Basics.ccoviiiiii ... 621
Validating with Regular Expressions. 624
Custom Validation Components ..o, 625
Understanding the ASP.NET Validation Controls............... 626
Building the BaseValidator. 627
Building Three Custom Validators........................... 631
Using the Custom Validatorsccoovintt 634
Masked Edit Controlscco i 637
CreatingaMask ... 638
The MaskedTextBox Class.coovveviiiiniann.s. 641
MaskedTextBox Events ..., 643
Registering a Custom Mask.cooiiiiiin.., 645
Creating Custom Masked Controls.............coovvvvvnn... 646

The Last Wordoovie e 650

Xvii

xviii

CONTENTS

CHAPTER 19

CHAPTER 20

Multiple and Single Document Interfaces 651
The Evolution of Document Interface Models 651
MDIEssentialsoviiiii i e e e 654
Finding YourRelatives ...t 656
Synchronizing MDIChildrencooieiiii i, 657
MDIWindow List. ... 659
MDILayout ..o e e 660
Merging Menus.virii i e i i i 661
Managing Interface State..................l 664
Document-View Architecture ... 666
A Document-View Ordering Program...............coovvuennn 667
Multiple-Document SDI Applicationst 680
Gapsinthe Frameworkc.cvviiiiiii it einns 686
The Last Wordovniii e e e i 687
Multithreading ... 689
Multithreading Basicsovvieeii e 689
The Goals of Multithreading.ccovvviiiiin., 690
Options for Asynchronous Programming..................... 691
Asynchronous Delegatesc.cooiiiiiiiiiiii i, 692
Pollingand Callbacks...........ccovieiiii i 694
Multithreading in a Windows Application 696
The Worker Component.cviiiiiiiiiiineinnn 697
The Asynchronous Gall. ... i 699
Marshalling Calls to the Right Thread 700
UsingaDelayedUpdate...............cccoiiiii s, 704
The BackgroundWorker Componentovivvinnnn.. 707
A Simple BackgroundWorker Testcoviviinn., 707
Tracking Progress.oovvev it cie i 709
Supporting a Cancel Feature.............coovvviiiinn.t. 711
TheThread Classccvuiiriieii it 712
Locking and Synchronizationooial 714
Creating a ThreadWrapper.........c.oveeviiiieiinneannns 716
Creating the Derived Task Class............ccovvvieinnnnn.. 717
Creating and Tracking Threads........................o.et. 719
Improving the Thread Wrapper..............cccoviienoinn... 721
Task QUEUING ... v vt e e 723

The Last Wordoovie e 727

CHAPTER 21

CHAPTER 22

CONTENTS

Dynamic Interfaces and Layout Engines 729
The Case for Dynamic User Interfaceccoovventt. 729
Dynamic Content ..ot e 730
An Adaptable Menu Example. ...l 731
A Database-Driven Adaptable Menu. 733
Creating Controls at Runtimet 736
Managing Control Layoutccciviiiii i, 738
TheLlayoutEvent 738
A Simple Handmade Layout Manager 739
Problems with the Simple Layout Manager................... 743
Layout ENginesoviiii e e e 743
Creating a Custom Layout Engine........................... 745
The FlowLayoutPanelot 746
The FlowBreak Extended Property 748
Marginsand Padding............cooiii i 749
Automatic Scrollingand Sizing...........cooviiiiii i, 750
The TableLayoutPanelciiiiiiii .. 751
Row and Column Styles. ...t 752
Generating New Columnsand Rowsovvuets. 754
Positioning Controlscooiiii i 755
Extended Properties with the TableLayoutPanel............... 756
Layout Panel Examplesc.ooiiiiiin i 757
TableLayoutPanel: A Localizable Dialog Box.................. 757
TableLayoutPanel: Bi-Pane Proportional Resizing 759
TableLayoutPanel: A List of Settings 760
TableLayoutPanel: Forms fromaFile........................ 762
FlowLayoutPanel: A Modular Interface....................... 771
Markup-Based User Interfaceccoviiiiiiiieiinn... 773
XAML . 774
WML, . e 774
The Last Wordovniii e e e i 775
HelpSystems 777
Understanding Help ... 777
Classic “Bad Help”ccovii e 778
Typesof Help ... e 779

Help-Authoring Tools ... 783

Xix

XX CONTENTS

PART 5

CHAPTER 23

CHAPTER 24

Basic Help with the HelpProvidert 784
Simple Pop-Ups ... 786
External Web Pages ... 787
CompiledHelp Filescooveeii i 787

HTML Help with the HelpProvideroo.L. 788
Creating a Basic HTML Help File............................ 788
Using Context-Sensitive Helpcovvviiiiinnt, 793
Control-Based and Form-Based Help. 794

Invoking Help Programmatically, 795
Using Database-Based HelpoooiatL. 796
Using Task-Based Help, 797
Creating Your OwnHelp. ...t 799

Application-Embedded Support i 800
AffOrdanCesovii e 801
AGENES .. e 802

The Last Wordovniii e e e i 807

Advanced Custom Controls

Skinned Forms and Animated Buttons 811
Shaped Formsand Controlscccoiiiiiiin... 811
ASimple Shaped Form. ... 812
Creating a Background for Shaped Forms.................... 813
Moving Shaped Forms............. oo 817
Shaped Controlsovvvi e e 818
Animated BUttONSot e 819
Basic Animated Buttons.c i, 819
A Base Class for Animated Buttons 819
Improving the Performance of Owner-Drawn Controls 834
Caching Imagesccoviiiiii i i 834
ReusingImagesccoviiiiiiiiii e 837
The Last Wordovniii e e e i 838
Dynamic Drawing with a Design Surface 839
A Drawing Program with Controlso..t 839
The Shape Controlci ittt 840

The Drawing SUMacecovviii i i e 843

CHAPTER 25

CHAPTER 26

CONTENTS

A Drawing Program with Shape Objects 848
The Shape Class.ooviiiiiii i 849
The Shape Collectionccoiiiiiiiiiii i 857
The Drawing SUMaceoviii i i 859
The LastWord e i 869
Custom Extender Providers 871
Understanding Extender Providerscccoviiiin.. 871
The StatusStripHelpLabel Providercovvvvin... 872
ChoosingaBase Class..........covvvieiiiiiiiinnennns 873
Choosing the Controlto Extend. 873
Providing the Extended Property................ ...t 874
Implementing the SetXxx() and GetXxx() Methods 875
Testingthe Provider...............coiiiiiii it 877
Changing How Extended Properties Appear 877
The HelplconProvider ...t 878
ChoosingaBase Class..........ovvviiii i, 878
Providing the Extended Property................ ...t 879
The Last Wordovniii e e e i 883
Advanced Design-Time Support 885
Control DeSIgNersvvii et e e e e e 885
Filtering Propertiesand Events.................. 888
Interacting withthe Mouse ...t 893
Selection and Resize Rulesc.cooiiiiiiiitt. 894
DesignerVerbs ... e 895
DESIgNEr SBIVICES. . vt v e i it i e e 899
SMA TagS . v it e 904
The Action Listo e 905
The DesignerActionitem Collection.......................... 908
The Control Designer ..ot 910
Container and Collection Controlsccoviennn.. 910
Collection Controls ..o 911
Container Controlsccoviiiiiiii i 918
Licensing Custom Controlsccovrviiiviiii i iieans. 920
Simple LIC File Licensing.ovvvvevii i i eeens 921
Custom LIC File Licensingcovveiiiiiiiii i, 922
More-Advanced License Providers...............coovvvuenn, 923

TheLastWordcoviiii e 926

XXi

XXii CONTENTS

APPENDIX A Creating Usable Interfaces 927
Why Worry About the Interface?ccoviiiiiinn... 928
A Brief History of User Interfacesccoovintt. 928

The Command-LineEra..............ccciiiiiiiiiin ... 929
The Question-Answer Model. ...t 930
The Menu-Driven Model ..., 932
The GUIEra ... e 932
Creativity vs. Conventioncoviiiiiii i 934
Consistency in NET ... 934
The “Act Like Microsoft Office” Principle. 935
Administrative Utilities 935
Know Your Application Type ..., 936
Know Your USer. . ..o e i 937
Handling Complexityc.coveiiiiii et 937
Segmenting Information..............ol 938
Inductive User Interface.oovviiiiiiiiiiiiinns 939
Helpful Restrictions e 939
Restricting the User’s Ability to Make a Mistake............... 939
Restricting the User's Choicesc.coovviviiiinn.n, 940
Restricting the User’s Imagination M
The LastWord e i 941

APPENDIXB ClickOnceoiiiiiiiii e, 943

The Ground RUIESovr i i 944
The ClickOnce Installation Model 944
ClickOnce Requirementscoeviiiiiii e 945
ClickOnce Limitations. ...t 946

A Simple ClickOnce Deploymentcoiviiiieiinann.. 946
Choosingalocation.............ccoiiiiiiiiiiieann.. 947
Deployed Files. ..o e 951
Installing a ClickOnce Application..................ccovvun.n, 952
Updating a ClickOnce Application........................... 953

ClickOnce Options . ..o v v e e e e i e 954
PublishVersion ... 954
Updates ...t 955
PrerequisiteSo e e 956

OPtiONS. .ttt e 957

CONTENTS

ClickONCe SECUMTY . ..vvit i i it 958
ClickOnce Security Promptsccciiiiiiinn.t,. 958
Partial Trust and ClickOnceccoiiiiiiiin.t, 959

The Last Wordovviii e e e i 961
963

XXiii

Foreword

The late 1990s brought us the revolution of the Internet. After 15 years of moving from a server-
based model of computing to a client/server-based model, the pendulum swung back swiftly
toward the server with the rapid growth of Web pages, HTML, and server-based applications.

There is much to like about Web applications. Designers like them, because they have lots
of great ways to apply nice-looking style sheets and layouts. Companies like Web applications,
because they do away with all the expensive and risky aspects of deploying client applications—all
that has to be done is to install the application on a Web server. There is no risk of breaking
other applications and no need to physically install the software on every machine in the orga-
nization. And for document viewing, HTML is a relatively easy language to learn, so it allows
many people to do some software development with few prior skills.

But not everything is perfect. Large-scale Web applications are difficult to write and manage.
There are differences among browsers. There aren’t very good tools for debugging and devel-
opments. The applications don’t take advantage of all the power on the client machines: hard
drives, video cards, and CPUs. And most important, the user interfaces are generally only well-
suited to the most basic data entry. If you need a real-time display or an advanced visualization,
things get very difficult.

In early 2002, Windows Forms was released as part of the Microsoft .NET Framework,
version 1.0. This changed the landscape in two fundamental ways. First, it gave programmers a
consistent, approachable API and tool set with which to build very sophisticated applications
for Microsoft Windows without having to know the Win32 SDK forward and backward. And
second, the NET Framework and common language runtime (CLR) allowed client applications
to be deployed via a Web server. Once you got the .NET Framework installed on the client
machines, you could have true zero-cost or no-touch deployment.

In conjunction with the advantages of Windows applications with .NET 1.0, organizations
were beginning to recognize the shortcomings of Web applications in certain scenarios. As a
result, they started to deploy client applications once again.

With the release of Version 2.0 of the Microsoft .NET Framework, even more client momentum
is building. Windows Forms now allows developers to build applications with the look and feel
of not only Windows itself but of Microsoft Office as well. And they can deploy those applications
using a much-improved deployment technology called ClickOnce that is integrated directly
into the Microsoft Visual Studio 2005 design experience. Gone are the days when organizations
had to default to writing Web applications. Now they can choose the technology that is appro-
priate for the task at hand, which means they can implement their vision without compromising
the user experience. Version 1.0 of Windows Forms and the .NET Framework were a good start,
but Version 2.0 takes smart client development to the next level!

Matthew MacDonald understands these changes and has created a great resource for
developers who want to use the latest version of Windows Forms to create rich applications.
Whether your goal is to write components for internal use or a full application, this book will
help you deliver great results. Welcome back to the client.

XXV

XXvi

FOREWORD

Before Windows Forms, there were application developers, and there were control developers.
Even with Visual Basic, controls were usually authored in another language like Visual C++, and
authoring them required a specific set of skills. However, with an object-oriented framework
like Windows Forms, control behavior can be customized with the same techniques as other
application development, which gives developers a powerful new tool to really make their
client applications deliver a great user experience that just can’t be matched anywhere else.
Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005 does an excellent job of high-
lighting those possibilities and equipping developers with the techniques to make them a
reality. Whether you're creating an owner-drawn TreeView, using the new layout features to
build dynamic interfaces, or creating skinned custom controls, this book shows you how.

The practical, task-based approach of Pro .NET 2.0 Windows Forms and Custom Controls
in VB 2005 allows the book to cover a wide range of Windows Forms topics but still provide the
technical depth to help developers deliver features. While many other resources read more like
technical reference documents, Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005
does an excellent job of filtering the information down to what developers really need to harness
the power and innovations of Windows Forms 2.0 and deliver truly world-class client applications.

Shawn Burke
Development Manager, Windows Forms Team
Microsoft Corporation

About the Author

MATTHEW MACDONALD is an author, educator, and Microsoft MVP
(Most Valuable Professional). He’s a regular contributor to programming
journals and the author of more than a dozen books about .NET program-
ming, including User Interfaces in VB .NET: Windows Forms and Custom
Controls (Apress, 2002), The Book of VB 2005 (No Starch Press, 2006),
and Microsoft .NET Distributed Applications (Microsoft Press, 2003).
In a dimly remembered past life, he studied English literature and
theoretical physics.

Xxvii

About the Technical Reviewer

MANISH JAYASWAL is a test lead on the Visual Basic .NET (VB .NET)
compiler team at Microsoft. He was a member of the VB teams that
developed VB .NET 7.0, 7.1, and 8.0. He has been reviewing books on
VB and .NET since 2004.

XXix

Acknowledgments

N o author can complete a book without a small army of helpful individuals. I'm deeply
indebted to the whole Apress team, including Elizabeth Seymour, Laura Cheu, Grace Wong,
Beckie Stones, and Janet Vail, who helped both editions of this book move swiftly and smoothly;
Heather Lang, who performed the copy edit; Manish Jayaswal, who performed the technical
review for the VB language translation, and many other individuals who worked behind the scenes
indexing pages, drawing figures, and proofreading the final copy. I also extend a special thanks to
Gary Cornell, who always offers invaluable advice about projects and the publishing world.

I owe a sincere thanks to Christophe Nasarre, who provided unfailingly excellent and
insightful technical review comments for the C# edition of this book—his comments helped
me to fill gaps and improve the overall quality of this book. I've worked with many technical
reviewers, and Christophe is clearly one of the best. Just as useful were the readers who took
time out to report problems and ask good questions about the first edition of this book.

This book was written with close support from members of the Microsoft Windows
Forms team, who took time out to review individual chapters and answer many e-mails filled
with obscure questions. Although I didn’t always know where the answers were coming from,
I can safely say that I owe thanks to Shawn Burke, Mike Harsh, Jessica Fosler, Joe Stegman,
Miguel Lacouture-Amaya, Jeff Chrisope, Mark Boulter, Scott Berry, Mike Henderlight,
Raghavendra Prabhu, Simon Muzio, Mark Rideout, and many others for their replies and
technical review comments. I'm especially indebted to Erick Ellis, who fielded all my questions
and followed up to make sure I had timely information and review comments. It was a great
experience to write this book with their feedback.

Finally, I'd never write any book without the support of my wife and these special individuals:
Nora, Razia, Paul, and Hamid. Thanks, everyone!

XXXi

Introduction

E)ur years after the .NET Framework first hit the programming scene, smart client applica-
tions still refuse to die. This is significant, because when .NET first appeared, many assumed it
would usher in a new world of Web-only programming. In fact, for a short time Microsoft’s own
Web site described the .NET Framework in a single sentence as a “platform for building Web
services and Web applications”—ignoring the Windows technology that made the company
famous.

Now that the dust has settled, it’s clear that Web and Windows applications aren’t locked
in the final rounds of a life-or-death battle. Instead, both technologies are flourishing. And not
only are both technologies gaining strength, they’re also stealing some of each other’s best
features. For example, the latest release of .NET gives Web developers rich controls like menus
and trees that were previously the exclusive domain of Windows coders (or Webheads who
weren't afraid to write a mess of hard-core, client-side JavaScript). On the other hand, Windows
applications are gaining easy Web-based deployment, more-flexible layout options, and the
ability to display HTML. All of these innovations point to many productive years ahead for Web
and Windows developers alike.

If you’ve picked up this book, you've already decided to learn more about programming
Windows smart clients with .NET. Although Web and Windows applications each have their
strengths and weaknesses, only Windows applications allow you to break out of the confines of
the browser and take full advantage of the client computer. With Windows Forms, you can play
sound and video, display dynamic graphics, react to the user’s actions instantaneously, and
build sophisticated windowed interfaces.

In this book, you'll learn how to use all of these techniques to design state-of-the-art appli-
cation interfaces. Best of all, you won’t just learn how to use the existing controls of the .NET
Framework—you’ll also learn everything you need to extend, enhance, and customize them.

About This Book

This book focuses relentlessly on Windows Forms, the .NET toolkit for building modern
Windows interfaces.

In this book, you'll learn about several sides of user interface programming. Some of the
key themes include the following:

* Dissecting the .NET controls. Although this book is not a reference, it contains an exhaustive
tour of just about every .NET user interface element you'll ever want to use.

* Best practices and design tips. As a developer, you need to know more than how to add
a control to a window. You also need to know how to create an entire user interface
framework that’s scalable, flexible, and reusable.

XXXiii

XXXiv

INTRODUCTION

* How to enhance .NET controls and build your own. In this book, you’ll learn key tech-
niques to extend existing controls and create your own from scratch. You’ll even learn
how to draw controls from scratch with GDI+, the remarkable .NET drawing framework.

* Howto design elegant user interfaces for the average user. This subject isn’t the focus of
the book, but you'll get a great overview from Appendix A. You'll also learn more from
tips and notes throughout the book.

* Advanced user interface techniques. Features are neat, but how do you use them? In this
book, you'll see practical examples of common techniques like document-view architecture,
validation, and hit testing. You’ll also learn how to dynamically generate forms from a
database, unshackle data binding, and build an integrated help system.

Of course, it’s just as important to point out what this book doesn’t contain. You won’t find
the following subjects in this book:

* Adescription of core .NET concepts. These key concepts, like namespaces, assemblies,
exception handling, and metadata, are explained in countless books, including a number of
excellent C# and Visual Basic titles from Apress.

e Aprimer on object-oriented design. No .NET programmer can progress very far without
a solid understanding of classes, interfaces, and other .NET types. In this book, many
examples rely on these basics, using objects to encapsulate, organize, and transfer
information.

» Areference for Visual Studio 2005. The new integrated design environment provides
powerful customization, automation, and productivity features that deserve a book of
their own. Though this book assumes you're using Visual Studio and occasionally points
out an often-overlooked feature, it also assumes that you already know your way around
the development environment.

You'll get the most out of this book if you've already read another, more general NET book.
If you haven’tlearned the .NET fundamentals yet, you'll still be able to work through this book,
but you'll need to travel at a slower pace, and you may need to refer to the MSDN Help files to
clear up issues you'll encounter along the way.

Note This book is targeted at experienced developers who want to get the most out of .NET. If you have
never programmed with a language like Visual Basic, C++ or C#, or Java before, this isn’t the place to begin.
Instead, start with an introductory book on object-oriented design or programming fundamentals. On the other
hand, if you already have some experience with .NET 1.0 or 1.1, welcome—you’ll find yourself right at home!

Chapter Overview

The following overview describes what each chapter covers. If you already have some experi-
ence with Windows Forms, feel free to skip from chapter to chapter. If you're relatively new to
Windows Forms development, it’s probably best to read through the book to make sure you
learn the basics before tackling more-advanced topics.

INTRODUCTION

Part 1: Windows Forms Fundamentals

In this part, you'll consider the core topics you need to understand to design smart clients. In
Chapter 1, you'll start out by exploring the class model that underpins Windows Forms user inter-
faces. In Chapters 2 and 3, you'll explore the fundamental Control and Form classes. Chapter 4
describes the most common Windows controls. Chapter 5 shows how you can embed images
and other binary resources into your compiled applications. Chapter 6 considers trees and lists,
which are hallmarks of modern Windows applications. Finally, Chapters 7 and 8 consider two
impressive higher-level features that are built into the Windows Forms model: GDI+ (for
hand-drawing controls) and data binding (for displaying and updating data without writing
tedious code).

Part 2: Custom Controls

In Part 2, you'll tackle one of the most important areas of Windows Forms design—creating
customized controls that add new features, use fine-tuned graphics, and encompass low-level
details with higher-level object models. In Chapter 9, you'll learn about the basic types of custom
controls you can create and see how to set up a custom control project. You'll then continue on
to create user controls, which combine other controls into reusable groups (Chapter 10);
derived controls, which enhance existing .NET control classes (Chapter 11); and owner-drawn
controls, which use GDI+ to render a portion of your user interface from scratch (Chapter 12).
Chapter 13 shows how you can add design-time support, so your custom controls behave
properly at design time.

Part 3: Modern Controls

In Part 3, you'll branch out to some of the most powerful Windows Forms controls. In Chapter 14,
you'll explore the new ToolStrip, which provides a thoroughly customizable and flexible model
for toolbars, menus, and status bars. In Chapter 15, you'll consider the DataGridView, an all-in-
one grid control for displaying data. In Chapter 16, you'll look at the still woefully weak support
for sound and video in the .NET Framework and learn how to improve the picture with interop.
Finally, in Chapter 17, you'll learn how the WebBrowser lets you show HTML pages in a Windows
application, and you’ll learn some remarkable tricks for integrating the two (with Windows code
that manipulates the page and JavaScript Web code that triggers actions in your application).

Part 4: Windows Forms Techniques

In this part, you'll consider indispensable techniques for serious Windows Forms programmers.
In Chapter 18, you'll consider a host of approaches to validation, from masked edit controls to
custom validation components that mimic ASP.NET and perform their work automatically.
Chapter 19 tackles MDI and SDI interfaces and shows you how to build a document-view
framework. Chapter 20 explores the world of multithreading and provides practical advice

on how to write safe, performance-asynchronous code in a Windows application. Chapter 21
shows how you can build a new breed of Windows application with the highly adaptable,
Web-like layout engines. Chapter 22 considers how you can build Help and integrate it into
your application.

XXXV

XXXVi

INTRODUCTION

Part 5: Advanced Custom Controls

The final part considers some advanced topics that illustrate interesting subjects and help you
extend your expertise. In Chapter 23, you'll see how to build slick applications with shaped forms,
skinned controls, and custom buttons. In Chapter 24, you'll see a complete vector-drawing appli-
cation that contrasts custom controls against a more powerful drawing model. Chapter 25
shows how you can extend existing controls with custom extender providers, and Chapter 26
picks up where Chapter 13 left off, by exploring more features and frills of design-time support
for custom controls.

Appendixes

In the appendixes, you'll take a look at principles for user interface design in any language
(Appendix A) and the new ClickOnce deployment technology (Appendix B).

Moving from .NET 1.x to .NET 2.0

If you've programmed with .NET 1.x, you'll find that a great deal remains the same in .NET 2.0.
The underlying model for creating Windows Forms applications and custom controls remains
unchanged. However, there are some significant new feature areas.

For the most part, this book doesn’t emphasize the differences between features that have
existed since .NET 1.x and those that are new in .NET 2.0, chiefly because some significant
features and programming techniques have remained the same since .NET 1.0 but are still
misunderstood by many developers. However, if you have extensive .NET 1.x programming
experience, you may want to begin by exploring some of the feature areas that have changed
the most.

The following list of the 14 most important changes points you to the right chapters:

* The SplitContainer control (Chapter 3). Finally, there’s an easier way to design complex
windows with multiple split panes. It’s a small addition, but it’s a major convenience.

* AutoComplete (Chapter 4). You see it in lists and text boxes throughout the Windows
world. Now there’s an easy way to get AutoComplete behavior without coding it by hand.

* Design-time support for resources (Chapter 5). Deploying image files with your appli-
cation is too fragile. In the past, the best alternative (embedding them in an assembly)
has been too awkward. Visual Studio 2005 solves this problem with new features for
embedding and managing resources.

* Visual styles (Chapter 7). Not only does .NET 2.0 make it easy to take advantage of
Windows XP visual styles (for all controls), it also includes a new set of classes that lets
you paint custom controls using the Windows XP-theming API.

* Automatic data binding (Chapter 8). Some love it; some hate it. Either way, you'll need
to understand quite a bit about the new support for code-free data binding if you want to
have any chance of creating a practical, scalable application.

e The ToolStrip control (Chapter 14). Microsoft solves the problems of the out-of-date
menu, status bar, and toolbar in one step with a new model revolving around the ToolStrip
class. Best of all, the ToolStrip is endlessly customizable.

INTRODUCTION

e The DataGridView control (Chapter 15). The underpowered and inflexible DataGrid of
.NET 1.x fame is replaced with a completely new grid control. Highlights include a fine-
grained style model and support for extremely large sets of data through virtualization.

* The SoundPlayer control (Chapter 16). This new control gives basic WAV playback
features, but it still comes up far short, with no support for more-modern standards like
MP3 audio or video. (Chapter 16 also shows you how to get around these problems with
the Quartz library.)

* The WebBrowser control (Chapter 17). Finally, a clean, easy way to show a Web page
in a window. Use it with local or remote data. Best of all, you have the ability to explore
the document object model (DOM) of your page and react to JavaScript events in your
Windows code.

* Masked editing (Chapter 18). A new MaskedEdit control gives you a text box with masked
editing features. You can also use lower-level classes to integrate masked editing into
any control.

» The BackgroundWorker component (Chapter 20). Use this class to perform an asyn-
chronous task without worrying about marshalling your code to the user-interface thread.
(However, though the BackgroundWorker fits certain scenarios, you’ll still need to take
control of multithreading on your own for many tasks.)

* Dynamic interfaces (Chapter 21). This shift just might be the most underreported yet
most significant change in .NET 2.0 Windows applications. The new layout managers
allow you to build flowing, Web-like applications that lay out different modules in a
variety of flexible ways. They also make it easier to deal with expanding and contracting
text in localization scenarios.

* Smart tags (Chapter 26). Smart tags provide a helpful panel through which you perform
a variety of tasks with a control at design time. Why not build your own for custom controls?

* ClickOnce (Appendix B). ClickOnce doesn’t really change the existing .NET deployment
model—instead, it adds a higher-level set of features you can use to easily support self-
updating applications, particularly over the Web or an intranet.

This list doesn’t include all the minor features and tune-ups you’ll discover as you explore

Windows Forms and read through this book.

What'’s Still Missing in .NET 2.0

Even though .NET 2.0 is more than a minor upgrade to .NET 1.x, there are still a host of features
that longtime Windows developers may find lacking. Here are some examples of what you still
won't find:

* Window management, including tabbed and dockable windows
* Charting and other controls for data visualization

* A commanding architecture (so that multiple actions in a user interface trigger the
same operation)

XXXVii

XXXviii

INTRODUCTION

e Markup-based layout features

* Support for Microsoft Help 2.0, the (unsupported) standard that’s used for the Visual
Studio help files

* A document-view framework for building applications

* More high-level controls (like an Outlook bar, task panes, a wizard framework, and
SO on)

Some of these features are easy to develop on your own, while others are extremely difficult
to do properly. In all these cases, third-party components have already emerged to fill the gaps
(with varying levels of success). However, it’s unlikely that a native Framework solution will
emerge for any of these features, because the focus in rich client development is shifting to the
new Avalon framework, which is a part of the upcoming Windows Vista operating system.

Note Some third-party component developers that you might want to check out are waw. dotnetmagic.com,
www.divil.co.uk, and www.actiprosoftware.com.

Conventions Used in This Book

You know the drill. This book uses italics to emphasize new terms and concepts. Blocks of code
use constant-width formatting. Note and tip boxes are scattered throughout the book to identify
special considerations and useful tricks you might want to use.

Code Samples

It’s a good idea to download the most recent, up-to-date code samples. You'll need to do this to
test most of the more-sophisticated code examples described in this book, because the less-
important details are usually left out. Instead, this book focuses on the most important sections,
so that you don’t need to wade through needless extra pages to understand an important concept.
To download the source code, navigate to www.prosetech.com. The source code for this book is
also available to readers at www.apress.comin the Source Code section. On the Apress Web site,
you can also check for errata and find related titles from Apress.

