THE EXPERT'S VOICE® IN .NET _& ﬁ l z

m‘x i"
Pro "

VB 2005 and the
NET 2.0 Platform

Exploring the NET Universe Using Hurman-Regoaile Koy rds

SECOND EDITION

Andrew Troelsen

7

Apress:

Pro VB 2005 and the
NET 2.0 Platform

Second Edition

Andrew Troelsen

Apress-

Pro VB 2005 and the .NET 2.0 Platform
Copyright © 2006 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-578-7
ISBN-10 (pbk): 1-59059-578-5
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham

Technical Reviewer: Don Reamey

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Kier Thomas, Matt Wade

Production Director and Project Manager: Grace Wong

Copy Edit Manager: Nicole LeClerc

Senior Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor and Artist: Kinetic Publishing Services, LLC

Proofreaders: April Eddy, Lori Bring, Nancy Sixsmith

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

To my wife Mandly.
Thank you babes for supporting me in yet another book.
I'love you.

Contents at a Glance

ADOUL the AUTNOTo xxxiii
About the Technical ReVIEWET.o e XXXV
ACKNOWIBAOMENES . . . oo XXXVii
IrOdUCHION . . XXXiX
PART 1 Introducing Visual Basic 2005 and
the .NET Platform
CHAPTER 1 The Philosophy of NET..................... i, 3
CHAPTER 2 Building Visual Basic 2005 Applications 31
PART 2 Visual Basic 2005 Language
Fundamentals
CHAPTER 3 VB 2005 Programming Constructs, Part! 65
CHAPTER 4 VB 2005 Programming Constructs, Part!ll........................... 103

PART 3 Core Object-Oriented Programming

Techniques
CHAPTER 5 Defining Encapsulated Class Types................................. 127
CHAPTER 6 Understanding Inheritance and Polymorphism 167
CHAPTER 7 Understanding Structured Exception Handling 201
CHAPTER 8 Understanding Object Lifetime..................................... 225

PART 4 Advanced Object-Oriented
Programming Techniques

CHAPTER 9 Working with Interfaces and Collections............................ 245
CHAPTER 10 Callback Interfaces, Delegates,and Events 281
CHAPTER 11 Advanced VB 2005 Programming Constructs........................ 309

CHAPTER 12 Understanding Generics and Nullable Data Types 337

Vi

PART 5

CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17

PART 6

CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
CHAPTER 23
CHAPTER 24

PART 7

CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28

Programming with .NET Assemblies

Introducing .NET Assemblies................... 363
Type Reflection, Late Binding, and Attribute-based Programming. 407
Processes, AppDomains, Contexts, and CLR Hosts................... aM
Building Multithreaded Applications. 463
COM and .NET Interoperability 493

Exploring the .NET Base Class
Libraries

The System.l0 Namespaceoviiiiin.. 527
Understanding Object Serialization................................. 555
The .NET Remoting Layer..................... 573
Building a Better Window with System.Windows.Forms 611
Rendering Graphical Datawith GDI+ 655
Programming with Windows Forms Controls........................ 707
Database Access With ADO.NET ..., 767

Web Applications and XML Web
Services

Building ASPNET 2.0Web Pages.................cccoiiiiiiiiiia... 837
ASP.NET 2.0 Web Controls, Themes, and Master Pages 883
ASP.NET 2.0 State Management Techniques 919
Understanding XML Web Services.................................. 955
.. 991

Contents

ADOUL the AUTNOTo xxxiii
About the Technical ReVIEWET.o e XXXV
ACKNOWIBAOMENES . . . oo XXXVii
IrOdUCHION . . XXXiX

PART 1

CHAPTER 1

Introducing Visual Basic 2005 and
the .NET Platform

The Philosophy of .NET 3

Understanding the Previous State of Affairs 3

Life As a C/Win32 API Programmercovieiiniinennn... 3

Life As a C++/MFC Programmeroiireiiniiiieannnn. 4

Life As a Visual Basic 6.0 Programmer 4

Life As a Java/J2EE Programmer. ...t 4

Life Asa COM Programmercciiiiiiiriiiiiean.n. 5

Life As a Windows DNA Programmer.covenn... 5

The NET Solution. e 6
Introducing the Building Blocks of the .NET Platform (the CLR, CTS,

and CLS) ..o 6

The Role of the Base Class Libraries................................ 7

What Visual Basic 2005 BringstotheTable 7

Additional .NET-Aware Programming Languages........................... 8

Life ina MultilanguageWorld L. 9

An Overview of NETAssemblies ...t 10

Single-File and Multifile Assemblies 1

The Role of the Common Intermediate Language 12

Benefitsof CIL 14

Compiling CIL to Platform-Specific Instructions...................... 14

The Role of NET Type Metadatacooiiiiiiin.., 14

The Role of the Assembly Manifest 15

Understanding the Common Type System.cooiiiiiin... 16

CTS ClasS TYPES ..o vi i e 16

CTSStructure TYpesS e 16

CTS Interface TYPES. . ..ot e e 17

CTS Enumeration TYPESot 17

vii

viii CONTENTS

CTS Delegate TYPES. ..o oot e 17
CTSTypeMembers ... 18
Intrinsic CTSData Types. ... 18
Understanding the Common Language Specification 19
Ensuring CLS Compliance ...t 20
Understanding the Common Language Runtime 20
The Assembly/Namespace/Type Distinction 22
Accessing a Namespace Programmatically 24
Referencing External Assemblies 25
USING ildasm.eXe 26
Viewing CILCode. ...t 26
Viewing TypeMetadata. i ... 27
Viewing Assembly Metadata., 28
Deploying the NETRuntime........... i, 28
The Platform-Independent Nature of NET 29
SUMMANY . 30
CHAPTER 2 Building Visual Basic 2005 Applications 31
Installing the .NET Framework 2.0 SDK., 31
The VB 2005 Command-Line Compiler (vbc.exe).......................... 32
Configuring the VB 2005 Command-Line Compiler................... 33
Configuring Additional .NET Command-Line Tools.................... 33
Building VB 2005 Applications Usingvbc.exe............................. 34
Referencing External Assemblies Usingvbc.exe 35
Compiling Multiple Source Files Using vbc.exe 36
Referencing Multiple External Assemblies Using vbc.exe.............. 37
Working with vbc.exe Response Files L. 37
The Default Response File (vbe.rsp). ...t 38
Building .NET Applications Using TextPad 39
Enabling VB 2005 Keyword Coloringccooviiiins, 39
Configuringthe *.vb File Filter 40
HookingIntovbc.eXe...... ... 41
Associating Run Commands with Menultems....................... 42
Building .NET Applications Using SharpDevelop........................... 43
Learning the Lay of the Land: SharpDevelop 44

The Project and Classes Scouts.ocviiiiiin.... 45

The Assembly Scout ...t 46
Windows Forms Designers. ... 47
Building .NET Applications Using Visual Basic 2005 Express 48
The Big Kahuna: Building .NET Applications Using Visual Studio 2005 49
Learning the Lay of the Land: Visual Studio 2005 50

The Solution Explorer Utility 50

The My Project Perspectiveccooeeeiiiuiieeenn... 50

PART 2

CHAPTER 3

CONTENTS

The ClassView Utilityo i 51
The Object Browser Utility ..., 51
Visual Studio 2005 Code Snippet Technology. 52
The Visual Class Designer. ..., 53
ObjectTestBencht 57
The Integrated Help System o i 57
The Role of the Visual Basic 6.0 Compatibility Assembly 58
A Partial Catalogue of Additional .NET DevelopmentTools 60
SUMIMANY . 61

Visual Basic 2005 Language

Fundamentals
VB 2005 Programming Constructs, Part! 65
The Role of the Module Type. 65
Projects with Multiple Modules 66
Modules Are Not Creatable................... ..ot 67
Renaming Your Initial Moduleo 68
Membersof Modules. 68
The Role of the MainMethod i 69
Processing Command-line Arguments Using System.Environment. 69
Processing Command-line Arguments with Main() 70
Main() As a Function (not a Subroutine). 7
Simulating Command-line Arguments Using Visual Studio 2005. 71
An Interesting Aside: Some Additional Members of the
System.Environment Class ...t 72
The System.Console Classco i 73
Basic Input and Output with the Console Class 73
Formatting Console Qutput.............. ... s, 74
NET String Formatting Flags, 75
The System Data Types and VB 2005 Shorthand Notation 76
Variable Declaration and Initialization 78
Default Values of DataTypes 79
The Data Type Class Hierarchy................ 79
“New-ing” Intrinsic Data Types 81
Experimenting with Numerical DataTypes.......................... 81
Members of System.Boolean 82
Members of System.Char................ i 82
Parsing Values from String Data. 83
Understanding the System.StringType it 83
Basic String Manipulation............... oo 84

String Concatenation (and the “Newline” Constant) 84

ix

X

CONTENTS

CHAPTER 4

Stringsand Equality. o i 86
StringsAre Immutable. 86
The System.Text.StringBuilder Type ... iiii... 88
Final Commentary of VB 2005 Data Typesccoviiiiinnns, 89
Narrowing (Explicit) and Widening (Implicit) Data Type Conversions 89
Understanding Option Strict il 91
Explicit Conversion Functions.t 93
The Role of System.Convert................ 94
Building Visual Basic 2005 Code Statements............................. 94
The Statement Continuation Character............................. 95
Defining Multiple Statements ona Single Line....................... 96
VB 2005 Flow-control Constructs ...t 96
The If/Then/Else Statement 96
Building Complex EXpressionst 97
The Select/Case Statement 98
VB 2005 lteration Constructsoooiiiiii i 99
FOr/NEXt LOOP. . ..o 99
FOr/EAaCh LOOp ... 100
Do/While and Do/Until Looping Constructs......................... 101
TheWith Constructo i 102
SUMMANY .. 102
VB 2005 Programming Constructs, Part1l................... 103
Defining Subroutines and Functionsl 103
The ByVal Parameter Modifier, 104
The ByRef Parameter Modifier.................. 105
Defining Optional Argumentst 106
Working with ParamArrays.................oiiii i 108
Method Calling Conventions., 109
Methods Containing StaticData.................................. 109
Understanding Member Overloadingcooviiiiion... 110
The Overloads Keywordco it 111
Details of Method Overloadingcoiiii ... 111
Array Manipulation inVB 2005. i 112
VB 2005 Array Initialization Syntax 113
Defining an Array of Objects.ot 113
Defining the Lower Bound of anArray. 114
The Redim/Preserve Syntaxt 116
Working with Multidimensional Arrays 116

The System.Array Base Class.coiiin... 117

PART 3

CHAPTER 5

CONTENTS

Understanding VB 2005 Enumerationsooa... 118
Controlling the Underlying Storage foran Enum 119
Declaringand UsingEnums il 119
The System.Enum Class (and a Lesson in Resolving Keyword

Name Clashes) . ..o 120

Introducing the VB 2005 Structure Typet 123

SUMIMaANY e e e 124

Core Object-Oriented Programming
Techniques

Defining Encapsulated Class Types.......................... 127
Introducing the VB 2005 ClasS Type.ooivi i 127
Allocating Objects with the New Keyword. 130
Understanding Class Constructors. 131
The Role of the Default Constructor............................... 132
Defining Custom Constructors it 133
The Default Constructor Revisitedo... 134
The Role of the Me Keyword. 135
Chaining Constructor CallsUsingMe.ooovvnn.. 136
Observing Constructor Flow oL, 138
Understanding the Shared Keyword. 140
Defining Shared Methods (and Fields). 140
DefiningSharedData il 141
Defining Shared Constructors.t 144
Definingthe Pillarsof OOPt 145
The Role of Encapsulation 145
The Role of Inheritance i, 146
The Role of Polymorphism i 147
Visual Basic 2005 Access Modifiers ... 148
Access Modifiers and Nested Typesccoiiiiinnann.. 149
The Default Access Modifier................t 149
Access Modifiersand FieldData 149
The First Pillar; VB 2005’s Encapsulation Services. 150
Encapsulation Using Traditional Accessors and Mutators 151
Encapsulation Using Type Properties.ooovat. 152
Internal Representation of Properties 154
Controlling Visibility Levels of Property Get/Set Statements........... 156
Read-Only and Write-Only Properties 157

Shared Properties 157

Xi

Xii

CONTENTS

CHAPTER 6

CHAPTER 7

Understanding ConstantData. it 158
Understanding Read-Only Fields iii.s. 159
Shared Read-Only Fields. 160
Understanding Partial Typescooe i 160
Documenting VB 2005 Source Code viaXML............................ 161
Transforming XML Code CommentsviaNDoc 164
Visualizing the Fruitsof OurLabor................o, 164
SUMMANY .. 165
Understanding Inheritance and Polymorphism............. 167
The Basic Mechanics of Inheritance 167
The Inherits Keyword. o i 168
Regarding Multiple Base Classes.....................cocovvinns. 169
The Notinheritable Keyword, 169
Revising Visual Studio 2005 Class Diagramsccovvnn.. 171
The Second Pillar: The Details of Inheritance 172
Controlling Base Class Creation withMyBase 174
Keeping Family Secrets: The Protected Keyword 176
AddingaSealed Class.ccoviiiiiii 176
Programming for Containment/Delegation 178
Nested Type Definitions. i 179
The Third Pillar: VB 2005’s Polymorphic Support 180
The Overridable and Overrides Keywords. 181
Overriding with Visual Studio 2005 182
The NotOverridable Keyword ...t 183
Understanding Abstract Classes and the Mustinherit Keyword 184
Building a Polymorphic Interface with MustOverride................. 185
Understanding Member Shadowing. 189
Understanding Base Class/Derived Class CastingRules................... 191
Determining the “Type of” Employee. 192
The Master Parent Class: System.Object., 193
Overriding System.Object.ToString()ccoviviin .. 196
Overriding System.Object.Equals().ccviini... 196
Overriding System.Object.GetHashCode(). 197
Testing Our Modified Person Classcoouet. 197
The Shared Members of System.Object 198
SUMMANY . 199
Understanding Structured Exception Handling 201
Ode to Errors, Bugs, and Exceptionsccoovviiiiii... 201
The Role of .NET Exception Handling. 202
The Atoms of .NET Exception Handling 202

The System.ExceptionBase Class................................ 203

CHAPTER 8

CONTENTS

The Simplest Possible Example ... 204
Throwing a Generic Exception il 206
Catching Exceptionsco i 207

Configuring the State of an Exception..................... 208
The TargetSite Property. 208
The StackTrace Property. ... 209
The HelpLink Property. i 209
TheDataPropertyo i 210

System-Level Exceptions (System.SystemException) 212

Application-Level Exceptions (System.ApplicationException)............... 212
Building Custom Exceptions, Take One 212
Building Custom Exceptions, Take Two 214
Building Custom Exceptions, Take Three........................... 214

Processing Multiple Exceptions i 215
Generic Catch Statements 217
Rethrowing Exceptions i 217
Inner EXceptions. 218

The Finally BIoCK 219

Who IsThrowingWhat?. 219

The Result of Unhandled Exception............, 220

Debugging Unhandled Exceptions Using Visual Studio 2005 221

Blending VB 6.0 Error Processing and Structured Exception Handling 222

SUMIMaAIY e 223

Understanding Object Lifetime............................... 225

Classes, Objects, and References ..., 225

The Basics of Object Lifetime............ i, 226
The CILOfNew. ... e 227
Setting Object Referencesto Nothing 228

The Role of Application Roots............. ...t 229

Understanding Object Generations. 230

The System.GC TYPEo e 231
Forcing a Garbage Collectionot inn.n.. 232

Building Finalizable Objects i i 235
Overriding System.Object.Finalize(). 236
Detailing the Finalization Process 237

Building Disposable Objects. ... 237
The VB 2005 Using Keyword, 239

Building Finalizable and Disposable Types 240
A Formalized Disposal Pattern 241

SUMMANY .. 242

Xiii

Xiv CONTENTS

PART 4

CHAPTER 9

Advanced Object-Oriented
Programming Techniques

Working with Interfaces and Collections....................

Understanding Interface Types.
Contrasting Interface Types to Abstract Base Classes................
Defining Custom Interfaces.
Implementing aninterface i
Updating the Hexagon Class. iii...
Types Supporting Multiple Interfaces
Interacting with Types Supporting Interfaces
Obtaining Interface References Using CType()
Obtaining Interface References Using TypeOf/ls.
Interfaces As Member Parameters.
Interfaces As ReturnValues L.
Arrays of Interface Types.
Resolving Name Clashes with the Implements Keyword.

Defining a Common Implementation with the Implements
Keywordo

Hiding Interface Methods from the Object Level Using the
ImplementsKeyword
Designing Interface Hierarchies..................................
Building Enumerable Types (IEnumerable and |[Enumerator).
Building Cloneable Objects (ICloneable)
A More Elaborate Cloning Example
Building Comparable Objects (IComparable).
Specifying Multiple Sort Orders (IComparer).
Custom Properties, Custom Sort Types...................cooitt.
The Interfaces of the System.Collections Namespace.
The Role of ICollection.coi i,
The Role of IDictionary ...t
The Role of IDictionaryEnumerator
TheRole of IList. ...
The Class Types of System.Collections
Working with the ArrayListType.o L.
Working withthe Queue Type. ...t
Working withthe Stack Type it
System.Collections.Specialized Namespace.o.n..
SUMMANY ..

CHAPTER 10

CHAPTER 11

CONTENTS

Callback Interfaces, Delegates, and Events................. 281
Using Interfaces As a Callback Mechanism.............................. 281
Understanding the .NET Delegate Typet 285
Defining a Delegate inVB 2005 ..., 286
Investigating the Autogenerated Class Type 287
The System.MulticastDelegate and System.Delegate Base Classes 288
The Simplest Possible Delegate Exampleciiii.... 289
Interacting with a Delegate Object.co.o.. 290
Retrofitting the Car Type with Delegates................................ 292
Enabling Multicasting 294
Removing a Target from a Delegate’s Invocation List 295
Understanding (@and Using) Events., 296
Firing an Event Using the RaiseEvent Keyword 297
EventsUndertheHood i 297
Hooking into Incoming Events Using WithEvents and Handles 299
Multicasting Using the Handles Keyword 300
Defining a Single Handler for Multiple Events. 300
Dynamically Hooking into Incoming Events with
AddHandler/RemoveHandler........................ ..ol 301
Defining a “Prim-and-Proper” Event, 302
Defining EventsinTerms of Delegates 304
Customizing the Event Registration Process. 304
Defininga Custom Event............ i 305
Custom Events Using Custom Delegates 307
SUMIMaAIY ot e e 308
Advanced VB 2005 Programming Constructs............. .. 309
The VB 2005 Preprocessor Directivest 309
Specifying Code Regions. 310
Conditional Code Compilation. 311
Defining Symbolic Constants ool 312
Understanding Value Types and Reference Types. 313
Value Types, References Types, and the Assignment Operator. 315
Value Types Containing Reference Typesoovnn.. 316
Passing Reference Types byValue................................ 318
Passing Reference Types by Reference............................ 319
Value and Reference Types: Final Details 320
Understanding Boxing and Unboxing Operations 321
Some Practical (Un)Boxing Examples 321
Unboxing Custom Value Typesoiiii i 323
Understanding Operator Overloading.coiiii... 323

Overloading Binary Operators. ..., 324

Xv

XVi

CONTENTS

CHAPTER 12

PART 5

CHAPTER 13

Overloading Equality Operators ..., 325
Overloading Comparison Operators. ..o, 326
Final Thoughts Regarding Operator Overloading 327
Understanding Custom Type Conversions.c.ocovvnnn.. 328
Recall: Numerical Conversions.c.cooviiiiiiiann.n.. 328
Recall: Conversions Among Related Class Types 328
Creating Custom Conversion Routinescccoviiiinn... 329
Additional Explicit Conversions for the Square Type 331
Defining Implicit Conversion Routines.coouet 331
The VB 2005 DirectCast Keywordcoooiiiiiiiiiii... 333
The VB 2005 TryCast Keyword, 334
SUMIMaAIY e e 335
Understanding Generics and Nullable Data Types.......... 337
Revisiting the Boxing, Unboxing, and System.Object Relationship........... 337
The Problem with (Un)Boxing Operations 339
Type Safety and Strongly Typed Collections 339
Boxing Issues and Strongly Typed Collections 341
The System.Collections.Generic Namespaceoovvivnns. 343
Examining the ListOf) Type 344
Understanding Nullable Data Types and the System.Nullable(Of T)
GENEBIIC TYPE . . oo 346
Working with Nullable Types.o i 347
Creating Generic Methods. oo i 348
Omission of Type Parameters. ..., 350
Creating Generic Structures (or Classes).ccvviiiiiinn.n.. 351
Creating a Custom Generic Collection.................................. 352
Constraining Type Parametersoiii... 354
The Lack of Operator Constraints 356
Creating Generic Interfacescc i, 357
Creating Generic Delegates, 358
SUMIMaAIY e e 360

Programming with .NET Assemblies

Introducing .NET Assemblies................................. 363
The Role of NET Assembliesco i, 363
Assemblies Promote Code Reuseccoiiiiiiin... 363
Assemblies Establish a Type Boundary 364
Assemblies Are Versionable Units 364
Assemblies Are Self-Describing.co i 364

Assemblies Are Configurable it 365

CONTENTS

Understanding the Format of a .NET Assembly. 365
TheWin32FileHeaderc i, 365
The CLRFileHeader 366
CIL Code, Type Metadata, and the Assembly Manifest 367
Optional Assembly Resourcesc.covvviiiinnninnnn. 368
Single-File and Multifile Assemblies 368
Constructing Custom .NET Namespaces.cooviiriinennnnn.. 370
Observing the Root Namespace.................................. 370
Defining Namespaces Beyond the Root 371
Importing Custom Namespaces.ccooviiinan.... 372
Building Type Aliases Using the Imports Keyword 372
Building and Consuming a Single-File Assembly 374
Exploringthe Manifest. 376
Exploringthe CIL 378
Exploringthe Type Metadata 379
Building a VB 2005 Client Application 379
Building a C# Client Application.............................oo.e. 380
Cross-Language Inheritance in Action. 382
Building and Consuming a Multifile Assembly 383
Exploring the ufo.netmodule File 384
Exploring the airvehicles.dllFile.................................. 384
Consuming a Multifile Assembly, 385
Understanding Private Assemblies. ..., 386
The Identity of a Private Assembly. 386
Understanding the Probing Process. 386
Configuring Private Assembliesol 387
Configuration Files and Visual Studio 2005. 388
Introducing the .NET Framework 2.0 Configuration Utility 389
Understanding Shared Assemblies. ..., 391
Understanding Strong Names.cciiiiiiiinn.n.. 392
Strongly Naming CarLibrary.dll Usingsn.exe 393
Assigning Strong Names Using Visual Studio 2005.................. 395
Installing/Removing Shared Assemblies to/from the GAC............. 395
Consuming a Shared Assemblyc i 396
Exploring the Manifest of SharedCarLibClient 397
Configuring Shared Assembliest 397
Freezing the Current Shared Assembly 398
Building Shared Assembly Version 2.00.0......................... 398
Dynamically Redirecting to Specific Versions of a Shared Assembly. . .. 400
Revisiting the .NET Framework 2.0 Configuration Utility.............. 401
Understanding Publisher Policy Assemblies 401
Disabling Publisher Policy. it 402
Understanding the <codeBase>Element............................... 403

The System.Configuration Namespaceoiiin.... 404

Xvii

xviii

CONTENTS

CHAPTER 14

The Machine ConfigurationFile o i, 405
The Assembly Binding “Big Picture”l 405
SUMIMANY ..o 406

Type Reflection, Late Binding, and Attribute-based

Programming ... 407
The Necessity of Type Metadata. 407
Viewing (Partial) Metadata for the EngineState Enumeration 408
Viewing (Partial) Metadata for the CarType 409
ExaminingaTypeRef..... 410
Documenting the Defining Assembly. 410
Documenting Referenced Assemblies.ccovinn.. 410
Documenting String Literals. 411
Understanding Reflection i 411
The System.Type Class. ...t 412
Obtaining a Type Reference Using System.Object.GetType()........... 413
Obtaining a Type Reference Using System.Type.GetType()............ 413
Obtaining a Type Reference Using GetType() 414
Building a Custom MetadataViewer, 414
Reflectingon Methods. i 414
Reflecting on Fields and Properties............................... 414
Reflecting on Implemented Interfaces............................. 415
Displaying Various Odds and Ends.oos 415
ImplementingMain() 415
Reflecting on Method Parameters and ReturnValues 47
Dynamically Loading Assemblies.............. ...t 418
Reflecting on Shared Assemblies.o i, 420
Understanding Late Binding o 422
Late Binding with the System.ActivatorClass 422
Invoking Methods with No Parameters 423
Invoking Methods with Parameters............................... 423
Understanding Attributed Programming 424
Attribute CONSUMErS 425
Applying Predefined Attributes inVB2005......................... 425
Specifying Constructor Parameters for Attributes 427
The <0Obsolete> Attribute inAction............................... 427
VB 2005 Attribute Shorthand Notation. 428
Building Custom Attributes 428
Applying Custom Attributes. L 429
Restricting Attribute Usage 430
Assembly-level (and Module-level) Attributes. 431

The Visual Studio 2005 Assemblyinfo.vb File 431

CHAPTER 15

CHAPTER 16

CONTENTS

Reflecting on Attributes Using Early Binding. 432
Reflecting on Attributes Using Late Binding 433
Putting Reflection, Late Binding, and Custom Attributes in Perspective. 434
Building an Extendable Applicationol 435
Building CommonSnappableTypes.dil 435
Building the VB 2005 Snap-In 436
Buildingthe C#Snap-In o i 436
Building an Extendable Windows Forms Application................. 437
SUMIMANY . 439
Processes, AppDomains, Contexts, and CLR Hosts....... ... 44
Reviewing Traditional Win32 Processesc.cccoviiiinnn., aM
An Overview of Threads ...ttt 442
Interacting with Processes Under the .NET Platform 443
Enumerating Running Processes...................ccoiiiii..L. 445
Investigating a Specific Process. ... 446
Investigating a Process’s Thread Set.............................. 446
Investigating a Process’s Module Set 448
Starting and Stopping Processes Programmatically 449
Understanding .NET Application Domains. 450
Enumerating a Process’s AppDomains 451
Programmatically Creating New AppDomains 452
Programmatically Unloading AppDomains 454
Understanding Object Context Boundaries 455
Context-Agile and Context-Bound Types........................... 456
Defining a Context-Bound Object.coooit.. 457
Inspecting an Object's Context................ ..ot .. 457
Summarizing Processes, AppDomains, and Context 459
Runtime Hostsof the CLR.......... il 459
Side-by-Side Execution ofthe CLRt 460
Loading a Specific Versionof the CLR. 461
Additional CLRHOSES 461
SUMIMaAIY et e 462
Building Multithreaded Applications 463
The Process/AppDomain/Context/Thread Relationship 463
The Problem of Concurrency and the Role of Thread
Synchronization 464
A Brief Review of the NET Delegateciiiiiii.. 465
The Asynchronous Nature of Delegates. 467
The Begininvoke() and Endinvoke() Methods 467

The System.|AsyncResult Interface 468

Xix

XX

CONTENTS

CHAPTER 17

Invoking a Method Asynchronously 468
Synchronizing the Calling Thread. 469
The Role of the AsyncCallback Delegate........................... 470
The Role of the AsyncResult Class.oociiiin.t 472
Passing and Receiving Custom State Data......................... 472
The System.Threading Namespace.c.coviiieiiriineann.n. 473
The System.Threading.Thread Class.................ccvviiiiiin. .. 474
Obtaining Statistics About the CurrentThread 475
The Name Property 476
The Priority Property 476
Programmatically Creating Secondary Threads 477
Working with the ThreadStart Delegate. 477
Creating Threads: A Shorthand Notation........................... 480
Working with the ParameterizedThreadStart Delegate 480
Foreground Threads and Background Threads. 481
The Issue of CONCUITENCYot e 482
Synchronization Using the VB 2005 SyncLock Keyword 434
Synchronization Using the System.Threading.Monitor Type............ 486
Synchronization Using the System.Threading.Interlocked Type 486
Synchronization Using the <Synchronization> Attribute. 487
Programming with Timer Callbacks...................... 488
Understanding the CLR ThreadPool ..., 489
SUMIMaAIY e 491
COM and .NET Interoperability 493
The Scope of .NET Interoperability.cociiii ... 493
A Simple Example of NETto COMInteropccoviiin... 494
Building the VB 2005 Client, 495
Investigating a .NET Interop Assembly.oiiiil, 497
Understanding the Runtime Callable Wrapper 499
The RCW: Exposing COM Types As .NETTypes...................... 500
The RCW: Managing a Coclass’s Reference Count. 501
The RCW: Hiding Low-level COM Interfaces........................ 501
TheRole of COMIDLo e 502
Observing the Generated IDL for Your VB COM Server................ 503
IDLAGbUtESo 504
The IDL Library Statement i, 505
The Role of the [default] Interface 505
The Role of IDispatch 505
IDL Parameter Attributes. 506
Using a Type Library to Build an Interop Assembly. 506

Late Binding to the CoCalc Coclass..........................o..t. 507

PART 6

CHAPTER 18

CONTENTS

Building a More Interesting VB 6.0 COM Server.......................... 509
Supporting an Additional COM Interface 510
Exposing anInner Object il 510

Examining the Interop Assembly il 511
Building our VB 2005 Client Application 511
Interacting with the CoCarType, 512
Intercepting COM Events., 514

Understanding COM to .NET Interoperability. 515
The Attributes of System.Runtime.InteropServices 515

TheRoleofthe CCW e 516

The Role of the .NET Class Interface 517
DefiningaClassInterface............... ..., 517

Building Your NET TYpeS.o i 518
Inserting a COM Class Using Visual Studio 2005 519
DefiningaStrongName i 520

Generating the Type Library and Registering the .NET Types 521

Examining the Exported Type Information............................... 522

Building a Visual Basic 6.0 TestClient.................................. 523

SUMIMaANY et 524

Exploring the .NET Base Class
Libraries

The System.I0 Namespace 527
Exploring the System.I0 Namespace.c.coviiiiiiinnnn., 527
The Directory(Info) and File(Info) Types 528
The Abstract FileSysteminfoBase Class 529
Working with the DirectoryinfoType ... i, 529
The FileAttributes Enumeration 531
Enumerating Files with the DirectoryinfoType...................... 531
Creating Subdirectories with the DirectoryinfoType 532
Working with the Directory Type. 533
Working with the Drivelnfo Class Type.t 534
Working with the Filelnfo Class 535
The Filelnfo.Create() Method., 536
The Filelnfo.Open() Method.o i, 536
The FileInfo.OpenRead() and Filelnfo.OpenWrite() Methods 537
The FileInfo.OpenText() Method 538
The Filelnfo.CreateText() and Filelnfo.AppendText() Methods 538
Working withthe File Type 538

New .NET 2.0 File Members. 539

XXi

XXii

CONTENTS

CHAPTER 19

CHAPTER 20

The Abstract Stream Classt 540
Working with FileStreams................... L 541
Working with StreamWriters and StreamReaders 542
WritingtoaTextFile i 544
Reading fromaTextFile 544
Directly Creating StreamWriter/StreamReader Types 545
Working with StringWriters and StringReaders. 546
Working with BinaryWriters and BinaryReaders.......................... 547
Revising the VB 2005 Using Keyword, 549
Programmatically “Watching” Files and Directories. 549
Performing Asynchronous File I/0 il 551
SUMIMaAIY e e 553
Understanding Object Serialization.......................... 555
Understanding Object Serialization 555
The Role of ObjectGraphs, 556
Configuring Objects for Serialization 557
Public Fields, Private Fields, and Public Properties 558
Choosing a Serialization Formatter 558
The IFormatter and IRemotingFormatting Interfaces................. 559
Type Fidelity Among the Formatters 559
Serializing Objects Using the BinaryFormatter........................... 560
Deserializing Objects Using the BinaryFormatter.................... 561
Serializing Objects Using the SoapFormatter 561
Serializing Objects Using the XmlSerializer.............................. 562
Controlling the Generated XML Data.............................. 563
Persisting Collectionsof Objectso, 564
Customizing the Serialization Process.ooiiiiat. 566
A Deeper Look at Object Serialization............................. 567
Customizing Serialization Using ISerializable 568
Customizing Serialization Using Attributes 570
SUMIMaAIY e e 571
The .NET Remoting Layer..................................... 573
Defining NETRemotingo it 573
The .NET Remoting Namespaces.coiiiiiiiiiiean.n. 574
Understanding the .NET Remoting Framework........................... 575
Understanding Proxies and Messages.c.ovvvvvvnn... 575
Understanding Channels. ..., 576
Revisiting the Role of NET Formatters 576
All Together Now!. 577

CHAPTER 21

CONTENTS

Terms of the .NET RemotingTrade............. ... L. 577
Object Marshaling Choices: MBRorMBV? 578
Activation Choices for MBR Types: WKO or CAO?.................... 579
Stateful Configuration of WKO Types: Singleton or Single Call?... 580
Summarizing the Traits of MBR Object Types....................... 581

Basic Deployment of a .NET Remoting Project. 581

Building Your First Distributed Application. 582
Building the General Assembly., 582
Building the Server Assembly.l 583
Building the ClientAssemblyoiiiitt. 584
Testing the Remoting Application. 585

Understanding the ChannelServicesType. ..., 585

Understanding the RemotingConfiguration Type. 586

Revisiting the Activation Mode of WKO Types.....................ooutt 588

Deploying the Server to a Remote Machine 589

Leveragingthe TCP Channel............. o i, 589

A Brief Word Regarding the IpcChannel................................. 590

Remoting Configuration Files o it 591
Building Server-side *.configFiles. 591
Building Client-side *.config Files 592

Working with MBV Objects 593
Building the General Assembly., 594
Building the Server Assembly.c i 595
Building the Client Assemblyccciiiiiiiinn.. 596

Understanding Client-activated Objects 597

The Lease-based Lifetime of CAO/WKO-Singleton Objects................. 599
The Default Leasing Behavior. 600
Altering the Default Lease Characteristics 602

Alternative Hosts for Remote Objects, 604
Hosting Remote Objects Using a Windows Service 604
Hosting Remote Objects Using ISo o.. 608

Asynchronous Remoting i 609

SUMIMANY ..o 610

Building a Better Window with

System.Windows.Forms 611
Overview of the System.Windows.Forms Namespace. 611
Working with the Windows Forms Types. ...ttt 612
Building a MainWindow by Hand. 613
Honoring the Separation of Concerns 614
The Role of the Application Class.cccooii it 615
Fun with the Application Class, 615

The System.EventHandler Delegate. 617

xxiii

XXiv

CONTENTS

CHAPTER 22

The AnatomyofaForm........ 617
The Functionality of the Control Class.................................. 619
Funwiththe Control Classot 620
Responding to the MouseMove Event............................. 621
Determining Which Mouse Button Was Clicked 622
Responding to Keyboard Events. 623
The Functionality of the Form Class. it 623
The Life CycleofaFormTypeo i, 625
Building Windows Applications with Visual Studio 2005................... 627
Enabling the Deprecated Controls 629
Dissecting a Visual Studio 2005 Windows Forms Project 630
Implementing Events at DesignTime 631
The StartUp Object/Main() Sub Distinction 632
Autoreferenced Assembliesl 633
Working with MenuStrips and ContextMenuStrips........................ 633
Adding a TexitBox to the MenuStrip 635
CreatingaContextMenuc i, 636
CheckingMenultems 638
Working with StatusStrips. 641
Designing the Menu System. it 641
Designing the StatusStrip..............l 642
Working withthe TimerType i it 644
Togglingthe Display ... 645
Displaying the Menu Selection Prompts 646
Establishinga “Ready” Statet 646
Working with TooIStrips. 647
Working with ToolStripContainers 649
Building an MDI Application i 651
Buildingthe ParentForm. i 652
Buildingthe ChildForm. i 652
Spawning ChildWindowst 653
SUMMANY .. 654
Rendering Graphical Data withGDI+........................ 655
A Survey of the GDI+ Namespacescoveiiiiniiinnenn... 655
An Overview of the System.Drawing Namespace 656
The System.Drawing Utility Types 657
The Pointand PointF Types. ... 657
The Rectangle and RectangleF Types 658
TheRegion Class. ...t 659

Understanding the Graphics Class.o, 659

CHAPTER 23

CONTENTS

Understanding Paint Sessions ...t 661
Invalidating the Form’s ClientArea. 662
Obtaining a Graphics Object Qutside of a Paint Event Handler. 663
Regarding the Disposal of a Graphics Object....................... 664

The GDI+ Coordinate Systems........ ..o, 665
The Default Unitof Measure. ...t 666
Specifying an Alternative Unitof Measure 667
Specifying an Alternative Point of Origin........................... 668

Defininga ColorValue 669
The ColorDialog Classcoovie e 670

Manipulating Fonts 671
Working with Font Families., 672
Working with Font Faces and Font Sizes........................... 674
Enumerating Installed Fonts.ol 676
The FontDialog Class. 678

Survey of the System.Drawing.Drawing2D Namespace 679

Workingwith Pens. 679
WorkingwithPen Caps...........co oo 682

Working with Brushes 683
Working with HatchBrushes 685
Working with TextureBrushes. it 686
Working with LinearGradientBrushes 688

Rendering Imageso.ouii i 689

Dragging and Hit Testing the PictureBox Control 691
Hit Testing Rendered Images 694
Hit Testing Nonrectangular Images 696

Understanding the .NET Resource Format 699
The System.Resources Namespacecovvvvnn.. 699
Programmatically Creatinga *.resxFile 699
Building the *.resourcesFile. L. 701
Binding the *.resources File into a .NET Assembly................... 701
Working with ResourceWriters.................. il 701
Generating Resources using Visual Studio 2005 702
Programmatically Reading Resources. 704

SUMMANY . 706

Programming with Windows Forms Controls 707

The World of Windows Forms Controls 707

Adding Controlsto FormsbyHand................. 708
The Control.ControlCollection Type 709

Adding Controls to Forms Using Visual Studio 2005 710

XXV

XXvi CONTENTS

Working with the Basic Controls................. ..., 711
Funwithlabels.......... 711
Funwith TextBoXes 713
Fun with MaskedTextBoxes ...t .. 715
FunwithButtons 717
Fun with CheckBoxes, RadioButtons, and GroupBoxes............... 719
Fun with CheckedListBoxesccoiiiiiii... 722
Funwith ListBoXes. 724
Fun with ComboBOXeS. 725

ConfiguringtheTab Order. ... 726
TheTab OrderWizardc it 726

Setting the Form’s Default InputButton. 727

Working with More Exotic Controlsccoiiiiiin. .. 727
Fun with MonthCalendars., 727
Funwith TooITips. e 729
Fun with TabControls.o i 730
FunwithTrackBars o 732
FunwithPanels............. .. o 734
Fun with the UpDown Controls., 735
Fun with ErrorProviders.o i 737
FunwithTreeViews 738
Fun with WebBrowsers 743

Building Custom Windows Forms Controls 744
Creatingthelmages ... 746
Building the Design-Time Ul............. i ... 746
Implementing the Core CarControl................................ 747
Definingthe Custom Events L. 748
Defining the Custom Properties..................cooiiiii it 748
Controlling the Animation L. 749
Renderingthe PetName................ it 749

Testing the CarControl Type ... e 750

Building a Custom CarControl FormHost 751

The Role of the System.ComponentModel Namespace.................... 752
Enhancing the Design-Time Appearance of CarControl............... 753
Defining a Default Property and DefaultEvent...................... 754
Specifying a Custom Toolbox Bitmap. 755

Building Custom Dialog BOXeSt 756
The DialogResult Property. ...t 758
Understanding Form Inheritance 759

Dynamically Positioning Windows Forms Controls. 761
The Anchor Property ... 761
The Dock Property. ... 762
Tableand Flow Layout. i 763

SUMMANY .. 765

CHAPTER 24

CONTENTS

Database Access with ADO.NET.............................. 767
A High-level Definition of ADO.NETco it 767
The Two Faces of ADO.NET.ot 768
Understanding ADO.NET Data Providers 768
Microsoft-supplied Data Providers. 770
Select Third-party Data Providerscoont. 771
Additional ADO.NET Namespaces.ovvirreiriie i 771
The System.Data Types. e 772
The Role of the IDbConnection Interface........................... 773
The Role of the IDbTransaction Interface 773
The Role of the IDbCommand Interface............................ 773
The Role of the IDbDataParameter and IDataParameter Interfaces 774
The Role of the IDbDataAdapter and IDataAdapter Interfaces 774
The Role of the IDataReader and IDataRecord Interfaces............. 775
Abstracting Data Providers Using Interfaces. 776
Increasing Flexibility Using Application Configuration Files................. 777
The .NET 2.0 Provider FactoryModel 778
Registered Data Provider Factories 779
A Complete Data Provider Factory Example 780
The <connectionStrings>Element 782
Installing the Cars Database...................... ... il 783
Connecting to the Cars Database from Visual Studio 2005............ 784
Understanding the Connected Layer of ADO.NET. 786
Working with Connection Objects 787
Working with .NET 2.0 ConnectionStringBuilders 788
Working with Command Objectscoiint.. 789
Working with DataReaders i, 791
Obtaining Multiple Result Sets Using a Data Reader................. 792
Modifying Tables Using Command Objects.............................. 793
Inserting NewRecords i 795
Deleting Existing Records. ... 796
Updating Existing Records i, 796
Working with Parameterized Command Objects 797
Specifying Parameters Using the DbParameter Type................. 797
Executing a Stored Procedure Using DbCommand 799
Asynchronous Data AccessUnder NET2.0 801
Understanding the Disconnected Layer of ADO.NET 802
Understanding the Role of the DataSet 803
Members ofthe DataSet.................l 804
Working with DataColumns. i 805
Building a DataColumn oo 806
Enabling Autoincrementing Fields 807

Adding a DataColumntoaDataTable 808

Xxvii

XXviii

CONTENTS

PART 7

CHAPTER 25

Working with DataRows i i 808
Understanding the DataRow.RowState Property 809
Working with DataTables. i 810
Working with .NET 2.0 DataTableReaders. 811
Persisting DataSets (and DataTables) ASXMLout. 812
Binding DataTables to User Interfaces., 813
Programmatically DeletingRows.............. 816
Applying Filtersand Sort Orders.t 816
Updating ROWS. 818
Working with the DataView Type i, 819
Working with Data Adapters..............co i 820
Filling a DataSet Using a Data Adapter 821
Mapping Database Names to Friendly Names 822
Updating a Database Using Data Adapter Objects 822
Setting the InsertCommand Property. 823
Setting the UpdateCommand Property 824
Setting the DeleteCommand Propertycoiint. 825
Autogenerating SQL Commands Using CommandBuilder Types 825
Multitabled DataSets and DataRelation Objects.......................... 826
Navigating Between Related Tables. 829
We’re Off to See the (Data) Wizard.t 830
Strongly Typed DataSets. ... 832
The Autogenerated Data Component. 833
SUMIMaAIY e e 833

Web Applications and XML Web
Services

Building ASP.NET 2.0 Web Pages............................. 837
TheRole of HTTP 837
Understanding Web Applications and Web Servers 838
Working with IS Virtual Directories, 839
The ASP.NET 2.0 Development Server. 840
TheRole of HTML. 841
HTML Document Structure. ..., 841
HTML Form Development.............. 842
Building an HTML-Based User Interface 843
The Role of Client-side Scriptingo i, 845
A Client-side Scripting Example., 846
Validating the defaulthtmFormData 846

Submitting the Form Data (GET and POST).coiiit. 847

CHAPTER 26

CONTENTS

Buildinga ClassicASPPaget 847
Responding to POST Submissions..............................L. 849
Problems with ClasSiCASPo i 849
Major Benefits oOf ASPNET 1.X ... 850
Major Enhancements of ASPNET 2.0ovoen.. 850
The ASPNET 2.0 NameSPacesoovvvre ettt e 851
The ASPNET Web Page Code Modelccoviiiiin.... 852
Working with the Single-file Page Model 852
Working with the Code-behind Page Model 858
Details of an ASP.NET Website Directory Structure 862
Assembly References and the BinFolder 863
The Role of the App_Code Folder.ccviiiin... 864
The ASP.NET 2.0 Page CompilationCyclecoiin.... 865
Compilation Cycle for Single-file Pages. 865
Compilation Cycle for Multifile Pages 866
The Inheritance Chain of the Page Typet 867
The System.Web.UL.Page Type..............oc it 868
Interacting with the Incoming HTTP Request 869
Obtaining Brower Statistics L. 870
Accesstolncoming FormData........................., 870
The IsPostBack Property 871
Interacting with the Outgoing HTTP Responseooot.. 871
Emitting HTML Content. i, 872
Redirecting USers.t 873
The Life Cycle of an ASPNETWebPagecoivvinn... 873
The Role of the AutoEventWireup Attribute 875
The ErrorEvent 875
The Role of the web.configFile 877
Configuration File Inheritance.cooiiiiiiat. 880
The ASP.NET 2.0 Website Administration Utility 881
SUMIMaAIY e 882

ASP.NET 2.0 Web Controls, Themes, and Master Pages83

Understanding the Nature of Web Controls.............................. 883
Qualifying Server-side EventHandling 884
The AutoPostBack Property. ... 884
The System.Web.UL.Control Type 885
Enumerating Contained Controls 886
Dynamically Adding (and Removing) Controls 887
Key Members of the System.Web.Ul.WebControls.WebControl Type 888
Categories of ASPNETWeb Controls, 889

A Brief Word Regarding System.Web.UL.HtmIControls................ 890

XXix

XXX CONTENTS

CHAPTER 27

Building an ASPNET 2.0Websitettt 891
Working with MasterPagest 892
Defining the Default.aspx ContentPage 898
Designing the Inventory ContentPage............................. 900
Designing the Build-a-Car ContentPage. 904

The Role of the Validation Controls 907
The RequiredFieldValidator. 908
The RegularExpressionValidator. 909
The RangeValidator i, 909
The CompareValidator.co i 909
Creating Validation Summaries 910

Workingwith Themes i 911
Understanding *.skinFiles L. 912
Applying Sitewide Themesc i 913
Applying Themes atthe Page Level............................... 913
The SKinID Property. 914
Assigning Themes Programmatically. 915

SUMIMaAIY e e 917

ASP.NET 2.0 State Management Techniques 919

Thelssueof State ... 919

ASP.NET State Management Techniques., 921

Understanding the Role of ASPNET View State........................... 922
DemonstratingView State.l 922
Adding Custom View StateData.................................. 924
A Brief Word Regarding Control State 924

The Role of the Global.asax File....................................... 925
The Global Last Chance Exception Event Handler 926
The HttpApplicationBase Classciiine.. 927

Understanding the Application/Session Distinction 927
Maintaining Application-level State Data 928
Modifying ApplicationData................... oL, 931
Handling Web Application Shutdown.............................. 932

Working with the Application Cache 932
FunwithData Caching 933
Modifying the *.aspx File.............. . ..o i 935

Maintaining SessionData............... ..o 937
Additional Members of HttpSessionState 940

Understanding CoOKIBSt 9
Creating CoOKIESt e 9N

Reading Incoming Cookie Data 943

CHAPTER 28

CONTENTS

The Role of the <sessionState> Element 944
Storing Session Data in the ASP.NET Session State Server............ 945
Storing Session Data in a Dedicated Database 946

Understanding the ASP.NET Profile API ...t 946
The ASPNETDB Database ...t 947
Defining a User Profile Within web.config.......................... 948
Accessing Profile Data Programmatically 948
Grouping Profile Data and Persisting Custom Objects. 951

SUMIMANY . 953

Understanding XML Web Services 955

The Role of XML Web Services. ..., 955
Benefits of XML Web Services ..., 955
Defining an XML Web Service Client 956

The Building Blocks of an XML Web Service............................. 957
Previewing XML Web Service Discovery........................... 957
Previewing XML Web Service Description. 957
Previewing the Transport Protocol 958

The .NET XML Web Service Namespacescooovvvivneinnn. 958
Examining the System.Web.Services Namespace................... 958

Building an XML Web ServicebyHand 959
Testing Your XML Web Service Using WebDev.WebServer.exe 960
Testing Your Web Service Using IS 961
Viewingthe WSDL Contract iin... 961

The Autogenerated TestPage. ...t 961
Providinga Custom TestPaget 961

Building an XML Web Service Using Visual Studio 2005................... 962
Implementing the TellFortune() Web Method. 963

The Role of the WebService Base Classos. 965

Understanding the <WebService> Attribute 965
The Effect of the Namespace and Description Properties............. 966
TheName Property ... 966

Understanding the <WebServiceBinding> Attribute 967
Ignoring BP 1.1 Conformance Verification. 968
Disabling BP 1.1 Conformance Verification......................... 968

Understanding the <WebMethod> Attribute. 968
Documenting a Web Method via the Description Property 968
Avoiding WSDL Name Clashes via the MessageName Property........ 969

Building Stateful Web Services via the EnableSession Property. 970

XXXi

XXXii

CONTENTS

Exploring the Web Service Description Language (WSDL).................. 971
DefiningaWSDL Document 972
The <types>Element 973
The <message>Element........... 974
The <portType>Element i 974
The <binding>Element L. 975
The <service> Element. i 975
Revisiting the XML Web Service Wire Protocols 976
HTTP GET and HTTP POST Bindings, 976
SOAP BINAINGSot 977
The wsdl.exe Command-Line Utility 978
Transforming WSDL into a Server-Side XML Web
Service Skeleton. 979
Transforming WSDL into a Client-Side Proxy 980
Examiningthe ProxyCode i 980
The Default Constructorc i, 981
Synchronous Invocation Support. ... 982
Asynchronous Invocation Support L 982
Building the Client Applicationoo.o.. 983
Generating Proxy Code Using Visual Studio2005 983
Exposing Custom Types fromWeb Methods 984
EXPOSING AMTAYSottt 985
Exposing Structures. ... 985
Exposing ADO.NET DataSets. ..., 986
AWindows Forms Client................. L, 987
Client-Side Type Representation 988
Understanding the Discovery Service Protocol (UDDI)..................... 989
Interacting with UDDI via Visual Studio 2005 990
SUMMANY . 990
.. 991

About the Author

ANDREW TROELSEN is a Microsoft MVP (Visual C#) and a partner, trainer,
and consultant with Intertech Training (http://www.IntertechTraining
.com), a .NET and J2EE developer education center. He is the author of
numerous books, including Developer’s Workshop to COM and ATL 3.0
(Wordware Publishing, 2000), COM and .NET Interoperability (Apress, 2002),
Visual Basic .NET and the .NET Platform: An Advanced Guide (Apress, 2001),
and the award-winning Pro C# 2005 and the .NET 2.0 Platform, Third
Edition (Apress, 2006). Andrew has also authored numerous articles on
.NET for MSDN online and MacTech (where he explored the platform-
independent aspects of the .NET platform), and he is a frequent speaker
at various .NET conferences and user groups.

Andrew currently lives in Minneapolis, Minnesota, with his wife,
Amanda. He spends his free time waiting for the Wild to win the Stanley
Cup, the Vikings to win the Super Bowl (before he retires would be nice),
and the Timberwolves to grab numerous NBA championship titles.

XXXili

About the Technical Reviewer

DON REAMEY is a software development engineer at Microsoft Corporation, where he works in the
Office Business Applications division.

XXXV

Acknowledgments

I have to admit that I love writing books for Apress. Reason? Each and every individual I have worked
with is a consummate professional. Thanks to all of you for taking my raw manuscripts and dotting
the i’s and crossing the t’s (especially Grace Wong for having mercy on me, despite too many late

submissions). Special thanks to my technical reviewer Don Reamey, who did a wonderful job pour-
ing over the text looking for technical typos (any remaining errors are my responsibility alone). Last
but not least, thanks once again to my friends and coworkers at Intertech Training. Everyone but
Tom Salonek and Dave Brenner has been wonderful to work with (“Son of a...”).

XXXvii

Introduction

The initial release of the .NET platform (circa 2001) caused quite a stir within the Visual Basic
programming community. One the one hand, many die-hard VB 6.0 developers were up in arms at
the major differences between VB 6.0 and Visual Basic .NET. Individuals in this group were a bit
stunned to see that VB .NET was not in fact “VB 7.0” (i.e., the same syntax and programming constructs
as VB 6.0 with some new features thrown in for good measure), but something altogether different.

The truth of the matter is that VB .NET has little to do with VB 6.0, and might best be regarded
as a new language in the BASIC family. This cold hard fact caused some individuals to recoil to such
a degree that they coined terms such as “VB .NOT” or “Visual Fred” to express their displeasures. In
fact, there are even web sites (http://vb.mvps.org/vfred/Trust.asp) and petitions dedicated to
criticizing Microsoft’s decision to abandon VB 6.0 in favor of this new creature termed VB .NET.

Beyond the major syntactical changes introduced with VB .NET, several VB 6.0-isms have been
deprecated or entirely removed under the .NET platform, which only added to the confusion. As well,
the core object models (data access, web and desktop application development) used for application
development are entirely different from their COM-based counterparts. To be sure, Microsoft could
have done a better job letting developers know up front that VB .NET had very little to do with the
much beloved VB 6.0 programming language (to this end, the term “Visual Fred” is not too far off).

On the other end of the spectrum, there were many VB 6.0 developers who were excited by the
myriad new language features and openly embraced the necessary learning curve. Members of this
group were ready to dive into the details of object-oriented programming (OOP), multithreaded
application development, and the wealth of types found within the .NET base class libraries. These
individuals quickly realized that in many (if not a majority of) cases, existing VB 6.0 code could
remain VB 6.0 code, while new development could take place using the .NET platform and Visual
Basic .NET.

Strangely enough, there is also a third group of individuals, formed with the release of Visual
Basic .NET. Given that VB .NET is indeed a brand new OOP language, many developers who would
have never considered learning a BASIC-centric language (typically C++, Java, C# programmers)
were now much more open to the idea of exploring a language devoid of semicolons and curly
brackets.

With the release of .NET 2.0, the Visual Basic .NET programming language has been officially
renamed as Visual Basic 2005—perhaps in an attempt to highlight the fact that the BASIC language
used with the .NET platform has nothing to do with the COM-centric VB 6.0. As you would guess, VB
2005 adds even more language features to a developer’s tool chest such as operator overloading,
custom conversion routines, and generics. For all practical purposes, there really is no difference
between VB 2005, C#, or any other .NET programming language. Now more than ever, an individual’s
language of choice is based on personal preferences rather than the language’s overall feature set.

In any case, regardless of which group you identify with, I do welcome you to this book. The
overall approach I will be taking is to treat VB 2005 as a unique member of the BASIC family. As you
read over the many chapters that follow, you will be exposed to the syntax and semantics of VB 2005,
dive into each of the major .NET code libraries (Windows Forms, ASPNET, ADO.NET, XML web
services, etc.), and have a thorough grounding in object-oriented development.

XXXiX

xI

INTRODUCTION

We’re a Team, You and |

Technology authors write for a demanding group of people (I should know—I'm one of them). You
know that building software solutions using any platform is extremely detailed and is very specific
to your department, company, client base, and subject matter. Perhaps you work in the electronic
publishing industry, develop systems for the state or local government, or work at NASA or a branch
of the military. Speaking for myself, I have developed children’s educational software, various n-tier
systems, and numerous projects within the medical and legal industries. The chances are almost
100 percent that the code you write at your place of employment has little to do with the code I write
at mine (unless we happened to work together previously!).

Therefore, in this book, I have deliberately chosen to avoid creating examples that tie the
example code to a specific industry or vein of programming. Given this, I choose to explain VB 2005,
OOPB the CLR, and the .NET 2.0 base class libraries using industry-agnostic examples. Rather than
having every blessed example fill a grid with data, calculate payroll, or whatnot, I'll stick to subject
matter we can all relate to: automobiles (with some geometric structures and employees thrown in
for good measure). And that’s where you come in.

My job is to explain the VB 2005 programming language and the core aspects of the .NET platform
the best I possibly can. To this end, I will do everythingI can to equip you with the tools and strategies
you need to continue your studies at this book’s conclusion.

Your job is to take this information and apply it to your specific programming assignments.
I obviously understand that your projects most likely don’t revolve around automobiles with pet
names, but that’s what applied knowledge is all about! Rest assured, once you understand the concepts
presented within this text, you will be in a perfect position to build .NET solutions that map to your
own unique programming environment.

Who Should Read This Book?

I do not expect that you have any current experience with BASIC-centric languages or the .NET
platform (however, if this is the case, all the better). I am assuming that you are either a professional
software engineer or a student of computer science. Given this, please know that this book may not
be a tight fit for individuals who are brand-spanking new to software development, as we will be
exploring many lower-level/advanced topics and will not be spending all of our time binding data
to grids (at least not until Chapter 24) or spending twenty pages looking at every option of the Visual
Studio 2005 menu system.

An Overview of This Book

Pro VB 2005 and the .NET 2.0 Platform, Second Edition is logically divided into seven distinct sections,
each of which contains some number of chapters that are focused on a given technology set and/or
specific task. To set the stage, here is a part-by-part and chapter-by-chapter breakdown of the book
you are holding in your hands.

Part 1: Introducing Visual Basic 2005 and the .NET Platform

The purpose of Part 1 is to acclimate you to the core aspects of the .NET platform, the .NET type
system, and various development tools (many of which are open source) used during the construc-
tion of .NET applications. Along the way, you will also check out some basic details of the VB 2005
programming language.

INTRODUCTION

Chapter 1: The Philosophy of .NET

This first chapter functions as the backbone for the remainder of the text. We begin by examining
the world of traditional Windows development and uncover the shortcomings with the previous state
of affairs. The primary goal of this chapter, however, is to acquaint you with a number of .NET-centric
building blocks, such as the common language runtime (CLR), Common Type System (CTS), Common
Language Specification (CLS), and the base class libraries. Also, you will take an initial look at the
VB 2005 programming language and the .NET assembly format, and you’ll examine the platform-
independent nature of the .NET platform and the role of the Common Language Infrastructure (CLI).

Chapter 2: Building Visual Basic 2005 Applications

The goal of this chapter is to introduce you to the process of compiling and debugging VB 2005
source code files using various tools and techniques. First, you will learn how to make use of the
command-line compiler (vbc.exe) and VB 2005 response files. Over the remainder of the chapter,
you will examine numerous IDEs, including TextPad, SharpDevelop, Visual Basic 2005 Express, and
(of course) Visual Studio 2005. As well, you will be exposed to a number of open source tools (NAnt,
NDoc, etc.) that any .NET developer should have in their back pocket.

Part 2: Visual Basic 2005 Language Fundamentals

This part explores the core aspects of the VB 2005 programming language such as intrinsic data types,
decision and iteration constructs, constructing (and overloading) methods, as well as manipulating
arrays, strings, enumerations, and modules. Don’t worry; this section is not as dry as you may fear,
given that you will be exposed to numerous types of the .NET base class libraries along the way.

Chapter 3: VB 2005 Programming Constructs, Part |

This chapter begins by examining the role of the VB 2005 Module type and the related topic of an
executable’s entry point—the Main() method. You will also come to understand the intrinsic data
types of VB 2005 (and their CLR equivalents), implicit and explicit casting operations, iteration and
decision constructs, and the construction of valid code statements.

Chapter 4: VB 2005 Programming Constructs, Part Il

Here you will complete your examination of basic coding constructs. The major thrust of this
chapter is to dive into the details of building subroutines and functions using the syntax of VB 2005.
Along the way you will get to know the roles of the ByVal, ByRef, and ParamArray keywords and
understand the topic of method overloading. This chapter also examines how to build and manipulate
strings, arrays, enums, and structures and the underlying classes that lurk in the background
(System.String, System.Array, System.Enum, and System.ValueType).

