

Pro VB 2005 and the
.NET 2.0 Platform
Second Edition

Andrew Troelsen

5785ch00FM.qxd 3/31/06 3:31 PM Page i

Pro VB 2005 and the .NET 2.0 Platform

Copyright © 2006 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-578-7

ISBN-10 (pbk): 1-59059-578-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Don Reamey
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Kier Thomas, Matt Wade

Production Director and Project Manager: Grace Wong
Copy Edit Manager: Nicole LeClerc
Senior Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor and Artist: Kinetic Publishing Services, LLC
Proofreaders: April Eddy, Lori Bring, Nancy Sixsmith
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

5785ch00FM.qxd 3/31/06 3:31 PM Page ii

To my wife Mandy.
Thank you babes for supporting me in yet another book.

I love you.

5785ch00FM.qxd 3/31/06 3:31 PM Page iii

5785ch00FM.qxd 3/31/06 3:31 PM Page iv

Contents at a Glance

About the Author . xxxiii

About the Technical Reviewer. xxxv

Acknowledgments . xxxvii

Introduction . xxxix

PART 1 ■ ■ ■ Introducing Visual Basic 2005 and
the .NET Platform

■CHAPTER 1 The Philosophy of .NET . 3

■CHAPTER 2 Building Visual Basic 2005 Applications . 31

PART 2 ■ ■ ■ Visual Basic 2005 Language
Fundamentals

■CHAPTER 3 VB 2005 Programming Constructs, Part I . 65

■CHAPTER 4 VB 2005 Programming Constructs, Part II . 103

PART 3 ■ ■ ■ Core Object-Oriented Programming
Techniques

■CHAPTER 5 Defining Encapsulated Class Types . 127

■CHAPTER 6 Understanding Inheritance and Polymorphism . 167

■CHAPTER 7 Understanding Structured Exception Handling . 201

■CHAPTER 8 Understanding Object Lifetime . 225

PART 4 ■ ■ ■ Advanced Object-Oriented
Programming Techniques

■CHAPTER 9 Working with Interfaces and Collections . 245

■CHAPTER 10 Callback Interfaces, Delegates, and Events . 281

■CHAPTER 11 Advanced VB 2005 Programming Constructs . 309

■CHAPTER 12 Understanding Generics and Nullable Data Types 337

v

5785ch00FM.qxd 3/31/06 3:31 PM Page v

PART 5 ■ ■ ■ Programming with .NET Assemblies
■CHAPTER 13 Introducing .NET Assemblies. 363

■CHAPTER 14 Type Reflection, Late Binding, and Attribute-based Programming. 407

■CHAPTER 15 Processes, AppDomains, Contexts, and CLR Hosts 441

■CHAPTER 16 Building Multithreaded Applications . 463

■CHAPTER 17 COM and .NET Interoperability . 493

PART 6 ■ ■ ■ Exploring the .NET Base Class
Libraries

■CHAPTER 18 The System.IO Namespace . 527

■CHAPTER 19 Understanding Object Serialization . 555

■CHAPTER 20 The .NET Remoting Layer . 573

■CHAPTER 21 Building a Better Window with System.Windows.Forms 611

■CHAPTER 22 Rendering Graphical Data with GDI+ . 655

■CHAPTER 23 Programming with Windows Forms Controls . 707

■CHAPTER 24 Database Access with ADO.NET . 767

PART 7 ■ ■ ■ Web Applications and XML Web
Services

■CHAPTER 25 Building ASP.NET 2.0 Web Pages . 837

■CHAPTER 26 ASP.NET 2.0 Web Controls, Themes, and Master Pages 883

■CHAPTER 27 ASP.NET 2.0 State Management Techniques . 919

■CHAPTER 28 Understanding XML Web Services . 955

■INDEX . 991

vi

5785ch00FM.qxd 3/31/06 3:31 PM Page vi

Contents

About the Author . xxxiii

About the Technical Reviewer. xxxv

Acknowledgments . xxxvii

Introduction . xxxix

PART 1 ■ ■ ■ Introducing Visual Basic 2005 and
the .NET Platform

■CHAPTER 1 The Philosophy of .NET . 3

Understanding the Previous State of Affairs . 3
Life As a C/Win32 API Programmer . 3
Life As a C++/MFC Programmer . 4
Life As a Visual Basic 6.0 Programmer . 4

Life As a Java/J2EE Programmer. 4

Life As a COM Programmer . 5

Life As a Windows DNA Programmer. 5

The .NET Solution. 6

Introducing the Building Blocks of the .NET Platform (the CLR, CTS,
and CLS) . 6

The Role of the Base Class Libraries . 7

What Visual Basic 2005 Brings to the Table . 7

Additional .NET-Aware Programming Languages. 8

Life in a Multilanguage World . 9

An Overview of .NET Assemblies . 10

Single-File and Multifile Assemblies . 11

The Role of the Common Intermediate Language . 12

Benefits of CIL . 14

Compiling CIL to Platform-Specific Instructions . 14

The Role of .NET Type Metadata . 14

The Role of the Assembly Manifest . 15

Understanding the Common Type System. 16

CTS Class Types . 16

CTS Structure Types . 16

CTS Interface Types . 17

CTS Enumeration Types . 17
vii

5785ch00FM.qxd 3/31/06 3:31 PM Page vii

CTS Delegate Types. 17

CTS Type Members . 18

Intrinsic CTS Data Types . 18

Understanding the Common Language Specification . 19

Ensuring CLS Compliance . 20

Understanding the Common Language Runtime . 20

The Assembly/Namespace/Type Distinction . 22

Accessing a Namespace Programmatically . 24

Referencing External Assemblies . 25

Using ildasm.exe . 26

Viewing CIL Code . 26

Viewing Type Metadata . 27

Viewing Assembly Metadata. 28

Deploying the .NET Runtime . 28

The Platform-Independent Nature of .NET . 29

Summary . 30

■CHAPTER 2 Building Visual Basic 2005 Applications . 31

Installing the .NET Framework 2.0 SDK. 31

The VB 2005 Command-Line Compiler (vbc.exe) . 32

Configuring the VB 2005 Command-Line Compiler 33

Configuring Additional .NET Command-Line Tools . 33

Building VB 2005 Applications Using vbc.exe . 34

Referencing External Assemblies Using vbc.exe . 35

Compiling Multiple Source Files Using vbc.exe . 36

Referencing Multiple External Assemblies Using vbc.exe 37

Working with vbc.exe Response Files . 37

The Default Response File (vbc.rsp). 38

Building .NET Applications Using TextPad . 39

Enabling VB 2005 Keyword Coloring . 39

Configuring the *.vb File Filter . 40

Hooking Into vbc.exe . 41

Associating Run Commands with Menu Items . 42

Building .NET Applications Using SharpDevelop. 43

Learning the Lay of the Land: SharpDevelop . 44

The Project and Classes Scouts . 45

The Assembly Scout . 46

Windows Forms Designers . 47

Building .NET Applications Using Visual Basic 2005 Express 48

The Big Kahuna: Building .NET Applications Using Visual Studio 2005 49

Learning the Lay of the Land: Visual Studio 2005 . 50

The Solution Explorer Utility . 50

The My Project Perspective . 50

■CONTENTSviii

5785ch00FM.qxd 3/31/06 3:31 PM Page viii

The Class View Utility . 51

The Object Browser Utility . 51

Visual Studio 2005 Code Snippet Technology. 52

The Visual Class Designer. 53

Object Test Bench . 57

The Integrated Help System . 57

The Role of the Visual Basic 6.0 Compatibility Assembly 58

A Partial Catalogue of Additional .NET Development Tools 60

Summary . 61

PART 2 ■ ■ ■ Visual Basic 2005 Language
Fundamentals

■CHAPTER 3 VB 2005 Programming Constructs, Part I . 65

The Role of the Module Type. 65

Projects with Multiple Modules . 66

Modules Are Not Creatable . 67

Renaming Your Initial Module . 68

Members of Modules. 68

The Role of the Main Method . 69

Processing Command-line Arguments Using System.Environment 69

Processing Command-line Arguments with Main() 70

Main() As a Function (not a Subroutine). 71

Simulating Command-line Arguments Using Visual Studio 2005 71

An Interesting Aside: Some Additional Members of the
System.Environment Class . 72