Variable Naming

Hungarian notation, which names variables according to their data type (like strFirstName
instead of FirstName), was the preferred standard for C++ and Visual Basic 6. These days,
Hungarian notation is showing its age. In the world of .NET, where memory management is
handled automatically, it seems a little backward to refer to a variable by its data type, espe-
cially when the data type may change without any serious consequences, and the majority of
variables are storing references to full-fledged objects. Microsoft now steers clear of variable
prefixes and recommends using simple names.

INTRODUCTION

In this book, data-type prefixes aren’t used for variables. The only significant exception is
with control variables, where it is still a useful trick to distinguish between types of controls (like
txtUserName and IstUserCountry), and with some data objects. Of course, when you create
your own programs, you're free to follow whatever variable naming convention you prefer,
provided you make the effort to adopt complete consistency across all your projects (and
ideally across all the projects in your organization).

Note Microsoft provides detailed information about recommended coding and naming standards
in the MSDN (see http://msdn.microsoft.com/library/en-us/cpgenref/html/
cpconNETFrameworkDesignGuidelines.asp). If you plan to release a component for use by
third-party developers, you’ll need to read these documents carefully.

Feedback

This book has the ambitious goal of being the best tutorial and reference for programming
Windows Forms. Toward that end, your comments and suggestions are extremely helpful. You
can send complaints, adulation, and everything in between directly to apress@prosetech.com.
I can’t solve your .NET problems or critique your code, but I will benefit from information
about what this book did right and wrong.

XXXiX

PART 1

Windows Forms
Fundamentals

CHAPTER 1

User Interface Architecture

SOme developers hate the headaches of user-interface programming. They assume it’s all
about painting icons, rewording text, and endlessly tweaking dialog boxes until an entire
company agrees that an application looks attractive. However, developers who are involved in
creating and maintaining sophisticated applications realize that there is another set of design
considerations for user-interface programming. These are considerations about application
architecture.

Every day, first-rate programming frameworks are used to build terrible applications. In
Windows applications, developers often insert blocks of code wherever it’s convenient, which
israrely where it makes most sense. To make the jump from this type of scattered user interface
coding to a more elegant approach, you need to stop thinking in terms of windows and controls
and start looking at a user interface as an entire interrelated framework.

In this chapter, you'll start on this journey by learning about a few key concepts that you'll
return to throughout this book. They include the following:

* A quick review of how .NET defines types, including structures, classes, delegates,
enumerations, and interfaces.

* How user interfaces are modeled with objects in a Windows Forms application. You'll
learn about several key types of .NET classes, including controls, forms, components,
and applications.

* Why inheritance is more important for user interfaces than for business logic. (The short
answer is that it’s the best way to customize almost any .NET control.)

* How Visual Studio generates the code for your user interface and how that code works.

» Thebest practices for building a well-encapsulated user interface that’s easy to enhance,
extend, and debug.

* What three-tier design promises, and why it’s so hard to achieve.

The emphasis in this chapter is on general concepts. You'll see some code, but you won'’t
learn about the intricate details like the properties and methods that each control provides.
Instead, you'll explore these details as you travel deeper into user interface coding in the
following chapters.

CHAPTER 1 USER INTERFACE ARCHITECTURE

Classes and Objects

Today, it’s generally accepted that the best way to design applications is by using discrete,
reusable components called objects.

A typical .NET program is little more than a large collection of class definitions. When you
start the program, your code creates the objects it needs using these classes. Of course, your
code can also make use of the classes that are defined in other referenced assemblies and in the
.NET class library (which is itself just a collection of assemblies with useful classes).

The Roles of Classes

It’s important to remember that although all classes are created in more or less the same way
inyour code, they can serve different logical roles. Here are the three most common examples:

* Classes can model real-world entities. For example, many introductory books teach
object-oriented programming using a Customer object or an Invoice object. These objects
allow you to manipulate data, and they directly correspond to an actual thingin the
real world.

* Classes can serve as useful programming abstractions. For example, you might use a
Rectangle class to store width and height information, a FileBuffer class to represent
a segment of binary information from a file, or a WinMessage class to hold information
about a Windows message. These classes don’t need to correspond to tangible objects;
they are just a useful way to shuffle around related bits of information and functionality
in your code. Arguably, this is the most common type of class.

* Classes can collect related functions. Some classes are just a collection of shared
methods that you can use without needing to create an object instance. These helper
classes are the equivalent of a library of related functions, and might have names like
GraphicsManipulator or FileManagement. In some cases, a helper class is just a sloppy
way to organize code and represents a problem that should really be broken down into
related objects. In other cases, it’s a useful way to create a repository of simple routines
that can be used in a variety of ways.

Understanding the different roles of classes is crucial to being able to master object-oriented
development. When you create a class, you should decide how it fits into your grand develop-
ment plan, and make sure that you aren’t giving it more than one type of role. The more vague
a class is, the more it resembles a traditional block of code from a non-object-oriented program.

Classes and Types

The discussion so far has reviewed object-oriented development using two words: classes and
objects. Classes are the definitions, or object templates. Objects are classes in action. The basic
principle of object-oriented design is that you can use any class to create as many objects as
you need.

In the .NET world, there’s another concept—fypes. Types is a catchall term that includes
the following ingredients:

CHAPTER 1 USER INTERFACE ARCHITECTURE

e Structures

¢ Classes

e Delegates

¢ Enumerations
¢ Interfaces

To get the most out of this book, you should already know the basics about .NET types and
how they can be used. If you need to refresh your memory and get reacquainted with the .NET
object family, browse through the following sections. Otherwise, you can skip ahead to the
“User Interface Classes in .NET” section.

Structures

Structures are like classes, but are generally simpler and more lightweight. They tend to have
only a few properties (and even fewer important methods). A more important distinction is
that structures are value types, whereas classes are reference types. As a result, these two types
of objects are allocated differently and have different lifetimes. Structures are released auto-
matically when the variable that points to the structure goes out of scope, while classes exist in
memory until they're tracked down by the garbage collector.

Another side effect of the differences between the two is the fact that structures act differ-
ently in comparison and assignment operations. If you assign one structure variable to another,
.NET copies the contents of the entire structure, not just the reference. Similarly, when you
compare structures, you are comparing their contents, not the reference.

The following code snippet demonstrates how a structure works:

structureA = structureB ' structureA has a copy of the contents of structureB.
' There are two duplicate structures in memory.

If structureA.Equals(structureB) Then
' This is True as long as the structures have the same content.
This type of comparison can be slow if the structure is large.

End If
Some of the structures in the class library include Int32, DateTime, and graphics ingredi-

ents like Point, Size, and Rectangle.

Classes
This is the most common type in the .NET class library. All .NET controls are full-fledged classes.

Note The word “class” is sometimes used interchangeably with “type” (or even “object”), because
classes are the central ingredients of any object-oriented framework like .NET. Many traditional programming
constructs (like collections and arrays) are classes in .NET.

CHAPTER 1 USER INTERFACE ARCHITECTURE

Unlike structures, classes are reference types. That means that when you manipulate an
instance of a class in code, you are actually working with a reference that points to the full-fledged
object, which exists somewhere else in memory. Usually, this low-level reality is completely
hidden from you, but it does show up when you perform comparison or assignment operations.

The following code snippet shows how classes behave:

objectA = objectB " objectA and objectB now both point to the same thing.
' There is one object, and two ways to access it.

If objectA Is objectB Then
' This is True if both objectA and objectB point to the same thing.
This is False if they are separate, yet identical objects.

End If

Occasionally, a class can override its default reference type behavior. For example, the
String class is a full-featured class in every way, but it overrides equality and assignment oper-
ations to work like a value type. When dealing with text, this tends to be more useful (and more
intuitive) for programmers. For example, if the String class acted like a reference type it would
be harder to validate a password. You would need a special method to iterate through all the
characters in the user-supplied text, and compare each one separately.

Arrays, on the other hand, are classes that behave like traditional classes. That means copy
and comparison operations work on the reference, not the content of the array. If you want to
perform a sophisticated comparison or copy operation on an array, you need to iterate through
every item in the array and copy or compare it separately.

Delegates

Delegates define the signature of a method. For example, they might indicate that a function
has a string return value and accepts two integer parameters. Using a delegate, you can create
avariable that points to specific method. You can then invoke the method through the delegate
whenever you want.

Here’s a sample delegate definition:

A delegate definition specifies a method's parameters and return type.
Public Delegate Function StringProcessFunction(ByVal Input As String) As String

Once you define a delegate, you can create a delegate variable based on this definition,
and use it to hold a reference to a method. Here’s the code that does exactly that:

Dim StringProcessor As StringProcessFunction
' This variable can hold a reference to any method with the right signature.

It can be a shared method or an instance method. You can then invoke it later.
' (Here we assume that our code contains a function named CapitalizeString.)
StringProcessor = AddressOf CaptitalizeString

This invokes the CaptializeString function.
Dim returnValue As String = StringProcessor("input text")

CHAPTER 1 USER INTERFACE ARCHITECTURE

Besides being a way to implement type-safe function pointers, delegates are also the foun-
dation of .NET’s event handling. For every event that a .NET control provides, there is a
corresponding delegate that defines the event signature (although this isn’t a one-to-one
relationship, as many events share the same delegate). If you want to handle the event, you
need to create an event handler with the same signature.

In other words, when you use controls, you'll often use delegates. And when you create
controls, you'll probably define your own custom delegate types. You'll see many examples of
custom delegates in this book.

Enumerations

Enumerations are simple value types that allow developers to choose from a list of constants.
Behind the scenes, an enumeration is just an ordinary integral number where every value has
aspecial meaning as a constant. However, because you refer to enumeration values using their
names, you don’t need to worry about forgetting a hard-coded number, or using an invalid
value.

To define an enumeration, you use the block structure shown here:

Public Enum FavoriteColors
Red
Blue
Yellow
White
End Enum

This example creates an enumeration named FavoriteColors with three possible values:
Red, Blue, and Yellow.

Once you've defined an enumeration, you can assign and manipulate enumeration values
like any other variable. When you assign a value to an enumeration, you use one of the predefined
named constants. Here’s how it works:

You create an enumeration like an ordinary variable.
Dim buttonColor As FavoriteColors

' You assign and inspect enumerations using a property-like syntax.
buttonColor = FavoriteColors.Red

In some cases, you need to combine more than one value from an enumeration at once.
To allow this, you need to decorate your enumeration with the Flags attribute, as shown here:

<Flags> _

Public Enum AccessRights
Read = &01
Write= &02
[Shared] = &04

End Enum

Thanks to the Flags attribute, you can combine more than one value from the AccessRights
enumeration using the Or operator, as shown here:

CHAPTER 1 USER INTERFACE ARCHITECTURE

Dim rights As AccessRights
rights = AccessRights.Read Or AccessRights.Write Or AccessRights.Shared

You can test to see if a single value is present using bitwise arithmetic, using the And
operator to filter out what you're interested in:

If (rights And AccessRights.Write) = AccessRights.Write Then
" Write is one of the values.
End If

Enumerations are particularly important in user-interface programming, which often has
specific constants and other information you need to use but shouldn’t hard-code. For example,
when you set the color, alignment, or border style of a button, you use a value from the appro-
priate enumeration.

Interfaces

Interfaces are contracts that define properties, methods, and events that a class must imple-
ment. Interfaces have two main uses:

* Interfaces are useful in versioning situations. That’s because they allow you to enhance
a component without breaking existing clients. You simply need to add a new interface.

* Interfaces allow polymorphism. This means many different classes that use the same
interface can be treated the same way. In a very real sense, an interface acts like a
“control panel” that you can use to access a standardized set of features in a class.

With user-interface programming, the second consideration is the most interesting. For
example, imagine you create your own button control with a unique stylized look. You want
this control to have all the features of the standard .NET button, including the ability to be used
as the default button in a window (the button that is activated when the user presses Enter). To
give your button this capability, all you need to do is implement the IButtonControl interface in
your custom button control code. Even though the .NET infrastructure doesn’t know the specific
details about how your control works, it knows enough about how to use an IButtonControl class
to programmatically “click” your button when the user presses Enter.

Tip If you haven’t had much experience with object-oriented or interface-based programming, | encourage
you to start with a book about .NET fundamentals. Two good starting points are: Programming Microsoft
Visual Basic 2005: The Language by Francesco Balena or, for developers schooled in VB 6, my own The Book
of VB 2005. Classes and other types are the basic tools of the trade, and you need to become comfortable with
them before you can start to weave them into full-fledged object models and Windows applications.

User Interface Classes in .NET

The first step when considering class design is to examine what rules are hard-wired into the
.NET Framework. Your goal should be to understand how the assumptions and conventions of

CHAPTER 1 USER INTERFACE ARCHITECTURE

.NET shape user-interface programming. Once you understand the extent of these rules, you
will have a better idea about where the rules begin and end and your object designs take over.

In the following sections, you'll take a look at a number of examples that show how classes
plug into the Windows Forms architecture.

Controls Are Classes

In the .NET Framework, every control is a class. Windows controls are clustered in the System.
Windows.Forms namespace. Web controls are divided into three core namespaces:
System.Web.U]I, System.Web.UI.HtmlControls, and System.Web.UI.WebControls. (Web controls
use a superficially similar but substantively different model than Windows controls, and they
won’t be covered in this book.)

In your code, a control class acts the same as any other class. You can create an instance
of it, set its properties, and use its methods. The difference is in the lineage. Every Windows
control inherits from System.Windows.Forms.Control, and acquires some basic functionality
that allows it to paint itself on a window. In fact, even the window that hosts the control inherits
from the Control base class.

On its own, a control object doesn’t do much. The magic happens when it interacts with
the Windows Forms engine. The Windows Forms engine handles the Windows operating system
messages that change focus or activate a window, and tells controls to paint themselves by
calling their methods and setting their properties. The interesting thing is that although these
tasks are performed automatically, they aren’t really hidden from you. If you want, you can
override methods and fiddle with the low-level details of the controls. You can even tell them
to output entirely different content.

To use a control, all you need to do is create an instance of a control class, just like you
would with any other object. For example, here’s how you might create a text box:

Private txtUserName As New System.Windows.Forms.TextBox()

Once you create the control object, you can set its properties to configure how it behaves
and what it looks like:

txtUserName.Name = "txtUserName"

txtUserName.Location = New System.Drawing.Point(64, 88)
txtUserName.Size = New System.Drawing.Size(200, 20)
txtUserName.TabIndex = 0

txtUserName.Text = "Enter text here!"

This code positions the text box in a specific location, sets its size and its position in the tab
order, and then fills in some basic text. But none of this actually creates a visible control in a
window. So how does the .NET runtime know whether you are just creating a control object to
use internally (perhaps to pass to another method) or if you want it to be painted on a specific
form and able to receive input from the user? The answer is in class relations, as you'll see in the
next section.

Controls Can Contain Other Controls

The System.Windows.Forms.Control class provides a property called Controls, which exposes
a collection of child controls. For example, a Windows Form uses this Controls property to

10

CHAPTER 1 USER INTERFACE ARCHITECTURE

store the first level of contained controls that appear in the window. If you have other container
controls on the form, like group boxes, they might also have their own child controls.

In other words, controls are linked together by containment using the Controls collection.
Because every control is a class that derives from System.Windows.Forms.Control, every control
supports the ability to contain other controls. The topmost object for an application is always
a Form object, which represents the window you see on your screen.

Tip To be technically accurate, this collection is actually an instance of the System.Windows.Forms.
Control.ControlCollection class. This collection is customized to make sure that it can contain only controls,
not other types of objects. However, you don't really need to know that to use the Controls collection,
because it implements the IList, ICollection, and IEnumerable interfaces that allow you to treat it like any
other collection class.

Figure 1-1 shows a sample form, and Figure 1-2 diagrams the relationship of the controls
it contains.

[® Control Relations E]

GroupBo:l

(O RadioButtoni
(O RadioButtonz

[Buttont]

Figure 1-1. A sample form

Form Object

[Controls Collectionj

GroupBox Object Button Object

[Controls Collectionj [Controls Collectionj

RadioButton Object RadioButton Object

[Controls Collectionj [Controls Collectionj

Figure 1-2. Control containment for a sample form

CHAPTER 1 USER INTERFACE ARCHITECTURE

To place a control in a window, you just need to add it to the form’s Controls collection.
Like most collection classes, the Controls collection provides some standard methods like
Add() and Remove().

For example, the following line of code takes the TextBox control object and places it
inside a form. The text box immediately appears in the frmMain window:

frmMain.Controls.Add(txtUserName)

If you want the text box to be located inside a group box or panel, you would use this code
instead:

' Add the panel to the form.
frmMain.Controls.Add(pnlUserInfo)

' Add the text box to the panel.
pnlUserInfo.Controls.Add(txtUserName)

The control’s location property is automatically interpreted in terms of the parent control.
For example, (0, 0) is the top-left corner of the container, and (100, 100) is 100 pixels from both
the top and left edges. Chapter 2 talks about control size and positioning in more detail.

If you add a control to a form window that already exists, it appears immediately. If, however,
the form hasn’t been displayed yet, you need to use the form’s Show() or ShowDialog() method
to display the form:

frmMain. Show()

Forms automatically handle the responsibility of coordinating the display of all their
contained controls using the underlying Windows message infrastructure.

A control can be removed from a window by using the Remove() method of the Controls
collection. In this case, you need to supply a variable that references the control you want to
remove, as shown here:

' Remove the TextBox control.
frmMain.pnlUserInfo.Controls.Remove(txtUserName)

Note You can remove a control by index number using the RemoveAt() method. However, the index
number doesn’t have any concrete meaning—it doesn’t correspond to the control’s place in the window, and
it doesn’t necessarily correspond to the order in which you’ve added controls. For that reason, you’re unlikely
to pay much attention to the index-number position of a control in the Controls collection.

All controls, whether they are text boxes, buttons, labels, or something more sophisticated,
are added to (and removed from) container controls in the same way. In the next section you'll
see how you can use this to your advantage by defining and displaying your custom controls.

1

12

CHAPTER 1 USER INTERFACE ARCHITECTURE

Controls Can Extend Other Controls

In a popular book introducing the .NET Framework, Dan Appleman suggests that inheritance
is an overhyped feature with a few specific uses, but a host of potential problems and consid-
erations. In his words, inheritance is the “coolest feature you'll never use.” Object-oriented
gurus who have seen the havoc that can be caused by a poorly thought-out class hierarchy will
be quick to agree. Though inheritance can be useful when creating your business and data
objects, it’s generally not the best approach, and it’s never the only one.

In the world of controls, however, inheritance just might be the single most useful feature
you'll ever find. Essentially, inheritance allows you to acquire a set of specific functionality for
free. You don’t need to worry about how to handle the messy infrastructure code for what you
want to do. Instead, you simply inherit from a class in the .NET class library, add a few features
that are specific to your needs, and throw it into your program.

This approach can be used to create customized controls quickly and easily. Following is
the definition for a custom text box. It has all the powerful features of a text box, manages its
appearance automatically, provides sophisticated user editing capability, and takes care of
basic details like painting itself and managing focus. In addition, the custom text box adds two
new features that make it more useful for dealing with mostly numeric data (like phone numbers).
It has a property that returns the total number of numeric characters in the text string
(NumberOfDigits), and a method that quickly trims out any non-numeric characters
(TrimToDigits). To provide this functionality, it uses some standard .NET tricks to iterate
through a string and the System.Text.StringBuilder class, which provides efficient string
manipulation.

Public Class NumericTextBox
Inherits System.Windows.Forms.TextBox

Public ReadOnly Property NumberOfDigits() As Integer
Get
Dim digits As Integer = 0
For Each c As char In Text
If Char.IsDigit(c) Then digits += 1
Next
Return digits
End Get
End Property

Public Sub TrimToDigits()
Dim newText As New StringBuilder()
For Each c As char In Text
If Char.IsDigit(c) Then newText.Append(c)
Next
Text = newText.ToString()
End Sub

End Class

CHAPTER 1 USER INTERFACE ARCHITECTURE

Arguably, this custom text box doesn’t provide much more than the ordinary text box
control. But the remarkable part of this example is the fact that you can use this class in exactly
the same way that you use a control class from the .NET class library.

Here’s the code you might use to display the custom text box in a window:

Dim txtCustom As CustomControlProject.NumericTextBox
txtCustom = New CustomControlProject.NumericTextBox()
txtCustom.Name = "txtCustom"

txtCustom.Location = New System.Drawing.Point(64, 88)
txtCustom.Size = New System.Drawing.Size (200, 20)
txtCustom.TabIndex = 0

txtCustom.Text = "Enter text in the custom textbox here!"
frmMain.Controls.Add(txtCustom)

The interesting part of this example is not what’s in the code, but what is left out. Clearly,
there are a lot of Windows-specific details that you don’t need to worry about when using
inheritance to create a custom control. Custom controls in .NET are painless and powerful.

Note If you were really planning to create numeric text boxes, you’d have a host of more powerful options
than the NumericTextBox control in this example. You can handle key presses to reject invalid characters, or
you can use the new MaskedTextBox (see Chapter 18).

Throughout this book you'll see a variety of custom-control programming techniques, and
you’ll learn how to license, distribute, and manage custom controls in the development envi-
ronment. Custom control examples appear throughout the book. You'll use them to do the
following:

* Automate control validation

e Build in common usage patterns or helper routines
* Rigorously organize code

¢ Preinitialize complex controls

* Tailor controls to specific types of data, even replacing basic members with more-useful,
higher-level events and properties

Creating custom controls is a key way of playing with Windows Forms, and one of the most
important themes of this book.

Inheritance and the Form Class

Inheritance isn’t just used when you want to extend an existing class with additional features. It’s
also used to organize code. One of the best examples is the System.Windows.Forms.Form class.

In aWindows application, you could create an instance of a System.Windows.Forms.Form
and manually go about adding controls and attaching events. For example, the following code
creates a new generic form and adds a single text box to it:

13

14

CHAPTER 1 USER INTERFACE ARCHITECTURE

' Create the form.
Dim frmGenericForm As New System.Windows.Forms.Form()

' Create and configure the text box.

Dim txtUserName As New System.Windows.Forms.TextBox()
txtUserName.Name = "txtUserName"

txtUserName.Location = new System.Drawing.Point(64, 88)
txtUserName.Size = new System.Drawing.Size(200, 20)
txtUserName.TabIndex = 0

txtUserName.Text = "Enter text here!"

' Add the text box to the form.
frmGenericForm.Controls.Add(txtUserName)

" Show the form.
frmGenericForm. Show()

The problem with this approach is that the code that creates the form also needs to go to
all the work of configuring it. If you're not careful, you’ll wind up mingling your user interface
code with the rest of your application logic, causing endless headaches.

Visual Studio enforces a more structured approach. When you create a new form, it auto-
matically creates a customized class that inherits from the Form class. This derived class
encapsulates all the logic for adding child controls, setting their properties, and responding
to their events in one neat package. It also provides you with an easy way to create identical
copies of a form, which is particularly useful in document-based applications.

The following is a simplified example of a custom form class that contains a simple
constructor method. When the form class is instantiated, it automatically creates and config-
ures a text box, and then adds the text box to its Controls collection.

Public Class MainForm
Inherits System.Windows.Forms.Form

Private txtUserName As System.Windows.Forms.TextBox;

Public Sub New ()
txtUserName = New System.Windows.Forms.TextBox()
txtUserName.Name = "txtUserName"
txtUserName.Location = New System.Drawing.Point(64, 88)
txtUserName.Size = New System.Drawing.Size(200, 20)
txtUserName.TabIndex = 0

txtUserName.Text = "Enter text here!"
Controls.Add(txtUserName)
End Sub
End Class

The custom form class automatically gains all the features of a standard System.Windows.
Forms.Form object, including the ability to display itself with the Show() and ShowDialog()

CHAPTER 1 USER INTERFACE ARCHITECTURE

methods. That means that you can quickly create and show your customized form using the
two lines of code shown here:

' Create the form (at this point, its constructor code will run and add
' the textbox control).
Dim frmCustomForm As New MainForm()

" Show the form.
frmCustomForm. Show()

Note The Form.Show() method shows a form modelessly, which means it doesn’t interrupt your code.
Your code can continue to run more logic and show additional windows. The Form.ShowDialog() method
shows a form modally, which means your code is put on hold and doesn’t continue until the form is closed.
You'll see how this plays a role in determining your application lifetime in the “Application Lifetime” section
of this chapter.

Accessing Controls

Once a custom form object has been instantiated, there are two different ways to access the
controls it contains: through the Controls collection or, more simply, using form-level member
variables.

In the previous example, the only control MainForm contains (a text box) is referenced
with the member variable txtUserName. This means you can easily access it in other methods
in your custom form class using code like this:

txtUserName.Text = "John"

It’s up to you whether you want to make a control variable accessible to other classes in
your program. By default, all control variables are declared with the Friend keyword, and any
other class can access them as long as it exists in the current project. This is similar to the way
that previous versions of VB worked. However, you should avoid breaking encapsulation by
fiddling with the user interface of a form from another class. (You can change the accessibility
of a control by selecting it at design time and changing the Modifiers property in the Properties
window.)

No matter what accessibility you use for the control variables, there is always one back door
open. You can access any control through the form’s Controls collection, which is always public.

Tip If you want to add a control but you don’t want Visual Studio to create a member variable for it, set the
GenerateMember property of the control to false. In addition, if you want to change the accessibility of a
control to be something other than private, you can change the Modifiers property. Both of these properties
are design-time properties that aren’t a part of the Control class. Instead, they’re added to the Properties
window by Visual Studio and used to control the automatically generated code.

15

16

CHAPTER 1 USER INTERFACE ARCHITECTURE

The member variables allow access to all the controls on a form. Assuming you’ve built
your form in Visual Studio, each control will have its own member variable. On the other hand,
only the first level of controls will appear in the Controls collection. Controls that are inside
container controls like group boxes, tab controls, or panels will appear in the Controls collection
of the control that contains them (as diagrammed in Figure 1-2).

Unfortunately, controls are indexed only by number in the Controls collection, not by
name. That means that if you want to find a control using the Controls collection, you need to
iterate through the entire collection and examine each control one by one until you find a
match. You can look for a specific type of control or a specifically named control. For example,
when a control is created in Visual Studio, the Name property is automatically set to match the
name used for the member variable, as shown here:

txtUserName.Name = "txtUserName"

This is just a convenience—you are not forced to set the Name property. However, it allows
you to easily look up the control by iterating through the Control collection:

' Search for and remove a control with a specific name.
For Each ctrl As Control In Controls
If ctrl.Name = "txtUserName" Then
Controls.Remove(ctrl)
End If
Next

Usually, you'll avoid the hassle of digging up your controls in the Control collection, and
just rely on the member variables. But there are exceptions to this rule, such as when you are
creating highly dynamic interfaces or generic code. For example, you might want to clear every
text box on an input form by examining each control, checking ifit’s a text box, and then resetting
the text property. Here’s a simple method that handles this task:

Private Sub ClearControls(ByVal topControl As Control)
' Ignore the control unless it is a textbox.
If TypeOf topControl Is TextBox Then
topControl.Text = ""
Else
' Process controls recursively.
' This is required if controls contain other controls
" (for example, if you use panels, group boxes, or other
' container controls).
For Each childControl As Control In topControl.Controls
ClearControls(childControl)
Next
End If
End Sub

Now you can recursively search through all the controls on a form and clear all text boxes
with a single line of code:

ClearControls(Me)

CHAPTER 1 USER INTERFACE ARCHITECTURE

Note The Controls collection is always accessible to other forms. However, you shouldn’t use this as a
back door to allow one form to modify another. For one thing, using a string to identify the name of a control
is extremely fragile—if the original form is changed, the code may stop working, but it won't raise a helpful
compile-time error.

Components

Controls aren’t the only ingredient you can put on a form. There are also components, or “invis-
ible controls.” Unlike controls, components don’t take up any piece of form real estate. Some
components display something, but only in specific circumstances and not necessarily on the
form itself. For example, .NET includes components that can show a help window, an error
message, a system tray icon, or a standard dialog box when needed. Other components have
no visual appearance at all, and just represent a unit of useful functionality. (Examples of this
sort of component include Timer and SqlConnection.) However, components share one
important feature with controls—they can be attached to a form and configured at design time.

For example, imagine you want to show an animation on your form by reacting to a timer
every few milliseconds and refreshing the display. You could create the timer by hand, and
write the code that initializes it, configures it, and attaches its event to the appropriate event
handler. However, it's much easier to drag a Timer component onto a form at design time and
tweak it to your heart’s content using the Properties window.

Components have two key responsibilities:

* Theymust support design-time use. In technical terms, that means components can be
sited on a design surface.