Part 3: Core Object-Oriented Programming Techniques

This part explores how VB 2005 supports the core principals of object-oriented programming, namely
encapsulation, inheritance, and polymorphism. In addition, this section explores the role of structured
exception handling and a detailed look at the .NET garbage collection process.

xli

xlii

INTRODUCTION

Chapter 5: Defining Encapsulated Class Types

This chapter will dive into all the details of encapsulation services. Not only will you learn the basics
of class construction (constructors, shared members, and property syntax), but you will also investigate
several new constructs brought about with .NET 2.0. For example, you will learn about the role of the
Partial keyword and the new XML code documentation syntax.

Chapter 6: Understanding Inheritance and Polymorphism

The role of Chapter 6 is to examine the details of how VB 2005 2.0 accounts for the remaining “pillars”
of OOP: inheritance and polymorphism. Here you will learn how to build families of related classes
using inheritance, virtual methods, abstract methods (and classes!), as well various casting operations.
This chapter will also explain the role of the ultimate base class in the .NET libraries: System.Object.

Chapter 7: Understanding Structured Exception Handling

The point of this chapter is to discuss how to handle runtime anomalies in your code base through
the use of structured exception handling. Not only will you learn about the VB 2005 keywords that
allow you to handle such problems (Try, Catch, Throw, and Finally), but you will also come to
understand the distinction between application-level and system-level exceptions. In addition, this
chapter examines various tools within Visual Studio 2005 that allow you to debug the exceptions that
have escaped your view.

Chapter 8: Understanding Object Lifetime

This chapter examines how the CLR manages memory using the .NET garbage collector. Here you
will come to understand the role of application roots, object generations, and the System.GC type.
Once you understand the basics, the remainder of this chapter covers the topics of building “disposable
objects” (via the IDisposable interface) and how to interact with the finalization process (via the
System.Object.Finalize() method).

Part 4: Advanced Object-Oriented Programming Techniques

This section furthers your understanding of OOP using VB 2005. Here you will learn the role of
interface types, delegates, and events, and several advanced topics such as operator overloading
and custom type conversions. As well, this section dives into the details of a major CTS enhance-
ment brought about with .NET 2.0-generics.

Chapter 9: Working with Interfaces and Collections

The material in this chapter builds upon your understanding of object-based development by cover-
ing the topic of interface-based programming. Here you will learn how to define types that support
multiple behaviors, how to discover these behaviors at runtime, and how to selectively hide particular
behaviors from an object level. To showcase the usefulness of interface types, the remainder of this
chapter examines the System.Collections namespace.

Chapter 10: Callback Interfaces, Delegates, and Events

The purpose of Chapter 10 is to demystify the delegate type. Simply put, a .NET delegate is an object
that “points” to other methods in your application. Using this pattern, you are able to build systems
that allow multiple objects to engage in a two-way conversation. After you have examined the use of
.NET delegates, you will then be introduced to the VB 2005 Event, RaiseEvent, Handles, and Custom
keywords, which are used to simplify the manipulation of programming with delegates in the raw.

INTRODUCTION

Chapter 11: Advanced VB 2005 Programming Constructs

This chapter deepens your understanding of the VB 2005 programming language by introducing

a number of advanced programming techniques. We begin with a detailed examination of value types
and reference types. Next, you will learn how to overload operators and create custom conversion
routines (both implicit and explicit). We wrap up by contrasting the use of CType(), DirectCast(), and
TryCast() for explicit casting operations.

Chapter 12: Understanding Generics and Nullable Data Types

As of .NET 2.0, the VB 2005 programming language has been enhanced to support a new feature of the
CTS termed generics. As you will see, generic programming greatly enhances application performance
and type safety. Not only will you explore various generic types within the System.Collections.Generic
namespace, but you will also learn how to build your own generic methods and types (with and
without constraints).

Part 5: Programming with .NET Assemblies

Part 5 dives into the details of the .NET assembly format. Not only will you learn how to deploy and
configure .NET code libraries, you will understand the internal composition of a .NET binary image.
This section of the text also explains the role of .NET attributes and the construction of multithreaded
applications as well as accessing legacy COM applications using interop assemblies.

Chapter 13: Introducing .NET Assemblies

From a very high level, assembly is the term used to describe a managed *.d11 or *.exe file. However,
the true story of .NET assemblies is far richer than that. Here you will learn the distinction between
single-file and multifile assemblies, and how to build and deploy each entity. You'll examine how
private and shared assemblies may be configured using XML-based *.config files and publisher
policy assemblies. You will also investigate the internal structure of the global assembly cache (GAC)
and the role of the .NET Framework 2.0 configuration utility.

Chapter 14: Type Reflection, Late Binding, and Attribute-based Programming

Chapter 14 continues our examination of .NET assemblies by checking out the process of runtime
type discovery via the System.Reflection namespace. Using these types, you are able to build appli-
cations that can read an assembly’s metadata on the fly. You will learn how to dynamically activate
and manipulate types at runtime using late binding. The final topic of this chapter explores the role
of .NET attributes (both standard and custom). To illustrate the usefulness of each of these topics,
the chapter concludes with the construction of an extendable Windows Forms application.

Chapter 15: Processes, AppDomains, Contexts, and CLR Hosts

Now that you have a solid understanding of assemblies, this chapter dives much deeper into the
composition of a loaded .NET executable. The first goal is to illustrate the relationship between
processes, application domains, and contextual boundaries. Once these terms have been qualified,
you will then understand exactly how the CLR itself is hosted by the Windows operating system and
deepen your understanding of mscoree.dll. The information presented here is a perfect lead-in to
Chapter 16.

xliii

xliv

INTRODUCTION

Chapter 16: Building Multithreaded Applications

This chapter examines how to build multithreaded applications and illustrates a number of techniques
you can use to author thread-safe code. The chapter opens by revisiting the .NET delegate type in
order to understand a delegate’s intrinsic support for asynchronous method invocations. Next, you
will investigate the types within the System. Threading namespace. You will look at numerous types
(Thread, ThreadStart, etc.) that allow you to easily create additional threads of execution.

Chapter 17: COM and .NET Interoperability

The last chapter in the part will examine a unique type of .NET assembly termed an interop assembly.
These binary images are used to allow .NET applications to make use of classic COM types. Once
you dive into the details of how .NET applications can consume COM servers, you will then learn
the functional opposite: COM applications consuming .NET objects. Once you have completed this
chapter, you will have a solid understanding of the interoperability layer.

Part 6: Exploring the .NET Base Class Libraries

By this point in the text, you have a very solid handle of the VB 2005 language and the details of the
.NET assembly format. Part 6 leverages your newfound knowledge by exploring a number of name-
spaces within the base class libraries including file I/O, the .NET remoting layer, Windows Forms
development, and database access using ADO.NET.

Chapter 18: The System.l0 Namespace

As you can gather from its name, the System.I0 namespace allows you to interact with a machine’s
file and directory structure. Over the course of this chapter, you will learn how to programmatically
create (and destroy) a directory system as well as move data into and out of various streams (file
based, string based, memory based, etc.).

Chapter 19: Understanding Object Serialization

This chapter examines the object serialization services of the .NET platform. Simply put, serialization
allows you to persist the state of an object (or a set of related objects) into a stream for later use.
Deserialization (as you might expect) is the process of plucking an object from the stream into
memory for consumption by your application. Once you understand the basics, you will then learn
how to customize the serialization process via the ISerializable interface and a set of new attributes
introduced with .NET 2.0.

Chapter 20: The .NET Remoting Layer

Contrary to popular belief, XML web services are not the only way to build distributed applications
under the .NET platform. Here you will learn about the .NET remoting layer. As you will see, the
CLR supports the ability to easily pass objects between application and machine boundaries using
marshal-by-value (MBV) and marshal-by-reference (MBR) semantics. As well, you will learn how to
alter the runtime behavior of a distributed .NET application in a declarative manner using XML
configuration files.

INTRODUCTION

Chapter 21: Building a Better Window with System.Windows.Forms

This chapter begins your examination of the System.Windows.Forms namespace. Here you will learn
the details of building traditional desktop GUI applications that support menu systems, toolbars,
and status bars. As you would hope, various design-time aspects of Visual Studio 2005 will be exam-
ined, as well as a number of .NET 2.0 Windows Forms types (MenuStrip, ToolStrip, etc.).

Chapter 22: Rendering Graphical Data with GDI+

This chapter covers how to dynamically render graphical data in the Windows Forms environment.
In addition to discussing how to manipulate fonts, colors, geometric images, and image files, this
chapter examines hit testing and GUI-based drag-and-drop techniques. You will learn about the
new .NET resource format, which as you may suspect by this point in the text is based on XML data
representation.

Chapter 23: Programming with Windows Forms Controls

This final Windows-centric chapter will examine numerous GUI widgets that ship with the .NET
Framework 2.0. Not only will you learn how to program against various Windows Forms controls,
but you will also learn about dialog box development and Form inheritance. As well, this chapter
examines how to build custom Windows Forms controls that integrate into the IDE.

Chapter 24: Database Access with ADO.NET

ADO.NET is the data access API of the .NET platform. As you will see, you are able to interact with
the types of ADO.NET using a connected and disconnected layer. Over the course of this chapter,
you will have the chance to work with both modes of ADO.NET, and you'll learn about several new
.NET 2.0 ADO.NET topics, including the data provider factory model, connection string builders,
and asynchronous database access.

Part 7: Web Applications and XML Web Services

Part 7 is devoted to the construction of ASPNET web applications and XML web services. As you will
see in the first three chapters of this section, ASPNET 2.0 is a major upgrade from ASPNET 1.x and
includes numerous new bells and whistles.

Chapter 25: Building ASP.NET 2.0 Web Pages

This chapter begins your study of web technologies supported under the .NET platform using
ASP.NET. As you will see, server-side scripting code is now replaced with “real” object-oriented
languages (such as VB 2005, C#, and the like). This chapter will introduce you to key ASPNET topics
such as working with (or without) code-behind files, the ASPNET 2.0 directory structure, and the
role of the web. config file.

Chapter 26: ASP.NET 2.0 Web Controls, Themes, and Master Pages

This chapter will dive into the details of the ASPNET web controls. Once you understand the basic
functionality of these web widgets, you will then build a simple but illustrative web site making use
of various .NET 2.0 features (master pages, *.sitemap files, themes, and skins). As well, this chapter
will examine the use of the validator controls and the enhanced data binding engine.

xlv

xlvi

INTRODUCTION

Chapter 27: ASP.NET State Management Techniques

This chapter extends your current understanding of ASPNET by examining various ways to handle

state management under .NET. Like classic ASP, ASPNET allows you to easily create cookies, as well
as application-level and session-level variables. Once you have looked at the numerous ways to

handle state with ASPNET, you will then come to learn the role of the System.HttpApplication base
class (lurking within the Global.asax file) and how to dynamically alter the runtime behavior of your
web application using the Web.config file. We wrap up with an examination of the new ASPNET 2.0
profile management API.

Chapter 28: Understanding XML Web Services

In this final chapter of this book, you will examine the role of .NET XML web services. Simply put,
a web service is an assembly that is activated using standard HTTP requests. The beauty of this
approach is the fact that HTTP is the one wire protocol almost universal in its acceptance, and it is
therefore an excellent choice for building platform- and language-neutral distributed systems. You
will also check out numerous surrounding technologies (WSDL, SOAP, and UDDI) that enable a web
service and external client to communicate in harmony.

Obtaining This Book’s Source Code

All of the code examples contained within this book (minus small code snippets here and there) are
available for free and immediate download from the Source Code area of the Apress website. Simply
navigate to http://www.apress.com, select the Source Code link, and look up this title by name. Once
you are on the “homepage” for Pro VB 2005 and the .NET 2.0 Platform, Second Edition, you may
download a self-extracting *. zip file. After you unzip the contents, you will find that the code has
been logically divided by chapter.

Do be aware that Source Code notes like the following in the chapters are your cue that the example
under discussion may be loaded into Visual Studio 2005 for further examination and modification:

Source Gode This is a source code note referring you to a specific directory!

To do so, simply open the *.s1n file found in the correct subdirectory.

Obtaining Updates for This Book

As you read through this text, you may find an occasional grammatical or code error (although I sure
hope not). If this is the case, my apologies. Being human, I am sure that a glitch or two may be pres-
ent, despite my best efforts. If this is the case, you can obtain the current errata list from the Apress
website (located once again on the “homepage” for this book) as well as information on how to notify
me of any errors you might find.

INTRODUCTION

Contacting Me

If you have any questions regarding this book’s source code, are in need of clarification for a given
example, or simply wish to offer your thoughts regarding the .NET platform, feel free to drop me
aline at the following e-mail address (to ensure your messages don’t end up in my junk mail folder,
please include “VB 2005 SE” in the Subject line somewhere): atroelsen@IntertechTraining.com.

Please understand that I will do my best to get back to you in a timely fashion; however, like
yourself, I get busy from time to time. If I don’t respond within a week or two, do know I am not try-
ing to be a jerk or don't care to talk to you. I'm just busy (or, if I'm lucky, on vacation somewhere).

So, then! Thanks for buying this text (or at least looking at it in the bookstore while you try to
decide if you will buy it). I hope you enjoy reading this book and putting your newfound knowledge
to good use.

Take care,
Andrew Troelsen

xlvii

PART 1

Introducing Visual Basic 2005
and the .NET Platform

CHAPTER 1

The Philosophy of .NET

Every few years or so, the modern-day programmer must be willing to perform a self-inflicted
knowledge transplant to stay current with the new technologies of the day. The languages (Visual
Basic 6.0, Java, C++) and frameworks (COM, J2EE, CORBA) that were touted as the silver bullets of
software development eventually become overshadowed by something better or at the very least
something new. Regardless of the frustration you can feel when upgrading your internal knowledge
base, it is frankly unavoidable. The .NET 2.0 platform is Microsoft’s current offering within the land-
scape of software engineering.

The point of this chapter is to lay the conceptual groundwork for the remainder of the book. It
begins with a high-level discussion of a number of .NET-related topics such as assemblies, the com-
mon intermediate language (CIL), and just-in-time (JIT) compilation. In addition to previewing some
key features of the Visual Basic 2005 programming language, you will also come to understand the
relationship between various aspects of the .NET Framework, such as the common language run-
time (CLR), the Common Type System (CTS), and the Common Language Specification (CLS). As
you would hope, all of these topics are explored in much more detail throughout the remainder of
this text.

This chapter also provides you with an overview of the functionality supplied by the .NET
base class libraries, sometimes abbreviated as the “BCL” or alternatively as the “FCL” (being the
Framework class libraries). Finally, this chapter investigates the language-agnostic and platform-
independent nature of the .NET platform (yes it’s true! .NET is not confined to the Windows family
of operating systems).

Understanding the Previous State of Affairs

Before examining the specifics of the .NET universe, it’s helpful to consider some of the issues that
motivated the genesis of Microsoft’s current platform. To get in the proper mind-set, let’s begin this
chapter with a brief and painless history lesson to remember our roots and understand the limita-
tions of the previous state of affairs. After completing this quick tour of life as we knew it, we turn
our attention to the numerous benefits provided by Visual Basic 2005 and the .NET platform.

Life As a C/Win32 API Programmer

Traditionally speaking, developing software for the Windows family of operating systems involved
using the C programming language in conjunction with the Windows application programming
interface (API). While it is true that numerous applications have been successfully created using this
time-honored approach, few of us would disagree that building applications using the raw API is

a complex undertaking.

CHAPTER 1 © THE PHILOSOPHY OF .NET

The first obvious problem is that C is a very terse language. C developers are forced to contend
with manual memory management, ugly pointer arithmetic, and ugly syntactical constructs. Further-
more, given that C is a structured language, it lacks the benefits provided by the object-oriented
approach. When you combine the thousands of global functions and data types defined by the
Win32 API to an already formidable language, it is little wonder that there are so many buggy appli-
cations floating around today.

Life As a C++/MFC Programmer

One vast improvement over raw C/API development is the use of the C++ programming language.
In many ways, C++ can be thought of as an object-oriented layer on top of C. Thus, even though C++
programmers benefit from the famed “pillars of OOP” (encapsulation, inheritance, and polymor-
phism), they are still at the mercy of the painful aspects of the C language (e.g., manual memory
management, ugly pointer arithmetic, and ugly syntactical constructs).

Despite its complexity, many C++ frameworks exist today. For example, the Microsoft Foundation
Classes (MFC) provides the developer with a set of C++ classes that simplifies the construction of
Win32 applications. The main role of MFC is to wrap a “sane subset” of the raw Win32 API behind
anumber of classes and numerous code-generation tools (aka wizards). Regardless of the helpful
assistance offered by the MFC framework (as well as many other C++-based toolkits), the fact of the
matter is that C++ programming remains a difficult and error-prone experience, given its historical
roots in C.

Life As a Visual Basic 6.0 Programmer

Due to a heartfelt desire to enjoy a simpler lifestyle, many programmers avoided the world of C(++)-
based frameworks altogether in favor of kinder, gentler languages such as Visual Basic 6.0 (VB6).
VB6 is popular due to its ability to build sophisticated user interfaces, code libraries (e.g., ActiveX
servers), and data access logic with minimal fuss and bother. Much more than MFC, VB6 hides the
complexities of the raw Win32 API from view using a number of integrated programming wizards,
intrinsic data types, classes, and VB6-specific functions.

The major limitation of VB6 (which has been rectified given the advent of the .NET platform) is
that it is not a fully object-oriented language; rather, it is “object aware.” For example, VB6 does not
allow the programmer to establish “is-a” relationships between types (i.e., no classical inheritance)
and has no intrinsic support for parameterized class construction. Moreover, VB6 doesn'’t provide
the ability to build multithreaded applications unless you are willing to drop down to low-level
Win32 API calls (which is complex at best and dangerous at worst).

Life As a Java/J2EE Programmer

Enter Java. The Java programming language is (almost) completely object-oriented and has its syntactic
roots in C++. As many of you are aware, Java’s strengths are far greater than its support for platform
independence. Java (as a language) cleans up many unsavory syntactical aspects of C++. Java (as
a platform) provides programmers with a large number of predefined “packages” that contain various
type definitions. Using these types, Java programmers are able to build “100% Pure Java” applications
complete with database connectivity, messaging support, web-enabled front ends, and a rich user
interface.

Although Java is a very elegant language, one potential problem is that using Java typically means
that you must use Java front-to-back during the development cycle. In effect, Java offers little hope
of language integration, as this goes against the grain of Java’s primary goal (a single programming
language for every need). In reality, however, there are millions of lines of existing code out there in
the world that would ideally like to commingle with newer Java code. Sadly, Java makes this task
problematic.

CHAPTER 1 " THE PHILOSOPHY OF .NET

Pure Java is simply not appropriate for many graphically or numerically intensive applications
(in these cases, you may find Java’s execution speed leaves something to be desired). A better approach
for such programs would be to use a lower-level language (such as C++) where appropriate. Alas, while
Java does provide a limited ability to access non-Java APIs, there is little support for true cross-language
integration.

Life As a COM Programmer

The Component Object Model (COM) was Microsoft’s previous component framework. COM is an
architecture that says in effect, “If you build your classes in accordance with the rules of COM, you
end up with a block of reusable binary code.”

The beauty of a binary COM server is that it can be accessed in a language-independent manner.
Thus, VB6 programmers can build COM classes that can be used by C++ programs. Delphi program-
mers can use COM classes built using C, and so forth. However, as you may be aware, COM’s language
independence is somewhat limited. For example, there is no way to derive a new COM class using
an existing COM class (as COM has no support for classical inheritance).

Another benefit of COM is its location-transparent nature. Using constructs such as application
identifiers (AppIDs), stubs, proxies, and the COM runtime environment, programmers can avoid
the need to work with raw sockets, RPC calls, and other low-level details. For example, consider the
following VB6 COM client code:

This block of VB6 code can activate a COM class written in
any COM-aware language, which may be located anywhere

on the network (including the local machine).

Dim myObj As MyCOMClass

Set myObj = New MyCOMClass ' Location resolved using AppID.
c.DoSomeWork

Although COM can be considered a very successful object model, it is extremely complex under
the hood. To help simplify the development of COM binaries, numerous COM-aware frameworks
have come into existence (most notably VB6). However, framework support alone is not enough to
hide the complexity of COM. Even when you choose a relatively simply COM-aware language such
as VB6, you are still forced to contend with fragile registration entries and numerous deployment-
related issues (collectively termed DLL hell).

Life As a Windows DNA Programmer

To further complicate matters, there is a little thing called the Internet. Over the last several years,
Microsoft has been adding more Internet-aware features into its family of operating systems and
products. Sadly, building a web application using COM-based Windows Distributed interNet
Applications Architecture (DNA) is also quite complex.

Some of this complexity is due to the simple fact that Windows DNA requires the use of numerous
technologies and languages (ASP, HTML, XML, JavaScript, VBScript, COM(+), as well as a data access
API such as ADO). One problem is that many of these technologies are completely unrelated from
a syntactic point of view. For example, JavaScript has a syntax much like C, while VBScript is a subset
of VB6. The COM servers that are created to run under the COM+ runtime have an entirely different
look and feel from the ASP pages that invoke them. The result is a highly confused mishmash of
technologies.

Furthermore, and perhaps more important, each language and/or technology has its own type
system (that may look nothing like another’s type system). An “int” in JavaScript is not quite the same
as an “Integer” in VB6.

CHAPTER 1 © THE PHILOSOPHY OF .NET

The .NET Solution

So much for the brief history lesson. The bottom line is that life as a Windows programmer has been
less than perfect. The .NET Framework is a rather radical and brute-force approach to streamlining
the application development process. The solution proposed by .NET is “Change everything” (sorry,
you can’'t blame the messenger for the message). As you will see during the remainder of this book,
the .NET Framework is a completely new model for building systems on the Windows family of
operating systems, as well as on numerous non-Microsoft operating systems such as Mac OS X and
various Unix/Linux distributions. To set the stage, here is a quick rundown of some core features
provided courtesy of .NET:

* Full interoperability with existing code: This is (of course) a good thing. Existing ActiveX
components can commingle (i.e., interop) with newer .NET applications and vice versa.
Also, Platform Invocation Services (PInvoke) allows you to call C-based libraries (including
the underlying API of the operating system) from .NET code.

* Complete and total language integration: .NET supports cross-language inheritance, cross-
language error handling, and cross-language debugging.

* A common runtime engine shared by all .NET-aware languages: One aspect of this engine is
a well-defined set of types that each .NET-aware language “understands.”

e A common base class library: This library provides shelter from the complexities of raw API
calls and offers a consistent object model used by all .NET-aware languages.

* No more COM plumbing: Legacy COM interfaces (such as IUnknown and IDispatch), COM
type libraries, and the COM-centric Variant data type have no place in a native .NET binary.

A truly simplified deployment model: Under .NET, there is no need to register a binary unit
into the system registry. Furthermore, .NET allows multiple versions of the same *.d11 to
exist in harmony on a single machine.

As you can most likely gather from the previous bullet points, the .NET platform has nothing to
do with COM (beyond the fact that both frameworks originated from Microsoft). In fact, the only way
.NET and COM types can interact with each other is using the interoperability layer (a topic you'll
explore in Chapter 17).

Introducing the Building Blocks of the .NET
Platform (the CLR, CTS, and CLS)

Now that you know some of the benefits provided by .NET, let’s preview three key (and interrelated)
entities that make it all possible: the CLR, CTS, and CLS. From a programmer’s point of view, .NET
can be understood as a new runtime environment and a comprehensive base class library. The run-
time layer is properly referred to as the common language runtime, or CLR. The primary role of the
CLR is to locate, load, and manage .NET types on your behalf. The CLR also takes care of a number
of low-level details such as memory management and performing security checks.

Another building block of the .NET platform is the Common Type System, or CTS. The CTS
specification fully describes the underlying type system and programming constructs supported by
the runtime, specifies how these entities can interact with each other, and details how they are rep-
resented in the .NET metadata format (more information on metadata later in this chapter).

Understand that a given .NET-aware language might not support each and every feature defined
by the CTS. The Common Language Specification (CLS) is a related specification that defines a sub-
set of common types and programming constructs that all .NET programming languages can agree
on. Thus, if you build .NET types that only expose CLS-compliant features, you can rest assured that

CHAPTER 1 " THE PHILOSOPHY OF .NET

all NET-aware languages can consume them. Conversely, if you make use of a data type or pro-
gramming construct that is outside of the bounds of the CLS, you cannot guarantee that every .NET
programming language can interact with your .NET code library.

The Role of the Base Class Libraries

In addition to the CLR and CTS/CLS specifications, the .NET platform provides a base class library
that is available to all .NET programming languages. Not only does this base class library encapsulate
various primitives such as threads, file input/output (I/0), graphical rendering, and interaction with
various external hardware devices, but it also provides support for a number of services required by
most real-world applications.

For example, the base class libraries define types that facilitate database access, XML manipu-
lation, programmatic security, and the construction of web-enabled (as well as traditional desktop
and console-based) front ends. From a high level, you can visualize the relationship between the
CLR, CTS, CLS, and the base class library, as shown in Figure 1-1.

The Base Class Library

Data Access Windows Forms Security XML/SOAP

Threading File I/0 Web Forms (et al.)

The Common Language Runtime

Common Type System

Common Language Specification

Figure 1-1. The CLR, CTS, CLS, and base class library relationship

What Visual Basic 2005 Brings to the Table

Because .NET is such a radical departure from previous Microsoft technologies, it should be clear
that legacy COM-based languages such as VB6 are unable to directly integrate with the .NET plat-
form. Given this fact, Microsoft introduced a brand-new programming language, Visual Basic .NET
(VB .NET), with the release of .NET 1.0. As developers quickly learned, although VB .NET had a similar
look and feel to VBS6, it introduced such a large number of new keywords and constructs that many
programmers (including myself) eventually regarded VB .NET as a new member of the BASIC family
rather than “Visual Basic 7.0.”

For example, unlike VB6, VB .NET provided developers with a full-blown object-oriented language
that is just about as powerful as languages such as C++, Java, or C#. Using VB .NET, developers are
able to build multithreaded desktop applications, websites, and XML web services; define custom
class construction subroutines; overload members; and define callback functions (via delegates). In
a nutshell, here are some of the core features provided courtesy of VB .NET:

CHAPTER 1 © THE PHILOSOPHY OF .NET

» Full support for classical inheritance and classical polymorphism.

* Strongly typed keywords to define classes, structures, enumerations, delegates, and interfaces.
Given these new keywords, VB .NET code is always contained within a *. vb file (in contrast
to the VB6-centric *.cls, *.bas, and *. frm files).

* Full support for interface-based programming techniques.

¢ Full support for attribute-based programming. This brand of development allows you to
annotate types and their members to further qualify their behavior.

With the release of .NET 2.0, the VB .NET programming language is now properly referred to
as Visual Basic 2005 (VB 2005). While VB 2005 is fully backward-compatible with VB .NET, it adds
numerous new additional bells and whistles, most notability the following:

 The ability to redefine how intrinsic operators of the language (such as the + symbol) can be
interpreted by your custom classes or structures. Formally speaking, this feature is termed
operator overloading.

* The introduction of the My namespace. The introduction of the My namespace, which provides
instant access to machine- and project-specific information (which greatly reduces the amount
of code you need to author manually).

¢ The ability to build generic types and generic members. Using generics, you are able to build
very efficient and type-safe code that defines numerous “placeholders” specified at the time
you interact with the generic item.

» The ability to customize the process of registering, unregistering, or sending events using the
new Custom keyword.

* Support for signed data types (SByte, ULong, etc.).

* The ability to define a single type across multiple code files using the Partial keyword.

Perhaps the most important point to understand about Visual Basic 2005 is that it can only
produce code that can execute within the .NET runtime (therefore, you could never use VB 2005 to
build a native ActiveX COM server). Officially speaking, the term used to describe the code targeting
the .NET runtime is managed code. The binary unit that contains the managed code is termed an
assembly (more details on assemblies in just a bit). Conversely, code that cannot be directly hosted
by the .NET runtime is termed unmanaged code.

Additional .NET-Aware Programming Languages

Understand that Visual Basic 2005 is not the only language that can be used to build .NET applications.
When the .NET platform was first revealed to the general public during the 2000 Microsoft Professional
Developers Conference (PDC), several vendors announced they were busy building .NET-aware
versions of their respective compilers.

At the time of this writing, dozens of different languages have undergone .NET enlightenment.
In addition to the five languages that ship with Visual Studio 2005 (Visual Basic 2005, C#, J#, Managed
Extensions for C++, and JScript .NET), there are NET compilers for Smalltalk, COBOL, and Pascal
(to name a few). Although this book focuses (almost) exclusively on Visual Basic 2005, be aware of
the following website (please note that this URL is subject to change):

http://www.dotnetlanguages.net

Here you will find a list of numerous .NET programming languages and related links where you are
able to download various compilers (see Figure 1-2).

CHAPTER 1 " THE PHILOSOPHY OF .NET

©) NET Languages - Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

<Z| - E> - g O @ ||_| http: S, doknetlanguages, net/Dr V| @ Go

IronPython P# DEDICATED

NET LANGUAGES 10 .NET Lin{Q

Mews | Articles | FAQ | Resources | Contact | RSS Feed

Resources

Following is a listing of resources that you may find useful either to own or bookmark during
your navigation through the \MET language space. If vou feel that there's a resource that other
MET developers should know about, please contact me,

.NET Language Sites

* Ly

* AP

® L5POMET: ASM to 1L

* toml

* Basic

< QuickBasic for (MWET
< WEB MET [Microsoft]

|€

Done

2] (2

Figure 1-2. .NET Languages is one of many sites documenting known .NET programming languages.

While I assume you are primarily interested in building .NET programs using the syntax of VB
2005, I encourage you to visit this site, as you are sure to find many .NET languages worth investi-
gating at your leisure (LISP .NET, anyone?).

Life in a Multilanguage World

As developers first come to understand the language-agnostic nature of .NET, numerous questions
arise. The most prevalent of these questions would have to be, “If all .NET languages compile down
to ‘managed code,’ why do we need more than one compiler?” There are a number of ways to answer
this question. First, we programmers are a very particular lot when it comes to our choice of pro-
gramming language (myself included). Some prefer languages full of semicolons and curly brackets,
with as few keywords as possible (such as C#, C++, and J#). Others enjoy a language that offers more
“human-readable” syntax (such as Visual Basic 2005). Still others may want to leverage their main-
frame skills while moving to the .NET platform (via COBOL .NET).

Now, be honest. If Microsoft were to build a single “official” .NET language that was derived from
the C family of languages, can you really say all programmers would be happy with this choice? Or,
if the only “official” .NET language was based on Fortran syntax, imagine all the folks out there who
would ignore .NET altogether. Because the .NET runtime couldn't care less which language was used
to build an assembly, .NET programmers can stay true to their syntactic preferences, and share the
compiled code among teammates, departments, and external organizations (regardless of which
.NET language others choose to use).

10

CHAPTER 1 © THE PHILOSOPHY OF .NET

Another excellent by-product of integrating various .NET languages into a single unified software
solution is the simple fact that all programming languages have their own sets of strengths and
weaknesses. For example, some programming languages offer excellent intrinsic support for advanced
mathematical processing. Others offer superior support for financial calculations, logical calculations,
interaction with mainframe computers, and so forth. When you take the strengths of a particular
programming language and then incorporate the benefits provided by the .NET platform, everybody
wins.

Of course, in reality the chances are quite good that you will spend much of your time building
software using your .NET language of choice. However, once you learn the syntax of one .NET lan-
guage, it is very easy to master another. This is also quite beneficial, especially to the consultants of
the world. If your language of choice happens to be Visual Basic 2005, but you are placed at a client
site that has committed to C#, you are still able to leverage the functionality of the .NET Framework,
and you should be able to understand the overall structure of the code base with minimal fuss and
bother. Enough said.

An Overview of .NET Assemblies

Despite the fact that .NET binaries take the same file extension as COM servers and unmanaged
Win32 binaries (*.d11 or *.exe), they have absolutely no internal similarities. For example, NET
assemblies are not described using COM type libraries and are not registered into the system reg-
istry. Perhaps most important, .NET binaries do not contain platform-specific instructions, but
rather platform-agnostic intermediate language (IL) as well as type metadata. Figure 1-3 shows the
big picture of the story thus far.

VB 2005

Source Code
I

VB 2005 Compiler

and
Metadata
(*.d11 or *.exe)

COBOL .NET

Source Code
I~

COBOL .NET Compiler

CH#
Source Code
[

C# Compiler

Perl .NET - I\
Source Code Perl .NET Compiler l— 0
—

Figure 1-3. All .NET-aware compilers emit IL instructions and metadata.

CHAPTER 1 " THE PHILOSOPHY OF .NET

Note There is one point to be made regarding the abbreviation “IL.” During the development of .NET, the official
term for IL was Microsoft intermediate language (MSIL). However with the final release of .NET 1.0, the term was
changed to common intermediate language (CIL). Thus, as you read the .NET literature, understand that IL, MSIL,
and CIL are all describing the same exact entity. In keeping with the current terminology, | will use the abbreviation
“CIL” throughout this text.

When a *.d11 or *.exe has been created using a .NET-aware compiler, the resulting module is
bundled into an assembly. You will examine numerous details of .NET assemblies in Chapter 13.
However, to facilitate the discussion of the .NET runtime environment, you do need to understand
some basic properties of this new file format.

As mentioned, an assembly contains CIL code, which is conceptually similar to Java bytecode
in that it is not compiled to platform-specific instructions until absolutely necessary. Typically,
“absolutely necessary” is the point at which a block of CIL instructions (such as a method imple-
mentation) is referenced for use by the .NET runtime.

In addition to CIL instructions, assemblies also contain metadata that describes in vivid detail
the characteristics of every “type” living within the binary. For example, if you have a class named
SportsCar, the type metadata describes details such as SportsCar’s base class, which interfaces are
implemented by SportsCar (if any), as well as a full description of each member supported by the
SportsCar type.

.NET metadata is a dramatic improvement to COM type metadata. As you may already know,
COM binaries are typically described using an associated type library (which is little more than
a binary version of Interface Definition Language [IDL] code). The problems with COM type infor-
mation are that it is not guaranteed to be present and the fact that IDL code has no way to document
the externally referenced servers that are required for the correct operation of the current COM server.
In contrast, .NET metadata is always present and is automatically generated by a given .NET-aware
compiler.

Finally, in addition to CIL and type metadata, assemblies themselves are also described using
metadata, which is officially termed a manifest. The manifest contains information about the current
version of the assembly, culture information (used for localizing string and image resources), and
a list of all externally referenced assemblies that are required for proper execution. You'll examine
various tools that can be used to examine an assembly’s types, metadata, and manifest information
over the course of the next few chapters.

Single-File and Multifile Assemblies

In a great number of cases, there is a simple one-to-one correspondence between a .NET assembly
and the binary file (*.d11 or *.exe). Thus, if you are building a .NET *.dl1l, it is safe to consider that
the binary and the assembly are one and the same. Likewise, if you are building an executable desk-
top application, the *.exe can simply be referred to as the assembly itself. As you'll see in Chapter 13,
however, this is not completely accurate. Technically speaking, if an assembly is composed of a single
*.d11 or *.exe module, you have a single-file assembly. Single-file assemblies contain all the necessary
CIL, metadata, and associated manifest in an autonomous, single, well-defined package.

Multifile assemblies, on the other hand, are composed of numerous .NET binaries, each of which
is termed a module. When building a multifile assembly, one of these modules (termed the primary
module) must contain the assembly manifest (and possibly CIL instructions and metadata for vari-
ous types). The other related modules contain a module level manifest, CIL, and type metadata. As
you might suspect, the primary module documents the set of required secondary modules within
the assembly manifest.

11

12

CHAPTER 1 © THE PHILOSOPHY OF .NET

So, why would you choose to create a multifile assembly? When you partition an assembly into
discrete modules, you end up with a more flexible deployment option. For example, if a user is ref-
erencing a remote assembly that needs to be downloaded onto his or her machine, the runtime will
only download the required modules. Therefore, you are free to construct your assembly in such
a way that less frequently required types (such as a type named HardDriveReformatter) are kept in
a separate stand-alone module.

In contrast, if all your types were placed in a single-file assembly, the end user may end up
downloading a large chunk of data that is not really needed (which is obviously a waste of time).
Thus, as you can see, an assembly is really a logical grouping of one or more related modules that
are intended to be initially deployed and versioned as a single unit.

The Role of the Common Intermediate Language

Now that you have a better feel for .NET assemblies, let’s examine the role of the common intermediate
language (CIL) in a bit more detail. CIL is a language that sits above any particular platform-specific
instruction set. Regardless of which .NET-aware language you choose, the associated compiler emits
CIL instructions. For example, the following Visual Basic 2005 code models a trivial calculator. Don’t
concern yourself with the exact syntax for now, but do notice the format of the Add() function in the
Calc class:

' Calc.vb
Imports System

Namespace CalculatorExample
' Defines the program's entry point
Module CalcApp
Sub Main()
Dim ans As Integer
Dim ¢ As New Calc()
ans = c.Add(10, 84)
Console.WriteLine("10 + 84 is {0}.", ans)
Console.ReadlLine()
End Sub
End Module

' The VB 2005 calculator.
Class Calc
Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x +y
End Function
End Class
End Namespace

Once the VB 2005 compiler (vbc.exe) compiles this source code file, you end up with a single-
file executable assembly that contains a manifest, CIL instructions, and metadata describing each
aspect of the Calc and CalcApp classes. For example, if you were to open this assembly using the
ildasm.exe utility (examined a little later in this chapter), you would find that the Add() method is
represented using CIL such as the following:

.method public instance int32 Add(int32 x, int32 y) cil managed
{

// Code size 9 (0x9)

.maxstack 2

.locals init ([0] int32 Add)

IL_0000: nop

IL_ooo1: ldarg.1

CHAPTER 1 " THE PHILOSOPHY OF .NET

IL_0002: ldarg.2
IL_0003: add.ovf
IL_0004: stloc.0
IL_0005: br.s IL_0007
IL_0007: ldloc.0
IL 0008: ret
} // end of method Calc::Add

Don'’t worry if you are unable to make heads or tails of the resulting CIL code for this method.
In reality, a vast majority of NET developers could care less about the details of the CIL programming
language. Simply understand that the Visual Basic 2005 compiler translates your code statements
into terms of CIL.

Now, recall that this is true of all NET-aware compilers. To illustrate, assume you created this
same application using C#, rather than VB 2005 (again, don’t sweat the syntax, but do note the simi-
larities in the code bases):

// Calc.cs
using System;

namespace CalculatorExample
{
// Defines the program's entry point.
public class CalcApp
{
static void Main()
{
Calc ¢ = new Calc();
int ans = c.Add(10, 84);
Console.WriteLine("10 + 84 is {0}.", ans);
Console.ReadlLine();
}
}

// The C# calculator.
public class Calc
{
public int Add(int x, int y)
{ return x +y; }
}
}

If you examine the CIL for the Add() method, you find similar instructions (slightly tweaked by
the C# compiler):

.method public hidebysig instance int32 Add(int32 x, int32 y) cil managed
{

// Code size 8 (0x8)

.maxstack 2

.locals init ([0] int32 CS$1$0000)

IL 0000: ldarg.1

IL_0001: ldarg.2

IL_0002: add

IL 0003: stloc.0

IL_0004: br.s IL_0006
IL _0006: ldloc.o

IL 0007: ret

} // end of method Calc::Add

14

CHAPTER 1 © THE PHILOSOPHY OF .NET

Source Gode The Calc.vb and Calc.cs code files are included under the Chapter 1 subdirectory.

Benefits of CIL

At this point, you might be wondering exactly what is gained by compiling source code into CIL
rather than directly to a specific instruction set. One benefit is language integration. As you have
already seen, each .NET-aware compiler produces nearly identical CIL instructions. Therefore, all
languages are resolved to a well-defined binary arena that makes use of the same identical type
system.

Furthermore, given that CIL is platform-agnostic, the NET Framework itself is platform-agnostic,
providing the same benefits Java developers have grown accustomed to (i.e., a single code base run-
ning on numerous operating systems). In fact, .NET distributions already exist for many non-Windows
operating systems (more details at the conclusion of this chapter). In contrast to the J2EE platform,
however, .NET allows you to build applications using your language of choice.

Compiling CIL to Platform-Specific Instructions

Due to the fact that assemblies contain CIL instructions, rather than platform-specific instructions,
CIL code must be compiled on the fly before use. The entity that compiles CIL code into meaningful
CPU instructions is termed a just-in-time (JIT) compiler, which sometimes goes by the friendly name
of Jitter. The .NET runtime environment leverages a JIT compiler for each CPU targeting the runtime,
each optimized for the underlying platform.

For example, if you are building a .NET application that is to be deployed to a handheld device
(such as a Pocket PC or .NET-enabled cell phone), the corresponding Jitter is well equipped to
run within a low-memory environment. On the other hand, if you are deploying your assembly to
a back-end server (where memory is seldom an issue), the Jitter will be optimized to function in
a high-memory environment. In this way, developers can write a single body of code that can be
efficiently JIT-compiled and executed on machines with different architectures.

Furthermore, as a given Jitter compiles CIL instructions into corresponding machine code, it
will cache the results in memory in a manner suited to the target operating system. In this way, if
a call is made to a method named PrintDocument(), the CIL instructions are compiled into platform-
specific instructions on the first invocation and retained in memory for later use. Therefore, the
next time PrintDocument () is called, there is no need to recompile the CIL.

The Role of .NET Type Metadata

In addition to CIL instructions, a .NET assembly contains full, complete, and accurate metadata,
which describes each and every type (class, structure, enumeration, and so forth) defined in the
binary, as well as the members of each type (properties, methods, events, and so on). Thankfully, it
is always the job of the compiler (not the programmer) to emit the latest and greatest type metadata.
Because .NET metadata is so wickedly meticulous, assemblies are completely self-describing entities—
so much so, in fact, that .NET binaries have no need to be registered into the system registry.

To illustrate the format of .NET type metadata, let’s take a look at the metadata that has been
generated for the Add() method of the Calc class you examined previously (the metadata generated
for the C# version of the Add() method is similar):

CHAPTER 1 " THE PHILOSOPHY OF .NET

TypeDef #2 (02000003)

TypDefName: CalculatorExample.Calc (02000003)
Flags : [Public] [AutoLayout] [Class]
[AnsiClass] [BeforeFieldInit] (00100001)
Extends : 01000001 [TypeRef] System.Object
Method #1 (06000003)

MethodName: Add (06000003)
Flags : [Public] [HideBySig] [ReuseSlot] (00000086)
RVA : 0x00002090
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: I4
2 Arguments
Argument #1: 14
Argument #2: I4
2 Parameters
(1) ParamToken : (08000001) Name : x flags: [none] (00000000)
(2) ParamToken : (08000002) Name : y flags: [none] (00000000)

Despite what you may be thinking, metadata is a very useful entity (rather than an academic
detail) consumed by numerous aspects of the .NET runtime environment, as well as by various
development tools. For example, the IntelliSense feature provided by Visual Studio 2005 is made
possible by reading an assembly’s metadata at design time. Metadata is also used by various object-
browsing utilities, debugging tools, and the Visual Basic 2005 compiler itself. To be sure, metadata is
the backbone of numerous .NET technologies including the remoting layer, reflection services, late
binding facilities, XML web services, and the object serialization process. Chapter 14 will formalize
the role of .NET metadata.

The Role of the Assembly Manifest

Last but not least, remember that a .NET assembly also contains metadata that describes the
assembly itself (technically termed a manifest). Among other details, the manifest documents all
external assemblies required by the current assembly to function correctly, the assembly’s version
number, copyright information, and so forth. Like type metadata, it is always the job of the com-
piler to generate the assembly’s manifest. Here are some relevant details of the manifest defined by
the VB 2005 calculator example shown earlier:

.assembly extern mscorlib

.publickeytoken = (B7 7A 5C 56 19 34 EO 89)

.ver 2:0:0:0
}
.assembly VbNetCalculator
{

.ver 0:0:0:0

.module VbNetCalculator.exe
.imagebase 0x00400000
.subsystem 0x00000003

.file alignment 512
.corflags 0x00000001

15

16

CHAPTER 1 © THE PHILOSOPHY OF .NET

In a nutshell, this manifest documents the list of external assemblies required by
VbNetCalculator.exe (via the .assembly extern directive) as well as various characteristics of
the assembly itself (version number, module name, etc.).

Understanding the Common Type System

A given assembly may contain any number of distinct “types.” In the world of .NET, “type” is simply
a generic term used to refer to a member from the set {class, structure, interface, enumeration,
delegate}. When you build solutions using a .NET-aware language, you will most likely interact with
each of these types. For example, your assembly may define a single class that implements some
number of interfaces. Perhaps one of the interface methods takes an enumeration type as an input
parameter and returns a structure to the caller.

Recall that the Common Type System (CTS) is a formal specification that documents how types
must be defined in order to be hosted by the CLR. Typically, the only individuals who are deeply
concerned with the inner workings of the CTS are those building tools and/or compilers that target
the .NET platform. It is important, however, for all .NET programmers to learn about how to work
with the five types defined by the CTS in their language of choice. Here is a brief overview.

CTS Class Types

Every .NET-aware language supports, at the very least, the notion of a class type, which is the cornerstone
of object-oriented programming (OOP). A class may be composed of any number of members (such
as properties, methods, and events) and data points (field data, otherwise known as member variables).
In Visual Basic 2005, classes are declared using the Class keyword:

' A class type.
Public Class Calc
Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x + vy
End Function
End Class

If you have a background in VB6 class development, be aware that class types are no longer
defined within a *. cls file, given the fact that we now have a specific keyword for defining class
types. Chapters 5 and 6 will examine the full details of building class types with Visual Basic 2005.

CTS Structure Types

The concept of a structure is also formalized under the CTS. If you have a background in C or C++,
you may recall that structures can be thought of as a lightweight alternative to class types, which have
value-based semantics (see Chapter 11 for full details). Typically, structures are best suited for modeling
geometric and mathematical data and are created in VB 2005 using the Structure keyword:

A structure type.
Structure Point

Public xPos As Integer
Public yPos As Integer

Public Sub New(ByVal x As Integer, ByVal y As Integer)

xPos = x
yPos =y
End Sub

Public Sub Display()
Console.WritelLine(" ({0}, {1}", xPos, yPos)
End Sub
End Structure

CHAPTER 1 " THE PHILOSOPHY OF .NET

CTS Interface Types

Interfaces are nothing more than a named collection of members definitions, which may be supported
(i.e., implemented) by a given class or structure. Unlike COM, .NET interfaces do not derive a common

base interface such as IUnknown. In VB 2005, interface types are defined using the Interface keyword,
for example:

Classes or structures which implement this interface
' know how to render themselves.
Public Interface IDraw
Sub Draw()
End Interface

On their own, interfaces are of little use. However, when a class or structure implements a given
interface in its unique way, you are able to request access to the supplied functionality using an inter-
face reference in a “polymorphic manner.” Interface-based programming will be fully explored in
Chapter 9.

CTS Enumeration Types

Enumerations are a handy programming construct that allows you to group name/value pairs. For
example, assume you are creating a video game application that allows the player to select one of
three character categories (Wizard, Fighter, or Thief). Rather than keeping track of raw numerical
values to represent each possibility, you could build a custom enumeration using the VB 2005 Enum
keyword:

An enumeration type.
Public Enum CharacterType

Wizard = 100

Fighter = 200

Thief = 300
End Enum

The CTS demands that enumerated types derive from a common base class, System.Enum. As
you will see in Chapter 4, this base class defines a number of interesting members that allow you to
extract, manipulate, and transform the underlying name/value pairs programmatically.

CTS Delegate Types

Delegates are the .NET equivalent of a type-safe C-style function pointer. Again, based on your pro-
gramming background, you may know that C and C++ programmers make use of function pointers
to allow distinct aspects of a program to engage in a two-way conversation. The key difference is that
a .NET delegate is a class that derives from System.MulticastDelegate, rather than a simple pointer
to a raw memory address. In Visual Basic 2005, delegates are declared using the Delegate keyword:

This delegate type can 'point to' any method

" returning an integer and taking two integers as input.
Public Delegate Function BinaryOp(ByVal x As Integer, _
ByVal y As Integer) As Integer

Delegates are useful when you wish to provide a way for one entity to forward a call to another
entity, and provide the foundation for the .NET event architecture. As you will see in Chapters 10
and 16, delegates have intrinsic support for multicasting (i.e., forwarding a request to multiple
recipients) and asynchronous (i.e., nonblocking) method invocations.

17

18

CHAPTER 1 © THE PHILOSOPHY OF .NET

Note VB 2005 provides numerous keywords that remove the need to manually define delegate types. However,
you are able to define delegates directly when you wish to build more intricate and powerful solutions.

CTS Type Members

Now that you have previewed each of the types formalized by the CTS, realize that most types take
any number of members. Formally speaking, a type member is constrained by the set {constructor,
finalizer, shared constructor, nested type, operator, method, property, indexer, field, read-only field,
constant, event}.

The CTS defines various “adornments” that may be associated with a given member. For exam-
ple, each member has a given visibility trait (e.g., public, private, protected, etc.). Some members
may be declared as abstract to enforce a polymorphic behavior on derived types as well as virtual to
define a canned (but overridable) implementation. Also, most members may be configured as shared
(bound at the class level) or instance (bound at the object level). The construction of type members
is examined over the course of the next several chapters.

Note As described in Chapter 12, .NET 2.0 supports the construction of generic types and generic members.

Intrinsic CTS Data Types

The final aspect of the CTS to be aware of for the time being is that it establishes a well-defined set
of core data types. Although a given language typically has a unique keyword used to declare an intrin-
sic CTS data type, all language keywords ultimately resolve to the same type defined in an assembly
named mscorlib.dll. Consider Table 1-1, which documents how key CTS data types are expressed
in various .NET languages.

Note With the release of .NET 2.0, Visual Basic 2005 now provides keywords for signed data types (SByte,
UShort, UInteger, and ULong).

Table 1-1. The Intrinsic CTS Data Types

CTS Data Type VB 2005 Keyword C# Keyword Managed Extensions for C++ Keyword
System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __inte4

System.UInt16 UShort ushort unsigned short

System.UInt32 UInteger uint unsigned int orunsigned long
System.UInt64 ULong ulong unsigned _ int64
System.Single Single float float

System.Double Double double double

System.Object Object object Object”

CHAPTER 1 " THE PHILOSOPHY OF .NET

CTS Data Type VB 2005 Keyword C# Keyword Managed Extensions for C++ Keyword
System.Char Char char wchar_t

System.String String string String”®

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool bool

Understanding the Common Language
Specification

As you are aware, different languages express the same programming constructs in unique,
language-specific terms. For example, in VB 2005 you typically denote string concatenation using
the ampersand operator (&), while in C# you always make use of the plus sign (+). Even when two
distinct languages express the same programmatic idiom (e.g., a method with no return value), the
chances are very good that the syntax will appear quite different on the surface:

' A VB 2005 subroutine.
Public Sub MyMethod()

' Some interesting code...
End Sub

// A C# method returning nothing.
public void MyMethod()

{

// Some interesting code...

}

As you have already seen, these minor syntactic variations are inconsequential in the eyes of
the .NET runtime, given that the respective compilers (vbc.exe or csc.exe, in this case) emit a similar
set of CIL instructions. However, languages can also differ with regard to their overall level of func-
tionality. For example, a .NET language may or may not have a keyword to represent unsigned data,
and may or may not support pointer types. Given these possible variations, it would be ideal to have
a baseline to which all .NET-aware languages are expected to conform.

The Common Language Specification (CLS) is a set of rules that describe in vivid detail the
minimal and complete set of features a given .NET-aware compiler must support to produce code
that can be hosted by the CLR, while at the same time be accessed in a uniform manner by all lan-
guages that target the .NET platform. In many ways, the CLS can be viewed as a subset of the full
functionality defined by the CTS.

The CLS is ultimately a set of rules that compiler builders must conform to, if they intend their
products to function seamlessly within the .NET universe. Each rule is assigned a simple name (e.g.,
“CLS Rule 6”) and describes how this rule affects those who build the compilers as well as those who
(in some way) interact with them. The créme de la creme of the CLS is the mighty Rule 1:

* Rule I: CLS rules apply only to those parts of a type that are exposed outside the defining
assembly.

Given this rule, you can (correctly) infer that the remaining rules of the CLS do not apply to the
logic used to build the inner workings of a .NET type. The only aspects of a type that must conform
to the CLS are the member definitions themselves (i.e., naming conventions, parameters, and return
types). The implementation logic for a member may use any number of non-CLS techniques, as the
outside world won't know the difference.

To illustrate, the following Add() method is not CLS-compliant, as the parameters and return
values make use of unsigned data (which is not a requirement of the CLS):

19

20

CHAPTER 1 © THE PHILOSOPHY OF .NET

Public Class Calc
' Exposed unsigned data is not CLS compliant!
Public Function Add(ByVal x As ULong, ByVal y As ULong) As UlLong
Return x + vy
End Function
End Class

However, if you were to simply make use of unsigned data internally as follows:

Public Class Calc
Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
' As this ULong variable is only used internally,
' we are still CLS compliant.
Dim temp As Ulong
Return x +y
End Function
End Class

you have still conformed to the rules of the CLS, and can rest assured that all .NET languages are
able to invoke the Add() method.

Of course, in addition to Rule 1, the CLS defines numerous other rules. For example, the CLS
describes how a given language must represent text strings, how enumerations should be represented
internally (the base type used for storage), how to define shared members, and so forth. Luckily, you
don't have to commit these rules to memory to be a proficient .NET developer. Again, by and large,
an intimate understanding of the CTS and CLS specifications is only of interest to tool/compiler
builders.

Ensuring CLS Compliance

As you will see over the course of this book, VB 2005 does define a few programming constructs that
are not CLS-compliant. The good news, however, is that you can instruct the VB 2005 compiler to
check your code for CLS compliance using a single .NET attribute:

Tell the compiler to check for CLS compliance.
<Assembly: System.CLSCompliant(True)>

Chapter 14 dives into the details of attribute-based programming. Until then, simply understand
that the <CLSCompliant> attribute will instruct the VB 2005 compiler to check each and every line of
code against the rules of the CLS. If any CLS violations are discovered, you receive a compiler error
and a description of the offending code.

Understanding the Common Language Runtime

In addition to the CTS and CLS specifications, the next TLA (three letter abbreviation) to contend
with at the moment is the CLR. Programmatically speaking, the term runtime can be understood as
a collection of external services that are required to execute a given compiled unit of code. For example,
when developers make use of the Microsoft Foundation Classes (MFC) to create a new application,
they are aware that their program requires the MFC runtime library (i.e., mfc42.d11). Other popular
languages also have a corresponding runtime. VB6 programmers are also tied to a runtime module
or two (e.g., msvbvm60.d11). Java developers are tied to the Java Virtual Machine (JVM) and so forth.
The .NET platform offers yet another runtime system. The key difference between the .NET
runtime and the various other runtimes I just mentioned is the fact that the .NET runtime provides
a single well-defined runtime layer that is shared by all languages and platforms that are .NET-aware.

CHAPTER 1 " THE PHILOSOPHY OF .NET

The crux of the CLR is physically represented by a library named mscoree.dl11 (aka the Common
Object Runtime Execution Engine). When an assembly is referenced for use, mscoree.dl1 is loaded
automatically, which in turn loads the required assembly into memory. The runtime engine is
responsible for a number of tasks. First and foremost, it is the entity in charge of resolving the location
of an assembly and finding the requested type within the binary by reading the contained metadata.
The CLR then lays out the type in memory, compiles the associated CIL into platform-specific
instructions, performs any necessary security checks, and then executes the code in question.

In addition to loading your custom assemblies and creating your custom types, the CLR will
also interact with the types contained within the .NET base class libraries when required. Although
the entire base class library has been broken into a number of discrete assemblies, the key assembly
ismscorlib.dll. mscorlib.dll contains a large number of core types that encapsulate a wide variety
of common programming tasks as well as the core data types used by all .NET languages. When you
build .NET solutions, you automatically have access to this particular assembly.

Figure 1-4 illustrates the workflow that takes place between your source code (which is making
use of base class library types), a given .NET compiler, and the .NET execution engine.

Some .NET
Compiler
Your .NET
Source Code
from Some l
.NET-Aware
Language *.d11l or *.exe
Assembly
(CIL, Metadata, and Manifest)
I
.NET Execution Engine
(mscoree.dll)
Base Clﬁss Class Loader
Libraries

!

(mscorlib.dll

and So Forth) Jitter
I
Platform-
Specific
Instructions

Execute the
member .

Figure 1-4. mscoree.d1l in action

21

22

CHAPTER 1 © THE PHILOSOPHY OF .NET

The Assembly/Namespace/Type Distinction

Each of us understands the importance of code libraries. The point of libraries found within VB6,
J2EE, or MFC is to give developers a well-defined set of existing code to leverage in their applications.
However, the VB 2005 language does not come with a language-specific code library. Rather, VB 2005
developers leverage the language-neutral .NET libraries. To keep all the types within the base class
libraries well organized, the .NET platform makes extensive use of the namespace concept.

Simply put, a namespace is a grouping of related types contained in an assembly. For example,
the System.I0 namespace contains file I/O related types, the System.Data namespace defines core
database access types, the System.Windows.Forms namespace defines GUI elements, and so on. It is
very important to point out that a single assembly (such as mscorlib.dll) can contain any number
of namespaces, each of which can contain any number of types (classes, interfaces, structures, enu-

merations, or delegates).

To clarify, Figure 1-5 shows a screen shot of the Visual Studio 2005 Object Brower utility (you'll
learn more about this tool in Chapter 2). This tool allows you to examine the assemblies referenced
by your current solution, the namespaces within a particular assembly, the types within a given
namespace, and the members of a specific type. Note that mscorlib.dll contains many different
namespaces, each with its own semantically related types.

Object Browser

Browse: All Components

<Search> - 4

=3 mscorlib
#-{} Microsoft. Win32
{} Microsoft.Win32.5afeHandles
{} System
{} System.Collections
{} System.Collections.Generic
{} System.Collections. ObjectModel
{} System.Configuration. Assemblie:
{} System.Deployment.Internal
{} System.Diagnostics
{} System.Diagnostics.CodeAnalysi
{} System.Diagnostics.SymbolStore
{} System.Globalization
{} system.IO
%
“t% BinaryWriter
“t¢ BufferedStream
“f% Directory

1-E-E-EB-B-E-E-EB-B-E-E-E

i
4
4
4

- x

=

e] = -

@ BinaryReader(System.I0.Stream) ~
@ BinaryReader(System.I10,Stream, System, Text.Encoding)
@ Close()
3 Dispose(bocl)
3 FilBuffer(int)
@ PeekChar()
@ Read()
@ Read(byte[], int, int)
& Read(char[], int, int)
% ReadBoolean()
@ ReadByte()
& ReadBytes(int)
& ReadChar()
@ ReadChars(int)
@ ReadDedmal()
PR
public class BinaryReader »
Member of System.10

Summary:
Reads primitive data types as binary values in a specific W

Figure 1-5. A single assembly can have any number of namespaces.

The key difference between this approach and a language-specific library such as the Java API
is that any language targeting the .NET runtime makes use of the same namespaces and same types.
For example, the following three programs all illustrate the ubiquitous “Hello World” application,
written in VB 2005, C#, and Managed Extensions for C++:

' Hello world in VB 2005
Imports System

Public Module MyApp
Sub Main()

Console.WritelLine("Hi from VB 2005")

End Sub
End Module

CHAPTER 1 " THE PHILOSOPHY OF .NET 23

// Hello world in Ci
using System;

public class MyApp
{

static void Main()

{

Console.WritelLine("Hi from C#");

}
}

// Hello world in Managed Extensions for C++
#include "stdafx.h"
using namespace System;

int main(array<System::String ~> “args)

{
Console: :WriteLine(L"Hi from managed C++");
return 0;

}

Notice that each language is making use of the Console class defined in the System namespace.
Beyond minor syntactic variations, these three applications look and feel very much alike, both
physically and logically.