The System.Console Class . 73

Basic Input and Output with the Console Class . 73

Formatting Console Output . 74

.NET String Formatting Flags . 75

The System Data Types and VB 2005 Shorthand Notation 76

Variable Declaration and Initialization . 78

Default Values of Data Types . 79

The Data Type Class Hierarchy. 79

“New-ing” Intrinsic Data Types . 81

Experimenting with Numerical Data Types . 81

Members of System.Boolean . 82

Members of System.Char . 82

Parsing Values from String Data. 83

Understanding the System.String Type . 83

Basic String Manipulation . 84

String Concatenation (and the “Newline” Constant) 84

■CONTENTS ix

5785ch00FM.qxd 3/31/06 3:31 PM Page ix

Strings and Equality. 86

Strings Are Immutable. 86

The System.Text.StringBuilder Type . 88

Final Commentary of VB 2005 Data Types . 89

Narrowing (Explicit) and Widening (Implicit) Data Type Conversions 89

Understanding Option Strict . 91

Explicit Conversion Functions. 93

The Role of System.Convert . 94

Building Visual Basic 2005 Code Statements . 94

The Statement Continuation Character . 95

Defining Multiple Statements on a Single Line. 96

VB 2005 Flow-control Constructs . 96

The If/Then/Else Statement . 96

Building Complex Expressions . 97

The Select/Case Statement . 98

VB 2005 Iteration Constructs . 99

For/Next Loop. 99

For/Each Loop . 100

Do/While and Do/Until Looping Constructs . 101

The With Construct . 102

Summary . 102

■CHAPTER 4 VB 2005 Programming Constructs, Part II 103

Defining Subroutines and Functions . 103

The ByVal Parameter Modifier . 104

The ByRef Parameter Modifier . 105

Defining Optional Arguments . 106

Working with ParamArrays . 108

Method Calling Conventions . 109

Methods Containing Static Data. 109

Understanding Member Overloading . 110

The Overloads Keyword . 111

Details of Method Overloading . 111

Array Manipulation in VB 2005 . 112

VB 2005 Array Initialization Syntax . 113

Defining an Array of Objects . 113

Defining the Lower Bound of an Array. 114

The Redim/Preserve Syntax . 116

Working with Multidimensional Arrays . 116

The System.Array Base Class. 117

■CONTENTSx

5785ch00FM.qxd 3/31/06 3:31 PM Page x

Understanding VB 2005 Enumerations . 118

Controlling the Underlying Storage for an Enum . 119

Declaring and Using Enums . 119

The System.Enum Class (and a Lesson in Resolving Keyword
Name Clashes) . 120

Introducing the VB 2005 Structure Type . 123

Summary . 124

PART 3 ■ ■ ■ Core Object-Oriented Programming
Techniques

■CHAPTER 5 Defining Encapsulated Class Types . 127

Introducing the VB 2005 Class Type. 127

Allocating Objects with the New Keyword. 130

Understanding Class Constructors . 131

The Role of the Default Constructor. 132

Defining Custom Constructors . 133

The Default Constructor Revisited . 134

The Role of the Me Keyword. 135

Chaining Constructor Calls Using Me. 136

Observing Constructor Flow . 138

Understanding the Shared Keyword. 140

Defining Shared Methods (and Fields). 140

Defining Shared Data . 141

Defining Shared Constructors. 144

Defining the Pillars of OOP . 145

The Role of Encapsulation . 145

The Role of Inheritance . 146

The Role of Polymorphism . 147

Visual Basic 2005 Access Modifiers . 148

Access Modifiers and Nested Types . 149

The Default Access Modifier . 149

Access Modifiers and Field Data . 149

The First Pillar: VB 2005’s Encapsulation Services. 150

Encapsulation Using Traditional Accessors and Mutators 151

Encapsulation Using Type Properties. 152

Internal Representation of Properties . 154

Controlling Visibility Levels of Property Get/Set Statements 156

Read-Only and Write-Only Properties . 157

Shared Properties . 157

■CONTENTS xi

5785ch00FM.qxd 3/31/06 3:31 PM Page xi

Understanding Constant Data . 158

Understanding Read-Only Fields . 159

Shared Read-Only Fields. 160

Understanding Partial Types . 160

Documenting VB 2005 Source Code via XML . 161

Transforming XML Code Comments via NDoc . 164

Visualizing the Fruits of Our Labor . 164

Summary . 165

■CHAPTER 6 Understanding Inheritance and Polymorphism 167

The Basic Mechanics of Inheritance . 167

The Inherits Keyword. 168

Regarding Multiple Base Classes. 169

The NotInheritable Keyword . 169

Revising Visual Studio 2005 Class Diagrams . 171

The Second Pillar: The Details of Inheritance . 172

Controlling Base Class Creation with MyBase . 174

Keeping Family Secrets: The Protected Keyword . 176

Adding a Sealed Class. 176

Programming for Containment/Delegation . 178

Nested Type Definitions. 179

The Third Pillar: VB 2005’s Polymorphic Support . 180

The Overridable and Overrides Keywords . 181

Overriding with Visual Studio 2005 . 182

The NotOverridable Keyword . 183

Understanding Abstract Classes and the MustInherit Keyword 184

Building a Polymorphic Interface with MustOverride 185

Understanding Member Shadowing. 189

Understanding Base Class/Derived Class Casting Rules 191

Determining the “Type of” Employee. 192

The Master Parent Class: System.Object. 193

Overriding System.Object.ToString() . 196

Overriding System.Object.Equals(). 196

Overriding System.Object.GetHashCode() . 197

Testing Our Modified Person Class . 197

The Shared Members of System.Object . 198

Summary . 199

■CHAPTER 7 Understanding Structured Exception Handling 201

Ode to Errors, Bugs, and Exceptions . 201

The Role of .NET Exception Handling. 202

The Atoms of .NET Exception Handling . 202

The System.Exception Base Class . 203

■CONTENTSxii

5785ch00FM.qxd 3/31/06 3:31 PM Page xii

The Simplest Possible Example . 204

Throwing a Generic Exception . 206

Catching Exceptions . 207

Configuring the State of an Exception . 208

The TargetSite Property . 208

The StackTrace Property . 209

The HelpLink Property . 209

The Data Property . 210

System-Level Exceptions (System.SystemException) . 212

Application-Level Exceptions (System.ApplicationException) 212

Building Custom Exceptions, Take One . 212

Building Custom Exceptions, Take Two . 214

Building Custom Exceptions, Take Three. 214

Processing Multiple Exceptions . 215

Generic Catch Statements . 217

Rethrowing Exceptions . 217

Inner Exceptions. 218

The Finally Block . 219

Who Is Throwing What?. 219

The Result of Unhandled Exception . 220

Debugging Unhandled Exceptions Using Visual Studio 2005 221

Blending VB 6.0 Error Processing and Structured Exception Handling 222

Summary . 223

■CHAPTER 8 Understanding Object Lifetime . 225

Classes, Objects, and References . 225

The Basics of Object Lifetime . 226

The CIL of New. 227

Setting Object References to Nothing . 228

The Role of Application Roots . 229

Understanding Object Generations. 230

The System.GC Type . 231

Forcing a Garbage Collection . 232

Building Finalizable Objects . 235

Overriding System.Object.Finalize() . 236

Detailing the Finalization Process . 237

Building Disposable Objects . 237

The VB 2005 Using Keyword . 239

Building Finalizable and Disposable Types . 240

A Formalized Disposal Pattern . 241

Summary . 242

■CONTENTS xiii

5785ch00FM.qxd 3/31/06 3:31 PM Page xiii

PART 4 ■ ■ ■ Advanced Object-Oriented
Programming Techniques

■CHAPTER 9 Working with Interfaces and Collections . 245

Understanding Interface Types . 245

Contrasting Interface Types to Abstract Base Classes 246

Defining Custom Interfaces. 247

Implementing an Interface . 249

Updating the Hexagon Class. 250

Types Supporting Multiple Interfaces . 251

Interacting with Types Supporting Interfaces . 251

Obtaining Interface References Using CType() . 252

Obtaining Interface References Using TypeOf/Is. 252

Interfaces As Member Parameters. 254

Interfaces As Return Values . 255

Arrays of Interface Types. 256

Resolving Name Clashes with the Implements Keyword. 257

Defining a Common Implementation with the Implements
Keyword . 259

Hiding Interface Methods from the Object Level Using the
Implements Keyword . 259

Designing Interface Hierarchies . 261

Building Enumerable Types (IEnumerable and IEnumerator). 262

Building Cloneable Objects (ICloneable) . 264

A More Elaborate Cloning Example . 266

Building Comparable Objects (IComparable). 268

Specifying Multiple Sort Orders (IComparer). 271

Custom Properties, Custom Sort Types . 272

The Interfaces of the System.Collections Namespace . 273

The Role of ICollection. 274

The Role of IDictionary . 274

The Role of IDictionaryEnumerator . 275

The Role of IList . 275

The Class Types of System.Collections . 275

Working with the ArrayList Type . 276

Working with the Queue Type. 277

Working with the Stack Type . 278

System.Collections.Specialized Namespace. 279

Summary . 279

■CONTENTSxiv

5785ch00FM.qxd 3/31/06 3:31 PM Page xiv

■CHAPTER 10 Callback Interfaces, Delegates, and Events 281

Using Interfaces As a Callback Mechanism. 281

Understanding the .NET Delegate Type . 285

Defining a Delegate in VB 2005 . 286

Investigating the Autogenerated Class Type . 287

The System.MulticastDelegate and System.Delegate Base Classes 288

The Simplest Possible Delegate Example . 289

Interacting with a Delegate Object. 290

Retrofitting the Car Type with Delegates . 292

Enabling Multicasting . 294

Removing a Target from a Delegate’s Invocation List 295

Understanding (and Using) Events . 296

Firing an Event Using the RaiseEvent Keyword . 297

Events Under the Hood . 297

Hooking into Incoming Events Using WithEvents and Handles 299

Multicasting Using the Handles Keyword . 300

Defining a Single Handler for Multiple Events. 300

Dynamically Hooking into Incoming Events with
AddHandler/RemoveHandler . 301

Defining a “Prim-and-Proper” Event . 302

Defining Events in Terms of Delegates . 304

Customizing the Event Registration Process. 304

Defining a Custom Event. 305

Custom Events Using Custom Delegates . 307

Summary . 308

■CHAPTER 11 Advanced VB 2005 Programming Constructs 309

The VB 2005 Preprocessor Directives . 309

Specifying Code Regions. 310

Conditional Code Compilation. 311

Defining Symbolic Constants . 312

Understanding Value Types and Reference Types. 313

Value Types, References Types, and the Assignment Operator. 315

Value Types Containing Reference Types . 316

Passing Reference Types by Value . 318

Passing Reference Types by Reference. 319

Value and Reference Types: Final Details . 320

Understanding Boxing and Unboxing Operations . 321

Some Practical (Un)Boxing Examples . 321

Unboxing Custom Value Types . 323

Understanding Operator Overloading. 323

Overloading Binary Operators. 324

■CONTENTS xv

5785ch00FM.qxd 3/31/06 3:31 PM Page xv

Overloading Equality Operators . 325

Overloading Comparison Operators . 326

Final Thoughts Regarding Operator Overloading . 327

Understanding Custom Type Conversions . 328

Recall: Numerical Conversions . 328

Recall: Conversions Among Related Class Types . 328

Creating Custom Conversion Routines . 329

Additional Explicit Conversions for the Square Type 331

Defining Implicit Conversion Routines . 331

The VB 2005 DirectCast Keyword . 333

The VB 2005 TryCast Keyword . 334

Summary . 335

■CHAPTER 12 Understanding Generics and Nullable Data Types 337

Revisiting the Boxing, Unboxing, and System.Object Relationship 337

The Problem with (Un)Boxing Operations . 339

Type Safety and Strongly Typed Collections . 339

Boxing Issues and Strongly Typed Collections . 341

The System.Collections.Generic Namespace . 343

Examining the List(Of T) Type . 344

Understanding Nullable Data Types and the System.Nullable(Of T)
Generic Type . 346