* They must provide a way to release resources. All components provide a Dispose()
method that, when called, causes the component to release all its unmanaged resources
immediately.

Programmers sometimes assume that components are a special type of control, but the
reality is the other way around—controls are actually a special type of component. In fact, the
base Control class, which all forms derive from, itself derives from the Component class, as
shown in Figure 1-3.

Component classes are fairly straightforward. They simply need to implement the
IComponent interface (from the System.ComponentModel namespace).

The IComponent interface is quite simple (if a little unintuitive):

Public Interface IComponent
Inherits IDisposable

Event Disposed As EventHandler
Property Site As ISite

End Interface

17

18

CHAPTER 1 USER INTERFACE ARCHITECTURE

MarshalByRefObject

T

Component

1

Control

Figure 1-3. Control and component inheritance

Essentially, IComponent extends IDisposable (which forces objects to implement a Dispose()
method that releases resources). On top of that, [Component adds an event that fires when it’s
been disposed and a Site property. The Site property binds the component to its container. This
is the starting point that allows a container (like a form) to manage a collection of components.

Most components don’t implement IComponent directly. Instead, they take a simpler
shortcut, and derive from the System.ComponentModel. Component class, which provides a
standard implementation of IComponent.

One awkward difference between controls and components is the way that they’re tracked
in a form. As you’ve already seen, the Form class includes a Controls collection that tracks
every control on the form. Unfortunately, components don’t use a similar model of contain-
ment. Instead, components are given the option of adding themselves to a private component
container called components. The component container isn’t a part of the basic Form class.
However, Visual Studio automatically defines it and adds it to every form class you create.

The component container is intended only to help make sure components are cleaned up
properly. It’s not meant to help you keep track of what components a form uses. The general
rule of thumb is that if a component holds on to unmanaged resources, it should add itself to
the component container. This way, when the form is destroyed it can dispose of any compo-
nents that need to be released. However, if a component doesn’t use unmanaged resources
and doesn’t need any special cleanup, it probably won’t add itself to the component container
atall.

Note The component container is one of the messier workarounds in .NET. One problem is that, because
the component must add itself to the container, there’s no way for you to tell just by looking at your form code
whether or not a given component will be added. For a hands-on look at components, be sure to read Chapter 18,
which develops a set of validation components and considers how you can track them in a form.

CHAPTER 1 USER INTERFACE ARCHITECTURE

Interacting with a Control

In a typical Windows application, your code sits idly by, doing very little. When the user takes a
certain action, like clicking a button, typing in text, or moving the mouse, your code springs
into action. Usually, your code completes in a matter of seconds, and goes back to waiting for
the next move from the user.

One interesting and often overlooked fact about .NET controls is that they provide two
different ways that you can respond to user actions—you can create a custom class and override its
methods, or you can react to events. These approaches are discussed in the next two sections.

Overriding Methods

In order to override a method, you need to create a custom inherited control. For example,
imagine you have a text box that’s designed for numeric entry, and you want to examine every
key press to make sure that it corresponds to a number, and not a letter. To perform this type
of task, you can create a customized text box, and override the OnKeyPress() method to add
this extra verification logic.

Public Class NumericTextBox
Inherits System.Windows.Forms.TextBox

Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)
MyBase.OnKeyPress(e)

If Not char.IsControl(e.KeyChar) And Not char.IsDigit(e.KeyChar) Then
e.Handled = True
End If
End Sub

End Class

The OnKeyPress() method is invoked automatically by the Windows Forms engine when a
key is pressed in a TextBox control. The overridden method in the preceding example checks
to see if the entered character is a number. If it isn’t, the Handled flag is set to true, which cancels

all further processing, effectively making sure that the character will never end up in the text box.

Note When overriding a method, it’s a good practice to call the base class implementation, which may
have some required functionality. More commonly, the base class implementation simply raises the associated
event (in this case, KeyPress), allowing other objects to handle it. You’ll learn more about overriding methods
when you build derived controls in Chapter 11.

This design pattern is useful if you use a number of controls with extremely similar
behavior. It allows you to create a custom control that you can use whenever you need this set
of features. If, on the other hand, you need to fine-tune behavior for distinct, even unique
tasks, this approach is much less useful. For example, consider a button control. You could

19

20

CHAPTER 1 USER INTERFACE ARCHITECTURE

react to a button click by creating a special class for every button on your application, and
giving each button its own overridden OnClick() method. Although your program would still
work well, it would quickly become completely disorganized, swamped by layers of button
classes that have little to do with one another. To circumvent this problem, .NET uses the
view-mediator pattern, as described in the next section.

The View-Mediator Pattern

When you create a new form with Visual Studio, it generates a custom form class. It doesn’t
generate any other custom control classes. Instead, Visual Studio relies on events to manage
the interaction between controls and your form. Each event you want to handle is added as a
separate method in your form class.

In other words, every form acts as a giant switchboard for all the controls it contains. This
type of design pattern, which is so natural to .NET and most Windows development that you
might not have even noticed it, is called the view-mediator pattern. It dictates that one central
class organizes each individual window.

Using events and the view-mediator pattern, you can rewrite the text box example you saw
earlier. In the following example, a form-level event handler reacts to the TextBox.KeyPress
event. By specifying the WithEvents keyword in the txtUserName control declaration, you give
yourself the option to attach an event handler declaratively. All you need to do is add the
Handles clause to the method declaration for the event handler. Here’s the complete code:

Public Class MainForm
Inherits System.Windows.Forms.Form

Private WithEvents txtUserName As System.Windows.Forms.TextBox

Public Sub New ()
txtUserName = New System.Windows.Forms.TextBox()
txtUserName.Name = "txtUserName"
txtUserName.Location = New System.Drawing.Point(64, 88)
txtUserName.Size = New System.Drawing.Size(200, 20)
txtUserName.TabIndex = 1
txtUserName.Text = "Enter text here!"
Controls.Add(txtUserName)

End Sub

Private Sub txtUserName KeyPress(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyPressEventArgs) _
Handles txtUserName.KeyPress

If Not char.IsControl(e.KeyChar) And _
Not char.IsDigit(e.KeyChar) Then
e.Handled = True
End If
End Sub

End Class

CHAPTER 1 USER INTERFACE ARCHITECTURE

Notice that the actual logic for processing the key press is identical, but the way it’s integrated
into the application is completely different. The form is now responsible for the validation, not the
control itself. This is an ideal approach if the form needs to handle the complex validation of
multiple different controls using the same event handler. It’s a less suitable approach if you
need to perform the same type of validation for the same control in different windows, because
you'll probably need to copy the code into multiple form-level event handlers. Neither approach is
automatically better than the other—it all depends on how complex your code is, and how you
want to reuse it.

Smart Controls

So far you have seen two distinct ways to use controls from the .NET class library:
» Create an instance of a generic control class “as is.” Then configure its properties.

* Define anew class that inherits from a generic control class, and customize this class for
your needs. Then create an object based on this specialized class.

The difference is shown in Figure 1-4.

The .NET Your Code Your Executing
Class Library Application
Base Control INSTAVTIATED ™ Conjcrol Object
Class 11 in Memory
Base Control ™| Derived Custom ™| Control Object
INHERITED BY INSTANTIATED -
Class 11 Class 11 in Memory

Figure 1-4. Two ways to interact with controls

Visual Studio uses inheritance (the first method) when you create forms. When you configure
controls, however, it inserts them as is, and adds the appropriate logic for modifying their proper-
ties (the second method). This is the default approach in .NET, but it’s not the only approach.

When Visual Studio adds controls and derives a custom form class, it’s making a design
decision for you. This decision helps clear out the clutter that would result from creating dozens of
custom control classes. However, like all design decisions, it’s not always right for all people
and in all situations. For example, if you use numerous similar controls (like text boxes that
refuse numeric input), you may find yourself duplicating the same code in event handlers all
over your program. In this case, you might be better off to step beyond Visual Studio’s default
behavior, and create customized controls with some additional intelligence.

When you are creating a new application and planning how to program its user interface,
one of the most important tasks is deciding where to draw the line between smart controls
(custom control classes) and smart switchboards (custom forms with event-handling logic).

21

22

CHAPTER 1 USER INTERFACE ARCHITECTURE

A good decision can save a lot of repetitive work. As you'll see in this book, custom controls
are not just for redistributing neat user interface elements, but also for building intelligence
into parts of a large application, and helping to reduce repetition and enforce consistency.

Smart Forms

As explained earlier, every form class in your application is a custom class that inherits from
System.Windows.Forms.Form. However, you don’t need to derive directly from the Form class.
Instead, you can derive from another custom form class. Figure 1-5 diagrams this relationship.

The .NET Your Code Your Executing
Class Library Application
INHERTTED BY > Custom Form Class INST/—\NTIA'II'E\D F(?rm Object
1] in Memory
Base Form (@ Custom Child N~ Form Object
Class Form Class INSTANTIAE in Memory
Custom
N
INHERITED BY Parent
] Form Class . F Obiect
Custom Child [nstantIaTED orm Bbjec

1T in Memor
INHERITED BY Form Class y

Figure 1-5. Ordinary forms and visual inheritance

This technique is commonly referred to as visual inheritance, although it’s no different
from any other type of control-class inheritance. It allows you to standardize related windows
(like the steps of a wizard), and it can help you centralize and reuse specific form functionality.
You'll take a close look at visual inheritance in Chapter 11.

Visual Studio

Very few developers will ever attempt to write their user interface code by hand. Doing so is a
recipe for endless headaches. Instead, integrated design tools like Visual Studio make it much
easier to design forms.

Visual Studio includes two project types designed for Windows applications:

¢ Windows Application creates the standard stand-alone EXE application.

¢ Windows Control Library creates a DLL that you can use in other EXE applications.
You'll use this type of project to build custom controls and other components that you
want to reuse in multiple Windows applications.

Ifyou're new to Visual Studio, you might want to refer to one of the many useful books that
dissect the IDE in detail. However, most developers don’t take any time to get used to the

CHAPTER 1 USER INTERFACE ARCHITECTURE

Visual Studio development environment. You can do a lot just by dragging controls from the
Toolbox and arranging them on a form.

Visual Studio gives you two ways to configure a typical control. Usually, the most flexible
approach is to use the Properties window. Once you select the control you want to work with
on the form, you can change its properties or click the lightning bolt icon to switch to event
view, where you can create and hook up event handlers. (To switch back to properties view,
click the grid icon.) Figure 1-6 shows an example with a basic TextBox control.

Properties [X] Properties
textBoxl System.\Windows,Forms, TextBox = textBoxl System.\Windows,Forms, TextBox -
8 (=] # i
A~ rS
Click.
BackColor [windaw DoubleClick
BorderStyle Fixed3D MouseCaptureChanged
Cursar IBeam MouseClick
Font Microsoft Sans Serif, 8.25pt — MouseDoubleClick,
ForeColor Wl vindoeTest ResizeBeqin
Lines String[] Array ResizeEnd
RightToLeft Mo
ScrollBars Maone
- L3
Textalign Left
UseaitCursor False El
El i v
AcceptsReturn False
AcceptsTab False Keylp
AllowDrop False v “
Text KeyDown
The kext contained in the contral, Occurs when a key s first pressed,

Figure 1-6. Configuring control properties (left) and events (right)

Note When you select a property in the Properties window, you’ll see explanatory text that describes it.

To build your own controls that provide this type of information, you need to apply specific attributes. Chapter 13
describes how you can tackle this job.

Ifyou already have a method that matches the signature of the event (in other words, it has
the correct parameters), you can choose it from a drop-down list. This is particularly convenient
if you want to connect one event handler to many different events. On the other hand, if you
want to add a new event handler, just double-click in the text box next to one of the events in
the list. Visual Studio will switch to code view, insert an event handler method, and quietly add
the delegate code that connects your event handler to the control event.

For example, if you want to add a new event handler for the TextBox.TextChanged event,
simply find the event name in the list, and double-click in the empty box. Assuming the control
is named textBox1, Visual Studio will create and display the following event handler:

Private Sub textBox1 TextChanged(ByVal sender As Object, _
ByVal e As EventArgs) Handles textBoxi.TextChanged

End Sub

23

24

CHAPTER 1 USER INTERFACE ARCHITECTURE

Caution If you change the name of your event handler or remove it, you'll get a compile error the next
time you build your project, and you’ll need to remove the offending line by hand.

Another way to configure a control is to use its designer smart tag. Not all controls provide
a smart tag, and the abilities of a smart tag vary depending on how much functionality the
control developer decided to give it. However, for many of .NET’s more sophisticated controls,
smart tags automate tasks that might require several steps. To see how smart tags work, drop a
DataGridView control onto a form. The smart tag appears to the right of a control as soon as
you add it, but you can hide or display it at any time by clicking the small arrow icon that’s
displayed in the top-right corner of a control when you select it. (If you don’t see any arrow
icon when you select a control, it doesn’t provide a smart tag for you to use.) Figure 1-7 shows
an example.

Al
x

- Form1.xb [Design]*

Actions

Auto Farmat, ..
Choose Data Source | [none] o~

Edit Calumns ...
Add Column ..

Enable Adding

Enable Editing

Enable Deleting

[Enable Calumn Reordering

Dock.in parent conkaner

Figure 1-7. The smart tag for the DataGridView

Using the smart tag, you can quickly set certain properties via check boxes and drop-down
lists. You can click one of the links in the smart tag to perform various all-in-one tasks (like
adding a batch of standard items to a menu) or call up additional dialog boxes with more
editing options.

Generating User-Interface Code in Visual Studio

So far you've looked at code that can create control objects dynamically. When you use Visual
Studio to create a form at design-time, the story is a little different—or is it?

In fact, when you build a form in the IDE, Visual Studio generates the same code that you
would need to write by hand. First of all, when you add a form to a Windows application, Visual
Studio creates a customized form class. As you add, position, and configure controls in the
design-time environment, Visual Studio adds the corresponding code to the Form class, inside
amethod called InitializeComponent(). The form’s constructor calls the InitializeComponent()
method—meaning that the generated code is automatically executed every time you create an
instance of your Form class (even before the form is displayed). A sample Form class (commented

CHAPTER 1 USER INTERFACE ARCHITECTURE 25

and slightly shortened) with an InitializeComponent() method is shown below. It configures
the window shown in Figure 1-1.

Public Class TestForm
Inherits System.Windows.Forms.Form
" Form level control variables.

They provide the easiest way to access a control on the window.

Friend groupBox1 As System.Windows.Forms.GroupBox;

Friend button1 As System.Windows.Forms.Button;

Friend radioButton1 As System.Windows.Forms.RadioButton;

Friend radioButton2 As System.Windows.Forms.RadioButton;

Public Sub New()
' Add and configure the controls.
InitializeComponent()

End Sub

Private Sub InitializeComponent()
' Create all the controls.
groupBox1 = New System.Windows.Forms.GroupBox()
button1l = New System.Windows.Forms.Button()
radioButtonl = New System.Windows.Forms.RadioButton()
radioButton2 = New System.Windows.Forms.RadioButton()
' This is our way of telling the controls not to update their layout
' because a batch of changes are being made at once.
Me.groupBox1.SuspendLayout()
Me.SuspendLayout()

" (Set all the properties for all our controls here.)
' (Configure the form properties here.)

' Add the radio buttons to the GroupBox.
Me.groupBox1.Controls.Add(Me.radioButton1)
Me.groupBox1.Controls.Add(Me.radioButton2)
' Add the button and group box controls to the form.
Me.Controls.Add(Me.button1)
Me.Controls.Add(Me.groupBox1)

Now it's back to life as usual.
Me.groupBox1.Resumelayout(False)
Me.ResumeLayout (False)

End If

End Class

26

CHAPTER 1 USER INTERFACE ARCHITECTURE

The key point here is that a form and its controls are always created and configured through
code, even when you design it with the IDE. The only real difference between the code examples
earlier in this chapter and the code Visual Studio generates is that the latter includes a dedicated
InitializeComponent() method for better organization.

Note You may notice that the code Visual Studio generates uses the Me keyword when referring to properties
of the base Form class (like the Controls collection) or the control member variables (like button1). This is
simply a convention adopted by Visual Studio that underscores the fact that these properties are members of
the class, not local variables. However, if the Me keyword is omitted, the code will still function in the same
way. Visual Studio takes this precaution because there is no way to assure that one of the controls it serializes
won'’t generate code for a local variable with the same name (although this is extremely unlikely).

The Component Tray

There’s still one minor detail the form code omits. Remember, a form can host two types of
objects: controls, which occupy a distinct piece of screen real estate, and non-control compo-
nents, which don’t have any visual representation on the form at all.

When you drag a component onto the form surface, an icon appears for it in the compo-
nent tray (see Figure 1-8). You can configure the component’s properties and handle its events
by selecting this icon.

Al
x

Form1.vb [Design]*

datasSet1 = messageueuel kirmer1

Figure 1-8. The component tray

If you look at the automatically generated code for the form, you'll see that the code for
creating and configuring the component is added to the InitializeComponent() method, just
like it is for controls. However, the component is not added to the form’s Controls collection.
What you will find is this generic block of code that Visual Studio uses to clean up any compo-
nents that hold unmanaged resources:

CHAPTER 1 USER INTERFACE ARCHITECTURE

Private Components as System.ComponentModel.IContainer

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing AndAlso components IsNot Nothing Then
components.Dispose()
End If
MyBase.Dispose(disposing)
End Sub

The Hidden Designer Code

The only problem with automatically generated code is that it can be fragile. For example, if
you try to edit the code that Visual Studio has generated, you may inadvertently end up removing
something fundamental. If the problem is severe enough, Visual Studio will refuse to design the
form at all—instead, when you switch to design mode, you'll see an unhelpful error message, as
shown in Figure 1-9.

Form1.xb[Design]*

Al
5 X

One or more errors enc ed while loading the designer.The errors are listed

. below. Some errors can be fixed by rebuilding your project, while others may
require code changes. Clicking on each error will take you to the line of code that
caused it.

The variable ‘leftRaftingContainer’ is either undeclared or was never assigned.

BE
i

id
it

m
o

at Systern. ComponentModel Design. Serialization. CodeDomSerializerBase. Error
(IDesignerSerializationManager manager, String exceptionText, String helpLink)

at Systern. ComponentModel Design. Serialization. CodeDomSerializerBase. DeserializeExpression
(IDesignerSerializationManager manager, String name, CodeExpression expression)

at Systern. ComponentModel Design. Serialization. CodeDomSerializerBase. DeserializeExpression
(IDesignerSerializationManager manager, String name, CodeExpression expression) b

Figure 1-9. A form that’s been tampered with

To stop this from happening, Microsoft developers changed the way Visual Studio 2005
works by using a new feature of the VB language called partial classes. Partial classes allow you
to split a class definition into more than one file. When the code is compiled, the VB compiler
tracks down all the separate pieces and assembles them into one class. You know that partial
classes are at work when one of the class definitions includes the word Partial as shown here:

Partial Public Class TestForm
Inherits System.Windows.Forms.Form

End Class

Visual Studio uses this technique to separate every form into two pieces: the piece that
contains the code you write, and the piece that contains all the code that Visual Studio generates
when you build the form by adding controls at design time. For example, if you add a form
named TestForm to your project, Visual Studio actually adds two files: TestForm.vb with your

27

28

CHAPTER 1 USER INTERFACE ARCHITECTURE

code, and TestForm.Designer.vb with the automatically generated code. It hides the designer
file from view to prevent tampering.

To find the designer code, you need to first show hidden files by selecting Project » Show
All Files. Then, click the plus (+) symbol next to your form, as shown in Figure 1-10.

= £=| E &

;‘E WindowsApplicationl
=d| My Project
3] References

[B B

-=| Farml.vb
hSJ Form1.Desigrer. vb
%] Farml resx

Figure 1-10. Finding a form’s designer code

There are two reasons you might want to look at the designer code for a form.

* You want to see how things work. For example, you might decide you need to write
some code to add a control dynamically at runtime. If you're not quite sure what code
you need, you could add the code at design time, and then just cut and paste from the
designer file to a new location, with only minor modifications needed.

* You want to modify your controls without using the designer. Despite Visual Studio’s
strong design-time support, some changes are still easier to perform with a search-and-
replace operation. One example is if you have multiple controls with text that includes
your company name, and you want to change all of these instances to use a different
name. Making these changes in the Properties window would be much more time-
consuming.

Tip Asarule of thumb, it’s safe to make changes in the designer region, but you should never add code—
even comments. That’s because Visual Studio will most likely throw out whatever you've added the next time
it re-creates the serialized code based on the objects on the design surface.

Here’s the skeletal structure that shows the two pieces that comprise any form in Visual
Studio 2005 (see Listing 1-1 and Listing 1-2).

CHAPTER 1 USER INTERFACE ARCHITECTURE 29

Listing 1-1. Testform.vb

Public Class TestForm
" (Any event-handling code you write goes here.)
' This default constructor is generated autoamtically,
and doesn't appear in the code anywhere. However,
' if you create a constructor of your own, the
' InitializeComponent() line is inserted in it automatically.
Public Sub New()
InitializeComponent()
End Sub

End Class

Listing 1-2. Testform.Designer.vb

Partial Public Class TestForm

' Code for cleaning up components follows.

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing AndAlso components IsNot Nothing Then

components.Dispose()

End If
MyBase.Dispose(disposing)

End Sub

Private components As System.ComponentModel.IContainer

Private Sub InitializeComponent()
' (Code for creating and configuring the controls goes here.)
End Sub

" (Form level control variables go here).
End Class

No self-respecting .NET programmer should be afraid to take a look at the designer code.
In fact, it just might reveal a few new tricks.

Tip If you look at the designer code for a form you’ve created in Visual Studio, you’ll notice a few more
changes from the code listing shown earlier. Here’s why. First, controls are defined and then created in two
separate steps (and the creation takes place in the InitializeComponent() method). Second, controls are added
all at once using the Controls.AddRange() method, which accepts an array of control objects, and saves a few
lines of code at the expense of readability.

30

CHAPTER 1 USER INTERFACE ARCHITECTURE

The Application Framework

Visual Basic attempts to simplify Windows application design using something it calls the
application framework. Conceptually, the application framework is little more than a few auto-
matically generated pieces of code. Most notably, it enables visual styles for Windows XP,
launches the start-up form, and (optionally) prevents the user from launching more than one
instance of the application at once. You can specify application framework settings by double-
clicking the My Project node in the Solution Explorer, and choosing the Application tab (see
Figure 1-11).

WindowsApplication1*

- X

Application®

Assembly name: Root namespace:
Compile ‘windowsApplicationl ‘Windowsapplication1
Debug Application type: Icon:

‘Windows Application | | (Default Icon) w E
References

Startup Form:
Resources Faorml A [Assembly Information. ..
Settings Enable application Framewark
Signing ‘Windows application Framework properties
Security Enable P visual styles

[] Make single instance application

Publish

Save My, Settings on Shutdown

Authentication mode:

Windows v
Shutdown mode:

‘Wwhen startup Form closes w

Splash screen:

({Mone) w Wiews Application Events

Figure 1-11. Application settings

Using the window in Figure 1-11, you can set the start-up form (the form that’s launched
initially) and specify when the application should end (either when the start-up form is closed
or after all forms are closed). You can even choose a form to use as a splash screen, which will
appear for a timed interval before your start-up form is shown. Less important settings (at least,
from the point of user interface design) include the authentication mode, which determines
whether the current user account information is exposed through the My object, and the option to
automatically save settings to a user-specific file (see the Visual Studio Help for more informa-
tion about the My.Settings feature).

CHAPTER 1 USER INTERFACE ARCHITECTURE

Application Events

Although convenient, the application framework settings can be limiting. For example, in
some applications, you might want to show more than one form when your application first
starts up. In order to accomplish this with the application framework, you need to respond to
application events (see Table 1-1).

Table 1-1. Application Events

Event Description

Startup Fires when the application starts, but before the start-up form
is created. If you want to show a form before the main form,
you could show it here. This is also a great place to put initial-
ization code that should run before the first form appears.

Shutdown Fires after all the forms in the application are closed, just
before your program ends. This is a good place to save user
preferences and last-minute settings. This event isn’t raised
if the application fails with an error.

UnhandledException Fires if the application ends with an unhandled error.

StartupNextInstance Fires when the application is launched for a second time (in
other words, when one copy is already running). Usually, you
won'’t use this event. Instead, you can select the “Make single
instance application” setting in the project properties to allow
only one copy of your application to run at once. If the user
tries to launch a second copy, the first instance is brought to
the foreground instead.

NetworkAvailabilityChanged Fires when a network connection is connected or discon-
nected. This is useful if you have features that depend on
Internet connectivity.

To create event handlers for application events, click the View Application Events button
in the project properties window. The first time you do this, it creates a new code file named
ApplicationEvents.vb. The following code shows how you could handle the Startup event and
use it to show a Login window before your main form appears:

Partial Friend Class MyApplication

Private Sub MyApplication Startup(ByVal sender As Object, _
ByVal e As StartupEventArgs) Handles Me.Startup
' Show a login window modally, which interrupts
' your application until it's closed.
Dim login As New LoginForm()
login.ShowDialog()

31

32 CHAPTER 1 USER INTERFACE ARCHITECTURE

' Check if the login information is valid.
If Not login.ValidateUser Then
" Don't start the application.
e.Cancel = True
End If

' Continue to the main form (if a cancel
' hasn't been requested).
End Sub

End Class

You could use a similar approach if you wanted to show a splash screen at the same time
that you perform time-consuming initialization.

Disabling the Application Framework

In previous versions of VB, the preferred approach was to start your application with a dedicated
method—a code routine that you can use to explicitly show whatever forms you want. This
option is still available in VB 2005, but in order to use it, you need to turn off the application
framework. To do so, head to the application framework settings (if you're not there already)
by double-clicking the My Project node in the Solution Explorer and choosing the Application
tab. Next, clear the “Enable application framework” check box. You can then choose the class
that has the shared Main() method from the Startup object list.

When starting an application with your own dedicated method, it’s up to you to perform
the tasks that the application framework would otherwise perform automatically. Most impor-
tantly, you need to explicitly enable visual styles by calling Application.EnableVisualStyles()
before you show any forms.

You can place the start-up method in a form class, or you can create a shared method in a
separate class, which is usually a clearer and cleaner approach. Here’s an example:

Public Class Program

Public Shared Sub Main()
Application.EnableVisualStyles()
Application.Run(New Formi())

End Sub

End Class

This example begins by enabling Windows XP visual styles, which ensures that common
controls use a slightly more up-to-date rendering style on Windows XP operating systems. (On
non-XP operating systems, the EnableVisualStyles() method has no effect.) Next, the example
creates a new instance of Form1, and then passes it to the Application.Run() method. The Run()
method starts a message loop, ensuring that your application stays alive until the window is closed.

You might wonder why you don’t just use the Form.Show() method rather than rely on the
Application class. The problem is that as soon as the Main() method finishes executing, the
application terminates, and any open windows are automatically closed. Because the

CHAPTER 1 USER INTERFACE ARCHITECTURE

Show() method shows a modeless form and doesn’t halt your code, the following sample appli-
cation will start and end immediately:

Public Shared Sub Main()
Dim frm As New Formi()

" Show() shows a modeless window, which does not interrupt the code.
' The Main() method code continues, the application terminates
' prematurely, and the window is closed automatically.
frm. Show()
End Sub

On the other hand, you don’t need to use the Application.Run() method if you use the
Form.ShowDialog() method, which shows a modal form. Your code isn’t resumed until the
form is closed. The following example shows two forms (one after the other), and ends only
when the second form is closed:

Public Shared Sub Main()
Dim frmLogin As New LoginForm()

' ShowDialog() shows a modal window
' The Main() method does not continue until the window is closed.
frmLogin.ShowDialog()

Dim frmMain As New MainForm()
" Now the code does not continue until the main form is closed.

frmMain.ShowDialog()
End Sub

Finally, if you want complete unrestricted freedom, you can call Application.Run() without
supplying a window name. This starts a message loop that continues until you explicitly termi-
nate it by calling Application.Exit(). (For example, you might do this when a form closes by
handling the Form.Closed event.)

Public Shared Sub Main()
Dim frmMain As New MainForm()
Dim frmSecondary As New SecondaryForm()

" Show both windows modelessly at the same time.
' The user can use both of them.

frmMain. Show()

frmSecondary. Show()

' Keep the application running until your code decides to end it.
Application.Run()
End Sub

In this case, you need to make sure that you end the application somewhere using the
Application.Exit() method. Otherwise, if you leave the code like that, the user could close both

33

34

CHAPTER 1 USER INTERFACE ARCHITECTURE

your forms, leaving your application alive even though there isn’t any of your code running.
You can use Task Manager to confirm that your application process is running.