Clearly, your primary goal as a .NET developer is to get to know the wealth of types defined in
the (numerous) .NET namespaces. The most fundamental namespace to get your hands around is
named System. This namespace provides a core body of types that you will need to leverage time
and again as a .NET developer. In fact, you cannot build any sort of functional .NET application
without at least making a reference to the System namespace. Table 1-2 offers a rundown of some
(but certainly not all) of the .NET namespaces.

Table 1-2. A Sampling of .NET Namespaces

.NET Namespace Meaning in Life

System Within System you find numerous useful types dealing with
intrinsic data, mathematical computations, random number
generation, environment variables, and garbage collection, as
well as a number of commonly used exceptions and attributes.

System.Collections These namespaces define a number of stock container objects

System.Collections.Generic (Arraylist, Queue, and so forth), as well as base types and
interfaces that allow you to build customized collections. As of
.NET 2.0, the collection types have been extended with generic

capabilities.
System.Data These namespaces are used for interacting with databases
System.Data.0dbc using ADO.NET.

System.Data.OracleClient
System.Data.0leDb
System.Data.SqglClient

System.Diagnostics Here, you find numerous types that can be used to
programmatically debug and trace your source code.

System.Drawing Here, you find numerous types wrapping graphical primitives
System.Drawing.Drawing2D such as bitmaps, fonts, and icons, as well as printing capabilities.
System.Drawing.Printing

Continued

24

CHAPTER 1

Table 1-2. Continued

THE PHILOSOPHY OF .NET

.NET Namespace

Meaning in Life

System.
System.
System.

System.

System.
System

System.

System.

System.

System.

System.

System.

System.

10
I0.Compression
10.Ports

Net

Reflection

.Reflection.Emit

Runtime.InteropServices

Runtime.Remoting

Security

Threading

Web

Windows.Forms

Xml

These namespaces define numerous types for I/O operations.
As of .NET 2.0, the I0 namespaces now include support
compression and port manipulation.

This namespace (as well as other related namespaces)
contains types related to network programming
(requests/responses, sockets, end points, and so on).

These namespaces define types that support runtime type
discovery as well as dynamic creation of types.

This namespace provides facilities to allow .NET types to
interact with “unmanaged code” (e.g., C-based DLLs and
COM servers) and vice versa.

This namespace (among others) defines types used to build
solutions that incorporate the .NET remoting layer.

Security is an integrated aspect of the .NET universe. In the
security-centric namespaces you find numerous types dealing
with permissions, cryptography, and so on.

This namespace defines types used to build multithreaded
applications.

A number of namespaces are specifically geared toward the
development of .NET web applications, including ASPNET
and XML web services.

This namespace contains types that facilitate the construction
of traditional desktop GUI applications.

The XML-centric namespaces contain numerous types used
to interact with XML data.

Accessing a Namespace Programmatically

It is worth reiterating that a namespace is nothing more than a convenient way for us mere humans
to logically understand and organize related types. Consider again the System namespace. From your
perspective, you can assume that System.Console represents a class named Console that is contained
within a namespace called System. However, in the eyes of the .NET runtime, this is not so. The run-
time engine only sees a single entity named System.Console.

InVisual Basic 2005, the Imports keyword simplifies the process of referencing types defined in
a particular namespace. Here is how it works. Let’s say you are interested in building a traditional
desktop application. The main window renders a bar chart based on some information obtained
from a back-end database and displays your company logo. While learning the types each name-
space contains takes study and experimentation, here are some obvious candidates to reference in
your program:

Imports
Imports
Imports
Imports
Imports

System

System.Drawing
System.Windows.Forms
System.Data
System.Data.SqlClient

Here are all the namespaces used to build this application.

General base class library types.

' Graphical rendering types.
' QUI widget types.

General data-centric types.
MS SQL Server data access types.

CHAPTER 1 " THE PHILOSOPHY OF .NET

Once you have specified some number of namespaces (and set a reference to the assemblies
that define them, which is explained in Chapter 2), you are free to create instances of the types they
contain. For example, if you are interested in creating an instance of the Bitmap class (defined in the
System.Drawing namespace), you can write the following:

Explicitly list the namespaces used by this file.
Imports System
Imports System.Drawing

Class MyApp
Public Sub Displaylogo()
' Create a 20 x 20 pixel bitmap.
Dim companylLogo As Bitmap = New Bitmap(20, 20)

End Sub
End Class
Because your application is referencing System.Drawing, the compiler is able to resolve the
Bitmap class as a member of this namespace. If you did not specify the System.Drawing namespace,
you would be issued a compiler error. However, you are free to declare variables using a fully quali-
fied name as well:

Not listing System.Drawing namespace!
Imports System

Class MyApp
Public Sub Displaylogo()
' Create a 20 x 20 pixel bitmap.
Dim companylLogo As System.Drawing.Bitmap = _
New System.Drawing.Bitmap(20, 20)

End Sub

End Class

While defining a type using the fully qualified name provides greater readability, I think you'd
agree that the VB 2005 Imports keyword reduces keystrokes. In this text, I will avoid the use of fully
qualified names (unless there is a definite ambiguity to be resolved) and opt for the simplified
approach of the Imports keyword.

However, always remember that this technique is simply a shorthand notation for specifying
a type’s fully qualified name, and each approach results in the exact same underlying CIL (given the
fact that CIL code always makes use of fully qualified names) and has no effect on performance or
the size of the generated assembly.

Referencing External Assemblies

In addition to specifying a namespace via the VB 2005 Imports keyword, you also need to tell the
VB 2005 compiler the name of the assembly containing the actual CIL definition for the referenced
type. As mentioned, many core .NET namespaces live within mscorlib.dll. However, the System.
Drawing.Bitmap type is contained within a separate assembly named System.Drawing.dl1l. A vast
majority of the NET Framework assemblies are located under a specific directory termed the global
assembly cache (GAC). On a Windows machine, this can be located under C:\WINDOWS\assembly,
as shown in Figure 1-6.

25

26

CHAPTER 1 © THE PHILOSOPHY OF .NET

i C:\WINDOWS\assembly =19
File Edit View Favorites Tools Help 4’

<) </ i\r /..-\JSearch Folders E \il-l x Elv

Address |03 C:\WINDOWS assembly v B
Assembly Name | Version | Cul... | Public Key Token | Processor ... #
aﬁ'lSyshem.DirectoryServ... 2.0.0.0 b03f5f7f11d50a3a MSIL

aﬁ'lSyshem.DirectoryServ... 2.0.0.0 b03f5f7f11d50a3a MSIL
System.Drawing 1.0.5000.0 b03f5f7f11d50a3a

stem.Drawing 2.0.0.0 b03f5f7f11d50a3a MSIL
aﬁ'lSystem.Drawing.Design 1.0.5000.0 b03f5f7f11d50a3a
aﬁ'lSystem.Drawing.Design 2.0.0.0 b03f5f7f11d50a3a MSIL v
F
< ¥

Figure 1-6. The base class libraries reside in the GAC.

Depending on the development tool you are using to build your .NET applications, you will
have various ways to inform the compiler which assemblies you wish to include during the compi-
lation cycle. You'll examine how to do so in the next chapter, so I'll hold off on the details for now.

Using ildasm.exe

If you are beginning to feel a tad overwhelmed at the thought of gaining mastery over every name-
space in the .NET platform, just remember that what makes a namespace unique is that it contains
types that are somehow semantically related. Therefore, if you have no need for a user interface
beyond a simple console application, you can forget all about the System.Windows.Forms and
System.Web namespaces (among others). If you are building a painting application, the database
namespaces are most likely of little concern. Like any new set of prefabricated code, you learn as
you go. (Sorry, there is no shortcut to “magically” know all the assemblies, namespaces. and types at
your disposal; then again, that is why you are reading this book!)

The Intermediate Language Disassembler utility (i1dasm.exe) allows you to load up any .NET
assembly and investigate its contents, including the associated manifest, CIL code, and type meta-
data. By default, ildasm.exe should be installed under C:\Program Files\Microsoft Visual Studio
8\SDK\v2.0\Bin (if you cannot find ildasm.exe in this location, simply search your machine for
an application named “ildasm.exe”).

Once you locate and run this tool, proceed to the File » Open menu command and navigate to
an assembly you wish to explore. By way of illustration, Figure 1-7 shows the VbNetCalculator.exe
assembly built using the code seen earlier in this chapter. As you can see, ildasm.exe presents the
structure of an assembly using a familiar tree-view format.

Viewing CIL Code

In addition to showing the namespaces, types, and members contained in a given assembly,
ildasm.exe also allows you to view the CIL instructions for a given member. For example, if you
were to double-click the Main() method of the CalcApp class, a separate window would display the
underlying CIL (see Figure 1-8).

CHAPTER 1 " THE PHILOSOPHY OF .NET 27

¥ C:\Documents and Settings\Andrew Troelse... |:||§|r5__<|
File View Help

B4 CiiDocuments and Settingsiandrew TroelseniiMy DocumentsiMyBooks' 1
- » MANIFEST
CalculatorExample

BE CalculatorExample. Calc

e b class public auto ansi

Add ¢ i ink
; E CalculatorExample, Calcapp
& My

E!E MySettings

<

.assembly VbMetCalculator

|3

Figure 1-7. Your new best friend, i1dasm.exe

¥ CalculatorExample.CalcApp::Main : void()
Find Find Next

.method public static void Hain{) cil managed A
{

-entrypoint

.custom instance woid [mscorlib]System.STAThreadAttribute::.ctor{) = (

// Code size 43 (8x2b)

.maxstack 3

.locals init ([8] int32 ans, & |

[1] class CalculatorExample.Calc c)

IL_88688: nop

IL_8881: newobj instance void CalculatorExample.Calc::.ctor()

IL_8886: stloc.1

IL_8867: 1dloc.1

IL_8888: ldc.ik.s 18

IL_@8Ba: 1ldc.ik.s 84

<

|

|

Figure 1-8. Viewing the underlying CIL

Viewing Type Metadata

If you wish to view the type metadata for the currently loaded assembly, press Ctrl+M. Figure 1-9
shows the metadata for the Calc.Add() method.

28

CHAPTER 1 © THE PHILOSOPHY OF .NET

¥ Metalnfo

Find Find Next
Hethod #2 (860808812) ~

HethodName: Add (B6886612)
Flags : [Public] [ReuseSlot] (08008006)
RUA : Bx00002214
ImplFlags : [IL] [Hanaged] (66668686888)
CallCnvntn: [DEFAULT] B
hasThis
ReturnType: I4
2 Arguments
Argument #1: I4
Argument #2: I4
2 Parameters
(1) ParamToken : (68088868684) Hame : x flags: [none] (B66668888)
(2) ParamToken : (688888685) Hame : y flags: [none] (B66668888)

|

< |

|

Figure 1-9. Viewing type metadata via ildasm.exe

Viewing Assembly Metadata

Finally, if you are interested in viewing the contents of the assembly’s manifest, simply double-click
the MANIFEST icon (see Figure 1-10).

¥ C:\Documents and Settings\Andrew Troelse... |

File View Help

B CiiDocuments and SettingsiAndrew Troelseniiy DocumentsiMyBo
> 1
=-- W CalculatorExample
= CalculatorExample. Calc
b .class public auto ansi
B ctor : void()
B add : int32(int3z,ink32)

& CalculatorExample. CalcApp A
< | >
.assembly YbMetCalculator L]

Figure 1-10. Double-click here to view the assembly manifest.

To be sure, ildasm. exe has more options than shown here, and I will illustrate additional features
of the tool where appropriate in the text. As you read through this book, I strongly encourage you to
open your assemblies using ildasm.exe to see how your VB 2005 code is processed into platform-
agnostic CIL code. Although you do not need to become an expert in CIL code to be a VB 2005
superstar, understanding the syntax of CIL will only strengthen your programming muscle.

Deploying the .NET Runtime

It should come as no surprise that .NET assemblies can be executed only on a machine that has the
.NET Framework installed. As an individual who builds .NET software, this should never be an issue,
as your development machine will be properly configured at the time you install the freely available

CHAPTER 1 " THE PHILOSOPHY OF .NET

.NET Framework 2.0 SDK (as well as commercial .NET development environments such as Visual
Studio 2005).

However, if you deploy an assembly to a computer that does not have .NET installed, it will fail
to run. For this reason, Microsoft provides a setup package named dotnetfx.exe that can be freely
shipped and installed along with your custom software. This installation program is included with
the .NET Framework 2.0 SDK, and it is also freely downloadable from Microsoft (in fact, it is suggested
by Windows Update when necessary).

Once dotnetfx.exe is installed, the target machine will now contain the .NET base class libraries,
.NET runtime (mscoree.dl1l), and additional .NET infrastructure (such as the GAC).

Note Do be aware that if you are building a .NET web application, the end user’s machine does not need to be con-
figured with the .NET Framework, as the browser will simply receive generic HTML and possibly client-side JavaScript.

The Platform-Independent Nature of .NET

To close this chapter, allow me to briefly comment on the platform-independent nature of the NET
platform. To the surprise of most developers, .NET assemblies can be developed and executed on
non-Microsoft operating systems (Mac OS X, numerous Linux distributions, and FreeBSD, to name

a few). To understand how this is possible, you need to come to terms with yet another abbreviation
in the .NET universe: CLI (Common Language Infrastructure).

When Microsoft released the .NET platform, it also crafted a set of formal documents that described
the syntax and semantics of the C# and CIL languages, the .NET assembly format, core .NET name-
spaces, and the mechanics of a hypothetical .NET runtime engine (known as the Virtual Execution
System, or VES). Better yet, these documents have been submitted to Ecma International as official
international standards (http://www.ecma-international.org). The specifications of interest are

* ECMA-334: The C# Language Specification
* ECMA-335: The Common Language Infrastructure (CLI)

Note Microsoft has not defined a formal specification regarding the Visual Basic 2005 programming language.
The good news, however, is that the major open-source .NET distributions ship with a compatible BASIC compiler.

The importance of these documents becomes clear when you understand that they enable
third parties to build distributions of the .NET platform for any number of operating systems and/or
processors. ECMA-335 is perhaps the more “meaty” of the two specifications, so much so that is
has been broken into five partitions, as shown in Table 1-3.

Table 1-3. Partitions of the CLI

Partitions of ECMA-335 Meaning in Life

Partition I: Architecture Describes the overall architecture of the CLI, including the rules of the
CTS and CLS, and the mechanics of the .NET runtime engine

Partition II: Metadata Describes the details of .NET metadata

Partition IIIT: CIL Describes the syntax and semantics of CIL code

Partition IV: Libraries Gives a high-level overview of the minimal and complete class libraries

that must be supported by a .NET distribution

Partition V: Annexes A collection of “odds and ends” details such as class library design
guidelines and the implementation details of a CIL compiler

29

30

CHAPTER 1 © THE PHILOSOPHY OF .NET

Be aware that Partition IV (Libraries) defines only a minimal set of namespaces that represent
the core services expected by a CLI distribution (collections, console I/0, file I/0, threading, reflec-
tion, network access, core security needs, XML manipulation, and so forth). The CLI does not define
namespaces that facilitate web development (ASP.NET), database access (ADO.NET), or desktop
graphical user interface (GUI) application development (Windows Forms).

The good news, however, is that the mainstream .NET distributions extend the CLI libraries with
Microsoft-compatible equivalents of ASPNET, ADO.NET, and Windows Forms in order to provide
full-featured, production-level development platforms. To date, there are two major implementa-
tions of the CLI (beyond Microsoft’s Windows-specific offering). Although this text focuses on the
creation of .NET applications using Microsoft’s .NET distribution, Table 1-4 provides information
regarding the Mono and Portable .NET projects.

Table 1-4. Open Source .NET Distributions

Distribution Meaning in Life

http://www.mono-project.com The Mono project is an open source distribution of the CLI that
targets various Linux distributions (e.g., SuSE, Fedora, and so
on) as well asWin32 and Mac OS X.

http://www.dotgnu.org Portable.NET is another open source distribution of the CLI
that runs on numerous operating systems. Portable.NET aims
to target as many operating systems as possible (Win32, AIX,
BeOS, Mac OS X, Solaris, all major Linux distributions, and so on).

Both Mono and Portable.NET provide an ECMA-compliant C# compiler, NET runtime engine,
code samples, documentation, as well as numerous development tools that are functionally
equivalent to the tools that ship with Microsoft’s NET Framework 2.0 SDK. Furthermore, Mono
and Portable.NET collectively ship with a Visual Basic 2005, Java, and C complier.

Note If you wish to learn more about Mono or Portable.NET, check out Cross-Platform .NET Development: Using
Mono, Portable.NET, and Microsoft .NET by M. J. Easton and Jason King (Apress, 2004).

Summary

The point of this chapter was to lay out the conceptual framework necessary for the remainder of this
book. I began by examining a number of limitations and complexities found within the technologies
prior to .NET, and followed up with an overview of how .NET and Visual Basic 2005 attempt to
streamline the current state of affairs.

.NET basically boils down to a runtime execution engine (mscoree.dll) and base class library
(mscorlib.dll and associates). The common language runtime (CLR) is able to host any .NET binary
(aka assembly) that abides by the rules of managed code. As you have seen, assemblies contain CIL
instructions (in addition to type metadata and the assembly manifest) that are compiled to platform-
specific instructions using a just-in-time (JIT) compiler. In addition, you explored the role of the
Common Language Specification (CLS) and Common Type System (CTS).

This was followed by an examination of the i1dasm.exe utility, as well as coverage of how to
configure a machine to host .NET applications using dotnetfx.exe. I wrapped up by briefly address-
ing the platform-independent nature of the .NET platform and the Mono and Portable.NET CLI
distributions.

CHAPTER 2

Building Visual Basic 2005
Applications

As a'VB 2005 programmer, you may choose among numerous tools to build your .NET applications.
This approach is quite different from the world of VB6, where we had only a single IDE to contend
with: Microsoft Visual Basic 6.0. That being said, the point of this chapter is to provide a tour of vari-
ous .NET development options, including, of course, Visual Studio 2005. The chapter opens, however,
with an examination of working with the VB 2005 command-line compiler, vbc.exe, and the simplest
of all text editors, Notepad (notepad. exe). Once you become comfortable compiling code “IDE-free,”
you will then examine how the TextPad application allows you to edit and compile VB 2005 source
code files in a (slightly) more sophisticated manner.

While you could work through this entire text using nothing other than vbc.exe and Notepad/
TextPad, I'd bet you are also interested in working with feature-rich integrated development envi-
ronments (IDEs). To this end, you will be introduced to an open source IDE named SharpDevelop.
This IDE rivals the functionality of many commercial .NET development environments (and it’s free!).
After briefly examining the Visual Basic 2005 Express IDE, you will turn your attention to Visual Studio
2005. This chapter also provides a quick tour of a number of complementary .NET development tools
that every .NET developer should be aware of, and wraps up with a brief discussion regarding the
role of the Microsoft.VisualBasic.dll assembly.

Installing the .NET Framework 2.0 SDK

Before you are able to build .NET applications using the VB 2005 programming language and the
.NET Framework, the first step is to install the freely downloadable .NET Framework 2.0 Software
Development Kit (SDK).

Note Be aware that the .NET Framework 2.0 SDK is automatically installed with Visual Studio 2005 as well as
Visual Basic 2005 Express; therefore, if you plan to use either of these IDEs, there is no need to manually download
or install this software package.

If you are not developing with Visual Studio 2005/Visual Basic 2005 Express, navigate to
http://msdn.microsoft.com/netframework and search for “.NET Framework 2.0 SDK”. Once you
have located the appropriate page, download the setup program (setup.exe) and save it to a con-
venient location on your hard drive. At this point, double-click the executable to install the software.

31

32

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

After the installation process has completed, not only will your development machine be
configured with the necessary .NET infrastructure, but it also now contains numerous development
tools (a majority of which are command-line utilities), a very robust local help system (the MSDN
Library), sample code, tutorials, and various white papers.

By default, the .NET Framework 2.0 SDK is installed under C:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0. Here you will find StartHere.htm, which (as the name suggests) serves as an
entry point to other related documentation. Table 2-1 describes the details behind some of the core
subdirectories off the installation root.

Table 2-1. Select Subdirectories of the .NET Framework 2.0 SDK Installation Root

Subdirectory Meaning in Life

\Bin Contains a majority of the .NET development tools. Check out
StartTools.htm for a description of each utility.

\BootStrapper Although you can ignore most of the content in the directory, be aware
that dotnetfx.exe (see Chapter 1) resides under the \Packages\dotnetfx
subdirectory.

\CompactFramework Contains the installer program for the NET Compact Framework 2.0.

\Samples Provides the setup program (and core content) for the .NET Framework

2.0 SDK samples. To learn how to install the samples, consult
StartSamples.htm.

In addition to the content installed under C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0,
the setup program also creates the Microsoft. NET\Framework subdirectory under your Windows
directory. Here you will find a subdirectory for each version of the .NET Framework installed on
your machine. Within a version-specific subdirectory, you will find command-line compilers for
each language that ships with the Microsoft .NET Framework (CIL, VB 2005, C#, J#, and JScript .NET),
as well as additional command-line development utilities and .NET assemblies.

The VB 2005 Command-Line Compiler (vbc.exe)

There are a number of techniques you may use to compile VB 2005 source code. In addition to Visual
Studio 2005 (as well as various third-party .NET IDEs), you are able to create .NET assemblies using
the VB 2005 command-line compiler, vbc.exe (where vbc stands for the Visual Basic Compiler). This
tool is included with the .NET Framework 2.0 SDK. While it is true that you may never decide to build
a large-scale application using the command-line compiler, it is important to understand the basics
of how to compile your *.vb files by hand. I can think of a few reasons you should get a grip on the
process:

* The most obvious reason is the simple fact that you might not have a copy of Visual Studio 2005.
* You plan to make use of automated .NET build tools such as MSBuild or NAnt.

* You want to deepen your understanding of VB 2005. When you use graphical IDEs to build
applications, you are ultimately instructing vbc. exe how to manipulate your VB 2005 input
files. In this light, it’s edifying to see what takes place behind the scenes.

Another nice by-product of working with vbc.exe in the raw is that you become that much
more comfortable manipulating other command-line tools included with the .NET Framework 2.0
SDK. As you will see throughout this book, a number of important utilities are accessible only from
the command line.

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Configuring the VB 2005 Command-Line Compiler

Before you can begin to make use of the VB 2005 command-line compiler, you need to ensure that
your development machine recognizes the existence of vbc.exe. If your machine is not configured
correctly, you are forced to specify the full path to the directory containing vbc.exe before you can
compile your VB 2005 code (which can be a pain in the neck).

To equip your development machine to compile *. vb files from any directory, follow these
steps (which assume a Windows XP installation; Windows NT/2000 steps will differ slightly):

1. Right-click the My Computer icon and select Properties from the pop-up menu.
2. Select the Advanced tab and click the Environment Variables button.

3. Double-click the Path variable from the System Variables list box.
4,

Add the following line to the end of the current Path value (note each value in the Path vari-
able is separated by a semicolon):

C:\Windows\Microsoft.NET\Framework\v2.0.50727

Of course, your entry may need to be adjusted based on your current version and location of
the .NET Framework 2.0 SDK (so be sure to do a sanity check using Windows Explorer). Once you
have updated the Path variable, you may take a test run by closing any command windows open in
the background (to commit the settings), and then open a new command window and enter the fol-
lowing command:

vbc /?

If you set things up correctly, you should see a list of options supported by the VB 2005 compiler.

Note When specifying command-line arguments for a given .NET development tool, you may use either — or /
(i.e.,vbc -2 orvbc /?).

Configuring Additional .NET Command-Line Tools

Before you begin to investigate vbc.exe, add the following additional Path variable to the System
Variables list box using the steps outlined previously (again, perform a sanity check to ensure
a valid path):

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin

Recall that this directory contains additional command-line tools that are commonly used during
.NET development. With these two paths established, you should now be able to run any .NET util-
ity from any command window. If you wish to confirm this new setting, close any open command
windows, open a new command window, and enter the following command to view the options of
the Global Assembly Cache (GAC) utility, gacutil.exe:

gacutil /?

Tip Now that you have seen how to manually configure your machine, I'll let you in on a shortcut. The .NET
Framework 2.0 SDK provides a preconfigured command window that recognizes all .NET command-line utilities
out of the box. Click the Start button, and then activate the SDK Command Prompt located under the All Programs
» Microsoft .NET Framework SDK v2.0 menu selection.

33

34

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

Building VB 2005 Applications Using vbc.exe

Now that your development machine recognizes vbc.exe, the next goal is to build a simple single-
file assembly named TestApp.exe using the VB 2005 command-line compiler and Notepad. First,
you need some source code. Open Notepad and enter the following:

A simple VB 2005 application.
Imports System

Module TestApp
Sub Main()
Console.WritelLine("Testing! 1, 2, 3")
End Sub
End Module

Once you have finished, save the file in a convenient location (e.g., C:\VbcExample) as TestApp. vb.
Now, let’s get to know the core options of the VB 2005 compiler. The first point of interest is to under-
stand how to specify the name and type of assembly to create (e.g., a console application named
MyShell.exe, a code library named MathLib.d11, a Windows Forms application named MyWinApp.
exe, etc.). Each possibility is represented by a specific flag passed into vbc.exe as a command-line
parameter (see Table 2-2).

Table 2-2. Output-centric Options of the VB 2005 Compiler

Option Meaning in Life

/out This option is used to specify the name of the assembly to be created. By default,
the assembly name is the same as the name of the initial input *. vb file.

/target:exe This option builds an executable console application. This is the default
target, and thus may be omitted when building console applications.

/target:library This option builds a single-file *.d11 assembly.

/target:module This option builds a module. Modules are elements of multifile assemblies
(fully described in Chapter 13).
/target:winexe This option builds an executable Windows application. Although you are

free to build Windows-based applications using the /target:exe flag, the
/target:winexe flag prevents a console window from appearing in the
background.

To compile TestApp.vb into a console application named TextApp.exe, open a command
prompt and change to the directory containing your source code file using the cd command:

cd c:\VbcExample

Next, enter the following command set (note that command-line flags must come before the
name of the input files, not after):

vbc /target:exe TestApp.vb

Here I did not explicitly specify an /out flag, therefore the executable will be named TestApp.exe,
given the name of the initial input file. However, if you wish to specify a unique name for your
assembly, you could enter the following command:

vbc /target:exe /out:MyFirstApp.exe TestApp.vb

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Also be aware that most of the VB 2005 compiler flags support an abbreviated version, such as
/t rather than /target (you can view all abbreviations by entering vbc /? at the command prompt).
For example, you can save yourself a few keystrokes by specifying the following:

vbc /t:exe TestApp.vb

Furthermore, given that the /t:exe flag is the default output used by the VB 2005 compiler, you
could also compile TestApp.vb simply by typing

vbc TestApp.vb

TestApp.exe can now be run from the command line by typing the name of the executable. If
all is well, you should see the message “Testing! 1, 2, 3” print out to the command window (see
Figure 2-1).

Figure 2-1. TestApp in action

Referencing External Assemblies Using vbc.exe

Next up, let’s examine how to compile an application that makes use of types defined in an external
.NET assembly. Speaking of which, just in case you are wondering how the VB 2005 compiler understood
your reference to the System.Console type, recall from Chapter 1 thatmscorlib.dl11 is automatically ref-
erenced during the compilation process.

To illustrate the process of referencing external assemblies, let’s update the TestApp application
to display a Windows Forms message box. Open your TestApp.vb file and modify it as follows:

A simple VB 2005 application.
Imports System

' Add this!
Imports System.Windows.Forms

Module TestApp
Sub Main()
Console.WriteLine("Testing! 1, 2, 3")

' Add this!
MessageBox.Show("Hello!")
End Sub
End Module

Notice the reference to the System.Windows.Forms namespace via the VB 2005 Imports keyword
(introduced in Chapter 1). Recall that when you explicitly list the namespaces used within a given
*.vb file, you avoid the need to make use of fully qualified names (which can lead to hand cramps).

35

36

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

At the command line, you must inform vbc.exe which assembly contains the imported name-
spaces. Given that you have made use of the MessageBox class, you must specify the System.Windows.
Forms.d1ll assembly using the /reference flag (which can be abbreviated to /1):

vbc /r:System.Windows.Forms.dll testapp.vb

If you now rerun your application, you should see what appears in Figure 2-2 in addition to the
console output.

Figure 2-2. Your first Windows Forms application

Compiling Multiple Source Files Using vbc.exe

The current incarnation of the TestApp.exe application was created using a single *.vb source code
file. While it is perfectly permissible to have all of your .NET types defined in a single *. vb file, most
projects are composed of multiple *.vb files to keep your code base a bit more flexible. Assume you
have authored an additional class (again, using Notepad) contained in a new file named HelloMsg. vb:

The HelloMessage class
Imports System
Imports System.Windows.Forms

Class HelloMessage
Sub Speak()
MessageBox.Show("Hello Again")
End Sub
End Class

Assuming you have saved this new file in the same location as your first file (e.g., C:\VbcExample),
update your TestApp class to make use of this new type, and comment out the previous Windows
Forms logic. Here is the complete update:

A simple VB 2005 application.

Imports System

' Don't need this anymore.

' Imports System.Windows.Forms

Module TestApp

Sub Main()
Console.Writeline("Testing! 1, 2, 3")
' Don't need this anymore either.

' MessageBox.Show("Hello!")

' Exercise the HelloMessage class!
Dim h As New HelloMessage()
h.Speak()

End Sub

End Module

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

You can compile your VB 2005 files by listing each input file explicitly:
vbc /r:System.Windows.Forms.dll testapp.vb hellomsg.vb

As an alternative, the VB 2005 compiler allows you to make use of the wildcard character (*)
to inform vbc.exe to include all *.vb files contained in the project directory as part of the current
build:

vbc /r:System.Windows.Forms.d1ll *.vb

When you run the program again, the output is identical. The only difference between the two
applications is the fact that the current logic has been split among multiple files.

Referencing Multiple External Assemblies Using vbc.exe

On a related note, what if you need to reference numerous external assemblies using vbc.exe?
Simply list each assembly using a comma-delimited list. You don't need to specify multiple external
assemblies for the current example, but some sample usage follows:

vbc /r:System.Windows.Forms.dll,System.Drawing.d1l *.vb

Working with vbc.exe Response Files

As you might guess, if you were to build a complex VB 2005 application at the command prompt,
your life would be full of pain as you type in the flags that specify numerous referenced assemblies
and *.vb input files. To help lessen your typing burden, the VB 2005 compiler honors the use of
response files.

VB 2005 response files contain all the instructions to be used during the compilation of your
current build. By convention, these files end in an *.rsp (response) extension. Assume that you
have created a response file named TestApp.rsp that contains the following arguments (as you can
see, comments are denoted with the # character):

This is the response file
for the TestApp.exe app
of Chapter 2.

External assembly references.
/r:System.Windows.Forms.dll

output and files to compile (using wildcard syntax).
/target:exe /out:TestApp.exe *.vb

Now, assuming this file is saved in the same directory as the VB 2005 source code files to be
compiled, you are able to build your entire application as follows (note the use of the @ symbol):

vbc @TestApp.rsp

If the need should arise, you are also able to specify multiple *.rsp files as input (e.g.,
vbc @FirstFile.rsp @SecondFile.rsp @ThirdFile.rsp).If you take this approach, do be aware that
the compiler processes the command options as they are encountered! Therefore, command-line
arguments in a later *.rsp file can override options in a previous response file.

Also note that flags listed explicitly on the command line before a response file will be overrid-
den by the specified *.rsp file. Thus, if you were to enter

vbc /out:MyCoolApp.exe @TestApp.rsp

37

38

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

the name of the assembly would still be TestApp.exe (rather than MyCoolApp.exe), given the
/out:TestApp.exe flag listed in the TestApp.rsp response file. However, if you list flags after
aresponse file, the flag will override settings in the response file. Thus, in the following command
set, your assembly is indeed named MyCoolApp.exe.

vbc @TestApp.rsp /out:MyCoolApp.exe

Note The /reference flag is cumulative. Regardless of where you specify external assemblies (before, after,
or within a response file) the end result is a summation of each reference assembly.

The Default Response File (vbc.rsp)

The final point to be made regarding response files is that the VB 2005 compiler has an associated
default response file (vbc.rsp), which is located in the same directory as vbc.exe itself (e.g., C:\
Windows\Microsoft. NET\Framework\v2.0.50727). If you were to open this file using Notepad, you
will find that numerous .NET assemblies have already been specified using the /r: flag. As you would
expect, you will come to understand the role of each of these .NET libraries over the course of the
text. However, to set the stage, here is a look within vbc.rsp:

This file contains command-line options that the VB
command-line compiler (VBC) will process as part

of every compilation, unless the "/noconfig" option
is specified.

Reference the common Framework libraries
/r:Accessibility.dll
/r:Microsoft.Vsa.dll
/1:System.Configuration.dll
/r:System.Configuration.Install.dll
/r:System.Data.dll
/1:System.Data.OracleClient.dll
/r:System.Data.SqlXml.d11
/r:System.Deployment.dll
/1:System.Design.dll
/r:System.DirectoryServices.dll
/r:System.dll
/1:System.Drawing.Design.dll
/r:System.Drawing.dl1l
/r:System.EnterpriseServices.dll
/1:System.Management.dll
/r:System.Messaging.dll
/r:System.Runtime.Remoting.dll
/1:System.Runtime.Serialization.Formatters.Soap.dll
/r:System.Security.dll
/r:System.ServiceProcess.dll
/1:System.Transactions.dll
/r:System.Web.dll
/r:System.Web.Mobile.dll
/1:System.Web.RegularExpressions.dll
/r:System.Web.Services.dll
/r:System.Windows.Forms.d1l
/1:System.XML.d11l

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Import System and Microsoft.VisualBasic
/imports:System
/imports:Microsoft.VisualBasic

Note Understand that the default response file is only referenced when working with the command-line compiler.
The Visual Basic 2005 Express and Visual Studio 2005 IDEs do not automatically set references to these libraries.

When you are building your VB 2005 programs using vbc. exe, this file will be automatically ref-
erenced, even when you supply a custom *.rsp file. Given the presence of the default response file,
the current TestApp.exe application could be successfully compiled using the following command
set (as System.Windows.Forms.dl1l is referenced within vbc.rsp):

vbc /out:TestApp.exe *.vb

In the event that you wish to disable the automatic reading of vbc.rsp, you can specify the
/noconfig option:

vbc @TestApp.rsp /noconfig

Obviously, the VB 2005 command-line compiler has many other options that can be used to
control how the resulting .NET assembly is to be generated. At this point, however, you should have
a handle on the basics. If you wish to learn more details regarding the functionality of vbc. exe, search
the .NET Framework 2.0 documentation for the term “vbc.exe”.

Source Code The VbcExample project is included under the Chapter 2 subdirectory.

Building .NET Applications Using TextPad

While Notepad is fine for creating simple .NET programs, it offers nothing in the way of developer
productivity. It would be ideal to author *.vb files using an editor that supports (at a minimum) key-
word coloring, font settings, and integration with the VB 2005 compiler. As luck would have it, such
a tool does exist: TextPad.

TextPad is an editor you can use to author and compile code for numerous programming lan-
guages, including VB 2005. The chief advantage of this product is the fact that it is very simple to use
and provides just enough bells and whistles to enhance your coding efforts.

To obtain TextPad, navigate to http://www.textpad.com and download the current version (4.7.3
at the time of this writing). Once you have installed the product, you will have a feature-complete
version of TextPad; however, this tool is not freeware. Until you purchase a single-user license (for
around US$30.00 at the time of this writing), you will be presented with a “friendly reminder” each
time you run the application.

Enabling VB 2005 Keyword Coloring

TextPad is not equipped to understand VB 2005 keywords or work with vbc.exe out of the box. To do
so0, you will need to install an additional free add-on. Navigate to http://www.textpad.com/add-ons/
syna2g.html and locate and download vbdotnet8.zip using the “VB.NET(6)” link option. This add-
on takes into account the new keywords introduced with VB 2005 (in contrast to the older “VB.NET”
links, which are limited to keywords of Visual Basic .NET 1.1).

39

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

Once you have unzipped vbdotnet8.zip, place a copy of the extracted vbdotnet8.syn file in the
Samples subdirectory of the TextPad installation (e.g., C:\Program Files\TextPad 4\Samples). Next,
launch TextPad and perform the following tasks using the New Document Wizard.

1. Activate the Configure » New Document Class menu option.

2. Enter the name VB 2005 in the “Document class name” edit box.
3. In the next step, enter *.vb in the “Class members” edit box.
4.

Finally, enable syntax highlighting, choose vbdotnet8.syn from the drop-down list box, and
finish the wizard.

You can now tweak TextPad’s VB 2005 support using the Document Classes node accessible
from the Configure » Preferences menu (see Figure 2-3).

Preferences
View #| Fiesin class Document class options: ~
(= Document Classes VB 2005 Maintain indentation 1

Default vb Automatically indent blocks

Binary [Include trailing spaces when selecting

Command Res. [Strip trailing spaces from lines when sa

Search Results [View in web browser

Cca20 [Write Unicode and UTF-8 BOM r

C/C++ [Word wrap long lines

HTML 2 Word wrapped text:

Java (®) Save with no breaks in lines

Text () Save with hard breaks

= L ‘& Check spelling of: e
Colors me - B
Fant A3 J >
g::dd:(g X [[]Word break at column number: 70
Tabulation [Apply these settings to all document classes

Associated Files %

< | @ ok J(cCancel J[ooy J[Heb]

Figure 2-3. Setting TextPad’s VB 2005 preferences

Configuring the *.vb File Filter

The next configuration detail is to create a filter for VB 2005 source code files displayed by the Open
and Save dialog boxes:
1. Activate the Configure » Preferences menu option and select File Name Filters from the

tree-view control.

2. Click the New button, and enter VB 2005 into the Description field and *.vb into the Wild
cards text box.

3. Move your new filter to the top of the list using the Move Up button, and click OK.

Create a new file (using File » New) and save it in a convenient location (such as
C:\TextPadTestApp) as TestPadTest.vb. Next, enter a trivial class definition (see Figure 2-4).

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

o TextPad - [C:\TextPadTestApp\TestPadTest.vb] = |
File Edit Search View Tools Macros Configure Window Help -8 x

D BELE| 2B 2|
2T QT HR | ELH| e » | N2

1= Imports System —

=

Command Results
TestPadTest vb Module MyApp
Sub Main()
Console WriteLine("This is a test, this is only a test..")
Console.ReadLine()
End Sub
End Module

£ I} >
File: TestPadTest.vb, 150 bytes, & lines, PC, ANSI [2 Read ¢

Figure 2-4. TestPadTest.vb

Hooking Into vbc.exe

The last major configuration detail to contend with is to associate vbc.exe with TextPad so you can
compile your *.vb files. The first way to do so is using the Tools » Run menu option. Here you are
presented with a dialog box that allows you to specify the name of the tool to run and any necessary
command-line flags. To compile TextPadTest.vb into a .NET console-based executable, follow these
steps:

1. Enter the full path to vbc.exe into the Command text box (e.g., C:\Windows\Microsoft. NET\
Framework\v2.0.50727\vbc.exe).

2. Enter the command-line options you wish to specify within the Parameters text box (e.g.,
/out:myApp.exe *.vb).Recall that you can specify a custom response file to simplify matters
(e.g., @myInput.zsp).

3. Enter the directory containing the input files via the Initial folder text box (C:\TextPadTestApp
in this example).

4. Ifyou wish TextPad to capture the compiler output directly (rather than within a separate
command window), select the Capture Output check box.

Figure 2-5 shows the complete compilation settings.

Run le
Command: |C:"-.Windows"-.Mic:rDsoﬂ.NET'-.FIamework"-.vZ.D.5 v|
P |f0Lrt:myApp.exe *vb |

Iniial folder: [C:\TextPadTestApp |

[1DOS Command
[Close DOS window on exit [Run Minimized

[ok][cancel | [Bowse.. | [Hep |

Figure 2-5. Specifying a custom run command

41

42

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

At this point, you can either run your program by double-clicking the executable using Win-
dows Explorer or leverage the Tools » Run menu option to specify myApp.exe as the current
command (see Figure 2-6).

Run fgl
Command: |myﬂpp.exe - |
P | |
Iniial folder: ~ [C:\TextPadTestApp |

[D05 Command
[Close DOS window on exit [Run Minimized

[QK] [Cancel] [Browse...] [Help]

Figure 2-6. Instructing TextPad to run myApp.exe

When you click OK, you should see the program’s output (“This is a test, this is only a test . . .”)
displayed in the Command Results document.

Associating Run Commands with Menu Items

TextPad also allows you to create custom menu items that represent predefined run commands.
Let’s create a custom item under the Tools menu named “Compile VB 2005 Code” that will compile
all VB 2005 files in the current directory into a console application:

1. Activate the Configure » Preferences menu option and select Tools from the tree-view control.

2. Using the Add button, select Program and specify the full path to vbc.exe.

3. If you wish, rename vbc.exe to a more descriptive label (Compile VB 2005 Code) by clicking
the tool name and then clicking OK.

4. Finally, activate the Configure » Preferences menu option once again, but this time select
Compile VB 2005 from the Tools node, and specify *.vb as the sole value in the Parameters
field (see Figure 2-7).

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Preferences
Edtor #| " Command: |CAWINDOWS \Microsoft. NET\Framework w2.0.502|
View
Document Classes . bl |
Associated Files Iniial folder: ~ [SFileDir |
Backup
File Name Fitters [] Prompt for parameters Capture output
Folders [Run minimized [Suppress output until completed
Keyboard [] save all documents first Sound alert when completed
Language
Macros
Speling Regular expression to match output:
=- Tools |"'"-.I:f‘|]+"'-.}l_'"-.I:[D—5]+"'-}}Z |
Compile Java :
Run Java Appli Registers:
Run Java Apple File:| 1 = | Line:| 2 v | Column:| v |
Compile C# Cot
Compile VB 2005 Code
v
< | @ ok J(cancel J[ooy J[heb]

Figure 2-7. Creating a Tools menu item

With this, you can now compile all VB 2005 files in the current directory using your custom
Tools menu item. Of course, you can repeat this process to add any number of custom menu items,
which will compile your code and execute your assemblies.

As you may agree, TextPad is a step in the right direction when contrasted to Notepad and the
command prompt. However, TextPad does not (currently) provide IntelliSense capabilities for VB
2005 code, GUI designer tools, project templates, or database manipulation wizards. To address
such needs, allow me to introduce the next .NET development tool: SharpDevelop.

Building .NET Applications Using SharpDevelop

SharpDevelop is an open source and feature-rich IDE that you can use to build .NET assemblies
using Visual Basic .NET, C#, Managed Extensions for C++, or CIL. Beyond the fact that this IDE is
completely free, it is interesting to note that it was written entirely in C#. In fact, you have the choice
to download and compile the *. cs files manually or run a setup.exe program to install SharpDevelop
on your development machine. Both distributions can be obtained from http://www.icsharpcode.
net/OpenSource/SD/Download.

Once you have installed SharpDevelop, the File » New » Combine menu option allows
you to pick which type of project you wish to generate (and in which .NET language). In the lingo
of SharpDevelop, a combine s a collection of individual projects (analogous to a Visual Studio solution).
Assume you wish to create a VB 2005 Windows application named MySDWinApp (see Figure 2-8).

43

44 CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

New Project

T
N
Console Windows Direct3D Empty Project SUGTEETE
Application User Cont... Application Application
o
Class Library ~ Windows

Service

A project that creates an application with a Windows interface.

MName:|MySDWinfpp |
Location: |C:"-.D0c:uments and Settings“Andrew Troelsen'\My Documents'\SharpDev | :]

New Project Name: | MySDWinApp | [Create directory for Sources
Auto create project subdir

Project will be created at C:\...\Andrew Troelseni\My Documents'\SharpDevelop
Prricrtoibh&Nnfinfnn

[Create ” Cancel

Figure 2-8. The SharpDevelop New Project dialog box

Note Be aware that version 1.1 of SharpDevelop is configured to make use of the VB .NET 1.1 compiler. At the
time of this writing, SharpDevelop 2.0 is in beta 2 and has full support for all .NET 2.0 language features. In this
overview, the menu options and screen shots are all specific to SharpDevelop 1.1.

Learning the Lay of the Land: SharpDevelop
SharpDevelop provides numerous productivity enhancements and in many cases is as feature-rich
as Visual Studio .NET 2003 (but not currently as powerful as Visual Studio 2005). Here is a hit list of
some of the major benefits:

¢ Support for the Microsoft and Mono (see Chapter 1) compilers

¢ IntelliSense and code expansion capabilities

¢ An Add Reference dialog box to reference external assemblies, including assemblies
deployed to the Global Assembly Cache (GAC)

* Avisual Windows Forms designer

 Various project perspective windows (termed scouts) to view your projects
* Anintegrated object browser utility (the Assembly Scout)

¢ Database manipulation utilities

* AVB.NET to C# (and vice versa) code conversion utility

* Integration with the NUnit (a .NET unit test utility), NDoc (a .NET code documentation util-
ity), and NAnt (a .NET build utility)

¢ Integration with the .NET Framework SDK documentation (e.g., the MSDN Library)

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS 45

Impressive for a free IDE, is it not? Although this chapter doesn’t cover each of these points in
detail, let’s walk through a few items of interest. If you require further details of SharpDevelop, be
aware that it ships with very thorough documentation accessible from the Help » Help Topics
menu option.

The Project and Classes Scouts

When you create a new combine, you can make use of the Project Scout (accessed via the View »
Project menu option) to view the set of files, referenced assemblies, and resource files of each project
(see Figure 2-9).

= E Combine "MySDWinApp' (1 entry)
=-ZF] MySDWinApp

{2 Resource files

{z3) References

=} Assemblylrfo.vb

------ = e

[Projects |%Class&s | EaFiles | [l Tooks |

Figure 2-9. The Project Scout

When you wish to reference an external assembly for your current project, simply right-click
the References icon within the Project Scout and select the Add Reference context menu. Once you
do, you may select assemblies directly from the GAC as well as custom assemblies via the .NET
Assembly Browser tab (see Figure 2-10).

Add Reference

GAC | Projects || .NET Assembly Browser | COM |
Reference Mame Version Path L] Select
System.Data 1.0.5000.0
System Data OracleClient 1.0.5000.0
System Design 1.0.5000.0
System DirectoryServices 1.0.5000.0
System Drawing 1.0.5000.0
System Drawing. Design 1.0.5000.0
System Enterprise Services 1.0.5000.0
System Management 1.0.5000.0
System Messaging 1.0.5000.0 =
System.Rurtime. Remoting 1.0.5000.0 ==
System Runtime. Serialization.... 1.0.5000.0
System . Security 1.0.5000.0
Selected References
Reference MName Type Location Remove

[ok] [cancel | [Hep

Figure 2-10. The SharpDevelop Add Reference dialog box

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

The Classes Scout (accessed via the View » Classes menu option) provides a more object-
oriented view of your combine in that it displays the namespaces, types, and members within each
project (see Figure 2-11).

Classes 5]
= [MySDWinApp
=) MySDWinApp
=-{} MySDWinApp
B%

3’ InitializeComponent()

@ Frojects “gClasses |E]Fi|&s [Tools |

Figure 2-11. The Classes Scout

If you double-click any item, SharpDevelop responds by opening the corresponding file and
placing your mouse cursor at the item’s definition.

The Assembly Scout

The Assembly Scout utility (accessible from the View menu) allows you to graphically browse the
assemblies referenced within your project. This tool is split into two panes. On the left is a tree-view
control that allows you to drill into an assembly and view its namespaces and the contained types
(see Figure 2-12).

'I'ree| Search| 4 || Info | Disassr:mblr:r| Outline | XML | Extended 4 b
-0 mscorlib rS .
EII]\ mscorlib.dil | Array List
£} Microsoft.Win32 . o
---{} System = ype Hack
=4} System.Collections

public dass ArrayList
Arraylist

Base Types:

System.Object

System, Collections. IList
System. Collections. ICollection
System. Collections. IEnumerable
System.ICloneable

Attributes:
System.Reflection. DefaultMemberAttribute ("Ttem”)

Mamespace: System. Collections

Contained In: mscorlib

< 1]

Figure 2-12. Viewing referenced assemblies using the Assembly Scout

The right side of the Assembly Scout utility allows you to view details of the item selected on
the left pane. Not only can you view the basic details using the Info tab, but also you can view the
underlying CIL code of the item and save its definition to an XML file.

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Windows Forms Designers

As you will learn later in this book, Windows Forms is a toolkit used to build desktop applications
with the .NET platform. To continue tinkering with SharpDevelop, click the Design tab located at
the bottom of the MainForm.vb code window. Once you do, you will open the integrated Windows
Forms designer.

Using the Windows Forms section of your Tools window, you can create a GUI for the Form you
are designing. To demonstrate this, place a single Button type on your main Form by activating the
Tools Scout (via the View menu), selecting the Button icon, and clicking the designer. To update the
look and feel of any GUI item, you can make use of the Properties window (see Figure 2-13), which
you activate from the View » Properties menu selection. Select the Button from the drop-down list
and change various aspects of the Button type (e.g., BackColor and Text).

button1 System \Windows.Forms.Button v
E(8lBE 7 5
Tablndex 0 ~
TabStop True
Tag
Text Click Me
TextMlign MiddleCenter
Visible True =
v
Text
The text contained in the control.
B4 Properties |@Contenis| [] Index | O search |
S

Figure 2-13. The Properties window

Using this same window, you can handle events for a given GUT item. To do so, click the
lightning bolt icon at the top of the Properties window. Next, select the GUI item you wish to inter-
act with from the drop-down list (your Button in this case). Finally, handle the Click event by typing
in the name of the method to be called when the user clicks the button (see Figure 2-14).

button1 System \Windows.Forms.Button W
82 (%) B 7]
ButtonCiicked s

ContextMenuChanged
CursorChanged
DockChanged
DragDrop

DiragEnter

Dranl oz
Click
Occurs when the control is clicked.

B4 Properties |@Contenis| [] Index | O search |
—

Figure 2-14. Handing events via the Properties window

47

48

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

Once you press the Enter key, SharpDevelop responds by generating stub code for your new
method. To complete the example, enter the following statement within the scope of your event
handler:

Private Sub ButtonClicked(sender As System.Object, _
e As System.EventArgs)
' Update the Form's caption with a custom message.
Me.Text = "Stop clicking my button!"

End Sub

At this point, you can run your program (using the Debug » Run menu item). Sure enough,
when you click your Button, you should see the Form’s caption update as expected.

That should be enough information to get you up and running using the SharpDevelop IDE.
I do hope you now have a good understanding of the basics, though obviously there is much more
to this tool than presented here.

Building .NET Applications Using Visual Basic
2005 Express

During the summer of 2004, Microsoft introduced a brand-new line of IDEs that fall under the des-
ignation of “Express” products (http://msdn.microsoft.com/vstudio/express). To date, there are six
members of the Express family:

* Visual Web Developer 2005 Express: A lightweight tool for building dynamic websites and
XML web services using ASPNET 2.0

e Visual Basic 2005 Express: A streamlined programming tool ideal for .NET programmers who
want to learn how to build applications using the user-friendly syntax of Visual Basic

» C# Express, Visual C++ 2005 Express, and Visual J# 2005 Express: Targeted IDEs for students and
enthusiasts who wish to learn the fundamentals of computer science in their syntax of choice

* SQL Server 2005 Express: An entry-level database management system geared toward hobby-
ists, enthusiasts, and student developers

Note At the time of this writing, the Express family products are available free of charge for one calendar year.
After that term of use has expired, you may purchase a given Express IDE for around US$49.00.

By and large, Express products are slimmed-down versions of their Visual Studio 2005 counterparts
and are primarily targeted at .NET hobbyists and students. Like SharpDevelop, Visual Basic 2005
Express provides various object browsing tools, a Windows Forms designer, the Add References dia-
log box, IntelliSense capabilities, and code expansion templates. As well, Visual Basic 2005 Express
offers a few (important) features currently not available in SharpDevelop, including

* Anintegrated graphical debugger
¢ Tools to simplify access to XML web services
Because the look and feel of Visual Basic 2005 Express is so similar to that of Visual Studio 2005

(and, to some degree, SharpDevelop) I will not provide a full walk-through of this particular IDE
here. However, once you have installed this product, you may create a new Visual Basic 2005 project

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

via the File » New Project menu option. Notice in Figure 2-15 that not only are you able to define
Windows, console, and code library-based projects, but also you can create a new “starter kit”
application. Simply put, starter kits are complete VB 2005 applications that can be dissected and
extended to your liking.

New Project

Templates: || E
Visual Studio installed templates

#oE A o

Windows Class Library Console ILMINWER Screen Saver
Application Application Collection Starter Kit
Starter Kit

My Templates

Search Online
Templates. ..

A sample application to track your collection of movies. Indudes source code and tutorials.

Mame: | MyMovieCollection1 |

[0K] [Cancel

Figure 2-15. Creating a new Visual Basic 2005 Express project

The Big Kahuna: Building .NET Applications Using
Visual Studio 2005

If you are a professional .NET software engineer, the chances are extremely good that your employer
has purchased Microsoft’s premier IDE, Visual Studio 2005, for your development endeavors
(http://msdn.microsoft.com/vstudio/products). This tool is far and away the most feature-rich
and enterprise-ready IDE examined in this chapter. Of course, this power comes at a price, which
will vary based on the version of Visual Studio 2005 you purchase. As you might suspect, each ver-
sion supplies a unique set of features.

My assumption during the remainder of this text is that you have chosen to make use of Visual
Studio 2005 as your IDE of choice. Do understand that owning a copy of Visual Studio 2005 is not
required for you to use this edition of the text. In the worst case, I may examine an option that is not
provided by your IDE. However, rest assured that all of this book’s sample code will compile just fine
when processed by your tool of choice.

Note Once you download the source code for this book from the Downloads area of the Apress website
(http://www.apress.com), you may load the current example into Visual Studio 2005 by double-clicking the
example’s *. s1n file. If you are not using Visual Studio 2005, you will need to manually configure your IDE to
compile the provided *. vb files.

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

Learning the Lay of the Land: Visual Studio 2005

Visual Studio 2005 ships with the expected GUI designers, database manipulation tools, object and
file browsing utilities, and an integrated help system. Unlike the IDEs we have already examined,
Visual Studio 2005 provides numerous additions. Here is a partial list:

¢ Visual XML editors/designers

* Support for mobile device development (such as Smartphones and Pocket PC devices)

 Support for Microsoft Office development

» The ability to track changes for a given source document and view revisions

* Support for XML-based code expansions

* Visual tools to construct ASPNET 2.0 web applications

To be completely honest, Visual Studio 2005 provides so many features that it would take an
entire book (and a large book at that) to fully describe every aspect of the IDE. This is not that book.

However, I do want to point out some of the major enhancements in the pages that follow. As you
progress through the text, you'll learn more about the Visual Studio 2005 IDE where appropriate.

The Solution Explorer Utility

If you are following along, create a new VB 2005 console application (named Vs2005Example) using
the File » New » Project menu item. The Solution Explorer utility (accessible from the View menu)
allows you to view the set of all content files and referenced assemblies that comprise the current
project (see Figure 2-16).

Solution Explorer - Vs2005Example

&S
R Solution 'Vs2005Example’ (1 project)

[ERNE] vs2005Example
|=d] My Project
5] Module1.vb

Dg Solution Explorer @ Class View L?;‘ﬁ Team Explorer

Figure 2-16. Visual Studio 2005 Solution Explorer

Similar to SharpDevelop, when you need to reference additional assemblies, right-click the
Project icon and select Add Reference. At this point, you can select your assembly from the resulting
dialog box (console projects reference System.d1l, System.Data.dl1l, System.Deployment.dll, and
System.Xml.dll by default).

Note If you wish to view the set of all assemblies referenced by your current project, one way to do so is to
click the Show All Files button at the top of Solution Explorer and open the References folder. Once you do, you will
see an icon for each assembly currently referenced.

The My Project Perspective

Next, notice an icon named My Project within Solution Explorer. When you double-click this item,
you are presented with an enhanced project configuration editor (see Figure 2-17).

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS 51

/‘lsZDDSBﬁmpIeYModuleva }/Start Page] - X
Application :
Compile
Assembly name: Root namespace: L]
Debug |'p’sZDDSExampIe | |VsZDDSExampIe
References Application type: Icon: b
|C0nso|e Application w | |(Default Icon) w | E
Settings
Startup object:
Resources |Module1 V| [Assembly Information...]
v
~|= &

Figure 2-17. The MyProject window

You will see various aspects of the Project Properties window as you progress through this text.
However, if you take some time to poke around, you will see that you can establish various security
settings, “strongly name” your assembly, insert string resources, and configure pre- and postbuild
events.

The Class View Utility

The next tool to examine is the Class View utility, which you can load from the View menu. Like
SharpDevelop, the purpose of this utility is to show all of the types in your current project from an
object-oriented perspective. The top pane displays the set of namespaces and their types, while the
bottom pane displays the currently selected type’s members (see Figure 2-18).

Class View (3]
AR AN
<Search - =

E-{Z] Vs2005Example

=-{£&r References

| B+ Miosoft.VisualBasic
-« mscorlib

<3 System

-+ System.Data

-0l System.Deployment
-« System, Xml

= {} vs2005Example

7

g {} My

=) gﬁg Settings

2]
)
H
H
2
Hl

o =i Main()

@ Solutio... ", (5 Class V.. /m TeamE...

Figure 2-18. The Class View utility

The Object Browser Utility

As you may recall from Chapter 1, Visual Studio 2005 also provides a utility to investigate the set of
referenced assemblies within your current project. Activate the Object Browser using the View »
Other Windows menu, and then select the assembly you wish to investigate (see Figure 2-19).

52 CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

" Object Browser| Modulel.wb | Start Page - X
Browse: NET Framework T = | B [F] -
<Search> - L] = - Adapter(System.Collections.IList) As System.Collections. Arra -
Ao prEE—
&-{} Microsoft.Win32 b | ‘4 AddRange(System. Collections. ICollection) W
& {} Microsoft. Win32.SafeHandles “ BinarySearch(Integer, Integer, Object, System.Collections. I
& {} System “ip BinarySearch{Object) As Integer
= {} System.Collections T ‘i BinarySearch(Object, System. Collections. IComparer) As Inte
1% Arraylist @ Clear()
@ J[g BitArray ‘i Clone() As Object
4§ CaselnsensitiveComparer i Contains(Object) As Boolean b
[#-“f§ CaselnsensitiveHashCodeProvider < | S
[#-“i CollectionBase ——— - - - —
-2 Comparer ;L:Ellc Sr\ferrldable Function Add(ByVal value As Object) As &
g g z:::;ﬂfase Member of System.Collections. Arraylist =
-1 Queue Summary:
% ReadOnlyCollectionBase Adds an object to the end of the
- Sortedlist /| | System.Collections. ArrayList. 2

Figure 2-19. The Visual Studio 2005 Object Browser utility

Visual Studio 2005 Code Snippet Technology

Visual Studio 2005 (as well as Visual Basic 2005 Express) also has the capability to insert complex
blocks of VB 2005 code using menu selections, context-sensitive mouse clicks, and/or keyboard
shortcuts using code snippets. Simply put, a code snippet is a predefined block of Visual Basic 2005
code that will expand within the active code file. As you would guess, code snippets can greatly help
increase productivity given that the tool will generate the necessary code statements (rather than us!).

To see this functionality firsthand, right-click a blank line within your Main() method and acti-
vate the Insert Snippet menu. From here, you will see that related code snippets are grouped under
a specific category (Collections, Math, Security, XML, etc.). For this example, select the Math cate-
gory and then activate the Calculate a Monthly Payment on a Loan snippet (see Figure 2-20).