Working with Nullable Types. 347

Creating Generic Methods. 348

Omission of Type Parameters . 350

Creating Generic Structures (or Classes). 351

Creating a Custom Generic Collection . 352

Constraining Type Parameters . 354

The Lack of Operator Constraints . 356

Creating Generic Interfaces . 357

Creating Generic Delegates . 358

Summary . 360

PART 5 ■ ■ ■ Programming with .NET Assemblies
■CHAPTER 13 Introducing .NET Assemblies . 363

The Role of .NET Assemblies . 363

Assemblies Promote Code Reuse . 363

Assemblies Establish a Type Boundary . 364

Assemblies Are Versionable Units . 364

Assemblies Are Self-Describing . 364

Assemblies Are Configurable . 365

■CONTENTSxvi

5785ch00FM.qxd 3/31/06 3:31 PM Page xvi

Understanding the Format of a .NET Assembly. 365

The Win32 File Header . 365

The CLR File Header . 366

CIL Code, Type Metadata, and the Assembly Manifest 367

Optional Assembly Resources . 368

Single-File and Multifile Assemblies . 368

Constructing Custom .NET Namespaces . 370

Observing the Root Namespace. 370

Defining Namespaces Beyond the Root . 371

Importing Custom Namespaces . 372

Building Type Aliases Using the Imports Keyword 372

Building and Consuming a Single-File Assembly . 374

Exploring the Manifest. 376

Exploring the CIL . 378

Exploring the Type Metadata . 379

Building a VB 2005 Client Application . 379

Building a C# Client Application . 380

Cross-Language Inheritance in Action. 382

Building and Consuming a Multifile Assembly . 383

Exploring the ufo.netmodule File . 384

Exploring the airvehicles.dll File . 384

Consuming a Multifile Assembly . 385

Understanding Private Assemblies. 386

The Identity of a Private Assembly . 386

Understanding the Probing Process. 386

Configuring Private Assemblies . 387

Configuration Files and Visual Studio 2005. 388

Introducing the .NET Framework 2.0 Configuration Utility 389

Understanding Shared Assemblies. 391

Understanding Strong Names. 392

Strongly Naming CarLibrary.dll Using sn.exe . 393

Assigning Strong Names Using Visual Studio 2005 395

Installing/Removing Shared Assemblies to/from the GAC 395

Consuming a Shared Assembly . 396

Exploring the Manifest of SharedCarLibClient . 397

Configuring Shared Assemblies . 397

Freezing the Current Shared Assembly . 398

Building Shared Assembly Version 2.0.0.0 . 398

Dynamically Redirecting to Specific Versions of a Shared Assembly 400

Revisiting the .NET Framework 2.0 Configuration Utility 401

Understanding Publisher Policy Assemblies . 401

Disabling Publisher Policy . 402

Understanding the <codeBase> Element . 403

The System.Configuration Namespace . 404

■CONTENTS xvii

5785ch00FM.qxd 3/31/06 3:31 PM Page xvii

The Machine Configuration File . 405

The Assembly Binding “Big Picture” . 405

Summary . 406

■CHAPTER 14 Type Reflection, Late Binding, and Attribute-based
Programming . 407

The Necessity of Type Metadata. 407

Viewing (Partial) Metadata for the EngineState Enumeration 408

Viewing (Partial) Metadata for the Car Type . 409

Examining a TypeRef . 410

Documenting the Defining Assembly. 410

Documenting Referenced Assemblies . 410

Documenting String Literals . 411

Understanding Reflection . 411

The System.Type Class . 412

Obtaining a Type Reference Using System.Object.GetType(). 413

Obtaining a Type Reference Using System.Type.GetType() 413

Obtaining a Type Reference Using GetType() . 414

Building a Custom Metadata Viewer . 414

Reflecting on Methods. 414

Reflecting on Fields and Properties . 414

Reflecting on Implemented Interfaces. 415

Displaying Various Odds and Ends. 415

Implementing Main() . 415

Reflecting on Method Parameters and Return Values 417

Dynamically Loading Assemblies . 418

Reflecting on Shared Assemblies . 420

Understanding Late Binding . 422

Late Binding with the System.Activator Class . 422

Invoking Methods with No Parameters . 423

Invoking Methods with Parameters . 423

Understanding Attributed Programming . 424

Attribute Consumers . 425

Applying Predefined Attributes in VB 2005 . 425

Specifying Constructor Parameters for Attributes 427

The <Obsolete> Attribute in Action . 427

VB 2005 Attribute Shorthand Notation. 428

Building Custom Attributes . 428

Applying Custom Attributes. 429

Restricting Attribute Usage . 430

Assembly-level (and Module-level) Attributes. 431

The Visual Studio 2005 AssemblyInfo.vb File . 431

■CONTENTSxviii

5785ch00FM.qxd 3/31/06 3:31 PM Page xviii

Reflecting on Attributes Using Early Binding . 432

Reflecting on Attributes Using Late Binding . 433

Putting Reflection, Late Binding, and Custom Attributes in Perspective. 434

Building an Extendable Application . 435

Building CommonSnappableTypes.dll . 435

Building the VB 2005 Snap-In . 436

Building the C# Snap-In . 436

Building an Extendable Windows Forms Application 437

Summary . 439

■CHAPTER 15 Processes, AppDomains, Contexts, and CLR Hosts 441

Reviewing Traditional Win32 Processes . 441

An Overview of Threads . 442

Interacting with Processes Under the .NET Platform . 443

Enumerating Running Processes . 445

Investigating a Specific Process. 446

Investigating a Process’s Thread Set . 446

Investigating a Process’s Module Set . 448

Starting and Stopping Processes Programmatically 449

Understanding .NET Application Domains . 450

Enumerating a Process’s AppDomains . 451

Programmatically Creating New AppDomains . 452

Programmatically Unloading AppDomains . 454

Understanding Object Context Boundaries . 455

Context-Agile and Context-Bound Types . 456

Defining a Context-Bound Object. 457

Inspecting an Object’s Context . 457

Summarizing Processes, AppDomains, and Context . 459

Runtime Hosts of the CLR . 459

Side-by-Side Execution of the CLR . 460

Loading a Specific Version of the CLR . 461

Additional CLR Hosts . 461

Summary . 462

■CHAPTER 16 Building Multithreaded Applications . 463

The Process/AppDomain/Context/Thread Relationship . 463

The Problem of Concurrency and the Role of Thread
Synchronization . 464

A Brief Review of the .NET Delegate . 465

The Asynchronous Nature of Delegates. 467

The BeginInvoke() and EndInvoke() Methods . 467

The System.IAsyncResult Interface . 468

■CONTENTS xix

5785ch00FM.qxd 3/31/06 3:31 PM Page xix

Invoking a Method Asynchronously . 468

Synchronizing the Calling Thread. 469

The Role of the AsyncCallback Delegate . 470

The Role of the AsyncResult Class. 472

Passing and Receiving Custom State Data . 472

The System.Threading Namespace . 473

The System.Threading.Thread Class . 474

Obtaining Statistics About the Current Thread . 475

The Name Property . 476

The Priority Property . 476

Programmatically Creating Secondary Threads . 477

Working with the ThreadStart Delegate. 477

Creating Threads: A Shorthand Notation . 480

Working with the ParameterizedThreadStart Delegate 480

Foreground Threads and Background Threads. 481

The Issue of Concurrency . 482

Synchronization Using the VB 2005 SyncLock Keyword 484

Synchronization Using the System.Threading.Monitor Type 486

Synchronization Using the System.Threading.Interlocked Type 486

Synchronization Using the <Synchronization> Attribute 487

Programming with Timer Callbacks . 488

Understanding the CLR ThreadPool . 489

Summary . 491

■CHAPTER 17 COM and .NET Interoperability . 493

The Scope of .NET Interoperability . 493

A Simple Example of .NET to COM Interop . 494

Building the VB 2005 Client . 495

Investigating a .NET Interop Assembly. 497

Understanding the Runtime Callable Wrapper . 499

The RCW: Exposing COM Types As .NET Types. 500

The RCW: Managing a Coclass’s Reference Count. 501

The RCW: Hiding Low-level COM Interfaces . 501

The Role of COM IDL . 502

Observing the Generated IDL for Your VB COM Server. 503

IDL Attributes . 504

The IDL Library Statement . 505

The Role of the [default] Interface . 505

The Role of IDispatch . 505

IDL Parameter Attributes . 506

Using a Type Library to Build an Interop Assembly. 506

Late Binding to the CoCalc Coclass . 507

■CONTENTSxx

5785ch00FM.qxd 3/31/06 3:31 PM Page xx

Building a More Interesting VB 6.0 COM Server . 509

Supporting an Additional COM Interface . 510

Exposing an Inner Object . 510

Examining the Interop Assembly . 511

Building our VB 2005 Client Application . 511

Interacting with the CoCar Type . 512

Intercepting COM Events. 514

Understanding COM to .NET Interoperability. 515

The Attributes of System.Runtime.InteropServices 515

The Role of the CCW . 516

The Role of the .NET Class Interface . 517

Defining a Class Interface . 517

Building Your .NET Types . 518

Inserting a COM Class Using Visual Studio 2005 . 519

Defining a Strong Name . 520

Generating the Type Library and Registering the .NET Types 521

Examining the Exported Type Information . 522

Building a Visual Basic 6.0 Test Client . 523

Summary . 524

PART 6 ■ ■ ■ Exploring the .NET Base Class
Libraries

■CHAPTER 18 The System.IO Namespace . 527

Exploring the System.IO Namespace . 527

The Directory(Info) and File(Info) Types . 528

The Abstract FileSystemInfo Base Class . 529

Working with the DirectoryInfo Type . 529

The FileAttributes Enumeration . 531

Enumerating Files with the DirectoryInfo Type . 531

Creating Subdirectories with the DirectoryInfo Type 532

Working with the Directory Type. 533

Working with the DriveInfo Class Type. 534

Working with the FileInfo Class . 535

The FileInfo.Create() Method. 536

The FileInfo.Open() Method. 536

The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods 537

The FileInfo.OpenText() Method . 538

The FileInfo.CreateText() and FileInfo.AppendText() Methods 538

Working with the File Type . 538

New .NET 2.0 File Members . 539

■CONTENTS xxi

5785ch00FM.qxd 3/31/06 3:31 PM Page xxi

The Abstract Stream Class . 540

Working with FileStreams . 541

Working with StreamWriters and StreamReaders . 542

Writing to a Text File . 544

Reading from a Text File . 544

Directly Creating StreamWriter/StreamReader Types 545

Working with StringWriters and StringReaders. 546

Working with BinaryWriters and BinaryReaders . 547

Revising the VB 2005 Using Keyword . 549

Programmatically “Watching” Files and Directories. 549

Performing Asynchronous File I/O . 551

Summary . 553

■CHAPTER 19 Understanding Object Serialization . 555