You'll learn much more about modeless and modal windows in Chapter 3, along with
techniques for interacting between forms.

Note The entry point is a basic piece of form infrastructure. The code examples in this book rarely include
the entry point or the Windows designer code, both of which would only clutter up the example at hand.

Designing Windows Forms Applications

Now you've learned all the fundamentals about the object underpinnings of Windows Forms
applications. To dive into Windows Forms programming, you can skip straight to the next chapter.

However, there’s still another set of considerations that are keenly important for user-
interface programmers—those that deal with application architecture. Application architecture
determines how a user interface “plugs in” to the rest of an application. Development platforms
like .NET make this interaction fairly straightforward and, as a result, developers usually spend
little or no time thinking about it. User interface code is often inserted wherever it's most
convenient for the developer when the code is written. This approach almost always leads to
interface code that’s tightly bound to a particular problem, scenario, or data source, and heavily
interwoven with the rest of the application logic. The interface might look good on the outside,
but the code is almost impossible to enhance, reuse, or alter with anything more than trivial
changes.

To avoid these disasters, you need to look at the user interface as an entire interrelated
framework, and consider the best ways to organize your code, separate your user interface
details, and shuffle data from one place to another. These are the topics that I'll touch on in
the remainder of this chapter.

Encapsulation

Encapsulation is the principle that suggests classes should have separate, carefully outlined
responsibilities. Everything that a class needs to fulfill these responsibilities should be wrapped
up, hidden from view, and accomplished automatically wherever possible. Encapsulation is
often identified as a pillar of object-oriented programming, but it’s played a part in good program
design since the invention of software. A properly encapsulated function, for example, performs
a discrete well-identified task and has a much better chance of being reused in another appli-
cation (or even the same program).

The best way to start separating your user-interface code is to think more consciously
about encapsulation. The custom form class, with its “switchboard” design, is an excellent
example of encapsulation at work. However, it also presents a danger. It potentially encourages
you to embed a great amount of additional logic in the form event handlers. A large part of
good user-interface programming is simply a matter of resisting this urge.

The following sections lay out some guidelines that can help you keep encapsulation in mind.

CHAPTER 1 USER INTERFACE ARCHITECTURE

Use a Central Switchboard

The form acts as a switchboard for all the controls it contains. Always remember that the real
goal of a switchboard is to route calls to a new destination. In other words, when you create the
event handler for a button’s Click event, this event handler usually has two purposes:

* To forward the command to another object that can handle the task
* To update the display based on any feedback that’s returned

Depending on the button, only one of these tasks may be necessary. But the important
concept is that an event handler is almost always part of a user-interface class—the form
switchboard. (After all, this is the design that Visual Studio uses.) As aresult, it’s a terrible place
to put business logic. The form is meant to handle user-interface tasks and delegate more-
complicated operations to other classes. That way, your interface won’t become tightly bound
to the rest of your application logic, and you'll be able to revise and enhance it at a later point
without running into trouble.

Ideally, you should be able to remove a form, add a new one, or even combine forms
without having to rewrite much code. To accomplish this goal, forms should always hand off
their work to another switchboard. For example, it might be easy to update arecord according
to a user’s selections by creating a new object in the form code and calling a single method.
However, if you add another layer of indirection by forcing the form to call a more generic update
method in a central application switchboard, which then accesses your business objects, your
user interface will become more independent and more manageable.

Figure 1-12 shows how this process might work when updating a customer record. The
update is triggered in response to a control event. The event handler calls a DoCustomerUpdate()
switchboard method, which then calls the required methods in the CustomerDb business
object. This way, the form contains user-interface only code, the CustomerDb contains business-
only logic, and the application switchboard acts as an interface between the two.

Custom Form Application CustomerDB
Class Class Business Class

Event Handler [UpdateCustomer() > Update() Method
UPDATE DISPLAY Method

Figure 1-12. Using form and application switchboards

Tip Here’s another way to look at Windows Forms design. Start by building a multilayered application
object model that supplies all the features of your application. Then you can “drive” these features by calling
methods on these objects. This way, you can make your calls from any event handler, whether it’s in response
to a menu command, a toolbar button click, or an automated testing tool that you’ve developed to help you
debug your code.

35

36

CHAPTER 1 USER INTERFACE ARCHITECTURE

Use Enumerations and Helper Classes

User-interface controls often require sets of constants, and trying to hard-code them is a
tempting trap. Instead, you should create enumerations with meaningful names, and place
them in dedicated helper classes. For example, you can define enumerations that help you
manage and identify different levels of nodes in a TreeView control (see Chapter 6), distinguish
different types of items in a ListView, or just pass information to other methods in your program.
Similarly, extraneous details like SQL stored procedure names should be strictly confined to
helper classes.

Don’t Share Control References

It’s easy to pass control references to helper methods. For example, you can create utility classes
that automatically fill common list controls. However, this type of design, where you rely on
extraneous classes to perform user-interface tasks, can make it extremely difficult to make
even simple modifications to the user interface. As a rule of thumb, business code should never
rely on the existence of a specific type of user-interface control.

Use Collections

Objects are only as good as the way you can access them. On its own, a data object is a group
of related information. By using a collection or other classes that contain collections, you can
represent the underlying structure of an entire set of complex data, making it easier to share
with other parts of your program.

Create Data-Driven User Interfaces

One good technique is to design your user interface around the data it manages. This may
sound like a slightly old-fashioned concept in today’s object-oriented way, but it’s actually a
good habit to prevent yourself from subconsciously combining user interface and business-
processing logic.

The single greatest challenge when creating a reusable object framework is deciding how
toretrieve data and insert it into the corresponding controls without mingling the business and
the presentation logic. Think of your user interface as having one “in” and one “out” connec-
tion. All the information that flows into your user interface needs to use a single consistent
standard. All forms should be able to recognize and process this data. To achieve this, you might
want to use data objects that rely on a common interface for providing data. Or you might want
to standardize on the DataSet object, which provides a nearly universal solution for transferring
information. Chapter 8 explores the ways you can tame data in a user interface, and Chapter 21
shows an example of an application that builds its interface dynamically using the information
in a data source.

Note When is a data-driven interface just another bit of jargon? Probably when you aren’t creating an
application based on processing, displaying, and managing data. In the business world, the majority of appli-
cations deal with databases, and the majority of their work is processing and formatting complex information.
For that reason, a great deal of emphasis is placed on how this information is managed and transferred. If, on
the other hand, you plan to create the next three-dimensional action game, the rules may change.

CHAPTER 1 USER INTERFACE ARCHITECTURE

Developing in Tiers
An object-oriented application framework sets out rules that determine how objects will interact
and communicate. When creating a user interface, you have to develop your application
framework at the same time that you plan your individual classes. One overall guideline that
can help you shape an application is three-tier design.

The basic principle of three-tier design is simple. An application is divided into three
distinct subsystems. Every class belongs to only one of these three partitions, and performs
just one kind of task. The three tiers are usually identified as the following:

* The presentation tier. This tier converts a user’s actions into tasks and outputs data
using the appropriate controls.

* Thebusiness tier. This is the tier where all the calculations and processing specific to the
individual business are carried out.

¢ The data tier. This is the tier that shuttles information back and forth from the database
to the business objects.

An object in one tier can interact only with the adjacent tiers, as shown in Figure 1-13.

Presentation Tier

Window Window Window

UI Code UI Code UI Code

Business Tier

Business Object Business Object
Data Tier
Data Services Object Data Services Object
(Optional) (Optional)
Database Binary Files Message Queue XML Files

Figure 1-13. Three-tier design

37

38

CHAPTER 1 USER INTERFACE ARCHITECTURE

Almost everyone agrees that this sort of structure is the best way to organize an application,
but it’s not always easy to implement this design. Though the plan looks simple, modern user
interfaces are usually quite complicated, and sometimes make assumptions or have expecta-
tions about the way they will receive information. The result is that everyone recommends this
model, but very few developers follow it successfully. The problems, although not insurmount-
able, are found in every tier. The next three sections explain some of the challenges you'll face.

The Presentation Tier

Though it doesn’t explicitly state it, three-tier design requires a fair degree of consistency
among user-interface controls. In the real world, this consistency doesn’t exist. For example,
making what is conceptually a minor change—like substituting a ListView control for a
DataGridView—requires a totally different access model. The DataGridView is filled exclu-
sively by data binding. The ListView, on the other hand, acts like a collection of items. To get
information into other ListView columns, you need to add a collection of fields to each indi-
vidual item. These quirks are easy enough to master, but they don’t make it possible to create
business objects that can quickly and efficiently fill common controls.

For example, consider an application that reads customer information from a database
and displays it in an attractive list control. At first glance, it seems like a straightforward task.
But consider the number of different ways it could be modeled with objects:

¢ A CustomerDDb class fetches information from the database, and returns it as a DataSet.
Your form code then manually reads the DataSet and adds the information to a list control.

¢ A CustomerDDb class fetches information from the database. You also create a custom
CustomerList control class that knows how to fill itself using the DataSet it receives
from CustomerDb.

¢ A CustomerDDb class fetches information from the database. However, the CustomerDb
class also receives a reference to the list control that needs to be filled. The CustomerDDb class
has the built-in smarts to know how to fill the list control’s collection of items.

¢ A CustomerDDb class fetches information from the database. A helper class,
FillListFromDataSet, handles the conversion of the information in the DataSet to
information in the generic list control.

Which approach is the best one? It’s difficult to say. The first approach does the trick, but
probably isn’t generic enough, which will limit your ability to reuse your solution. The second
approach also works, but is probably too much effort because you’ll need to create a dedicated
custom control. The third option is suspicious, because it seems that the CustomerDb class is
being given additional responsibilities beyond the scope it was designed for. Overall, some
variation on the final option will probably give you the best tradeoff between simplicity and
reusability. By dividing the solution up into an extra piece (FillListFromDataSet), it makes the
user interface more loosely coupled. But the greatest problem with all of these examples is that
there is no guarantee that the other classes in the application will follow this pattern. And it
should come as no surprise that when you read the vast quantity of .NET articles and books,
you'll see examples of all of these techniques.

CHAPTER 1 USER INTERFACE ARCHITECTURE 39

Tip The single most important decision you can make is to define how your user interface classes should
interact. This is the simplest way to improve your designs without adopting a single specific type of architecture.

The Business Tier

In three-tier design, it’s assumed that the user interface is isolated from the underlying data
source. Information for a control is requested through a layer of business objects. These busi-
ness objects handle all the application-specific tasks, including enforcement of business rules.
In other words, the business objects validate data to make sure it’s consistent with the rules of
the systems. The key benefit of this is that you can change the rules of your application by
modifying the business components, rather than by creating and deploying a new client appli-
cation, which makes it much easier to put up with the ever-changing requests of some fickle
management types.

Unfortunately, this ideal introduces as many problems as it solves. The key problem is that
the error checking happens after the process is started, which is too late for the validation to be
useful in the user interface. As a result, you're more likely to waste time, confuse users, and (at
worst) lose information. To make a productive user interface, you need to act on an error as
soon as it happens and give immediate feedback, or better yet, forbid it entirely. That means
that your user interface always needs to be designed with some built-in business rules (for
example, forbidding letters in a text box that represents an invoice amount).

Tip Chapter 18 discusses the best ways to integrate validation into your applications, and gives many
more practical tips about how you can deal with validation in an elegant, componentized way.

The Data Tier

Keeping the data tier separate from the business tier is another battle. To optimize performance,
databases in enterprise applications usually rely on stored procedures, views, and other opti-
mized ways to retrieve and update data. However, the user-interface tier can’t be built in a
database-friendly way, because it is designed to be completely generic. It also can’t rely on
tricks that programmers love, like dynamically generated SQL statements, because it is supposed
to be completely isolated from the data tier. The result is a tradeoff, where you can favor any
one of the following approaches:

* Create a “thin” business layer that uses methods that correspond very closely to stored
procedures and other database-specific parameters. Unfortunately, this business layer
requires significant reworking if the database changes.

» Create an average business layer that lets the user interface retrieve whatever data it
wants. The business tier relies on accessing the database using generic SQL statements.
It’s very expandable and generic, but database performance will be terrible.

40

CHAPTER 1 USER INTERFACE ARCHITECTURE

* Create a “thick” business layer that tries to match requests from the user interface with
an optimized execution path for a specific database. With a little luck and careful coding,
performance could be as good as in the first option, and the layer could be nearly as
generic as in the second. However, writing this tier is a major programming undertaking
that takes exponentially more time.

So which approach is the best compromise? Usually developers decide based on the
scalability needs of their application. In an application that needs to serve a large number of
simultaneous users, the first approach is almost always preferred. In a smaller-scale applica-
tion, developers are more likely to choose flexibility over optimization and go with the second
choice. If you have a lot of extra time on your hands, you could attempt the third approach, but
it’s an academic ideal that’s rarely achieved in practice.

Three-Tier Design in .NET

It’s important to remember that three-tier design is an abstraction. No successful application
will implement it exactly. However, it’s a powerful guideline that helps you shape how classes
interact in your application.

.NET 2.0 provides a set of tools to manage data and the way it’s displayed in a Windows
application. Some of these tools are indispensable for dealing with data in a business applica-
tion. Others make it far too easy to break the rules of encapsulation and create tightly bound
interfaces with data access code embedded in your application’s user interface. In Chapter 8,
you'll take your firstlook at these features, and you'll consider some common, practical approaches
to make sure you keep a well-designed application.

The theme of separating user-interface code from other types of application code will recur
throughout this book, even when you aren’t using data binding. (For example, you’ll use it in
Chapter 19 with the document-view model, which rigidly separates user interface code from
the documents an application creates.) You'll also learn when to break through simplifications
of three-tier design, such as when building systems for validation and dynamic help—and how
to do it in a well-encapsulated, componentized way.

It may seem strange to discuss tiers and business objects in a book on user-interface design.
(In fact, there are other excellent .NET books written entirely about architecture and design
patterns.) But as you'll see, when you set specific rules about how the user interface tier can
communicate with other parts of your program, you start to make the transition from a simple
collection of objects to a true user-interface framework.

The Last Word

This chapter introduced you to the broad picture of user interfaces in the .NET world and
considered the basic design assumptions that Visual Studio makes automatically. You can
make different design decisions, and .NET allows you a considerable amount of freedom to
create the exact framework that you want. In later chapters, you'll learn how to exploit this
freedom to create all types of custom controls.

Finally, this chapter provided an introduction to the concepts of application architecture,
which will crop up from time to time throughout this book as you design the user-interface
layer of your application.

CHAPTER 2

Control Basics

In Windows Forms, everything begins with the Control class—the fundamental class from
which every other control derives. The Control class defines the bare minimum functionality
that every control needs, from the properties that let you position it in a window to the events
that let you react to key presses and mouse clicks.

This chapter introduces the Windows Forms toolkit, and then explores the Control class in
detail. You'll learn about the following basics:

* How controls are positioned in a window and layered on top of each other

* How to configure the appearance of a control with fonts and colors

¢ How controls handle focus and the tab sequence

* How you can get keyboard and mouse information by reacting to events or at any time

You won’tlook at specific control classes in this chapter. Instead, you'll concentrate on the
fundamentals that apply to all controls.

The Windows Forms Package

.NET provides two toolkits for application design: one for Web applications (called ASP.NET),
and one for Windows development (called Windows Forms, or WinForms). Windows Forms
allows you to create the traditional rich graphical interfaces found in everything from office
productivity software to arcade games. The one detail that all Windows Forms applications
have in common is the fact that they are built out of windows—tiny pieces of screen real estate
that can present information and receive user input.

It’s easy to imagine that the term “Windows Forms” refers to a special part of the .NET
class library, where fundamental classes like Form and Control are stored. This is true, but it
isn’t the whole story. More accurately, Windows Forms is the technology that allows the common
language runtime to interact with control objects and translate them into the low-level reality
of the Windows operating system. In other words, you create objects that represent controls
and windows, and the common language runtime handles the details like routing messages,
keeping track of window handles, and calling functions from the Windows API.

The idea of wrapping low-level user interface details in an object layer isn’t new. In the
past, developers have used the MFC framework in C++, WFEC in J++, and Visual Basic’s own
“Ruby” forms engine to insulate themselves from some of the low-level details of Windows
programming. These frameworks all provide an object-oriented wrapper around the Windows

L)

42 CHAPTER 2 CONTROL BASICS

API (which, on its own, is a disorganized collection with hundreds of miscellaneous C routines).
These frameworks were well-intentioned, but they have all suffered from a few problems.

* Lack of consistency. If you learn how to use MFC, you still won’t know anything about
creating Visual Basic user interfaces. Even though every framework ultimately interacts
with the Windows AP]I, they have dramatically different object models and philosophies.

» Thin layer/thick layer problems. Frameworks tend to be either easy to use or powerful,
but not both. MFC is really only a couple of steps away from Windows messages and
low-level grunt work. On the other hand, Visual Basic developers have the benefit of a
simple framework, but face the lingering dread that they will need to delve into the raw
Windows API for complex or unusual tasks that are beyond Visual Basic’s bounds.

* Limitations of the Windows API. The Windows API dictates certain harsh realities. For
example, once you create a fixed-border window, you can’t make its border resizable.
These limitations make sense based on how the Windows API is organized, but they
often lead to confusing inconsistencies in a framework’s object model.

The result of these limitations is that there are essentially two types of frameworks: those
that are complicated to use for simple tasks (like MFC), and those that are easy to use for simple
tasks but difficult or impossible to use for complex tasks (like VB). These object models provide
amodern way to code user interfaces, but many programmers wonder why they should abstract
the Windows API when its restrictions remain.

The .NET Solution

.NET addresses these problems by being more ambitious. The result is a user-interface frame-
work that uses some innovative sleight of hand to perform tasks that are difficult or seemingly
impossible with the Windows API. Here are some examples:

* Change fixed style properties like the selection type of a list box or the border type of a
window after its creation.

¢ Change a form’s owner.

¢ Move an MDI child window from one MDI parent window to another.
¢ Transform an MDI child window into an MDI parent and vice versa.

* Move controls from one container to another.

Clearly this list includes a couple of tricks that a self-respecting application will probably
never need to use. Still, they illustrate an important fact: NET doesn’t just provide an easier
object model to access the Windows API—it also provides capabilities that extend it. The result
is a framework that works the way you would intuitively expect it to work based on its objects.

Note The online samples for this chapter include a project named ImpossibleAPI, which shows one of
these “broken rules”—a child window that can jump between different MDI parents whenever the user clicks
a button.

CHAPTER 2 CONTROL BASICS

All of this raises an interesting question. How can a programming model built on the
Windows API actually perform feats that the Windows API can’t? Truthfully, there’s nothing in
the preceding list that couldn’t be simulated with the Windows API after a fair bit of effort. For
example, you could appear to change the border style of a window by destroying and re-creating
an identical window. To do so, you would have to rigorously track and restore all the informa-
tion from the previous window.

In fact, this is more or less what takes place in .NET. If you examine the control or window
handle (the numeric value that identifies the window to the operating system), you'll see that
it changes when you perform these unusual operations. This signifies that, on an operating-
system level, .NET actually provides you with a new window or control. The difference is that
.NET handles this destruction and re-creation automatically. The illusion is so perfect that it’s
hardly an illusion at all (any more than the illusion that ASP.NET Web controls can maintain
state, or that television shows continuous movement rather than just a series of still images).

The cost of this functionality is a runtime that requires a fair bit of intelligence. However,
.NET programs already need an intelligent runtime to provide modern features like improved
code access security and managed memory. Windows Forms are just another part of the ambi-
tious .NET Framework.

Some programmers may nonetheless feel they need to resort to the Windows API. You can
still use API calls in your .NET applications without much trouble (and in rare cases, you might
need to in order to get certain functionality). However, the best overall approach is to abandon
these habits and use the new .NET abstractions. Not only is it easier but it also provides a short path
to some remarkable features.

Tip One of the best pieces of advice for beginning programmers in traditional development was to master
the Windows API. However, in .NET the story changes. In .NET, you’ll get the most benefit by studying the low-
level details of the .NET object libraries, not the API. Believe it or not, the operating system details will not be
as important in the next generation of software development. Instead, you’ll need to know the full range of
properties, methods, and types that are at your fingertips to unlock the secrets of becoming a .NET guru.

The Control Class

Chapter 1 introduced the .NET Control class, and examined its place in the overall architecture
of an application. Here’s a quick review:

* You create and manipulate controls and forms using .NET classes. The common language
runtime recognizes these classes, and handles the low-level Windows details for you.

* You use a control from the .NET class library by creating an instance of the appropriate
class, and adding it to the Controls collection of a container control, like a panel or form.
Whether you add the control at design time or runtime, the code is the same.

* You configure controls by setting properties. In addition, you can react to control events
in two ways: by creating an event handler (typically in a custom form class), or by deriving
a custom version of the control and overriding the corresponding method.

43

44

CHAPTER 2 CONTROL BASICS

Every .NET control derives from the base class System.Windows.Forms.Control. Depending
on the complexity of the control, it may pass through a few more stages in its evolution.

The Control class is interesting mainly for the basic functionality that it defines. Sorting
through the functionality is no easy task. The 200-plus members include countless properties,
events that fire to notify you when certain common properties are changed (like VisibleChanged,
TextChanged, SizeChanged, and so on), and methods that reset values to their defaults, along
with some more useful and unusual members. The sections in this chapter sort through the
most important Control properties by topic. But before you begin your exploration, you may
want to check out some of the basic and system-related members in Table 2-1.

Table 2-1. Basic Control Members

Member Description

Name Provides a short string of descriptive text that identifies
your control. Usually (and by default, if you're using Visual
Studio), the form-level member variable that refers to the
control is given the same name. However, there’s no direct
relation; the Name property is provided just to help you
when iterating through a control collection looking for a
specific item.

Tag Provides a convenient place to store any type of object. The
Tag property is not used by the .NET Framework. Instead,
you use it to store associated data (like a data object or a
string with a unique ID).

Controls The Controls collection stores references to all the
child controls.

Invoke(), InvokeRequired, and These members are used in multithreaded programming.
CheckForlllegalCrossThreadCalls InvokeRequired returns True if the current thread is not the
one in which the control has been created. In this case,
you should not attempt to call directly any other method
or property of the control. Chapter 20 shows how you can
create and manage multithreaded forms.

DesignMode Returns True if the control is in design mode. This property
is used when you are creating a custom control, so you
don’t perform time-consuming operations when the program
is not running (like an automatic refresh).

Dispose() This method releases the resources held by a control (like
the operating system window handle). You can call this
method manually to clean up, or you can let the common
language runtime perform its lazy garbage collection. When
you call Dispose() on a container control, Dispose() is auto-
matically called on all child controls. This also means that
if you call Dispose() on a form, all the controls on that form
are disposed.

CHAPTER 2 CONTROL BASICS

Because every control is derived from the Control class, you can always use it as a lowest
common denominator for dealing with some basic Control properties in your application. For
example, consider the form in Figure 2-1, which provides a text box, label, and button control.
You'll find this example (called the ControlMedley project) with the samples for this chapter.

ﬂgControlMedley E]

|TextBox1 |

Labell

Figure 2-1. A medley of different controls

The Click event for all these controls (and the underlying form) is handled by one event
handler: a method named ctrlClick(). Here’s the event handler:

Private Sub ctrlClick(ByVal sender As Object, ByVal e As EventArgs) _
Handles Buttoni.Click, TextBox1.Click, Label1.Click
Dim ctrl As Control = CType(sender, Control)
MessageBox.Show("You clicked: " & ctrl.Name)
End Sub

The code in the ctrlClick() event handler is completely generic. It converts the object refer-
ence of the sender into the control type, and then displays a message with the name of the
clicked control. Notice how the Handles clause binds this event handler to three separate Click
events for three different controls.

Tip You can type the Handles clause by hand, or you can use the Properties window in Visual Studio. To
add an event handler, select the appropriate control on the form. Then click the lightning bolt in the Properties
window to see the list of its events. Find the event you want (in this case the Click event), and attach it to the
existing ctriClick() method using the drop-down list.

This technique of creating a generic event handler is quite useful. It allows you to handle
similar events from any type of control, rather than limiting you to one type of control (e.g., a
Button) and one type of event (e.g., Button.Click). For example, you could use this approach to
dynamically highlight different controls as the user moves the mouse cursor over them. When
the appropriate event fires, you just need to retrieve the control reference from the sender
parameter and set that control’s foreground and background colors accordingly. In later chapters,
you'll see examples that use this technique to simplify drag-and-drop code and show a control’s
linked context menu.

45

46

CHAPTER 2 CONTROL BASICS

Control Relations

Chapter 1 described how controls like forms, panels, and group boxes can contain other controls.
To add or remove a child control, you use the collection provided in the Controls property.
Control objects also provide other properties that help you manage and identify their relation-

ships (see Table 2-2).

Table 2-2. Members for Control Relationships

Member Description

HasChildren Returns True if the Controls collection has at least one child control.

Controls A collection of contained controls. You can use this collection to
examine the existing child controls, remove them, or add new ones.

ControlAdded and These events fire when controls are added to or removed from the

ControlRemoved events

Parent

TopLevelControl and
FindForm()

Contains()

GetChildAtPoint()

ContextMenuStrip and
MenusStrip

Controls collection. You can use these events to automate layout
logic. Chapter 21 deals with this issue in more detail.

A reference to the parent control (the control that contains this control).
This could be a form or a container control like a group box. You can
set this property to swap a control into a new container.

The TopLevelControl property returns a reference to the control at
the top of the hierarchy. Typically, this is the containing form. The
FindForm() method is similar, but it returns null if the control is not
situated on a form.

This method accepts a control, and returns True if this control is

a child of the current control. This method works with children of
children, so you can test if a given control is contained anywhere in
the control tree of another container.

This method accepts a Point structure that corresponds to a location
inside the current control. If a child control is located at this point, it
is returned. This method is often used when hit-testing to see if the
mouse pointer is over a child control. This method finds only imme-
diate children (not children of children).

These properties return the associated ContextMenuStrip object (for
a basic control) or MenuStrip object (for a form). Chapter 14 has much
more information about menus and toolbars.

Windows XP Styles

Windows XP introduced a revamped look for Windows applications that refreshes the way
common graphical elements like buttons and boxes are drawn. Figure 2-2 shows the difference.

CHAPTER 2 CONTROL BASICS

[Normal Controls |z| [Windows XP Controls |z|

™ CheckBox1 [checkBox1
" RadioButtonl (O RadioButtoni
|C0mboBox1 j | ComboBoxl v|

BEE
] 2]

| »

Figure 2-2. Normal (left) and Windows XP (right) visual styles

In .NET 1.0, you needed to do the tedious work of creating an additional XML file (known
as a manifest) to support the Windows XP look. In .NET 2.0, life is a whole lot easier. You simply
need to remember to call the Application.EnableVisualStyles() method when your application
starts, before showing any forms. If you're using the application framework (introduced in
Chapter 1), this line of code isn’t visible, but it’s automatically called before your start-up form
is shown. If, on the other hand, you decide to disable the application framework and start your
application with a Main() method, you'll need to call Application.EnableVisualStyles() yourself. If
you forget to call EnableVisualStyles(), you'll still see the Windows XP look for nonclient portions
of your form (such as the border and minimize/maximize buttons). However, the Windows XP
look won't be used for the form surface, which means that basic user-interface elements, like
buttons, check boxes, and radio buttons, will still have the antiquated look that they’ve used
since Windows 95.

In either case, the way your application works with earlier operating systems is unchanged.
The EnableVisualStyles() call is harmlessly ignored on non-XP versions of Windows. There’s
one more quirk—the Visual Studio design environment doesn’t pay attention to whether or
not your application uses visual styles, because ithas no way to determine whether you will call
the EnableVisualStyles() method before showing a given form. As a result, Visual Studio always
uses the Windows XP styles if you're designing your application on a Windows XP computer.

Note Many button-style (like Button, CheckBox, and RadioButton) controls provide a FlatStyle property.
If you set FlatStyle to a value other than System or Standard, the Windows XP styles won’t be used. However,
the default setting for all controls is Standard, which ensures that you get the appearance you expect as long
as you call EnableVisualStyles().

47

48

CHAPTER 2 CONTROL BASICS

Position and Size

A control’s position is defined by the distance between its top-left corner and the top-left
corner of its container. Often, the container is a form, but it could also be a container control,
like a panel or group box. Similarly, the size of a control is measured as the width and height of
the control from its top-left corner (not including the space occupied by the form border and
caption). By convention, the position measurement is positive in the downward and rightward
directions. Figure 2-3 shows the relationship.