Object Browser ./ Modulel.vb | Start Page -
|é§l‘-1<xiule1 v|| i Main
[Module Modulel

EINET

Sub Main ()
Insert Sni Math >
End Sub

i Calculate a Monthly Payment on a Loan
Calculate Basic Trigonometrical Functions using Degree Values
End Module |Z] Calculate Basic Trigonometrical Functions using Radian Values &
£ calculate the Sum-of-Years Deprediation
|Z] GetaRandom Mumber using the Random dass

1 o N s L Ry

m

|

<

v

Figure 2-20. Inserting VB 2005 code snippets

Once you select a given snippet, you will find the related code is expanded automatically (press
the Esc key to dismiss the pop-up menu). Many predefined code snippets identify specific “place-
holders” for custom content. For example, once you activate the Calculate a Monthly Payment on
a Loan snippet, you will find three regions are highlighted within the code window. Using the Tab
key, you are able to cycle through each selection to modify the code as you see fit (see Figure 2-21).

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS 53

Object Browser /" Modulel.wb® [Start Page -
|é§l‘-1<xiule1 v|| iy Main
[Module Modulel

ENENES

= Sub Main()
Dim loanfmount As Double

Dim annualPercentRate As Double
Dim futureValue As Double = 0
Dim payment As Doukble

Dim totalPayments As Doukle

e I Ty Y O I N I
i —

(=N

pRES PN Talb b el CDb] (InputBox ("How much do yvou want to borrow
annualPercentRate = CDbl (InputBox ("What is the annual perc

1z totalPayments = CDbl (InputBox ("How many monthly payments w

13 payment = Pmt (annualPercentRate / 12, totalPayments, -loarn

14 M=gBox ("Your payment will be " & payment.ToString("C") & "

15

16 End Sub

18:-End Module N
< 3]

Figure 2-21. The inserted snippet

As you can see, Visual Studio 2005 defines a good number of code snippets. To be sure, the best
way to learn about each possibility is simply through experimentation. Under the hood, each code
snippet is defined within an XML document (taking a *. snippet extension by default) located under
the C:\Program Files\Microsoft Visual Studio 8\Vb\Snippets\1033 directory. In fact, given that each
snippet is simply an XML description of the code to be inserted within the IDE, it is very simple to
build custom code snippets.

Note Details of how to build custom snippets can be found in my article “Investigating Code Snippet Technology”
athttp://msdn.microsoft.com. While the article illustrates building C# code snippets, you can very easily build
VB 2005 snippets by authoring VB 2005 code (rather than C# code) within the snippet’s CDATA section.

The Visual Class Designer

Visual Studio 2005 gives us the ability to design classes visually (but this capability is not included
in Visual Basic 2005 Express). The Class Designer utility allows you to view and modify the relation-
ships of the types (classes, interfaces, structures, enumerations, and delegates) in your project.
Using this tool, you are able to visually add (or remove) members to (or from) a type and have your
modifications reflected in the corresponding *. vb file. As well, as you modify a given VB 2005 file,
changes are reflected in the class diagram.

To work with this aspect of Visual Studio 2005, the first step is to insert a new class diagram file.
There are many ways to do so, one of which is to click the View Class Diagram button located on
Solution Explorer’s right side (see Figure 2-22).

54

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

Solution Explorer - Vs2005Example

2 5 2[Rl

R Solution 'Vs2008yvamnle' (1 nroje
& (= [ETEE] Vien Class Diagram|
i [=d] My Project

o 5] Module1.vb

E‘a Solution Explorer/@ Class \cﬁew/@ Team Explorer

Figure 2-22. Inserting a class diagram file

Once you do, you will find class icons that represent the classes in your current project. If you
click the arrow image, you can show or hide the type’s members (see Figure 2-23). Do note that
Visual Studio 2005 will show you all members in the current project by default. If you wish to delete
a given item from the diagram, simply right-click and select Delete from the context menu (this will

not delete the related code file).

ClassDiagram1.cd* }/ Object Browser }/Module 1.vb* }/Start Page]

Settings ¥
Notinheritable Class
=+ ApplicationSettingsBase

MySettingsProp... ¥
Module

fi
Resources
Module

= Methods
‘% Main

< i} |

Figure 2-23. The Class Diagram viewer

|
|

This utility works in conjunction with two other aspects of Visual Studio 2005: the Class Details
window (activated using the View » Other Windows menu) and the Class Designer Toolbox (activated
using the View » Toolbox menu item). The Class Details window not only shows you the details of
the currently selected item in the diagram, but also allows you to modify existing members and

insert new members on the fly (see Figure 2-24).

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Class Details - Module1

Type Modifier Summary Hide

S
; e i e e | |
g Public O
i
&
B Events
e g
', [Error Lis§ [Class Details

Figure 2-24. The Class Details window

The Class Designer Toolbox (see Figure 2-25) allows you to insert new types into your project (and
create relationships between these types) visually. (Be aware that you must have a class diagram as
the active window to view this toolbox.) As you do so, the IDE automatically creates new VB 2005
type definitions in the background.

=l Class

|k Painter |
= Class

1 Enum

| Interface

®

|

[I Structure
| Delegate
| Module

4 Inheritance
€L Assodiation
|ﬁ Comment
= General =

There are no usable controls in this group. Drag an item onto this v
A Toolbox Server Explorer

Figure 2-25. The Class Designer Toolbox

By way of example, drag a new class from the Class Designer Toolbox onto your Class Designer.
Name this class Car in the resulting dialog box. Now, using the Class Details window, add a public
String field named petName (see Figure 2-26).

55

56

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

lass Details - Car 5]

Wy = | MName Type Modifier Summary Hide
=~ Methods
=4 <add method>
-Properties

4 %

e

 Error Lis Class Details
3 e 3

Figure 2-26. Adding a field with the Class Details window

If you now look at the VB 2005 definition of the Car class (within the newly generated Car.vb
file), you will see it has been updated accordingly:

Public Class Car
' Public data is typically a bad idea,
' however it will simplify this example.
Public petName As String

End Class

Now, add another new class to the designer named SportsCar. Next, select the Inheritance icon
from the Class Designer Toolbox and click the SportsCar icon. Without releasing the mouse button,
move the mouse cursor on top of the Car class icon and release the mouse button. If you performed
these steps correctly, you have just derived the SportsCar class from Car (see Figure 2-27).

Car.vb"/VClassDiagraml.od*}/ObjectBrowser }/Modulel.vb"] F X
A~
P — =
Modulel % Car £
Module Class |
= Methods 1=l Fields
% Main ¥ petName

|

< il |

%

Figure 2-27. Visually deriving from an existing class

To complete this example, update the generated SportsCar class with a public method named
PrintPetName() as follows (don’t concern yourself with the syntax at this point; you'll dig into the
details of class design beginning in the next chapter):

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Public Class SportsCar
Inherits Car
Public Sub PrintPetName()
petName = "Fred"
Console.Writeline("Name of this car is: {0}", petName)
End Sub
End Class

Object Test Bench

Another nice visual tool provided by Visual Studio 2005 is Object Test Bench (OTB). This aspect of
the IDE allows you to quickly create an instance of a class and invoke its members without the need
to compile and run the entire application. This can be extremely helpful when you wish to test

a specific method, but would rather not step through dozens of lines of code to do so.

To work with OTB, right-click the type you wish to create using the Class Designer. For example,
right-click the SportsCar type, and from the resulting context menu select Create Instance »
SportsCar(). This will display a dialog box that allows you to name your temporary object variable
(and supply any constructor arguments if required). Once the process is complete, you will find your
object hosted within the IDE. Right-click the object icon and invoke the PrintPetName() method
(see Figure 2-28).

Object Test Bench ~ 1 X

| Invoke Method || PrintPetiame() %

>< Remove Inherited Methods »

_"(3 Error List, (] Object Test Bench (5 Class Details

Figure 2-28. The Visual Studio 2005 Object Test Bench

You will see the message “Name of this car is: Fred” appear within the Visual Studio 2005 Quick
Console.

The Integrated Help System

The final aspect of Visual Studio 2005 you must be comfortable with from the outset is the fully inte-
grated help system. The .NET Framework 2.0 SDK documentation (aka, the MSDN Library) is
extremely good, very readable, and full of useful information. Given the huge number of predefined
.NET types (which number well into the thousands), you must be willing to roll up your sleeves and
dig into the provided documentation. If you resist, you are doomed to a long, frustrating, and painful
existence as a .NET developer.

Visual Studio 2005 provides the Dynamic Help window (accessed via the Help » Dynamic Help
menu selection), which changes its contents (dynamically!) based on what item (window, menu, source
code keyword, etc.) is currently selected. For example, if you place the cursor on the Console class,
the Dynamic Help window displays a set of links regarding the System.Console type.

You should also be aware of a very important subdirectory of the .NET Framework 2.0 SDK
documentation. Under the .NET Development » .NET Framework SDK » Class Library Reference

57

58

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

node of the documentation, you will find complete documentation of each and every namespace in
the .NET base class libraries (see Figure 2-29).

Contents @

Filtered by:
| .MET Framework v |
Development Tools and Languages -~

Enterprise Servers and Development

Mobile and Embedded Development

[=- .NET Development

[=- .MET Framework SDK

Class Library Reference
{ Default Namespace)
Accessibility
IEHost.Execute
Microsoft. Aspnet.Snapin
Microsoft. Build. BuildEngine
Microsoft. Build. Framework
Microsoft.Build. Tasks
Microsoft.Build Tasks. Deployment. Bootstrapp:
Microsoft, Build, Tasks. Deployment. ManifestUt
Microsoft. Build, Tasks. Hosting

M Micrnna Bt Dyald e b

< | >
@ Contents { %] Help Favorites | 3 Index

Figure 2-29. The .NET base class library reference

Each “book” defines the set of types in a given namespace, the members of a given type, and
the parameters of a given member. Furthermore, when you view the help page for a given type, you
will be told the name of the assembly and namespace that contains the type in question (located at
the top of said page). As you read through the remainder of this book, I assume that you will dive
into this very, very critical node to read up on additional details of the entity under examination.

Note I'd like to stress again the importance of working with the supplied .NET Framework 2.0 documentation.
When you are learning a brand-new framework and programming language, you will need to roll up your sleeves
and dig into the details. No book, regardless of its size, can cover every detail of building applications with Visual
Basic 2005. Thus, if you encounter a type or member that you would like more information about as you work
through this text, be sure to leverage your help system!

The Role of the Visual Basic 6.0 Compatibility
Assembly

As you will most certainly come to realize over the course of this book, Visual Basic 2005 is such as
major overhaul of VB6 that it is often best to simply regard VB 2005 as a brand-new language in the
BASIC family, rather than as “Visual Basic 7.0.” To this end, many familiar VB6 functions, enumera-
tions, user-defined types, and intrinsic objects are nowhere to be found directly within the .NET
base class libraries.

While this is technically true, every Visual Basic 2005 project created with Visual Studio 2005 (as
well as Visual Basic 2005 Express Edition) automatically references a particular .NET assembly
named Microsoft.VisualBasic.dll, which defines types that provide the same functionality of the
legacy VB6 constructs. As you would expect, the Microsoft.VisualBasic.dll assembly is composed
of numerous namespaces that group together likeminded types (see Figure 2-30).

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Modulel.vb* ~'Object Browser - X

Erowse: My Solution LI N - = -

«<Search> - &4
(SRS it ualBasic

- {} Microsoft.visualBasic

- £} Microsoft. visualBasic. ApplicationServices

- {} Microsaft.visualBasic, Devices

- {} Microsaft.visualBasic,FileI0

- {} Microsaft.visualBasic.Logging

-+ mscarlib

[#-+3 System

[#-+3 System.Data

[+ System.Deployment Aszembly Microsoft. VisualBasic

-~ System.ml CVWINDOWS Microsoft METFrameworkiv2.0.50727
& (3 vbeCompatabilty WMicrosoft. VisualBasic.dll

Figure 2-30. TheMicrosoft.VisualBasic.dll VB6 compatibility assembly

Furthermore, each of these namespaces are automatically available to each *. vb file in your
project. Given this point, you do not need to explicitly add a set of Imports statements to gain access
to their types. Thus, if you wished to do so, you could still make use of various VB6-isms, such as the
MsgBox () call to display a simple message box:

The Microsoft.VisualBasic namespaces
are automatically referenced by a
Visual Studio 2005 VB project.

Module Module1
Sub Main()
MsgBox("Hello, old friend...")
End Sub
End Module

Notice how it appears that you are calling a global method named MsgBox () directly within Main().
In reality, the MsgBox() method is a member of a VB 2005 Module type named Interaction that is
defined within the Microsoft.VisualBasic namespace (see Figure 2-31).

Modulel.vb* ~Object Browser - X
Browse: My Solution 2] e = | 35| FE] -
«Searchs - L.] > g GetSetkinglString, String, String, [String]) As String fad
— =i [IF{Boolean, Object, Object) As Object
=A F|rstDayifV:eek -] -4 InputBox(String, [String], [String], [Integer], [Integer]l) As String
=7 First'WeekOFYear y 1
i G!Ebalsd | b =4 PartitioniLong, Long, Long, Long) As String =
[-+13 HideMo '_"ENamE’Qtt” ute =4 Shell{String, [Microsoft, YisualBasic. AppWinStyle], [Boolean], [Integer]) As Integer
=% Information -84 Siibch!Dar am e Sihiack) fe Ahiack o]
+4 Interaction | | Public Function MsgBox(ByWal Srampt s Object, Optional Byval Suitons As ~
= MsgBoxResult Microsoft, VisualBasic. MsqBoxStyle = OkOnly, Optional Byval Title A5 Object = Mothing) As
=@ MsgBoxStyle i MsgBoxResult T
[H-¥1% MyGroupCollectionattribute Member of: Microsoft. VisualBasic, Interaction
=7 OpenAccess Summary:))))
7 CpenMade + | |Displays a message in a dislog box, waits for the user to dick a button, and then retums an integer w

Figure 2-31. TheMicrosoft.VisualBasic.Interaction.MsgBox() method

As you will see in Chapter 3, a VB 2005 Module is similar to a VB6 *.bas file, in that members
defined within a Module can be directly called without the need to prefix the name of the defining
Module. However, if you were to prefix the Interaction Module to the MsgBox() function, the pro-
gram would function identically:

59

60

CHAPTER 2 © BUILDING VISUAL BASIC 2005 APPLICATIONS

Module Module1
Sub Main()
Interaction.MsgBox("Everything old is new again!")
End Sub
End Module

Now although it may feel a bit reassuring to know that the functionality of VB6 can still be
accessed from new Visual Basic 2005 projects, I recommend that you avoid using these types where
possible. First of all, the writing seems to be on the wall regarding the lifetime of VB6, in that Microsoft
itself plans to phase out support for VB6 over time, and given this, you cannot guarantee that this
compatibility assembly will be supported in the future.

As well, the base class libraries provide numerous managed types that offer much more func-
tionality than the (soon-to-be) legacy VB6 programming language. Given these points, this text will
not make use of the VB6 compatibility layer. Rather, you will focus on learning the .NET base class
libraries and how to interact with these types using the syntax of Visual Basic 2005.

A Partial Catalogue of Additional .NET
Development Tools

Given the release of the .NET platform, Microsoft-centric programmers are now able to dive into
the world of open source programming. As you may know, the Java and Unix/Linux communities
have made use of this model for years. Simply put, open source development allows programmers
to download free software tools with the underlying source code in order to extend or change the
tool’s functionality. (SharpDevelop is one example of such an open source application.)

To close this chapter, I would like to point out a number of .NET development tools that com-
plement the functionality provided by your IDE of choice. While I don’t have the space to cover the
details of these utilities, Table 2-3 lists a number of the tools I have found to be extremely helpful as
well as URLs you can visit to find more information about them (of course, the URLs are subject to
change).

Table 2-3. Select .NET Development Tools

Tool Meaning in Life URL
FxCop This is a must-have for any .NET http://www.gotdotnet.com/
developer interested in .NET best team/fxcop

practices. FxCop will test any .NET
assembly against the official
Microsoft .NET best-practice

coding guidelines.
Lutz Roeder’s This advanced .NET decompiler/ http://www.aisto.com/roeder/
Reflector for NET object browser allows you to view the dotnet

.NET implementation of any .NET type
using CIL, VB 2005, Object Pascal .NET
(Delphi), and Visual Basic .NET.

NAnt NAnt is the .NET equivalent of Ant, http://sourceforge.net/
the popular Java automated build tool. projects/nant
NAnt allows you to define and execute
detailed build scripts using an
XML-based syntax.

CHAPTER 2 " BUILDING VISUAL BASIC 2005 APPLICATIONS

Tool Meaning in Life URL
NDoc NDoc is a tool that will generate code http://sourceforge.net/
documentation files for VB 2005 code projects/ndoc

(or a compiled .NET assembly) in a variety
of popular formats (MSDN’s *.chm, XML,
HTML, Javadoc, and LaTeX).

NUnit NUnit is the .NET equivalent of the http://www.nunit.org
Java-centric JUnit unit testing tool. Using
NUnit, you are able to facilitate the
testing of your managed code.

Refactor! To the disappointment of many, http://msdn.microsoft.com/
Microsoft has chosen not to integrate vbasic/downloads/2005/tools/
refactoring capabilities for Visual refactor/

Basic 2005 projects. The good news is
that this freely downloadable plug-in
allows Visual Basic 2005 developers to
apply dozens of code refactorings using
Visual Studio 2005.

Vil Think of Vil as a friendly “big brother” for http://www.1bot.com
.NET developers. This tool will analyze
your .NET code and offer various opinions
as to how to improve your code via
refactoring, structured exception
handling, and so forth.

Summary

So as you can see, you have many new toys at your disposal! The point of this chapter was to provide
you with a tour of the major programming tools a VB 2005 programmer may leverage during the
development process. You began the journey by learning how to generate .NET assemblies using
nothing other than the free VB 2005 compiler and Notepad. Next, you were introduced to the TextPad
application and walked through the process of enabling this tool to edit and compile *.vb code files.

You also examined three feature-rich IDEs, starting with the open source SharpDevelop, followed
by Microsoft’s Visual Basic 2005 Express and Visual Studio 2005. While this chapter only scratched
the surface of each tool’s functionality, you should be in a good position to explore your chosen IDE
at your leisure. The chapter wrapped up by describing the role of Microsoft.VisualBasic.dll and
examined a number of open source .NET development tools that extend the functionality of your
IDE of choice.

61

PART 2

Visual Basic 2005 Language
Fundamentals

CHAPTER 3

VB 2005 Programming Constructs,
Part |

This chapter begins your formal investigation of the Visual Basic 2005 programming language. Do
be aware this chapter and the next will present a number of bite-sized stand-alone topics you must
be comfortable with as you explore the .NET Framework. Unlike the remaining chapters in this text,
there is no overriding theme in this part beyond examining the core syntactical features of VB 2005.

This being said, the first order of business is to understand the role of the Module type as well as
the format of a program’s entry point: the Main() method. Next, you will investigate the intrinsic
VB 2005 data types (and their equivalent types in the System namespace) as well as various data
type conversion routines. We wrap up by examining the set of operators, iteration constructs, and
decision constructs used to build valid code statements.

The Role of the Module Type

Visual Basic 2005 supports a specific programming construct termed a Module. For example, when
you create a console application using Visual Studio 2005, you automatically receive a *.vb file that
contains the following code:

Module Modulel
Sub Main()
End Sub

End Module

Under the hood, a Module is actually nothing more than a class type, with a few notable excep-
tions. First and foremost, any public function, subroutine, or member variable defined within the
scope of a module is exposed as a “shared member” that is directly accessible throughout an appli-
cation. Simply put, shared members allow us to simulate a global scope within your application that
is roughly analogous to the functionality of a VB 6.0 *.bas file (full details on shared members can
be found in Chapter 5).

Given that members in a Module type are directly accessible, you are not required to prefix the
module’s name when accessing its contents. To illustrate working with modules, create a new con-
sole application project (named FunWithModules) and update your initial Module type as follows:

Module Module1
Sub Main()
' Show banner.
DisplayBanner()

65

66

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

' Get user name and say howdy.
GreetUser()
End Sub

Sub DisplayBanner()
' Pick your color of choice for the console text.
Console.ForegroundColor = ConsoleColor.Yellow
Console.WriteLine("******* Welcome to FunWithModules *¥¥¥*ik!)
Console.WriteLine("This simple program illustrates the role")
Console.Writeline("of the VB 2005 Module type.")
Console.Writeline ("3kskok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok sk sk sk skokok I)
' Reset to previous color of your console text.
Console.ForegroundColor = ConsoleColor.Green
Console.WritelLine()

End Sub

Sub GreetUser()
Dim userName As String
Console.Write("Please enter your name: ")
userName = Console.ReadLine()
Console.WritelLine("Hello there {0}. Nice to meet ya.", userName)
End Sub
End Module

Figure 3-1 shows one possible output.

Figure 3-1. Modules at work

Projects with Multiple Modules

In our current example, notice that the Main() method is able to directly call the DisplayBanner()
and GreetUser() methods. Because these methods are defined within the same module as Main(),
we are not required to prefix the name of our module (Module1) to the member name. However, if
you wish to do so, you could retrofit Main() as follows:

Sub Main()
' Show banner.
Module1.DisplayBanner()
' Get user name and say howdy.
Modulel.GreetUser()

End Sub

In this case, this is a completely optional bit of syntax (there is no difference in terms of per-
formance or the size of the compiled assembly). However, assume you were to define a new module
(MyModule) in your project (within the same *. vb file, for example), which defines an identically formed
GreetUser () method:

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 67

Module MyModule
Public Sub GreetUser()
Console.WritelLine("Hello user...")
End Sub
End Module

If you wish to call MyModule.GreetUser () from within the Main() method, you would now need
to explicitly prefix the module name. If you do not specify the name of the module, the Main() method
automatically calls the Modulel.GreetUser () method, as it is in the same scope as Main():

Sub Main()
' Show banner.
DisplayBanner()

' Call the GreetUser() method in MyModule.
MyModule.GreetUser ()
End Sub

Again, do understand that when a single project defines multiple modules, you are not required
to prefix the module name unless the methods are ambiguous. Thus, if your current project were to
define yet another module named MyMathModule:

Module MyMathModule
Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x +y
End Function
Function Subtract(ByVal x As Integer, ByVal y As Integer) As Integer
Return x -y
End Function
End Module

you could directly invoke the Add() and Subtract() functions anywhere within your application (or
optionally prefix the module’s name):

Sub Main()

Add some numbers.
Console.Writeline("10 + 10 is {0}.", Add(10, 10))
' Subtract some numbers

' (module prefix optional)

Console.WriteLine("10 - 10 is {0}.", MyMathModule.Subtract(10, 10))
End Sub

Note If you are new to the syntax of BASIC languages, rest assured that Chapter 4 will cover the details of
building functions and subroutines using VB 2005.

Modules Are Not Creatable

Another trait of the Module type is that it cannot be directly created using the VB 2005 New keyword
(any attempt to do so will result in a compiler error). Therefore the following code is illegal:

Nope! Error, can't allocated modules!
Dim m as New Module1()

Rather, a Module type simply exposes shared members.

68

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Note If you already have a background in object-oriented programming, be aware that Module types cannot be
used to build class hierarchies as they are implicitly sealed. As well, unlike “normal” classes, modules cannot
implement interfaces.

Renaming Your Initial Module

By default, Visual Studio 2005 names the initial Module type with the rather nondescript Module1. If
you were to change the name of the module defining your Main() method to a more fitting name
(Program, for example), the compiler will generate an error such as the following:

'Sub Main' was not found in 'FunWithModules.Module1'.

In order to inform Visual Studio 2005 of the new module name, you are required to reset the
“startup object” using the Application tab of the My Project dialog box, as you see in Figure 3-2.

~FunWithModules | Madulel.vb - X

Application
Compile

Assembly name: Root namespace: L]
Debug |FunWithM0duIes | |FunWithM0duIes |
References Application bype: Icon:

|C0nso|e Application w | |(DeFauIt Icon) w | D
Settings

Startup object: —
Resources |M0dulel 4 | [Assembly Information. ..

Sub Main
Signing

Module1

¥
b

Figure 3-2. Resetting the module name

Once you do so, you will be able to compile your application without error.

Note As a shortcut, if you double-click this specific compiler error within the VS 2005 Error List window, you
will be presented with a dialog box that allows you to select the new name of your project’s entry point.

Members of Modules

To wrap up our investigation of Module types, do know that modules can have additional members
beyond subroutines and functions. If you wish to define field data (as well as other members, such
as properties or events), you are free to do so. For example, assume you wish to update MyModule to
contain a single piece of public string data. Note that the GreetUser () method will now print out
this value when invoked:

Module MyModule
Public userName As String

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 69

Sub GreetUser()
Console.WritelLine("Hello, {0}.", userName)
End Sub
End Module

Like any Module member, the userName field can be directly accessed by any part of your appli-
cation. For example:
Sub Main()
' Set userName and call second form of GreetUser().

userName = "Fred"
MyModule.GreetUser()

End Sub

Source Gode The FunWithModules project is located under the Chapter 3 subdirectory.

The Role of the Main Method

Every VB 2005 executable application (such as a console program, Windows service, or Windows
Forms application) must contain a type defining a Main() method, which represents the entry point
of the application. As you have just seen, the Main() method is typically placed within a Module type,
which as you recall implicitly defines Main() as a shared method.

Strictly speaking, however, Main() can also be defined within the scope of a Class type or Structure
type as well. If you do define your Main() method within either of these types, you must explicitly
make use of the Shared keyword. To illustrate, create a new console application named FunWithMain.
Delete the code within the initial *. vb file and replace it with the following:

Class Program

' Unlike Modules, members in a Class are not
automatically shared.

Shared Sub Main()

End Sub
End Class

If you attempt to compile your program, you will again receive a compiler error informing you
that the Main() method cannot be located. Using the Application tab of the My Project dialog box,
you can now specify Sub Main() as the entry point to the program (as previously shown in Figure 3-2).

Processing Command-line Arguments Using System.Environment

One common task Main() will undertake is to process any incoming command-line arguments. For
example, consider the VB 2005 command-line compiler, vbc.exe (see Chapter 2). As you recall, we
specified various options (such as /target, /out, and so forth) when compiling our code files. The
vbc.exe compiler processed these input flags in order to compile the output assembly. When you
wish to build a Main() method that can process incoming command-line arguments for your cus-
tom applications, you have a few possible ways to do so.

Your first approach is to make use of the shared GetCommandLineArgs () method defined by the
System.Environment type. This method returns you an array of String data types. The first item in
the array represents the path to the executable program, while any remaining items in the array
represent the command-line arguments themselves. To illustrate, update your current Main() method
as follows:

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Class Program
Shared Sub Main()
Console.WritelLine("***** Fun with Main() *k¥*")
' Get command-line args.
Dim args As String() = Environment.GetCommandLineArgs()
Dim s As String
For Each s In args
Console.WriteLine("Arg: {0}", s)
Next
End Sub
End Class

If you were to now run your application at the command prompt, you can feed in your arguments
in an identical manner as you did when working with vbc.exe (see Figure 3-3).

Visual Studio 2005 Command Prompt

Figure 3-3. Processing command-line arguments

Of course, it is up to you to determine which command-line arguments your program will
respond to and how they must be formatted (such as with a - or / prefix). Here we simply passed in
a series of options that were printed to the command prompt. Assume however you were creating
anew video game using Visual Basic 2005 and programmed your application to process an option
named -godmode. If the user starts your application with the flag, you know the user is in fact a cheater,
and can take an appropriate course of action.

Processing Command-line Arguments with Main()

If you would rather not make use of the System. Environment type to process command-line arguments,
you can define your Main() method to take an incoming array of strings. To illustrate, update your
code base as follows:

Shared Sub Main(ByVal args As String())
Console.WritelLine("**¥*** Fyn with Main() *wiekk™)
' Get command-line args.
Dim s As String
For Each s In args
Console.WriteLine("Arg: {0}", s)
Next
End Sub

When you take this approach, the first item in the incoming array is indeed the first command-
line argument (rather than the path to the executable). If you were to run your application once again,
you will find each command-line option is printed to the console.

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I

Main() As a Function (not a Subroutine)

It is also possible to define Main() as a function returning an Integer, rather than a subroutine (which
never has a return value). This approach to building a Main() method has its roots in C-based languages,
where returning the value 0 indicates the program has terminated without error. You will seldom (if
ever) need to build your Main() method in this manner; however, for the sake of completion, here is
one example:

Shared Function Main(ByVal args As String()) As Integer
Console.WriteLine("***** Fun with Main() *#¥**")
Dim s As String
For Each s In args
Console.WritelLine("Arg: {0}", s)
Next
' Return a value to the 0S.
Return 0
End Function

Regardless of how you define your Main() method, the purpose remains the same: interact with
the types that carry out the functionality of your application. Once the final statement within the Main()
method has executed, Main() exits and your application terminates.

Simulating Command-line Arguments Using Visual Studio 2005

Finally, let me point out that Visual Studio 2005 does allow you to simulate incoming command-line
arguments. Rather than having to run your application at a command line to feed in arguments,
you can explicitly specify arguments using the Debug tab of the My Project dialog box, shown in
Figure 3-4 (note the Command line arguments text area).

~FunWithMain | Module1.vb - X

Application

Configuration: |Active (Debug) “ | Platform: |Active {Aany CPUY w
Compile

Start Action A
Debug @ Start project
References (O start external program: | n
Settings (O start browser with URL: |
Resources Stark Options

¥ Command line arguments: |-This -is -a -test
NG e T A
< | >

Figure 3-4. Simulating command-line arguments

When you compile and run your application under Debug mode, the specified arguments are
passed to your Main() method automatically. Do know that when you compile and run a Release
build of your application (which can be established using the Compile tab of the My Project dialog
box), this is no longer the case.

7

72

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

An Interesting Aside: Some Additional Members of
the System.Environment Class

The Environment type exposes a number of extremely helpful methods beyond GetCommandLineArgs().
This class allows you to obtain a number of details regarding the operating system currently
hosting your .NET application using various shared members. To illustrate the usefulness of
System.Environment, update your Main() method with the following logic:

Shared Function Main(ByVal args As String()) As Integer

' 0S running this app?
Console.WritelLine("Current 0S: {0}", Environment.0SVersion)
' List the drives on this machine.
Dim drives As String() = Environment.GetlLogicalDrives()
Dim d As String
For Each d In drives
Console.WriteLine("You have a drive named {0}.", d)
Next
' Which version of the .NET platform is running this app?
Console.WritelLine("Executing version of .NET: {0}", _
Environment.Version)
Return 0
End Function

Figure 3-5 shows a possible test run.

C:A\WINDOWS\system32\cmd.exe

Fu Tth Ma

Figure 3-5. Displaying system environment variables

The Environment type defines members other than those seen in the previous example. Table 3-1
documents some additional properties of interest; however, be sure to check out the .NET Framework
2.0 SDK documentation for full details.

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I

Table 3-1. Select Properties of System.Environment

Property Meaning in Life

CurrentDirectory Gets the full path to the current application

MachineName Gets the name of the current machine

NewLine Gets the newline symbol for the current environment
ProcessorCount Returns the number of processors on the current machine
SystemDirectory Returns the full path to the system directory

UserName Returns the name of the user that started this application

Source Gode The FunWithMain project is located under the Chapter 3 subdirectory.

The System.Console Class

Almost all of the example applications created over the course of the initial chapters of this text make
extensive use of the System.Console class. While it is true that a console user interface (CUI) is not as
enticing as a graphical user interface (GUI) or web-based front end, restricting the early examples to
console applications will allow us to keep focused on the syntax of Visual Basic 2005 and the core
aspects of the .NET platform, rather than dealing with the complexities of building GUIs.

As its name implies, the Console class encapsulates input, output, and error stream manipula-
tions for console-based applications. While System.Console has been a part of the .NET Framework
since its inception, with the release of .NET 2.0, the Console type has been enhanced with additional
functionality. Table 3-2 lists some (but definitely not all) of the new members of interest.

Table 3-2. Select .NET 2.0-Specific Members of System.Console

Member Meaning in Life

Beep() Forces the console to emit a beep of a specified frequency and duration.
BackgroundColor These properties set the background/foreground colors for the current output.
ForegroundColor They may be assigned any member of the ConsoleColor enumeration.
BufferHeight These properties control the height/width of the console’s buffer area.
BufferWidth

Title This property sets the title of the current console.

WindowHeight These properties control the dimensions of the console in relation to the
WindowWidth established buffer.

WindowTop

WindowLeft

Clear() This method clears the established buffer and console display area.

Basic Input and Output with the Console Class

In addition to the members in Table 3-2, the Console type defines a set of methods to capture input
and output, all of which are shared and are therefore called by prefixing the name of the class (Console)
to the method name. As you have seen, Writeline() pumps a text string (including a carriage return) to
the output stream. The Write() method pumps text to the output stream without a carriage return.
ReadLine() allows you to receive information from the input stream up until the carriage return, while
Read() is used to capture a single character from the input stream.

73

74

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

To illustrate basic I/0 using the Console class, create a new console application named
BasicConsolelO and update your Main() method with logic that prompts the user for some bits of infor-
mation and echoes each item to the standard output stream.

Sub Main()
Console.WritelLine("***** Fyn with Console IQ *¥xik")
' Echo some information to the console.
Console.Write("Enter your name: ")
Dim s As String = Console.Readline()
Console.WritelLine("Hello, {0}", s)
Console.Write("Enter your age: ")
s = Console.ReadlLine()
Console.WriteLine("You are {0} years old", s)

End Sub

Formatting Console Output

During these first few chapters, you have certainly noticed numerous occurrences of the tokens {0}, {1},
and the like embedded within a string literal. The .NET platform introduces a new style of string for-
matting, which can be used by any .NET programming language (including VB 2005). Simply put,
when you are defining a string literal that contains segments of data whose value is not known until
runtime, you are able to specify a placeholder within the literal using this curly-bracket syntax. At run-
time, the value(s) passed into Console.Writeline() are substituted for each placeholder. To illustrate,
update your current Main() method as follows:
Sub Main()

' Specify string placeholders and values to use at

' runtime.

Dim theInt As Integer = 90

Dim theDouble As Double = 9.99

Dim theBool As Boolean = True

Console.Writeline("Value of theInt: {0}", thelnt)

Console.WritelLine("theDouble is {0} and theBool is {1}.", _

theDouble, theBool)

End Sub

The first parameter to Writeline() represents a string literal that contains optional placeholders
designated by {0}, {1}, {2}, and so forth. Be very aware that the first ordinal number of a curly-bracket
placeholder always begins with 0. The remaining parameters to WritelLine() are simply the values
to be inserted into the respective placeholders (in this case, an Integer, a Double, and a Boolean).

Note If you have a mismatch between the number of uniquely numbered curly-bracket placeholders and fill
arguments, you will receive a FormatException exception at runtime.

It is also permissible for a given placeholder to repeat within a given string. For example, if you
are a Beatles fan and want to build the string "9, Number 9, Number 9" you would write

John says...
Console.WriteLine("{0}, Number {0}, Number {0}", 9)

Also know, that it is possible to position each placeholder in any location within a string literal,
and need not follow an increasing sequence. For example, consider the following code snippet:

Prints: 20, 10, 30
Console.WriteLine("{1}, {o}, {2}", 10, 20, 30)

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I

.NET String Formatting Flags

If you require more elaborate formatting, each placeholder can optionally contain various format
characters. Each format character can be typed in either uppercase or lowercase with little or no
consequence. Table 3-3 shows your core formatting options.

Table 3-3. .NET String Format Characters

String Format Character =~ Meaning in Life

Corc Used to format currency. By default, the flag will prefix the local cultural
symbol (a dollar sign [$] for U.S. English).

Dord Used to format decimal numbers. This flag may also specify the
minimum number of digits used to pad the value.

Eore Used for exponential notation.

Forf Used for fixed-point formatting.

Gorg Stands for general. This character can be used to format a number to
fixed or exponential format.

Norn Used for basic numerical formatting (with commas).

Xor x Used for hexadecimal formatting. If you use an uppercase X, your hex

format will also contain uppercase characters.

These format characters are suffixed to a given placeholder value using the colon token (e.g.,
{0:C}, {1:d}, {2:X}, and so on). Now, update the Main() method with the following logic:

Now make use of some format tags.
Sub Main()

Console.Writeline("C format: {0:C}", 99989.987)
Console.WriteLine("D9 format: {0:D9}", 99999)
Console.Writeline("E format: {0:E}", 99999.76543)
Console.Writeline("F3 format: {0:F3}", 99999.9999)
Console.WriteLine("N format: {0:N}", 99999)
Console.WritelLine("X format: {0:X}", 99999)
Console.Writeline("x format: {0:x}", 99999)

End Sub

Here we are defining numerous string literals, each of which has a segment not known until
runtime. At runtime, the format character will be used internally by the Console type to print out the
entire string in the desired format.

Be aware that the use of the .NET string formatting characters are not limited to console appli-
cations! These same flags can be used when calling the shared String.Format() method. This can be
helpful when you need to build a string containing numerical values in memory for use in any appli-
cation type (Windows Forms, ASPNET, XML web services, and so on). To illustrate, update Main() with
the following final code:

Now make use of some format tags.
Sub Main()

' Use the shared String.Format() method to build a new string.

Dim formatStr As String

formatStr = _

String.Format("Don't you wish you had {0:C} in your account?", 99989.987)

Console.Writeline(formatStr)

End Sub

75

76

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Figure 3-6 shows a test run of our application.

19 in your account?

Figure 3-6. The System.Console type in action

Source Gode The BasicConsolel0 project is located under the Chapter 3 subdirectory.

The System Data Types and VB 2005 Shorthand
Notation

Like any programming language, VB 2005 defines an intrinsic set of data types, which are used to
represent local variables, member variables, and member parameters. Although many of the VB 2005
data types are named identically to data types found under VB 6.0, be aware that there is not a direct
mapping (especially in terms of a data type’s maximum and minimum range). Furthermore, VB 2005
defines a set of brand new data types not supported by previous versions of the language (UInteger,
ULong, SByte) that account for signed and unsigned data.

Note The UInteger, ULong, and SByte data types are ot CLS compliant (see Chapters 1 and 14 for details on
CLS compliance). Therefore, if you expose these data types from an assembly, you cannot guarantee that every
.NET programming language will be able to process this data.

The most significant change from VB 6.0 is that the data type keywords of Visual Basic 2005 are
actually shorthand notations for full-blown types in the System namespace. Table 3-4 documents
the data types of VB 2005 (with the size of storage allocation), the System data type equivalents, and
the range of each type.

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 7

Table 3-4. The Intrinsic Data Types of VB 2005

VB 2005 Data Type System Data Type Range

Boolean System.Boolean True or False.

(platform dependent)

Byte (1 byte) System.Byte 0 to 255 (unsigned).

Char (2 bytes) System.Char 0 to 65535 (unsigned).

Date (8 bytes) System.DateTime January 1, 0001 to December 31, 9999.

Decimal (16 bytes) System.Decimal +/-79,228,162,514,264,337,593,543,950,335 with no

decimal point. +/-7.9228162514264337593543950335
with 28 places to the right of the decimal; smallest
nonzero number is
+/-0.0000000000000000000000000001.

Double (8 bytes) System.Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values.
4.94065645841247E-324 to 1.79769313486231E+308

for positive values.

Integer (4 bytes) System.Int32 -2,147,483,648 to 2,147,483,647.

Long (8 bytes) System.Int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

Object (4 bytes) System.Object Any type can be stored in a variable of type Object.

SByte (1 byte) System.SByte -128 through 127 (signed).

Short (2 bytes) System.Int16 -32,768 to 32,767.

Single (4 bytes) System.Single This single-precision floating-point value can take

the range of -3.402823E+38 to —1.401298E-45 for
negative values; 1.401298E-45 to 3.402823E+38 for

positive values.
String System.String A string of Unicode characters between 0 to
(platform dependent) approximately 2 billion characters.
UInteger (4 bytes) System.UInt32 0 through 4,294,967,295 (unsigned).
ULong (8 bytes) System.UInt64 0 through 18,446,744,073,709,551,615 (unsigned).
SByte (2 bytes) System.UInt16 0 through 65,535 (unsigned).

Each of the numerical types (Short, Integer, and so forth) as well as the Date type map to a cor-
responding structure in the System namespace. In a nutshell, structures are “value types” allocated
on the stack rather than on the garbage-collected heap. On the other hand, String and Object are
“reference types,” meaning the variable is allocated on the managed heap. You examine full details
of value and reference types in Chapter 11.

78

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Variable Declaration and Initialization

When you are declaring a data type as a local variable (e.g., within a member scope), you do so using
the Dim and As keywords. By way of a few examples:

Sub MyMethod()
' Dim variableName As dataType
Dim age As Integer
Dim firstName As String
Dim isUserOnline As Boolean
End Sub

One helpful syntactic change that has occurred with the release of the .NET platform is the abil-
ity to declare a sequence of variables on a single line of code. Of course, VB 6.0 also supported this
ability, but the semantics were a bit nonintuitive and a source of subtle bugs. For example, under
VB 6.0, if you do not explicitly set the data types of each variable, the unqualified variables were set
to the VB 6.0 Variant data type:

' In this line of VB 6.0 code, varOne
' is implicitly defined to be of type Variant!
Dim varOne, varTwo As Integer

This behavior is a bit cumbersome, given that the only way you are able to define multiple
variables of the same type under VB 6.0 is to write the following slightly redundant code:

Dim varOne As Integer, varTwo As Integer

or worse yet, on multiple lines of code:

Dim varOne As Integer
Dim varTwo As Integer

Although these approaches are still valid using VB 2005, when you declare multiple variables
on a single line, they all are defined in terms of the specified data type. Thus, in the following VB 2005
code, you have created two variables of type Integer.

Sub MyMethod()
' In this line of VB 2005 code, varOne
and varTwo are both of type Integer!
Dim varOne, varTwo As Integer
End Sub

On a final note, VB 2005 now supports the ability to assign a value to a type directly at the point
of declaration. To understand the significance of this new bit of syntax, consider the fact that under
VB 6.0, you were forced to write the following:

' VB 6.0 code.
Dim i As Integer
i=99
While this is in no way a major showstopper, VB 2005 allows you to streamline variable assign-
ment using the following notation:

CHAPTER 3

Sub MyMethod()
' Dim variableName As dataType = initialValue
Dim age As Integer = 36
Dim firstName As String = "Sid"
Dim isUserOnline As Boolean = True
End Sub

Default Values of Data Types

VB 2005 PROGRAMMING CONSTRUCTS, PART |

All'VB 2005 data types have a default value that will automatically be assigned to the variable. The
default values are very predictable, and can be summarized as follows:

* Boolean types are set to False.

* Numeric data is set to 0 (or 0.0 in the case of floating-point data types).

e String types are set to empty strings.

* Char types are set to a single empty character.
* Date types are setto 1/1/0001 12:00:00 AM.

e Initialized object references are set to Nothing.

Given these rules, ponder the following code:

Module Program

Fields of a class or Module receive automatic default assignments.

Public myInt As Integer ' Set to 0.
Public myString As String ' Set to empty String.
Public myBool As Boolean ' Set to False.
Public myObj As Object ' Set to Nothing.
End Module

In Visual Basic 2005, the same rules of default values hold true for local variables defined
within a given scope. Given this, the following method would return the value 0, given that each
local Integer has been automatically assigned the value 0:

Function Add() As Integer

Dim a, b As Integer

Return a + b ' Returns zero.
End Function

The Data Type Class Hierarchy

It is very interesting to note that even the primitive .NET data types are arranged in a “class hierarchy.”
If you are new to the world of inheritance, you will discover the full details in Chapter 6. Until then,
just understand that types at the top of a class hierarchy provide some default behaviors that are
granted to the derived types. The relationship between these core system types can be understood

as shown in Figure 3-7.

79

80

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Object < <t Boolean
A <t UInt16
—| Byte
— Type
< UInt32
< Char
- String < UInt64
< Decimal
— Array ValueType [<¢ Void
Any type that |4 Doubl
derives from | oube
— Exception ValueType is ¢ DateTime
a structure
not a class. < Int16
— Delegate < Gusd
T < Int32
. <& TimeSpan
MulticastDelegate
< Int64
<t Single
—| SByte

A

Enumerations and Structures

Figure 3-7. The class hierarchy of System types

Notice that each of these types ultimately derives from System.Object, which defines a set of
methods (ToString(), Equals(), GetHashCode(), and so forth) common to all types in the .NET base
class libraries (these methods are fully detailed in Chapter 6).

Also note that many numerical data types derive from a class named System.ValueType. Descen-
dents of ValueType are automatically allocated on the stack and therefore have a very predictable
lifetime and are quite efficient. On the other hand, types that do not have System.ValueType in
their inheritance chain (such as System.Type, System.String, System.Array, System.Exception, and
System.Delegate) are not allocated on the stack, but on the garbage-collected heap.

Without getting too hung up on the details of System.0Object and System.ValueType for the time
being (again, more details in Chapter 11), simply know that because a VB 2005 keyword (such as
Integer) is simply shorthand notation for the corresponding system type (in this case, System.Int32),
the following is perfectly legal syntax, given that System.Int32 (the VB 2005 Integer) eventually derives
from System.Object, and therefore can invoke any of its public members:

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 81

Sub Main()
' A VB 2005 Integer is really a shorthand for System.Int32.
' which inherits the following members from System.Object.
Console.Writeline(12.GetHashCode()) ' Prints the type's hash code value.

Console.Writeline(12.Equals(23)) ' Prints False

Console.WriteLine(12.ToString()) ' Returns the value "12"

Console.Writeline(12.GetType()) ' Prints System.Int32
End Sub

Note By default, Visual Studio 2005 does not show these “advanced” methods from IntelliSense. To disable this
behavior (which | recommend you do), activate the Tools » Options menu, select Basic from the Text Editor node,
and uncheck Hide Advanced members.

“New-ing” Intrinsic Data Types

All intrinsic data types support what is known as a default constructor (see Chapter 5). In a nutshell,
this feature allows you to create a variable using the New keyword, which automatically sets the variable
to its default value. Although it is more cumbersome to use the New keyword when creating a basic
data type variable, the following is syntactically well-formed VB 2005 code:

When you create a basic data type with New,
' it is automatically set to its default value.
Dim b1 As New Boolean() ' bl automatically set to False.

On a related note, you could also declare an intrinsic data type variable using the full type name
through either of these approaches:

These statements are also functionally identical.
Dim b2 As System.Boolean = New System.Boolean()
Dim b3 As System.Boolean

Of course, the chances that you will define a simple Boolean using the full type name or the New
keyword in your code is slim to none. It is important, however, to always remember that the VB 2005
keywords for simple data types are little more than a shorthand notation for real types in the System
namespace.

Experimenting with Numerical Data Types

To experiment with the intrinsic VB 2005 data types, create a new console application named
BasicDataTypes. First up, understand that the numerical types of .NET support MaxValue and
MinValue properties that provide information regarding the range a given type can store. For example:

Sub Main()
Console.WriteLine("***** Fun with Data Types *¥***")
Console.WritelLine("Max of Integer: {0}", Integer.MaxValue)
Console.Writeline("Min of Integer: {0}", Integer.MinValue)
Console.WriteLine("Max of Double: {0}", Double.MaxValue)
Console.WritelLine("Min of Double: {0}", Double.MinValue)
End Sub

In addition to the MinValue/MaxValue properties, a given numerical system type may define further
useful members. For example, the System.Double type allows you to obtain the values for epsilon and
infinity (which may be of interest to those of you with a mathematical flare):

Console.WriteLine("Double.Epsilon: {0}", Double.Epsilon)
Console.WritelLine("Double.PositiveInfinity: {o}", _

82

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Double.PositiveInfinity)
Console.WriteLine("Double.NegativeInfinity: {o}", _
Double.NegativeInfinity)

Members of System.Boolean

Next, consider the System.Boolean data type. The only valid assignment a VB 2005 Boolean can take
is from the set {True | False}. Given this point, it should be clear that System.Boolean does not
support a MinValue/MaxValue property set, but rather TrueString/FalseString (which yields the
string "True" or "False" respectively):

Console.WriteLine("Boolean.FalseString: {0}", Boolean.FalseString)
Console.WriteLine("Boolean.TrueString: {0}", Boolean.TrueString)

Members of System.Char

VB 2005 textual data is represented by the intrinsic String and Char keywords, which are simple
shorthand notations for System.String and System.Char, both of which are Unicode under the
hood. As you most certainly already know, a string is a contiguous set of characters (e.g., "Hello").
As of the .NET platform, VB now has a data type (Char) that can represent a single slot in a String
type (e.g, 'H").

By default, when you define textual data within double quotes, the VB 2005 compiler assumes
you are defining a full-blown String type. However, to build a single character string literal that should
be typed as a Char, place the character between double quotes and tack on a single c after the closing
quote. Doing so ensures that the double-quoted text literal is indeed represented as a System.Char,
rather than a System.String:

Dim myChar As Char = "a"c

Note When you enable Option Strict (described in just a moment) for your project, the VB 2005 compiler
demands that you tack on the c suffix to a Char data type when assigning a value.

The System.Char type provides you with a great deal of functionality beyond the ability to hold

a single point of character data. Using the shared methods of System.Char, you are able to determine
whether a given character is numerical, alphabetical, a point of punctuation, or whatnot. To illustrate,
update Main() with the following statements:
" Fun with System.Char.
Dim myChar As Char = "a"c
Console.Writeline("Char.IsDigit('a"): {0}", Char.IsDigit(myChar))
Console.WriteLine("Char.IsLetter('a'): {0}", Char.IsLetter(myChar))
Console.WriteLine("Char.IsWhiteSpace('Hello There', 5): {0}", _

Char.IsWhiteSpace("Hello There", 5))
Console.WriteLine("Char.IsWhiteSpace('Hello There', 6): {0}", _

Char.IsWhiteSpace("Hello There", 6))
Console.WritelLine("Char.IsPunctuation('?'): {0}", _

Char.IsPunctuation("?"c))

As illustrated in the previous code snippet, the members of System.Char have two calling
conventions: a single character or a string with a numerical index that specifies the position of the
character to test.

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 83

Parsing Values from String Data

The .NET data types provide the ability to generate a variable of their underlying type given a tex-
tual equivalent (e.g., parsing). This technique can be extremely helpful when you wish to convert

a bit of user input data (such as a selection from a GUI-based drop-down list box) into a numerical
value. Consider the following parsing logic:

Fun with parsing

Dim b As Boolean = Boolean.Parse("True")
Console.WritelLine("Value of myBool: {0}", b)
Dim d As Double = Double.Parse("99.884")
Console.WriteLine("Value of myDbl: {o}", d)
Dim i As Integer = Integer.Parse("8")
Console.WriteLine("Value of myInt: {o}", 1)
Dim ¢ As Char = Char.Parse("w")
Console.Writeline("Value of myChar: {0}", c)

Source Gode The BasicDataTypes project is located under the Chapter 3 subdirectory.

Understanding the System.String Type

As mentioned, String is a native data type in VB 2005. Like all intrinsic types, the VB 2005 String
keyword actually is a shorthand notation for a true type in the .NET base class library, which in this
case is System. String. Therefore, you are able to declare a String variable using either of these nota-
tions (in addition to using the New keyword as shown previously):

These two string declarations are functionally equivalent.
Dim firstName As String
Dim lastName As System.String

System. String provides a number of methods you would expect from such a utility class, including
methods that return the length of the character data, find substrings within the current string, convert
to and from uppercase/lowercase, and so forth. Table 3-5 lists some (but by no means all) of the
interesting members.

Table 3-5. Select Members of System.String

Member of String Class Meaning in Life

Chars This property returns a specific character within the current string.

Length This property returns the length of the current string.

Compare() Compares two strings.

Contains() Determines whether a string contain a specific substring.

Equals() Tests whether two string objects contain identical character data.

Format() Formats a string using other primitives (i.e., numerical data, other
strings) and the {0} notation examined earlier in this chapter.

Insert() Inserts a string within a given string.

PadLeft() These methods are used to pad a string with some character.

PadRight()

Remove () Use these methods to receive a copy of a string, with modifications

Replace() (characters removed or replaced).

Continued

84

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Table 3-5. Continued

Member of String Class Meaning in Life

Split() Returns a String array containing the substrings in this instance that
are delimited by elements of a specified Char or String array.

Trim() Removes all occurrences of a set of specified characters from the
beginning and end of the current string.

ToUpper () Creates a copy of the current string in uppercase or lowercase format.

ToLower ()

Basic String Manipulation

Working with the members of System.String is as you would expect. Simply create a String data
type and make use of the provided functionality via the dot operator. Do be aware that a few of the
members of System.String are shared members, and are therefore called at the class (rather than
the object) level. Assume you have created a new console application named FunWithStrings, and
updated Main() as follows:

Module Program
Sub Main()

Console.Writeline("***** Fun with Strings *¥k*")
Dim firstName As String = "June"
Console.Writeline("Value of firstName: {0}", firstName)
Console.Writeline("firstName has {0} characters.", firstName.Length)
Console.WriteLine("firstName in uppercase: {0}", firstName.ToUppex())
Console.WritelLine("firstName in lowercase: {0}", firstName.ToLower())

Dim myValue As Integer = 3456787
Console.Writeline("Hex vaule of myValue is: {0}", _
String.Format("{0:X}", myValue))
Console.WritelLine("Currency vaule of myValue is: {o}", _
String.Format("{0:C}", myValue))
End Sub
End Module

Notice how the shared Format() method supports the same formatting tokens as the Console.
WritelLine() method examined earlier in the chapter. Also notice that unlike String.Format(), the
ToUpper () and ToLower () methods have not implemented as shared members and are therefore
called directly from the String object.

String Concatenation (and the “Newline” Constant)

String variables can be connected together to build a larger String via the VB 2005 ampersand
operator (&). As you may know, this technique is formally termed string concatenation:

Module Program
Sub Main()
Console.Writeline("***** Fun with Strings *¥k*")
Dim s1 As String = "Programming the "
Dim s2 As String = "PsychoDrill (PTP)"
Dim s3 As String = s1 & s2
Console.Writeline(s3)
End Sub
End Module

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 85

Note VB 2005 also allows you to concatenate String objects using the plus sign (+). However, given that the +
symbol can be applied to numerous data types, there is a possibility that your String object cannot be “added” to
one of the operands. The ampersand, on the other hand, can only apply to Strings, and therefore is the recom-
mend approach.

You may be interested to know that the VB 2005 & symbol is processed by the compiler to emit
a call to the shared String.Concat() method. In fact, if you were to compile the previous code and
open the assembly within ildasm.exe (see Chapter 1), you would find the CIL code shown in Figure 3-8.

¥ FunWithStrings.Program::Main : void()

Find Find Next
IL_8881: 1ldstr “exxxx Fun with Strings ssxssxx" -
IL_8886: call void [mscorlib]System_Console::WriteLine({string)
IL_8686b: nop
IL_888c: 1ldstr "Programming the "
IL_88611: stloc.®@
IL_8812: 1ldstr "Psychobrill (PTP)"
IL_8817: stloc.1
IL_8618: 1dloc.®
IL_8619: 1dloc.1
IL_@f1a: call string [mscorlib]System.String::Concat({string,
string)
IL_881f: stloc.2 v
< | >

Figure 3-8. The VB 2005 & operator results in a call to String.Concat().

Given this, it is possible to perform string concatenation by calling String.Concat() directly
(although you really have not gained anything by doing so, in fact you have incurred additional
keystrokes!):

Module Program
Sub Main()
Console.WritelLine("***** Fun with Strings *¥*#*")
Dim s1 As String = "Programming the "
Dim s2 As String = "PsychoDrill (PTP)"
Dim s3 As String = String.Concat(si, s2)
Console.WritelLine(s3)
End Sub
End Module

On a related note, do know that the VB 6.0-style string constants (such as vbLf, vbCrLf, and vbCr)
are still exposed through the Microsoft.VisualBasic.dll assembly (see Chapter 2). Therefore, if you
wish to concatenate a string that contains various newline characters (for display purposes), you may
do so as follows:

Module Program
Sub Main()
Console.Writeline("***** Fun with Strings *¥#i*")

Dim s1 As String
Dim s2 As String

"Programming the
"PsychoDrill (PTP)"

86

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Dim s3 As String = String.Concat(s1, s2)
s3 += vbLf & "was a great industral project."
Console.Writeline(s3)
End Sub
End Module

Note If you have a background in C-based languages, understand that the vbLf constant is functionally equivalent
to the newline escape character (\n).

Strings and Equality

As fully explained in Chapter 11, a reference type is an object allocated on the garbage-collected man-
aged heap. By default, when you perform a test for equality on reference types (via the VB 2005 = and
<> operators), you will be returned True if the references are pointing to the same object in memory.
However, even though the String data type is indeed a reference type, the equality operators have
been redefined to compare the values of String objects, not the memory to which they refer:

Module Program
Sub Main()
Console.Writeline("***** Fun with Strings *¥#k*")

Dim strA As String = "Hello!"
Dim strB As String = "Yo!"
' False!
Console.WritelLine("strA = strB?: {o0}", strA
strB = "HELLO!"
' False!
Console.Writeline("strA = strB?: {0}", strA = strB)
strB = "Hello!"
' True!
Console.Writeline("strA = strB?: {0}", strA = strB)
End Sub
End Module

strB)

Notice that the VB 2005 equality operators perform a case-sensitive, character-by-character
equality test. Therefore, "Hello!" is not equal to "HELLO!", which is different from "hello!".

Strings Are Immutable

One of the interesting aspects of System. String is that once you assign a String object with its initial
value, the character data cannot be changed. At first glance, this might seem like a flat-out lie, given
that we are always reassigning strings to new values and due to the fact that the System.String type
defines a number of methods that appear to modify the character data in one way or another (upper-
case, lowercase, etc.). However, if you look closer at what is happening behind the scenes, you will
notice the methods of the String type are in fact returning you a brand new String object in a modified
format:

Module Program
Sub Main()
Console.WriteLine("***** Fun with Strings *ik*")
' Set initial string value
Dim initialString As String = "This is my string.”
Console.Writeline("Initial value: {0}", initialString)

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 87

' Uppercase the initialString?
Dim upperString As String = initialString.ToUpper()
Console.WritelLine("Upper case copy: {0}", upperString)
' Nope! initialString is in the same format!
Console.Writeline("Initial value: {0}", initialString)
End Sub
End Module

If you examine the output in Figure 3-9, you can verify that the original String object
(initialString) is not uppercased when calling ToUpper (), rather you are returned a copy of the
string in a modified format.

Figure 3-9. Strings are immutable!

The same law of immutability holds true when you use the VB 2005 assignment operator. To
illustrate, comment out any existing code within Main() (to decrease the amount of generated CIL
code) and add the following logic:

Module Program
Sub Main()
Dim strObjA As String = "String A reporting."
strObjA = "This is a new string"
End Sub
End Module

Now, compile your application and load the assembly into i1dasm.exe (again, see Chapter 1).
If you were to double-click the Main() method, you would find the CIL code shown in Figure 3-10.

FunWithStrings.Program::Main : void()

Find Find Next

.method public static void HMain{) cil managed S
{

.entrypoint

.custom instance void [mscorlib]Systen.STAThreadAttribute::.ctor{) = { @1

/7 Code size 26 (Bx1a)

.maxstack 1

.locals init {[8] string stroObjA)

IL_8@aa: nop

IL_6#881: ldstr “exxxx Fun with Strings sx=xx'

IL_88a6: call void [mscorlib]System.Console::WriteLine(string}
IL_8@8b: nop

IL_@8ac: 1dstr "“$tring A reporting.”

IL_8811: stloc.@

IL_8812: 1dstr "“This is a new string”

IL_8817: stloc.B
IL_8818: nop
IL_B819: ret
¥ 7/ end of method Program::Hain

P

a3 5

Figure 3-10. Assigning a value to a String object results in a new String object.