Understanding Object Serialization . 555

The Role of Object Graphs . 556

Configuring Objects for Serialization . 557

Public Fields, Private Fields, and Public Properties 558

Choosing a Serialization Formatter . 558

The IFormatter and IRemotingFormatting Interfaces 559

Type Fidelity Among the Formatters . 559

Serializing Objects Using the BinaryFormatter . 560

Deserializing Objects Using the BinaryFormatter . 561

Serializing Objects Using the SoapFormatter . 561

Serializing Objects Using the XmlSerializer. 562

Controlling the Generated XML Data . 563

Persisting Collections of Objects . 564

Customizing the Serialization Process. 566

A Deeper Look at Object Serialization . 567

Customizing Serialization Using ISerializable . 568

Customizing Serialization Using Attributes . 570

Summary . 571

■CHAPTER 20 The .NET Remoting Layer . 573

Defining .NET Remoting . 573

The .NET Remoting Namespaces . 574

Understanding the .NET Remoting Framework. 575

Understanding Proxies and Messages. 575

Understanding Channels . 576

Revisiting the Role of .NET Formatters . 576

All Together Now!. 577

A Brief Word Regarding Extending the Default Plumbing 577

■CONTENTSxxii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxii

Terms of the .NET Remoting Trade. 577

Object Marshaling Choices: MBR or MBV? . 578

Activation Choices for MBR Types: WKO or CAO?. 579

Stateful Configuration of WKO Types: Singleton or Single Call? 580

Summarizing the Traits of MBR Object Types . 581

Basic Deployment of a .NET Remoting Project . 581

Building Your First Distributed Application. 582

Building the General Assembly. 582

Building the Server Assembly. 583

Building the Client Assembly . 584

Testing the Remoting Application. 585

Understanding the ChannelServices Type . 585

Understanding the RemotingConfiguration Type. 586

Revisiting the Activation Mode of WKO Types . 588

Deploying the Server to a Remote Machine . 589

Leveraging the TCP Channel. 589

A Brief Word Regarding the IpcChannel. 590

Remoting Configuration Files . 591

Building Server-side *.config Files . 591

Building Client-side *.config Files . 592

Working with MBV Objects . 593

Building the General Assembly. 594

Building the Server Assembly. 595

Building the Client Assembly . 596

Understanding Client-activated Objects . 597

The Lease-based Lifetime of CAO/WKO-Singleton Objects. 599

The Default Leasing Behavior. 600

Altering the Default Lease Characteristics . 602

Alternative Hosts for Remote Objects . 604

Hosting Remote Objects Using a Windows Service 604

Hosting Remote Objects Using IIS . 608

Asynchronous Remoting . 609

Summary . 610

■CHAPTER 21 Building a Better Window with
System.Windows.Forms . 611

Overview of the System.Windows.Forms Namespace. 611

Working with the Windows Forms Types . 612

Building a Main Window by Hand. 613

Honoring the Separation of Concerns . 614

The Role of the Application Class . 615

Fun with the Application Class . 615

The System.EventHandler Delegate. 617

■CONTENTS xxiii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxiii

The Anatomy of a Form . 617

The Functionality of the Control Class . 619

Fun with the Control Class . 620

Responding to the MouseMove Event . 621

Determining Which Mouse Button Was Clicked . 622

Responding to Keyboard Events. 623

The Functionality of the Form Class. 623

The Life Cycle of a Form Type . 625

Building Windows Applications with Visual Studio 2005 627

Enabling the Deprecated Controls . 629

Dissecting a Visual Studio 2005 Windows Forms Project 630

Implementing Events at Design Time . 631

The StartUp Object/Main() Sub Distinction . 632

Autoreferenced Assemblies . 633

Working with MenuStrips and ContextMenuStrips . 633

Adding a TextBox to the MenuStrip . 635

Creating a Context Menu . 636

Checking Menu Items . 638

Working with StatusStrips. 641

Designing the Menu System. 641

Designing the StatusStrip . 642

Working with the Timer Type . 644

Toggling the Display . 645

Displaying the Menu Selection Prompts . 646

Establishing a “Ready” State . 646

Working with ToolStrips. 647

Working with ToolStripContainers . 649

Building an MDI Application . 651

Building the Parent Form. 652

Building the Child Form. 652

Spawning Child Windows . 653

Summary . 654

■CHAPTER 22 Rendering Graphical Data with GDI+ . 655

A Survey of the GDI+ Namespaces . 655

An Overview of the System.Drawing Namespace . 656

The System.Drawing Utility Types . 657

The Point and PointF Types. 657

The Rectangle and RectangleF Types . 658

The Region Class . 659

Understanding the Graphics Class . 659

■CONTENTSxxiv

5785ch00FM.qxd 3/31/06 3:31 PM Page xxiv

Understanding Paint Sessions . 661

Invalidating the Form’s Client Area. 662

Obtaining a Graphics Object Outside of a Paint Event Handler 663

Regarding the Disposal of a Graphics Object . 664

The GDI+ Coordinate Systems . 665

The Default Unit of Measure . 666

Specifying an Alternative Unit of Measure . 667

Specifying an Alternative Point of Origin . 668

Defining a Color Value . 669

The ColorDialog Class . 670

Manipulating Fonts . 671

Working with Font Families. 672

Working with Font Faces and Font Sizes. 674

Enumerating Installed Fonts . 676

The FontDialog Class . 678

Survey of the System.Drawing.Drawing2D Namespace 679

Working with Pens . 679

Working with Pen Caps . 682

Working with Brushes . 683

Working with HatchBrushes . 685

Working with TextureBrushes . 686

Working with LinearGradientBrushes . 688

Rendering Images . 689

Dragging and Hit Testing the PictureBox Control . 691

Hit Testing Rendered Images . 694

Hit Testing Nonrectangular Images . 696

Understanding the .NET Resource Format . 699

The System.Resources Namespace . 699

Programmatically Creating a *.resx File . 699

Building the *.resources File. 701

Binding the *.resources File into a .NET Assembly. 701

Working with ResourceWriters . 701

Generating Resources using Visual Studio 2005 . 702

Programmatically Reading Resources. 704

Summary . 706

■CHAPTER 23 Programming with Windows Forms Controls 707

The World of Windows Forms Controls . 707

Adding Controls to Forms by Hand. 708

The Control.ControlCollection Type . 709

Adding Controls to Forms Using Visual Studio 2005 . 710

■CONTENTS xxv

5785ch00FM.qxd 3/31/06 3:31 PM Page xxv

Working with the Basic Controls. 711

Fun with Labels . 711

Fun with TextBoxes . 713

Fun with MaskedTextBoxes . 715

Fun with Buttons . 717

Fun with CheckBoxes, RadioButtons, and GroupBoxes 719

Fun with CheckedListBoxes . 722

Fun with ListBoxes. 724

Fun with ComboBoxes. 725

Configuring the Tab Order . 726

The Tab Order Wizard . 726

Setting the Form’s Default Input Button. 727

Working with More Exotic Controls . 727

Fun with MonthCalendars . 727

Fun with ToolTips . 729

Fun with TabControls . 730

Fun with TrackBars . 732

Fun with Panels . 734

Fun with the UpDown Controls. 735

Fun with ErrorProviders. 737

Fun with TreeViews . 738

Fun with WebBrowsers . 743

Building Custom Windows Forms Controls . 744

Creating the Images . 746

Building the Design-Time UI . 746

Implementing the Core CarControl. 747

Defining the Custom Events . 748

Defining the Custom Properties . 748

Controlling the Animation . 749

Rendering the Pet Name . 749

Testing the CarControl Type . 750

Building a Custom CarControl Form Host . 751

The Role of the System.ComponentModel Namespace . 752

Enhancing the Design-Time Appearance of CarControl. 753

Defining a Default Property and Default Event . 754

Specifying a Custom Toolbox Bitmap. 755

Building Custom Dialog Boxes . 756

The DialogResult Property. 758

Understanding Form Inheritance . 759

Dynamically Positioning Windows Forms Controls . 761

The Anchor Property . 761

The Dock Property . 762

Table and Flow Layout. 763

Summary . 765

■CONTENTSxxvi

5785ch00FM.qxd 3/31/06 3:31 PM Page xxvi

■CHAPTER 24 Database Access with ADO.NET . 767

A High-level Definition of ADO.NET . 767

The Two Faces of ADO.NET. 768

Understanding ADO.NET Data Providers . 768

Microsoft-supplied Data Providers. 770

Select Third-party Data Providers . 771

Additional ADO.NET Namespaces. 771

The System.Data Types . 772

The Role of the IDbConnection Interface . 773

The Role of the IDbTransaction Interface . 773

The Role of the IDbCommand Interface. 773

The Role of the IDbDataParameter and IDataParameter Interfaces 774

The Role of the IDbDataAdapter and IDataAdapter Interfaces 774

The Role of the IDataReader and IDataRecord Interfaces 775

Abstracting Data Providers Using Interfaces. 776

Increasing Flexibility Using Application Configuration Files. 777

The .NET 2.0 Provider Factory Model . 778

Registered Data Provider Factories . 779

A Complete Data Provider Factory Example . 780

The <connectionStrings> Element . 782

Installing the Cars Database . 783

Connecting to the Cars Database from Visual Studio 2005. 784

Understanding the Connected Layer of ADO.NET . 786

Working with Connection Objects . 787

Working with .NET 2.0 ConnectionStringBuilders 788

Working with Command Objects . 789

Working with Data Readers . 791

Obtaining Multiple Result Sets Using a Data Reader 792

Modifying Tables Using Command Objects . 793

Inserting New Records . 795

Deleting Existing Records . 796

Updating Existing Records . 796

Working with Parameterized Command Objects . 797

Specifying Parameters Using the DbParameter Type. 797

Executing a Stored Procedure Using DbCommand . 799

Asynchronous Data Access Under .NET 2.0 . 801

Understanding the Disconnected Layer of ADO.NET . 802

Understanding the Role of the DataSet . 803

Members of the DataSet . 804

Working with DataColumns. 805

Building a DataColumn . 806

Enabling Autoincrementing Fields . 807

Adding a DataColumn to a DataTable . 808

■CONTENTS xxvii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxvii

Working with DataRows . 808

Understanding the DataRow.RowState Property . 809

Working with DataTables. 810

Working with .NET 2.0 DataTableReaders. 811

Persisting DataSets (and DataTables) As XML . 812

Binding DataTables to User Interfaces . 813

Programmatically Deleting Rows . 816

Applying Filters and Sort Orders. 816

Updating Rows . 818

Working with the DataView Type . 819

Working with Data Adapters . 820