A T Desktop Area

Formi.Top or
Formi.location.Y

Formi.Left or
Formi.Location.X

= Form1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Buttoni.Top or :
Buttoni.location.Y 1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Forml.Bottom Forml.He;ight or
Form1.Size.Height

gButtonl.left ory
Buttont.location X

buttand
Y \ 4
1 Form1.Width or
: (Formi.Size.Width)
:
<« Formi.Right R -

Figure 2-3. Control measurements

All coordinates and dimensions are represented by integer values that are measured in
pixels. They are provided through several properties, including Top, Left, Right, and Bottom for
position, and Width and Height for size. Out of these, only Top, Left, Width, and Height can be
adjusted (the Right and Bottom properties are calculated based on these values and are read-only).

Note Pixels, of course, are the smallest physical measurement of screen resolution. A typical consumer
computer monitor uses a display resolution of 1024 x 768 or 800 x 600 pixels. Because the current generation
of the Windows operating systems is based on pixels, application windows can look quite different (cramped
and small or spacious and expansive) depending on the hardware on your computer. Future versions of
Windows, like Vista, promise to change this system by adding a truly scalable rendering engine.

CHAPTER 2 CONTROL BASICS

Although you can change the Top and Left properties, the preferred way to set position is
by setting the Control.Location property using a Point object. A Point object is a simple structure
that represents a coordinate. It consists of just two properties—X and Y.

Here’s an example that uses a Point object:

Dim pt As New System.Drawing.Point()

pt.X = 300 " The control will be 300 pixels from the left
pt.Y = 500 ' The control will be 500 pixels from the top.
ctrl.location = pt ' Now ctrl.Left = 300 and ctrl.Top = 500

Similarly, the preferred way to define a control’s size is to set the Control.Size property
with a Size object, which represents a rectangle. The Size structure consists of a Width and
Height property.

Dim sz As New System.Drawing.Size()
sz.Width = 50

sz.Height = 60

ctrl.Size = sz

" Just for fun, set another control to have the same size.
ctrl2.Size = ctrl.Size

Note All standard controls are treated as rectangles. In Chapter 23, you’ll see how it’s possible to create
specialized controls and forms that have irregular boundaries by using the Region property.

These basic structures originate from the System.Drawing namespace. By importing the
System.Drawing namespace and using some handy constructors, you can simplify these examples
considerably, as shown here:

ctrl.Location = New Point(300, 500) ' Order is (X, Y)
ctrl.Size = New Size(50, 60) ' Order is (Width, Height)

Visual Studio takes this approach when it creates code for your controls at design time.
One other useful shortcut is the SetBounds() method, which is handy if you want to setlocation
and size in a single step:

ctrl.SetBounds(300, 500, 50, 60) " Order is (X, Y, Width, Height)

Along with the basic Size property, controls and forms also provide a ClientSize property.
Essentially, Size is the full measure of the screen real estate taken by a control. ClientSize is the
size of the control, ignoring elements that the control isn’t directly responsible for drawing.
This may include the borders of the control, and the scroll bar. Figure 2-4 shows the difference
between Size and ClientSize.

49

50

CHAPTER 2 CONTROL BASICS

E Form

Form1.ClientSize.Height

TextBox1.ClientSize.Width
Form1.Size.Height |(_ _>|

TextBox1.Size.Width —)>

4 Y

Figure 2-4. The Size property compared to the ClientSize property

Typically, the ClientSize property is most useful when you’re performing coordinate
calculations with a form and you want to ignore the title bar region. Here’s an example:

This code attempts to center a label vertically.
It's a little too low because the title bar is not accounted for.
labeli.location.Y = (Me.Size.Height - labeli.Height) / 2

This code centers a label vertically.
It succeeds because it uses the client region for its calculations.
labeli.location.Y = (Me.ClientSize.Height - labeli.Height) / 2

There are still other size- and position-related properties, such as those used for anchoring
and docking when creating automatically resizable forms. These properties are described in
detail in Chapter 3.

Tip There are actually two ways to measure the position of a control. Typically, you’ll use the Location
property, which measures the distance between the control borders and the bounds of the container. However,
you can also use absolute screen coordinates, which measure the distance between the control borders and
the edges of the screen. If you have one type of measurement and you need another, don’t worry—you can
use the Control.PointToClient() and Control.PointToScreen() methods to convert the coordinate. Chapter 4
shows an example with a drag-and-drop operation that spans two forms.

Overlapping Controls

When you place more than one control in the same place, one will end up on top, and the other
will end up underneath. Usually this is the result of a minor mistake, such as incorrectly using
the anchoring and docking features (described in Chapter 3) to create resizable forms. In some
cases, however, you might want to overlap controls for a specific effect.

CHAPTER 2 CONTROL BASICS

When controls overlap, it’s the z-index that determines which control ends up on top. Essen-
tially, every control exists in its own distinct numbered layer. A control that has the z-index layer 1
will appear above a control in z-index layer 2 if they overlap. Usually, the z-index of a group of
controls is determined by the order in which you add the controls, so that the last control you add
is always in the topmost layer (with a z-index of 0). However, you can change these options.

To determine or set the z-index of a control, you can use the GetChildIndex() and
SetChildIndex() methods of the Controls collection. Here’s an example that moves a control
to the third layer in the z-index:

Controls.SetChildIndex(ctrl, 2)

Usually, you won'’t need this kind of fine-grained control. Instead, you’ll just want to drop
a control to the back of the z-index (the bottom-most layer) or bring it to the top. You can
accomplish this feat at design time by right-clicking on a control and choosing Bring to Front
or Send to Back. You can also perform the same task programmatically using the
Control.BringToFront() or Control.SendToBack() methods.

ctrl.BringToFront() ' This is equivalent to Controls.SetChildIndex(ctrl, 0)

Every container control tracks z-index values separately. As a result, you need to worry
about control overlap only if two controls exist at the same level. You don’t need to worry about
itwhen one control is contained inside another. For example, if you put a button inside a group
box, the group box won’t obscure the button.

Tip Usually, overlapping controls are more frustration than they’re worth. That’s because .NET doesn’t
support real background transparency. If you want to overlap content for a specific graphical effect, you'll
probably want to develop your own owner-drawn controls, as described in Chapter 12.

ALIGNING CONTROLS IN VISUAL STUDIO

The Visual Studio designer provides a slew of tools that make it easier to lay out controls. Here are some useful
starting points:

e Select a control, and set its Locked property to True in the Properties window. This locks it in place, ensuring
that it won’t accidentally be moved while you create and manipulate other controls.

e As you move or resize a control, look for blue snap lines, which automatically align an edge of your control
with another control. Snap lines are new in Visual Studio 2005, and they make it much easier to arrange
a column of text boxes or buttons.

¢ Look under the Format menu for options that let you automatically align, space, and center controls. For
example, select several existing controls and choose Format » Align » Left to align their left edges.
Or, choose Format » Make Same Size » Width to expand both controls to have the same width, or
Format » Vertical Spacing » Make Equal to space them out evenly from top to bottom.

¢ To quickly place a control in the middle of a form, select the control and use one of the options in the
Format » Center in Form menu.

51

52

CHAPTER 2 CONTROL BASICS

Color

Every control defines a ForeColor and BackColor property. For different controls, these properties
have slightly different meanings. In a simple control like a label or text box, the foreground color is
the color of the text, while the background color is the area behind it. These values default to
the Windows system-configured settings.

Colors are specified as Color structures from the System.Drawing namespace. It’s extremely
easy to create a color object, because you have several different options. You can create a color
using any of the following:

* AnARGB (alpha, red, green, blue) color value. You specify each value as an integer from
0 to 255.

* Apredefined .NET color name. You choose the correspondingly named property from
the Color class.

¢ An HTML color name. You specify this value as a string using the ColorTranslator class.

* An OLE color code. You specify this value as an integer (representing a hexadecimal
value) using the ColorTranslator class.

* A Win32 color code. You specify this value as an integer (representing a hexadecimal
value) using the ColorTranslator class.

* An environment setting from the current color scheme. You choose the correspondingly
named property from the SystemColors class.

Note To change the currently defined system colors, right-click the desktop, choose Properties, and then
click the Advanced button in the Appearance tab. Keep in mind that if you’re using Windows XP themes, these
colors are effectively ignored.

The code listing that follows shows several ways to specify a color using the Color,
ColorTranslator, and SystemColors types. To use this code as written, you must import the
System.Drawing namespace.

Create a color from an ARGB value.

Dim alpha As Integer = 255, red As Integer = O

Dim green As Integer = 255, blue As Integer = O
ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue)
' Create a color from an environment setting.
ctrl.ForeColor = SystemColors.HighlightText

CHAPTER 2 CONTROL BASICS

' Create a color using a .NET name.
ctrl.ForeColor = Color.Crimson

' Create a color from an HTML color name.
ctrl.ForeColor = ColorTranslator.FromHtml("Blue")

' Create a color from an OLE color code.
ctrl.ForeColor = ColorTranslator.FromOle(&HFF0O)

' Create a color from a Win32 color code.
ctrl.ForeColor = ColorTranslator.FromWin32(&HA00O)

The next code snippet shows how you can transform the KnownColors enumeration into
an array of strings that represent color names. This can be useful if you need to display a list of
valid colors by name in an application.

Dim colorNames() As String
colorNames = System.Enum.GetNames(GetType(KnownColor))

Changing a color-name string back to the appropriate enumerated value is just as easy
using the special shared Enum.Parse() method. This method compares the string against all
the available values in an enumeration, and chooses the matching one.

Dim myColor As KnownColor
myColor = CType(_
[Enum].Parse(GetType(KnownColor), colorName), KnownColor)
' For example, if colorName is "Azure" then MyColor will be set
to the enumerated value KnownColor.Azure (which is also the integer value 32).

Note Enum is both a class name and a reserved Visual Basic keyword (which is used to define your own
enumerations). As a result, when you use the Enum class, you must either fully qualify the class name as
System.Enum, or you must place it inside square brackets.

Incidentally, you can use a few useful methods on any Color structure to retrieve additional
color information. For example, you can use GetBrightness(), GetHue(), and GetSaturation().

Here’s a complete program that puts all of these techniques to work. When it loads, it fills
a list control with all the known colors. When the user selects an item, the background of the
form is adjusted accordingly (see Figure 2-5). The only exception is the Transparent color,
which generates an exception. (See Chapter 3 to learn how to create a truly transparent form.)

53

54 CHAPTER 2 CONTROL BASICS

Public Class ColorChanger

Private Sub ColorChanger Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.load

Dim colorNames() As String
colorNames = System.Enum.GetNames(GetType(KnownColor))
1stColors.Items.AddRange(colorNames)

End Sub

Private Sub 1lstColors SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles lstColors.SelectedIndexChanged

Dim selectedColorObject As Object
selectedColorObject = [Enum].Parse(GetType(KnownColor), lstColors.Text)

Dim selectedColor As KnownColor
selectedColor = CType(selectedColorObject, KnownColor)

Me.BackColor = System.Drawing.Color.FromKnownColor(selectedColor)

' Display color information.
1blBrightness.Text = "Brightness = " & _
Me.BackColor.GetBrightness().ToString()
1blHue.Text = "Hue = " & Me.BackColor.GetHue().ToString()
lblSaturation.Text = "Saturation = " & _
Me.BackColor.GetSaturation().ToString()
End Sub

End Class

¥ color Changer.

|Choose 3 Backaround Color: Prightness =0,7490196 |
LemaonChiffon - —

LightElue [Faturation = 0,734375
LightCoral

LightCyan

LightGoldenrodiellow

LiEhtGraé

LightPink.
LightSalmon
LightSeaGreen =
LightSkyEBlue
LightSlateGray
LightSteelBlue
Light ellow
Lirne:
LimeGreen
Linen

1£3

Figure 2-5. A color-changing form

CHAPTER 2 CONTROL BASICS

Note ForeColor and BackColor are ambient properties—properties that, if not set, are retrieved from the
parent. For example, if you add a Label to a Form and don’t set the BackColor, the Label uses the BackColor
of the Form. If you add a Label to a Panel and don’t set the BackColor, the Label uses the BackColor or the
Panel (and if that isn’t set, the Panel uses the BackColor of the Form). Other ambient properties include Font
and Cursor.

Alpha Blending

The most flexible way to set colors for a.NET control is to use an ARGB value, which consists of
four separate numbers representing an alpha, red, green, and blue component. The red, green,
and blue components are easy to understand (for example, a color with a red component of 255 is
much redder than one with a red component of 0). The alpha value is a little trickier—it repre-
sents the transparency of a color from 0 (completely transparent) to 255 (opaque). If you set a
background color with an alpha value other than 255, you are electing to make the control’s
background partially transparent.

You can use this code to set the alpha component of any color to 0, making it transparent:

Make a label transparent.
label1.BackColor = Color.FromArgb(0, labell.BackColor)

You can also use the system-defined color Color.Transparent. If you want to set this through
the Properties window, you'll find the Transparent color in the Web tab of the drop-down color
picker.

Unfortunately, the standard .NET controls don’t handle transparent backgrounds very
well. In fact, they only pretend to be transparent with a rather ugly workaround. When you set
a control to have a transparent background, it simply looks at the background of the parent
control, and uses that (if the alpha value is 255) or blends it with the specified color (if the alpha
value is somewhere between 0 and 255). As a result, when you overlap one “transparent”
control with another, the topmost control will still overlap any content in the bottom control.
Figure 2-6 demonstrates the problem with two supposedly transparent controls.

™ Form1 E]

aran't raallv h’:\ngparent
Transparent controls

Figure 2-6. A not-quite-transparent label

There is no way to solve this problem, except to use GDI+ to create custom owner-drawn
controls that don’t suffer from the same limitations.

55

56

CHAPTER 2 CONTROL BASICS

Fonts and Text

The Control object defines a Text property that is used by derived controls for a variety of
purposes. For a text box, the Text property corresponds to the information displayed in the text
box, which can be modified by the user. For controls like labels, command buttons, or forms,
the Text property refers to static descriptive text displayed as a title or caption.

The font of a control’s text is defined by the Font property, which uses an instance of the
System.Drawing.Font class. Note that a Font object does not just represent a typeface (such as
Tahoma). Instead, it encapsulates all details about the font family, point size, and styles (like
bold and italic).

You can create a font with one of the 13 constructors.
ctrl.Font = New Font("Tahoma", 8, FontStyle.Bold)

The Font class also provides a Height property, which returns the line spacing of your
chosen font in pixels. This setting allows you to perform calculations when you are drawing
special graphics or text on a control manually. For example, you could manually space lines the
appropriate amount when drawing text directly onto a form background.

Tip A traditional default font for Windows programs is Microsoft Sans Serif. However, applications since
Windows 98 consistently use the more attractive Tahoma font (which is also better for input, as it distinguishes
between characters like a lowercase L and uppercase /). You should use the Tahoma font in your applications.

Note that font families are set using a string rather than a type-safe enumerated property.
If you try to create an object using a name that does not correspond to an installed font, . NET
automatically (and unhelpfully) defaults to the Microsoft Sans Serif font. An error does not
occur. You may want to explicitly check the Font.Name property to check if this automatic
substitution has been made.

To determine what fonts are installed on the system, you can enumerate through them
with the System.Drawing.Text.InstalledFontCollection class. The following example adds the
name of every installed font to a list box.

Dim fonts As New InstalledFontCollection()

For Each family As FontFamily In fonts.Families
1stAvailableFonts.Items.Add(family.Name)

Next

The samples for this chapter include a FontViewer utility that uses this technique to create
a list of fonts. The user can choose a font from a drop-down list control, and a sample line of
text will be painted directly on the window (see Figure 2-7). To perform the font painting, the
application uses some of the GDI+ methods you'll see in Chapter 7.

CHAPTER 2 CONTROL BASICS

(™ FontViewer

Choose Fonk:

Allegro BT

Figure 2-7. A simple font viewer

System Fonts

Windows has a lot of font conventions. Different fonts are used for different screen elements.
You can retrieve the correct default font using the System.Drawing.SystemFonts class, which
includes handy properties like CaptionFont, DefaultFont, DialogFont, IconTitleFont, Menu-
Font, MessageBoxFont, SmallCaptionFont, and StatusFont. Using these font objects ensures
your application blends in with the scenery. Here’s how you assign the caption font to a control:

ctrl.Font = SystemFonts.CaptionFont

The SystemFont class differs from other classes dedicated to system settings, like
SystemColors, SystemBrushes, and SystemPens. The difference is that when you retrieve one
of the properties from SystemFont, a new Font object is created. That means if you're using a
font for dynamic drawing (a topic explored in Chapter 7), you should release the font when
you're finished by calling its Dispose() method. Very few applications are brought to their
knees by wasting a few extra font handles, but it’s good to get in the habit of cleaning up every
resource you use before a problem develops.

Large Fonts

The Windows operating system has a rather kludgey feature called “large fonts” that allows you
to bump up the default text size on your computer. This feature is designed to let you use
higher resolutions for increased quality without sacrificing readability. However, most users
steer away from the large fonts feature, because it works unpredictably with many applications.
Some become unusable (important content may be bumped right off a form) while most show
no change at all.

Tip To change the font DPI on your computer, select Display from the Control Panel, choose the Settings
tab, and click Advanced. In the General tab, there’s a drop-down list of DPI options, including normal-size and
large-size fonts.

By default, your .NET applications won'’t change when large fonts are used. However, you
can choose to support this feature by setting the Font property of your form to SystemFonts.
IconTitleFont. As odd as it seems, this is the correct font to support default text—it’s the font

57

58

CHAPTER 2 CONTROL BASICS

that Visual Studio uses for its dialogs. Additionally, you should handle the UserPreferenceChanged
event to refresh the font immediately when the user changes the font DPI setting (no reboot is
required).

Here’s what your code should look like:

Imports Microsoft.Win32
Public Class SmallOrlLargeForm

Public Sub New()
Me.Font = SystemFonts.IconTitleFont

AddHandler SystemEvents.UserPreferenceChanged,
AddressOf SystemEvents UserPreferenceChanged
End Sub

Private Sub SystemEvents UserPreferenceChanged(_
ByVal sender As Object, _
ByVal e As UserPreferenceChangedEventArgs)

If e.Category = UserPreferenceCategory.Window Then
Me.Font = SystemFonts.IconTitleFont
End If
End Sub

Private Sub Forml Disposed(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Disposed

RemoveHandler SystemEvents.UserPreferenceChanged,
AddressOf SystemEvents UserPreferenceChanged
End Sub

End Class

Assuming the Form.AutoScaleMode is set to AutoScaleMode.Font (the default), your form
and all its controls will resize to fit the new fonts. However, the result still isn’t perfect, and you
may find that your alignment goes slightly out of whack with some controls. A better solution
to dealing with on-screen elements that may change in size is to use the layout controls described
in Chapter 21.

Access Keys

Some controls (namely buttons, labels, and menu items) allow a character in their caption to
be highlighted and used as an access key. For example, button controls often underline one
character in the caption. If the user presses the Alt key and that character, the button is “clicked”
automatically. To configure these shortcut keys just add an ampersand (&) before the special
letter, as in “Sa&ve” to make vthe access key. (If you actually want to use an ampersand, you'll
need to include two ampersands: &&.)

CHAPTER 2 CONTROL BASICS

Focus and the Tab Sequence

In the Windows operating system, a user can work with only one control at a time. The control
that is currently receiving the user’s key presses is the control that has focus. Sometimes this
control is drawn slightly differently. For example, the button control uses a dotted line around
its caption to show that it has the focus. Figure 2-8 shows focused and unfocused buttons with
both the Windows XP visual styles and the classic Windows look.

| Focused |[Unfocused]

Focused ¢ Unfocused |

Figure 2-8. Focused buttons

To move the focus, the user can click the mouse or use the Tab and arrow keys. The developer
has to take some care to make sure that the Tab key moves focus in a logical manner (generally
from left to right and then down the form). The developer also has to choose the control that
should receive the focus when the window is first presented.

All controls that support focusing provide a Boolean TabStop property. When set to True,
the control can receive focus through the Tab key. When set to False, the control is left out of the
tab sequence and can be reached only using a mouse click.

Tip You should set the TabStop property to False for controls that can accept key presses but are not
directly accessed by the user in your application. For example, you might provide a DataGridView control, but
use it to display static information. Of course, the disadvantage to this approach is that setting the TabStop to
False also means the user will need to use the mouse to scroll the control if its contents extend beyond the
bounds of its display region.

To set the tab order, you configure a control’s TabIndex property. The control with a
TabIndex of 0 gets the focus first. When the user presses the Tab key, the focus moves to the
next control in the tab order, as long as it can accept focus. Visual Studio provides a special
tool, shown in Figure 2-9, that allows you to quickly set tab order. Just select View » Tab Order

from the menu. You can then assign TabIndex values by clicking controls in the desired order.

Label controls have a TabIndex setting even though they cannot receive focus. This allows
you to use a label with an access key. When the user triggers the label’s access key, the focus is
automatically forwarded to the next control in the tab order. For that reason, you should give
your labels an appropriate place in the tab order, especially if they use access keys. (You create
an access key by placing an ampersand character before a letter in the label’s text.)

Controls that are invisible or disabled (“grayed out”) are generally skipped in the tab order,
and are not activated regardless of the TabIndex and TabStop settings. To hide or disable a
control, you set the Visible and Enabled properties, respectively. Note that if you hide or disable a
control at design time, the appearance is not modified. This is a deliberate idiosyncrasy designed
to make it easier to work with controls at design time, and it is recommended that you follow
this design when creating your own custom controls.

59

60

CHAPTER 2 CONTROL BASICS

Form1.xb[Design]*

moose a Background Color:

E;htness

E-olors

B]
:uration

Figure 2-9. The Visual Studio tab order tool

Some other properties and methods for managing the focus programmatically are described

in Table 2-3.

Table 2-3. Members for Dealing with Focus at Runtime

Member

Description

Focused
ContainsFocus

Focus()

SelectNextControl()

GetNextControl()

LostFocus and
GotFocus events

Returns True if the control currently has the focus.
Returns True if the control or one of its children currently has the focus.

Sets the focus to the control. Note that this won’t work if the control
isn’t visible. That means that you can’t use it in an event handler for the
Form.Load event, because the form isn’t displayed until it is finished
loading. To get around this problem, just set the TabIndex property of
the control to 0 so that it will get the focus first.

Sets the focus to a child control. For example, you can use Panell.
SelectNextControl() to set focus to a control inside the Panell container
and Form1.SelectNextControl() to set focus to a control that’s directly
contained by the form. When you call SelectNextControl(), you supply a
reference to one of the controls in the container, and the one that imme-
diately follows in the tab order gets the focus.

Similar to SelectNextControl(), except this method returns the corre-
sponding control object to your code instead of selecting it.

These fire after the focus has moved. They do not give you the chance to
stop the focus change, and are thus poor choices for validation routines.
If you insist on programmatically resetting the focus in an event handler
for one of these events, you may trigger a neverending loop of focus
events. Instead, use the validation events or the ErrorProvider control,
which are described in Chapter 18.

CHAPTER 2 CONTROL BASICS

Tip The GetNextControl() and SelectNextControl() methods are particularly useful when you are combining
some type of interactive wizard or application help, as they can direct the user to an important control or part
of the screen.

Responding to the Mouse and Keyboard

Controls also provide some built-in intelligence for dealing with the keyboard and mouse.
These include low-level events that react to key presses and mouse movement, and methods
that return key and mouse button state information. The next few sections describe all of these
key ingredients.

Handling the Keyboard

Table 2-4 lists the events a typical control fires if it has focus when the user presses a key. These
controls unfold in this order:

¢ KeyDown
¢ KeyPress
* KeyUp

Generally you will react to the KeyDown and KeyUp events when you need to react to
special characters like the arrow keys, which do not trigger KeyPress events. The KeyPress
event is used when you need to restrict input and perform character validation.

Table 2-4. Events for Reacting to the Keyboard

Event Description

KeyDown Occurs when a key is pressed while the current control has focus. The event
provides additional information (through KeyEventArgs) about the state of the
Alt and Ctrl keys and the key code.

KeyPress This is a higher-level event that occurs once the key press is complete (but before
the character appears, if the control is an input control). The event provides
a KeyPressEventArgs object with information about the key character. The
KeyPressEventArgs object also provides a Handled property, which you can set
to True to cancel further processing, effectively canceling the character and
suppressing its display in an input control.

KeyUp This occurs when a key is released, just after the KeyPress event. It provides infor-
mation through a KeyEventArgs object.

KeyPress and KeyDown

To understand the difference between KeyPress and KeyDown, consider what happens if the
user holds down the Shift key and then presses the D key. In this scenario, the KeyPress event
will fire once, and provide the exact character that was submitted (for example, the letter D).

61

62 CHAPTER 2 CONTROL BASICS

Private Sub txt KeyPress(ByVal sender As Object,
ByVal e As KeyPressEventArgs) Handles txt.KeyPress
' Show the key that was pressed.
1bl.Text = "Key Press: " & e.KeyChar.ToString()
End Sub

On the other hand, the KeyDown event will fire twice, once for the Shift key, and once for
the D key.

Private Sub txt KeyDown(ByVal sender As Object,
ByVal e As KeyEventArgs) Handles txt.KeyDown

' Show the key letter that was pressed. For example, if the user presses
' the D key, the key value will always be "D" regardless of whether Shift
" was held down or not).

1bl.Text = "Key Code: " & e.KeyCode.ToString()

' Show the integer value for the key that was pressed
" (like 16 for Shift or 68 for D).
1bl.Text &= vbNewLine & "Key Value: " & e.KeyValue.ToString()

' The KeyData contains information about every key that was held down,
' as a combination of values from the Keys enumeration.
" You can enumerate over these values, or just call ToString()
' to a get a comma-separated list.
1bl.Text &= vbNewLine & "Key Data: " & e.KeyData.ToString()
End Sub

It’s up to you to check the state of the Shift key the second time to determine that the user
is trying to type a capital letter.

A number of keys (some of which are listed here) will trigger KeyDown and KeyUp events,
but no KeyPress event:

¢ The function keys (F1, F2, etc.)

¢ The arrow (cursor) keys

¢ Shift, Ctrl, and Alt

¢ Caps Lock, Scroll Lock, and Num Lock
¢ Delete and Insert

¢ Pause and Break

¢ Home and End

» Page Up and Page Down

e Print Screen

CHAPTER 2 CONTROL BASICS

If you want to update the display or react to a changed text value in an input control, you
should probably not use any of these events. Instead, you should react to the higher-level
Changed event, which fires when any modifications are made. The Changed event will fire if
you modify the text programmatically or the user deletes the text via the right-click menu.

Key Modifiers

When a key event fires, you can test to see if a modifier key (like Ctrl, Alt, or Shift) is being held
down. Here’s the code you need:

Private Sub txt KeyDown(ByVal sender As Object, _
ByVal e As KeyEventArgs) Handles txt.KeyDown

' You can use Modifiers to check for Alt, Control, and Shift.
If (e.Modifiers And Keys.Shift) = Keys.Shift Then

1bl.Text &= vbNewlLine & "Shift was held down."
End If

' There is also an easier approach through the Alt, Control,
' and Shift properties.
If e.Alt Then
1bl.Text &= vbNewLine & "Alt was held down."
End If

End Sub

To test the state of the Caps Lock, Scroll Lock, and Num Lock keys, you can use the shared
Control.IsKeyLocked() method, which is new in .NET 2.0. Here’s an example:

If Control.IsKeylocked(Keys.CapslLock)
" Caps lock is switched on.
End If

The Control.IsKeyLocked method accepts a member from the Keys enumeration. However,
you can'’t test for any key other than Caps Lock, Scroll Lock, and Num Lock. Otherwise, a
NotSupportedException will be thrown.

Tip You don’t need to wait for an event to fire—you can use the Control.IsKeyLocked property at any time.
If you want to check the state of a modifier key like Shift, Ctrl, or Alt outside of an event handler, just check
the Control.ModifierKeys property in the same way that you would check the KeyEventArgs.Modifiers property.
This is particularly useful when dealing with controls that don’t provide a KeyDown event.

Unfortunately, the Control.IsKeyLocked method won’t help you determine if the Insert
key is pressed. If you want to make this determination (which is common if you're building a
text input control like a text box), you need to make an unmanaged call to the GetKeyState()

63

64

CHAPTER 2 CONTROL BASICS

function (which is a part of User32.dll library). Here’s how you define it, so that it’s accessible
in your application:

Private Declare Function GetKeyState Lib "User32.d11l" (_
ByVal key As System.Windows.Forms.Keys) As Short

And here’s how you can use it to check for the current state of the Insert key:

If GetKeyState(Keys.Insert) = 1 Then
' Overwrite mode is on.
Else

End If

Insert mode is on.