88

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Although I don’t imagine you are too interested in the low-level details of the Common Inter-
mediate Language (CIL), do note that the Main() method makes numerous calls to the 1dstr (load
string) opcode. Simply put, the 1dstr opcode of CIL will always create a new String object on the
managed heap. The previous String object that contained the value "String A reporting." isno
longer being used by the program, and will eventually be garbage collected.

So, what exactly are we to gather from this insight? In a nutshell, the String type can be ineffi-
cient and result in bloated code if misused. If you need to represent basic character data such as a US
Social Security number, first or last names, or simple string literals used within your application, the
String data type is the perfect choice.

However, if you are building an application that makes heavy use of textual data (such as a word
processing program), it would be a very bad idea to represent the word processing data using String
types, as you will most certainly (and often indirectly) end up making unnecessary copies of string data.
So what is a programmer to do? Glad you asked.

The System.Text.StringBuilder Type

Given that the String type can be quite inefficient when used with reckless abandon, the .NET base
class libraries provide the System.Text namespace. Within this (relatively small) namespace lives
a class named StringBuilder. Like the System.String class, StringBuilder defines methods that
allow you to replace or format segments and so forth.

What is unique about the StringBuilder is that when you call members of the StringBuilder,
you are directly modifying the object’s internal character data, not obtaining a copy of the data in
a modified format (and is thus more efficient). When you create an instance of the StringBuilder,
you will supply the object’s initial startup values via one of many constructors. Chapter 5 dives into
the details of class constructors; however, if you are new to the topic, simply understand that con-
structors allow you to create an object with an initial state when you apply the New keyword. Consider
the following usage of StringBuilder:

Imports System.Text ' StringBuilder lives here!

Module Program
Sub Main()
' Use the StringBuilder.
Dim sb As New StringBuilder("**** Fantastic Games *¥**")
sb.Append(vbLf)
sb.AppendLine("Half Life 2")
sb.AppendLine("Beyond Good and Evil")
sb.AppendLine("Deus Ex 1 and 2")
sb.Append("System Shock")
sb.Replace("2", "Deus Ex: Invisible War")
Console.Writeline(sb)
Console.Writeline("sb as {0} chars.", sb.Length)
End Sub
End Module

Here we see constructed a StringBuilder set to the initial value "**** Fantastic Games ****".
As you can see, we are appending to the internal buffer, and are able to replace (or remove) charac-
ters at will. By default, a StringBuilder is only able to hold a string of 16 characters or less; however,
this initial value can be changed via a constructor argument:

Make a StringBuilder with an initial size of 256.
Dim sb As New StringBuilder("**** Fantastic Games ****" 256)

If you append more characters than the specified limit, the StringBuilder object will copy its
data into a new instance and grow the buffer by the specified limit.

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 89

Source Code The FunWithStrings project is located under the Chapter 3 subdirectory.

Final Commentary of VB 2005 Data Types

To wrap up the discussion of intrinsic data types, there are a few points of interest, especially when

it comes to changes between VB 6.0 and VB 2005. As you have already seen in Table 3-4, the maximum
and minimum bounds of many types have been retrofitted to be consistent with the rules of the NET-
specific Common Type System (CTS). In addition to this fact, also be aware of the following updates:

* VB 2005 does not support a Currency data type. The Decimal type supports far greater precision
(and functionality) than the VB 6.0 Currency type.

* The Variant data type is no longer supported under the .NET platform. However, if you are
using a legacy COM type returning a VB 6.0 Variant, it is still possible to process the data.

At this point, I hope you understand that each data type keyword of VB 2005 has a corresponding
type in the .NET base class libraries, each of which exposes a fixed functionality. While I have not
detailed each member of these core types, you are in a great position to dig into the details as you
see fit. Be sure to consult the .NET Framework 2.0 SDK documentation for full details regarding the
intrinsic .NET data types.

Narrowing (Explicit) and Widening (Implicit) Data
Type Conversions

Now that you understand how to interact with intrinsic data types, let’s examine the related topic of
data type conversion. Assume you have a new console application (named TypeConversions) that
defines the following module:

Module Program
Sub Main()
Console.Writeline("***** The Amazing Addition Program *i¥¥*")
Dim a As Short = 9
Dim b As Short = 10
Console.WritelLine("a + b = {0}", Add(a, b))
End Sub

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x + vy
End Function
End Module

Notice that the Add() method expects to be sent two Integer parameters. However, note that
the Main() method is in fact sending in two Short variables. While this might seem like a complete
and total mismatch of data types, the program compiles and executes without error, returning the
expected result of 19.

The reason that the compiler treats this code as syntactically sound is due to the fact that there
is no possibility for loss of data. Given that the maximum value of a Short (32,767) is well within the
range of an Integer (2,147,483,647), the compiler automatically widens each Short to an Integer.
Technically speaking, wideningis the term used to define a safe “upward cast” that does not result in
aloss of data.

90

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Note In other languages (especially C-based languages such as C#, C++, and Java) “widening” is termed an
implicit cast.

Table 3-6 illustrates which data types can be safely widened to a specific data types.

Table 3-6. Safe Widening Conversions

VB 2005 Type Safely Widens to...

Byte SByte, UInteger, Integer, ULong, Long, Single, Double, Decimal
SByte SByte, Integer, Long, Single, Double, Decimal

Short Integer, Long, Single, Double, Decimal

SByte UInteger, Integer, ULong, Long, Single, Double, Decimal

Char SByte, UInteger, Integer, ULong, Long, Single, Double, Decimal
Integer Long, Double, Decimal

UInteger Long, Double, Decimal

Long Decimal

ULong Decimal

Single Double

Although this automatic widening worked in our favor for the previous example, other times
this “automatic type conversion” can be the source of subtle and difficult-to-debug runtime errors.
For example, assume that you have modified the values assigned to the a and b variables within Main()
to values that (when added together) overflow the maximum value of a Short. Furthermore, assume
you are storing the return value of the Add() method within a new local Short variable, rather than
directly printing the result to the console:

Module Program

Sub Main()
Console.Writeline("***** The Amazing Addition Program *ik¥*")
Dim a As Short = 30000
Dim b As Short = 30000
Dim answer As Short = Add(a, b)
Console.WritelLine("a + b = {0}", answer)

End Sub

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x + vy
End Function
End Module

In this case, although your application compiles just fine, when you run the application you will
find the CLR throws a runtime error; specifically a System.OverflowException, as shown in Figure 3-11.

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 91

Figure 3-11. Oops! The value returned from Add() was greater than the maximum value of a Short!

The problem is that although the Add() method can return an Integer with the value 60,000 (as
this fits within the range of an Integer), the value cannot be stored in a Short (as it overflows the bounds
of this data type). In this case, the CLR attempts to apply a narrowing operation, which resulted in
aruntime error. As you can guess, narrowing is the logical opposite of widening, in that a larger value
is stored within a smaller variable.

Note In other languages (especially C-based languages such as C#, C++, and Java) “narrowing” is termed an
explicit cast.

Not all narrowing conversions result in a System.OverflowException of course. For example,
consider the following code:

This narrowing conversion is a-OK.

Dim myByte As Byte

Dim myInt As Integer = 200

myByte = myInt

Console.WritelLine("Value of myByte: {0}", myByte)

Here, the value contained within the Integer variable myInt is safely within the range of a Byte,
therefore the narrowing operation does not result in a runtime error. Although it is true that many
narrowing conversions are safe and nondramatic in nature, you may agree that it would be ideal to
trap narrowing conversions at compile time rather than runtime. Thankfully there is such a way,
using the VB 2005 Option Strict directive.

Understanding Option Strict

Option Strict ensures compile-time (rather than runtime) notification of any narrowing conversion
so it can be corrected in a timely fashion. If we are able to identify these narrowing conversions
upfront, we can take a corrective course of action and decrease the possibility of nasty runtime
errors.

AVisual Basic 2005 project, as well as specific *. vb files within a given project, can elect to enable
or disable implicit narrowing via the Option Strict directive. When turning this option On, you are
informing the compiler to check for such possibilities during the compilation process. Thus, if you
were to add the following to the very top of your current file:

' Option directives must be the very first code statements in a *.vb file!
Option Strict On

you would now find a compile-time error for each implicit narrowing conversion, as shown in
Figure 3-12.

92 CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

TypeConversions . Modulel.vb*| - %
|é§Program VH - Main -

Cption Strict Cn

33

[Module Program

=] Sub Main ()

Console.WriteLine ("#*%*#%*%% The Amazing Addition Program #*#®#%#%W)
Dim a As Short = 30000

Dim b &s Short = 3000d0ption Strict On disallows implidt conversions from 'Inbeger'bo'shorf.l
Dim answer As Short = Rddia, b?

Console.Writeline("a + b = {(l" ianawer)

|Error Correction Options (Shift+Alt+F 1.0)\

This narrowing conversion is a-O0OK.

Dim myByvte As Byte

Dim myInt As Integer = 200

myByte = mylInt

Console.Writeline ("Value of myBvte: {0}", myByte)
r End Sub

|

< 1l >

Figure 3-12. Option Strict disables automatic narrowing of data

Here, we have enabled Option Strict on a single file within our project. This approach can be
useful when you wish to selectively allow narrowing conversions within specific *. vb files. However,
if you wish to enable Option Strict for each and every file in your project, you can do so using the
Compile tab of the My Project dialog box, as shown in Figure 3-13.

Modulel.vb)ﬁype{onversions*] - X
Application

Configuration: ‘.-'-\v:nve {Debug) A Platform: |Acnve {any CPU) v|
Compile™®

Build output path: ~
Debi =1

e |b|n\.DEbug‘\ | [Browse...

References [Advanced Compile Options. .. =
Resources All configurations =
Settings Option explicit: Option strict: Option compare:

|On v‘ |On v| |Binary w
Signing Ioff 1

Condition Notification

€

Late binding; call could fail at run time

Figure 3-13. Enabling Option Strict on the project level

Note Under Visual Studio 2005, Option Strict is disabled for new Visual Basic 2005 projects. | would recom-
mend, however, that you always enable this setting for each application you are creating, given that it is far better
to resolve problems at compile time than runtime!

Now that we have some compile-time checking, we are able to resolve the error using one of two
approaches. The most direct (and often more favorable) choice is to simply redefine the variable to
a data type that will safely hold the result. For example:

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 93

Sub Main()

Console.WritelLine("***** The Amazing Addition Program *#¥¥x")

Dim a As Short = 30000

Dim b As Short = 30000

' Nope...Dim answer As Short = Add(a, b)
Dim answer As Integer = Add(a, b)
Console.WriteLine("a + b = {0}", answer)

End Sub
Another approach is to make use of an explicit Visual Basic 2005 type conversion function, such
as (Byte() for this example:

Sub Main()

Dim myByte As Byte

Dim myInt As Integer = 200

' myByte = myInt

myByte = CByte(myInt)

Console.WriteLine("Value of myByte: {0}", myByte)
End Sub

Note Another useful Option statement is Option Explicit.When enabled, the compiler demands that all
variables are defined using a proper As clause (e.g., Dim a As Integer rather than Dim A).|would recommend
you always enable Option Explicit, as this can pinpoint many otherwise unseen programming errors.

Explicit Conversion Functions

Visual Basic 2005 provides a number of conversion functions in addition to CByte() that enable you
to explicitly allow a narrowing cast when Option Strict is enabled. Table 3-7 documents the core
VB 2005 conversion functions.

Table 3-7. VB 2005 Conversion Functions

Conversion Function Meaning in Life

CBool Converts a Boolean expression into a Boolean value
CByte Makes an expression a Byte

CChar Makes the first character of a string into a Char

CDate Makes a string containing a data expression into a Date
(Dbl Makes a numeric expression double precision

CDec Makes a numeric expression of the Decimal type

CInt Makes a numeric expression an Integer by rounding
CLng Makes a numeric expression a long integer by rounding
CObj Makes any item into an Object

CSByte Makes a numeric expression into an SByte by rounding
CShort Makes a numeric expression into a Short by rounding
CSng Makes a numeric expression into a Single

CStr Returns a string representation of the expression

CUInt Makes a numeric expression into a UInteger by rounding
CULng Makes a numeric expression into a ULong

CUShort Makes a numeric expression into a UShort

94

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

In addition to these data type—specific conversion functions, with the release of the .NET platform,
the Visual Basic language also supports the CType function. CType takes two arguments, the first is the
“thing you have,” while the second is the “thing you want.” For example, the following conversions are
functionally equivalent:

Sub Main()

Dim myByte As Byte

Dim myInt As Integer = 200

myByte = CByte(myInt)

myByte = CType(myInt, Byte)

Console.WritelLine("Value of myByte: {0}", myByte)
End Sub

One benefit of the CType function is that it handles all the conversions of the (primarily VB 6.0-cen-
tric) conversion functions shown in Table 3-7. Furthermore, as you will see later in this text, CType allows
you to convert between base and derived classes, as well as objects and their implemented interfaces.

Note As you will see in Chapter 11, VB 2005 provides two new alternatives to CType—DirectCast and TryCast.
However, they can only be used if the arguments are related by inheritance or interface implementation.

The Role of System.Convert

To wrap up the topic of data type conversions, I'd like to point out the fact that the System name-
space defines a class named Convert that can also be used to widen or narrow a data assignment:

Sub Main()

Dim myByte As Byte

Dim myInt As Integer = 200

myByte = CByte(myInt)

myByte = CType(myInt, Byte)

myByte = Convert.ToByte(myInt)

Console.WriteLine("Value of myByte: {0}", myByte)
End Sub

One benefit of using System.Convert is that it provides a language-neutral manner to convert
between data types. However, given that Visual Basic 2005 provides numerous built-in conversion
functions (CBool, CByte, and the like), using the Convert type to do your data type conversions is
usually nothing more than a matter of personal preference.

Source Gode The TypeConversions project is located under the Chapter 3 subdirectory.

Building Visual Basic 2005 Code Statements

As a software developer, you are no doubt aware that a statement is simply a line of code that can be
processed by the compiler (without error, of course). For example, you have already seen how to craft
a local variable declaration statement over the course of this chapter:

VB 2005 variable declaration statements.
Dim i As Integer = 10

Dim j As System.Int32 = 20

Dim k As New Integer()

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I

On a related note, you have also previewed the correct syntax to declare a Function using the
syntax of VB 2005:

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x +y
End Function

While it is true that when you are comfortable with the syntax of your language of choice, you
tend to intuitively know what constitutes a valid statement, there are two idioms of VB 2005 code
statements that deserve special mention to the uninitiated.

The Statement Continuation Character

White space (meaning blank lines of code) are ignored by the VB 2005 compiler unless you attempt
to define a single code statement over multiple lines of code. This is quite different from C-based lan-
guages, where white space never matters, given that languages in the C family explicitly mark the
end of a statement with a semicolon and scope with curly brackets.

In this light, the following two C# functions are functionally identical (although the second ver-
sion is hardly readable and very bad style!):

// C#t Add() method take one.
public int Add(int x, int y)
{ return x +y; }

// C# Add() method take two.
public int Add(
int x, int y) { return x
+
ys }
Under Visual Basic 2005, if you wish to define a statement or member over multiple lines of code, you
must split each line using the under bar (_) token, formally termed the statement continuation character.
Furthermore, there must be a blank space on each side of the statement continuation character. Thus:

' VB 2005 Add() method take one.
Function Add(ByvVal x As Integer,
ByVal y As Integer) As Integer
Return x + vy
End Function

' VB 2005 Add() method take two.
Function Add(ByVal x As Integer,
ByVal y As Integer) _
As Integer
Return x +y
End Function

' VB 2005 Add() method take three.
Function Add(ByVal x As Integer, _
Byval y As Integer) _
As Integer
Return x +y
End _
Function

Of course, you would never use the statement continuation character as shown in the last iteration
of the Add() method, as the code is less than readable. In the real world, this feature is most helpful
when defining a member that takes a great number of arguments, to space them out in such a way
that you can view them within your editor of choice (rather than scrolling the horizontal scroll bar
to see the full prototype!).

95

96

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Defining Multiple Statements on a Single Line

Sometimes it is convenient to define multiple code statements on a single line of code within the
editor. For example, assume you have a set of local variables that need to be assigned to initial val-
ues. While you could assign a value to each variable on discrete lines of code:

Sub MyMethod()
Dim s As String
Dim i As Integer

s = "Fred"
i=10
End Sub

you can compact the scope of this subroutine using the colon character:

Sub MyMethod()

Dim s As String

Dim i As Integer

s = "Fred" : i =10
End Sub

Understand that misuse of the colon can easily result in hard-to-read code. As well, when com-
bined with the statement continuation character, you can end up with nasty statements such as the
following:

Sub MyMethod()

Dim s As String : Dim i As Integer

s = "Fred" _

1 1i=10
End Sub

To be sure, defining multiple statements on a single line using the colon character should be

used sparingly. For the most part, this language feature is most useful when you need to make sim-
ple assignments to multiple variables.

VB 2005 Flow-control Constructs

Now that you can define a single simple code statement, let’s examine the flow-control keywords
that allow you to alter the flow of your program and several keywords that allow you to build com-
plex code statements using the And, Or, and Not operators.

Like other programming languages, VB 2005 defines several ways to make runtime decisions
regarding how your application should function. In a nutshell, we are offered the following flow-
control constructs:

e The If/Then/Else statement

e The Select/Case statement

The If/Then/Else Statement

First up, you have your good friend, the If/Then/Else statement. In the simplest form, the If construct
does not have a corresponding Else. Within the If statement, you will construct an expression that
can resolve to a Boolean value. For example:

Sub Main()
Dim userDone As Boolean

E

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I

Gather user input to assign
' Boolean value...
If userDone = True Then
Console.Writeline("Thanks for running this app")
End If
nd Sub

A slightly more complex If statement can involve any number of Else statements to account

for a range of values set to the expression being tested against:

S

E

C

ub Main()

Dim userOption As String
' Read user option from command line.
userOption = Console.ReadlLine()

If userOption = "GodMode" Then
Console.WriteLine("You will never die...cheater!")

ElseIf userOption = "FulllLife" Then
Console.Writeline("At the end, heh?")

ElseIf userOption = "AllAmmo" Then
Console.WritelLine("Now we can rock and roll!")

Else
Console.WritelLine("Unknown option...")

End If

nd Sub

Note that any secondary “else” condition is marked with the E1seIf keyword, while the final
ondition is simply Else.

Building Complex Expressions

The expression tested against within a flow-control construct need not be a simple assignment. If
required, you are able to leverage the VB 2005 equality/relational operators listed in Table 3-8.

Table 3-8. VB 2005 Relational and Equality Operators

VB 2005 Equality/Relational Operator ~ Example Usage Meaning in Life

= If age = 30 Then Returns true only if each
expression is the same

<> If "Foo" <> myStr Then Returns true only if each
expression is different

< If bonus < 2000 Then Returns true if expression A is

> If bonus > 2000 Then less than, greater than, less than

<= If bonus <= 2000 Then or equal to, or greater than or

>= If bonus >= 2000 Then equal to expression B,
respectively

Note Unlike C-based languages, the VB 2005 = token is used to denote both assignment and equality semantics

(therefore VB 2005 does not supply a == operator).

97

98

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

In addition, you may build a complex expression to test within a flow-control construct using
the code conditional operators (also known as the logical operators) listed in Table 3-9. This table
outlines the most common conditional operators of the language.

Table 3-9. VB 2005 Conditional Operators

VB 2005
Conditional Operator Example Meaning in Life

And If age = 30 And name = "Fred" Then Conditional AND operator,
where both conditions must
be True for the condition to
be True

AndAlso If age = 30 AndAlso name = "Fred" Then A conditional AND operator
that supports short-circuiting,
meaning if the first expression
is False, the second
expression is not evaluated

Or If age = 30 Or name = "Fred" Then Conditional OR operator

OrElse If age = 30 OrElse name = "Fred" Then Conditional OR operator that
supports short-circuiting,
meaning if either expression
is True, True is returned

Not If Not myBool Then Conditional NOT operator

As I am assuming you have prior experience in BASIC or C-based languages, I won't belabor the
use of these operators. If you require additional details beyond the following code snippet, I will assume
you will consult the .NET Framework SDK documentation. However, here is a simple example:

Sub Main()

Dim userOption As String

Dim userAge As Integer

' Read user option from command line.
userOption = Console.Readline()
userAge = Console.ReadLine()

If userOption = "AdultMode" And userAge >= 21 Then
Console.WriteLine("We call this Hot Coffee Mode...")

ElseIf userOption = "AllAmmo" Then
Console.WriteLine("Now we can rock and roll!")

Else
Console.WritelLine("Unknown option...")

End If

End Sub

The Select/Case Statement

The other selection construct offered by VB 2005 is the Select statement. This can be a more compact
alternative to the If/Then/Else statement when you wish to handle program flow based on a known
set of choices. For example, the following Main() method prompts the user for one of three known
values. If the user enters an unknown value, you can account for this using the Case Else statement:

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I 99

Sub Main()
' Prompt user with choices.
Console.WriteLine("Welcome to the world of .NET")
Console.Writeline("1 = C# 2 = Managed C++ (MC++) 3 = VB 2005")
Console.Write("Please select your implementation language: ")

Get choice.
Dim s As String = Console.Readline()
Dim n As Integer = Integer.Parse(s)

Based on input, act accordingly...
Select Case n
Case Is =1
Console.WritelLine("C# is all about managed code.")
Case Is = 2
Console.WriteLine("Maintaining a legacy system, are we?")
Case Is = 3
Console.WritelLine("VB 2005: Full 00 capabilities...")
Case Else
Console.WritelLine("Well...good luck with that!")
End Select
End Sub

VB 2005 Iteration Constructs

All programming languages provide ways to repeat blocks of code until a terminating condition has
been met. Regardless of which language you are coming from, the VB 2005 iteration statements
should cause no raised eyebrows and require little explanation. In a nutshell, VB 2005 provides the
following iteration constructs:

e For/Next loop
e For/Eachloop
¢ Do/Whileloop
¢ Do/Until loop
e Withloop

Let’s quickly examine each looping construct in turn. Do know that I will only concentrate on
the core features of each construct. I'll assume that you will consult the .NET Framework 2.0 SDK
documentation if you require further details.

For/Next Loop

When you need to iterate over a block of code statements a fixed number of times, the For statement
is the looping construct of champions. In essence, you are able to specify how many times a block
of code repeats itself, using an expression that will evaluate to a Boolean:

Sub Main()
' Prints out the numbers 5 - 25, inclusive.
Dim i As Integer
For i = 5 To 25
Console.WriteLine("Number is: {o}", i)
Next
End Sub

100

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

One nice improvement to the For looping construct is we are now able declare the counter
variable directly within the For statement itself (rather than in a separate code statement). There-
fore, the previous code sample could be slightly streamlined as the following:

Sub Main()
' A slightly simplified For loop.
For i As Integer = 5 To 25
Console.WriteLine("Number is: {o}", i)
Next
End Sub

The For loop can also make use of the Step keyword to offset the value of the counter. For example,
if you wish to increment the counter variable by five with each iteration, you would do so with the
following:

Sub Main()
' Increment i by 5 with each pass.
For i As Integer = 5 To 25 Step 5
Console.WriteLine("Number is: {o}", i)
Next
End Sub

For/Each Loop

The For/Each construct is a variation of the standard For loop, where you are able to iterate over the
contents of an array without the need to explicitly monitor the container’s upper limit (as in the case
of a traditional For/Next loop). Assume you have defined an array of String types and wish to print
each item to the command window (VB 2005 array syntax will be fully examined in the next chapter).
In the following code snippet, note that the For Each statement can define the type of item iterated
over directly within the statement:

Sub Main()
Dim myStrings() As String = _
{"Fun", "with", "VB 2005"}

For Each str As String In myStrings
Console.WritelLine(str)
Next
End Sub

or on discrete lines of code:

Sub Main()
Dim myStrings() As String = _
{"Fun", "with", "VB 2005"}

Dim item As String
For Each item In myStrings
Console.WritelLine(item)
Next
End Sub

In these examples, our counter was explicitly defined as a String data type, given that our array
is full of strings as well. However, if you wish to iterate over an array of Integers (or any other type),
you would simply define the counter in the terms of the items in the array. For example:

CHAPTER 3 " VB 2005 PROGRAMMING CONSTRUCTS, PART I

Sub Main()
' Looping over an array of Integers.
Dim myInts() As Integer = _
{10, 20, 30, 40}

For Each int As Integer In myInts
Console.Writeline(int)
Next
End Sub

Note The For Each construct can iterate over any types that support the correct infrastructure. I'll hold off on
the details until Chapter 9, as this aspect of the For Each loop entails an understanding of interface-based pro-
gramming and the system-supplied IEnumerator and IEnumerable interfaces.

Do/While and Do/Until Looping Constructs

You have already seen that the For/Next statement is typically used when you have some foreknowl-
edge of the number of iterations you want to perform (e.g., j > 20). The Do statements, on the other
hand, are useful for those times when you are uncertain how long it might take for a terminating
condition to be met (such as when gathering user input).

Do/While and Do/Until are (in many ways) interchangeable. Do/While keeps looping until the
terminating condition is false. On the other hand, Do/Until keeps looping until the terminating
condition is true. For example:

' Keep looping until X is not equal to an empty string.
Do

Some code statements to loop over.
Loop Until X <> ""

' Keep looping as long as X is equal to an empty string.
Do

' Some code statements to loop over.
Loop While X = ""

Note that in these last two examples, the test for the terminating condition was placed at the
end of the Loop keyword. Using this syntax, you can rest assured that the code within the loop will
be executed at least once (given that the test to exit the loop occurs after the first iteration). If you
prefer to allow for the possibility that the code within the loop may never be executed, move the
Until or While clause to the beginning of the loop:

' Keep looping until X is not equal to an empty string.
Do Until X < ""

' Some code to loop over.
Loop
' Keep looping as long as X is not equal to an empty string.
Do While X = ""

' Some code to loop over.
Loop

Finally, understand that VB 2005 still supports the raw While loop. However, the Wend keyword
has been replaced with a more fitting End While:

101

102

CHAPTER 3 ©' VB 2005 PROGRAMMING CONSTRUCTS, PART I

Dim j As Integer

While § < 20
Console.Write(7 & ", ")
j+=1

End While

The With Construct

To wrap this chapter up, allow me to say that the VB 6.0 With construct is still supported under
VB 2005. In a nutshell, the With keyword allows you to invoke members of a type within a predefined
scope. Do know that the With keyword is nothing more than a typing time saver.

For example, the System.Collections namespace has a type named Arraylist, which like any
type has a number of members. You are free to manipulate the ArrayList on a statement by state-
ment basis as follows:

Sub Main()

Dim myStuff As New ArraylList()

myStuff.Add(100)

myStuff.Add("Hello")

Console.Writeline("Size is: {0}", myStuff.Count)
End Sub

or use the VB 2005 With keyword:

Sub Main()
Dim myStuff As New ArraylList()
With myStuff
.Add(100)
.Add("Hello")
Console.WriteLine("Size is: {0}", .Count)
End With
End Sub

Summary

Recall that the goal of this chapter was to expose you to numerous core aspects of the VB 2005
programming language. Here, we examined the constructs that will be commonplace in any appli-
cation you may be interested in building. After examining the Module type, you learned that every
VB 2005 executable program must have a type defining a Main() method, which serves as the pro-
gram'’s entry point. Within the scope of Main(), you typically create any number of objects that work
together to breathe life into your application.

Next, we dove into the details of the built-in data types of VB 2005, and came to understand
that each data type keyword (e.g., Integer) is really a shorthand notation for a full-blown type in the
System namespace (System.Int32 in this case). Given this, each VB 2005 data type has a number of
built-in members. Along the same vein, you also learned about the role of widening and narrowing
as well as the role of Option Strict.

We wrapped up by checking out the various iteration and decision constructs supported by
VB 2005. Now that you have some of the basic nuts-and-bolts in your mind, the next chapter
completes our examination of core language features.

CHAPTER 4

VB 2005 Programming Constructs,
Part i

This chapter picks up where the previous chapter left off, and completes your investigation of the
core aspects of the Visual Basic 2005 programming language. We begin by examining various details
regarding the construction of VB 2005 subroutines and functions, learning about the Optional,
ByRef, ByVal, and ParamArray keywords along the way.

Once you examine the topic of method overloading, the next task is to investigate the details
behind manipulating array types using the syntax of VB 2005 and get to know the functionality con-
tained within the related System.Array class type. We wrap things up with a discussion regarding
the construction of enumeration and structure types. Once you have completed this chapter, you
will be well prepared for the next section where we dive into the world of object-oriented develop-
ment using Visual Basic 2005.

Defining Subroutines and Functions

To begin this chapter, let’'s examine the details of defining subroutines and functions using Visual
Basic 2005. As you know, a method exists to allow the type to perform a unit of work. Methods may
or may not take parameters and may or may not return values. Visual Basic has long distinguished
between a “subroutine” and “function.” While you can collectively refer to each syntactic variation
as a “method,” the distinction is that subroutines do not return a value once the method has com-
pleted, whereas functions do.

When you define a subroutine, simply use the Sub keyword and list any necessary arguments.
If you wish to define a function, use the Function keyword and establish the return value via the As
keyword. To illustrate, create a new console application named FunWithMethods. Insert a new
module into your current project named HelperFunctions via the Project » Add New Item menu
option of Visual Studio 2005. Update the HelperFunctions module as follows:

Module HelperFunctions
' Subroutines have no return value.
Public Sub PrintMessage(ByVal msg As String)
Console.Writeline(msg)
End Sub
' Functions have a return value.
Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
' Return sum using VB 6.0-style syntax.
Add =5
End Function
End Module

103

104

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

As seen here, Visual Basic 2005 supports the VB 6.0-style function return syntax, where a function’s
return value is denoted by assigning the function name to the resulting output. However, since the
release of the .NET platform, we are now supplied with a Return keyword for an identical purpose.
Thus, the Add() method could be implemented like so:

' VB 2005 code!

" Much cleaner!

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return 5

End Function

The final introductory note regarding functions is that it is possible to forgo specifying an explicit
return value for a function if (and only if) Option Strict is not enabled. If you do not specify a return
value for a function, System.Object is assumed:

This will not compile if Option Strict is on!
Function Test() ' As Object assumed.

Return 5
End Function

As you will see throughout the remainder of this book, subroutines and functions can be
implemented within the scope of modules, classes, and structures (and prototyped within interface
types). While the definition of a method in VB 2005 is quite straightforward, there are a handful of
keywords that you can use to control how arguments are passed to the method in question, and
these are listed in Table 4-1.

Table 4-1. Visual Basic 2005 Parameter Modifier

Parameter Modifier Keyword Meaning in Life

Byval The method is passed a copy of the original data. This is the default
parameter passing behavior.

ByRef The method is passed a reference to the original data in memory.

Optional Marks an argument that does not need to be specified by the caller.

ParamArray Defines an argument that may be passed a variable number of

arguments of the same type.

Let’s walk through the role of each keyword in turn.

The ByVal Parameter Modifier

Under Visual Basic 2005, all parameters are passed by value by default. When an argument is marked
with the ByVal keyword, the method receives a copy of the original data declared elsewhere. Given
that this is indeed a local copy, the method is free to change the parameter’s value; however, the
caller will not see the change. For example, if our Add() function were to reassign the values of the
incoming Integer data types as follows:

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Dim answer As Integer = x +y
' Try to set the params to a new value.
Xx=22:y=30
Return answer
End Function

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il

the caller (Main() in this case) would be totally unaware of this attempted reassignment, given that
a copy of the data was modified, not the caller’s original data. This can be verified by printing out
the input values after the call to Add():

Sub Main()
Console.WritelLine("***** Fyn with Methods *¥ik*")
' Pass two Integers by value.
Dim x, y As Integer
X =10 : y = 20
Console.WriteLine("{0o} + {1} = {2}", x, y, Add(x, y))

' X is still 10 and y is still 20.
Console.WritelLine("After call x = {0} and y = {1}", X, V)
End Sub

It is also worth pointing out that the ByVal keyword is technically optional, given that this is the
default assumption:

These args are implicitly ByVal.
Function Add(x As Integer, y As Integer) As Integer
End Function

However, if you do not specify ByVal or ByRef for a given parameter, Visual Studio 2005 will
automatically add the ByVal modifier when you hit the Enter key.

Note If you have a background in earlier versions of VB, do be very aware that this default setting is the exact
opposite behavior as we had in the past! Before the release of .NET, VB passed parameters by reference (ByRef)
as the default.

The ByRef Parameter Modifier

Some methods need to be created in such a way that the caller should be able to realize any reas-
signments that have taken place within the method scope. For example, you might have a method
that needs to alter the state of a string (e.g., uppercase the characters), assign an incoming reference
to a new object, or simply modify the value of a numerical argument. For this very reason, VB 2005
supplies the ByRef keyword. Consider the following update to the PrintMessage() method:

Sub PrintMessage(ByRef msg As String)
Console.WritelLine("Your message is: {0}", msg)
' Caller will see this change!
msg = "Thank you for calling this method"

End Sub

If we were to update Main() as follows:
Sub Main()

Console.WriteLine("***** Fun with Methods **¥¥*")

Dim msg As String = "Hello from Main!"

PrintMessage(msg)

Console.WritelLine("After call msg = {0}", msg)
End Sub

and you were to compile and run your project, you would find the output shown in Figure 4-1.

105

106

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

Figure 4-1. ByRef arguments can be changed (and seen) by the caller.

There is one additional parameter-passing-centric language feature of VB 2005, which is a carryover
from earlier versions of the language. If you are calling a method prototyped to take a parameter ByRef,
you can force the runtime to pass in a copy of the data (thereby treating it as if it were defined with
the ByVal keyword). To do so, wrap the ByRef argument within an extra set of parentheses. For example,
if you were to update the call to PrintMessage() like so:

Sub Main()
Console.WritelLine("***** Fun with Methods *¥ik*")
' Pass a string by value
Dim msg As String = "Hello from Main!"
PrintMessage((msg))
Console.WritelLine("After call msg = {0}", msg)
End Sub

you will now find that the string reassignment is not “remembered” as indicated in Figure 4-2.

ello from Ma
continue . . .

Figure 4-2. Wrapping a ByRef argument within parentheses forces ByVal semantics.

Note The ByRef and ByVal keywords will be revisited in Chapter 11. As you will see, the behaviors of these
keywords change just a bit depending on whether the argument is a “value type” or “reference type.”

Defining Optional Arguments

VB has long supported the use of optional arguments. Simply put, this language feature allows you
to define a set of parameters that are not required to be supplied by the caller. If the caller chooses
not to pass these optional elements, the argument will be assigned to a predefined default value. As
you would hope, this feature is also part of VB 2005 with one important distinction—all optional
parameters must now be set to an explicit default value. In contrast, under Visual Basic 6.0, optional
arguments were assigned to their default values (0 for numerical and "" for strings) automatically.

Assume we have defined a new subroutine named PrintFormattedMessage() within the
HelperFunctions module, which takes three optional arguments that are used to control how
the incoming String is to be printed to the console:

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il 107

Sub PrintFormattedMessage(ByVal msg As String,
Optional ByVal upperCase As Boolean = False, _
Optional ByVal timesToRepeat As Integer = 0, _
Optional ByVal textColor As ConsoleColor = ConsoleColor.Green)
' Store current console foreground color.
Dim fGroundColor As ConsoleColor = Console.ForegroundColor
' Set Console foreground color.
Console.ForegroundColor = textColor
' Print mesage in correct case x number of times.
For i As Integer = 0 To timesToRepeat
Console.WriteLine(msg)
Next
' Reset current console forground color.
Console.ForegroundColor = fGroundColor
End Sub

Given this definition, we are now able to call PrintFormattedMessage() in a variety of ways. First,
if we wish to accept all defaults, we can simply supply the mandatory String argument as follows:

Accept all defaults for the optional args.
PrintFormattedMessage("Call One")

If we would rather provide custom values for each optional argument, we can do so explicitly
as follows:

' Provide each optional argument.
PrintFormattedMessage("Call Two", True, 5, ConsoleColor.Yellow)

Furthermore, when you are calling a method that has some number of optional arguments,
you may be interested in only providing a subset of specific values, given that some of the default
values fit the bill. To do so, your first approach is to skip over the optional arguments for which you
wish to accept the defaults using a blank parameter:

Print this message in current case, one time, in gray.
PrintFormattedMessage("Call Three", , , ConsoleColor.Gray)

While skipping over optional arguments is syntactically valid, it does not necessarily lend itself to
readable (or easily maintainable) code. A more elegant manner in which to skip over select optional
arguments is using named arguments:

' Same as previously shown, but cleaner!
PrintFormattedMessage("Call Four", textColor:=ConsoleColor.Gray)

As you can see, an argument is named by using the := operator. The left side is the name of
the parameter itself, while the right side is the value to pass this argument. Using this approach, the
unnamed optional arguments will still be assigned to their predefined default.

As an interesting side note, given that VB 2005 supports named arguments, it is possible to call
amethod and pass in each argument in any order you so choose. This behavior is possible for any
method, not simply for methods that define optional parameters. For example, the Add() method
could be legally called like so:

Pass x and y values out of order.
Add(y:=10, x:=90)

Of course, if you overuse this language feature, you not only incur additional keystrokes, but
your code can also be much harder on the eyes. By and large, you should limit your use of named
arguments to the invocation of methods that define optional arguments.

108

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

Working with ParamArrays

In addition to optional parameters, Visual Basic 2005 supports the use of parameter arrays. To
understand the role of the ParamArray argument, you must (as the name implies) understand how
to manipulate VB 2005 arrays. If this is not the case, you may wish to return to this section once you
have finished this chapter. However, if you are already comfortable with the process of defining and
initializing a VB array under the .NET platform, read on.

In a nutshell, a ParamArray allows you to pass into a method a variable number of parameters
(of the same type) as a single logical parameter. As well, arguments marked with the ParamArray
keyword can be processed if the caller sends in a strongly typed array or a comma-delimited list of
items. Yes, this can be confusing. To clear things up, assume you wish to create a function named
CalculateAverage(). Given the nature of this method, you would like to allow the caller to pass in
any number of arguments, and return the calculated average.

If you were to prototype this method to take an array of Integers, this would force the caller to
first define the array, then fill the array, and finally pass it into the method. However, if you define
CalculateAverage() to take a ParamArray of Integer data types, the caller can simply pass a comma-
delimited list of Integers. The .NET runtime will automatically package the set of Integers into an
array of type Integer behind the scenes:

Function CalculateAverage(ByVal ParamArray itemsToAvg() As Integer) As Double
Dim itemCount As Integer = UBound(itemsToAvg)
Dim result As Integer
For i As Integer = 0 To itemCount
result += itemsToAvg(i)
Next
Return result / itemCount
End Function

As mentioned, when calling this method, you may send in an explicitly defined array of Integers,
or alternatively, implicitly specify an array of Integers as a comma-delimited list. For example:
Sub Main()
' ParamArray data can be sent as a caller supplied array
or a comma-delimited list of arguments.
Console.Writeline(CalculateAverage(10, 11, 12, 44))
Dim data() As Integer = {22, 33, 44, 55}
Console.WriteLine(CalculateAverage(data))
End Sub

As you might guess, this technique is nothing more than a convenience for the caller, given that
the array is created by the CLR as necessary. By the time the array is within the scope of the method
being called, you are able to treat it as a full-blown .NET array that contains all the function of the
System.Array base class library type.

Note To avoid any ambiguity, VB 2005 demands a method only support a single ParamArray argument, which
must be the final argument in the parameter list.

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il

Method Calling Conventions

The next aspect of building VB 2005 methods to be aware of is that all methods (subroutines and
functions) are now called by wrapping arguments in parentheses (even if the method in question takes
no arguments whatsoever). In stark contrast, VB 6.0 supported some rather ridiculous calling conven-
tions that forced you to call subs using a different syntax than functions. In general, under VB 6.0, subs
do not require parentheses, while functions do. However, the following variations do occur:

VB 6.0 function calling insanity.

Dim i as Integer

i = myFunction(myArg) Use () to capture return value.

MyFunction myArg Forgo () if you don't care about return value.
Call myFunction(myArg) ' Same as previous line.

myFunction(myArg) ' Pass myArg by value.

VB 6.0 Subroutine calling insanity.

mySub myArg ' Subs don't take ()...

Call mySub (myArg) ' ...unless you use the Call keyword...
mySub (myArg) ' ...or you want to pass by value.

VB 2005 stops the madness once and for all by stating that all functions and all subs must be
called using parentheses. Thus, if a sub or function does not require arguments, parentheses are
still used:

VB 2005 simplicity.
Dim i as Integer

i = AFuncWithNoArgs() ' Use ()
ASubWithNoArgs () ' Use ()
ASubWithArgs(89, 44, "Ahhh. Better") ' Use ()
Dim IAmPassedByValue as Boolean

SomeMethod((IAmPassedByValue)) ' Use ()

Methods Containing Static Data

In'VB 2005 (as well as earlier versions of the language), the Static keyword is used to define a point
of data that is in memory as long as the application is running, but is visible only within the func-
tion in which it was declared. Assume you have added the following subroutine to your
HelperFunctions module:

Sub PrintLocalCounter()
' Note the Static keyword.
Static Dim localCounter As Integer
localCounter += 1
Console.Write("{o} ", localCounter)
End Sub

As you would expect, the first time this function is called, the static data is allocated and initial-
ized to its default value (0 in the case of an Integer). However, because the local variable has been
defined with the Static keyword, its previous value is retained across each method invocation.
Therefore, if you invoke PrintLocalCounter () a handful of times within your Main() method as follows:

Sub Main()

For i As Integer = 0 To 10
PrintLocalCounter()
Next
End Sub

you would see the printout to the console shown in Figure 4-3.

109

110

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

Figure 4-3. Static data is retained between invocations.

Of course, if a local variable is not defined with the Static keyword:

Sub PrintLocalCounter()
Dim localCounter As Integer
localCounter += 1
Console.Write("{o} ", localCounter)
End Sub

you would see “1” printed out 11 times, as the Integer is re-created between calls.

Note Unlike VB 6.0, VB 2005 no longer allows you to apply the Static keyword on the method level (in order
to treat all local variables as Static). If you require the same behavior from a VB 2005 application, you need to
explicitly define each data point using the Static keyword.

Understanding Member Overloading

Like other modern object-oriented languages, VB 2005 allows a method to be overloaded. Simply put,
when you define a set of identically named members that differ by the number (or type) of parame-
ters, the member in question is said to be overloaded.

To understand why overloading is so useful, consider life as a VB 6.0 developer. Assume you are
using VB 6.0 to build a set of methods that return the sum of various incoming types (Integers, Doubles,
and so on). Given that VB 6.0 does not support method overloading, we would be required to define
a unique set of methods that essentially do the same thing (return the sum of the arguments):

' VB 6.0 code.

Public Function AddInts(ByVal x As Integer, ByVal y As Integer) As Integer
AddInts = x +y

End Function

Public Function AddDoubles(ByVal x As Double, ByVal y As Double) As Double
AddDoubles = x + y

End Function

Public Function AddLongs(ByVal x As Long, ByVal y As Long) As Long
AddLongs = x + y

End Function

Not only can code such as this become tough to maintain, but the object user must now be
painfully aware of the name of each method. Using overloading, we are able to allow the caller to
call a single method named Add (). Again, the key is to ensure that each version of the method has
a distinct set of arguments (members differing only by return type are not unique enough):

' VB 2005 code.

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x +y

End Function

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il 11

Public Function Add(ByVal x As Double, ByVal y As Double) As Double
Return x +y

End Function

Public Function Add(ByVal x As Long, ByVal y As Long) As Long
Return x +y

End Function

The caller can now simply invoke Add() with the required arguments and the compiler is happy
to comply, given the fact that the compiler is able to resolve the correct implementation to invoke
given the provided arguments:

Sub Main()
' Calls Integer version of Add()
Console.WriteLine(Add(10, 10))
' Calls Long verson of Add()
Console.Writeline(Add(900000000000, 900000000000))
' Calls Double version of Add()
Console.Writeline(Add(4.3, 4.4))

End Sub

The Overloads Keyword

Also know that VB 2005 provides the Overloads keyword, which can be used when you want to explicitly
mark a member as overloaded. Using this keyword, however, is completely optional. The compiler
assumes you are overloading if it finds identically named methods with varying arguments:

' VB 2005 code.

Public Overloads Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x +y

End Function

Public Overloads Function Add(ByVal x As Double, ByVal y As Double) As Double
Return x +y

End Function

Public Overloads Function Add(ByVal x As Long, ByVal y As Long) As Long
Return x +y

End Function

Details of Method Overloading

When you are overloading a method, the VB 2005 parameter modifiers come into play to define
valid forms of overloading. First of all, if the only point of differentiation between two methods is
the ByVal/ByRef parameter modifier, it is not unique enough to be overloaded:

' Compiler error! Methods can't differ only by
' ByRef / ByVal

Sub TestSub(ByVal a As Integer)

End Sub

Sub TestSub(ByRef a As Integer)

End Sub

Also, if a method is overloaded by nothing more than an argument marked with the Optional
keyword, you will once again receive a compiler error. Consider the following:

Sub TestSub(ByVal a As Integer)

End Sub

Sub TestSub(ByVal a As Integer, Optional ByVal b As Integer = 0)
End Sub

112

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

The reason the compiler refuses to allow this overload is due to the fact that it cannot disam-
biguate the following code:

Sub Main()

' Are you calling the one arg version,
' or the two arg version and omitting the second parameter?
TestSub(1)

End Sub

Source Code The FunWithMethods application is located under the Chapter 4 subdirectory.

That wraps up our examination of building methods using the syntax of VB 2005. Next up, let’s
check out how to build and manipulate arrays, enumerations, and structures.

Array Manipulation in VB 2005

As I'would guess you are already aware, an array is a set of data points, accessed using a numerical
index. More specifically, an array is a set of contiguous data points of the same type (an array of
Integers, an array of Strings, an array of SportsCars, and so on). Declaring an array with Visual
Basic 2005 is quite straightforward. For example, here are three arrays of varying types:

Module Program
Sub Main()
Console.WriteLine("***** Fun with Arrays *¥k*")
' An array of 11 Strings
Dim myStrings(10) As String
' An array of 3 Integers
Dim myInts(2) As Integer
' An array of 5 Objects
Dim myObjs(4) As Object
End Sub
End Module

Look closely at the code comments. When declaring a VB 2005 array, the number used in the
array declaration represents the upper bound of the array, not the maximum number of elements.
Thus, unlike C-based languages, when you write Dim myInts(2) As Integer you end up with three
elements (0 through 2, inclusive).

Once you have defined an array, you are then able to fill the elements index by index as shown
in the following Main() method:

Module Program
Sub Main()
Console.WriteLine("***** Fun with Arrays *¥k*")
' Create and fill an array of 3 Integers
Dim myInts(2) As Integer
myInts(0) = 100
myInts(1) = 200
myInts(2) = 300
' Now print each value.
For Each i As Integer In myInts
Console.WriteLine(i)
Next
End Sub
End Module

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il

Do be aware that if you declare an array, but do not explicitly fill each index, each item will be set
the default value of the data type (e.g., an array of Booleans will be set to False, an array of Integers
will be set to zero, and so forth). Given this, the following code will first print out three blank lines,
followed by the names Cerebus, Jaka, and Astoria:

Module Program
Sub Main()
Console.Writeline("**¥** Fun with Arrays *¥¥+k")
' An array of (empty) Strings.
Dim myStrs(2) As String
For Each s As String In myStrs
Console.Writeline(s)

Next
' Fill and print again.
myStrs(0) = "Cerebus"

myStrs(1) = "Jaka"
myStrs(2) = "Astoria"
For Each s As String In myStrs
Console.WriteLine(s)
Next
End Sub
End Module

VB 2005 Array Initialization Syntax

In addition to filling an array using an item-by-item approach, you are also able to fill the items of
an array using the VB 2005 member initialization syntax. To do so, specify each array item within the
scope of curly brackets ({}). This syntax can be helpful when you are creating an array of a known
size, and wish to quickly specify the initial values. For example, the values of the myInts array could
be established as follows:

Module Program
Sub Main()
Console.WriteLine("***** Fun with Arrays *¥ik*")
' An array of 3 Integers
Dim myInts() As Integer = {100, 200, 300}
For Each i As Integer In myInts
Console.WriteLine(i)
Next
End Sub
End Module

Notice that when you make use of this “curly bracket array” syntax, you do not specify the size
of the array, given that this will be inferred by the number of items within the scope of the curly brackets.
Thus, the following statement results in a compiler error:

' 00PS! Don't specify upper bound when using
' curly bracket array initialization syntax!
Dim myInts(2) As Integer = {100, 200, 300}

Defining an Array of Objects

As mentioned, when you define an array, you do so by specifying the type of item that can be within
the array variable. While this seems quite straightforward, there is one notable twist. As you will come
to understand in Chapter 6, System.Object is the ultimate base class to each and every type (including

113

114

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

fundamental data types) in the .NET type system. Given this fact, if you were to define an array of
Objects, the subitems could be anything at all:

Module Program
Sub Main()
Console.Writeline("***** Fun with Arrays *¥¥*k")

' An array of Objects can be anything at all.
Dim myObjects(3) As Object
myObjects(0) = 10

myObjects(1) = False
myObjects(2) = New DateTime(1969, 3, 24)
myObjects(3) = "Form & Void"

For Each obj As Object In myObjects
' Print the type and value for each item in array.
Console.WriteLine("Type: {0}, Value: {1}", obj.GetType(), obj)
Next
End Sub
End Module

Here, as we are iterating over the contents of myObjects, we print out the underlying type of
each item using the GetType () method of System.Object as well as the value of the current item.
Without going into too much detail regarding System.0bject.GetType() at this point in the text,
simply understand that this method can be used to obtain the fully qualified name of the item
(Chapter 14 fully examines the topic of type information and reflection services). Figure 4-4 shows
the output of the previous snippet.

Figure 4-4. Investigating an array of Objects using Object.GetType()

Defining the Lower Bound of an Array

Visual Basic 6.0 allows developers to build an array with an arbitrary lower bound using the To key-
word. To determine the upper and lower bounds of an array, we were provided with the LBound()
and UBound() helper functions:

' VB 6.0 code!

Dim myNumbers(5 To 7) As Integer

myNumbers(5) = 10

myNumbers(6) = 10

myNumbers(7) = 10

Dim i As Integer

For i = LBound(myNumbers) To UBound(myNumbers)
MsgBox i

Next i

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il 115

Although the To keyword can still be used under VB 2005, the lower bound of an array is always
zero in order to keep VB 2005 in step with the rules of the Common Type System (CTS). Given this
point, the To keyword is more or less optional under the .NET platform:

Under VB 2005, the To keyword does not bring much to the table.
Dim myNumbers(0 To 5) as Integer
Dim moreNumbers(5) as Integer

For new VB 2005 projects, the fact should pose no problems; however, if you are building an
application that needs to communicate with a legacy VB 6.0 COM application that sends or receives
arrays with arbitrary lower bounds, this can be an issue. For example, assume you are building a new
.NET application that is making use of an ActiveX *.d11 that contains a COM object that returns an
array with a lower bound of 5. Given all .NET arrays have a lower bound of zero, how would you be
able to process this array back within the .NET program?

Under the .NET platform, the only way to create (or represent) an array with a lower bound other
than zero is to use the shared CreateInstance() method of System.Array. We will examine the role
of System.Array in just a moment; however, ponder the following code, which does indeed build an
array with a lower bound of 5 and an upper bound of 7:

Module Program
Sub Main()
Console.Writeline("**¥** Fun with Arrays *¥¥+*")

' An array representing the length of each dimension
Dim myLengths() As Integer = {3}
' An array representing the lower bound of each dimension.
Dim myBounds() As Integer = {5}
' Call Array.CreateInstance() specifying
the type of array, length and bounds.
Dim mySpecialArray As Array = _
Array.CreateInstance(GetType(Integer), mylLengths, myBounds)
Console.Writeline("Lower Bound: {0}", LBound(mySpecialArray))
Console.WritelLine("Upper Bound: {0}", UBound(mySpecialArray))
End Sub
End Module

While this code is more verbose than simply using the To keyword to set up a lower bound, it is
not as complex as it might look. We begin by declaring two arrays of Integers that represent the length
and lower bounds of each dimension of the array we are interested in building. The reason we have
to represent the length and lower bound as an array of Integers (rather than two simple numbers)
is due to the fact that Array.CreateInstance() can create single or multidimensional arrays. Here,
we are creating an array of a single dimension, given that the myLengths and myBounds variables con-
tain a single item. If you were to run this application, you would find the output shown in Figure 4-5.

Figure 4-5. Creating an array with a lower bound of 5 using VB 2005

116

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

The Redim/Preserve Syntax

VB 2005 allows you to dynamically reestablish the upper bound of a previous allocated array using
the Redim/Preserve syntax. For example, assume you created an array of 10 Integers somewhere
within your program. At a later time, you realize that this array needs to grow by 5 items (to hold

a maximum of 16 Integers). To do so, you are able to author the following code:

Make an array with 10 slots.

Dim myValues(9) As Integer

For i As Integer = 0 To 9
myValues(i) = i

Next

For i As Integer = 0 To UBound(myValues)
Console.Write("{0} ", myValues(i))

Next

' ReDim the array with extra slots.

ReDim Preserve myValues(15)

For i As Integer = 9 To UBound(myValues)
myValues(i) = i

Next

For i As Integer = 0 To UBound(myValues)
Console.Write("{o} ", myValues(i))

Next

Now, be very aware that the ReDim/Preserve syntax generates quite a bit of CIL code behind
the scenes. You would be correct to assume that a new array will be created followed by a member-
by-member transfer of the items from the old array into the new array (load your assembly into
ildasm.exe to check out the code first hand).

Simply put, overuse of the ReDim/Preserve syntax can be inefficient. When you wish to use
a container whose contents can dynamically grow (or shrink) on demand, you will always prefer
using members from the System.Collections (Chapter 9) or System.Collections.Generic (Chapter 12)
namespaces.

Note This System.Array class provides the language-neutral Resize() method, which serves a similar function
as VB 2005’s ReDim/Preserve syntax.

Working with Multidimensional Arrays

In addition to the single dimensional arrays you have seen thus far, VB 2005 also supports the cre-
ation of multidimensional arrays. To declare and fill a multidimensional array, proceed as follows:
Sub Main()
Dim myMatrix(6, 6) As Integer '
' Populate array.
Dim k As Integer, j As Integer
For k =0 To 6
For j =0To 6
myMatrix(k, j) = k * j
Next j
Next k
' Show array.
For k =0 To 6
For j =0To 6
Console.Write(myMatrix(k, j) & " ")

makes a 7x7 array

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il

Next j
Console.WriteLine()
Next k
End Sub

So, at this point you should (hopefully) feel comfortable with the process of defining, filling,
and examining the contents of a VB 2005 array type. To complete the picture, let’s now examine the
role of the System.Array class.

The System.Array Base Class

The most striking difference between VB 6.0 and VB 2005 arrays is the fact that every array you create
gathers much of its functionality from the .NET System.Array class. Using these common members,
we are able to operate on an array using a consistent object model. In fact, in most cases you are able
to simply use the members of System.Array rather than the VB 6.0 style array functions (LBound(),
UBound(), and so on). Table 4-2 gives a rundown of some of the more interesting members (be sure
to check the .NET Framework 2.0 SDK for full details).

Table 4-2. Select Members of System.Array

Member of Array Class Meaning in Life

Clear() This shared method sets a range of elements in the array to empty
values (0 for value items, shared for object references).

CopyTo() Used to copy elements from the source array into the destination array.

GetEnumerator() Returns the IEnumerator interface for a given array. I address interfaces

in Chapter 9, but for the time being, keep in mind that this interface is
required by the For Each construct.

Length This property returns the number of items within the array.

Rank This property returns the number of dimensions of the current array.
Reverse() This shared method reverses the contents of a one-dimensional array.
Sort() This shared method sorts a one-dimensional array of intrinsic types. If

the elements in the array implement the IComparer interface, you can
also sort your custom types (see Chapter 9).

Let’s see some of these members in action. The following code makes use of the shared Reverse()
and Clear() methods to pump out information about an array of string types to the console:

Create some string arrays and exercise some System.Array members.
Sub Main()
' Initialize items at startup.
Console.WritelLine("* Fun with System.Array *")
Dim gothicBands() As String = _
{"Tones on Tail", "Bauhaus", "Sisters of Mercy"}
' Print out names in declared order.
Console.WriteLine(" -> " & "Here is the array:")
For 1 As Integer = 0 To gothicBands.GetUpperBound(0)
' Print a name
Console.Write(gothicBands(i) & " ")
Next
Console.WritelLine()

117

118 CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

' Reverse them...

Array.Reverse(gothicBands)

Console.WriteLine(" -> " & "The reversed array")

' ... and print them.

For i As Integer = 0 To gothicBands.GetUpperBound(0)
' Print a name
Console.Write(gothicBands(i) & " ")

Next

Console.WritelLine()

' Clear out all but the final member.
Console.WriteLine(" -> " & "Cleared out all but one...")
Array.Clear(gothicBands, 1, 2)
For 1 As Integer = 0 To gothicBands.GetUpperBound(0)
' Print a name
Console.Write(gothicBands(i) & " ")
Next
End Sub

The output can be seen in Figure 4-6.

ontinue . . .

Figure 4-6. Fun with System.Array

Notice that many members of System.Array are defined as shared members and are therefore
called at the class level (for example, the Array.Sort() or Array.Reverse() methods). Methods such
as these are passed in the array you wish to process. Other methods of System.Array (such as the
GetUpperBound() method or Length property) are bound at the object level, and thus you are able to
invoke the member directly on the array.

Source Code The FunWithArrays application is located under the Chapter 4 subdirectory.

Understanding VB 2005 Enumerations

Recall from Chapter 1 that the .NET type system is composed of classes, structures, enumerations,
interfaces, and delegates (also recall that a module is nothing more than a class type in disguise). To
begin our exploration of these types, let’s check out the role of the enumeration.

When building a system, it is often convenient to create a set of symbolic names that map to
known numerical values. For example, if you are creating a payroll system, you may want to refer to
the type of employees using constants such as VP, Manager, Grunt, and Contractor rather than raw
numerical values such as {0, 1, 2, 3}. Like other managed languages, VB 2005 supports the notion of
custom enumerations for this very reason. For example, here is an enumeration named EmpType:

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il 119

A custom enumeration.
Enum EmpType
Manager ‘=
Grunt ' =
Contractor ' =
VP ‘=
End Enum

W N RO

The EmpType enumeration defines four named constants, corresponding to discrete numerical
values. In VB 2005, the numbering scheme sets the first element to zero (0) by default, followed by
an n+1 progression. You are free to change the initial value as you see fit. For example, if it made sense
to number the members of EmpType as 102 through 105, you could do so as follows:

' Begin with 102.
Enum EmpType
Manager = 102

Grunt ' =103

Contractor ' = 104

VP ' = 105
End Enum

Enumerations do not necessarily need to follow a sequential ordering. If (for some reason or
another) it makes sense to establish your EmpType as seen here, the compiler continues to be happy:

Elements of an enumeration need not be sequential!
Enum EmpType
Manager = 10

Grunt = 1
Contractor = 100
VP =9

End Enum

Controlling the Underlying Storage for an Enum

By default, the storage type used to hold the values of an enumeration is a System. Int32 (the VB 2005
Integer); however, you are free to change this to your liking. VB 2005 enumerations can be defined
in a similar manner for any of the core system types (Byte, Short, Integer, or Long). For example, if
you want to set the underlying storage value of EmpType to be a Byte rather than an Integer, you can
write the following:

This time, EmpType maps to an underlying Byte.
Enum EmpType As Byte
Manager = 10,

Grunt = 1,
Contractor = 100,
VP =9

End Enum

Changing the underlying type of an enumeration can be helpful if you are building a .NET
application that will be deployed to a low-memory device (such as a .NET-enabled cell phone or PDA)
and need to conserve memory wherever possible. Of course, if you do establish your enumeration
to use a Byte as storage, each value must be within its range!