Filling a DataSet Using a Data Adapter . 821

Mapping Database Names to Friendly Names . 822

Updating a Database Using Data Adapter Objects . 822

Setting the InsertCommand Property. 823

Setting the UpdateCommand Property . 824

Setting the DeleteCommand Property . 825

Autogenerating SQL Commands Using CommandBuilder Types 825

Multitabled DataSets and DataRelation Objects . 826

Navigating Between Related Tables. 829

We’re Off to See the (Data) Wizard. 830

Strongly Typed DataSets . 832

The Autogenerated Data Component. 833

Summary . 833

PART 7 ■ ■ ■ Web Applications and XML Web
Services

■CHAPTER 25 Building ASP.NET 2.0 Web Pages . 837

The Role of HTTP . 837

Understanding Web Applications and Web Servers . 838

Working with IIS Virtual Directories . 839

The ASP.NET 2.0 Development Server. 840

The Role of HTML. 841

HTML Document Structure . 841

HTML Form Development . 842

Building an HTML-Based User Interface . 843

The Role of Client-side Scripting . 845

A Client-side Scripting Example . 846

Validating the default.htm Form Data . 846

Submitting the Form Data (GET and POST) . 847

■CONTENTSxxviii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxviii

Building a Classic ASP Page . 847

Responding to POST Submissions . 849

Problems with Classic ASP . 849

Major Benefits of ASP.NET 1.x . 850

Major Enhancements of ASP.NET 2.0 . 850

The ASP.NET 2.0 Namespaces . 851

The ASP.NET Web Page Code Model . 852

Working with the Single-file Page Model . 852

Working with the Code-behind Page Model . 858

Details of an ASP.NET Website Directory Structure . 862

Assembly References and the Bin Folder . 863

The Role of the App_Code Folder. 864

The ASP.NET 2.0 Page Compilation Cycle . 865

Compilation Cycle for Single-file Pages. 865

Compilation Cycle for Multifile Pages . 866

The Inheritance Chain of the Page Type . 867

The System.Web.UI.Page Type . 868

Interacting with the Incoming HTTP Request . 869

Obtaining Brower Statistics . 870

Access to Incoming Form Data. 870

The IsPostBack Property . 871

Interacting with the Outgoing HTTP Response . 871

Emitting HTML Content . 872

Redirecting Users. 873

The Life Cycle of an ASP.NET Web Page . 873

The Role of the AutoEventWireup Attribute . 875

The Error Event . 875

The Role of the web.config File . 877

Configuration File Inheritance. 880

The ASP.NET 2.0 Website Administration Utility . 881

Summary . 882

■CHAPTER 26 ASP.NET 2.0 Web Controls, Themes, and Master Pages 883

Understanding the Nature of Web Controls . 883

Qualifying Server-side Event Handling . 884

The AutoPostBack Property. 884

The System.Web.UI.Control Type . 885

Enumerating Contained Controls . 886

Dynamically Adding (and Removing) Controls . 887

Key Members of the System.Web.UI.WebControls.WebControl Type 888

Categories of ASP.NET Web Controls . 889

A Brief Word Regarding System.Web.UI.HtmlControls 890

■CONTENTS xxix

5785ch00FM.qxd 3/31/06 3:31 PM Page xxix

Building an ASP.NET 2.0 Website . 891

Working with Master Pages . 892

Defining the Default.aspx Content Page . 898

Designing the Inventory Content Page. 900

Designing the Build-a-Car Content Page. 904

The Role of the Validation Controls . 907

The RequiredFieldValidator . 908

The RegularExpressionValidator. 909

The RangeValidator . 909

The CompareValidator . 909

Creating Validation Summaries . 910

Working with Themes . 911

Understanding *.skin Files . 912

Applying Sitewide Themes . 913

Applying Themes at the Page Level . 913

The SkinID Property . 914

Assigning Themes Programmatically. 915

Summary . 917

■CHAPTER 27 ASP.NET 2.0 State Management Techniques 919

The Issue of State . 919

ASP.NET State Management Techniques. 921

Understanding the Role of ASP.NET View State. 922

Demonstrating View State. 922

Adding Custom View State Data. 924

A Brief Word Regarding Control State . 924

The Role of the Global.asax File . 925

The Global Last Chance Exception Event Handler 926

The HttpApplication Base Class . 927

Understanding the Application/Session Distinction . 927

Maintaining Application-level State Data . 928

Modifying Application Data . 931

Handling Web Application Shutdown . 932

Working with the Application Cache . 932

Fun with Data Caching . 933

Modifying the *.aspx File. 935

Maintaining Session Data . 937

Additional Members of HttpSessionState . 940

Understanding Cookies . 941

Creating Cookies . 941

Reading Incoming Cookie Data . 943

■CONTENTSxxx

5785ch00FM.qxd 3/31/06 3:31 PM Page xxx

The Role of the <sessionState> Element . 944

Storing Session Data in the ASP.NET Session State Server. 945

Storing Session Data in a Dedicated Database . 946

Understanding the ASP.NET Profile API . 946

The ASPNETDB Database . 947

Defining a User Profile Within web.config . 948

Accessing Profile Data Programmatically . 948

Grouping Profile Data and Persisting Custom Objects 951

Summary . 953

■CHAPTER 28 Understanding XML Web Services . 955

The Role of XML Web Services . 955

Benefits of XML Web Services . 955

Defining an XML Web Service Client . 956

The Building Blocks of an XML Web Service. 957

Previewing XML Web Service Discovery . 957

Previewing XML Web Service Description. 957

Previewing the Transport Protocol . 958

The .NET XML Web Service Namespaces . 958

Examining the System.Web.Services Namespace 958

Building an XML Web Service by Hand . 959

Testing Your XML Web Service Using WebDev.WebServer.exe 960

Testing Your Web Service Using IIS . 961

Viewing the WSDL Contract . 961

The Autogenerated Test Page . 961

Providing a Custom Test Page . 961

Building an XML Web Service Using Visual Studio 2005 962

Implementing the TellFortune() Web Method. 963

The Role of the WebService Base Class . 965

Understanding the <WebService> Attribute . 965

The Effect of the Namespace and Description Properties 966

The Name Property . 966

Understanding the <WebServiceBinding> Attribute . 967

Ignoring BP 1.1 Conformance Verification. 968

Disabling BP 1.1 Conformance Verification. 968

Understanding the <WebMethod> Attribute . 968

Documenting a Web Method via the Description Property 968

Avoiding WSDL Name Clashes via the MessageName Property 969

Building Stateful Web Services via the EnableSession Property. 970

■CONTENTS xxxi

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxi

Exploring the Web Service Description Language (WSDL). 971

Defining a WSDL Document . 972

The <types> Element . 973

The <message> Element . 974

The <portType> Element . 974

The <binding> Element . 975

The <service> Element. 975

Revisiting the XML Web Service Wire Protocols . 976

HTTP GET and HTTP POST Bindings . 976

SOAP Bindings . 977

The wsdl.exe Command-Line Utility . 978

Transforming WSDL into a Server-Side XML Web
Service Skeleton. 979

Transforming WSDL into a Client-Side Proxy . 980

Examining the Proxy Code . 980

The Default Constructor . 981

Synchronous Invocation Support . 982

Asynchronous Invocation Support . 982

Building the Client Application . 983

Generating Proxy Code Using Visual Studio 2005 . 983

Exposing Custom Types from Web Methods . 984

Exposing Arrays . 985

Exposing Structures. 985

Exposing ADO.NET DataSets. 986

A Windows Forms Client . 987

Client-Side Type Representation . 988

Understanding the Discovery Service Protocol (UDDI) . 989

Interacting with UDDI via Visual Studio 2005 . 990

Summary . 990

■INDEX . 991

■CONTENTSxxxii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxii

About the Author

■ANDREW TROELSEN is a Microsoft MVP (Visual C#) and a partner, trainer,
and consultant with Intertech Training (http://www.IntertechTraining
.com), a .NET and J2EE developer education center. He is the author of
numerous books, including Developer’s Workshop to COM and ATL 3.0
(Wordware Publishing, 2000), COM and .NET Interoperability (Apress, 2002),
Visual Basic .NET and the .NET Platform: An Advanced Guide (Apress, 2001),
and the award-winning Pro C# 2005 and the .NET 2.0 Platform, Third
Edition (Apress, 2006). Andrew has also authored numerous articles on
.NET for MSDN online and MacTech (where he explored the platform-
independent aspects of the .NET platform), and he is a frequent speaker
at various .NET conferences and user groups.

Andrew currently lives in Minneapolis, Minnesota, with his wife,
Amanda. He spends his free time waiting for the Wild to win the Stanley
Cup, the Vikings to win the Super Bowl (before he retires would be nice),
and the Timberwolves to grab numerous NBA championship titles.

xxxiii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxiii

6e067a1cf200c3b6e021f18882237192

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxiv

About the Technical Reviewer

■DON REAMEY is a software development engineer at Microsoft Corporation, where he works in the
Office Business Applications division.

xxxv

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxv

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxvi

Acknowledgments

I have to admit that I love writing books for Apress. Reason? Each and every individual I have worked
with is a consummate professional. Thanks to all of you for taking my raw manuscripts and dotting
the i’s and crossing the t’s (especially Grace Wong for having mercy on me, despite too many late
submissions). Special thanks to my technical reviewer Don Reamey, who did a wonderful job pour-
ing over the text looking for technical typos (any remaining errors are my responsibility alone). Last
but not least, thanks once again to my friends and coworkers at Intertech Training. Everyone but
Tom Salonek and Dave Brenner has been wonderful to work with (“Son of a...”).

xxxvii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxvii

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxviii

Introduction

The initial release of the .NET platform (circa 2001) caused quite a stir within the Visual Basic
programming community. One the one hand, many die-hard VB 6.0 developers were up in arms at
the major differences between VB 6.0 and Visual Basic .NET. Individuals in this group were a bit
stunned to see that VB .NET was not in fact “VB 7.0” (i.e., the same syntax and programming constructs
as VB 6.0 with some new features thrown in for good measure), but something altogether different.