Intercepting Key Presses in a Form

Forms provide a Boolean KeyPreview property. If you set this to True, your form receives key-press
events when any of its controls have focus, and it receives these events before the control does.

If, when handling the KeyPress event in the form, you set the KeyPressEventArgs.Handled
property to True, the control that has focus won’t receive the corresponding KeyPress event at
all. (If you don’t set the property to True, the control that has focus will still receive the event,
but it will do so after the form.) The Handled property works for a single event, which means
if you set Handled to True when dealing with the KeyPress event, the current control will still
receive other events like KeyDown and KeyUp. If you want to stop any more events from firing
for this keystroke (for both the form and the control), just set the KeyPressEventArgs.Suppress-
KeyPress property to True.

Handling keystrokes at the form level is useful if you need to take complete control of the
keyboard. It’s also useful if you want to capture a keystroke that occurs in any control. For example,
you might listen for the F1 key and pop up a help window.

GetAsyncKeyState()

When you use the methods described so far, your code gets the virtual key state. This means it
gets the state of the keyboard based on the messages you have retrieved from your input queue.
This is not necessarily the same as the physical keyboard state.

For example, consider what happens if the user types faster than your code executes. Each
time your KeyPress event fires, you’ll have access to the keystroke that fired the event, not the
typed-ahead characters. This is almost always the behavior you want.

Longtime Windows programmers know that the Win32 API also allows you to get the current
state of the keyboard, which might be important if you’re building some sort of keyboard
logger or macro tool. Although this functionality isn’t exposed through .NET, you can get in
through an unmanaged call to the Win32 API (known as a Platform Invoke, or PInvoke). The
method you need to use is called GetAsyncKeyState(). (By contrast, the .NET behavior matches
the unmanaged GetKeyState() function.)

GetAsyncKeyState() takes a key value, and returns a value that tells you whether this key is
currently pressed, and whether it has been pressed at all since the last GetAsyncKeyState() call.

Here’s how you make the GetAsyncKeyState() function available in an application:

CHAPTER 2 CONTROL BASICS

Private Declare Function GetAsyncKeyState Lib "User32.d1l" (_
ByVal key As System.Windows.Forms.Keys) As Short

Now you can call GetAsyncKeyState() to check the state of any key. There are three possible
values that can be returned, as illustrated in this example:

' Test for the letter D.
Dim state As Short = GetAsyncKeyState(Keys.D)

Select Case state
Case 0
1bl.Text
Case 1
1bl.Text = _
"D is not currently pressed, but has been pressed since the last call.”
Case -32767
1bl.Text = "D is currently pressed.”
End Select

"D has not been pressed since the last call."

Handling the Mouse

.NET includes a rich complement of methods for mouse handling (see Table 2-5). Using these
events, you can react to clicks and mouse movements.

Table 2-5. Events for Reacting to the Mouse

Event Description
MouseEnter Occurs when the mouse moves into a control’s region.
MouseMove* Occurs when the mouse is moved over a control by a single pixel and also

after a MouseUp event. Event handlers are provided with additional informa-
tion about the current coordinates of the mouse pointer. Be warned that a
typical mouse movement can generate dozens of MouseMove events. Event
handlers that react to this event can be used to update the display, but not for
more time-consuming tasks.

MouseHover Occurs only once when the mouse lingers, without moving, over the control
for a system-specified amount of time (typically a couple of seconds). Usually,
you react to this event to highlight the control that is being hovered over, or
update the display with some dynamic information.

MouseDown* Occurs when a mouse button is clicked.

MouseUp* Occurs when a mouse button is released. For many controls, this is where the
logic for right-button mouse clicks is coded, although MouseDown is also
sometimes used.

Click Occurs when a control is clicked. Generally, this event occurs after the
MouseDown event but before the MouseUp event. For basic controls, a
Click event is triggered for left-button and right-button mouse clicks. Some
controls have a special meaning for this event. One example is the button
control. You can raise the Button.Click event by tabbing to the button and
pressing the Enter key, or clicking with the left mouse button. Right-button
clicks button trigger MouseDown and MouseUp events, but not Click events.

65

66

CHAPTER 2 CONTROL BASICS

Table 2-5. Events for Reacting to the Mouse (Continued)

Event Description

DoubleClick Occurs when a control is clicked twice in succession. A Click event is still
generated for the first click, but the second click generates the DoubleClick event.

MouseWheel Occurs when the mouse wheel moves while the control has focus. The mouse
pointer is not necessarily positioned over the control. This event does not
work on unfocusable controls.

MouseLeave Occurs when the mouse leaves a control’s region.

* Indicates that the event handler uses the MouseEvent delegate, and provides additional information about
the location of the mouse pointer (and the X and Y properties), the mouse wheel movement (Delta), and the
state of the mouse buttons (Button).

The MouseMove, MouseDown, and MouseUp events provide additional information about
the state of the mouse buttons. Separate MouseDown and MouseUp events are triggered for
every mouse button. In this case, the MouseEventArgs.Button property indicates the button
the caused the event.

Private Sub 1bl MouseUp(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs)
Handles 1bl.MouseUp

If e.Button = MouseButtons.Right Then
' This event was caused by a right-click.
' Here is a good place to show a context menu.

End If
End Sub

In the MouseMove event, however, the Button property indicates all the buttons that are
currently depressed. That means that this property could take on more than one value from the
MouseButtons enumeration. To test for a button, you need to use bitwise arithmetic.

Private Sub 1bl MouseMove(ByVal sender As Object,
ByVal e As System.Windows.Forms.MouseEventArgs)
Handles 1bl.MouseMove

If (e.Button And MouseButtons.Right) = MouseButtons.Right Then
' The right mouse button is currently being held down.

If (e.Button And MouseButtons.lLeft) = MouseButtons.Left
' You can get here only if both the left and the right mouse buttons
' are currently held down.
End If
End If

End Sub

CHAPTER 2 CONTROL BASICS

Every control also provides a MousePosition, MouseButtons, and ModifierKeys property
for information about the mouse and keyboard. The MouseButtons and ModifierKeys proper-
ties return information related to the last received message. The MousePosition property returns
information about the currentlocation of the mouse pointer, not the position where it was
when the event was triggered. Additionally, the MousePosition property uses screen coordinates,
not control coordinates, although you can translate between the two with the Form.
PointToClient() and Form.ClientToPoint() methods.

There’s one other detail to be aware of with mouse events. When a control receives a
MouseDown event, it captures the mouse. That means it will continue to receive other mouse
events (like MouseMove), even if the mouse pointer is moved off the bounds of the control.
This continues until the user releases the mouse button and the MouseUp event fires. Intuitively,
this behavior makes sense, but it’s worth noting.

A Mouse/Keyboard Example

The mouse and keyboard events have some subtleties, and it’s always best to get a solid and
intuitive understanding by watching the events in action. The online code for this chapter
provides an ideal example that creates a list of common mouse and keyboard events as they
take place. Each entry also includes some event information, giving you an accurate idea of the
order in which these events occur and the information they provide.

MouseMove events are not included in the list (because they would quickly swamp it with
entries), but a separate label control reports on the current position of the mouse (see Figure 2-10).

(™ Event Tracker E]

Test kevboard events here: |thi |

Test mouse events here: ‘

And here: Button1

Key Down: TE4

Key Press: £

Changed: Textis: b
Key Up: T84 Textis: &
Key Down: H72

Key Press: h

Changed: Textis: th
Key Up: H72 Text is: th
Key Down: I73

Key Press: i

Changed: Textis: thi
Key Up: 173 Text is: thi
Mouse Enter

Mouse Hover

Mouse Leave

Key Down: Menuld

|

(=]

Figure 2-10. An event tracker

For example, here’s the code that adds an entry in response to the pic.MouseLeave event:

67

68

CHAPTER 2 CONTROL BASICS

Private Sub pic_Mouseleave(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles pic.Mouseleave
Log("Mouse Leave")
End Sub

The private Log() method adds the string of information, and scrolls the list control to the
bottom to ensure that it is visible.

Private Sub Log(ByVal data As String)
lstlog.Items.Add(data)
Dim itemsPerPage As Integer = lstlog.Height \ lstlog.ItemHeight
lstlog.TopIndex = lstlLog.Items.Count - itemsPerPage

End Sub

Mouse Cursors

One other useful mouse-related property is Cursor. It sets the type of mouse cursor that is
displayed when the mouse is moved over a control, and it applies to all child controls. If your
application is about to perform a potentially time-consuming operation, you might want to set
the Form.Cursor property to an hourglass. You can access standard system-defined cursors
using the shared properties of the Cursors class.

myForm.Cursor = Cursors.WaitCursor
" (Perform long task.)
myForm.Cursor = Cursors.Default

You can also create a custom cursor using the Cursor class, load a custom cursor graphic,
and assign it to a control.

Dim myCursor As New Cursor(_
Path.Combine(Application.StartupPath, "mycursor.cur"))
myCustomControl.Cursor = myCursor

Cursor files are similar to icons, but they are stored in a .cur file format. Currently, animated
cursors (.ani files) are not supported. However, you can support them through the unmanaged
LoadCursorFromFile() function. Here’s a class that provides this functionality:

Public Class AdvancedCursors

Private Declare Function LoadCursorFromFile Lib "User32.dll" _
Alias "LoadCursorFromFileA" (ByVal str As String) As IntPtr

Public Shared Function Create(ByVal filename As String) As Cursor
' Get a handle to the cursor.
Dim hCursor As IntPtr = LoadCursorFromFile(filename)

CHAPTER 2 CONTROL BASICS

" Check if it succeeded.
If Not IntPtr.Zero.Equals(hCursor) Then

Return New Cursor(hCursor)
Else

Throw New ApplicationException(_

"Could not create cursor from file " & filename)
End If
End Function

End Class
Now you can load an animated cursor with code like this:

Try
Me.Cursor = AdvancedCursors.Create(_
Path.Combine(Application.StartupPath, "blob.ani"))
Catch err As ApplicationException
MessageBox. Show(err.Message)
End Try

Low-Level Members

The .NET Framework hides the low-level messiness of the Windows API, but it doesn’t render
itinaccessible. This is a major advantage of .NET over other frameworks—it adds features
without removing any capabilities.

For example, if you want to use a Windows API function that requires a window handle
(anumber that the operating system uses to identify every control uniquely), you can just read
the Control.Handle property. The only special consideration is that you should retrieve the
handle immediately before you use it. Changing some properties can cause a control to be
re-created automatically, in which case it will receive a new handle. Already you've seen examples
that use unmanaged calls to gain access to otherwise unsupported features like animated
cursors and the live keyboard state.

You've probably also realized by now that low-level Windows messages are abstracted
away in .NET controls, and replaced with more-useful events that bundle additional infor-
mation. If, however, you need to react to a message that doesn’t have a corresponding event,
you can handle it directly by overriding the PreProcessMessage() or WndProc() method. (You
can also attach global message filters for your entire application by using the Application.
AddMessageFilter() method.) Table 2-6 gives an overview of all these members.

69

70

CHAPTER 2 CONTROL BASICS

Table 2-6. Low-Level Members

Member Description

Handle Provides an IntPtr structure (a 32-bit integer on 32-bit operating
systems) that represents the current control’s window handle.

RecreatingHandle Set to True while the control is being re-created with a new handle.
There’s no visible indication that allows the user to see this change
is taking place, and it happens almost instantaneously.

GetStyle() and SetStyle() Gets or sets a control style bit. Generally you will use higher-level
properties to accomplish the same thing.

PreProcessMessage() and These methods allow you to receive a Windows message before it’s

WndProc() handled by the Windows Forms infrastructure and turned into the
corresponding event. In these methods, the message is represented
as a Message structure, which you need to identify by ID number.
Usually, you'll override one of these methods to receive a message
that would otherwise be ignored or block a message you don’t want
the control to receive.

ProcessKeyPreview() and These methods allow you to receive Windows messages related to

ProcessKeyMessage() keyboard handling for a control. Typically you'll handle these messages
if the control you're using doesn’t provide KeyPress and KeyDown
events and you want to intercept key presses. (One instance in which
this is sometimes required is with the DataGrid control.)

This book focuses on pure .NET programming, and doesn’t encourage the use of unman-
aged calls unless necessary. Occasionally, a control will omit certain functionality, forcing you
to intercept messages at a lower level to create the workaround you need. One example is the
DataGrid control, which doesn’t give developers the ability to control certain operations (like
deleting records or handling errors). Another example is the TextBox, which doesn’t allow the
type of fine-grained keystroke handling you need to apply input masks. Happily, .NET remedies
these shortcomings with a completely new DataGridView control (as described in Chapter 15)
and a MaskedTextBox (as described in Chapter 18). However, there are still many cases in which
you'll need to use a lower level. Some examples include video playback with the unmanaged
Quartzlibrary (see Chapter 16) and the GetWindowPlacementAPI() for saving and restoring form
positions (shown in Chapter 3).

The Last Word

This chapter provided a sweeping tour through the basics of .NET controls, including how they
interact, receive messages, process keystrokes and mouse movements, and handle focus. It
also detailed the basic ingredients from the System.Drawing namespace for creating and
managing colors, fonts, images, and more. The next chapter continues with another core topic
for Windows user-interface programming—forms.

CHAPTER 3

Forms

Windows are the basic ingredients in any desktop application—so basic that the operating
system itselfis named after them. However, there’s a fair amount of subtlety in exactly how you
use a window, not to mention how you resize its content. This subtlety is what makes windows
(or forms, to use .NET terminology) one of the most intriguing user-interface topics.

This chapter explores the Form class, and considers how forms interact and take owner-
ship of one another. Along the way, you'll look at different types of containers, like the Panel,
TabPage, and SplitContainer. You'll also explore the far-from-trivial problem of resizable
windows, and learn how to design split-window interfaces.

The Form Class

The Form class is a special type of control that represents a complete window. It almost always
contains other controls. The Form class does not derive directly from Control; instead, it acquires
additional functionality through two extra layers, as shown in Figure 3-1.

System.Object

System.MarshalByRefObject

System.ComponentModel.Component

System.Windows . Forms
Control

ScrollableControl

ContainerControl

Form

Figure 3-1. The Form class lineage

n

72

CHAPTER 3 FORMS

The Form class provides a number of basic properties that determine appearance and
window style. Many of these properties (listed in Table 3-1) will be familiar if you are a seasoned
Windows programmer, because they map to styles defined by the Windows API.

Table 3-1. Basic Style Properties

Member

Description

FormBorderStyle

ControlBox

MaximizeBox

MinimizeBox

HelpButton

Icon

ShowInTaskBar

SizeGripStyle

WindowState

TopMost

Opacity

Specifies a value from the FormBorderStyle enumeration that identifies
the type of window border. The form border you choose determines the
border’s appearance and whether it can be resized by the user.

Boolean property that determines whether the window has the system
menu icon at the top-left corner. When clicked, this shows the system
menu for moving, resizing, or closing the form.

Boolean property that determines whether the window has the maximize
box at the top-right corner.

Boolean property that determines if the window has the minimize box at
the top-right corner.

Boolean property that determines whether the window has the Help
question-mark icon at the top-right corner. This button, previously used
to trigger context-sensitive help, has fallen into disuse in most modern
applications (and isn’t supported in Windows XP).

References a System.Drawing.Icon object that is used to draw the window
icon in the top-left corner. The visibility of this icon is determined by the
ControlBox property.

Boolean property that determines whether a button appears for the window
in the taskbar. Generally, main forms should appear in the taskbar, but
secondary windows (like configuration forms, About boxes, and modal
dialog boxes or windows) don’t need to.

Determines whether the sizing grip is shown on the bottom-right corner
of the window. This is applicable only if FormBorderStyle is Sizable or
SizableToolWindow.

Identifies (and allows you to configure) the current state of a resizable
window. Possible values are Normal, Maximized, and Minimized.

When set to True, this window is always displayed on top of every other
window in your application, regardless of form ownership (unless these
other windows also have TopMost set to True). This is a useful setting for
palettes that need to “float” above other windows.

A fractional value between 0 and 1 that makes a form partially transparent if
set to less than 1. For example, if you set this to 0.1 (a 10 percent visibility),
the form and all its controls are almost completely invisible, and the
background window clearly shows through. This feature is supported
only on Windows 2000 or later operating systems and is not intended for
main windows, but for tool or notification windows.

CHAPTER 3 FORMS

Table 3-1. Basic Style Properties

Member

Description

TransparencyKey

Identifies a color that becomes transparent. Any occurrence of this color
becomes invisible whether it is in the form background, another control,
or even a picture contained inside a control. These transparent settings
act like “holes” in your window. You can even click to activate another
window if you see it through a transparent region. This feature is supported
only on Windows 2000 or later. This is one of the techniques that allow
you to create shaped, “skinnable” forms (the other property is Region,
which lets you define a nonrectangular border). Both of these techniques
are described in Chapter 23.

The Form class defines references to two special buttons, as shown in Table 3-2. These
properties add automatic support for the Enter and Esc keys. If you don’t set these properties,
the Enter and Esc keys will have no effect.

Table 3-2. Special Form Buttons

Member

Description

AcceptButton

CancelButton

The button referenced by this property is automatically “clicked” when the
user presses the Enter key. (In other words, its Click event fires.) This button
is also sometimes known as the default button. On a form, the default button
should always be the least-threatening button. Typically, this is a form’s OK
or Close button, unless that button could accidentally commit irreversible
changes or discard work in progress.

The button referenced by this property is automatically “clicked” when the
user presses the Esc key. (In other words, its Click event fires.) This is usually a
Cancel button.

As you saw in Chapter 1, the preferred way to use .NET forms is to derive a custom class
from the Form class. .NET forms also serve as switchboards that contain the event-handling
code for all their child controls.

The Form class also defines some events of its own. These events (shown in Table 3-3) allow
you to react when the form acquires focus, is about to be closed, or is first loaded into memory.

Table 3-3. Form Events

Event

Description

Activate and
Deactivate

Load

These events are the form equivalent of the LostFocus and GotFocus events
for a control. Deactivate occurs when the user clicks a different form in the
application or moves to another application. Activated occurs when the user
switches to the window. You can also set the active form programmatically
by callings its Activate() method, and you can retrieve the active form by
inspecting the shared ActiveForm property.

Occurs when the form first loads. It gives you the chance to perform addi-
tional control initialization (like filling a list control).

73

74

CHAPTER 3 FORMS

Table 3-3. Form Events (Continued)

Event Description

FormClosing Occurs when the form is about to close. The CancelEventArgs object provides
a Cancel property that you can set to True to force the form to remain open.
Event handlers for this event often provide a message box prompting the
user to save the document. This message box typically provides Yes, No, and
Cancel buttons. If Cancel is selected, the operation should be canceled, and
the form should remain open.

FormClosed Occurs when the form has closed.

The Closed and Closing events can be triggered for a variety of reasons. It's important to
distinguish between some of these reasons, so you know whether to prompt the user (for example,
if the user initiated the shutdown) or just blindly save the current work (if the entire computer
is shutting down).

In .NET 1., this information wasn’t readily available, because the Closed and Closing
events don’t provide it. However, in .NET 2.0 the FormClosing and FormClosed events replace
these, and add a new EventArgs object that provides a CloseReason property. This can take one
of several values from the CloseReason enumeration:

* ApplicationExitCall
¢ FormOwnerClosing
¢ MdiFormClosing

» TaskManagerClosing
* UserClosing

* WindowsShutDown

Finally, every form you create in Visual Studio has automatically generated designer code,
which resides in a separate file named [FormName].Designer.vb. This code includes an
InitializeComponent() method that is executed immediately when the form object is created
but before it is displayed. The code in the designer region creates all the control objects and
sets all the properties that you have configured at design time. Even for a simple window,
this code is quite lengthy, and shouldn’t be modified directly (as Visual Studio may become
confused, or simply overwrite your changes). However, the hidden designer region is a great
place to learn how to dynamically create and configure a control. For example, you can create
a control at design time, set all its properties, and then simply copy the relevant code, almost
unchanged, into another part of your code to create the control dynamically at runtime.

In the next few sections, you'll examine more advanced properties of the Form class and
the classes it inherits from. You'll also learn the basic approaches for showing and interacting
with forms.

Form Size and Position

The Form class provides the same Location and Size properties that every control does, but
with a twist. The Location property determines the distance of the top-left corner of the window

CHAPTER 3 FORMS

from the top-left corner of the screen (or desktop area). Furthermore, the Location property
isignored unless the StartPosition property is set to Manual. The possible values from the
FormStartPosition enumeration are shown in Table 3-4.

Table 3-4. StartPosition Values

Value (from the Description
FormStartPosition Enumeration)

CenterParent If the form is displayed modally, the form is centered relative
to the form that displayed it. If this form doesn’t have a parent
form (for example, if it’s displayed modelessly), this setting is
the same as WindowsDefaultLocation. However, there’s a
workaround—if you want to emulate the modal behavior,
you can call Form.CenterToParent() in the event handler for
the Load event, thereby centering a form whether it's modal
or modeless.

CenterScreen The form is centered in the middle of the screen.

Manual The form is displayed in the location specified by the Location
property, relative to the top-left corner of the desktop area.

WindowsDefaultLocation The form is displayed in the Windows default location. In
other words, there’s no way to be sure exactly where it will
end up.

WindowsDefaultBound The form is displayed in the Windows default location, and

with a default size (the Size propertyis ignored). This setting is
rarely used, because you usually want exact control over a
form’s size.

The Screen Class

Sometimes you need to take a little care in choosing an appropriate location and size for your
form. For example, you could accidentally create a window that is too large to be accommodated
on alow-resolution display. If you are working with a single-form application, the best solution
is to create a resizable form. If you are using an application with several floating windows, the
answer is not as simple.

You could just restrict your window positions to locations that are supported on even the
smallest monitors, but that’s likely to frustrate higher-end users (who have purchased better
monitors for the express purpose of fitting more information on the screen at a time). In this
case, you usually want to make a runtime decision about the best window location. To do this,
you need to retrieve some basic information about the available screen real estate using the
Screen class.

Consider the following example that uses the Screen class to manually center the form
when it first loads. It retrieves information about the resolution of the screen using the Screen.
PrimaryScreen property. Although this code is equivalent to calling Form.CenterToScreen(),
the Screen class gives you the flexibility to implement different positioning logic.

75

76

CHAPTER 3 FORMS

Private Sub dynamicSizeForm Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Lload

Dim scr As Screen = Screen.PrimaryScreen
Me.Left = (scr.WorkingArea.Width - Me.Width) / 2
Me.Top = (scr.WorkingArea.Height - Me.Height) / 2

End Sub

The members of the Screen class are listed in Table 3-5.

Table 3-5. Screen Members

Member

Type

Description

AllScreens

Primary

GetBounds()

GetWorkingArea()

Bounds

WorkingArea

DeviceName

Shared

Shared

Shared

Shared

Instance

Instance

Instance

Returns an array of Screen objects, with one for each display
on the system. This method is useful for systems that use
multiple monitors to provide more than one desktop
(otherwise, it returns an array with one Screen object).

Returns the Screen object that represents the primary
display on the system.

Accepts a reference to a control and returns a Rectangle
representing the size of the screen that contains the
control (or the largest portion of the control if it is split
over more than one screen).

Accepts a reference to a control and returns a Rectangle
representing the working area of the screen that contains
the control (or the largest portion of the control, if it is
split over more than one screen).

Returns a Rectangle structure that represents the bounds
of the display area for the current screen.

Returns a Rectangle structure that represents the bounds
of the display area for the current screen, minus the space
taken for the taskbar and any other docked windows.

Returns the device name associated with a screen as
a string.

Saving and Restoring Form Location

A common requirement for a form is to remember its last location. Usually, this information is
stored in the registry. The code that follows shows a helper class that automatically stores
information about a form’s size and position using a key based on the name of a form.

Imports Microsoft.Win32

Public Class FormPositionHelper

Public Shared RegPath As String = "Software\App\"

CHAPTER 3 FORMS

Public Shared Sub SaveSize(ByVal frm As System.Windows.Forms.Form)
' Create or retrieve a reference to a key where the settings
" will be stored.
Dim key As RegistryKey
key = Registry.LocalMachine.CreateSubKey(RegPath & frm.Name)

key.SetValue("Height", frm.Height)
key.SetValue("Width", frm.Width)
key.SetValue("Left", frm.Left)
key.SetValue("Top", frm.Top)

End Sub

Public Shared Sub SetSize(frm As System.Windows.Forms.Form)
Dim key As RegistryKey
key = Registry.LocalMachine.OpenSubKey(RegPath & frm.Name)

If key IsNot Nothing Then
frm.Height = CInt(key.GetValue("Height"))
frm.Width = CInt(key.CGetValue("Width"))
frm.Left = CInt(key.GetValue("Left"))
frm.Top = CInt(key.GetValue("Top"))
End If
End Sub

End Class

Note This example uses the HKEY_LOCAL_MACHINE branch of the registry, which means that changes
are global for the current computer. You might want to use HKEY_CURRENT_USER instead to allow user-
specific window settings. This is also a requirement if your user does not have administrator rights, in which
case the application will encounter a SecurityException. In this case, just use the Registry.CurrentUser value
instead of Registry.LocalMachine in the code.

To use this class in a form, you call the SaveSize() method when the form is closing:

Private Sub Form1 FormClosing(ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs)
Handles MyBase.FormClosing

FormPositionHelper.SaveSize(Me)

End Sub

and call the SetSize() method when the form is first opened:

77

78

CHAPTER 3 FORMS

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Lload
FormPositionHelper.SetSize(Me)
End Sub

In each case, you pass a reference to the form you want the helper class to inspect.

GetWindowPlacement()

The previous example has a serious limitation. If you save the window state while the window
is maximized or minimized, you’ll end up saving the maximized or minimized size coordinates.
This is exactly what you don’t want. The next time you restore the size information, your window
will have lost its standard size, and may appear unnaturally small or large.

You could defend against this by refusing to save the window coordinates if its Window-
State is anything other than Normal. This partly solves the problem, but it still means that if you
resize a window, maximize it, and then close it, you won’t get the benefit of storing the previous
size information. Unfortunately, this is one of the more glaring omissions in the Windows
Forms toolkit.

The proper workaround is to use the Win32 functions GetWindowPlacement() and
SetWindowPlacement(), shown here:

Private Declare Function GetWindowPlacement Lib "User32.d11"(_
Byval handle As IntPtr, _
<[In](), Out()> ByVal placement As ManagedWindowPlacement) _
As Boolean

Private Declare Function SetWindowPlacement Lib "User32.d11"(_
ByVal handle As IntPtr, ByVal placement As ManagedWindowPlacement)
As Boolean

Using these methods isn’t completely straightforward, because they work with structures
that combine several pieces of window information (like coordinates and size). To use these
methods, you need to add the correct definition for these structures to your application. Although
they aren’t shown in the next example, you can see the full ManagedPt, ManagedRect, and
ManagedWindowPlacement classes with the downloadable code for this chapter.

Once you've added these structures, you can call GetWindowPlacement() to retrieve a
ManagedWindowPlacement object that represents a specific window (which is identified by its
handle). The easiest way to store this information in the registry is to use serialization, which
lets you boil down the complete object into one long byte array.

Here’s the code you need:

Public Shared Sub SaveSize(ByVal frm As System.Windows.Forms.Form)
Dim key As RegistryKey
key = Registry.LocalMachine.CreateSubKey(RegPath & frm.Name)

CHAPTER 3 FORMS

' Get the window placement.
Dim placement As New ManagedWindowPlacement()
GetWindowPlacement (frm.Handle, placement)

' Serialize it.

Dim ms As New MemoryStream()
Dim f As New BinaryFormatter()
f.Serialize(ms, placement)

' Store it as a byte array.
key.SetValue("Placement", ms.ToArray())
End Sub

It’s easy to retrieve this information and reapply it with SetWindowPlacement():

Public Shared Sub SetSize(ByVal frm As System.Windows.Forms.Form)
Dim key As RegistryKey
key = Registry.LocalMachine.OpenSubKey(RegPath & frm.Name)

If key IsNot Nothing Then
Dim ms As New MemoryStream(_
CType(key.GetValue("Placement"), Byte()))

Dim f As New BinaryFormatter()
Dim placement As ManagedWindowPlacement
placement = CType(f.Deserialize(ms), ManagedWindowPlacement)
SetWindowPlacement(frm.Handle, placement)
End If
End Sub

Now the FormPositionHelper correctly handles maximized and minimized windows.
When you reapply the ManagedWindowPlacement, you set the form’s normal size and its
current window state in one step.