Declaring and Using Enums

Once you have established the range and storage type of your enumeration, you can use them in
place of so-called magic numbers. Because enumerations are nothing more than a user-defined

120

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

type, you are able to use them as function return values, method parameters, local variables, and so
forth. Assume you have a module defining a public method, taking EmpType as the sole parameter:

Module Program
' Enums as parameters.
Public Sub AskForBonus(ByVal e As EmpType)
Select Case (e)
Case EmpType.Contractor
Console.WriteLine("You already get enough cash...")
Case EmpType.Grunt
Console.WriteLine("You have got to be kidding...")
Case EmpType.Manager
Console.Writeline("How about stock options instead?")
Case EmpType.VP
Console.Writeline("VERY GOOD, Sir!")
End Select
End Sub

Sub Main()
Console.WriteLine("**** Fun with Enums *¥ikk")
' Make a contractor type.
Dim emp as EmpType
emp = EmpType.Contractor
AskForBonus (emp)
End Sub
End Module

Notice that when you are assigning a value to an Enum variable, you must scope the Enum name
(EmpType) to the value (Grunt). Because enumerations are a fixed set of name/value pairs, it is illegal
to set an Enum variable to a value that is not defined directly by the enumerated type:

Sub Main()
Console.WriteLine("**** Fun with Enums **xik'")
Dim emp as EmpType
' Error! SalesManager is not in the EmpType enum!
emp = EmpType.SalesManager

Exrror! Forgot to scope Grunt to EmpType!
emp= Grunt
End Sub

The System.Enum Class (and a Lesson in Resolving Keyword
Name Clashes)

The interesting thing about .NET enumerations is that they gain functionality from the System.Enum
class type. This class defines a number of methods that allow you to interrogate and transform a given
enumeration. Before seeing some of this functionality first hand, you have one VB-ism to be aware
of. As you know, VB is a case-insensitive language. Therefore, in the eyes of vbc.exe, Enum, enum, and
ENUM all refer to the intrinsic Enum keyword.

While this can in fact be helpful (given that the Visual Studio 2005 IDE transforms keywords to
the correct case), there is one problem. Specifically, if you attempt to access the shared members of
Enum directly using the dot operator, you will be issued a compiler error. Assume you have updated
your Main() method with the following call to Enum.CGetUnderlyingType(). As the name implies, this
method returns the data type used to store the values of the enumerated type (System.Byte in the
case of EmpType):

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il

Print out the data type used to store the values?
Sub Main()
Console.WritelLine("**** Fun with Enums ¥ikek")
Dim emp As EmpType
emp = EmpType.Contractor
AskForBonus (emp)
' Compiler error!
Console.WriteLine("EmpType uses a {0} for storage", _
Enum.GetUnderlyingType(emp.GetType())
End Sub

The problem is that the compiler assumes “Enum” refers to the VB 2005 keyword, not the
System. Enum type! To resolve this name clash, you have a few choices. First, you could explicitly specify
System.Enum everywhere in your code base:

Sub Main()
Console.WriteLine("**** Fun with Enums iiiek™)
Dim emp As EmpType
emp = EmpType.Contractor
AskForBonus (emp)
' Use fully qualified name.
Console.WritelLine("EmpType uses a {0} for storage", _
System.Enum.GetUnderlyingType(emp.GetType())
End Sub

While this fits the bill, it can be cumbersome to use fully qualified names. To help lessen your
typing burden, you can make use of a variation of the VB 2005 Imports statement that allows you to
define a simple token that maps to a fully qualified name:

Build an alias to System.Enum
Imports DotNetEnum = System.Enum

Module Program
End Module

In this case, you defined an alias to System.Enum, called DotNetEnum. In your code, you can make
use of this moniker whenever you want to make use of the members of the Enum type. At compile time,
however, all occurences of DotNetEnum are replaced with System.Enum.

The final manner to resolve this nameclash is to wrap the Enum token within square brackets.
This informs the compiler that you are refering to the Enum type not the Enum keyword:

Sub Main()
Console.WriteLine("**** Fun with Enums *iiek™)
Dim emp As EmpType
emp = EmpType.Contractor
AskForBonus (emp)
' Wrap token in square brackets.
Console.WriteLine("EmpType uses a {0} for storage", _
[Enum] .GetUnderlyingType (emp.GetType())
End Sub

In any case, of greater interest than extracting the underlying type of an enumeration is the
ability to extract the string names behind the numerical values. All VB 2005 enumerations support
a method named ToString(), which as you would expect returns the string name of the current
enumeration’s value. For example:

Sub Main()
Console.WriteLine("**** Fun with Enums iiiek™)

121

122

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

' Prints out "emp is a Contractor".
Console.WriteLine("emp is a {0}", emp.ToString())

End Sub

Using the shared Enum. Format () method, you gain a finer level of formatting options by
specifying the desired format flag (the same formatting flags used when formatting data using the

n_n

Console.WriteLine() method). In this context, "g" is the string value, the hexadecimal value is
marked by "x" while the decimal value is obtained using "d". Format () takes two parameters, the first
of which is the type information of the Enum you want to examine, while the second is the format flag.
System.Enum also defines another shared method named GetValues(). This method returns an
instance of System.Array. Each item in the array corresponds to a member of the specified enumer-

ation. Thus the following code will print out each name/value pair within the EmpType enumeration:

Sub Main()
Console.WriteLine("**** Fun with Enums iiiek")
' Make a contractor type.
Dim emp As EmpType
emp = EmpType.Contractor

Get all stats for EmpType.
Dim obj As Array = DotNetEnum.GetValues(emp.GetType())
Console.WritelLine("This enum has {0} members.", obj.Length)
' Now show the string name and associated value.
Dim e As EmpType
For Each e In obj
Console.Write("String name: {0}", DotNetEnum.Format(emp.CetType(), e, "G"))
Console.Write(" ({0})", DotNetEnum.Format(emp.GetType(), e, "D"))
Console.Writeline(" hex: {0}", DotNetEnum.Format(emp.GetType(), e, "X"))
Next
End Sub

The output is shown in Figure 4-7.

Figure 4-7. Fun with System.Enum

System.Enum also supports the IsDefined property. This allows you to determine whether a given
string name is a member of the current enumeration. For example, assume you want to know whether
the value "SalesPerson" is part of the EmpType enumeration:

' Does EmpType have a SalesPerson value?
If (DotNetEnum.IsDefined(emp.CetType(), "SalesPerson")) Then
Console.WritelLine("Yep, we have sales people.")

CHAPTER 4 " VB 2005 PROGRAMMING CONSTRUCTS, PART Il

Else
Console.WriteLine("No, we have no profits....")
End If

As you will see over the course of this text, enumerations are used extensively throughout the
.NET base class libraries. For example, ADO.NET makes use of numerous enums to represent the
state of a connection (opened, closed, etc.), the state of a row in a DataTable (changed, new, detached,
etc.), and so forth. Therefore, when you make use of a system-supplied enumeration, always remember
that you are able to interact with the name/value pairs using the members of System.Enum.

Source Code The FunWithEnums project is located under the Chapter 4 subdirectory.

Introducing the VB 2005 Structure Type

Now that you understand the role of enumeration types, let’s conclude this chapter by introducing
the .NET structure. A structure (like an enumeration) is a user-defined type; however, structures are
not simply a collection of name/value pairs. Rather, structures are types that can contain any number
of fields and members that operate on these fields. For example, structures can define constructors,
can implement interfaces, and can contain any number of properties, methods, events, and fields
(if some of these terms are unfamiliar at this point, don’t fret. All of these topics are fully examined
in later chapters).

Note If you have a background in OOP, you can think of a structure as a “lightweight class type,” given that
structures provide a way to define a type that supports encapsulation, but cannot be used to build a family of
related types (as structures are implicitly sealed).

To define a structure in VB 2005, you use the Structure keyword (and the required End Structure
scope marker):

Structure Point
Public x, y As Integer
Public Sub Display()
Console.Writeline("{0}, {1}", x, y)
End Sub
Public Sub Increment()
X+=1:y+=1
End Sub
Public Sub Decrement()
X-=1:y-=1
End Sub
Public Function PointAsHexString() As String
Return String.Format("{o:x}, {1:x}", x, y)
End Function
End Structure

Structures are types that are well suited for modeling mathematical, geometric, and numerical
types. Here, the Point structure is modeling an (x, y) coordinate represented by two Integer types,
which can be altered via a handful of members.

Unlike arrays, strings, or enumerations, VB 2005 structures do not have an identically named
class representation in the .NET library (that is, there is no System.Structure class), but are implicitly
derived from System.ValueType.

123

124

CHAPTER 4 © VB 2005 PROGRAMMING CONSTRUCTS, PART II

Simply put, the role of System.ValueType is to ensure that the derived type (e.g., any structure)
is allocated on the stack rather than the garbage collected heap. Given this, the lifetime of a struc-
ture is very predictable. When a structure variable falls out of the defining scope, it is removed from
memory immediately:

Module Program
Sub Main()
Console.WriteLine("***** Fun with Structs *ikk*")
' Create a Point
Dim myPoint As Point
myPoint.x = 100
myPoint.y = 200
myPoint.Display()
' Increase value of Point
myPoint.Increment()
myPoint.Display()

Console.Writeline("Value of Point in hex: {0}", _
myPoint.PointAsHexString())
End Sub ' myPoint destroyed here!
End Module

We will revisit Structure types (and System.ValueType) and learn about numerous additional
details in Chapter 11 when we drill into the distinction between value types and reference types.
Until that point, just understand that a Structure allows you to define types that have a fixed and
predictable lifetime.

Source Code The FunWithStructures project is located under the Chapter 4 subdirectory.

Summary

This chapter began with an examination of several VB 2005 keywords that allow you to build custom
subroutines and functions. Recall that by default, parameters are passed by value (via the ByVal
keyword); however, you may pass a parameter by reference if you mark it with ByRef. You also learned
about the role of optional parameters and how to define and invoke methods taking parameter arrays.

Once we investigated the topic of method overloading, the remainder of this chapter examined
several details regarding how arrays, enumerations, and structures are defined in Visual Basic 2005
and represented within the .NET base class libraries.

With this, our initial investigation of the Visual Basic 2005 programming language is complete!
In the next chapter, we will begin to dig into the details of object-oriented development.

PART 3

Core Object-Oriented
Programming Techniques

CHAPTER 5

Defining Encapsulated Class Types

In the previous two chapters, you investigated a number of core syntactical constructs that are
commonplace to any .NET application you may be developing. Here, you will begin your examina-
tion of the object-oriented capabilities of VB 2005. Unlike Visual Basic 6.0, VB 2005 is a full-blown
object-oriented programming language that has complete support for the famed “pillars of OOP”
(encapsulation, inheritance, and polymorphism) and is therefore (for the most part) just as power-
ful as other OO languages such as Java, C++, or C#.

The first order of business is to examine the process of building well-defined class types with
any number of constructors. Once you understand the basics of defining and allocating class types,
the remainder of this chapter will examine the role of encapsulation. Along the way you will under-
stand how to define class properties as well as the role of shared fields and members, read-only

fields, and constant data. We wrap up by examining the new VB 2005 XML code documentation syntax.

Introducing the VB 2005 Class Type

As far as the .NET platform is concerned, the most fundamental programming construct is the
class type. Formally, a class is a user-defined type that is composed of field data (often called member
variables) and members that operate on this data (such as constructors, properties, subroutines,
functions, events, and so forth). Collectively, the set of field data represents the “state” of a class
instance (otherwise known as an object). The power of object-based languages such as Visual Basic
2005 is that by grouping data and related functionality in a class definition, you are able to model
your software after entities in the real world.

To get the ball rolling, create a new VB 2005 console application named SimpleClassExample.
Next, insert a new class file (named Car.vb) into your project using the Project » Add New Item
menu selection, choose the Class icon from the resulting dialog box as shown in Figure 5-1, and
click the Add button.

127

128

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Add New Item - SimpleClass

Templates: ||
Visual Studio installed templates =]
= I — — - -
3 = 8
Windows Dialog Explorer Form MDI Parent AboutBox Login Form Splash Screen m
Form Form
Va ol W = L
@ ofvg i
Module Interface Component COM Class DataSet SQL Database Report User Control
Class
- 7 4 Yo Yo
Inherited Inherited Custom Web Custom Resources SettingsFile CodeFile Class Diagram
Form User Control Control Control File

£

An empty dass definition

MName: Car.vb |

[Add] [Cancel

Figure 5-1. Inserting a new Class type

A class is defined in VB 2005 using the Class keyword. Like other constructs in the language, the
scope of a class is terminated using the End keyword (End Class to be specific):

Public Class Car
End Class

Once you have defined a class type, you will need to consider the set of member variables that
will be used to represent its state. For example, you may decide that cars maintain an Integer data
type to represent the current speed and a String data type to represent the car’s friendly pet name.
Given these initial design notes, update your Car class as follows:

Public Class Car
' The 'state' of the Car.
Public petName As String
Public currSpeed As Integer
End Class

Notice that these member variables are declared using the Public access modifier. Public
members of a class are directly accessible once an object of this type has been created. As you may
already know, the term “object” is used to represent an instance of a given class type created using
the New keyword.

Note Field data of a class should seldom (if ever) be defined as Public. To preserve the integrity of your state
data, it is a far better design to define data as Private and allow controlled access to the data via type properties
(as shown later in this chapter). However, to keep this first example as simple as possible, Public data fits the bill.

After you have defined the set of member variables that represent the state of the type, the next
design step is to establish to members that model its behavior. For this example, the Car class will
define one subroutine name SpeedUp() and another named PrintState():

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Public Class Car
' The 'state' of the Car.
Public petName As String
Public currSpeed As Integer
' The functionality of the Car.
Public Sub PrintState()
Console.Writeline("{0} is going {1} MPH.", _
petName, currSpeed)
End Sub
Public Sub SpeedUp(ByVal delta As Integer)
currSpeed += delta
End Sub
End Class

As you can see, PrintState() is more or less a diagnostic function that will simply dump the
current state of a given Car object to the command window. SpeedUp() will increase the speed of
the Car by the amount specified by the incoming Integer parameter. Now, update your module’s
Main() method with the following code:

If you rename your module, don't forget to reset the startup object
' using the My Project dialog box (see Chapter 3).
Module Program
Sub Main()
Console.WriteLine("***** Fun with Class Types *¥¥¥*")
' Allocate and configure a Car object.
Dim myCar As New Car()
myCar.petName = "Sven"
myCar.currSpeed = 10

' Speed up the car a few times and print out the
' new state.
For i As Integer = 0 To 10
myCar. SpeedUp(5)
myCar.PrintState()
Next
End Sub
End Module

Once you run your program, you will see that the Car object (myCar) maintains its current state
throughout the life of the application, as shown in Figure 5-2.

C:\WINDOWS\system32\cmd.exe M=
T . -

Figure 5-2. Taking the Car for a test drive (pun intended)

129

130

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Allocating Objects with the New Keyword

As shown in the previous code example, objects must be allocated into memory using the New
keyword. If you do not make use of the New keyword and attempt to make use of your class variable
in a subsequent statement, you will receive a compiler warning. Even worse, if you execute code
that makes use of an unallocated object, you will receive a runtime error (specifically, an exception
of type NullReferenceException, which is the .NET equivalent of the dreaded VB 6.0 runtime error
91 “Object variable or With block variable not set”):

Sub Main()
' Runtime error! Forgot to use 'New'!
Dim myCar As Car
myCar.petName = "Fred"

End Sub

To correctly create a class type variable, you may define and allocate a Car object on a single
line of code as follows:

Sub Main()
Dim myCar As New Car()
myCar.petName = "Fred"
End Sub

As an alternative, you can allocate an object using the assignment operator in conjunction with
the New keyword. This syntax is provided to offer consistency within the language, given that this
approach mimics the initialization of simple data types (such as an Integer). For example:

Sub Main()
' An alternative manner to allocate an object.
Dim myInt as Integer = 10
Dim myCar As Car = New Car()

End Sub

Note Unlike Visual Basic 6.0, there is no longer a performance penalty incurred when defining and allocating an
object on a single line of code.

Finally, if you wish to define and allocate an object on separate lines of code, you may do so as
follows:

Sub Main()
Dim myCar as Car
myCar = New Car()
myCar.petName = "Fred"
End Sub

Note Under the .NET platform, the Set keyword has been deprecated. Thus, you no longer allocate objects
using the VB 6.0 Set keyword (if you do so, Visual Studio 2005 will delete Set from the code statement when you
hit the Enter key).

Here, the first code statement simply declares a reference to a yet-to-be-determined Car object.
It is not until you assign a reference to an object via the New keyword that this reference points to
avalid class instance. Without “new-ing” the reference, class variables are automatically assigned
the value Nothing, as verified with the following If statement:

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Sub Main()
Dim ref As Car
' The following condition is true!
If ref Is Nothing Then
Console.WritelLine("ref is not initialized!")
End If
End Sub

So at this point we have a trivial class type that defines a few points of data and some basic
methods. To enhance the functionality of the current Car type, we need to understand the role class
CONStIUctors.

Understanding Class Constructors

Given that objects have state (represented by the values of an object’s member variables), the object
user will typically want to assign relevant values to the object’s field data before use. Currently, the
Car type demands that the petName and currSpeed fields be assigned on a field-by-field basis. For the
current example, this is not too problematic, given that we have only two data points. However, it is
not uncommon for a class to have dozens of fields to contend with. Clearly, it would be undesirable
to author 20 initialization statements to set 20 points of data. Even using the With construct we are
at a disadvantage. By way of illustration:

Sub Main()
Dim o As New SomeClass()
With o
.Field1 = 10

.Field2 = True
.Field3 = New AnotherClass()
.Field4 = 9.99

.Field20 = "Gad, this is nasty!"
End Sub

Before the release of the .NET platform, VB class designers handled the Initialize event to
establish default values of an object’s field data. Within the handler for the Initialize event, you
were able to perform any necessary startup logic, to ensure the object came to life in a proper state.
Thus, if you were to define a Car type in Visual Basic 6.0, and wish to assume that all car objects
begin life named “Clunker” moving at 10 MPH, you might define the VB 6.0 Car.cls file shown in
Figure 5-3.

¥ Project1 - Car (Code)

Class x| [mitialize

Public petNHame As String
Public currSpeed As Integer

Private Sub Class Initialize()
' Establish defaults of each field.
petHame = "Clunker”
currSpeed = 10

End Sub

== | o

Figure 5-3. A VB 6.0 Car class

131

132

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

The problem with this approach is that the Initialize event handler does not allow the object
user to supply initialization parameters. Without this possibility, the object user is still required to
establish the state of the object on a member-by-member basis:

A VB 6.0 would require something like so.
Dim vb6Car As Car
Set vb6Car = New Car ' Initialize event fired!
With vb6Car
.currSpeed = 90
.petName = "Chucky"
End With

To help the object user along, and reduce the number of “hits” required to establish the state
of the object, many VB 6.0 developers created an ad hoc construction subroutine, often named
Create(). For example, assume we have added the following method to the VB 6.0 Car. c1s file:

Public Sub Create(ByVal pn As String, ByVal cs As Integer)
petName = pn
currSpeed = cs

End Sub

Although this technique does indeed reduce the number of hits to construct the object, it is
now the responsibility of the caller to invoke the custom Create() method. If this step is forgotten,
the object’s state data is assigned to the values established within the Initialize event handler. In
any case, here is an example of invoking our ad hoc VB 6.0 Create() method:

" A slightly better VB 6.0 solution.

Dim vb6Car As Car

Set vb6Car = New Car ' Initialize fired! Default values established.
Vb6Car.Create "Zippy", 90 ' Supply custom values.

In an ideal world, the object user could specify startup values at the time of creation. In essence,
you would like to be able to write the following VB 6.0 code:

' ILLEGAL VB 6.0 code!!!
Dim vb6Car As New Car(“Zippy", 90)

While illegal in VB 6.0, using VB 2005 you are able to do this very thing by defining any number
of class constructors. Simply put, a constructor is a subroutine of a class that is called by the CLR at
runtime when you allocate an object into memory using the New keyword.

Note The VB 6.0 class Initialize (and Terminate) events are no longer available under VB 2005. However,
the default constructor (examined next) is the functional equivalent of Initialize. On a related note, Chapter 8
examines the garbage collection process and the logical replacement of the VB 6.0 Terminate event.

The Role of the Default Constructor

First of all, understand that every VB 2005 class is provided with a freebee default constructor that you
may redefine if need be. By definition, default constructors never take arguments. Beyond allocating
the new object into memory, the default constructor ensures that all state data is set to an appropriate
default value (see Chapter 3 for information regarding the default values of VB 2005 data types).

If you are not satisfied with these default assignments, you may redefine the default constructor
by defining a Public subroutine named New() on any VB 2005 class type. To illustrate, update your
VB 2005 Car class as follows:

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Public Class Car
' The 'state' of the Car.
Public petName As String
Public currSpeed As Integer
' A custom default constructor.
Public Sub New()

petName = "Chuck"
currSpeed = 10
End Sub
End Class

In this case, we are forcing all Car objects to begin life named Chuck, and are moving down the
road at 10 MPH. With this, you are able to create a Car object set to these default values as follows:

Sub Main()
' Invoking the default constructor.
Dim chuck As New Car()
' Prints "Chuck is going 10 MPH."
chuck.PrintState()

End Sub

Strictly speaking, the VB 2005 compiler allows you to omit the empty parentheses when invok-
ing the default constructor. This is purely a typing time saver and has no effect on performance or
code size. Given this point, we could allocate a Car type using the default constructor as follows:

Sub Main()
' Note lack of () on constructor call.
Dim chuck As New Car

End Sub

Defining Custom Constructors

Typically, classes define additional constructors beyond the default. In doing so, you provide the
object user with a simple and consistent way to initialize the state of an object directly at the time
of creation. Given this fact, VB 2005 developers have no need to author VB 6.0-style ad hoc creations
methods (such as a Create() method) to allow the caller to set the object’s state data. Ponder the
following update to the Car class, which now supports a total of three class constructors:

Public Class Car

A custom default constructor.
Public Sub New()

petName = "Chuck"
currSpeed = 10
End Sub

' Here, currSpeed will receive the
' default value of an Integer (zero).
Public Sub New(ByVal pn As String)

petName = pn

End Sub

Public Sub New(ByVal pn As String, ByVal cs As Integer)
petName = pn
currSpeed = cs

End Sub

End Class

133

134

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Keep in mind that what makes one constructor different from another (in the eyes of the
VB 2005 compiler) is the number of and type of constructor arguments. Recall from Chapter 4, when
you define a method of the same name that differs by the number or type of arguments, you have
overloaded the method. Thus, the Car type has overloaded the constructor to provide a number of
ways to create the object at the time of declaration. In any case, you are now able to create Car objects
using any of the public constructors. For example:

Sub Main()
' Make a Car called Chuck going 10 MPH.
Dim chuck As New Car()
chuck.PrintState()

Make a Car called Mary going 0 MPH.
Dim mary As New Car("Mary")
mary.PrintState()

Make a Car called Daisy going 75 MPH.
Dim daisy As New Car("Daisy", 75)
daisy.PrintState()

End Sub

The Default Constructor Revisited

As you have just learned, all classes are endowed with a free default constructor. Thus, if you insert
a new class into your current project named Motorcycle, defined like so:

Public Class Motorcycle
Public Sub PopAWheely()
Console.WritelLine("Yeeeeeee Haaaaaeewww!")
End Sub
End Class

you are able to create an instance of the Motorcycle type via the default constructor out of the box:

Sub Main()
Dim mc As New Motorcycle()
mc . PopAhheely ()

End Sub

However, as soon as you define a custom constructor, the default constructor is silently removed
from the class and is no longer available! Think of it this way: if you do not define a custom constructor,
the VB 2005 compiler grants you a default in order to allow the object user to allocate an instance of
your type with field data set to their default values. However, when you define a unique constructor,
the compiler assumes you have taken matters into your own hands.

Therefore, if you wish to allow the object user to create an instance of your type with the default
constructor, as well as your custom constructor, you must explicitly redefine the default. To this end,
understand that in a vast majority of cases, the implementation of the default constructor of a class
is intentionally empty, as all you require is the ability to create an object with default values:

Public Class Motorcycle
Public driverIntensity As Integer

Public Sub PopAWheely()
For i As Integer = 0 To driverIntensity
Console.WritelLine("Yeeeeeee Haaaaaeewww!")
Next
End Sub

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

' Put back the default constructor.
Public Sub New()
End Sub

' Our custom constructor.
Public Sub New(ByVal intensity As Integer)
driverIntensity = intensity
End Sub
End Class

The Role of the Me Keyword

Like earlier additions of Visual Basic, VB 2005 supplies a Me keyword that provides access to the current
class instance. One possible use of the Me keyword is to resolve scope ambiguity, which can arise when
an incoming parameter is named identically to a data field of the type. Of course, ideally you would
simply adopt a naming convention that does not result in such ambiguity; however, to illustrate this
use of the Me keyword, update your Motorcycle class with a new String field (named name) to represent
the driver’s name. Next, add a subroutine named SetDriverName() implemented as follows:

Public Class Motorcycle
Public driverIntensity As Integer
Public name As String

Public Sub SetDriverName(ByVal name As String)
name = name
End Sub

End Class
Although this code will compile just fine, if you update Main() to call SetDriverName() and then
print out the value of the name field, you may be surprised to find that the value of the name field is

an empty string!

Make a Motorcycle named Tiny?

Dim ¢ As New Motorcycle(5)
c.SetDriverName("Tiny")

c.PopAitheely()

Console.WritelLine("Rider name is {0}", c.name)

Prints an empty name value!

The problem is that the implementation of SetDriverName() is assigning the incoming parameter
back to itself given that the compiler assumes name is referring to the variable currently in the method
scope rather than the name field at the class scope. To inform the compiler that you wish to set the
current object’s name data field to the incoming name parameter, simply use Me:

Public Sub SetDriverName(ByVal name As String)
Me.name = name
End Sub

Do understand that if there is no ambiguity, you are not required to make use of the Me keyword
when a class wishes to access its own data or members. For example, if we rename the String data
member to driverName, the use of Me is optional as there is no longer a scope ambiguity:

Public Class Motorcycle
Public driverIntensity As Integer
Public driverName As String

135

136 CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Public Sub SetDriverName(ByVal name As String)
' These two line are functionally identical.
driverName = name
Me.driverName = name

End Sub

End Class
Even though there is little to be gained when using Me in unambiguous situations, you may still
find this keyword useful when implementing members, as IDEs such as SharpDevelop and Visual

Studio 2005 will enable IntelliSense when Me is specified. This can be very helpful when you have
forgotten the name of a class item and want to quickly recall the definition. Consider Figure 5-4.

~Motorcyclewb® [Modulel.wb | StartPage | Object Browser - X
|J[g Motorcycle v || ‘i SetDriverlame v
] Pubklic Class Motorcycle f

2 Public driverIntensity As Integer

3 Public driverName As String

4

5 Public Subk SetDriverName (ByVal name As Strinc
& me. kir:l.verName = name

End v drlverInhenS|ty

© Publ L3 d |Pub||c Dim driverMame As String
- PopAWheely To driverIntensity
10 “y SetDriverMName ne ("Yeeeeeee Haaaaaeen

o Common Al

12i1 End

|~
|
|

Figure 5-4. The IntelliSense of Me

Note Itis a compiler error to use the Me keyword within the implementation of a Shared member (explained
shortly). As you will see, shared methods operate on the class (not object) level, and therefore at the class level,
there is no current object (thus no Me)!

Chaining Constructor Calls Using Me

Another use of the Me keyword is to design a class using a technique termed constructor chaining.
This design pattern is helpful when you have a class that defines multiple constructors. Given the
fact that constructors often validate the incoming arguments to enforce various business rules, it
can be quite common to find redundant validation logic within a class’s constructor set. Consider
the following updated Motorcycle:

Public Class Motorcycle
Public driverIntensity As Integer
Public driverName As String
' Redundent constructor logic.
Public Sub New()
End Sub
Public Sub New(ByVal intensity As Integer)
If intensity > 10 Then
intensity =

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

End If
driverIntensity = intensity

End Sub

Public Sub New(ByVal intensity As Integer, ByVal name As String)
If intensity > 10 Then

intensity = 10

End If
driverIntensity = intensity
driverName = name

End Sub

End Class

Here (perhaps in an attempt to ensure the safety of the rider), each constructor is ensuring that
the intensity level is never greater than 10. While this is all well and good, we do have redundant code
statements in two constructors. This is less than ideal, as we are now required to update code in multi-
ple locations if our rules change (for example, if the intensity should not be greater than 5).

One way to improve the current situation is to define a method in the Motorcycle class that will
validate the incoming argument(s). If we were to do so, each constructor could make a call to this
method before making the field assignment(s). While this approach does allow us to isolate the code
we need to update when the business rules change, we are now dealing with the following redundancy:

Public Class Motorcycle
Public driverIntensity As Integer
Public driverName As String

' Constructors.
Public Sub New()
End Sub
Public Sub New(ByVal intensity As Integer)
ValidateIntensity(intensity)
driverIntensity = intensity
End Sub
Public Sub New(ByVal intensity As Integer, ByVal name As String)
ValidateIntensity(intensity)
driverIntensity = intensity
driverName = name
End Sub
Sub ValidateIntensity(ByRef intensity As Integer)
If intensity > 10 Then
intensity = 10
End If
End Sub
End Class

Under VB 2005, a cleaner approach is to designate the constructor that takes the greatest number
of arguments as the “master constructor” and have its implementation perform the required valida-
tion logic. The remaining constructors can make use of the Me keyword to forward the incoming
arguments to the master constructor and provide any additional parameters as necessary. In this
way, we only need to worry about maintaining a single constructor for the entire class, while the
remaining constructors are basically empty. Here is the final iteration of the Motorcycle class (with
one additional constructor for the sake of illustration):

Public Class Motorcycle
Public driverIntensity As Integer
Public driverName As String

' Constructors.

137

138 CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Public Sub New()
End Sub
Public Sub New(ByVal intensity As Integer)
Me.New(intensity, "")
End Sub
Public Sub New(ByVal name As String)
Me.New(5, name)
End Sub
' This is the 'master’' constructor that does all the real work.
Public Sub New(ByVal intensity As Integer, ByVal name As String)
If intensity > 10 Then
intensity = 10
End If
driverIntensity = intensity
driverName = name
End Sub
End Class

Note When a constructor forwards parameters to the master constructor using Me . New(), it must do so on the
very first line within the constructor body. If you fail to do so, you will receive a compiler error.

Understand that using the Me keyword to chain constructor calls is never mandatory. However,
when you make use of this technique, you do tend to end up with a more maintainable and concise
class definition. Again, using this technique you can simplify your programming tasks, as the real
work is delegated to a single constructor (typically the constructor that has the most parameters),
while the other constructors simply “pass the buck.”

Observing Constructor Flow

On a final note, do know that once a constructor passes arguments to the designated master construc-
tor (and that constructor has processed the data), the constructor invoked originally by the object
user will finish executing any remaining code statements. To clarify, update each of the constructors
of the Motorcycle class with a fitting call to Console.WriteLine():

Public Class Motorcycle

' Constructors.
Public Sub New()

Console.WriteLine("In default c-tor")
End Sub

Public Sub New(ByVal intensity As Integer)
Me.New(intensity, "")
Console.WriteLine("In c-tor taking an Integer")
End Sub

Public Sub New(ByVal name As String)

Me.New(5, name)

Console.WriteLine("In c-tor taking a String")
End Sub

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES 139

Public Sub New(ByVal intensity As Integer, ByVal name As String)
Console.WriteLine("In master c-tor")
If intensity > 10 Then
intensity = 10
End If
driverIntensity = intensity
driverName = name
End Sub
End Class

Now, ensure your Main() method exercises a Motorcycle object as follows:
Sub Main()

' Make a Motorcycle.
Dim ¢ As New Motorcycle(5)
c.SetDriverName("Tiny")
c.PopAlheely ()
Console.WriteLine("Rider name is {0}", c.name)
End Sub

With this, ponder the output in Figure 5-5.

Figure 5-5. Constructor chaining at work

As you can see, the flow of constructor logic is as follows:

* We create our object by invoking the constructor requiring a single Integer.

* This constructor forwards the supplied data to the master constructor and provides any
additional startup arguments not specified by the caller.

* The master constructor assigns the incoming data to the object’s field data.
* Control is returned to the constructor originally called, and executes any remaining code

statements.

Great! At this point you are able to define a class with field data and various members that can
be created using any number of constructors. Next up, let’s formalize the role of the Shared keyword.

Source Code The SimpleClassExample project is included under the Chapter 5 subdirectory.

140

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Understanding the Shared Keyword

A'VB 2005 class (or structure) may define any number of shared members via the Shared keyword.
When you do so, the member in question must be invoked directly from the class level, rather than
from a type instance. To illustrate the distinction, consider our good friend System.Console. As you
have seen, you do not invoke the WritelLine() method from the object level:

Error! WritelLine() is not an instance level method!
Dim c As New Console()
c.Writeline("I can't be printed...")

but instead simply prefix the type name to the shared WritelLine() member:

' Correct! WritelLine() is a Shared method.
Console.WriteLine("Thanks...")

Simply put, Shared members are items that are deemed (by the type designer) to be so
commonplace that there is no need to create an instance of the type when invoking the member.

Defining Shared Methods (and Fields)

Assume you have a new console project named SharedMethods and have inserted a class named
Teenager that defines a Shared method named Complain(). This method returns a random string,
obtained in part by calling a helper function named GetRandomNumbex ():

Class Teenager
Public Shared r As Random = New Random()

Public Shared Function GetRandomNumber(ByVal upperLimit As Short) As Integer
Return r.Next(upperLimit)
End Function

Public Shared Function Complain() As String
Dim messages As String() = _
{"Do I have to?", "He started it!", "I'm too tired...", _
"I hate school!", "You are sooo wrong."}
Return messages(GetRandomNumber(5))
End Function
End Class

Notice that the System.Random member variable and the GetRandomNumber () helper function
method have also been declared as Shared members of the Teenager class, given the rule that Shared
members can operate only on other Shared members.

Note Allow me to repeat myself. Shared members can operate only on Shared data and call Shared methods
of the defining class. If you attempt to make use of non-Shared data or call a non-Shared method within a Shared
member, you'll receive a compiler error.

Like any Shared member, to call Complain(), prefix the name of the defining class:

Sub Main()
Console.WriteLine("*¥**** Shared Methods *¥¥**")
For i As Integer = 0 To 5
Console.WritelLine(Teenager.Complain())
Next
End Sub

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

As stated, shared members are bound at the class not object level. However, a strange VB-ism
exists that allows us to invoke the shared Complain() method as follows:

Sub Main()
Console.WriteLine("***** Shared Methods *****")

' VB-ism!
Dim bob As New Teenager()
For i As Integer = 0 To 5
Console.Writeline(bob.Complain())
Next
End Sub

Although the previous code will result in invoking the Complain() method, you will also receive
a compiler warning:

warning BC42025: Access of shared member, constant member, enum member or nested
type through an instance; qualifying expression will not be evaluated.

Basically, this warning is informing us that Complain() cannot be invoked from our Teenager
object named bob. How then is Complain() invoked? Under the covers, the VB 2005 compiler simply
substitutes a correct call to Teenager.Complain() in the CIL code, which can be verified using
ildasm.exe (see Chapter 1):

.method public static void Main() cil managed

{

IL_002c: call string SharedMethods.Teenager::Complain()

} // end of method Program::Main

As you might agree, the VB-ism is confusing at best. If you wish to inform the VB 2005 compiler
to emit an error (rather than a warning) when invoking a shared member from an object variable,
you can do so by opening the My Project icon, selecting the Compile tab, and setting the Instance
variable accesses shared member condition to Error. By doing so, we would now receive a compile-
time error when writing code such as

Sub Main()
Dim bob as New Teenager()
For i As Integer = 0 To 5
' Now an compile time error.
Console.Writeline(bob.Complain())
Next
End Sub

Source Code The SharedMethods application is located under the Chapter 5 subdirectory.

Defining Shared Data

In addition to Shared members, a type may also define Shared field data (such as the Random member

variable seen in the previous Teenager class). Understand that when a class defines non-Shared data
(properly referred to as instance data), each object of this type maintains an independent copy of the
field. For example, assume a class that models a savings account is defined in a new console appli-
cation named SharedData:

141

142

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

' This class has a single piece of non-Shared data.
Class SavingsAccount
Public currBalance As Double

Public Sub New(ByVal balance As Double)
currBalance = balance
End Sub
End Class

When you create SavingsAccount objects, memory for the currBalance field is allocated for
each class instance. Shared data, on the other hand, is allocated once and shared among all objects
of the same type. To illustrate the usefulness of Shared data, assume you add piece of Shared data
named currInterestRate to the SavingsAccount class:

Class SavingsAccount
Public currBalance As Double

' A Shared point of data.
Public Shared currInterestRate As Double = 0.04

Public Sub New(ByVal balance As Double)
currBalance = balance
End Sub
End Class

If you were to create three instances of SavingsAccount as follows:

Sub Main()
Console.WritelLine("***** Fun with Shared Data *¥¥¥*")
Dim s1 As New SavingsAccount(50)
Dim s2 As New SavingsAccount(100)
Dim s3 As New SavingsAccount(10000.75)
End Sub

the in-memory data allocation would look something like Figure 5-6.

Savings Account:S1

currBalance=50 \\\\\\

Savings Account:S2

|currInteIestRate=.04

currBalance=100

Savings Account:S3

currBalance=10000.75

Figure 5-6. Shared data is allocated once and shared among all instances of the class.

Let’s update the SavingsAccount class to define two Shared methods to get and set the interest
rate value:
Class SavingsAccount

Public currBalance As Double
Public Shared currInterestRate As Double = 0.04

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Public Sub New(ByVal balance As Double)
currBalance = balance
End Sub
' Shared members to get/set interest rate.
Public Shared Sub SetInterestRate(ByVal newRate As Double)
currlnterestRate = newRate
End Sub
Public Shared Function GetInterestRate() As Double
Return currInterestRate
End Function
' Instance members to get/set interest rate.
Public Sub SetInterestRateObj(ByVal newRate As Double)
currInterestRate = newRate
End Sub
Public Function GetInterestRateObj() As Double
Return currInterestRate
End Function
End Class

As stated, Shared methods can operate only on Shared data. However, a non-Shared method can
make use of both Shared and non-Shared data. This should make sense, given that Shared data is
available to all instances of the type. Now, observe the following usage and the output in Figure 5-7:

Sub Main()

Console.WritelLine("***** Fun with Shared Data *¥¥**")

Dim s1 As New SavingsAccount(50)

Dim s2 As New SavingsAccount(100)

' Get and Set interest rate at object level.
Console.WriteLine("Interest Rate is: {0}", si1.GetInterestRateObj())
s2.SetInterestRateObj(0.08)

' Make new object, this does NOT 'reset' the interest rate.
Dim s3 As New SavingsAccount(10000.75)
Console.WritelLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate())
Console.ReadlLine()
End Sub

Figure 5-7. Shared data is allocated only once.

Asyou can see, when you create new instances of the SavingsAccount class, the value of the Shared
data is not reset, as the CLR will allocate the data into memory exactly one time. After that point, all
objects of type SavingsAccount operate on the same value. Thus, if one object were to change the
interest rate, all other objects report the same value:

143

144

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Sub Main()

SavingsAccount.SetInterestRate(0.09)
' All three lines print out "Interest Rate is: 0.09"
Console.WriteLine("Interest Rate is: {0}", si1.GetInterestRateObj())
Console.WriteLine("Interest Rate is: {0}", s2.GetInterestRateObj())
Console.Writeline("Interest Rate is: {0}", SavingsAccount.GetInterestRate())
Console.ReadlLine()

End Sub

Defining Shared Constructors

As you know, constructors are used to set the value of a type’s data at the time of construction. Thus,
if you were to assign the value to a piece of Shared data within an instance-level constructor, you
would be saddened to find that the value is reset each time you create a new object! For example,
assume you have updated the SavingsAccount class as follows:

Class SavingsAccount
Public currBalance As Double
Public Shared currInterestRate As Double

Public Sub New(ByVal balance As Double)
currBalance = balance
currInterestRate = 0.04

End Sub

End Class
If you execute the previous Main() method, notice how the currInterestRate variable is reset
each time you create a new SavingsAccount object (see Figure 5-8).

C:\WINDOWS\system32\cmd.exe
Fun with Shared Data

Figure 5-8. Assigning Shared data in a constructor “resets” the value.

While you are always free to establish the initial value of Shared data using the member initial-
ization syntax, what if the value for your Shared data needed to be obtained from a database or
external file? To perform such tasks requires a method scope (such as a constructor) to execute the
code statements. For this very reason, VB 2005 allows you to define a Shared constructor:

Class SavingsAccount
Public currBalance As Double
Public Shared currInterestRate As Double
' A shared constructor.

Shared Sub New()
Console.WriteLine("In Shared ctor!")
currInterestRate = 0.04

End Sub

End Class

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Simply put, a shared constructor is a special constructor that is an ideal place to initialize the
values of shared data when the value is not known at compile time (e.g., you need to read in the
value from an external file, etc.). Here are a few points of interest regarding Shared constructors:

* A given class (or structure) may define only a single Shared constructor.

¢ A Shared constructor does not take an access modifier and cannot take any parameters.

* A Shared constructor executes exactly one time, regardless of how many objects of the type
are created.

¢ The runtime invokes the Shared constructor when it creates an instance of the class or before
accessing the first Shared member invoked by the caller.

* The Shared constructor executes before any instance-level constructors.

Given this modification, when you create new SavingsAccount objects, the value of the Shared
data is preserved, and the output is identical to Figure 5-7 (shown previously).

Source Code The SharedData project is located under the Chapter 5 subdirectory.

Sweet! At this point in the chapter you (hopefully) feel comfortable defining simple class types
containing constructors, fields, and various shared members. Now that you have the basics under
your belt, we can formally investigate the three pillars of object-oriented programming.

Defining the Pillars of 00P

All object-based languages must contend with three core principals of object-oriented programming,
often called the “pillars of object-oriented programming (OOP)”:

» Encapsulation: How does this language hide an object’s internal implementation details and
preserve data integrity?

e Inheritance: How does this language promote code reuse?

» Polymorphism: How does this language let you treat related objects in a similar way?

As you are most likely already aware, VB 6.0 did not support each pillar of object technology.
Specifically, VB 6.0 lacked inheritance (and therefore lacked true polymorphism). VB 2005, on the
other hand, supports each aspect of OOP, and is on par with any other modern-day OO language
(C#, Java, C++, Delphi, etc.). Before digging into the syntactic details of each pillar, it is important
that you understand the basic role of each. Here is an overview of each pillar, which will be exam-
ined in full detail over the remainder of this chapter and the next.

The Role of Encapsulation

The first pillar of OOP is called encapsulation. This trait boils down to the language’s ability to hide
unnecessary implementation details from the object user. For example, assume you are using a class
named DatabaseReader, which has two primary methods: Open() and Close():

' This object encapsulates the details of opening and closing a database.
Dim dbReader As New DatabaseReader()
dbReader.Open("C:\MyCars.mdf")
' Do something with data file...
dbReader.Close()

145

146

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

The fictitious DatabaseReader class encapsulates the inner details of locating, loading, manipulating,
and closing the data file. Object users love encapsulation, as this pillar of OOP keeps programming
task simpler. There is no need to worry about the numerous lines of code that are working behind
the scenes to carry out the work of the DatabaseReader class. All you do is create an instance and
send the appropriate messages (e.g., “Open the file named MyCars.mdf located on my C drive”).

Closely related to the notion of encapsulating programming logic is the idea of data hiding.
Ideally, an object’s state data should be specified as Private (or possibly Protected). In this way, the
outside world must ask politely in order to change or obtain the underlying value. This is a good
thing, as publicly declared data points can easily become corrupted (hopefully by accident rather
than intent!). You will formally examine this aspect of encapsulation in just a bit.

The Role of Inheritance

The next pillar of OOP, inheritance, boils down to the language’s ability to allow you to build new
class definitions based on existing class definitions. In essence, inheritance allows you to extend the
behavior of a base (or “parent”) class by inheriting core functionality into the derived subclass (also
called a “child class”). Figure 5-9 shows a simple example.

DObject ¥
| Clasz
&

Shape ¥
Class

Hexagon
Class

Figure 5-9. The “is-a” relationship

You can read the diagram in Figure 5-9 as “A hexagon is-a shape that is-an object.” When you
have classes related by this form of inheritance, you establish “is-a” relationships between types.
The is-a relationship is often termed classical inheritance. Under Visual Basic 2005, System.0Object is
always the topmost base class in any .NET hierarchy, which defines some bare-bones functionality
fully described in the next chapter. The Shape class extends Object. You can assume that Shape defines
some number of members that are common to all descendents. The Hexagon class extends Shape, and
inherits the core functionality defined by Shape and Object, as well as defines additional hexagon-
related details of its own (whatever those may be).

There is another form of code reuse in the world of OOP: the containment/delegation model
(also known as the “has-a” relationship or “aggregation”). This form of reuse (used exclusively by VB 6.0)
is not used to establish parent/child relationships. Rather, the “has-a” relationship allows one class to
contain an instance of another class and expose its functionality (if required) to the object user indirectly.

For example, assume you are again modeling an automobile. You might want to express the
idea that a car “has-a” radio. It would be illogical to attempt to derive the Car class from a Radio, or
vice versa (a Car “is-a” Radio? I think not!). Rather, you have two independent classes working together,
where the Car class creates and exposes the Radio’s functionality:

Public Class Radio
Public Sub Power(ByVal turnOn As Boolean)
Console.WritelLine("Radio on: {0}", turnOn)
End Sub
End Class

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Public Class Car
' Car 'has-a' Radio
Private myRadio As Radio = New Radio()

Public Sub TurnOnRadio(ByVal onOff As Boolean)
' Delegate call to inner object.
myRadio.Power (on0ff)
End Sub
End Class

Notice that the object user has no clue that the Car class is making use of an inner object.

Sub Main()
' Call is forwarded to Radio internally.
Dim viper as New Car()
viper.TurnOnRadio(False)

End Sub

The Role of Polymorphism

The final pillar of OOP is polymorphism. This trait captures a language’s ability to treat related objects
in a similar manner. Specifically, this tenant of an object-oriented language allows a base class to
define a set of members (formally termed the polymorphic interface) that are available to all descen-
dents. A class’s polymorphic interface is constructed using any number of virtual or abstract members
(see Chapter 6 for full details).

In a nutshell, a virtual member is a member in a base class that defines a default implementation
that may be changed (or more formally speaking, overridden) by a derived class. In contrast, an
abstract method is a member in a base class that does not provide a default implementation, but does
provide a signature. When a class derives from a base class defining an abstract method, it must be
overridden by a derived type. In either case, when derived types override the members defined by
a base class, they are essentially redefining how they respond to the same request.

To preview polymorphism, let’s provide some details behind the shapes hierarchy shown in
Figure 5-9. Assume that the Shape class has defined a virtual subroutine named Draw() that takes no
parameters. Given the fact that every shape needs to render itself in a unique manner, subclasses
(such as Hexagon and Circle) are free to override this method to their own liking (see Figure 5-10).

Calling Drawi) on a Circle
ohject renders a 2D
circle.

Circle
Class

|= Methods
W Draw

Calling Drawi) on a
Hexagon object renders a
2D hexagon image.

Hexagon ¥
Class

Figure 5-10. Classical polymorphism

Once a polymorphic interface has been designed, you can begin to make various assumptions
in your code. For example, given that Hexagon and Circle derive from a common parent (Shape), an
array of Shape types could contain anything deriving from this base class. Furthermore, given that
Shape defines a polymorphic interface to all derived types (the Draw() method in this example), we
can assume each member in the array has this functionality.

147

148 CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Consider the following Main() method, which instructs an array of Shape-derived types to render
themselves using the Draw() method:

Module Program
Sub Main()
Dim myShapes(2) As Shape
myShapes(0) = New Hexagon()

myShapes(1) = New Circle()
myShapes(2) = New Hexagon()
For Each s As Shape In myShapes
s.Draw()
Next
Console.ReadLine()
End Sub
End Class

This wraps up our brisk overview of the pillars of OOP. Now that you have the theory in your
mind, the remainder of this chapter explores further details of how encapsulation is handled under
Visual Basic 2005. The next chapter will tackle the details of inheritance and polymorphism.

Visual Basic 2005 Access Modifiers

When working with encapsulation, you must always take into account which aspects of a type are
visible to various parts of your application. Specifically, types (classes, interfaces, structures, enu-
merations, delegates) and their members (properties, subroutines, functions, constructors, fields,
and so forth) are always defined using a specific keyword to control how “visible” the item is to
other parts of your application. Although VB 2005 defines numerous keywords to control access,
they differ on where they can be successfully applied (type or member). Table 5-1 documents the
role of each access modifier and where they may be applied.

Table 5-1. Visual Basic Access Modifiers

Visual Basic 2005
Access Modifier May Be Applied To Meaning in Life

Public Types or type members Public items have no access restrictions.
A public item can be accessed from an
object as well as any derived class.

Private Type members or nested types Private items can only be accessed by the
class (or structure) that defines the item.

Protected Type members or nested types Protected items are not accessible from an
object; however, they are directly accessible
by derived classes.

Friend Types or type members Friend items are accessible only within the
current assembly. Therefore, if you define
a set of Friend-level types within a .NET
class library, other assemblies are not able
to make use of them.

Protected Friend Type members or nested types ~ When the Protected and Friend members
are combined on an item, the item is
accessible within the defining assembly, the
defining class, and by derived classes.

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

In this chapter, we are only concerned with the Public and Private keywords. Later chapters
will examine the role of the Friend and Protected Friend modifiers (useful when you build .NET
code libraries) and the Protected modifier (useful when you are creating class hierarchies).

Access Modifiers and Nested Types

Notice that the Private, Protected, and Protected Friend access modifiers can be applied to

a “nested type.” Chapter 6 will examine nesting in detail. What you need to know at this point, how-
ever, is that a nested type is a type declared directly within the scope of Class or Structure. By way
of example, here is a Private Enum (named Color) nested within a Public class (named SportsCar):

Public Class SportsCar
' OK! Nested types can be marked Private.
Private Enum CarColor
Red
Green
Blue
End Enum
End Class

Here, it is permissible to apply the Private access modifier on the nested type. However,
nonnested types (such as the SportsCar) can only be defined with the Public or Friend modifiers.
Therefore, the following Class is illegal:

Error! Non-nested types cannot be marked Private!
Private Class Radio
End Class

The Default Access Modifier

By default, a type’s set of properties, subroutines, and functions are implicitly Public:

A public class with a public default constructor.
Public Class Radio

Sub New()

End Sub
End Class

If you wish to be very clear in your intentions, you are free to explicitly mark a member with the
Public keyword; however, the end result is identical in terms of performance and the size of the output
assembly:

' Functionally identical to the previous class definition.
Public Class Radio

Public Sub New()

End Sub
End Class

Access Modifiers and Field Data

Fields of a Class or Structure must be defined with an access modifier. Unlike type members (con-
structors, properties, subroutines, or functions), there is not a “default” access level for field data.
Consider the following illegal update to the Radio class:

Public Class Radio
' Error! Must define access modifer
' for field data!
favoriteStation as Double

149

150

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Sub New()
End Sub
End Class

To rectify the situation, simply define the type with your access modifier of choice:

Public Class Radio
Private favoriteStation as Double
Sub New()
End Sub

End Class

Note It is possible to define a data field of a Class or Structure using the Dim keyword (although it is consid-
ered bad style). If you do so, the variable behaves as if it were declared with the Private access modifier.

The First Pillar: VB 2005’s Encapsulation Services

The concept of encapsulation revolves around the notion that an object’s internal data should not
be directly accessible from an object instance. Rather, if the caller wants to alter the state of an object,
the user does so indirectly using accessor (e.g., “getter”) and mutator (e.g., “setter”) methods. In
VB 2005, encapsulation is enforced at the syntactic level using the Public, Private, Friend, and Protected
keywords. To illustrate the need for encapsulation services, assume you have created the following
class definition:

A class with a single field.
Public Class Book

Public numberOfPages As Integer
End Class

The problem with public field data is that the items have no ability to intrinsically “understand”
whether the current value to which they are assigned is valid with regard to the current business
rules of the system. As you know, the upper range of a VB 2005 Integer is quite large (2,147,483,647).
Therefore, the compiler allows the following assignment:

Humm. That is one heck of a mini-novel!
Sub Main()
Dim miniNovel As New Book()
miniNovel.numberOfPages = 30000000
End Sub

Although you have not overflowed the boundaries of an integer data type, it should be clear
that a mini-novel with a page count of 30,000,000 pages is a bit unreasonable. As you can see, public
fields do not provide a way to trap logical upper (or lower) limits. If your current system has a business
rule that states a book must be between 1 and 1,000 pages, you are at a loss to enforce this program-
matically. Because of this, public fields typically have no place in a production-level class definition.

Encapsulation provides a way to preserve the integrity of an object’s state data. Rather than
defining public fields (which can easily foster data corruption), you should get in the habit of defin-
ing private data, which is indirectly manipulated using one of two main techniques:

* Define a pair of accessor (get) and mutator (set) methods.
* Define a type property.

Additionally, VB 2005 supports the special keywords ReadOnly and WriteOnly, which also deliver
alevel of data protection. Whichever technique you choose, the point is that a well-encapsulated
class should hide the details of how it operates from the prying eyes of the outside world. This is

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

often termed black box programming. The beauty of this approach is that an object is free to change
how a given method is implemented under the hood. It does this without breaking any existing code
making use of it, provided that the signature of the method remains constant.

Encapsulation Using Traditional Accessors and Mutators

Over the remaining pages in this chapter, we will be building a fairly complete class that models

a general employee. To get the ball rolling, create a new console application named EmployeeApp
and insert a new Class (named Employee.vb) using the Project » Add Class menu item. Update the
Employee class with the following fields, subroutines, and constructors:

Public Class Employee
' Field data.
Private empName As String
Private empID As Integer
Private currPay As Single
' Constructors

Sub New()

End Sub

Sub New(ByVal name As String, ByVal id As Integer, ByVal pay As Single)
empName = name
empID = id
currPay = pay

End Sub

' Members.

Sub GiveBonus(ByVal amount As Single)
currPay += amount

End Sub

Sub DisplayStats()
Console.Writeline("Name: {0}", empName)
Console.Writeline("ID: {0}", empID)
Console.WriteLine("Pay: {0}", currPay)

End Sub

End Class

Notice that the fields of the Employee class are currently defined using the Private access keyword.
Given this, the empName, empID, and currPay fields are not directly accessible from an object:

Sub Main()
' Error! Cannot directly access Private members
' from an object!
Dim emp As New Employee()
emp.empName = "Marv"
End Sub

If you want the outside world to interact with your private string representing a worker’s full
name, tradition dictates defining an accessor (get method) and mutator (set method). For example,
to encapsulate the empName field, you could add the following Public members to the existing Employee
class type:

Traditional accessor and mutator for a point of private data.
Public Class Employee

' Field data.

Private empName As String

Accessor (get method)

151

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Public Function GetName() As String
Return empName
End Function

' Mutator (set method)
Public Sub SetName(ByVal name As String)
' Remove any illegal characters (!,@,#,%$,%),
' check maximum length or case before making assignment.
empName = name
End Sub
End Class

This technique requires two uniquely named methods to operate on a single data point. To
illustrate, update your Main() method as follows:

Sub Main()
Console.WriteLine("***** Fun with Encapsulation k")
Dim emp As New Employee("Marvin", 456, 30000)
emp.GiveBonus(1000)
emp.DisplayStats()
' Use the get/set methods to interact with the object's name.
emp . SetName("Marv")
Console.Writeline("Employee is named: {0}", emp.GetName())
Console.ReadlLine()

End Sub

Encapsulation Using Type Properties

Although you can encapsulate a piece of field data using traditional get and set methods, .NET lan-
guages prefer to enforce data protection using properties that are defined via the Property keyword.
Visual Basic 6.0 programmers have long used properties to simulate direct access to field data; how-
ever, the syntax to do so has been modified under the .NET platform.

First of all, understand that properties always map to “real” accessor and mutator methods in
terms of CIL code. Therefore, as a class designer, you are still able to perform any internal logic
necessary before making the value assignment (e.g., uppercase the value, scrub the value for illegal
characters, check the bounds of a numerical value, and so on). Here is the updated Employee class,
now enforcing encapsulation of each field using property syntax rather than get and set methods:

Public Class Employee
' Field data.
Private empName As String
Private empID As Integer
Private currPay As Single

' Properties
Public Property Name() As String
Get
Return empName
End Get
Set(ByVal value As String)
empName = value
End Set
End Property

CHAPTER 5

Public Property ID() As Integer
Get
Return empID
End Get
Set(ByVal value As Integer)
empID = value
End Set
End Property

Public Property Pay() As Single
Get
Return currPay
End Get
Set(ByVal value As Single)
currPay = value
End Set
End Property

End Class

DEFINING ENCAPSULATED CLASS TYPES

Unlike VB 6.0, a property is not represented by independent Get, Let, or Set members. Rather,
a'VB 2005 property is composed by defining a Get scope (accessor) and Set scope (mutator) directly
within the property scope itself. Once we have these properties in place, it appears to the object user
that they are getting and setting a public point of data; however, the correct Get and Set block is called

behind the scenes:
Sub Main()

Console.WriteLine("***** Fun with Encapsulation *#i¥*™")

Dim emp As New Employee("Marvin", 456, 30000)
emp.GiveBonus(1000)
emp.DisplayStats()

' Set and Get the Name property.
emp.Name = "Marv"

Console.WriteLine("Employee is named: {0}", emp.Name)

Console.ReadlLine()
End Sub

Properties (as opposed to accessors and mutators) also make your types easier to manipulate,
in that properties are able to respond to the intrinsic operators of VB 2005. To illustrate, assume that
the Employee class type has an internal private member variable representing the age of the employee.

Here is our update:

Public Class Employee
Private empAge As Integer

Public Property Age() As Integer
Get
Return empAge
End Get
Set(ByVal value As Integer)
empAge = value
End Set
End Property

153

154 CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

' Constructors
Sub New()
End Sub
Sub New(ByVal name As String, ByVal age As Integer, _
ByVal id As Integer, ByVal pay As Single)
empName = name
empAge = age
empID = id
currPay = pay
End Sub

Members.

Sub DisplayStats()
Console.WriteLine("Name: {0}", empName)
Console.WriteLine("Age: {0}", empAge)
Console.Writeline("ID: {0}", empID)
Console.WritelLine("Pay: {0}", currPay)

End Sub

End Class

Now assume you have created an Employee object named joe. On his birthday, you wish to
increment the age by one. Using traditional accessor and mutator methods, you would need to
write code such as the following:

Dim joe As New Employee()
joe.SetAge(joe.CetAge() + 1)

However, if you encapsulate empAge using property syntax, you are able to simply write

Dim joe As New Employee()
joe.Age = joe.Age + 1

Internal Representation of Properties

Many programmers (especially those who program with a C-based language such as C++) tend to
design traditional accessor and mutator methods using “get_" and “set_" prefixes (e.g., get_Name()
and set_Name()). This naming convention itself is not problematic as far as VB 2005 is concerned.
However, it is important to understand that under the hood, a property is represented in CIL code
using these same prefixes. For example, if you open up the EmployeeApp.exe assembly using ildasm.exe,
you see that each property is mapped to hidden get XXX()/set_XXX() methods called internally by
the CLR (see Figure 5-11).

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES 155

¥ C:\Documents and Settings\Andrew Troelsen\My D...