The truth of the matter is that VB .NET has little to do with VB 6.0, and might best be regarded
as a new language in the BASIC family. This cold hard fact caused some individuals to recoil to such
a degree that they coined terms such as “VB .NOT” or “Visual Fred” to express their displeasures. In
fact, there are even web sites (http://vb.mvps.org/vfred/Trust.asp) and petitions dedicated to
criticizing Microsoft’s decision to abandon VB 6.0 in favor of this new creature termed VB .NET.

Beyond the major syntactical changes introduced with VB .NET, several VB 6.0–isms have been
deprecated or entirely removed under the .NET platform, which only added to the confusion. As well,
the core object models (data access, web and desktop application development) used for application
development are entirely different from their COM-based counterparts. To be sure, Microsoft could
have done a better job letting developers know up front that VB .NET had very little to do with the
much beloved VB 6.0 programming language (to this end, the term “Visual Fred” is not too far off).

On the other end of the spectrum, there were many VB 6.0 developers who were excited by the
myriad new language features and openly embraced the necessary learning curve. Members of this
group were ready to dive into the details of object-oriented programming (OOP), multithreaded
application development, and the wealth of types found within the .NET base class libraries. These
individuals quickly realized that in many (if not a majority of) cases, existing VB 6.0 code could
remain VB 6.0 code, while new development could take place using the .NET platform and Visual
Basic .NET.

Strangely enough, there is also a third group of individuals, formed with the release of Visual
Basic .NET. Given that VB .NET is indeed a brand new OOP language, many developers who would
have never considered learning a BASIC-centric language (typically C++, Java, C# programmers)
were now much more open to the idea of exploring a language devoid of semicolons and curly
brackets.

With the release of .NET 2.0, the Visual Basic .NET programming language has been officially
renamed as Visual Basic 2005—perhaps in an attempt to highlight the fact that the BASIC language
used with the .NET platform has nothing to do with the COM-centric VB 6.0. As you would guess, VB
2005 adds even more language features to a developer’s tool chest such as operator overloading,
custom conversion routines, and generics. For all practical purposes, there really is no difference
between VB 2005, C#, or any other .NET programming language. Now more than ever, an individual’s
language of choice is based on personal preferences rather than the language’s overall feature set.

In any case, regardless of which group you identify with, I do welcome you to this book. The
overall approach I will be taking is to treat VB 2005 as a unique member of the BASIC family. As you
read over the many chapters that follow, you will be exposed to the syntax and semantics of VB 2005,
dive into each of the major .NET code libraries (Windows Forms, ASP.NET, ADO.NET, XML web
services, etc.), and have a thorough grounding in object-oriented development.

xxxix

5785ch00FM.qxd 3/31/06 3:31 PM Page xxxix

We’re a Team, You and I
Technology authors write for a demanding group of people (I should know—I’m one of them). You
know that building software solutions using any platform is extremely detailed and is very specific
to your department, company, client base, and subject matter. Perhaps you work in the electronic
publishing industry, develop systems for the state or local government, or work at NASA or a branch
of the military. Speaking for myself, I have developed children’s educational software, various n-tier
systems, and numerous projects within the medical and legal industries. The chances are almost
100 percent that the code you write at your place of employment has little to do with the code I write
at mine (unless we happened to work together previously!).

Therefore, in this book, I have deliberately chosen to avoid creating examples that tie the
example code to a specific industry or vein of programming. Given this, I choose to explain VB 2005,
OOP, the CLR, and the .NET 2.0 base class libraries using industry-agnostic examples. Rather than
having every blessed example fill a grid with data, calculate payroll, or whatnot, I’ll stick to subject
matter we can all relate to: automobiles (with some geometric structures and employees thrown in
for good measure). And that’s where you come in.

My job is to explain the VB 2005 programming language and the core aspects of the .NET platform
the best I possibly can. To this end, I will do everything I can to equip you with the tools and strategies
you need to continue your studies at this book’s conclusion.

Your job is to take this information and apply it to your specific programming assignments.
I obviously understand that your projects most likely don’t revolve around automobiles with pet
names, but that’s what applied knowledge is all about! Rest assured, once you understand the concepts
presented within this text, you will be in a perfect position to build .NET solutions that map to your
own unique programming environment.

Who Should Read This Book?
I do not expect that you have any current experience with BASIC-centric languages or the .NET
platform (however, if this is the case, all the better). I am assuming that you are either a professional
software engineer or a student of computer science. Given this, please know that this book may not
be a tight fit for individuals who are brand-spanking new to software development, as we will be
exploring many lower-level/advanced topics and will not be spending all of our time binding data
to grids (at least not until Chapter 24) or spending twenty pages looking at every option of the Visual
Studio 2005 menu system.

An Overview of This Book
Pro VB 2005 and the .NET 2.0 Platform, Second Edition is logically divided into seven distinct sections,
each of which contains some number of chapters that are focused on a given technology set and/or
specific task. To set the stage, here is a part-by-part and chapter-by-chapter breakdown of the book
you are holding in your hands.

Part 1: Introducing Visual Basic 2005 and the .NET Platform
The purpose of Part 1 is to acclimate you to the core aspects of the .NET platform, the .NET type
system, and various development tools (many of which are open source) used during the construc-
tion of .NET applications. Along the way, you will also check out some basic details of the VB 2005
programming language.

■INTRODUCTIONxl

5785ch00FM.qxd 3/31/06 3:31 PM Page xl

Chapter 1: The Philosophy of .NET
This first chapter functions as the backbone for the remainder of the text. We begin by examining
the world of traditional Windows development and uncover the shortcomings with the previous state
of affairs. The primary goal of this chapter, however, is to acquaint you with a number of .NET-centric
building blocks, such as the common language runtime (CLR), Common Type System (CTS), Common
Language Specification (CLS), and the base class libraries. Also, you will take an initial look at the
VB 2005 programming language and the .NET assembly format, and you’ll examine the platform-
independent nature of the .NET platform and the role of the Common Language Infrastructure (CLI).

Chapter 2: Building Visual Basic 2005 Applications
The goal of this chapter is to introduce you to the process of compiling and debugging VB 2005
source code files using various tools and techniques. First, you will learn how to make use of the
command-line compiler (vbc.exe) and VB 2005 response files. Over the remainder of the chapter,
you will examine numerous IDEs, including TextPad, SharpDevelop, Visual Basic 2005 Express, and
(of course) Visual Studio 2005. As well, you will be exposed to a number of open source tools (NAnt,
NDoc, etc.) that any .NET developer should have in their back pocket.

Part 2: Visual Basic 2005 Language Fundamentals
This part explores the core aspects of the VB 2005 programming language such as intrinsic data types,
decision and iteration constructs, constructing (and overloading) methods, as well as manipulating
arrays, strings, enumerations, and modules. Don’t worry; this section is not as dry as you may fear,
given that you will be exposed to numerous types of the .NET base class libraries along the way.

Chapter 3: VB 2005 Programming Constructs, Part I
This chapter begins by examining the role of the VB 2005 Module type and the related topic of an
executable’s entry point—the Main() method. You will also come to understand the intrinsic data
types of VB 2005 (and their CLR equivalents), implicit and explicit casting operations, iteration and
decision constructs, and the construction of valid code statements.

Chapter 4: VB 2005 Programming Constructs, Part II
Here you will complete your examination of basic coding constructs. The major thrust of this
chapter is to dive into the details of building subroutines and functions using the syntax of VB 2005.
Along the way you will get to know the roles of the ByVal, ByRef, and ParamArray keywords and
understand the topic of method overloading. This chapter also examines how to build and manipulate
strings, arrays, enums, and structures and the underlying classes that lurk in the background
(System.String, System.Array, System.Enum, and System.ValueType).

Part 3: Core Object-Oriented Programming Techniques
This part explores how VB 2005 supports the core principals of object-oriented programming, namely
encapsulation, inheritance, and polymorphism. In addition, this section explores the role of structured
exception handling and a detailed look at the .NET garbage collection process.

■INTRODUCTION xli

5785ch00FM.qxd 3/31/06 3:31 PM Page xli

Chapter 5: Defining Encapsulated Class Types
This chapter will dive into all the details of encapsulation services. Not only will you learn the basics
of class construction (constructors, shared members, and property syntax), but you will also investigate
several new constructs brought about with .NET 2.0. For example, you will learn about the role of the
Partial keyword and the new XML code documentation syntax.

Chapter 6: Understanding Inheritance and Polymorphism
The role of Chapter 6 is to examine the details of how VB 2005 2.0 accounts for the remaining “pillars”
of OOP: inheritance and polymorphism. Here you will learn how to build families of related classes
using inheritance, virtual methods, abstract methods (and classes!), as well various casting operations.
This chapter will also explain the role of the ultimate base class in the .NET libraries: System.Object.

Chapter 7: Understanding Structured Exception Handling
The point of this chapter is to discuss how to handle runtime anomalies in your code base through
the use of structured exception handling. Not only will you learn about the VB 2005 keywords that
allow you to handle such problems (Try, Catch, Throw, and Finally), but you will also come to
understand the distinction between application-level and system-level exceptions. In addition, this
chapter examines various tools within Visual Studio 2005 that allow you to debug the exceptions that
have escaped your view.

Chapter 8: Understanding Object Lifetime
This chapter examines how the CLR manages memory using the .NET garbage collector. Here you
will come to understand the role of application roots, object generations, and the System.GC type.
Once you understand the basics, the remainder of this chapter covers the topics of building “disposable
objects” (via the IDisposable interface) and how to interact with the finalization process (via the
System.Object.Finalize() method).