Scrollable Forms

The Form class inherits some built-in scrolling support from the ScrollableControl class. Generally,
forms do not use these features directly. Instead, you will probably use scrollable controls like
rich text boxes to display scrollable document windows. However, these features are still
available, rather interesting, and effortless to use.

Figure 3-2 shows a form that has its AutoScroll property set to True. This means that as
soon as a control is added to the form that does not fit in its visible area, the required scroll bars
will be displayed. The scrolling process takes place automatically.

79

80

CHAPTER 3 FORMS

[® Scrollable Form E]
-

Buttonl

Buttonz

Button+

ButtonS

| |
[]
(Button3 |
[]
[]

Figure 3-2. A scrollable form

Tip All controls that derive from ScrollableControl also offer the useful ScrollControlintoView() method.
As long as AutoScroll is True, you can use ScrollControlintoView() with the reference of a child control you
want to show. If this control isn’t already visible, ScrollControlintoView() will automatically scroll through
the window until it is.

If Figure 3-2 looks a little strange, that’s because it is. Scrollable forms make a few appear-
ances in Windows applications (Microsoft Access is one example) but are relatively rare. They
should be discouraged as unconventional. Instead, it probably makes more sense to use another
class that derives from ScrollableControl, like Panel (see Figure 3-3).

{® Scrollable Panel E]

~

Buttonl

Buttonz

Button+

I J
[]
(Buttona |
[]
I |

ButtonS

|

Figure 3-3. A scrollable panel

By default, scroll bars aren’t shown unless a control is off the edge of the form or you explicitly
set the Boolean HScroll and VScroll properties. However, you can configure an AutoScrollMinSize,
which specifies the required space, in pixels, between each control and the window border.

If this minimum space is not provided, scroll bars are shown.

The Form class doesn’t derive directly from ScrollableControl. Instead, it derives from the
ContainerControl (which does derive from ScrollableControl). Like the ScrollableControl class,
the ContainerControl class doesn’t provide many members that you are likely to use. It includes
a ProcessTabKey() method that the .NET Framework uses transparently to manage focus, a
ParentForm property that identifies the form that contains this control, and an ActiveControl
property that identifies or sets the control that currently has focus.

CHAPTER 3 FORMS

Showing a Form

To display a form, you need to create an instance of the Form class and use the Show() or
ShowDialog() method.

The Show() method creates a modeless window, which doesn’t stop code from executing
in the rest of your application. That means you can create and show several modeless windows,
and the user can interact with them all at once. When using modeless windows, synchronization
code is sometimes required to make sure that changes in one window update the information in
another window to prevent a user from working with invalid information.

Here’s an example that uses the Show() method:

Dim frmMain As New MainForm()
frmMain. Show()

The ShowDialog() method, on the other hand, interrupts your code. Nothing happens on
the user interface thread of your application until the user closes the window (or the window
closes in response to a user action). The controls for all other windows are “frozen,” and
attempting to click a button or interact with a control has no effect (other than an error chime,
depending on Windows settings). This makes the window ideal for presenting the user with a
choice that needs to be made before an operation can continue. For example, consider Microsoft
Word, which shows its Options and Print windows modally, forcing you to make a decision
before continuing. On the other hand, the windows used to search for text or check the spelling
in a document are shown modelessly, allowing the user to edit text in the main document
window while performing the task.

Custom Dialog Windows

Often when you show a dialog window, you are offering the user a choice. The code that displays
the window waits for the result of that choice, and then acts on it.

You can easily accommodate this design pattern by creating some sort of public property
on the dialog form. When the user makes a selection in the dialog window, this special property is
set, and the form is closed. Your calling code can then check for this property and determine
what to do next based on its value. (Remember, even when a form is closed, the form object
and all its control information still exists until the variable referencing it goes out of scope.)

For example, consider the form shown in Figure 3-4, which provides two buttons: OK
and Cancel.

£

A Simple Dialog [

Perform operation?

[OK l [Caniel]

Figure 3-4. A simple dialog form

81

82 CHAPTER 3 FORMS

The form class provides a UserSelection property, which uses a custom enumeration to
identify the action that was used to close the window:

Public Class DialogForm

Public Enum SelectionTypes
(0]4
Cancel
End Enum
' This variable must be public so the caller can access it
(or wrapped in a property).
Public UserSelection As SelectionTypes

Private Sub cmdOK Click(ByVal sender As Object,
ByVal e As EventArgs) Handles cmdOK.Click
UserSelection = SelectionTypes.OK
Me.Close()
End Sub

Private Sub cmdCancel Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles cmdCancel.Click
UserSelection = SelectionTypes.Cancel
Me.Close()
End Sub

End Class

The code that creates the form shows it modally. It then checks the UserSelection property
after the window is closed to determine what action the user selected:

Dim frmDialog As New DialogForm()
frmDialog.ShowDialog()
' The code uses a custom enumeration to make the code readable and less
' error-prone.
Select Case frmDialog.UserSelection
Case DialogForm.SelectionTypes.OK
' (Do something here.)
Case DialogForm.SelectionTypes.Cancel
" (Do something else here.)
End Select

' Release the form and all its resources.
frmDialog.Dispose()

CHAPTER 3 FORMS

Note When you show a window with ShowDialog(), the window and control resources aren’t released
after the window is closed. That’s because you may still need these objects (for example, to determine what
values the user entered in a set of input controls). However, once you’ve retrieved the information you need,
you should explicitly call the Dispose() method to release all your control handlers immediately rather than
waiting for the garbage collector to do the work later on.

This is an effective, flexible design. In some cases, it gets even better: You can save code by
using .NET’s built-in support for dialog forms. This technique works best if your dialog needs only
to return a simple value like Yes, No, OK, or Cancel. It works like this: In your dialog form, you set
the DialogResult of the appropriate button control to one of the values from the DialogResult
enumeration (found, like all user-interface types, in the System.Windows.Forms namespace).
For example, you can set the Cancel button’s result to DialogResult.Cancel, and the OK button’s
result to DialogResult.OK. When the user clicks the appropriate button, the dialog form is
immediately closed, and the corresponding DialogResult is returned to the calling code. Best of
all, you don’t need to write any event-handling code to make it happen.

Your calling code would interact with a .NET dialog window like this:

Dim frmDialog As New DialogForm()
Dim result As DialogResult
result = frmDialog.ShowDialog()

Select Case result
Case DialogResult.OK
" The window was closed with the OK button.
Case DialogResult.Cancel
" The window was closed with the Cancel button.
End Select

The code is cleaner, and the result is more standardized. The only drawback is that you are
limited to the DialogResult values shown in the following list (although you could supplement
this technique with additional public form variables that would be read only if needed):

e OK

* Cancel
* Yes

* No

* Abort
* Retry

¢ Ignore

83

84

CHAPTER 3 FORMS

Form Interaction

You should minimize the need for form interactions, as they complicate code unnecessarily. If
you do need to modify a control in one form based on an action in another form, create a dedi-
cated method in the target form. That makes sure that the dependency is well identified, and
adds another layer of indirection, making it easier to accommodate changes to the form’s
interface. Figures 3-5 and 3-6 show two examples for implementing this pattern. Figure 3-5
shows a form that triggers a second form to refresh its data in response to a button click. This
form does not directly attempt to modify the second form’s user interface; instead, it relies on
a custom intermediate method called DoUpdate().

Update /\
= =
z 5
\ /
Button Event Handler CALLS Custom DoRefresh() Method
Form Class Form Class

Figure 3-5. A single-form interaction

The second example, Figure 3-6, shows a case in which more than one form needs to be
updated. The acting form relies on a higher-level application method, which calls the required
form update methods (perhaps by iterating through a collection of forms). This approach is
better, because it works at a higher level. In the approach shown in Figure 3-5, the acting form
doesn’t need to know anything specific about the controls in the receiving form. The approach
in Figure 3-6 goes one step further—the acting form doesn’t need to know anything at all about
the receiving form class.

You can go even one step further in decoupling this example. Rather than having the
Application class trigger a method in the various forms, it could simply fire an event and allow
the forms to choose how to respond to that event.

Note These rules don’t apply for MDI applications, which have built-in features that help you track child
and parent windows. Chapter 19 presents a few detailed examples of how MDI forms can interact with one another.

CHAPTER 3 FORMS

Update /\
= &
z g
\ /
Button Event Handler Custom DoRefresh() Method
-/
(J?Q/
Form Class Form Class
3
\ /

Receiving Form

/
Custom RefreshAll() Method| caLLs > Custom DoRefresh() Method | UPDATE

Application Class Foxrm Class

Figure 3-6. A one-to-many form interaction

Default Form Instances

Once you create a form, it exists until your application ends or you explicitly call the
Form.Close() method. As with all controls, even when a form variable goes out of scope, the
actual window continues to exist. However, without the form variable, your code has no way to
access the form—or does it?

Visual Basic includes a shortcut that allows you to communicate between forms. Each
form has a default instance, a form object that’s created automatically when needed. The best
way to use the default instance is through the My.Forms object, which is hard-wired into the VB
language. For example, if you have the form classes Form1, Form2, and Form3, you can access
their default instances through the My.Forms.Form1, My.Forms.Form2, and My.Forms.Form3
properties.

For example, consider this code:

My .Forms.Form1. Show()

This code accesses the default instance of Form1 and calls the Show() method. Here’s the
interesting bit: VB uses a lazy creation technique to generate default instances. That means
that the default instance is instantiated when you refer to it for the first time. As aresult, the line
of code shown previously may or may not create Form1. If the default instance of Form1 hasn’t
been created yet, it will be instantiated automatically. On the other hand, if the default instance
has already been created, no instantiation is required. And it should go without saying that
default instances are never created if your code doesn’t refer to them at all.

85

86

CHAPTER 3 FORMS

The default instance approach seems convenient, but it has the following significant
drawbacks:

¢ It makes form creation implicit rather than explicit. In other words, you won’t necessarily
be able to tell when your form is created without carefully examining your code. If you
use the Form.Load event to perform time-consuming initialization steps, default instances
can complicate your development (and your debugging).

¢ Itwon't help youif you need to keep track of more than one form instance. For example,
document-based applications often create one form for each document. But because VB
only supports a single default instance, you'll need another way to track these objects.

¢ Itmakes it easy to refer to the wrong instance of the form. If you're not careful, you could
end up using the default instance in one portion of your code and an explicitly created
instance in another part. This won’t cause an error, but it will prevent you from success-
fully interacting between your forms.

To better understand the second problem, it helps to consider an example. Imagine you
have some code in Form1 that creates an instance of Form2 and shows it modelessly:

Dim newForm As New Form2()
Form2.Show()

Later on, you need to call a custom method in the Form2 class to trigger a refresh. You use
this sensible-seeming code:

My .Form2.UpdateData()

Here’s the problem. The first code snippet creates a form object explicitly. That form object
is notthe default instance. However, the second code snippet interacts with the default instance
of the form. This statement causes VB to automatically create a second form object (which won’t
even appear on the screen, because it’s never shown). Although the second form is updated,
the first form remains out of reach.

How can you correct problems like these? If you decide to use the My object, you need to
be careful to use it exclusively. Don’t mix implicit and explicit form creation. If you decide that
the My object is too limiting (for example, if you need to create an application that shows multiple
windows for different documents), you'll need to track form objects on your own, as described
in the next section.

Note You can also access the default instance through the class name of your form. In other words,
Form1.Show() is equivalent to My.Form1.Show(). This quirk, which is a holdover from VB 6, is dangerously
misleading and should be avoided. If you choose to use default instances, make that approach clear by coding
with the My object.

CHAPTER 3 FORMS

Tracking Forms Manually

You can also store form references in a dedicated class. Often, developers track forms using
shared member variables, so that they’re easy to access in any other class. The following code
presents one such example class, which keeps shared references for two forms:

Public Class AppForms

Public Shared Main As MainForm

Public Shared Secondary As SecondaryForm
End Class

Using this class, you can refer to the forms you need anywhere in your application with
syntax like this:

AppForms.Main. Show()

Shared members are always available, so you won'’t need to create an instance of the
AppForms class to access the two forms. Also, keep in mind that the AppForms class doesn’t
actually set the form references. You'll need to do that when you create and display the form.
One easy way to automate this process is to insert a little code into the Form.Load event handler:

Private Sub MainForm Load(ByVal sender As Object, _
ByVal e As EventArgs) Handles MyBase.load
' Register the newly created form instance.
AppForms.Main = Me
End Sub

This approach works well if every form class is created only once. If you want to track multiple
instances of the same form, you probably want to use a collection object in your AppForms
class. The following example uses the generic List collection, although you can also use the
generic Dictionary collection if you want to index every form with a key. Both collection types
are found in the System.Collections.Generic namespace.

Public Class AppForms

Public Shared Main As MainForm

Public Shared Documents As New List(Of DocumentForm)()
End Class

Forms can add themselves to this collection as needed:

Private Sub DocumentForm Load(ByVal sender As Object,
ByVal e As EventArgs) Handles MyBase.load
' Register the newly created form instance.
AppForms.Documents.Add(Me)
End Sub

When trying to read one of the form variables, you should first check if the value is a null
reference (Nothing), which indicates that it hasn’t yet been created.

87

88

CHAPTER 3 FORMS

Tip In Chapter 19, you'll see this technique developed in more detail with a DocumentManager class that
tracks open documents and windows in a document-view application.

.NET 2.0 introduces another solution for tracking forms: the Application.OpenForms prop-
erty. Every time you show a form, it’s automatically added to this collection. When the form is
closed, it’s removed from the collection. Forms aren’t indexed in any way, so you'll need to
loop through the collection to find what you're interested in. One commonly used approach is
to check the form caption (the Text property) or the form name (the Name property), although
both of these approaches are fragile. A better solution is to check if a form is an instance of a
given class by using the TypeOf keyword, as shown here:

For Each frm As Form in Application.OpenForms
If TypeOf frm Is DocumentForm Then
' The DocumentForm class provides a custom DoRefresh() method.
You need to cast this form reference to access it.
CType(frm, DocumentForm).DoRefresh()
End If
Next

The OpenForms collection provides a set of generic Form objects. It’s up to you to cast the
reference to the correct custom form class if you need to access additional properties or methods
that you've added.

Note You can also get the currently active form in your application by checking the shared Form.ActiveForm
property. However, if you use this object, be aware of a few idiosyncrasies. The ActiveForm reflects the active
form in the current application. If a window in another application is active, you'll get a null reference. Oddly
enough, you'll also get a null reference if your application is in the process of showing a message box. These
quirks typically appear when you're creating a multithreaded application that has some code that runs perpetually,
outside of any specific form.

Form Ownership

.NET allows a form to “own” other forms. Owned forms are useful for floating toolbox and
command windows. One example of an owned form is the Find and Replace window in
Microsoft Word. When an owner window is minimized, the owned forms are also minimized
automatically. When an owned form overlaps its owner, it is always displayed on top. Table 3-6 lists
the Form class properties that support owned forms.

CHAPTER 3 FORMS

Table 3-6. Ownership Members of the Form Class

Member Description

Owner Identifies a form’s owner. You can set this property to change
a form’s ownership or release an owned form.

OwnedForms Provides an array of all the forms owned by the current form.
This array is read-only.

AddOwnedForm() and You can use these methods to add or release forms from an

RemoveOwnedForm() owner. It has the same result as setting the Owner property.

The following example (shown in Figure 3-7) loads two forms, and provides buttons on the
owner that acquire or release the owned form. You can try this sample (included under the
project name FormOwnership in the downloadable code for this chapter) to observe the
behavior of owned forms.

Public Class OwnerForm
Private frmOwned As New OwnedForm()

Private Sub OwnerForm Load(ByVal sender As Object, _
ByVal e As EventArgs) Handles MyBase.load
Me. Show()
frmOwned. Show()
End Sub

Private Sub cmdAddOwnership Click(ByVal sender As Object,
ByVal e As EventArgs) Handles cmdAddOwnership.Click
Me . AddOwnedForm(frmOwned)
frmOwned.lblState.Text = "I'm Owned"
End Sub

Private Sub cmdReleaseOwnership Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles cmdReleaseOwnership.Click
Me . RemoveOwnedForm(frmOwned)
frmOwned.1lblState.Text = "I'm Free!"
End Sub

End Class

Note that for this demonstration, the IblState control in the owned form has been modi-
fied to be publicly accessible (by changing the access modifier from internal to public). As
described in the “Form Interaction” section of this chapter, this violates encapsulation and
wouldn’t be a good choice for a full-scale application. A much better idea would be to wrap the
label text in a custom property.

89

90

CHAPTER 3 FORMS

™ Basic Form

T'm Owned

Set Ownership] l Remave Ownership

Figure 3-7. An owned-form tester

Prebuilt Dialogs

.NET provides some custom dialog types that you can use to show standard operating-system
windows. The most common of these is the MessageBox class, which exposes a shared Show()
method. You can use this code to display a standard Windows message box (see Figure 3-8):

MessageBox.Show("You must enter a name.", "Name Entry Error", _
MessageBoxButtons.0K, MessageBoxIcon.Exclamation)

Name Entry Error |X|

' : ‘fou muskt enter a name.,
P)

Figure 3-8. A simple message box

The message-box icon types are listed in Table 3-7. The button types you can use Show()
method with a message box are as follows:

¢ AbortRetrylgnore
e OK

* OKCancel

¢ RetryCancel

* YesNo

¢ YesNoCancel

CHAPTER 3 FORMS

Table 3-7. MessageBoxIcon Values

MessageBoxIcon Displays

Asterisk or Information Alowercase letter iin a circle

Error, Hand, or Stop A white Xin a circle with a red background

Exclamation or Warning An exclamation point in a triangle with a yellow background
None No icon

Question A question mark in a circle

In addition, .NET provides useful dialogs that allow you to show standard windows for
opening and saving files, choosing a font or color, and configuring the printer. These classes all
inherit from System.Windows.Forms.CommonDialog. For the most part, you show these dialogs
like an ordinary window, and then inspect the appropriate property to find the user selection.

For example, the code for retrieving a color selection is as follows:

Dim colorChoices As New ColorDialog()

' Sets the initial color select to the current color,

so that if the user cancels, the original color is restored.

If colorChoices.ShowDialog() = DialogResult.OK Then
shape.ForeColor = colorChoices.Color

End If

The dialogs often provide a few other properties. For example, with a ColorDialog you can
set AllowFullOpen to False to prevent users from choosing a custom color, and ShowHelp to True
to allow them to invoke Help by pressing F1. (In this case, you need to handle the HelpRequest
event.)

OpenFileDialog and SaveFileDialog acquire some additional features (some of which are
inherited from the FileDialog class). Both support a filter string, which sets the allowed file
extensions. The OpenFileDialog also provides properties thatlet you validate the user’s selection
(CheckFileExists) and allow multiple files to be selected (Multiselect). Here’s an example:

Dim myDialog As New OpenFileDialog()

myDialog.Filter = "Image Files(*.BMP;*.JPG;*.GIF)|*.BMP;*.JPG;*.CGIF" & _
"|A1l files (*.*)[*.*"

myDialog.CheckFileExists = True

myDialog.Multiselect = True

If myDialog.ShowDialog() = DialogResult.OK Then
Dim selectedFiles As String = ""
For Each file As String In myDialog.FileNames
selectedFiles &= file & " "
Next
1blDisplay.Text = "You chose: " & selectedFiles
End If

91

92

CHAPTER 3 FORMS

Table 3-8 provides an overview of the prebuilt dialog classes. Figure 3-9 gives a quick look
at each window type (except the FolderBrowserDialog).

Table 3-8. Common Prebuilt Dialog Classes

Class

Description

ColorDialog

OpenFileDialog

SaveFileDialog

FolderBrowserDialog

FontDialog

PageSetupDialog

PrintDialog

PrintPreviewDialog

Displays the system colors and controls that allow the user to define
custom colors. The selected color can be found in the Color property.

Allows the user to select a file, which is returned in the FileName
property (or the FileNames collection, if you have enabled multiple
file select). Additionally, you can use the Filter property to set the
file format choices, and use CheckFileExists to enforce validation.

Allows the user to select a file, which is returned in the FileName
property. You can also use the Filter property to set the file format
choices and set the CreatePrompt and OverwritePrompt Boolean
properties to instruct .NET to display a confirmation if the user
selects a new file or an existing file, respectively.

Allows the user to select a folder, which is returned in the SelectedPath
property. You can control where browsing begins (by setting the
RootFolder property) and whether or not a button is included for quick
folder creation (by setting the ShowNewFolderButton property). You
can also supply text instructions that will appear in the window by
setting the Description property.

Allows the user to choose a font face and size, which is provided in
the Font property (and its color through the Color property). You
can limit the size selection with properties like MinSize and MaxSize,
and you can set ShowColor and ShowEffects to configure whether
the user changes the font color and uses special styles like under-
lining and strikeout.

Allows the user to configure page layout, page format, margins, and
the printer.

Allows the user to select a printer, choose which portions of the
document to print, and invoke printing. To use this dialog, simply
place the PrintDocument object for the document you want to print
in the PrintDialog.Document property.

This is the only dialog that is not a part of standard Windows archi-
tecture. It provides a painless way to show a print preview—just
assign the PrintDocument to the Document property and display the
form. The same logic you write for handling the actual printing is
used automatically to construct the preview. Alternatively, you can
use the PrintPreviewControl to show the same preview inside one of
your custom windows.

CHAPTER 3 FORMS

Font st Basic colors
[Reguiar HMTETEAEN
| Il u
= [tale
% Mnolype Sots Boid EENFEEEEN
Monolype Sots 2 |Boldtai
i EEEE NN,
g MT Exira
MY Bol =
= EEEETET
Eff amph
™ Stikeout IT E'u_slur,n_cu\,ci LeElE 4
aBbyZz
I~ Underline: - Mg W Eed |D—
7 satfi Green0
t
ok | Ceneel | Add to Custom Calars |
Page Setup ‘EHZ‘ Print
Name [EETEEEEN Propeties
Status: Ready
Typs: HP Laseidet 5L
Where: LPT1
Comment: I~ Piinttofle
o ~Print rangs Copi
Size. B2 e Nunborofcopes: [T =]
€ Pages i i
Souce: [Automaticaly Select = G i yAE
€ Selecion
~Orientafion Margins finches)—————————
@ Potrait Lt [T Right: |1 ﬂl
© Landscape | | Iop |1 Bettom: [1
oK | cancel | Pinter. |

Open
Look i | 1§ Computer - «B2eE-

f 31 Flappy (a2
= | Applications (C:)
Desktop % Documents (D)

2, X

o | 2D Drive (E2)

‘_J LD Drive (G1)

Matthew (<@ Temp (5)

e (e Removable Disk (Z:)
1__] IChshared Documents
Books IChFaria's Documents

e [EMatthew's Documents
J

Aaticles

o

Resource

Fie game: [| Oeen |
Files of type: | | Cancel
.|

Figure 3-9. Common dialogs

Resizable Forms

Each week, Windows developers from every programming language spend countless hours
trying to solve the problem of resizable windows that smoothly and nicely rearrange their
contained controls. Some purchase separate components designed to transform static forms
into resizable wonders automatically. These components are easy to use, but generally provide
mediocre results that aren’t suitable for professional applications. Other developers ignore
the problem, and stubbornly lock interfaces into fixed-size dialog boxes, making them seem

94

CHAPTER 3 FORMS

unmistakably primitive. Many developers eventually give in and write lengthy code routines to
resize their forms by hand.

.NET adds two features—anchoring and docking—that provide built-in support for resizable
forms. These features allow you to configure a few properties, and end up with intelligent
controls that adjust themselves automatically. The catch? It’s extremely easy to end up with a
window that resizes its controls in an embarrassingly unprofessional way with far less effort
than was needed before.

Matching a good resizing approach with a sophisticated interface is possible, but it requires a
little more subtlety and a few tricks. The next few sections describe these tricks, such as adding
container controls and using the DockPadding property. Along the way, you learn how to create
scrollable windows and controls, and see a full-fledged Explorer-style application that uses
automatic resizing the right way.

The Problem of Size

The resizable-forms dilemma stems from the fact that the Windows operating system supports
avariety of monitors at several different resolutions. A window that looks decently sized on one
computer may shrink to a toylike box on another, or even stretch beyond the bounds of the
desktop, obscuring important controls.

For many simple applications, these types of problems are not serious, because programmers
usually design their applications for a set minimum standard resolution (such as 800 x 600 or,
more commonly today, 1024 x 768). It’s generally accepted that users with much larger view-
able areas expect to run several programs at once, and purchased larger screens, so that they
can put different programs side by side. They don’t expect to use up the extra viewable area
with larger fonts or extra white space in a dialog box.

A document-based application can’t afford to ignore these considerations. Users with
more available space expect to be able to use it to see more information at a time. Programs
that ignore this consideration are irredeemably frustrating.

One common solution is to write procedures that dynamically resize the window by
responding to a resize event or message. For example, you could store the distance between
a control and the form edges using code like this when the form loads:

Private buttonMargin As Integer = 0

Private Sub Form Load(ByVal sender As Object, _
ByVal e As EventArgs) Handles MyBase.load
' Store the offset of the button1 control.
' Use ClientSize rather than Size to ignore details like
scroll bars and the form border.
buttonMargin = ClientSize.Width - buttoni.Width
End Sub

CHAPTER 3 FORMS

Now you simply need to react to the Form.SizeChanged event to resize the buttonl control,
keeping it at the same distance from both the left and right edges:

Private Sub Form SizeChanged(ByVal sender As Object,
ByVal e As EventArgs) Handles MyBase.SizeChanged
buttoni.Width = ClientSize.Width - buttonMargin
End Sub

Unfortunately, if your window has more than a few controls, this code becomes long,
repetitive, and ugly. It’s also hard to alter or debug when the form changes even slightly. In
.NET, the picture improves considerably with built-in support for resizing.

Minimum and Maximum Form Size

The first useful feature the Form class introduces for managing size is the MaximumSize and
MinimumSize properties, which stop users abruptly when they try to resize a form beyond its
set limits.

If you have the Show Window Contents While Dragging environment setting enabled, the
border suddenly becomes fixed when you hit the minimum size, as though it’s glued in place.
Similarly, you can set a maximum size, although this is less conventional. In this case, even when
you try to maximize a window, it won’t go beyond the set size, which can confuse the user.

The Visual Studio IDE also stops you from resizing your form to an invalid size at design
time when you have these properties set. If you set the form size to an invalid value in code, no
error will occur. Instead, your window just automatically shrinks or expands to a valid size ifit’s
outside the bounds of the MinimumSize or MaximumSize properties.

One final caveat: both of these settings are ignored if you make your window an MDI child
inside another window. In that case, your window will be freely resizable.

Anchoring

Anchoring allows you to latch a control on to one of the form’s corners. Anchored controls always
stay a fixed distance from the point they are bound to. By default, every control is anchored to
the top-left corner. That means if you resize the form, the controls stay fixed in place.

On the other hand, you can use .NET to anchor a control to a different corner or edge. For
example, if you chose the top-right corner, the control moves as you expand the window width-
wise to stay within a fixed distance of the top-right corner. If you expand the form heightwise,
the control stays in place, because it’s anchored to the top. It doesn’t need to follow the
bottom edge.

Figure 3-10 shows a window with two controls that use anchoring. The button is anchored
to the bottom-right, and the text box is anchored to all sides.

To anchor a button in .NET, you set the Anchor property using one of the values from the
AnchorStyles enumeration. It’s almost always easiest to set anchoring at design time using the
Properties window. A special editor (technically, a UITypeEditor) lets you select the edges you
are anchoring to by clicking them in a miniature picture, as shown in Figure 3-11. You don'’t
need to run your program to test your anchoring settings; the Visual Studio IDE provides the
same behavior when you resize the form.