File View Help

= E Employeespp Employes

b .class private auto ansi

W currPay : private float3z

A emphge ! private int32

“ emplD : private int32

“ empMame : private string

% EMp3SM @ private skring

B ctor : voidistring,int32,int32, float32, string)

B ctor : void() B

B DisplayStats : void()

B GiveBonus : void(float32)

[R oet_a

B get 1D

B get_NMame : string)

B get_Pay : float3z() b
< | 4
;{assembly Employeespp -~

>

Figure 5-11. A property is represented by get/set methods internally.

Assume the Employee type now has a private member variable named empSSN to represent an indi-
vidual’s Social Security number, which is manipulated by a property named SocialSecurityNumber:

' Add support for a new field representing the employee's SSN.
Public Class Employee

Private empSSN As String

Public Property SocialSecurityNumber() As String
Get
Return empSSN
End Get
Set(ByVal value As String)
empSSN = value
End Set
End Property
' Constructors
Sub New()
End Sub
Sub New(ByVal name As String, ByVal age As Integer, _
ByVal id As Integer, ByVal pay As Single, _
ByVal ssn As String)
empName = name

empAge = age
empID = id
empSSN = ssn
currPay = pay
End Sub
' Members.

Sub DisplayStats()
Console.WritelLine("Name: {0}", empName)
Console.WritelLine("Age: {0}", empAge)

156

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Console.WriteLine("SSN: {0}", empSSN)
Console.Writeline("ID: {0}", empID)
Console.WriteLine("Pay: {0}", currPay)
End Sub
End Class

If you were to also define two methods named get SocialSecurityNumber() and
set_SocialSecurityNumber(), you would be issued compile-time errors:

' Remember, a property really maps to a get_/set_ pair.
Public Class Employee

Public Function get SocialSecurityNumber() As String
Return empSSN
End Function
Public Sub set SocialSecurityNumber(ByVal val As String)
empSSN = val
End Sub
End Class

Note The .NET base class libraries always favor type properties over traditional accessor and mutator methods.
Therefore, if you wish to build custom types that integrate well with the .NET platform, avoid defining traditional
get and set methods.

Controlling Visibility Levels of Property Get/Set Statements

Prior to VB 2005, the visibility of get and set logic was solely controlled by the access modifier of the
property declaration:

The get and set logic is both public,
' given the declaration of the property.
Public Property SocialSecurityNumber() As String
Get
Return empSSN
End Get
Set(Byval value As String)
empSSN = value
End Set
End Property

In some cases, it would be helpful to specify unique accessibility levels for get and set logic. To
do so, simply prefix an accessibility keyword to the appropriate Get or Set keyword (the unqualified
scope takes the visibility of the property’s declaration):

' Object users can only get the value, however
' the Employee class and derived types can set the value.
Public Property SocialSecurityNumber() As String
Get
Return empSSN
End Get
Protected Set(ByVal value As String)
empSSN = value
End Set
End Property

In this case, the set logic of SocialSecurityNumber can only be called by the current class and
derived classes and therefore cannot be called from an object instance.

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Read-Only and Write-Only Properties

When creating class types, you may wish to configure a read-only property. To do so, simply build

a property using the ReadOnly keyword and omit the Set block. Likewise, if you wish to have a write-
only property, build a property using the WriteOnly keyword and omit the Get block. For example,
here is how the SocialSecurityNumber property could be retrofitted as read-only:

Public Class Employee

' Now as a read-only property.
Public ReadOnly Property SocialSecurityNumber() As String
Get
Return empSSN
End Get
End Property
End Class

Given this adjustment, the only manner in which an employee’s US Social Security number can
be set is through a constructor argument.

Shared Properties

VB 2005 also supports shared properties. Recall from earlier in this chapter that shared members
are accessed at the class level, not from an instance (object) of that class. For example, assume that
the Employee type defines a shared point of data to represent the name of the organization employ-
ing these workers. You may encapsulate a shared property as follows:

Shared properties must operate on static data!
Public Class Employee

Private Shared companyName As String

Public Shared Property Company() As String
Get
Return companyName
End Get
Set(ByVal value As String)
companyName = value
End Set
End Property
End Class

Shared properties are manipulated in the same manner as static methods, as seen here:

Interact with the Shared property.
Sub Main()
Employee.Company = "Intertech Training"
Console.WritelLine("These folks work at {0}", Employee.Company)
End Sub

Finally, recall that classes can support shared constructors. Thus, if you wanted to ensure that
the name of the static CompName field was always assigned to “Intertech Training”, you would write
the following:

Shared constructors are used to initialize shared data.
Public Class Employee
Private Shared companyName As String

157

158

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Shared Sub New()
companyName = "Intertech Training"
End Sub
End Class

Using this approach, there is no need to explicitly set the companyName value:

Set to Intertech Training via Shared constructor.
Sub Main()

Console.WritelLine("These folks work at {0}", Employee.Company)
End Sub

To wrap up the examination of encapsulation using VB 2005 properties, understand that these
syntactic entities are used for the same purpose as a classical accessor/mutator pair. The benefit of
properties is that the users of your objects are able to manipulate the internal data point using
a single named item.

Understanding Constant Data

Now that you can create fields that can be modified using type properties, allow me to illustrate how
to define data that can never change after the initial assignment. VB 2005 offers the Const keyword
to define constant data. As you might guess, this can be helpful when you are defining a set of known
values for use in your applications that are logically connected to a given class or structure.

Turning away from the Employee example for a moment, assume you are building a utility class
named MyMathClass that needs to define a value for the value PI (which we will assume to be 3.14).
Given that we would not want to allow other developers to change this value in code, PI could be
modeled with the following constant:

Public Class MyMathClass
Public Const PI As Double = 3.14
End Class

Module Program
Sub Main()
Console.Writeline("The value of PI is: {0}", MyMathClass.PI)
End Sub
End Module

Because PI has been defined as constant, it would be a compile-time error to attempt to modify
this value within our code base:

Module Program
Sub Main()
Console.WriteLine("The value of PI is: {0}", MyMathClass.PI)

Error! Can't change a constant!
MyMathClass.PI = 3.1444
End Sub
End Module

Notice that we are referencing the constant data defined by the MyConstants class using a class
name prefix. This is due to the fact that constant fields of a class or structure are implicitly shared.
As mentioned early in this chapter, VB 2005 does allow you to access shared members from an
object (provided you have not altered your compiler error settings!). Thus, you could write the follow-
ing code to access the value of PI:

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Module Program
Sub Main()
Dim m As New MyMathClass()
Console.Writeline("The value of PI is: {0}", m.PI)
End Sub
End Module

As well, it is permissible to define a local piece of constant data within a type member. By way
of example:

Module Program
Sub Main()
Console.Writeline("The value of PI is: {0}", MyMathClass.PI)

A local constant data point.
Const fixedStr As String = "Fixed String Data"
Console.Writeline(fixedStr)

Error!
fixedStr = "This will not work!"
End Sub
End Module

Regardless of where you define a constant piece of data, the one point to always remember is
that the initial value assigned to the constant must be specified at the time you define the constant.
Thus, if you were to modify your MyMathClass in such a way that the value of PI is assigned in a class
constructor as follows:

Public Class MyMathClass
Public Const PI As Double
Public Sub New()

' Nope! Compiler error!
PI = 3.14
End Sub
End Class

you would receive a compile-time error. The reason for this restriction has to do with the fact the
value of constant data must be known at compile time. Constructors, as you know, are invoked at
runtime.

Understanding Read-Only Fields

Closely related to constant data is the notion of read-only field data. Like a constant, a read-only
field cannot be changed after the initial assignment. However, unlike a constant, the value assigned
to a read-only field can be determined at runtime, and therefore can legally be assigned within the
scope of a constructor (but nowhere else).

This can be very helpful when you don’t know the value of a field until runtime (perhaps because
you need to read an external file to obtain the value), but wish to ensure that the value will not change
after that point. For the sake of illustration, assume the following update to MyMathClass:

Public Class MyMathClass
' Now as a read only field.
Public ReadOnly PI As Double
Public Sub New()
' This is now OK.
PI = 3.14
End Sub
End Class

159

160

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Again, any attempt to make assignments to a field marked ReadOnly outside the scope of
a constructor results in a compiler error:

Module Program
Sub Main()
Dim m As New MyMathClass()
' Error.
m.PI =9
End Sub
End Module

Shared Read-Only Fields

Unlike a constant field, read-only fields are not implicitly shared. Thus, if you wish to expose PI from
the class level, you must explicitly make use of the Shared keyword. If you know the value of a shared
read-only field at compile time, the initial assignment looks very similar to that of a constant:

Public Class MyMathClass
Public Shared ReadOnly PI As Double = 3.14
End Class

Module Program
Sub Main()
Console.Writeline("The value of PI is {0}", MyMathClass.PI)
End Sub
End Module

However, if the value of a shared read-only field is not known until runtime, you must make use
of a shared constructor as described earlier in this chapter:

Public Class MyMathClass
Public Shared ReadOnly PI As Double
Shared Sub New()
PI = 3.14
End Sub
End Class

Module Program
Sub Main()
Console.WriteLine("The value of PI is {0}", MyMathClass.PI)
End Sub
End Module

Now that we have examined the role of constant data and read-only fields, we can return to the
Employee example and put the wraps on this chapter.

Understanding Partial Types

VB 2005 introduces a new type modifier named Partial that allows you to define a type across
multiple *.vb files. Earlier versions of the VB programming language required all code for a given
type be defined within a single *.vb file. Given the fact that a production-level VB 2005 class may be
hundreds of lines of code (or more), this can end up being a mighty lengthy file indeed.

In these cases, it would be ideal to partition a type’s implementation across numerous *.vb
files in order to separate code that is in some way more important for other details. For example,
using the Partial class modifier, you could place all of the Employee constructors and properties
into a new file named Employee.Internals.vb:

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Partial Public Class Employee
' Constructors

Properties

End Class
while the private field data and type methods are defined within the initial Employee.vb:

Partial Public Class Employee
' Field data.
Private empName As String
Private empID As Integer
Private currPay As Single
Private empAge As Integer
Private empSSN As String
Private Shared companyName As String

' Public methods.

Sub GiveBonus(ByVal amount As Single)
currPay += amount

End Sub

Sub DisplayStats()
Console.WritelLine("Name: {0}", empName)
Console.Writeline("Age: {0}", empAge)
Console.WriteLine("SSN: {0}", empSSN)
Console.Writeline("ID: {0}", empID)
Console.Writeline("Pay: {0}", currPay)

End Sub

End Class

As you might guess, this can be helpful to new team members who need to quickly learn about
the public interface of the type. Rather than reading though a single (lengthy) VB 2005 file to find the
members of interest, they can focus on the public members. Of course, once these files are compiled
by the VB 2005 compiler, the end result is a single unified type. To this end, the Partial modifier is
purely a design-time construct.

Note As you will see during our examination of Windows Forms and ASP.NET, Visual Studio 2005 makes use of
the Partial keyword to partition code generated by the IDE’s designer tools. Using this approach, you can keep
focused on your current solution, and be blissfully unaware of the designer-generated code.

Documenting VB 2005 Source Code via XML

To wrap this chapter up, the final task is to examine VB 2005-specific comment tokens that yield
XML-based code documentation. If you have worked with the Java programming language, you
may be familiar with the javadoc utility. Using javadoc, you are able to turn Java source code into
a corresponding HTML representation. The VB 2005 documentation model is slightly different, in
that the “code comments to XML” conversion process is the job of the VB 2005 compiler (via the
/doc option) rather than a stand-alone utility.

So, why use XML to document our type definitions rather than HTML? The main reason is
that XML is a very “enabling technology.” Given that XML separates the definition of data from the
presentation of that data, we can apply any number of XML transformations to the underlying XML
to display the code documentation in a variety of formats (MSDN format, HTML, etc.).

161

162

CHAPTER 5

DEFINING ENCAPSULATED CLASS TYPES

When you wish to document your VB 2005 types in XML, your first step is to make use of the

new triple tick (

) code comment notations. Once a documentation comment has been declared,

you are free to use any well-formed XML elements, including the recommended set shown in Table 5-2.

Table 5-2. Recommended Code Comment XML Elements

Predefined XML
Documentation Element

Meaning in Life

<>

<code>
<example>
<exception>
<list>
<param>
<paramref>
<permission>
<remarks>
<returns>
<see>
<seealso>
<summary>
<value>

Indicates that the following text should be displayed in a specific “code font”
Indicates multiple lines should be marked as code

Mocks up a code example for the item you are describing
Documents which exceptions a given class may throw
Inserts a list or table into the documentation file
Describes a given parameter

Associates a given XML tag with a specific parameter
Documents the security constraints for a given member
Builds a description for a given member

Documents the return value of the member
Cross-references related items in the document

Builds an “also see” section within a description
Documents the “executive summary” for a given member

Documents a given property

If you are making use of the new VB 2005 XML code comment notation, do be aware the Visual
Studio 2005 IDE will generate documentation skeletons on your behalf. For example, if you right-click
the Employee class definition and select the Insert Comment menu option, as shown in Figure 5-12,
the IDE will autocomplete the initial set of XML elements.

Employee.Internals.vb Employee.vb| Modulel.vb - X

|V’[3 Employee v | |§§§ (Declarations) v

1@ Partial Public Class Empld) . f

3 ' Field data. Create Private Accessor » =

3 Private empMName &As S5tr ﬂ Create Tests...

f Pr:_l.vat,e empID As Int?g ‘8| GoTo Definition

5 Private currPay As Sin

& Private emplge L= Inte Find All References

T Private empS5N &s S5tri Breakpoint »

8 Private Shared companyl

g *= RunTo Cursor

10 ' Members. % cut

119 Sub GiveBonus (ByVal am{

1z currPay += amount 53 Copy

13+ End Sub [Paste

149 Suk DisplayStats|() e

15 Console.Writeline {

16 Console.WritelLine(| Insert Comment [\|

17 Console.Writeline | Outlining ,’

18 Console.Writeline (=0 o7 —mpToy 3

|~

v

Figure 5-12. Inserting an XML comment via Visual Studio 2005

CHAPTER 5 " DEFINING ENCAPSULATED CLASS TYPES

Simply fill in the blanks with your custom content:

<summary>

This is the employee class.
</summary>
<remarks></remarks>

Partial Public Class Employee

End Class
By way of another example, right-click your custom five-argument constructor and insert a code

comment. This time the comment builder utility has been kind enough to add <param> elements:

<summary>

</summary>

<param name="name"></param>

<param name="age"></param>

<param name="id"></param>

<param name="pay"></param>

<param name="ssn"></param>

<remarks></remarks>

Sub New(ByVal name As String, ByVal age As Integer, _
Byval id As Integer, ByVal pay As Single, _
ByVal ssn As String)

End Sub
Once you have documented your code with XML comments, you will need to generate a corre-

sponding *.xml file. If you are building your VB 2005 programs using the command-line compiler
(vbc.exe), the /doc flag is used to generate a specified *.xml file based on your XML code comments:

vbc /doc:XmlCarDoc.xml *.vb

Visual Studio 2005 projects allow you to specify the name of an XML documentation file using
the Generate XML documentation file check box option found on the Build tab of the Properties
window (see Figure 5-13).

~EmployeeApp| Employee Internals.vb Employee.vb* [Modulel.vb -~ X
Application
Configuration: ‘Acﬁ\re (Debug) | Platform: ‘Acﬁ\re (Any CPU) -
Compile
Implict type; object assumed None ~
Debug Use of variable prior to assignment Warning
Function/Operator without return value Warning
References
Unused local variable Warning
Settings Instance variable accesses shared member | Warning
Recursive operator or property access Warni
Resoes P property Warning
Duplicate or overlapping catch blocks Warning
Signing
Securi
ty] pisable all warnings
Publish [Treat all warnings as errors
B Generate XML documentation file
Code Analysis |
A
\ < >

Figure 5-13. Generating an XML code comment file via Visual Studio 2005

163

164

CHAPTER 5 ©' DEFINING ENCAPSULATED CLASS TYPES

Once you have enabled this behavior, the compiler will place the generated *.xml file within
your project’s \bin\Debug folder. You can verify this for yourself by clicking the Show All Files button
on the Solution Explorer, generating the result in Figure 5-14.

Solution Explorer - Solution 'EmployeeApp’ (... (X
He
'_: Solution ‘EmployeeApp’ {1 project)
= (28 EmployeeApp
[=d] My Project
[z3 References
=)

ﬁ ClassDiagram 1.cd

1&] Employee. Internals.vb
‘fﬂ Employee.vb

15] Module1.vb

Figure 5-14. Locating the generated XML documentation file

Note There are many other elements and notations that may appear in VB 2005 XML code comments. If you
are interested in more details, look up the topic “Documenting Your Code with XML (Visual Basic)” within the .NET
Framework SDK 2.0 documentation.

Transforming XML Code Comments via NDoc

Now that you have generated an *.xml file that contains your source code comments, you may be
wondering exactly what to do with it. Sadly, Visual Studio 2005 does not provide a built-in utility
that transforms XML data into a more user-friendly help format (such as an HTML page). If you are
comfortable with the ins and outs of XML transformations, you are, of course, free to manually create
your own style sheets.

A simpler alternative, however, are the numerous third-party tools that will translate an XML
code file into various helpful formats. For example, recall from Chapter 2 that the NDoc application
generates documentation in several different formats. Again, information regarding NDoc can be
found at http://ndoc.sourceforge.net.

Visualizing the Fruits of Our Labor

At this point, you have created a fairly interesting class named Employee. If you are using Visual
Studio 2005, you may wish to insert a new class diagram file (see Chapter 2) in order to view (and
maintain) your class at design time. Figure 5-15 shows the completed Employee class type.

(Employee
Class

= Fields
¢ companyName
currPay
emphge
empID
empMName
empSSN
perties
ﬁ Age
ﬁ Company
=Ryl
ﬁ Name
B pay
5 socialSecurityNumber
= Methods
‘% DisplayStats
b GiveBonus
% New (+ 2 overloads)

T L%%%%%

=

Figure 5-15. The completed Employee class

CHAPTER 5

DEFINING ENCAPSULATED CLASS TYPES

As you will see in the next chapter, this Employee class will function as a base class for a family
of derived class types (WageEmployee, SalesEmployee, and Manager).

Source Gode The EmployeeApp project can be found under the Chapter 5 subdirectory.

Summary

The point of this chapter was to introduce you to the role of the VB 2005 class type. As you have seen,
classes can take any number of constructors that enable the object user to establish the state of the
object upon creation. This chapter also illustrated several class design techniques (and related key-
words). Recall that the Me keyword can be used to obtain access to the current object, the Shared
keyword allows you to define fields and members that are bound at the class (not object) level, and
the Const keyword allows you to define a point of data that can never change after the initial assignment.
The bulk of this chapter dug into the details of the first pillar of OOP: encapsulation. Here you
learned about the access modifiers of Visual Basic 2005 and the role of type properties, partial classes,

and XML code documentation.

165

CHAPTER 6

Understanding Inheritance and
Polymorphism

The previous chapter examined the first pillar of OOP: encapsulation. At that time you learned
how to build a single well-defined class type with constructors and various members (fields, prop-
erties, constants, read-only fields, etc.). This chapter will focus on the remaining two pillars of OOP:
inheritance and polymorphism.

First, you will learn how to build families of related classes using inheritance. As you will see,
this form of code reuse allows you to define common functionality in a parent class that can be
leveraged (and possibly altered) by child classes. Along the way, you will learn how to establish
a polymorphic interface into the class hierarchies using virtual and abstract members. We wrap up
by examining the role of the ultimate parent class in the .NET base class libraries: System.0Object.

The Basic Mechanics of Inheritance

Recall from the previous chapter that inheritance is the aspect of OOP that facilitates code reuse.
Specifically speaking, inheritance comes in two flavors: classical inheritance (the “is-a” relationship)
and the containment/delegation model (the “has-a” relationship). Let’s begin by examining the
classical “is-a” model.

When you establish “is-a” relationships between classes, you are building a dependency between
two or more class types. The basic idea behind classical inheritance is that new classes may leverage
(and possibily extend) the functionality of existing classes. To illustrate, assume you have designed
a simple class named Car that models some basic details of an automobile:

A simple base class.

Public Class Car

Public ReadOnly MaxSpeed As Integer
Private currSpeed As Integer

Public Sub New(ByVal max As Integer)
MaxSpeed = max
End Sub
Public Sub New()
MaxSpeed = 55
End Sub
Public Property Speed() As Integer
Get
Return currSpeed
End Get

167

168 CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Set(ByVal value As Integer)
currSpeed += value
If currSpeed > MaxSpeed Then

currSpeed = MaxSpeed

End If

End Set

End Property
End Class

Notice that the Car class is making use of encapsulation services to control access to the private
currSpeed field using a public property named Speed. At this point you can exercise your Car type as
follows:

Module Program
Sub Main()
' Make a Car type.
Dim myCar As New Car(80)
myCar.Speed = 50
Console.Writeline("My car is going {0} MPH", _
myCar.Speed)
End Sub
End Module

The Inherits Keyword

Now assume you wish to build a new class named MiniVan. Like a basic Car, you wish to define the
MiniVan class to support a maximum speed, current speed, and a property named Speed to allow the
object user to modify the object’s state. Clearly, the Car and MiniVan classes are related, in fact we can
say that aMiniVan “is-a” Car. The “is-a” relationship (formally termed classical inheritance) allows
you to build new class definitions that extend the functionality of an existing class.

The existing class that will serve as the basis for the new class is termed a base or parent class.
The role of a base class is to define all the common data and members for the classes that extend it.
The “extending” classes are formally termed derived or child classes. In VB 2005, we make use of the
Inherits keyword to establish an “is-a” relationship between classes:

MiniVan derives from Car

Public Class MiniVan
Inherits Car

End Class

So, what have we gained by building our MiniVan by deriving from the Car base class? Simply
put, the MiniVan class automatically gains the functionality of each and every member in the parent
class declared as Public or Protected. Do know that inheritance preserves encapsulation! Therefore,
the MiniVan class cannot directly access Private members of the parent. Given the relation between
these two class types, we could now make use of the MiniVan type like so:

Module Program
Sub Main()
' Make a MiniVan
Dim myVan As New MiniVan()
myVan.Speed = 10
Console.WriteLine("My van is going {0} MPH", _
myVan.Speed)
End Sub
End Module

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Notice that although we have not added any members to the MiniVan type, we have direct
access to the public Speed property (thus we have reused code). Recall, however, that encapsulation
is preserved, therefore the following code results in a compiler error:

Module Program
Sub Main()
' Make a MiniVan
Dim myVan As New MiniVan()
myVan.Speed = 10
Console.Writeline("My van is going {0} MPH", _
myVan.Speed)
' Error! Cannot access private data of the parent from an object!
myVan.currSpeed = 10
End Sub
End Module

As well, if the MiniVan defined its own set of members, it would not be able to access any private
member of the Car base class:

Public Class MiniVan
Inherits Car
Public Sub TestMethod()
' 0K! Can use public members
' within derived type.
Speed = 10
' Error! Cannot access private
members within derived type.
currSpeed = 10
End Sub
End Class

Regarding Multiple Base Classes

Speaking of base classes, it is important to keep in mind that the .NET platform demands that
a given class have exactly one direct base class. It is not possible to create a class type that derives
from two or more base classes (this technique is known as multiple inheritance, or simply MI):

' Illegal! The .NET platform does not allow
' multiple inheritance for classes!
Public Class WontWork
Inherits BaseClassOne
Inherits BaseClassTwo
End Class

As you will see in Chapter 9, VB 2005 does allow a given type to implement any number of dis-
crete interfaces. In this way, a VB 2005 class can exhibit a number of behaviors while avoiding the
complexities associated with MI. On a related note, it is permissible for a single interface to derive
from multiple interfaces (again, see Chapter 9).

The NotInheritable Keyword

VB 2005 supplies another keyword, named NotInheritable, that prevents inheritance from occurring.
When you mark a class as NotInheritable, the compiler will not allow you to derive from this type.
For example, assume you have decided that it makes no sense to further extend the MiniVan class:

169

170

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

' This class cannot be extended!

Public NotInheritable Class MiniVan
Inherits Car

End Class

If you (or a teammate) were to attempt to derive from this class, you would receive a compile-
time error:

Error! Cannot extend
a class marked NotInheritable!
Public Class TryAnyway
Inherits MiniVan
End Class

Formally speaking, the MiniVan class has been sealed. Most often, sealing a class makes the
most sense when you are designing a utility class. For example, the System namespace defines
numerous sealed classes (System.Console, System.Math, System.Environment, System.Sting, etc.).
You can verify this for yourself by opening up the Visual Studio 2005 Object Browser (via the
View menu) and selecting the System.Console type defined within mscorlib.d11. Notice in
Figure 6-1 the use of the NotInheritable keyword.

~Object Browser [Modulel.wb | Cars.vh - X
Browse: Al Components LA % =R
<Search . B= @ Beep() L
‘i Beep(Integer, Integer) —
(=3R4 CharEnum.erator . ~ @ Clear()
& "’[3 CLSCompliantAttribute S MoveBufferarealInteger, Integer, Integer, Integer, Integer, Inter s
j Comparison{Of T) | | | 5 e

-4 ConsoleCancelEventargs Public MotInheritable Class Console

i ConsoleCancelEventHand Inherits System.Object
=@ ConsaleCalor Mernber of: System
Summary:

= Consolekey

‘g ConsoleKeyInfo

= ConsoleModifiers

=f ConsoleSpecialkey b
< | @

Represents the standard input, output, and error streams for
console applications. This class cannot be inherited.

Figure 6-1. The base class libraries define numerous sealed types.

Thus, just like the MiniVan, if you attempted to build a new class that extends System.Console,
you will receive a compile-time error:

Another error! Cannot extend
a class marked NotInheritable!
Public Class MyConsole

Inherits Console
End Class

Note In Chapter 4, you were introduced to the structure type. Structures are always implicitly sealed. Therefore,
you can never derive one structure from another structure, a class from a structure or a structure from a class.

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM 17

As you would guess, there are many more details to inheritance that you will come to know during
the remainder of this chapter. For now, simply keep in mind that the Inherits keyword allows you to
establish base/derived class relationships, while the NotInheritable keyword prevents inheritance
from occurring.

Revising Visual Studio 2005 Class Diagrams

Back in Chapter 2, I briefly mentioned that Visual Studio 2005 now allows you to establish base/
derived class relationships visually at design time. To leverage this aspect of the IDE, your first step
is to include a new class diagram file into your current project. To do so, access the Project » Add
New Item menu option and select the Class Diagram icon (in Figure 6-2, I renamed the file from
ClassDiagrami.cd to Cars.cd).

Add New Item - Basiclnheritance

Templates: ||E|
Module Interface Component COM Class DataSet SQL Database Report Crystal Report L
Class
= ; ; BS = Ve
] B EH B & E
User Control Inherited Form Inherited User Custom Web Custom Resources File Settings File Code File
Contral Contral Contral
= = — .
toa L = @
E = I:H:: fiy = = %

Class Diagram ®ML File ¥ML Schema ¥SLT File Text File HTML Page Bitmap File Cursor File

i 5 @ 8 @&

Icon File Application Transactional Installer Class Windows
e Fim e — ki - * .

[£3

e sien

A blank class diagram

Mame: Cars.cd |

Figure 6-2. Inserting a new class diagram

When you do, the IDE responds by automatically including all types, including a set of types
that are not directly visible from the Solution Explorer such as MySettings, Resources, etc. Realize
that if you delete an item from the visual designer, this will not delete the associated source code.
Given this, delete all visual icons except the Car, MiniVan, and Program types, as shown in Figure 6-3.

172

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Cars.cd - X
A~
(car & (" Program &
Class Module
= Fields = Methods
¥ crrSpeed g Main
¥ MaxSpeed - J
= Properties
P speed
= Methods
9 New (+ 1overloa..
e — - S
i

MiniVan
Notinheritable Class
=+ Car

b
< | >

Figure 6-3. The visual designer of Visual Studio 2005

Beyond simply displaying the relationships of the types within your current application, recall
that you can also create brand new types (and populate their members) using the Class Designer
toolbox and Class Details window (see Chapter 2 for details). If you wish to make use of these visual
tools during the remainder of the book, feel free. However! Always make sure you analyze the gener-
ated code so you have a solid understanding of what these tools have done on your behalf.

Source Gode The Basiclnheritance project is located under the Chapter 6 subdirectory.

The Second Pillar: The Details of Inheritance

Now that you have seen the basics of inheritance, let’s create a more complex example and get to know

the numerous details of building class hierarchies. To do so, we will be reusing the Employee class we
designed in Chapter 5. To begin, create a brand new console application named Employees. Next,
activate the Project » Add Existing Item menu option and navigate to the location of your Employee.vb

and Employee.Internals.vb files. Select each of them (via a Ctrl+left click) and click the OK button.
Visual Studio 2005 responds by copying each file into the current project. Once you have done so,
compile your current application just to ensure you are up and running.

Our goal is to create a family of classes that model various types of employees in a company.
Assume that you wish to leverage the functionality of the Employee class to create two new classes
(SalesPerson and Manager). The class hierarchy we will be building initially looks something like
what you see in Figure 6-4.

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

(Employee 63
Class

= Fields

¢ companyName
currPay
emphge
empID
empMName
empSSN
perties
ﬁ Age

ﬁ Company
= D

T R%%%%%

=]

5 socialSecurityNumber
= Methods

i DisplayStats

b GiveBonus

% New (+ 2 overloads)

f

gt

(" SalesPerson ® ("Ma nager ®
Class Class
- Emplayes - Emplayes

gt

Figure 6-4. The initial Employees hierarchy

As illustrated in Figure 6-4, you can see that a SalesPerson “is-a” Employee (as is a Manager).
Remember that under the classical inheritance model, base classes (such as Employee) are used to
define general characteristics that are common to all descendents. Subclasses (such as SalesPerson
and Manager) extend this general functionality while adding more specific behaviors.

For our example, we will assume that the Manager class extends Employee by recording the num-
ber of stock options, while the SalesPerson class maintains the number of sales made. Insert a new
class file (Manager . vb) that defines the Manager type as follows:

' Managers need to know their number of stock options.
Public Class Manager
Inherits Employee
Private numberOfOptions As Integer
Public Property StockOptions() As Integer
Get
Return numberOfOptions
End Get
Set(Byval value As Integer)
numberOfOptions = value
End Set
End Property
End Class

Next, add another new class file (SalesPerson.vb) that defines the SalesPerson type:

Salespeople need to know their number of sales.
Public Class SalesPerson

Inherits Employee

Private numberOfSales As Integer

Public Property SalesNumber() As Integer

173

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Get
Return numberOfSales

End Get

Set(ByVal value As Integer)
numberOfSales = value

End Set

End Property
End Class

Now that you have established an “is-a” relationship, SalesPerson and Manager have automati-
cally inherited all public members of the Employee base class. To illustrate:

Create a subclass and access base class functionality.
Module Program
Sub Main()
Console.Writeline("***** The Employee Class Hierarchy *ik¥*")
Console.Writeline()
' Make a salesperson.
Dim danny As New SalesPerson()
With danny
.Age = 29
.ID = 100
.SalesNumber = 50
.Name = "Dan McCabe"
End With
End Sub
End Module

Controlling Base Class Creation with MyBase

Currently, SalesPerson and Manager can only be created using the freebee default constructor (see
Chapter 5). With this in mind, assume you have added a new six-argument constructor to the
Manager type, which is invoked as follows:

Sub Main()

Assume we now have the following constructor.

' (name, age, ID, pay, SSN, number of stock options).

Dim chucky As New Manager("Chucky", 45, 101, 30000, "222-22-2222", 90)
End Sub

If you look at the argument list, you can clearly see that most of these parameters should be
stored in the member variables defined by the Employee base class. To do so, you might implement
this custom constructor on the Manager class as follows:

Public Sub New(ByVal fullName As String, ByVal age As Integer, _
ByVal empID As Integer, ByVal currPay As Single, _
ByVal ssn As String, ByVal numbOfOpts As Integer)
' This field is defined by the Manager class.
numberOfOptions = numbOfOpts

' Assign incoming parameters using the

' inherited properties of the parent class.
ID = empID

age = age

Name = fullName

Pay = currPay

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

' 00PS! This would be a compiler error,
' as the SSN property is read-only!
SocialSecurityNumber = ssn

End Sub

The first issue with this approach is that we defined the SocialSecurityNumber property in the
parent as read-only, therefore we are unable to assign the incoming String parameter to this field.

The second issue is that we have indirectly created a rather inefficient constructor, given the
fact that under VB 2005, unless you say otherwise, the default constructor of a base class is called
automatically before the logic of the custom Manager constructor is executed. After this point, the
current implementation accesses numerous public properties of the Employee base class to estab-
lish its state. Thus, you have really made seven hits (five inherited properties and two constructor
calls) during the creation of a Manager object!

To help optimize the creation of a derived class, you will do well to implement your subclass
constructors to explicitly call an appropriate custom base class constructor, rather than the default.
In this way, you are able to reduce the number of calls to inherited initialization members (which
saves processing time). Let’s retrofit the custom constructor to do this very thing using the MyBase
keyword:

This time, use the VB 2005 "MyBase" keyword to call a custom
constructor on the base class.

Public Sub New(ByVal fullName As String, ByVal age As Integer, _
ByVal empID As Integer, ByVal currPay As Single, _

ByVal ssn As String, ByVal numbOfOpts As Integer)

' Pass these arguments to the parent's constructor.
MyBase.New(fullName, age, empID, currPay, ssn)

This belongs with us!
numberOfOptions = numbOfOpts
End Sub

Here, the first statement within your custom constructor is making use of the MyBase keyword.
In this situation, you are explicitly calling the five-argument constructor defined by Employee and
saving yourself unnecessary calls during the creation of the child class. The custom SalesPerson
constructor looks almost identical:

As a general rule, all subclasses should explicitly call an appropriate
' base class constructor.
Public Sub New(ByVal fullName As String, ByVal age As Integer, _
ByVal empID As Integer, ByVal currPay As Single, _
ByVal ssn As String, ByVal numbOfSales As Integer)
' Pass these arguments to the parent's constructor.
MyBase.New(fullName, age, empID, currPay, ssn)
' This belongs with us!
numberOfSales = numbOfSales
End Sub

Also be aware that you may use the MyBase keyword anytime a subclass wishes to access a pub-
lic or protected member defined by a parent class. Use of this keyword is not limited to constructor
logic. You will see examples using MyBase in this manner during our examination of polymorphism
later in this chapter.

Note When using MyBase to call a parent’s constructor, the MyBase.New() statement must be the very first
executable code statement within the constructor body. If this is not the case, you will receive a compiler error.

175

176

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Keeping Family Secrets: The Protected Keyword

As you already know, public items are directly accessible from anywhere, while private items cannot
be accessed from any object beyond the class that has defined it. Recall from Chapter 5 that VB 2005
takes the lead of many other modern object languages and provides an additional keyword to define
member accessibility: Protected.

When a base class defines protected data or protected members, it establishes a set of items
that can be accessed directly by any descendent. If you wish to allow the SalesPerson and Manager
child classes to directly access the data sector defined by Employee, you can update the original
Employee class definition as follows:

' Protected state data.
Partial Public Class Employee
' Derived classes can directly access this information.
Protected empName As String
Protected empID As Integer
Protected currPay As Single
Protected empAge As Integer
Protected empSSN As String
Protected Shared companyName As String

End Class

The benefit of defining protected members in a base class is that derived types no longer have
to access the data using public methods or properties. The possible downfall, of course, is that when
a derived type has direct access to its parent’s internal data, it is very possible to accidentally bypass
existing business rules found within public properties. When you define protected members, you
are creating a level of trust between the parent and child class, as the compiler will not catch any
violation of your type’s business rules.

Finally, understand that as far as the object user is concerned, protected data is regarded as
private (as the user is “outside” of the family). Therefore, the following is illegal:

Sub Main()
' Error! Can't access protected data from object instance.
Dim emp As New Employee()
emp.empSSN = "111-11-1111"

End Sub

Note Although Protected field data can break encapsulation, it is quite safe (and useful) to define Protected
subroutines and functions. When building class hierarchies, it is very common to define a set of methods that are
only for use by derived types.

Adding a Sealed Class

Recall that a sealed class cannot be extended by other classes. As mentioned, this technique is most
often used when you are designing a utility class. However, when building class hierarchies, you
might find that a certain branch in the inheritance chain should be “capped off,” as it makes no
sense to further extend the linage. For example, assume you have added yet another class to your
program (PTSalesPerson) that extends the existing SalesPerson type. Figure 6-5 shows the current
update.

CHAPTER 6

(Employee 63
Class
Fields
Properties
Methods
\ ‘?),
(salesPerson 63 (Manager 63
Class Class
-b Employes b Employes
= Fields = Fields
@ numberOfsales ¥ numberOfOptions
= Properties = Properties
5 salesNumber % stockOptions
= Methods = Methods
i New (+ 1overloa.. i New (+ 1overloa..

hs

Figure 6-5. The part-time salesperson class

PTSalesPerson is a class representing (of course) a part-time salesperson. For the sake of argument,
let’s say that you wish to ensure that no other developer is able to subclass from PTSalesPerson. (After
all, how much more part-time can you get than “part-time”?) To prevent others from extending a class,

UNDERSTANDING INHERITANCE AND POLYMORPHISM

make use of the VB 2005 NotInheritable keyword:

Public NotInheritable Class PTSalesPerson

Inherits SalesPerson

Public Sub New(ByVal fullName As String, ByVal age As Integer, _
ByVal empID As Integer, ByVal currPay As Single,
ByVal ssn As String, ByVal numbOfSales As Integer)
' Pass these arguments to the parent's constructor.
MyBase.New(fullName, age, empID, currPay, ssn, numbOfSales)

End Sub
' Assume other

End Class

Given that sealed classes cannot be extended, you may wonder if it is possible to reuse the code
within a class marked NotInheritable. If you wish to build a new class that leverages the functionality
of a sealed class, your only option is to forego classical inheritance and make use of the containment/

members here...

delegation model (aka the “has-a” relationship).

177

178

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Programming for Containment/Delegation

As noted a bit earlier in this chapter, inheritance comes in two flavors. We have just explored the
classical “is-a” relationship. To conclude the exploration of the second pillar of OOP, let’s examine
the “has-a” relationship (also known as the containment/delegation model or aggregation). Assume
you have created a new class that models an employee benefits package:

' This type will function as a contained class.
Public Class BenefitPackage
' Assume we have other members that represent
401K plans, dental/health benefits, and so on.
Public Function ComputePayDeduction() As Double
Return 125.0
End Function
End Class

Obviously, it would be rather odd to establish an “is-a” relationship between the BenefitPackage
class and the employee types. (Manager “is-a” BenefitPackage? I don't think so.) However, it should
be clear that some sort of relationship between the two could be established. In short, you would
like to express the idea that each employee “has-a” BenefitPackage. To do so, you can update the
Employee class definition as follows:

Employees now have benefits.

Partial Public Class Employee

' Contain a BenefitPackage object.

Protected empBenefits As BenefitPackage = New BenefitPackage()

End Class

At this point, you have successfully contained another object. However, to expose the function-
ality of the contained object to the outside world requires delegation. Delegation is simply the act of
adding members to the containing class that make use of the contained object’s functionality. For
example, we could update the Employee class to expose the contained empBenefits object using

a custom property as well as make use of its functionality internally using a new method named
GetBenefitCost():

Partial Public Class Employee
' Contain a BenefitPackage object.
Protected empBenefits As BenefitPackage = New BenefitPackage()
' Expose certain benefit behaviors of object.
Public Function GetBenefitCost() As Double
Return empBenefits.ComputePayDeduction()
End Function
' Expose object through a custom property.
Public Property Benefits() As BenefitPackage
Get
Return empBenefits
End Get
Set(ByVal value As BenefitPackage)
empBenefits = value
End Set
End Property

End Class
In the following updated Main() method, notice how we can interact with the internal
BenefitsPackage type defined by the Employee type:

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Module Program
Sub Main()

Dim chucky As New Manager("Chucky", 45, 101, 30000, "222-22-2222", 90)
Dim cost As Double = chucky.GetBenefitCost()
End Sub
End Module

Nested Type Definitions

Before examining the final pillar of OOP (polymorphism), let’s explore a programming technique
termed nesting types (briefly mentioned in the previous chapter). In VB 2005, it is possible to define
a type (enum, class, interface, struct, or delegate) directly within the scope of a class or structure. When
you have done so, the nested (or “inner”) type is considered a member of the nesting (or “outer”) class,
and in the eyes of the runtime can be manipulated like any other member (fields, properties, meth-
ods, events, etc.). The syntax used to nest a type is quite straightforward:

Public Class OuterClass
' A public nested type can be used by anybody.
Public Class PublicInnerClass
End Class

' A private nested type can only be used by members
' of the containing class.
Private Class PrivateInnerClass
End Class
End Class

Although the syntax is clean, understanding why you might do this is not readily apparent. To
understand this technique, ponder the following traits of nesting a type:

* Nesting types is similar to aggregation (“has-a”), except that you have complete control over
the access level of the inner type instead of a contained object.

* Because a nested type is a member of the containing class, it can access private members of
the containing class.

* Oftentimes, a nested type is only useful as a helper for the outer class, and is not intended for
use by the outside world.

When a type nests another class type, it can create member variables of the type, just as it
would for any point of data. However, if you wish to make use of a nested type from outside of the
containing type, you must qualify it by the scope of the nesting type. Consider the following code:

Sub Main()
' Create And use the Public inner Class. OK!
Dim inner As OuterClass.PublicInnerClass
inner = New OuterClass.PublicInnerClass
' Compiler Error! Cannot access the private class.
Dim inner2 As OuterClass.PrivateInnerClass
inner2 = New OuterClass.PrivateInnerClass

End Sub

To make use of this concept within our employees example, assume we have now nested the
BenefitPackage directly within the Employee class type:

Partial Public Class Employee
Public Class BenefitPackage

179

180

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

' Assume we have other members that represent
' 401K plans, dental/health benefits, and so on.
Public Function ComputePayDeduction() As Double
Return 125.0
End Function
End Class

End Class

The nesting process can be as “deep” as you require. For example, assume we wish to create
an enumeration named BenefitPackagelLevel, which documents the various benefit levels an
employee may choose. To programmatically enforce the tight connection between Employee,

BenefitPackage, and BenefitPackagelevel, we could nest the enumeration as follows:

Employee nests BenefitPackage.
Partial Public Class Employee
' BenefitPackage nests BenefitPackageLevel.
Public Class BenefitPackage
Public Enum BenefitPackagelevel
Standard
Gold
Platinum
End Enum
Public Function ComputePayDeduction() As Double
Return 125.0
End Function
End Class

End Class
Because of the nesting relationships, note how we are required to make use of this enumeration:
Sub Main()

Define my benefit level.
Dim myBenefitLevel As Employee.BenefitPackage.BenefitPackagelevel =
Employee.BenefitPackage.BenefitPackagelLevel.Platinum
End Sub

Excellent! At this point you have been exposed to a number of keywords (and concepts) that
allow you to build hierarchies of related types via inheritance. If the overall process is not quite
crystal clear, don’t sweat it. You will be building a number of additional hierarchies over the remain-
der of this text. Next up, let’s examine the final pillar of OOP: polymorphism.

The Third Pillar: VB 2005’s Polymorphic Support

Recall that the Employee base class defined a method named GiveBonus (), which was originally
implemented as follows:

Partial Public Class Employee
Public Sub GiveBonus(ByVal amount As Single)
currPay += amount
End Sub

End Class
Because this method has been defined with the Public keyword, you can now give bonuses to
salespeople and managers (as well as part-time salespeople):

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Module Program
Sub Main()
Console.WriteLine("***** The Employee Class Hierarchy *¥ik*")
Console.Writeline()
' Give each employee a bonus?
Dim chucky As New Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000)
chucky.GiveBonus(300)
chucky.DisplayStats()

Dim fran As New SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31)
fran.GiveBonus(200)
fran.DisplayStats()
Console.ReadlLine()
End Sub
End Module

The problem with the current design is that the inherited GiveBonus () method operates identi-
cally for all subclasses. Ideally, the bonus of a salesperson or part-time salesperson should take into
account the number of sales. Perhaps managers should gain additional stock options in conjunction
with a monetary bump in salary. Given this, you are suddenly faced with an interesting question:
“How can related types respond differently to the same request?” Glad you asked!

The Overridable and Overrides Keywords

Polymorphism provides a way for a subclass to define its own version of a method defined by its
base class, using the process termed method overriding. To retrofit your current design, you need to
understand the meaning of the VB 2005 Overridable and Overrides keywords. If a base class wishes
to define a method that may be (but does not have to be) overridden by a subclass, it must mark the
method with the Overridable keyword:

Partial Public Class Employee
' This method may now be "overridden" by derived classes.
Public Overridable Sub GiveBonus(ByVal amount As Single)
currPay += amount
End Sub

End Class

Note Methods that have been marked with the Overridable keyword are termed virtual methods.

When a subclass wishes to redefine a virtual method, it does so using the Overrides keyword.
For example, the SalesPerson and Manager could override GiveBonus () as follows (assume that
PTSalesPerson will not override GiveBonus () and therefore simply inherit the version defined by
SalesPerson):

Public Class SalesPerson
Inherits Employee

A salesperson's bonus is influenced by the number of sales.

Public Overrides Sub GiveBonus(ByVal amount As Single)

Dim salesBonus As Integer = 0

If numberOfSales >= 0 AndAlso numberOfSales <= 100 Then
salesBonus = 10

181

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Else
If numberOfSales >= 101 AndAlso numberOfSales <= 200 Then
salesBonus = 15
Else
salesBonus = 20
End If
End If
MyBase.GiveBonus(amount * salesBonus)
End Sub
End Class

Public Class Manager
Inherits Employee

Public Overrides Sub GiveBonus(ByVal amount As Single)
MyBase.GiveBonus (amount)
Dim r As Random = New Random()
numberOfOptions += r.Next(500)
End Sub
End Class

Notice how each overridden method is free to leverage the default behavior using the Mybase key-
word. In this way, you have no need to completely reimplement the logic behind GiveBonus(), but can
reuse (and possibly extend) the default behavior of the parent class.

Also assume that Employee.DisplayStats() has been declared virtual, and has been overridden
by each subclass to account for displaying the number of sales (for salespeople) and current stock
options (for managers). Now that each subclass can interpret what these virtual methods means to
itself, each object instance behaves as a more independent entity:

Module Program
Sub Main()
Console.WriteLine("***** The Employee Class Hierarchy *¥k*")
Console.WritelLine()
' A better bonus system!
Dim chucky As New Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000)
chucky.GiveBonus(300)
chucky.DisplayStats()
Console.Writeline()

Dim fran As New SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31)
fran.GiveBonus(200)
fran.DisplayStats()
Console.ReadlLine()
End Sub
End Module

Overriding with Visual Studio 2005

As you may have already noticed, when you are overriding a member, you must recall the type of
each and every parameter—not to mention the method name and parameter passing conventions
(ByRef, ParamArray, etc.). Visual Studio 2005 has a very helpful feature that you can make use of
when overriding a virtual member. If you type the word “Overrides” within the scope of a class type,
IntelliSense will automatically display a list of all the overridable members defined in your parent
classes, as you see in Figure 6-6.

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

1l

EINENES

~PTSalesPerson.vb® [" Manager.vb Employees Diagram.cd

|V’[3 PTSalesPerson v | |ﬂ§§](Declarations}

[Public Class PTSalesPerson

Inherits SalesPerson

Pubklic Sub Hew (ByVal fullName As String, ByVal ag

ByVal empID As Integer, ByVal currPay As Single,

ByVal ssn As String, ByVal numbCfSales As Integer
' Pass these arguments to the parent's constr
MyBase.New (fullName, age, empID, currPay, =ssn

End Sub

overridesg

End Clal g fmme) [Public Overrides Sub DisplayStatsQ]
“4 Equals(Object) As Boolean
“ GetHashCode() As Integer
‘i ToString() As String

M
3] >

Figure 6-6. Quickly viewing virtual methods a la Visual Studio 2005

When you select a member and hit the Enter key, the IDE responds by automatically filling in
the method stub on your behalf. Note that you also receive a code statement that calls your parent’s
version of the virtual member (you are free to delete this line if it is not required):

Public Overrides Sub DisplayStats()
MyBase.DisplayStats()
End Sub

The NotOverridable Keyword

Recall that the NotInheritable keyword can be applied to a class type to prevent other types from
extending its behavior via inheritance. As you may remember, we sealed PTSalesPerson as we assumed
it made no sense for other developers to extend this line of inheritance any further.

On arelated note, sometimes you may not wish to seal an entire class, but simply want to prevent
derived types from overriding particular virtual methods. For example, assume we do not want
part-time salespeople to obtain customized bonuses. To prevent the PTSalesPerson class from over-
riding the virtual GiveBonus(), we could effectively seal this method in the SalesPerson class with the
NotOverridable keyword:

SalesPerson has sealed the GiveBonus() method!
Public Class SalesPerson
Inherits Employee

Public NotOverridable Overrides Sub GiveBonus()
End Sub
End Class

Here, SalesPerson has indeed overridden the virtual GiveBonus () method defined in the Employee
class; however, it has explicitly marked it as NotOverridable. Thus, if we attempted to override this
method in the PTSalesPerson class:

183

184

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Public Class PTSalesPerson
Inherits SalesPerson
' No bonus for you!
Public Overrides Sub GiveBonus()
' Rats. Can't change this method any further.
End Sub
End Class

we receive compile-time errors.

Understanding Abstract Classes and the MustInherit Keyword

Currently, the Employee base class has been designed to supply protected member variables for its
descendents, as well as supply two virtual methods (GiveBonus() and DisplayStats()) that may be
overridden by a given descendent. While this is all well and good, there is a rather odd byproduct of
the current design: you can directly create instances of the Employee base class:

What exactly does this mean?
Dim X As New Employee()

In this example, the only real purpose of the Employee base class is to define common members
for all subclasses. In all likelihood, you did not intend anyone to create a direct instance of this class,
reason being that the Employee type itself is too general of a concept. For example, if I were to walk
up to you and say, “I'm an employee!” I would bet your very first question to me would be, “What
kind of employee are you?” (a consultant, trainer, admin assistant, copy editor, White House aide, etc.).

Given that many base classes tend to be rather nebulous entities, a far better design for our
example is to prevent the ability to directly create a new Employee object in code. In VB 2005, you
can enforce this programmatically by using the MustInherit keyword. Formally speaking, classes
marked with the MustInherit keyword are termed abstract base classes:

Update the Employee class as abstract
' to prevent direct instantiation.
Partial Public MustInherit Class Employee

End Class
With this, if you now attempt to create an instance of the Employee class, you are issued a compile-

time error:

Error! Cannot create an abstract class!
Dim X As New Employee()

Excellent! At this point you have constructed a fairly interesting employee hierarchy. We will
add a bit more functionality to this application later in this chapter when examining VB 2005 casting
rules. Until then, Figure 6-7 illustrates the core design of our current types.

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Employee @
Mustinherit Class

Fields

Properties

Methods

= Mested Types

(BenefitPackage @)
Class

= Methods
¢ ComputePayDeduction
= Nested Types

| BenefitPackageLevel 63
| Enum

Gold

[

1

!

E Standard
|

! Platinum
!

(" SalesPerson 63 ("Ma nager 63
Class Class
- Emplayes - Emplayes

b h

PTSalesPerson 65
Notinheritable Class
+ SalesPerson

Figure 6-7. The completed Employee hierarchy

Source Code The Employees project is included under the Chapter 6 subdirectory.

Building a Polymorphic Interface with MustOverride

When a class has been defined as an abstract base class (via the MustInherit keyword), it may define
any number of abstract members. Abstract members can be used whenever you wish to define a mem-
ber that does not supply a default implementation. By doing so, you enforce a polymorphic interface
on each descendent, leaving them to contend with the task of providing the details behind your
abstract methods.

Simply put, an abstract base class’s polymorphic interface simply refers to its set of virtual
(Overridable) and abstract (MustOverride) methods. This is much more interesting than first meets
the eye, as this trait of OOP allows us to build very extendable and flexible software applications. To
illustrate, we will be implementing (and slightly modifying) the shapes hierarchy briefly examined
in Chapter 5 during our overview of the pillars of OOP.

In Figure 6-8, notice that the Hexagon and Circle types each extend the Shape base class. Like
any base class, Shape defines a number of members (a PetName property and Draw() method in this
case) that are common to all descendents.

185

186 CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

" Shape @)
Mustinherit Class

= Fields
s shapeName
= Properties
ﬁ PetName
= Methods
W Draw
4 New (+ 1overloa..

|

|

(Hexagon 63 (Gircle 63
Class Class
=+ Shape ~+ Shape
= Methods = Methods
b Draw b Draw

i New (+ 1overloa.. 4 New (+ 1overloa..

Figure 6-8. The shapes hierarchy

Much like the employee hierarchy, you should be able to tell that you don't want to allow the
object user to create an instance of Shape directly, as it is too abstract of a concept. Again, to prevent
the direct creation of the Shape type, you could define it as a MustInherit class. As well, given that
we wish the derived types to respond uniquely to the Draw() method, let’s mark it as Overridable
and define a default implementation:

The abstract base class of the hierarchy.
Public MustInherit Class Shape
Protected shapeName As String

Public Sub New()
shapeName = "NoName"

End Sub

Public Sub New(ByVal s As String)
shapeName = s

End Sub

Public Overridable Sub Draw()
Console.Writeline("Inside Shape.Draw()")
End Sub

Public Property PetName() As String
Get
Return shapeName
End Get
Set(ByVal value As String)
shapeName = value
End Set
End Property
End Class

Notice that the virtual Draw() method provides a default implementation that simply prints out
a message that informs us we are calling the Draw() method within the Shape base class. Now recall
that when a method is marked with the Overridable keyword, the method provides a default

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM 187

implementation that all derived types automatically inherit. If a child class so chooses, it may
override the method but does not have to. Given this, consider the following implementation of the
Circle and Hexagon types:

'Circle DOES NOT override Draw().
Public Class Circle
Inherits Shape
Public Sub New()
End Sub
Public Sub New(ByVal name As String)
MyBase.New(name)
End Sub
End Class
' Hexagon DOES override Draw().
Public Class Hexagon
Inherits Shape
Public Sub New()
End Sub
Public Sub New(ByVal name As String)
MyBase.New(name)
End Sub
Public Overrides Sub Draw()
Console.WriteLine("Drawing {0} the Hexagon", shapeName)
End Sub
End Class

The usefulness of abstract methods becomes crystal clear when you once again remember that
subclasses are never required to override virtual methods (as in the case of Circle). Therefore, if you
create an instance of the Hexagon and Circle types, youd find that the Hexagon understands how to
draw itself correctly. The Circle, however, is more than a bit confused (see Figure 6-9 for output):

Sub Main()
Console.WriteLine("***** Fun with Polymorphism k¥#k")
Console.WritelLine()
Dim hex As New Hexagon("Beth")
hex.Draw()

Dim cir As New Circle("Cindy")
' Calls base class implementation!
cir.Draw()
Console.ReadlLine()
End Sub

Figure 6-9. Humm...something is not quite right.

188

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Clearly, this is not a very intelligent design for the current hierarchy. To force each child class to
override the Draw() method, you can define Draw() as an abstract method of the Shape class, which
by definition means you provide no default implementation whatsoever. To mark a method as abstract
in VB 2005, you use the MustOverride keyword and define your member without an expected End
construct:

Force all child classes to define how to be rendered.
Public MustInherit Class Shape

Public MustOverride Sub Draw()

End Class

Note MustOverride methods can only be defined in MustInherit classes. If you attempt to do otherwise,
you will be issued a compiler error.

Methods marked with MustOverride are pure protocol. They simply define the name, return value
(if any), and argument set. Here, the abstract Shape class informs the derived types “I have a subrou-
tine named Draw() that takes no arguments. If you derive from me, you figure out the details.”

Given this, we are now obligated to override the Draw() method in the Circle class. If you do not,
Circleis also assumed to be a noncreatable abstract type that must be adorned with the MustInherit
keyword (which is obviously not very useful in this example). Here is the code update:

If we did not implement the MustOverride Draw() method, Circle would also be
' considered abstract, and would have to be marked MustInherit!
Public Class Circle
Inherits Shape
Public Sub New()
End Sub
Public Sub New(ByVal name As String)
MyBase.New(name)
End Sub
Public Overrides Sub Draw()
Console.Writeline("Drawing {0} the Circle", shapeName)
End Sub
End Class

The short answer is that we can now make the assumption that anything deriving from Shape does
indeed have a unique version of the Draw() method. To illustrate the full story of polymorphism,
consider the following code:

Module Program
Sub Main()
Console.Writeline("***** Fun with Polymorphism *ik¥*")
Console.WritelLine()
' Make an array of Shape compatible objects.
Dim myShapes As Shape() = {New Hexagon, New Circle, _
New Hexagon("Mick"), New Circle("Beth"), _
New Hexagon("Linda")}
' Loop over each items and interact with the
' polymorphic interface.
For Each s As Shape In myShapes
s.Draw()

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Next
Console.ReadlLine()
End Sub
End Module

Figure 6-10 shows the output.

Figure 6-10. Polymorphism in action

This Main() method illustrates polymorphism at its finest. Although it is not possible to directly
create an abstract base class (the Shape), you are able to freely store references to any subclass with
an abstract base variable. Therefore, when you are creating an array of Shapes, the array can hold any
object deriving from the Shape base class (if you attempt to place Shape-incompatible objects into
the array, you receive a compiler error).

Given that all items in the myShapes array do indeed derive from Shape, we know they all support
the same polymorphic interface (or said more plainly, they all have a Draw() method). As you iterate
over the array of Shape references, it is at runtime that the underlying type is determined. At this point,
the correct version of the Draw() method is invoked.

This technique also makes it very simple to safely extend the current hierarchy. For example,
assume we derived five more classes from the abstract Shape base class (Triangle, Square, etc.). Due
to the polymorphic interface, the code within our For loop would not have to change in the slightest
as the compiler enforces that only Shape-compatible types are placed within the myShapes array.

Understanding Member Shadowing

VB 2005 provides a facility that is the logical opposite of method overriding termed shadowing.
Formally speaking, if a derived class defines a member that is identical to a member defined in a base
class, the derived class has shadowed the parent’s version. In the real world, the possibility of this
occurring is the greatest when you are subclassing from a class you (or your team) did not create
yourselves (for example, if you purchase a third- party .NET software package).

For the sake of illustration, assume you receive a class named ThreeDCircle from a coworker
(or classmate) that defines a subroutine named Draw() taking no arguments:

Public Class ThreeDCircle
Public Sub Draw()
Console.WriteLine("Drawing a 3D Circle")
End Sub
End Class

You figure that a ThreeDCircle “is-a” Circle, so you derive from your existing Circle type:

Public Class ThreeDCircle
Inherits Circle
Public Sub Draw()

189

190

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Console.WriteLine("Drawing a 3D Circle")
End Sub
End Class

Once you recompile, you find the warning you see in Figure 6-11 shown in Visual Studio 2005.

| 0 0 Errors _;5 1Warning @ 0 Messages |
Description File Line Column Project
1 |sub 'Draw' shadows an overridable method in the base dass MyShapes.vb 16 Shapes
'Cirde", To override the base method, this method must be
dedared 'Overrides'.

Figure 6-11. Oops! We just shadowed a member in our parent class.

To address this issue, you have two options. You could simply update the parent’s version of Draw()
using the Overrides keyword (as suggested by the compiler). With this approach, the ThreeDCircle
type is able to extend the parent’s default behavior as required.

As an alternative, you can include the Shadows keyword to the offending Draw() member of the
ThreeDCircle type. Doing so explicitly states that the derived type’s implementation is intentionally
designed to hide the parent’s version (again, in the real world, this can be helpful if external .NET
software somehow conflicts with your current software).