Part 4: Advanced Object-Oriented Programming Techniques
This section furthers your understanding of OOP using VB 2005. Here you will learn the role of
interface types, delegates, and events, and several advanced topics such as operator overloading
and custom type conversions. As well, this section dives into the details of a major CTS enhance-
ment brought about with .NET 2.0–generics.

Chapter 9: Working with Interfaces and Collections
The material in this chapter builds upon your understanding of object-based development by cover-
ing the topic of interface-based programming. Here you will learn how to define types that support
multiple behaviors, how to discover these behaviors at runtime, and how to selectively hide particular
behaviors from an object level. To showcase the usefulness of interface types, the remainder of this
chapter examines the System.Collections namespace.

Chapter 10: Callback Interfaces, Delegates, and Events
The purpose of Chapter 10 is to demystify the delegate type. Simply put, a .NET delegate is an object
that “points” to other methods in your application. Using this pattern, you are able to build systems
that allow multiple objects to engage in a two-way conversation. After you have examined the use of
.NET delegates, you will then be introduced to the VB 2005 Event, RaiseEvent, Handles, and Custom
keywords, which are used to simplify the manipulation of programming with delegates in the raw.

■INTRODUCTIONxlii

5785ch00FM.qxd 3/31/06 3:31 PM Page xlii

Chapter 11: Advanced VB 2005 Programming Constructs
This chapter deepens your understanding of the VB 2005 programming language by introducing
a number of advanced programming techniques. We begin with a detailed examination of value types
and reference types. Next, you will learn how to overload operators and create custom conversion
routines (both implicit and explicit). We wrap up by contrasting the use of CType(), DirectCast(), and
TryCast() for explicit casting operations.

Chapter 12: Understanding Generics and Nullable Data Types
As of .NET 2.0, the VB 2005 programming language has been enhanced to support a new feature of the
CTS termed generics. As you will see, generic programming greatly enhances application performance
and type safety. Not only will you explore various generic types within the System.Collections.Generic
namespace, but you will also learn how to build your own generic methods and types (with and
without constraints).

Part 5: Programming with .NET Assemblies
Part 5 dives into the details of the .NET assembly format. Not only will you learn how to deploy and
configure .NET code libraries, you will understand the internal composition of a .NET binary image.
This section of the text also explains the role of .NET attributes and the construction of multithreaded
applications as well as accessing legacy COM applications using interop assemblies.

Chapter 13: Introducing .NET Assemblies
From a very high level, assembly is the term used to describe a managed *.dll or *.exe file. However,
the true story of .NET assemblies is far richer than that. Here you will learn the distinction between
single-file and multifile assemblies, and how to build and deploy each entity. You’ll examine how
private and shared assemblies may be configured using XML-based *.config files and publisher
policy assemblies. You will also investigate the internal structure of the global assembly cache (GAC)
and the role of the .NET Framework 2.0 configuration utility.

Chapter 14: Type Reflection, Late Binding, and Attribute-based Programming
Chapter 14 continues our examination of .NET assemblies by checking out the process of runtime
type discovery via the System.Reflection namespace. Using these types, you are able to build appli-
cations that can read an assembly’s metadata on the fly. You will learn how to dynamically activate
and manipulate types at runtime using late binding. The final topic of this chapter explores the role
of .NET attributes (both standard and custom). To illustrate the usefulness of each of these topics,
the chapter concludes with the construction of an extendable Windows Forms application.

Chapter 15: Processes, AppDomains, Contexts, and CLR Hosts
Now that you have a solid understanding of assemblies, this chapter dives much deeper into the
composition of a loaded .NET executable. The first goal is to illustrate the relationship between
processes, application domains, and contextual boundaries. Once these terms have been qualified,
you will then understand exactly how the CLR itself is hosted by the Windows operating system and
deepen your understanding of mscoree.dll. The information presented here is a perfect lead-in to
Chapter 16.

■INTRODUCTION xliii

5785ch00FM.qxd 3/31/06 3:31 PM Page xliii

Chapter 16: Building Multithreaded Applications
This chapter examines how to build multithreaded applications and illustrates a number of techniques
you can use to author thread-safe code. The chapter opens by revisiting the .NET delegate type in
order to understand a delegate’s intrinsic support for asynchronous method invocations. Next, you
will investigate the types within the System.Threading namespace. You will look at numerous types
(Thread, ThreadStart, etc.) that allow you to easily create additional threads of execution.

Chapter 17: COM and .NET Interoperability
The last chapter in the part will examine a unique type of .NET assembly termed an interop assembly.
These binary images are used to allow .NET applications to make use of classic COM types. Once
you dive into the details of how .NET applications can consume COM servers, you will then learn
the functional opposite: COM applications consuming .NET objects. Once you have completed this
chapter, you will have a solid understanding of the interoperability layer.

Part 6: Exploring the .NET Base Class Libraries
By this point in the text, you have a very solid handle of the VB 2005 language and the details of the
.NET assembly format. Part 6 leverages your newfound knowledge by exploring a number of name-
spaces within the base class libraries including file I/O, the .NET remoting layer, Windows Forms
development, and database access using ADO.NET.

Chapter 18: The System.IO Namespace
As you can gather from its name, the System.IO namespace allows you to interact with a machine’s
file and directory structure. Over the course of this chapter, you will learn how to programmatically
create (and destroy) a directory system as well as move data into and out of various streams (file
based, string based, memory based, etc.).

Chapter 19: Understanding Object Serialization
This chapter examines the object serialization services of the .NET platform. Simply put, serialization
allows you to persist the state of an object (or a set of related objects) into a stream for later use.
Deserialization (as you might expect) is the process of plucking an object from the stream into
memory for consumption by your application. Once you understand the basics, you will then learn
how to customize the serialization process via the ISerializable interface and a set of new attributes
introduced with .NET 2.0.

Chapter 20: The .NET Remoting Layer
Contrary to popular belief, XML web services are not the only way to build distributed applications
under the .NET platform. Here you will learn about the .NET remoting layer. As you will see, the
CLR supports the ability to easily pass objects between application and machine boundaries using
marshal-by-value (MBV) and marshal-by-reference (MBR) semantics. As well, you will learn how to
alter the runtime behavior of a distributed .NET application in a declarative manner using XML
configuration files.

■INTRODUCTIONxliv

5785ch00FM.qxd 3/31/06 3:31 PM Page xliv

Chapter 21: Building a Better Window with System.Windows.Forms
This chapter begins your examination of the System.Windows.Forms namespace. Here you will learn
the details of building traditional desktop GUI applications that support menu systems, toolbars,
and status bars. As you would hope, various design-time aspects of Visual Studio 2005 will be exam-
ined, as well as a number of .NET 2.0 Windows Forms types (MenuStrip, ToolStrip, etc.).

Chapter 22: Rendering Graphical Data with GDI+
This chapter covers how to dynamically render graphical data in the Windows Forms environment.
In addition to discussing how to manipulate fonts, colors, geometric images, and image files, this
chapter examines hit testing and GUI-based drag-and-drop techniques. You will learn about the
new .NET resource format, which as you may suspect by this point in the text is based on XML data
representation.

Chapter 23: Programming with Windows Forms Controls
This final Windows-centric chapter will examine numerous GUI widgets that ship with the .NET
Framework 2.0. Not only will you learn how to program against various Windows Forms controls,
but you will also learn about dialog box development and Form inheritance. As well, this chapter
examines how to build custom Windows Forms controls that integrate into the IDE.

Chapter 24: Database Access with ADO.NET
ADO.NET is the data access API of the .NET platform. As you will see, you are able to interact with
the types of ADO.NET using a connected and disconnected layer. Over the course of this chapter,
you will have the chance to work with both modes of ADO.NET, and you’ll learn about several new
.NET 2.0 ADO.NET topics, including the data provider factory model, connection string builders,
and asynchronous database access.

Part 7: Web Applications and XML Web Services
Part 7 is devoted to the construction of ASP.NET web applications and XML web services. As you will
see in the first three chapters of this section, ASP.NET 2.0 is a major upgrade from ASP.NET 1.x and
includes numerous new bells and whistles.

Chapter 25: Building ASP.NET 2.0 Web Pages
This chapter begins your study of web technologies supported under the .NET platform using
ASP.NET. As you will see, server-side scripting code is now replaced with “real” object-oriented
languages (such as VB 2005, C#, and the like). This chapter will introduce you to key ASP.NET topics
such as working with (or without) code-behind files, the ASP.NET 2.0 directory structure, and the
role of the web.config file.

Chapter 26: ASP.NET 2.0 Web Controls, Themes, and Master Pages
This chapter will dive into the details of the ASP.NET web controls. Once you understand the basic
functionality of these web widgets, you will then build a simple but illustrative web site making use
of various .NET 2.0 features (master pages, *.sitemap files, themes, and skins). As well, this chapter
will examine the use of the validator controls and the enhanced data binding engine.

■INTRODUCTION xlv

5785ch00FM.qxd 3/31/06 3:31 PM Page xlv

Chapter 27: ASP.NET State Management Techniques
This chapter extends your current understanding of ASP.NET by examining various ways to handle
state management under .NET. Like classic ASP, ASP.NET allows you to easily create cookies, as well
as application-level and session-level variables. Once you have looked at the numerous ways to
handle state with ASP.NET, you will then come to learn the role of the System.HttpApplication base
class (lurking within the Global.asax file) and how to dynamically alter the runtime behavior of your
web application using the Web.config file. We wrap up with an examination of the new ASP.NET 2.0
profile management API.

Chapter 28: Understanding XML Web Services
In this final chapter of this book, you will examine the role of .NET XML web services. Simply put,
a web service is an assembly that is activated using standard HTTP requests. The beauty of this
approach is the fact that HTTP is the one wire protocol almost universal in its acceptance, and it is
therefore an excellent choice for building platform- and language-neutral distributed systems. You
will also check out numerous surrounding technologies (WSDL, SOAP, and UDDI) that enable a web
service and external client to communicate in harmony.

Obtaining This Book’s Source Code
All of the code examples contained within this book (minus small code snippets here and there) are
available for free and immediate download from the Source Code area of the Apress website. Simply
navigate to http://www.apress.com, select the Source Code link, and look up this title by name. Once
you are on the “homepage” for Pro VB 2005 and the .NET 2.0 Platform, Second Edition, you may
download a self-extracting *.zip file. After you unzip the contents, you will find that the code has
been logically divided by chapter.