95

96

CHAPTER 3 FORMS

-
Chord Analyzer 5 Chord Analyzer "
When using the Chard Analyzer MIDI effect, during When using the Chard Analyzer MIDI effect, during playback it wil disglay the
playback it will display the names of chords it sees lnames of chords it sees based on Note events in the track
based on Note cvents in the track

However, you will see it display the chord names for notes that are slightly in the
However, you will see it display the chord names for Future - before you actually hear them. The reason is that MIDI effects work
notes that are slightly in the fanre - before you slightly ahead of time, to ensure that playback is solid. This is partly based on the
actually hear them. The reason is that MIDI effects amount of time you have specified in Optiens-Clobal-MIDI-Prepare Using N L Anch dt
s ke e et ettt Millisecond Buffers. I uther words, if puou decrease this value, Churd Andlyzer ncnore 0

will be *less psychic”. Howewer if you decrease it too much, playback may stop :

Ch
ity all sides

When the Chord Analyzer is processing your live MIDI playback (because the

current track has the Chord Analyzer attached to if) then you will not sce this

lbehavior. In that case, obviously it cannot analyze what you play untll you actually

iplay it. In addition, this behavior is not present when auditioning the Chord

(Anaiyzer as an offline command 3

-
sy Anchored to

bottom-right

Figure 3-10. Resizing a window that uses anchoring

Properties [E
cmdHide System,Windows,Forms,Button -
{ApplicationSettings) ~
({DataBindings)

({Mame) cmdHide

AccessibleDescription

AccessibleMame

AccessibleRole Default =

AllowDrop False

Anchor Bottom, Left, Right

AutoElipsis

AutoSize

AukoSizeMode =

BackColor

BackgroundImage

BackgroundImagelayout T

Causesvalidation True

ContextMenustrip {none)

Cursnr neFaulk A
Anchor
The anchor of the contral, Anchors define to which edges of the
conkainer a certain control is bound, When a control is anchored ta ..

Figure 3-11. Setting control anchoring at design time

Resizing Controls with Anchoring

Anchoring to one corner works best with controls that don’t need to change size but should
remain in a consistent position. This typically includes buttons (for example, OK and Cancel
should always remain at the bottom of the window) and simple controls like labels and text
boxes. If you use this type of anchoring on every control, you create a window that gradually
spreads out as it enlarges (which is almost never the effect you want).

Instead, you can anchor a control to more than one side at once. Then, as you expand the
window, the control needs to expand to keep a fixed distance from all the anchored sides.
Table 3-9 lists some of the ways that you can combine anchor settings for different effects.

CHAPTER 3 FORMS

Tip When using a resizable ListBox control, be sure to set the IntegralHeight property to False. This ensures
that the ListBox can grow evenly. Otherwise, the ListBox is automatically resized to ensure that no list item is
partially displayed. This causes it to “jump” awkwardly between valid sizes as its height grows or shrinks.

Table 3-9. Common Anchoring Choices

Anchoring Description

Top + Left The typical behavior controls have on pre-.NET platforms. Controls remain
a fixed distance from the top-left corner, but they don’t move or expand as
the form changes size.

Top + Right The control moves to stay a fixed distance from the right of the form, but it
does not move down.

Right + Left The control’s width expands as the form widens.

Bottom + Left The control moves to stay a fixed distance from the bottom of the form,
but it does not move to the side.

Bottom + Right The control moves to keep a fixed distance from the bottom-right corner.

Top + Bottom The control’s height expands as the form lengthens.

Top + Bottom + The control’s width and height expand as the form is enlarged.

Right + Left

The controls that benefit the most from anchoring to more than one side are those that
contain more information than they can display at once. For example, a DataGridView, a
RichTextBox, or even a ListBox control may present a scrolled view into a large amount of
information. It makes sense for these controls to resize to use available screen area. On the
other hand, a button usually shouldn’t be set to resize itself.

Minimum and Maximum Control Size

Forms aren’t the only classes to provide the MaximumSize and MinimumSize properties. In
fact, these properties are defined in the base Control class, and are available to all controls.
Using them, you can create a resizable control that stops expanding or shrinking when it
reaches a predefined point. The user can still continue to expand or shrink the form (subject to
its MaximumSize and MinimumSize properties), but the size of the control won’t change.
The MaximumSize and MinimumSize properties come into effect only when you have a
control anchored to opposite sides of a form. One limitation of these settings is that once the
control reaches its maximum size, it essentially behaves like a Top + Left anchored control.
In other words, there’s no easy way to create a control that expands to a maximum size as the
form is resized, and then continues to move with the bottom or right edge of the form.

97

98

CHAPTER 3 FORMS

Containers and Anchoring

Rather than try to anchor every control in a window, you should use one or more container
controls to save some work. Containers also make it easier to rearrange portions of user inter-
face simultaneously, or even transplant them from one form to another.

To use anchoring with container controls, you need to understand that anchoring is always
relative to the container. That means that if you place a button inside a group box and you anchor
it to the bottom right, it will be anchored to the bottom-right corner of the group box. It won't
move when the size of the form changes; it will move only when the size of the container changes.
For example, consider the button shown in Figure 3-12. The form is resized, but the group box
doesn’t change, and so the button also remains in place.

ﬂgﬂnchoring and Containers E]

GroupBox Container

Anchored
Button

Z|

Figure 3-12. Anchored controls follow a corner in the container.

Nothing happens in the previous example, because there’s no change in the container. To
get around this, you could anchor the group box to all sides of the window. Then, as the group
box grows, the button will move to keep a consistent distance from the bottom-right corner.
This version is shown in Figure 3-13.

ﬂgﬂnchoring and Containers E]

GroupBox Container

Button

Figure 3-13. Anchoring the control and its container

CHAPTER 3 FORMS

Container controls become particularly important when you start to add docking and split
windows to your designs.

Docking

Docking allows a control to bind itself to an edge in the form or container control. When you
resize the container, the control resizes itself to fit the entire edge. A control can be bound to
any one edge, or it can be set to fill the entire available area. The only limitation is that you can’t
dock and anchor the same control (if you think about it for a moment, you'll realize that it
wouldn’t make sense anyway).

For example, you can solve the problem you saw with the button in the container control
in the preceding examples by docking the group box to the right edge of your form. Now, when
you resize the window, the group box expands to fit the edge. Because the button inside is
anchored to the bottom-right corner of the group box, it also moves to the right side as the form
is enlarged. Similarly, you could set the group box docking to fill so that it would automatically
resize itself to occupy the entire available area. Figure 3-14 shows an example of this behavior.

™ Docking to Fill

GroupBox Container

Anchored
Button

Figure 3-14. A docked group box

To configure docking, you set the control’s Dock property to a value from the DockStyle
enumeration. Typically, you use the Property window to choose a setting at design time.

If you experiment with docking, your initial enthusiasm quickly drains away as you
discover the following:

* Docked controls insist on sitting flush against the docked edge. This results in excessive
crowding and doesn’t leave a nice border where you need it.

* Docked controls always dock to the entire edge. There’s no way to tell a docked control
to bind to the first half (or 50 percent) of an edge. It automatically takes the full available
width, which makes it difficult to design a real interface.

Every control that derives from the ScrollableControl class has an additional feature called
dock padding. Dock padding allows you to insert a buffer of empty space between a container
and its docked controls. Some containers that derive from ScrollableControl include Panel,

99

100

CHAPTER 3 FORMS

Form, UserControl, SplitContainer, and ToolStrip. The GroupBox control does not derive from
ScrollableControl and does not provide any padding.

Figure 3-15 shows another example with a group box and a contained button. Because the
Form is the container for the group box, you need to modify the form’s padding property by
finding DockPadding in the properties window, expanding it, and setting All to 10 (pixels). Now
the group box will still bind to all sides, but it will have some breathing room around it.

E® Docking to Fill (=3

GroupBox Container

Anchored
Button

Figure 3-15. A docked group box with padding

At this point you may wonder why you need docking at all. It seems like a slightly more
awkward way to accomplish what anchoring can achieve easily. However, in many cases
anchoring alone is not enough. There are two common scenarios:

* You are using an advanced window design that hides and shows various window elements.

In this scenario, docking forces other controls to resize and make room, while anchoring
leads to overlapping controls.

* You want to create a window that the user can resize, like a split window design. In this
case, you need to use docking, because it allows controls to resize to fit the available space.

You examine both of these designs later in this chapter, in the “Splitting Windows” section.

Note The sample code for this chapter (in the Source Code area of the Apress Web site, www.

apress. com) includes a program that lets you play with a number of different combinations of anchoring
and docking, so you can see how they do or don’t solve a problem.

Autosizing

In .NET 2.0, the Control class adds a new AutoSize property, which allows you to create controls
that expand or shrink as their content changes.

All .NET controls provide the AutoSize property, although some interpret it differently
from others (and some, like TextBox, ignore it completely). If you set AutoSize to True for

CHAPTER 3 FORMS

controls like the Label, LinkLabel, Button, CheckBox, and RadioButton, the control automatically
expands to fit the displayed text. This is useful in two key scenarios:

* You are displaying highly dynamic content. For example, you want to read text from a
file or database and show it in a label.

* You are displaying localizable content. For example, depending on the current language,
the captions on your button need to change.

By default, all of the controls listed earlier have AutoSize set to True, except for the Button
control. Autosizing takes place every time the control content is changed (or another size-
related property, such as the control’s font, is modified).

The exact behavior of autosizing depends on another property, called AutoSizeMode.
If this property is set to GrowAndShrink, autosizing is used only to expand the width. If you
reduce the amount of content, the control will shrink back to its original size, but it will never
become smaller than the original size you set. On the other hand, if you use an AutoSizeMode
of GrowOnly, you won’t be able to set the size of the control at all. Instead, the control will take
the exact size of its content.

Note Autosizing also respects the MaximumSize and MinimumSize properties of each control. Controls
will never be resized beyond the defined limits.

Text-based controls aren’t the only ones to automatically size themselves. For example, if
you set AutoSize to True for the PictureBox control, it resizes itself to accommodate the current
image. Even more interesting is the way that container controls support autosizing. For example, a
Panel or GroupBox will expand itself to fit the widest and highest contained control if AutoSize
is True (by default, it’s False). Container controls follow the same behavior as buttons—they
expand as needed, but never shrink to be smaller than the originally defined size.

Note Aithough all controls inherit the AutoSize and AutoSizeMode properties, not all support them. For
example, a scrollable control like the TextBox or ListBox doesn’t need to resize itself automatically, because
you can scroll to see all of its content. Similarly, some controls (namely the Label) support autosizing but don’t
give you a choice of mode. In the case of the Label, you're locked into GrowAndShrink.

Finally, even the greatest container of them all—the form—supports autosizing. If
AutoSizeMode is GrowOnly, the form expands to fit enlarged content. If AutoSizeMode is
GrowAndShrink, the form is sized just large enough to fit every control (and the extra space
dictated by the Form.Padding property and the Control.Margin property of the outlying
controls).

Figure 3-16 shows an example with an autosizing label that’s contained in an autosizing
group box, which is situated on an autosizing form.

101

102

CHAPTER 3 FORMS

A AutoSizing E]

The quick brown Fox jumps over
the lazy dog. The quick brown Fox
jumps aver the lazy dog.

Set Text

groupBoixl
labell

Figure 3-16. Autosizing controls in their initial state

By specifying new label text and clicking the button, the label, the group box, and the form
all grow, as shown in Figure 3-17. To ensure that there’s a sufficient amount of space left between
the form border and the group box, you need to set the Form.Padding property. (You can also
set the GroupBox.Padding property to keep some minimum space between the label and its
container.)

= AutoSizing

The quick brown Fox jumps over
the lazy dog. The quick brown Fox
jumps aver the lazy dog.

Set Text

groupBoixl

The quick brown Fox jumps over the lazy dog. The quick brown Fox jumps over the lazy dog.

Figure 3-17. Autosizing controls that have been expanded

As shown in Figure 3-17, autosized controls tend to grow wider rather than taller. However,
you can change this behavior using the MaximumSize property. For example, if you set a label
to have a MaximumSize.Width of 200 (rather than the default 0, which allows it to be as wide as it
wants), the label will autosize itself to a maximum of 200 pixels. If it can’t fit all the content into
that line, it will enlarge its height and add additional lines (until it reaches MaximumSize.Height,
ifyou've setalimit). The only caveat is that as a control grows wider and taller, it risks overlapping
with other nearby controls. To prevent this, you need to use a more dynamic approach to
layout. The layout controls (demonstrated in Chapter 21) address this problem.

CHAPTER 3 FORMS

Tip If you need to display a large amount of scrollable static text, don’t forget the old standby of using a
TextBox instead of a label, but set ReadOnly to True so it can’t be modified.

Autosizing raises an interesting question—how does it interact with anchoring? Essentially,
it doesn’t. When using autosizing, you should always use the default Top-Left anchor settings.
Other anchor settings may be ignored or have unpredictable results.

Behind the scenes, autosizing works through the Control.GetPreferredSize() method. Essen-
tially, every container (including the Panel and Form) has its own layout engine. The layout
engine iterates over all the contained controls and calls the GetPreferredSize() method to find
their ideal dimensions. The GetPreferredSize() method takes width and height arguments,
which allows the layout engine to constrain the size. In other words, the layout engine can ask
for the required width based on a constrained height, or vice versa. Each control is free to
implement GetPreferredSize() in whatever way is most appropriate for its content. Similarly,
every layout engine is free to either use or ignore the preferred size of a control. As you've seen,
in ordinary grid layout, autosized controls are given their preferred size unless this conflicts
with anchor settings. However, .NET also includes some container controls that use different
types of layouts, and you can design your own layout managers. You’ll learn about both topics
in Chapter 21.

Tip If you're not careful, autosizing could cause a control to grow outside the bounds of a nonautosizing
form. To avoid this, use the MaximumsSize property, or consider how you can place an autosizing control
inside a scrollable control.

Splitting Windows

One of the most recognizable user-interface styles in applications today is the split window
(arguably popularized by Windows Explorer). In fact, split-window-view applications are begin-
ning to replace the former dominant paradigm of MDI, and Microsoft has led the charge (although
many developers still favor MDI design for many large-scale applications).

In .NET 1.0, split windows were built out of two Panel controls separated by a Splitter
control. This worked perfectly well, but it could be a little awkward, because the two Panel
controls and the Splitter had to be docked in the correct order. In .NET 2.0, the Splitter control
is tucked out of sight. (It no longer appears in the toolbox, although you can add it by right-clicking
on the toolbox and selecting Choose Items.) Instead, .NET introduces a new higher-level
control: the SplitContainer. The SplitContainer wraps two panels and a splitter bar that separates
them. The splitter bar can be horizontal or vertical, depending on the Orientation property.
Table 3-10 lists the key SplitContainer members.

103

104

CHAPTER 3 FORMS

Table 3-10. Key SplitContainer Members

Member Description

Orientation You can set the orientation to one of two values: Vertical (to create
a splitter bar that runs from top to bottom) or Horizontal (to create a
splitter bar that runs from left to right).

IsSplitterFixed When set to True, this prevents the user from moving the splitter bar.
However, you can still change its position programmatically by setting
the SplitterDistance property.

SplitterIncrement The number of pixels that represents a single increment of movement
for the splitter bar. For example, if this is 5, when the user drags the
splitter bar, it moves in increments of 5 pixels. By default, this is 1.

SplitterDistance Gets or sets the location of the splitter, in pixels, from the left edge

Panell and Panel2

PanellCollapsed and
Panel2Collapsed

PanellMinSize and
Panel2MinSize

FixedPanel

SplitterMoved and
SplitterMoving events

(for a vertical split bar) or top edge (for a horizontal split bar).

Panell provides a reference to the left or top panel of the SplitContainer
(depending on the orientation). Panel2 provides a reference to the right
or bottom panel. Using these references, you can set other Panel prop-
erties. For example, you may want to set the padding for all the controls
docked in this panel, or enable automatic scrolling with the AutoScroll

property.

When set to True, the corresponding panel is temporarily hidden, along
with the splitter bar.

Sets the minimum width (for a vertical splitter) or height (for a hori-
zontal splitter) of the appropriate panel. The user will not be able to
drag the splitter to shrink the panel beyond this minimum.

Takes one of three values: None, Panell, or Panel2. If you set FixedPanel
to Panell or Panel2, this panel will remain the same size when the
SplitContainer is resized. If you use the value None, both panels will be
sized proportionately when the SplitContainer is resized. Usually, the
SplitContainer is resized because it’s docked or anchored to the form
or another panel that is being resized.

SplitterMoving occurs while the user is in the process of moving the
splitter bar. SplitterMoved fires when it’s released in its new position.

Figure 3-18 shows a SplitContainer that contains a TreeView and a ListView. By moving the
position of the splitter bar at runtime, the user can change the relative size of these two controls.
Creating this example is easy. Begin by dragging the SplitContainer onto the form. By
default, the SplitContainer.Dock property will be set to DockStyle.Fill, so that it fills the entire
form. Next, you can drag the TreeView into the left panel, and a ListView into the right panel.
For each of these controls, you also need to set the Dock property to DockStyle.Fill, so they fill
their respective panels. You can do this through the Properties window or by choosing the

Dock in Parent Container link from the control’s smart tag.

In this case, the window is somewhat claustrophobic. To improve the spacing, you can set
abuffer using the form’s Padding property. However, this won’t add any extra spacing between
the controls and the splitter bar—to add that, you need to modify the Padding property of
the two panels, which you can access as SplitContainer.Panell.Padding and SplitContainer.
Panel2.Padding. (You can set both of these through the Properties window in Visual Studio by
expanding the Panell and Panel2 properties.)

CHAPTER 3 FORMS

Figure 3-18. A basic split window

Building Split Windows with Panels

Usually you won’t dock a SplitContainer to fill an entire form. Instead, you'll use a combination of
panels. For example, you might dock a panel to a side of the form, and then use the SplitContainer
to fill the remaining space. Figure 3-19 shows an example (taken from Chapter 8) that uses a
customized TreeView/ListView explorer.

The panel on the left includes a single TreeView, but the panel on the right includes two
label controls spaced inside a panel to give a pleasing border around the label text. (If the same
window simply used a single label control with a border, the text in the label would sit flush
against the border.) The horizontal rule and the Close button at the bottom of the window aren’t
included in the resizable portion of the window. Instead, they are anchored in a separately
docked panel, which is attached to the bottom of the form.

To implement this design, a panel control is first docked to the bottom to hold the Close
button. Then, a SplitContainer control is docked to fill the remainder of the window. The other
controls can then be anchored or docked to fill their respective areas. Figure 3-20 shows the
overall design.

= Embedding Control Data

E|Lﬂ Communications

&#-[Z] Deception

-2 Travel

L_ﬂ Protection Don't leave home without your

: Mulki-Purpose Toweletke monogrammed towelette! Made From

Pocket Prokector Rocket Pack Iight.weightt,hquick-dry Fabr.ic, this ?iedce of
- equipment has more uses in a spy's day

Ultra Vialet Att‘_aFk Defender than a Swiss Army knife, The perfect all-

Guard Dog Pacifier around tool while undercaver in the lacker

Cocktail Party Pal ..“.. room;: serves as towel, shield, disguise,

ID: 370
Mame: Multi-Purpose Towelette

B EBullet Proof Facial Tissue sled, defensive weapon, whip and
1] Munitians emergency food source, Handy bail gear
for the Toaster Boat, Monogram included
ELﬂ Tools

i with purchase price,
(-2 General

Close

Figure 3-19. A split window

105

106 CHAPTER 3 FORMS

SplitContainer

Anchored TreeView Anchored Label
with Text

Anchored Label with Border

Anchored

Panel 1 Close Button

Figure 3-20. A docking strategy

Other Split Windows

Another reason to split a window is to provide two different views of the same data. Consider
the example shown in Figure 3-21, which shows an HTML page using the WebBrowser control
and an ordinary text box. In this case, the SplitContainer uses a horizontal splitter.

(% HTML Split

Microsoft‘ Framework SDK Links to the Web: Support | Search | microsoft.[iad

Related Links: MSDN Online | MSDN Online .NETpage | Visual Studio .NET |

Microsoft .NET Framework SDK QuickStarts, Tutorials

The \MET Framework SDK QuickStarts, tutorials, and samples are designed to quic
programming model, architecture, and components that comprise the .MET Frame

QuickStarts
Tutorials

[€

<htmlz

>

<head:
<kitle =Microsoft \MET Framework SDK QuickStarts, Tutorials and Samples </ftitle =
<1-- Script For links jumping into Havana docs--=
<SCRIPT language="jscript" =

war viewer;

war helpHost;

Function Link{url)

viewer = new ActiveXObject("DExplore. AppObj. 7"Y;
helpHost = viewer Help;

|

Figure 3-21. A split view of a single document

CHAPTER 3

FORMS

You could also add a vertical splitter to create a compound view. For example, consider
Figure 3-22, which provides a list of HTML files the user can select from.

(% HTML Split

e | {Microsoft

buildall. bat nﬂ_ Framework SDK
. i)

ReadMe, xsl
Related Links: MSDN Online | MSDN Online .NETpage | Visual Studio .N

Links to the Web: Support | Seiad

Microsoft .NET Framework SDK QuickStarts

The \MET Framework SDK QuickStarts, tutorials, and samples are
programming model, architecture, and components that comprise

i

QuickStarts
Tutorials
Technology Samples
Application Samples
< >

[I£4

<htmlz
<head=
<kitle =Microsoft \MET Framework SDK QuickStarts, Tutorials and Sample:

(]2

< fitle
<I-- Script For links jumping into Havana docs--=
<SCRIPT language="jscript"=

€

Figure 3-22. Multiple splits

One of the best characteristics of docked designs is that they easily accommodate hidden
or modified controls. Figure 3-23 shows an alternate design that allows the file-selection panel
to be collapsed and then restored to its original size with the click of the button. To implement
this design, two panels are placed in the left region of the SplitContainer, one named pnlFileList
and the other named pnlShow. However, only one of these panels is shown at a time. The
contents of the rest of the window automatically resize themselves to accommodate the addi-

tional view when it is displayed.
The code for this operation is trivial:

Private Sub cmdHide Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles cmdHide.Click
splitContaineri.PaneliCollapsed = True
pnlShow.Visible = True
End Sub

Private Sub cmdShow Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles cmdShow.Click
pnlShow.Visible = False
splitContaineri.PaneliCollapsed = False
End Sub

This sample, called SplitWindow, is included in the online code for this chapter.

107

108

CHAPTER 3 FORMS

(% HTML Split

il Microsoft Framewurk SDK Links to the Wehb:

Related Links: MSDN Online | MSDN Online .NET page | Wisual

< | >

buildall, bat =]
ReadMe, sl
StartSamples.htm

Microsoft .NET Framework SDK Quicks

<htmlz
<head>

and Samples </ftitle=
<1-- Script For links jumping into Havana docs--=
<SCRIPT language="jscript" =

<< Hide

-

<kitle =Microsoft \MET Framework SDK QuickStarts, Tutorials P

[€

Net

Related Links: MSDN Online | MSDMN Online .NET page | Visual Studio .NET |

< | *

Microsoft .NET Framework SDK QuickStarts, Tutorials

<htmlz
<head>
<title =Microsoft \MET Framework SDK QuickStarts, Tutorials and Samples </ftitle=
<1-- Script For links jumping into Havana docs--=
<SCRIPT language="jscript"=
war viewer;

(3

[€

Figure 3-23. A collapsible split window

The Last Word

In this chapter you've toured through the basics of Windows forms—c

basics you've learned so far.

In the next chapter, you’ll continue with the fundamentals of the Windows Forms toolkit

by considering the basic set of Windows controls.

reating them, displaying
them, and handling their interactions. You've also learned how to build resizable forms and
split windows. However, there are still more techniques to study. In Chapter 23, you'll learn
how to create shaped forms, and in Chapter 11, you'll see how to use visual inheritance to build
specialized forms based on more-general templates. Chapter 21 will teach you to create flex-
ible, highly dynamic user interfaces using layout managers. All these techniques build on the

CHAPTER 4

The Classic Controls

This chapter considers some of the most common types of controls, such as labels, text boxes,
and buttons. Many of these controls have existed since the dawn of Windows programming
and don’t need much description. To keep things interesting, this chapter also presents a few
of their less familiar relatives. For example, at the same time you look at the label, list box, and
domain controls, you will learn about the hyperlink label, checked list box, and rich date controls.

In addition, you'll see a few features that are supported by a wide variety of controls: drag
and drop, automatic completion, and tooltips. You'll also learn how to create wrappers that let
you use legacy ActiveX controls, and you’ll see how to create a system tray application with the
Notifylcon control.

The Classic Control Gallery

Over the past three chapters, you've learned about the basic fundamentals of controls and

forms. Now it’s time to look at some of the familiar controls every programmer knows and loves.

Note Many common controls also support images. For example, you can display an image alongside text
in a label control. You'll learn about this in Chapter 5.

Labels

Label controls place static text on a form. The text is contained in the Text property and aligned

according to the TextAlign property. Table 4-1 lists a few less familiar (but useful) label properties.

109

110

CHAPTER 4 THE CLASSIC CONTROLS

Table 4-1. Label Properties

Property Description

AutoEllipsis If set to True and the label text doesn't fit in the current bounds of the label,
the label will show an ellipsis (...) at the end of the displayed text. This property
has no effect if you have set AutoSize to True. Note that the ellipsis may occur
in the middle of a word.

BorderStyle Gives you a quick way to add a flat or sunken border around some text
(consider container controls such as the Panel for a more powerful and
configurable approach). Be sure to use this in conjunction with the Padding
property, so there is some breathing room between the text and the border.

UseMnemonic When set to True, ampersands in the label’s Text property are automatically
interpreted as Alt access keys. The user can press this access key, and the focus
switches to the next control in the tab order (for example, a labeled text box).

LinkLabel

This specialty label inherits from the Label class, but adds some properties that make it partic-
ularly well suited to representing links. For example, many applications provide a clickable link
to a company Web site in an About window.

The LinkLabel handles the details of displaying a portion of its text as a hyperlink. You
specify this portion in the LinkArea property using a LinkArea structure that identifies the first
character of the link and the number of characters in the link. Depending on the LinkBehavior
property, this linked text may always be underlined, it may be displayed as normal, or it may
become underlined when the mouse hovers over it.

Here’s the basic code that creates a link on the Web site address:

InkWebSite.Text = "See www.prosetech.com for more information."
' Starts at position 4 and is 17 characters long.
InkWebSite.LinkArea = New LinkArea(4, 17)
InkWebSite.LinkBehavior = LinkBehavior.HoverUnderline

Tip You can also set the LinkArea property using a designer in Visual Studio. Just click the ellipsis (...) next
to the LinkArea property, and select the area you want to make clickable, so it becomes highlighted.

You need to handle the actual LinkClicked event to make the link functional. In this event
handler, you should set the LinkVisited property to True, so that the color is updated properly,
and then perform the required action. For example, you might start Internet Explorer with the
following code:

CHAPTER 4 THE CLASSIC CONTROLS

Private Sub lnk Clicked(ByVal sender As Object, _
ByVal e As System.Windows.Forms.LinkLabellinkClickedEventArgs)
Handles 1nk.LinkClicked

' Change the color if needed.

e.LinkVisited = True

' Use the Process.Start method to open the default browser with a URL.
System.Diagnostics.Process.Start("http://www.prosetech.com")

End Sub

If you need to have more than one link, you can use the Links property, which exposes a
special collection of Link objects. Each Link object stores its own Enabled and Visited proper-
ties, as well as information about the start and length of the link (Start and Length). You can
also use the LinkData object property to associate some additional data with a link. This is useful
if the link text does not identify the URL (for example, a “click here” link).

1nkBuy.Text = "Buy it at Amazon.com or Barnes and Noble."
1nkBuy.Links.Add(10, 10, "http://www.amazon.com")
1nkBuy.Links.Add(24, 16, "http://www.bn.com")

You can also access LinkArea objects after you create them and modify the Start, Length,
or LinkData property dynamically.

InkBuy.Links(0).LinkData = "http://www.amazon.co.uk"

The LinkClicked event provides you with a reference to the Link object that was clicked.
You can then retrieve the LinkData and use it to decide what Web page should be shown.

Private Sub lnk Clicked(ByVal sender As Object, _
ByVal e As System.Windows.Forms.LinkLabellinkClickedEventArgs)
Handles 1nk.LinkClicked

e.Link.Visited = True
System.Diagnostics.Process.Start(CStr(e.Link.LinkData))
End Sub

Figure 4-1 shows both of these LinkLabel examples. Table 4-2 lists the LinkLabel properties,
and Table 4-3 provides the LinkLabel.Link properties.

9 Link Examples E]

See www,prosetech, com For more information,

Buy it at Amazon.com or Barnes and Moble,

Figure 4-1. Two LinkLabel examples

i

112 CHAPTER 4 THE CLASSIC CONTROLS

Table 4-2. LinkLabel Properties

Property Description

ActiveLinkColor, Set colors for the links in the LinkLabel (the rest of the text has
DisabledLinkColor, its color determined by the standard ForeColor property). Links
LinkColor, and can be visited, disabled, enabled (normal), or active (while they
Vis