This class extends Circle and hides the inherited Draw() method.
Public Class ThreeDCircle
Inherits Circle

' Hide any Draw() implementation above me.
Public Shadows Sub Draw()
Console.Writeline("Drawing a 3D Circle")
End Sub
End Class

You can also apply the Shadows keyword to any member type inherited from a base class (field,
constant, shared member, property, etc.). As a further example, assume that ThreeDCircle wishes to
hide the inherited shapeName field:

This class extends Circle and hides the inherited Draw() method.
Public Class ThreeDCircle
Inherits Circle
' Hide the shapeName field above me.
Protected Shadows shapeName As String
' Hide any Draw() implementation above me.
Public Shadows Sub Draw()
Console.Writeline("Drawing a 3D Circle")
End Sub
End Class

Finally, be aware that it is still possible to trigger the base class implementation of a shadowed
member using an explicit cast (described in the next section). For example:

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Module Program
Sub Main()
' Fun with shadowing.
Dim o As ThreeDCircle = New ThreeDCircle()
o.Draw()
CType(o, Circle).Draw()
Console.ReadlLine()
End Sub
End Module

Source Gode The Shapes project can be found under the Chapter 6 subdirectory.

Understanding Base Class/Derived Class Casting Rules

Now that you can build a family of related class types, you need to learn the laws of VB 2005 casting
operations. To do so, let’s return to the Employees hierarchy created earlier in this chapter. Under the
.NET platform, the ultimate base class in the system is System.0Object. Therefore, everything “is-a”
Object and can be treated as such. Given this fact, it is legal to store an instance of any type within
an object variable:

A Manager "is-a" System.Object.
Dim frank As Object = _
New Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5)

In the Employees system, Managers, SalesPerson, and PTSalesPerson types all extend Employee,
so we can store any of these objects in a valid base class reference. Therefore, the following statements
are also legal:

A Manager "is-a" Employee too.

Dim moonUnit As Employee = New Manager("MoonUnit Zappa", 2, 3001, _
20000, "101-11-1321", 1)

' A PTSalesPerson "is-a" SalesPerson.

Dim jill As SalesPerson = New PTSalesPerson("Jill", 834, 3002, _

100000, "111-12-1119", 90)

The first law of casting between class types is that when two classes are related by an “is-a”
relationship, it is always safe to store a derived type within a base class reference. Formally, this is
called an implicit cast, as “it just works” given the laws of inheritance. This leads to some powerful
programming constructs. For example, assume you have defined a new method within your current
module:

Sub FireThisPerson(ByVal emp As Employee)

' Remove from database...

' Get key and pencil sharpener from fired employee...
End Sub

Because this method takes a single parameter of type Employee, you can effectively pass any
descendent from the Employee class into this method directly, given the “is-a” relationship:

' Streamline the staff.
FireThisPerson(moonUnit) ' "moonUnit" was declared as an Employee.
FireThisPerson(jill) ' "jill" was declared as a SalesPerson.

191

192

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

The following code compiles given the implicit cast from the base class type (Employee) to the
derived type. However, what if you also wanted to fire Frank Zappa (currently stored in a generic
System.Object reference)? If you pass the frank object directly into TheMachine.FireThisPerson() as
follows:

' This will only work if Option Strict is Off!
Dim frank As Object = _

New Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5)
FireThisPerson(frank)

you will find the code will only work if Option Strict is disabled. However, if you were to enable this
option for your project (which is always a good idea), you are issued a compiler error. The reason is
you cannot automatically treat a System.Object as a derived Employee directly, given that Object
“is-not-a” Employee. As you can see, however, the object reference is pointing to an Employee-compatible
object. You can satisfy the compiler by performing an explicit cast.

This is the second law of casting: you must explicitly downcast using the VB 2005 CType() func-
tion. Recall that CType() takes two parameters. The first parameter is the object you currently have
access to. The second parameter is the name of the type you want to have access to. The value
returned from CType() is the result of the downward cast. Thus, the previous problem can be avoided
as follows:

' OK even with Option Strict enabled.
FireThisPerson(CType(frank, Manager))

As you will see in Chapter 9, CType() is also the safe way of obtaining an interface reference
from a type. Furthermore, CType () may operate safely on numerical types, but don’t forget you have
a number of related conversion functions at your disposal (CInt() and so on). Finally, be aware that
if you attempt to cast an object into an incompatible type, you receive an invalid cast exception at
runtime. Chapter 7 examines the details of structured exception handling.

Note In Chapter 11 you will examine two additional manners in which you can perform explicit casts using the
DirectCast and TryCast keywords of VB 2005.

Determining the “Type of” Employee

Given that the FireThisPerson() method has been designed to take any possible type derived from
Employee, one question on your mind may be how this method can determine which derived type
was sent into the method. On a related note, given that the incoming parameter is of type Employee,
how can you gain access to the specialized members of the SalesPerson and Manager types?

The VB 2005 language provides the TypeOf/Is statement to determine whether a given base class
reference is actually referring to a derived type. Consider the following updated FireThisPerson()
method:

Public Sub FireThisPerson(ByVal emp As Employee)
If TypeOf emp Is SalesPerson Then
Console.Writeline("Lost a sales person named {0}", emp.Name)
Console.Writeline("{0} made {1} sale(s)...", emp.Name, _
CType(emp, SalesPerson).SalesNumber)
End If
If TypeOf emp Is Manager Then
Console.WritelLine("Lost a suit named {0}", emp.Name)
Console.Writeline("{0} had {1} stock options...", emp.Name, _
CType(emp, Manager).StockOptions)
End If
End Sub

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Here you are performing a runtime check to determine what the incoming base class reference
is actually pointing to in memory. Once you determine whether you received a SalesPerson or Manager

type, you are able to perform an explicit cast via CType() to gain access to the specialized members
of the class.

The Master Parent Class: System.Object

To wrap up this chapter, I'd like to examine the details of the master parent class in the .NET plat-
form: Object. As you were reading the previous section, you may have noticed that the base classes
in our hierarchies (Car, Shape, Employee) never explicitly marked their parent classes using the
Inherits keyword:

Who is the parent of Car?
Public Class Car

End Class

In the .NET universe, every type ultimately derives from a common base class named System.Object.
The Object class defines a set of common members for every type in the framework. In fact, when you
do build a class that does not explicitly define its parent, the compiler automatically derives your type
from Object. If you want to be very clear in your intentions, you are free to define classes that derive
from Object as follows:

Here we are explicitly deriving from System.Object.
Class Car

Inherits System.Object
End Class

Like any class, System.0bject defines a set of members. In the following formal VB 2005 defini-
tion, note that some of these items are declared Overridable, which specifies that a given member
may be overridden by a subclass, while others are marked with Shared (and are therefore called at
the class level):

The top-most class in the .NET world: System.Object
Public Class Object
Public Overridable Function Equals(ByVal obj As Object) As Boolean
Public Shared Function Equals(ByVal objA As Object, _
ByVal objB As Object) As Boolean
Public Overridable Function GetHashCode() As Integer
Public Function GetType() As Type
Protected Function MemberwiseClone() As Object
Public Shared Function ReferenceEquals(ByVal objA As Object, _
ByVal objB As Object) As Boolean
Public Overridable Function ToString() As String
End Class

Table 6-1 offers a rundown of the functionality provided by each method.

193

194

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

Table 6-1. Core Members of System.Object

Instance Method of Object Class Meaning in Life

Equals() By default, this method returns True only if the items being
compared refer to the exact same item in memory. Thus, Equals()
is used to compare object references, not the state of the object.
Typically, this method is overridden to return True only if the
objects being compared have the same internal state values (that
is, value-based semantics).

Be aware that if you override Equals(), you should also override

GetHashCode().
GetHashCode() Returns an Integer that identifies a specific object instance.
GetType() This method returns a Type object that fully describes the object

you are currently referencing. In short, this is a Runtime Type
Identification (RTTI) method available to all objects (discussed
in greater detail in Chapter 14).

ToString() Returns a string representation of this object, using the
<namespace>.<type name> format (termed the fully qualified name).
This method can be overridden by a subclass to return a tokenized
string of name/value pairs that represent the object’s internal state,
rather than its fully qualified name.

Finalize() For the time being, you can understand this method (when
overridden) is called to free any allocated resources before the
object is destroyed. I talk more about the CLR garbage collection
services in Chapter 8.

MemberwiseClone() This method exists to return a member by member copy of the
current object.
This method cannot be overridden or accessed by the outside
world from an object instance. If you need to allow the outside
world to obtain deep copies of a given type, implement the
ICloneable interface, which you do in Chapter 9.

To illustrate some of the default behavior provided by the Object base class, create a new console
application named ObjectOverrides. Add an empty class definition for a type named Person (shown
in the following code snippet). Finally, update your Main() subroutine to interact with the inherited
members of System.Object.

Note By default, the members of Object are not shown through IntelliSense. To do so, activate the Tools »
Options menu item, and uncheck Hide Advanced Members located under the Text Editor » Basic node of the tree
view control.

Remember! Person extends Object!
Public Class Person
End Class

Module Program
Sub Main()
Console.Writeline("***** Fun with System.Object *¥¥*")
Dim p1 As New Person()

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM 195

Use inherited members of System.Object.
Console.Writeline("ToString: {0}", p1.ToString())
Console.Writeline("Hash code: {0}", p1.GetHashCode())
Console.WriteLine("Type: {0}", p1.GetType())
' Make some other references to hc.
Dim p2 As Person = pil
Dim o As Object = p2
' Are the references pointing to the same object in memory?
If o.Equals(p1) AndAlso p2.Equals(o) Then
Console.WritelLine("Same instance!")
End If
End Sub
End Module

Figure 6-12 shows the output.

un with

C:\WINDOWS\system32\cmd.exe HEE
0 B

to continue . . .

Figure 6-12. Invoking the inherited members of System.Object

First, notice how the default implementation of ToString() returns the fully qualified name of
the current type (ObjectOverrides.Person). The default behavior of Equals() is to test whether two
variables are pointing to the same object in memory. Here, you create a new Person variable named
p1. At this point, a new Person object is placed on the managed heap. p2 is also of type Person. However,
you are not creating a new instance, but rather assigning this variable to reference p1. Therefore, p1
and p2 are both pointing to the same object in memory, as is the variable o (of type Object, which was
thrown in for good measure). Given that p1, p2, and o all point to the same memory location, the
equality test succeeds.

Although the canned behavior of System.0Object can fit the bill in a number of cases, it is quite
common for your custom types to override some of these inherited methods. To illustrate, update
the Person class to support some state data representing an individual’s first name, last name, and
age, each of which can be set by a custom constructor:

Remember! Person extends Object.
Class Person
Public Sub New(ByVal firstName As String, ByVal lastName As String, _
Byval age As Byte)
fName = firstName
IName = lastName
personAge = age
End Sub
Sub New()
End Sub

196

CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

' Public only for simplicity. Properties and Private data
' would obviously be perferred.
Public fName As String
Public IName As String
Public personAge As Byte
End Class

Overriding System.Object.ToString|()

Many classes (and structures) that you create can benefit from overriding ToString() in order to return
a string textual representation of the type’s state. This can be quite helpful for purposes of debugging
(among other reasons). How you choose to construct this string is a matter of personal choice; how-
ever, a recommended approach is to separate each name/value pair with semicolons and wrap the
entire string within square brackets (many types in the .NET base class libraries follow this approach).
Consider the following overridden ToString() for our Person class:

Public Overrides Function ToString() As String
Dim myState As String
myState = String.Format("[First Name: {0}; Last Name: {1}; Age: {2}]",
fName, 1Name, personAge)
Return myState
End Function

This implementation of ToString() is quite straightforward, given that the Person class only
has three pieces of state data. However, always remember that a proper ToString() override should
also account for any data defined up the chain of inheritance. When you override ToString() for
a class extending a custom base class, the first order of business is to obtain the ToString() value
from your parent using MyBase.

Overriding System.Object.Equals()

Let’s also override the behavior of Object.Equals() to work with value-based semantics. Recall that
by default, Equals() returns True only if the two objects being compared reference the same object
instance in memory. For the Person class, it may be helpful to implement Equals() to return True if
the two variables being compared contain the same state values (e.g., first name, last name, and age).

First of all, notice that the incoming argument of the Equals() method is a generic System.0Object.
Given this, our first order of business is to ensure the caller has indeed passed in a Person type, and
as an extra safeguard, to make sure the incoming parameter is not an unallocated object.

Once we have established the caller has passed us an allocated Person, one approach to imple-
ment Equals() is to perform a field-by-field comparison against the data of the incoming object to
the data of the current object:

Public Overrides Function Equals(ByVal obj As Object) As Boolean
If TypeOf obj Is Person AndAlso obj IsNot Nothing Then
Dim temp As Person
temp = CType(obj, Person)
If temp.fName = Me.fName AndAlso _
temp.1Name = Me.fName AndAlso _
temp.personAge = Me.personAge Then
Return True
Else
Return False
End If
Return False
End If
End Function

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM 197

Here, you are examining the values of the incoming object against the values of our internal
values (note the use of the Me keyword). If the name and age of each are identical, you have two
objects with the exact same state data and therefore return True. Any other possibility results in
returning False.

While this approach does indeed work, you can certainly imagine how labor intensive it would
be to implement a custom Equals() method for nontrivial types that may contain dozens of data
fields. One common shortcut is to leverage your own implementation of ToString(). If a class has
a prim-and-proper implementation of ToString() that accounts for all field data up the chain of
inheritance, you can simply perform a comparison of the object’s string data:

Public Overrides Function Equals(ByVal obj As Object) As Boolean
' No need to cast 'obj' to a Person anymore,

as everyting has a ToString() method.
Return obj.ToString = Me.ToString()

End Function

Overriding System.Object.GetHashCode()

When a class overrides the Equals () method, you should also override the default implementation
of GetHashCode(). Simply put, a hash code is a numerical value that represents an object as a partic-
ular state. For example, if you create two string objects that hold the value Hello, you would obtain
the same hash code. However, if one of the string objects were in all lowercase (hello), you would
obtain different hash codes.

By default, System.Object.CGetHashCode() uses your object’s current location in memory to yield
the hash value. However, if you are building a custom type that you intend to store in a Hashtable
type (within the System.Collections namespace), you should always override this member, as the
Hashtable will be internally invoking Equals() and GetHashCode() to retrieve the correct object.

Although we are not going to place our Person into a System.Collections.Hashtable, for com-
pletion, let’s override GetHashCode (). There are many algorithms that can be used to create a hash
code, some fancy, others not so fancy. Most of the time, you are able to generate a hash code value
by leveraging the System.String’s GetHashCode() implementation.

Given that the String class already has a solid hash code algorithm that is using the character
data of the String to compute a hash value, if you can identify a piece of field data on your class that
should be unique for all instances (such as the Social Security number), simply call GetHashCode() on
that point of field data. If this is not the case, but you have overridden ToString(), call GetHashCode()
on your own string representation:

Return a hash code based on the person's ToString() value.
Public Overrides Function GetHashCode() As Integer

Return Me.ToString().GetHashCode()
End Function

Testing Our Modified Person Class

Now that we have overridden the Overridable members of Object, update Main() to test your
updates (see Figure 6-13 for output).

Module Program
Sub Main()
Console.Writeline("***** Fun with System.Object **¥**")
Console.Writeline()

198 CHAPTER 6 ©' UNDERSTANDING INHERITANCE AND POLYMORPHISM

' NOTE: We want these to be identical to test

' the Equals() and GetHashCode() methods.

Dim p1 As Person = New Person("Homer", "Simpson", 50)
Dim p2 As Person = New Person("Homer", "Simpson", 50)

' Get stringified version of objects.

Console.WriteLine("p1.ToString() = {0}", p1.ToString())

Console.WriteLine("p2.ToString() = {0}", p2.ToString())

' Test Overridden Equals()

Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2))

' Test hash codes.

Console.WriteLine("Same hash codes?: {0}",
pl.GetHashCode() = p2.GetHashCode())

Console.WriteLine()

Change age of p2 and test again.
p2.personAge = 45
Console.WriteLine("p1.ToString() = {0}", p1.ToString())
Console.WriteLine("p2.ToString() = {0}", p2.ToString())
Console.Writeline("p1 = p2?: {0}", pi1.Equals(p2))
Console.WriteLine("Same hash codes?: {0}",

pl.GetHashCode() = p2.GetHashCode())
Console.ReadlLine()
End Sub
End Module

INDOWShsystem32\c

Figure 6-13. Our customized Person type

The Shared Members of System.Object

In addition to the instance-level members you have just examined, System.0Object does define two
(very helpful) shared members that also test for value-based or reference-based equality. Consider
the following code:

Shared members of System.Object.

Dim p3 As Person = New Person("Sally", "Jones", 4)

Dim p4 As Person = New Person("Sally", "Jones", 4)

Console.Writeline("P3 and P4 have same state: {0}", Object.Equals(p3, p4))
Console.WritelLine("P3 and P4 are pointing to same object: {0}", _
Object.ReferenceEquals(p3, p4))

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM 199

Here, you are able to simply send in two objects (of any type) and allow the System.Object class
to determine the details automatically.

Source Code The ObjectOverrides project is located under the Chapter 6 subdirectory.

Summary

This chapter explored the role and details of inheritance and polymorphism. Over these pages you
were introduced to numerous new keywords to support each of these techniques. For example, recall
that the Inherits keyword is used to establish the parent class of a given type. Parent types are able to
define any number of virtual (Overridable) and/or abstract (MustOverride) members to establish
a polymorphic interface. Derived types override such members using the Overrides keyword.

In addition to building numerous class hierarchies, this chapter also examined how to explicitly
cast between base and derived types using the CType() operator, and wrapped up by diving into the
details of the cosmic parent class in the .NET base class libraries: System.0Object.

CHAPTER 7

Understanding Structured
Exception Handling

The point of this chapter is to understand how to handle runtime anomalies in your VB 2005 code
base through the use of structured exception handling. Not only will you learn about the VB 2005
keywords that allow you to handle such matters (Try, Catch, Throw, Finally), but you will also come
to understand the distinction between application-level and system-level exceptions. This discussion
will also serve as a lead-in to the topic of building custom exceptions, as well as how to leverage the
exception-centric debugging tools of Visual Studio 2005.

Ode to Errors, Bugs, and Exceptions

Despite what our (sometimes inflated) egos may tell us, no programmer is perfect. Writing software
is a complex undertaking, and given this complexity, it is quite common for even the best software
to ship with various problems. Sometimes the problem is caused by “bad code” (such as overflowing
the bounds of an array). Other times, a problem is caused by bogus user input that has not been
accounted for in the application’s code base (e.g., a phone number field assigned “Chucky”). Now,

regardless of the cause of said problem, the end result is that your application does not work as expected.

To help frame the upcoming discussion of structured exception handling, allow me to provide defi-
nitions for three commonly used anomaly-centric terms:

* Bugs: This is, simply put, an error on the part of the programmer. For example, assume you
are programming with unmanaged C++. If you make calls on a NULL pointer or fail to delete
allocated memory (resulting in a memory leak), you have a bug.

e User errors: Unlike bugs, user errors are typically caused by the individual running your
application, rather than by those who created it. For example, an end user who enters a mal-
formed string into a text box could very well generate an error if you fail to handle this faulty
input in your code base.

e Exceptions: Exceptions are typically regarded as runtime anomalies that are difficult, if not
impossible, to account for while programming your application. Possible exceptions include
attempting to connect to a database that no longer exists, opening a corrupted file, or contact-
ing a machine that is currently offline. In each of these cases, the programmer (and end user)
has little control over these “exceptional” circumstances.

201

202

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Given the previous definitions, it should be clear that .NET structured exception handling is
a technique well suited to deal with runtime exceptions. However, as for the bugs and user errors that
have escaped your view, the CLR will often generate a corresponding exception that identifies the
problem at hand. The .NET base class libraries define numerous exceptions such as FormatException,
IndexOutOfRangeException, FileNotFoundException, ArgumentOutOfRangeException, and so forth.
Before we get too far ahead of ourselves, let’s formalize the role of structured exception handling
and check out how it differs from traditional error handling techniques.

Note To make the code examples used in this book as clean as possible, | will not catch every possible exception
that may be thrown by a given method in the base class libraries. In your production-level projects, you should, of
course, make liberal use of the techniques presented in this chapter.

The Role of .NET Exception Handling

Prior to .NET, error handling under the Windows operating system was a confused mishmash of
techniques. Many programmers rolled their own error handling logic within the context of a given
application. For example, a development team may define a set of numerical constants that repre-
sent known error conditions, and make use of them as function return values.

This approach is less than ideal, given the fact that raw numerical values are not self-describing
and offer little detail regarding how to deal with the problem at hand. Ideally, you would like to wrap
the name, message, and other helpful information regarding this error condition into a single, well-
defined package (which is exactly what happens under structured exception handling).

In addition to a developer’s ad hoc techniques, the Windows API defines hundreds of predefined
error codes. Also, many COM developers have made use of a small set of standard COM interfaces
(e.g., ISupportErrorInfo, IErrorInfo, ICreateErrorInfo) and COM objects (the VB 6.0 Exr object) to
return meaningful error information to a COM client.

The obvious problem with these previous techniques is the tremendous lack of symmetry. Each
approach is more or less tailored to a given technology, a given language, and perhaps even a given
project. In order to put an end to this madness, the .NET platform provides a standard technique to
send and trap runtime errors: structured exception handling (SEH).

The beauty of this approach is that developers now have a unified approach to error handling,
which is common to all languages targeting the .NET universe. Therefore, the way in which a VB 2005
programmer handles errors is syntactically similar to that of a C# programmer. As an added bonus,
the syntax used to throw and catch exceptions across assemblies and machine boundaries is identical.

Another bonus of .NET exceptions is the fact that rather than receiving a raw numerical value
that identifies the problem at hand, exceptions are objects that contain a human-readable description
of the problem, as well as a detailed snapshot of the call stack that triggered the exception in the first
place. Furthermore, you are able to provide the end user with help link information that points the
user to a URL that provides detailed information regarding the error at hand as well as custom user-
defined data.

The Atoms of .NET Exception Handling

Programming with structured exception handling involves the use of four interrelated entities:

* A class that represents the exception itself

¢ A member (property, subroutine, or function) that throws an instance of the exception class
to the caller

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

* Ablock of code on the caller’s side that invokes the exception-prone member

¢ Ablock of code on the caller’s side that will process (or catch) the exception should it occur

The VB 2005 programming language offers four keywords (Try, Catch, Throw, and Finally) that
allow you to throw and handle exceptions. The type that represents the problem at hand is a class
derived from System.Exception (or a descendent thereof). Given this fact, let’s check out the role of
this exception-centric base class.

The System.Exception Base Class

All user- and system-defined exceptions ultimately derive from the System.Exception base class
(which in turn derives from System.Object). In the member prototypes that follow, notice that some
of these members are declared with the Overridable keyword and may thus be overridden by derived

types:

' Member prototypes of select members.
Public Class Exception
Implements ISerializable, Exception

' Methods

Public Sub New(ByVal message As String, ByVal innerException As Exception)
Public Overridable Function GetBaseException() As Exception

Public Function GetType() As Type

Public Overrides Function ToString() As String

' Properties
Public Overridable ReadOnly Property Data As IDictionary
Public Overridable Property HelplLink As String
Protected Property HResult As Integer
Public ReadOnly Property InnerException As Exception
Public Overridable ReadOnly Property Message As String
Public Overridable Property Source As String
Public Overridable ReadOnly Property StackTrace As String
Public ReadOnly Property TargetSite As MethodBase

End Class

As you can see, many of the properties defined by System.Exception are read-only in nature.
This is due to the simple fact that derived types will typically supply default values for each property
(for example, the default message of the IndexOutOfRangeException type is “Index was outside the
bounds of the array”).

Note Asof .NET 2.0,the Exception interface is implemented by System. Exception to expose its functionality
to unmanaged code via the interoperability layer.

Table 7-1 describes the details of some (but not all) of the members of System.Exception.

203

204

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Table 7-1. Core Members of the System.Exception Type

System.Exception Property Meaning in Life

Data This property (which is new to .NET 2.0) retrieves a collection of
key/value pairs (represented by an object implementing IDictionary)
that provides additional, user-defined information about the exception.
By default, this collection is empty.

HelpLink This property returns a URI to a help file describing the error in full
detail.
InnerException This read-only property can be used to obtain information about the

previous exception(s) that caused the current exception to occur.
The previous exception(s) are recorded by passing them into the
constructor of the most current exception.

Message This read-only property returns the textual description of a given
error. The error message itself is set as a constructor parameter.

Source This property returns the name of the assembly that threw the
exception.

StackTrace This read-only property contains a string that identifies the sequence

of calls that triggered the exception. As you might guess, this property
is very useful during debugging.

TargetSite This read-only property returns a MethodBase type, which describes
numerous details about the method that threw the exception
(ToString() will identify the method by name).

The Simplest Possible Example

To illustrate the usefulness of structured exception handling, we need to create a type that may throw
an exception under the correct circumstances. Assume we have created a new console application
project (named SimpleException) that defines two class types (Car and Radio) associated using the
“has-a” relationship. The Radio type defines a single method that turns the radio’s power on or off:

Public Class Radio
Public Sub TurnOn(Byval state As Boolean)
If state = True Then
Console.WriteLine("Jamming...")
Else
Console.WriteLine("Quiet time...")
End If
End Sub
End Class

In addition to leveraging the Radio type, the Car type is defined in such a way that if the user
accelerates a Car object beyond a predefined maximum speed (specified using a constant member
variable), its engine explodes, rendering the Car unusable (captured by a Boolean member variable
named carIsDead). Beyond these points, the Car type has a few member variables to represent the
current speed and a user-supplied “pet name” as well as various constructors. Here is the complete
definition (with code annotations):

Public Class Car

' Constant for maximum speed.
Public Const maxSpeed As Integer = 100

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Internal state data.
Private currSpeed As Integer
Private petName As String
' Is the car still operational?
Private carIsDead As Boolean
' A car has a radio.
Private theMusicBox As Radio = New Radio()
' Constructors.
Public Sub New()
End Sub
Public Sub New(ByVal name As String, ByVal currSp As Integer)
currSpeed = currSp
petName = name
End Sub

Public Sub CrankTunes(ByVal state As Boolean)
theMusicBox.TurnOn(state)
End Sub
' See if Car has overheated.
Public Sub Accelerate(ByVal delta As Integer)
If carIsDead Then
Console.WriteLine("{0} is out of order...", petName)
Else
currSpeed += delta
If currSpeed > maxSpeed Then
Console.WriteLine("{0} has overheated!", petName)
currSpeed = 0
carIsDead = True
Else
Console.Writeline("=> CurrSpeed = {0}", currSpeed)
End If
End If
End Sub
End Class

Now, if we were to implement a Main() method that forces a Car object to exceed the prede-
fined maximum speed (represented by the maxSpeed constant) as shown here:

Module Program
Sub Main()
Console.Writeline("***** Creating a car and stepping on it okkxk")
Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Console.ReadlLine()
End Sub
End Module

we would see the output displayed in Figure 7-1.

205

206

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

C:\WINDOWS\system32\cmd.exe
] € d stepping on 1t

Figure 7-1. The initial Car type in action

Throwing a Generic Exception

Now that we have a functional Car type, I'll illustrate the simplest way to throw an exception. The
current implementation of Accelerate() displays an error message if the caller attempts to speed
up the Car beyond its upper limit. To retrofit this method to throw an exception if the user attempts
to speed up the automobile after it has met its maker, you want to create and configure a new instance
of the System.Exception class, setting the value of the read-only Message property via the class con-
structor. When you wish to send the error object back to the caller, make use of the VB 2005 Throw
keyword. Here is the relevant code update to the Accelerate() method (the remainder of the Car
class has been unchanged):

See if Car has overheated.
Public Sub Accelerate(ByVal delta As Integer)
If carIsDead Then
Console.WriteLine("{0} is out of order...
Else
currSpeed += delta
If currSpeed >= maxSpeed Then
carIsDead = True
currSpeed = 0
' Throw new exception! This car is toast!
Throw New Exception(String.Format("{0} has overheated!", petName))
Else
Console.Writeline("=> CurrSpeed = {0}", currSpeed)
End If
End If
End Sub

, petName)

Before examining how a caller would catch this exception, a few points of interest. First of all,
when you are throwing an exception, it is always up to you to decide exactly what constitutes the error
in question, and when it should be thrown. Here, you are making the assumption that if the program
attempts to increase the speed of a car that has expired, a System.Exception type should be thrown
to indicate the Accelerate() method cannot continue (which may or may not be a valid assumption).

Alternatively, you could implement Accelerate() to recover automatically without needing to
throw an exception in the first place. By and large, exceptions should be thrown only when a more
terminal condition has been met (for example, not finding a necessary file, failing to connect to
a database, and whatnot). Deciding exactly what constitutes throwing an exception is a design issue
you must always contend with. For our current purposes, assume that asking a doomed automobile
to increase its speed justifies a cause to throw an exception.

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Catching Exceptions

Because the Accelerate() method now throws an exception, the caller needs to be ready to handle
the exception should it occur. When you are invoking a method that may throw an exception, you
make use of a Try/Catch block. Once you have caught the exception type, you are able to invoke the
members of the System.Exception type to extract the details of the problem.

What you do with this data is largely up to you. You may wish to log this information to a report
file, write the data to the Windows event log, e-mail a system administrator, or display the problem
to the end user. Here, you will simply dump the contents to the console window:

Module Program
Sub Main()
Console.WriteLine("***** Creating a car and stepping on it *¥k*")
Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch ex As Exception
Console.WritelLine("*** Erxror! ***")
Console.WritelLine("Method: {0}", ex.TargetSite)
Console.WriteLine("Message: {0}", ex.Message)
Console.WriteLine("Source: {0}", ex.Source)
End Try
' The error has been handled, processing continues with the next statement.
Console.WritelLine("***** Qut of exception logic *¥k**")
Console.Readline()
End Sub
End Module

In essence, a Try block is a group of statements that may throw an exception during execution.
If an exception is detected, the flow of program execution is sent to the appropriate Catch block (as
you will see in just a bit, it is possible to define multiple Catch blocks for a single Try). On the other
hand, if the code within a Try block does not trigger an exception, the Catch block is skipped entirely,
and all is right with the world. Figure 7-2 shows a test run of this program.

C:\WINDOWS\system32\cmd.exe

1ng on 1t

Figure 7-2. Dealing with the error using structured exception handling

207

208

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

As you can see, once an exception has been handled, the application is free to continue on from
the point after the Catch block. In some circumstances, a given exception may be critical enough to
warrant the termination of the application. However, in a good number of cases, the logic within the
exception handler will ensure the application will be able to continue on its merry way (although it
may be slightly less functional, such as the case of not being able to connect to a remote data source).

Configuring the State of an Exception

Currently, the System.Exception object configured within the Accelerate() method simply establishes
a value exposed by the Message property (via a constructor parameter). As shown in Table 7-1, how-
ever, the Exception class also supplies a number of additional members (TargetSite, StackTrace,
HelpLink, and Data) that can be useful in further qualifying the nature of the problem. To spruce up
our current example, let’s examine further details of these members on a case-by-case basis.

The TargetSite Property

The System.Exception.TargetSite property allows you to determine various details about the method
that threw a given exception. As shown in the previous Main() method, printing the value of TargetSite
will display the return value, name, and parameters of the method that threw the exception. However,
TargetSite does not simply return a vanilla-flavored string, but a strongly typed System.Reflection.
MethodBase object. This type can be used to gather numerous details regarding the offending method
as well as the class that defines the offending method. To illustrate, assume the previous Catch logic
has been updated as follows:

Module Program
Sub Main()

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch ex As Exception
Console.WritelLine("*** Exror! ***")
Console.WriteLine("Member name: {0}", ex.TargetSite)
Console.WriteLine("Class defining member: {o0}", _
ex.TargetSite.DeclaringType)
Console.WriteLine("Member type: {0}", ex.TargetSite.MemberType)
Console.WriteLine("Message: {0}", ex.Message)
Console.WritelLine("Source: {0}", ex.Source)
End Try

End Sub
End Module
This time, you make use of the MethodBase .DeclaringType property to determine the fully qualified
name of the class that threw the error (SimpleException.Car in this case) as well as the MemberType
property of the MethodBase object to identify the type of member (such as a property versus a method)
where this exception originated. Figure 7-3 shows the updated output.

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

C:\WINDOWS\system32\cmd.exe

Figure 7-3. Obtaining aspects of the target site

The StackTrace Property

The System.Exception.StackTrace property allows you to identify the series of calls that resulted in
the exception. Be aware that you never set the value of StackTrace as it is established automatically
at the time the exception is created. To illustrate, assume you have once updated your Catch logic
with the following additional statement:

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch ex As Exception

Console.WritelLine("Stack: {0}", ex.StackTrace)
End Try

If you were to run the program, you would find the following stack trace is printed to the console
(your line numbers and application path may differ, of course):

Stack: at SimpleException.Car.Accelerate(Int32 delta)
in C:\Ch_07 Code\SimpleException\Car.vb:line 36
at SimpleException.Program.Main() in C:\SimpleException\Program.vb:line 9

The string returned from StackTrace documents the sequence of calls that resulted in the
throwing of this exception. Notice how the bottommost line number of this string identifies the first
call in the sequence, while the topmost line number identifies the exact location of the offending
member. Clearly, this information can be quite helpful during the debugging of a given application,
as you are able to “follow the flow” of the error’s origin.

The HelpLink Property

While the TargetSite and StackTrace properties allow programmers to gain an understanding of
a given exception, this information is of little use to the end user. As you have already seen, the
System.Exception.Message property can be used to obtain human-readable information that may
be displayed to the current user. In addition, the HelpLink property can be set to point the user to
a specific URL or standard Windows help file that contains more detailed information.

209

210

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

By default, the value managed by the HelpLink property is an empty string. If you wish to fill
this property with an interesting value, you will need to do so before throwing the System.Exception
type. Here are the relevant updates to the Car.Accelerate() method:

See if Car has overheated.
Public Sub Accelerate(ByVal delta As Integer)
If carIsDead Then
Console.WriteLine("{0} is out of order...", petName)
Else
currSpeed += delta
If currSpeed >= maxSpeed Then
carIsDead = True
currSpeed = 0
' We need to call the HelpLink property, thus we need to
' create a local variable before throwing the Exception object.
Dim ex As New Exception(String.Format("{0} has overheated!", petName))
ex.HelpLink = "http://www.CarsRUs.com"
Throw ex
Else
Console.WriteLine("=> CurrSpeed = {0}", currSpeed)
End If
End If
End Sub

The Catch logic could now be updated to print out this help link information as follows:

Catch ex As Exception

Console.WritelLine("Help Link: {0}", ex.HelplLink)
End Try

The Data Property

The Data property of System.Exception is new to .NET 2.0, and allows you to fill an exception object
with any additional relevant bits of information (such as a time stamp or what have you). The Data
property returns an object implementing an interface named IDictionary, defined in the System.
Collection namespace. Chapter 9 examines the role of interface-based programming as well as the
System.Collections namespace. For the time being, just understand that dictionary collections
allow you to create a set of values that are retrieved using a specific key value. Observe the next rele-
vant update to the Car.Accelerate() method:

See if Car has overheated.
Public Sub Accelerate(ByVal delta As Integer)
If carIsDead Then
Console.Writeline("{0} is out of order...", petName)
Else
currSpeed += delta
If currSpeed >= maxSpeed Then
carIsDead = True
currSpeed = 0
' We need to call the HelpLink property, thus we need to
create a local variable before throwing the Exception object.
Dim ex As New Exception(String.Format("{0} has overheated!", petName))
ex.HelplLink = "http://www.CarsRUs.com"
' Stuff in custom data regarding the error.
ex.Data.Add("TimeStamp", _

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

String.Format("The car exploded at {0}", DateTime.Now))

ex.Data.Add("Cause", "You have a lead foot.")
Throw ex

Else
Console.WritelLine("=> CurrSpeed = {0}", currSpeed)

End If

End If
End Sub

To successfully enumerate over the key/value pairs, you first must make sure to specify
an Imports directive for the System.Collection namespace, given we will make use of a
DictionaryEntry type in the file containing the module implementing your Main() method:

Imports System.Collections

Next, we need to update the catch logic to test that the value returned from the Data property is
not Nothing (the default setting). After this point, we make use of the Key and Value properties of the
DictionaryEntry type to print the custom user data to the console:

Catch ex As Exception
' By default, the data field is empty, so check for Nothing.
Console.WriteLine("-> Custom Data:")

If (ex.Data IsNot Nothing) Then
For Each de As DictionaryEntry In ex.Data
Console.WriteLine("-> {0} : {1}", de.Key, de.Value)
Next
End If
End Try

With this, we would now find the update shown in Figure 7-4.

Toded at 1

foot.

Figure 7-4. Obtaining custom data

Cool! At this point you hopefully have a better idea how to throw and catch exception objects to
account for runtime errors. Next, let’s examine the process of building strongly typed custom excep-
tion objects.

Source Gode The SimpleException project is included under the Chapter 7 subdirectory.

211

212

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

System-Level Exceptions (System.SystemException)

The .NET base class libraries define many classes derived from System.Exception. For example, the System
namespace defines core error objects such as ArgumentOutOfRangeException, IndexOutOfRangeException,
StackOverflowException, and so forth. Other namespaces define exceptions that reflect the behavior of
that namespace (e.g., System.Drawing.Printing defines printing exceptions, System. I0 defines I0-based
exceptions, System.Data defines database-centric exceptions, and so forth).

Exceptions that are thrown by the CLR are (appropriately) called system exceptions. These
exceptions are regarded as nonrecoverable, fatal errors. System exceptions derive directly from
a base class named System. SystemException, which in turn derives from System.Exception (which
derives from System.Object):

Public Class SystemException
Inherits Exception
Various constructors.
End Class

Given that the System.SystemException type does not add any additional functionality beyond
a set of constructors, you might wonder why SystemException exists in the first place. Simply put,
when an exception type derives from System.SystemException, you are able to determine that the
.NET runtime is the entity that has thrown the exception, rather than the code base of the executing
application. For example, the Nul1ReferenceException class extends SystemException. You can verify
this quite simply using the VB 2005 Type0Of/Is construct:

True!

Dim nullRefEx As New NullReferenceException
Console.Writeline("NullReferenceException is-a SystemException? : {0}", _
TypeOf nullRefEx Is SystemException)

Application-Level Exceptions
(System.ApplicationException)

Given that all .NET exceptions are class types, you are free to create your own application-specific
exceptions. However, due to the fact that the System.SystemException base class represents exceptions
thrown from the CLR, you may naturally assume that you should derive your custom exceptions from
the System. Exception type. While you could do so, best practice dictates that you instead derive from
the System.ApplicationException type:

Public Class ApplicationException
Inherits Exception
' Various constructors.

End Class

Like SystemException, ApplicationException does not define any additional members
beyond a set of constructors. Functionally, the only purpose of System.ApplicationException is
to identify the source of the (nonfatal) error. When you handle an exception deriving from System.
ApplicationException, you can assume the exception was raised by the code base of the executing
application, rather than by the .NET base class libraries.

Building Custom Exceptions, Take One

While you can always throw instances of System. Exception to signal a runtime error (as shown in
our first example), it is sometimes advantageous to build a strongly typed exception that represents
the unique details of your current problem. For example, assume you wish to build a custom exception

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

(named CarIsDeadException) to represent the error of speeding up a doomed automobile. The first
step is to derive a new class from System.ApplicationException (by convention, all exception classes
end with the “Exception” suffix; in fact, this is a .NET best practice).

This custom exception describes the details of the car-is-dead condition.
Public Class CarIsDeadException

Inherits ApplicationException
End Class

Like any class, you are free to include any number of custom members that can be called
within the Catch block of the calling logic. You are also free to override any virtual members defined
by your parent classes. For example, we could implement CarIsDeadException by overriding the
virtual Message property:

Public Class CarIsDeadException
Inherits ApplicationException

Private messageDetails As String

Public Sub New()

End Sub

Public Sub New(ByVal msg As String)
messageDetails = msg

End Sub

' Override the Exception.Message property.
Public Overrides ReadOnly Property Message() As String
Get
Return String.Format("Car Error Message: {0}", messageDetails)
End Get
End Property
End Class

Here, the CarIsDeadException type maintains a private data member (messageDetails) that
represents data regarding the current exception, which can be set using a custom constructor.
Throwing this error from the Accelerate() is straightforward. Simply allocate, configure, and throw
a CarIsDeadException type rather than a generic System.Exception

Throw the custom CarIsDeadException.
Public Sub Accelerate(ByVal delta As Integer)

Dim ex As New CarIsDeadException(String.Format("{0} has overheated!", petName))
End Sub
To catch this incoming exception explicitly, your Catch scope can now be updated to catch

a specific CarIsDeadException type (however, given that CarIsDeadException “is-a” System.Exception,
it is still permissible to catch a generic System.Exception as well):

Sub Main()
Catch ex As CarIsDeadException
' Process incoming exception.

End Try

End Sub

213

214

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

So, now that you understand the basic process of building a custom exception, you may wonder
when you are required to do so. Typically, you only need to create custom exceptions when the error
is tightly bound to the class issuing the error (for example, a custom File class that throws a number
of file-related errors, a Car class that throws a number of car-related errors, and so forth). In doing so,
you provide the caller with the ability to handle numerous exceptions on an error-by-error basis.

Building Custom Exceptions, Take Two

The current CarIsDeadException type has overridden the System.Exception.Message property in
order to configure a custom error message. However, we can simplify our programming tasks if we
set the parent’s Message property via an incoming constructor parameter. By doing so, we have no
need to write anything other than the following:

Public Class CarIsDeadException
Inherits ApplicationException
Public Sub New()

End Sub
Public Sub New(ByVal msg As String)
MyBase.New(msg)
End Sub
End Class

Notice that this time you have not defined a string variable to represent the message, and have
not overridden the Message property. Rather, you are simply passing the parameter to your base
class constructor. With this design, a custom exception class is little more than a uniquely named class
deriving from System.ApplicationException, devoid of any member variables (or base class overrides).

Don'’t be surprised if most (if not all) of your custom exception classes follow this simple pattern.
Many times, the role of a custom exception is not necessarily to provide additional functionality
beyond what is inherited from the base classes, but to provide a strongly named type that clearly
identifies the nature of the error.

Building Custom Exceptions, Take Three

If you wish to build a truly prim-and-proper custom exception class, you would want to make sure
your type adheres to the exception-centric .NET best practices. Specifically, this requires that your
custom exception

* Derives from Exception/ApplicationException

 Is marked with the <System.Serializable> attribute

* Defines a default constructor

* Defines a constructor that sets the inherited Message property

¢ Defines a constructor to handle “inner exceptions”

* Defines a constructor to handle the serialization of your type

Now, based on your current background with .NET, you may have no idea regarding the role of
attributes or object serialization, which is just fine. I'll address these topics later in the text (Chapters 14

and 19, respectively). However, to finalize our examination of building custom exceptions, here is
the final iteration of CarIsDeadException:

<Serializable()> _

Public Class CarIsDeadException
Inherits ApplicationException
Public Sub New()

End Sub

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Public Sub New(ByVal message As String)
MyBase.New(message)

End Sub

Public Sub New(ByVal message As String, ByVal inner As System.Exception)
MyBase.New(message, inner)

End Sub

Protected Sub New(ByVal info As System.Runtime.Serialization.SerializationInfo, _
ByVal context As System.Runtime.Serialization.StreamingContext)
MyBase.New(info, context)

End Sub

End Class

So, at this point, you are able to build custom strongly typed exceptions that represent the
application-specific errors your program may generate. Next up, we need to examine the process of
handling multiple exceptions that may result from a single Try scope.

Processing Multiple Exceptions

In its simplest form, a Try block has a single Catch block. In reality, you often run into a situation
where the statements within a Try block could trigger numerous possible exceptions. For example,
assume the car’s Accelerate() method also throws the predefined ArgumentOutOfRangeException if
you pass an invalid parameter (which we will assume is any value less than zero):

Public Sub Accelerate(ByVal delta As Integer)
If delta < 0 Then
Throw New ArgumentOutOfRangeException()
End If

End Sub
The Catch logic could now specifically respond to each type of exception:
Module Program
Sub Main()
Console.Writeline("***** Creating a car and stepping on it k¥k")

Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next

Catch ex As ArgumentOutOfRangeException
' Process bad arguments.

Catch ex As CarIsDeadException
' Process CarIsDeadException.

End Try

End Sub
End Module

When you are authoring multiple Catch blocks, you must be aware that when an exception is
thrown, it will be processed by the “first available” catch. To illustrate exactly what the “first available”
catch means, assume you retrofitted the previous logic with an additional Catch scope that attempts
to handle all exceptions beyond CarIsDeadException and ArgumentOutOfRangeException by catching
a generic System.Exception as follows:

215

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

This code will generate warnings!

Module Program

Sub Main()
Console.WriteLine("***** Creating a car and stepping on it *¥i¥*")
Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch ex As Exception
' Try to catch all other exceptions here?
Catch ex As ArgumentOutOfRangeException
' Process bad arguments.
Catch ex As CarIsDeadException
' Process CarIsDeadException.
End Try

End Sub
End Module

This exception handling logic generates several warnings. The problem is due to the fact that
the first Catch block can handle anything derived from System.Exception (given the “is-a” relation-
ship), including the CarIsDeadException and ArgumentOutOfRangeException types. Therefore, the
final two Catch blocks are unreachable!

The rule of thumb to keep in mind is to make sure your Catch blocks are structured such that
the very first Catch is the most specific exception (i.e., the most derived type in an exception type
inheritance chain), leaving the final Catch for the most general (i.e., the base class of a given excep-
tion inheritance chain, in this case System.Exception).

Thus, if you wish to define a Catch statement that will handle any errors beyond CarIsDeadException
and ArgumentOutOfRangeException, you would write the following:

This code compiles without warning.

Module Program

Sub Main()
Console.WriteLine("***** Creating a car and stepping on it *¥i¥*")
Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch ex As ArgumentOutOfRangeException
' Process bad arguments.
Catch ex As CarIsDeadException
' Process CarIsDeadException.
Catch ex As Exception
' Try to catch all other exceptions here? Ok!
End Try

End Sub
End Module

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Generic Catch Statements

VB 2005 also supports a “generic” Catch scope that does not explicitly receive the exception object
thrown by a given member:

A generic catch.

Module Program

Sub Main()
Console.WriteLine("***** Creating a car and stepping on it *****")
Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch
Console.WriteLine("Oops! Something bad happened...")
End Try
End Sub
End Module

Obviously, this is not the most informative way to handle exceptions, given that you have no
way to obtain meaningful data about the error that occurred (such as the method name, call stack,
or custom message). Nevertheless, VB 2005 does allow for such a construct, which can be helpful
when you wish to handle all errors in a very generic fashion.

Rethrowing Exceptions

Be aware that it is permissible for logic in a Try block to rethrow an exception up the call stack to
the previous caller. To do so, simply make use of the Throw keyword within a Catch block. This
passes the exception up the chain of calling logic, which can be helpful if your Catch block is only
able to partially handle the error at hand:

Passing the buck.

Module Program

Sub Main()
Console.Writeline("***** Creating a car and stepping on it *k¥k")
Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch ex As ArgumentOutOfRangeException
' Process bad arguments.
Catch ex As CarIsDeadException
' Do any partial processing of this error and pass the buck.
' Here, we are rethrowing the incoming CarIsDeadException object.
' However, you are also free to throw a different exception if need be.
Throw ex
Catch ex As Exception
' Try to catch all other exceptions here? Ok!
End Try

End Sub
End Module

217

218

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Be aware that in this example code, the ultimate receiver of CarIsDeadException is the CLR, given
that it is the Main() method rethrowing the exception. Given this point, your end user is presented
with a system-supplied error dialog box. Typically, you would only rethrow a partially handled
exception to a caller that has the ability to handle the incoming exception more gracefully.

Inner Exceptions

Asyou may suspect, it is entirely possible to trigger an exception at the time you are handling another
exception. For example, assume that you are handing a CarIsDeadException within a particular Catch
scope, and during the process you attempt to record the stack trace to a file on your C drive named
carErrors.txt. Although we have not yet examined the topic of file IO, assume you have imported
the System.I0 namespace (via the Imports keyword) and authored the following code:

Catch ex As CarIsDeadException
' Attempt to open a file named carErrors.txt on the C drive.
Dim fs As FileStream = File.Open("C:\carErrors.txt", FileMode.Open)

End Try

Now, if the specified file is not located on your C drive, the call to File.Open() results in
a FileNotFoundException! Later in this text, you will learn all about the System.I0 namespace where
you will discover how to programmatically determine whether a file exists on the hard drive before
attempting to open the file in the first place (thereby avoiding the exception altogether). However,
to keep focused on the topic of exceptions, assume the exception has been raised.

When you encounter an exception while processing another exception, best practice states
that you should record the new exception object as an “inner exception” within a new object of the
same type as the initial exception (that was a mouthful). The reason we need to allocate a new object

of the exception being handled is that the only way to document an inner exception is via a constructor
parameter. Consider the following code:

Module Program
Sub Main()

Try
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
Catch ex As ArgumentOutOfRangeException
' process any bad arguments here.
Catch ex As CarIsDeadException
Try
' Attempt to open a file named carErrors.txt on the C drive.
Dim fs As FileStream = File.Open("C:\carErrors.txt", FileMode.Open)
Catch ex2 As Exception
' Throw a exception that records the new exception,
as well as the message of the first exception.
Throw New CarIsDeadException(ex.Message, ex2)
End Try

Catch ex As Exception
' Try to catch all other exceptions here? OK!
End Try

End Sub
End Module

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING 219

Notice in this case, we have passed in the FileNotFoundException object as the second parame-
ter to the CarIsDeadException constructor. Once we have configured this new object, we throw it up
the call stack to the next caller, which in this case would be the Main() method.

Given that there is no “next caller” beyond the CLR after Main() to catch the exception, we would
be again presented with an error dialog box. Much like the act of rethrowing an exception, recording
inner exceptions is usually only useful when the caller has the ability to gracefully catch the exception
in the first place. If this is the case, the caller’s catch logic can make use of the InnerException property
to extract the details of the inner exception object.

The Finally Block

A Try/Catch scope may also define an optional Finally block. The motivation behind a Finally block
is to ensure that a set of code statements will always execute, exception (of any type) or not. To illus-
trate, assume you wish to always power down the car’s radio before exiting Main(), regardless of any
handled exception:

Module Program
Sub Main()
Console.WriteLine("***** Creating a car and stepping on it *****")
Dim myCar As Car = New Car("Zippy", 20)
myCar.CrankTunes(True)

Try
' Speed up logic
Catch ex As ArgumentOutOfRangeException
' Process arg out of range.
Catch ex As CarIsDeadException
' Process car is dead.
Catch ex As Exception
' Try to catch all other exceptions here.
Finally
' This will always execute, error or not.
myCar.CrankTunes (False)
End Try
' The error has been handled, processing continues with the next statement.
Console.Writeline("**¥** Qut of exception logic *H¥**")
Console.ReadlLine()
End Sub
End Module

If you did not include a Finally block, the radio would not be turned off if an exception is
encountered (which may or may not be problematic). In a more real-world scenario, when you
need to dispose of objects, close a file, detach from a database (or whatever), a Finally block
ensures a location for proper cleanup.

Who Is Throwing What?

Given that a method in the .NET Framework could throw any number of exceptions (under various
circumstances), a logical question would be “How do I know which exceptions may be thrown by

a given base class library method?” The ultimate answer is simple: consult the .NET Framework 2.0
SDK documentation. Each method in the help system documents the exceptions a given member
may throw.

220 CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

For example, if you wish to see the exceptions the Console.ReadLine() method could throw,
click the ReadLine() method and press the F1 key. This will open up the correct help page for the
method in question. From here, simply consult the Exceptions table (see Figure 7-5).

Console.ReadLine Method] Search - X
F1 Options: ({choose) - URL: ms-help://M5.VSCC.v80,/MS.MSDN, v80,/M3, NETDEVFX.v20.enfcp -
.MET Framework Class Library
Console.ReadLine Method
See Also Example
= Collapse All ﬂ Language Filter: Visual Basic
A
=] Exceptions
Exception type Condition =
10Exception An 1/O error occurred.
OutOfMemoryException There iz insufficient memory to allocate a buffer for the returned string.
ArgumentOutOfRangeException The number of characters in the next line of characters is greater than
Int32.MaxValue.
- hd

Figure 7-5. Identifying the exceptions thrown from a given method

Do understand that if a given member throws multiple exceptions, you are not literally required
to catch each object within a separate Catch block. In many cases, you can handle all possible errors
thrown from a set scope by catching a single System.Exception:

Sub Main()
Try
' This one catch will handle all exceptions
' thrown from the Open() method.
File.Open("IDontExist.txt", FileMode.Open)
Catch ex As Exception
Console.WritelLine(ex.Message)
End Try
End Sub

However, if you do wish to handle specific exceptions uniquely, just make use of multiple
Catch blocks as shown throughout this chapter. Using this approach, you can take unique courses
of action based on the type of exception object, and therefore have a finer grain of control.

The Result of Unhandled Exception

At this point, you might be wondering what would happen if you do not handle an exception thrown
your direction. Assume that the logic in Main() increases the speed of the Car object beyond the
maximum speed, without the benefit of Try/Catch logic. The result of ignoring an exception would
be highly obstructive to the end user of your application, as an “unhandled exception” dialog box is
displayed. On a machine where .NET debugging tools are installed, you would see something similar
to Figure 7-6 (a nondevelopment machine would display a similar intrusive dialog box).

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

T CustomException

CustomException has encountered a problem and needs to close. We are
somy for the inconvenience.

If you were in the middle of something, the information you were working on might be lost.

Please tell Mi ft about this probl

We have created an emor report that you can send to help us improve CustomBException.
We will treat this report as corfidential and anonymous.

What data does this emor report contain?
Why should | report to Microsaft?

[Send Emor Report] L Dont Send _|

Figure 7-6. The result of not dealing with exceptions

Source Code The CustomException project is included under the Chapter 7 subdirectory.

Debugging Unhandled Exceptions Using Visual
Studio 2005

As you would hope, Visual Studio 2005 provides a number of tools that help you debug exceptions.
Again, assume you have increased the speed of a Car object beyond the maximum and are not mak-
ing use of structured exception handling. If you were to start a debugging session (using the Debug »
Start menu selection), Visual Studio automatically breaks at the time the uncaught exception is thrown.
Better yet, you are presented with a window (see Figure 7-7) displaying the value of the Message

property.

~Car.vb| Modulel.vb - X
|\'?[3Car ~ || - Accelerate v
String.Format ("The car exploded at {0} ", DateTime.Now)) —
.Add ("Cause", "You have a lead foot.") |
4
Else
Console.w % CarlsDeadException was unhandled x
End If Zippy has averheated!
End If
End Sub Troubleshooting tips:
End Class Get general help for exceptions. A
B
Search for more Help Online...
Actions:
View Detail...
Copy exception detail to the dipboard b |
b
< >

Figure 7-7. Debugging unhandled custom exceptions with Visual Studio 2005

221

222

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

If you click the View Detail link, you will find the details regarding the state of the object (see
Figure 7-8).

View Detail

Exception snapshot:
8] CustomException.CarlsDeadException {"Zippy has overheated! "}
Data {System. Collections. ListDictionaryInternal}
HelpLink “hitp: /fwww.CarsRUs.com”™
InnerException Mothing
IsTransient False
Message “Zippy has overheated! ™
Source "CustomException™
StackTrace " at CustomException.Car. Accelerate(Int32 delts
TargetSite {System.Reflection. RuntimeMethodInfo}

Figure 7-8. Viewing the details of an exception with Visual Studio 2005

Note If you fail to handle an exception thrown by a method in the .NET base class libraries, the Visual Studio
2005 debugger breaks at the statement that called the offending method.

Blending VB 6.0 Error Processing and Structured
Exception Handling

To wrap up this chapter, allow me to point out that the VB 6.0 error handling constructs are still sup-
ported under Visual Basic 2005. As you may know, the On Error Goto construct allows you to define
alabel in the scope of a method, where control will be transferred in the event of an error. At this point,
you can make use of the intrinsic Err object to scrape out select details of the problem at hand.

Since the release of the .NET platform, the VB Err object has been enhanced with a new method
named GetException(), which returns a reference to the underlying System.Exception derived type.
Consider the following code, which blends both approaches to handle the CarIsDeadException:

Module Program
Sub Main()
On Error GoTo OOPS

Dim myCar As New Car("Sven", 80)
For i As Integer = 0 To 10
myCar.Accelerate(10)
Next
OO0PS:
' Use Err object.
Console.Writeline("=> Handling error with Err object.")
Console.Writeline(Exrr.Description)
Console.WritelLine(Err.Source)

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Use Exrr object to get exception object.
Console.Writeline("=> Handling error with exception.")
Console.WritelLine(Err.GetException().StackTrace)
Console.Writeline(Err.GetException().TargetSite)

End Sub

End Module

Although the On Error construct is still supported, I prefer to make use of the structured excep-
tion handling techniques presented in this chapter. As you build new VB 2005 programs, it is best to
regard the legacy VB 6.0 style of error handling as little more than a vehicle for backwards compatibility.

Source Code The Vb6StyleErrorHandling project is included under the Chapter 7 subdirectory.

Summary

In this chapter, you examined the role of structured exception handling. When a method needs to
send an error object to the caller, it will allocate, configure, and throw a specific System.Exception
derived type via the VB 2005 Throw keyword. The caller is able to handle any possible incoming
exceptions using the VB 2005 Try/Catch keywords and an optional Finally scope.

When you are creating your own custom exceptions, you ultimately create a class type deriving
from System.ApplicationException, which denotes an exception thrown from the currently execut-
ing application. In contrast, error objects deriving from System.SystemException represent critical
(and fatal) errors thrown by the CLR.

This chapter also illustrated various tools within Visual Studio 2005 that can be used to debug
exceptions as they occur. Last but not least, I pointed out that the legacy VB 6.0 style of error han-
dling (On Error) is still supported under Visual Basic 2005 for purposes of backwards compatibility.

223

CHAPTER 8

Understanding Object Lifetime

At this point in the text, you learned a good deal about how to build custom class types using
VB 2005. Here, you will come to understand how the CLR is managing allocated objects via garbage
collection. VB 2005 programmers never directly deallocate a managed object from memory and,
unlike classic COM, we are no longer required to interact with finicky interface reference counting
logic (which occurred behind the scenes by VB 6.0). Rather, .NET objects are allocated onto a region
of memory termed the managed heap, where they will be automatically destroyed by the garbage
collector at “some time in the future.”

Once you have examined the core details of the collection process, you will learn how to
programmatically interact with the garbage collector using the System.GC class type. Next you
examine how the virtual System.Object.Finalize() method and IDisposable interface can be used
to build types that release internal unmanaged resources in a timely manner. By the time you have
completed this chapter, you will have a solid understanding of how .NET objects are managed by
the CLR.

Classes, Objects, and References

To frame the topics examined in this chapter, it is important to further clarify the distinction
between classes, objects, and references. Recall that a class is nothing more than a blueprint that
describes how an instance of this type will look and feel in memory. Classes, of course, are defined
within a code file (which in VB 2005 takes a *.vb extension by convention). Consider a simple Car
class defined within Car.vb:

Car.vb

Public Class Car

Private currSp As Integer
Private petName As String

Public Sub New()
End Sub

Public Sub New(ByVal name As String, ByVal speed As Integer)
petName = name
currSp = speed

End Sub

Public Overrides Function ToString() As String
Return String.Format("{0} is going {1} MPH", petName, currSp)
End Function
End Class

225

226

CHAPTER 8 ©' UNDERSTANDING OBJECT LIFETIME

Once a class is defined, you can create any number of objects using the VB 2005 New keyword.
Understand, however, that the New keyword returns a reference to the object on the heap, not the actual
object itself. This ref