Do be aware that Source Code notes like the following in the chapters are your cue that the example
under discussion may be loaded into Visual Studio 2005 for further examination and modification:

■Source Code This is a source code note referring you to a specific directory!

To do so, simply open the *.sln file found in the correct subdirectory.

Obtaining Updates for This Book
As you read through this text, you may find an occasional grammatical or code error (although I sure
hope not). If this is the case, my apologies. Being human, I am sure that a glitch or two may be pres-
ent, despite my best efforts. If this is the case, you can obtain the current errata list from the Apress
website (located once again on the “homepage” for this book) as well as information on how to notify
me of any errors you might find.

■INTRODUCTIONxlvi

5785ch00FM.qxd 3/31/06 3:31 PM Page xlvi

Contacting Me
If you have any questions regarding this book’s source code, are in need of clarification for a given
example, or simply wish to offer your thoughts regarding the .NET platform, feel free to drop me
a line at the following e-mail address (to ensure your messages don’t end up in my junk mail folder,
please include “VB 2005 SE” in the Subject line somewhere): atroelsen@IntertechTraining.com.

Please understand that I will do my best to get back to you in a timely fashion; however, like
yourself, I get busy from time to time. If I don’t respond within a week or two, do know I am not try-
ing to be a jerk or don’t care to talk to you. I’m just busy (or, if I’m lucky, on vacation somewhere).

So, then! Thanks for buying this text (or at least looking at it in the bookstore while you try to
decide if you will buy it). I hope you enjoy reading this book and putting your newfound knowledge
to good use.

Take care,
Andrew Troelsen

■INTRODUCTION xlvii

5785ch00FM.qxd 3/31/06 3:31 PM Page xlvii

5785ch00FM.qxd 3/31/06 3:31 PM Page xlviii

Introducing Visual Basic 2005
and the .NET Platform

P A R T 1

■ ■ ■

5785ch01.qxd 3/31/06 10:20 AM Page 1

5785ch01.qxd 3/31/06 10:20 AM Page 2

C H A P T E R 1

■ ■ ■

The Philosophy of .NET

Every few years or so, the modern-day programmer must be willing to perform a self-inflicted
knowledge transplant to stay current with the new technologies of the day. The languages (Visual
Basic 6.0, Java, C++) and frameworks (COM, J2EE, CORBA) that were touted as the silver bullets of
software development eventually become overshadowed by something better or at the very least
something new. Regardless of the frustration you can feel when upgrading your internal knowledge
base, it is frankly unavoidable. The .NET 2.0 platform is Microsoft’s current offering within the land-
scape of software engineering.

The point of this chapter is to lay the conceptual groundwork for the remainder of the book. It
begins with a high-level discussion of a number of .NET-related topics such as assemblies, the com-
mon intermediate language (CIL), and just-in-time (JIT) compilation. In addition to previewing some
key features of the Visual Basic 2005 programming language, you will also come to understand the
relationship between various aspects of the .NET Framework, such as the common language run-
time (CLR), the Common Type System (CTS), and the Common Language Specification (CLS). As
you would hope, all of these topics are explored in much more detail throughout the remainder of
this text.

This chapter also provides you with an overview of the functionality supplied by the .NET
base class libraries, sometimes abbreviated as the “BCL” or alternatively as the “FCL” (being the
Framework class libraries). Finally, this chapter investigates the language-agnostic and platform-
independent nature of the .NET platform (yes it’s true! .NET is not confined to the Windows family
of operating systems).

Understanding the Previous State of Affairs
Before examining the specifics of the .NET universe, it’s helpful to consider some of the issues that
motivated the genesis of Microsoft’s current platform. To get in the proper mind-set, let’s begin this
chapter with a brief and painless history lesson to remember our roots and understand the limita-
tions of the previous state of affairs. After completing this quick tour of life as we knew it, we turn
our attention to the numerous benefits provided by Visual Basic 2005 and the .NET platform.

Life As a C/Win32 API Programmer
Traditionally speaking, developing software for the Windows family of operating systems involved
using the C programming language in conjunction with the Windows application programming
interface (API). While it is true that numerous applications have been successfully created using this
time-honored approach, few of us would disagree that building applications using the raw API is
a complex undertaking.

3

5785ch01.qxd 3/31/06 10:20 AM Page 3

The first obvious problem is that C is a very terse language. C developers are forced to contend
with manual memory management, ugly pointer arithmetic, and ugly syntactical constructs. Further-
more, given that C is a structured language, it lacks the benefits provided by the object-oriented
approach. When you combine the thousands of global functions and data types defined by the
Win32 API to an already formidable language, it is little wonder that there are so many buggy appli-
cations floating around today.

Life As a C++/MFC Programmer
One vast improvement over raw C/API development is the use of the C++ programming language.
In many ways, C++ can be thought of as an object-oriented layer on top of C. Thus, even though C++
programmers benefit from the famed “pillars of OOP” (encapsulation, inheritance, and polymor-
phism), they are still at the mercy of the painful aspects of the C language (e.g., manual memory
management, ugly pointer arithmetic, and ugly syntactical constructs).

Despite its complexity, many C++ frameworks exist today. For example, the Microsoft Foundation
Classes (MFC) provides the developer with a set of C++ classes that simplifies the construction of
Win32 applications. The main role of MFC is to wrap a “sane subset” of the raw Win32 API behind
a number of classes and numerous code-generation tools (aka wizards). Regardless of the helpful
assistance offered by the MFC framework (as well as many other C++-based toolkits), the fact of the
matter is that C++ programming remains a difficult and error-prone experience, given its historical
roots in C.

Life As a Visual Basic 6.0 Programmer
Due to a heartfelt desire to enjoy a simpler lifestyle, many programmers avoided the world of C(++)-
based frameworks altogether in favor of kinder, gentler languages such as Visual Basic 6.0 (VB6).
VB6 is popular due to its ability to build sophisticated user interfaces, code libraries (e.g., ActiveX
servers), and data access logic with minimal fuss and bother. Much more than MFC, VB6 hides the
complexities of the raw Win32 API from view using a number of integrated programming wizards,
intrinsic data types, classes, and VB6-specific functions.

The major limitation of VB6 (which has been rectified given the advent of the .NET platform) is
that it is not a fully object-oriented language; rather, it is “object aware.” For example, VB6 does not
allow the programmer to establish “is-a” relationships between types (i.e., no classical inheritance)
and has no intrinsic support for parameterized class construction. Moreover, VB6 doesn’t provide
the ability to build multithreaded applications unless you are willing to drop down to low-level
Win32 API calls (which is complex at best and dangerous at worst).

Life As a Java/J2EE Programmer
Enter Java. The Java programming language is (almost) completely object-oriented and has its syntactic
roots in C++. As many of you are aware, Java’s strengths are far greater than its support for platform
independence. Java (as a language) cleans up many unsavory syntactical aspects of C++. Java (as
a platform) provides programmers with a large number of predefined “packages” that contain various
type definitions. Using these types, Java programmers are able to build “100% Pure Java” applications
complete with database connectivity, messaging support, web-enabled front ends, and a rich user
interface.

Although Java is a very elegant language, one potential problem is that using Java typically means
that you must use Java front-to-back during the development cycle. In effect, Java offers little hope
of language integration, as this goes against the grain of Java’s primary goal (a single programming
language for every need). In reality, however, there are millions of lines of existing code out there in
the world that would ideally like to commingle with newer Java code. Sadly, Java makes this task
problematic.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET4

5785ch01.qxd 3/31/06 10:20 AM Page 4

Pure Java is simply not appropriate for many graphically or numerically intensive applications
(in these cases, you may find Java’s execution speed leaves something to be desired). A better approach
for such programs would be to use a lower-level language (such as C++) where appropriate. Alas, while
Java does provide a limited ability to access non-Java APIs, there is little support for true cross-language
integration.

Life As a COM Programmer
The Component Object Model (COM) was Microsoft’s previous component framework. COM is an
architecture that says in effect, “If you build your classes in accordance with the rules of COM, you
end up with a block of reusable binary code.”

The beauty of a binary COM server is that it can be accessed in a language-independent manner.
Thus, VB6 programmers can build COM classes that can be used by C++ programs. Delphi program-
mers can use COM classes built using C, and so forth. However, as you may be aware, COM’s language
independence is somewhat limited. For example, there is no way to derive a new COM class using
an existing COM class (as COM has no support for classical inheritance).

Another benefit of COM is its location-transparent nature. Using constructs such as application
identifiers (AppIDs), stubs, proxies, and the COM runtime environment, programmers can avoid
the need to work with raw sockets, RPC calls, and other low-level details. For example, consider the
following VB6 COM client code:

' This block of VB6 code can activate a COM class written in

' any COM-aware language, which may be located anywhere

' on the network (including the local machine).

Dim myObj As MyCOMClass

Set myObj = New MyCOMClass ' Location resolved using AppID.

c.DoSomeWork

Although COM can be considered a very successful object model, it is extremely complex under
the hood. To help simplify the development of COM binaries, numerous COM-aware frameworks
have come into existence (most notably VB6). However, framework support alone is not enough to
hide the complexity of COM. Even when you choose a relatively simply COM-aware language such
as VB6, you are still forced to contend with fragile registration entries and numerous deployment-
related issues (collectively termed DLL hell).

Life As a Windows DNA Programmer
To further complicate matters, there is a little thing called the Internet. Over the last several years,
Microsoft has been adding more Internet-aware features into its family of operating systems and
products. Sadly, building a web application using COM-based Windows Distributed interNet
Applications Architecture (DNA) is also quite complex.

Some of this complexity is due to the simple fact that Windows DNA requires the use of numerous
technologies and languages (ASP, HTML, XML, JavaScript, VBScript, COM(+), as well as a data access
API such as ADO). One problem is that many of these technologies are completely unrelated from
a syntactic point of view. For example, JavaScript has a syntax much like C, while VBScript is a subset
of VB6. The COM servers that are created to run under the COM+ runtime have an entirely different
look and feel from the ASP pages that invoke them. The result is a highly confused mishmash of
technologies.

Furthermore, and perhaps more important, each language and/or technology has its own type
system (that may look nothing like another’s type system). An “int” in JavaScript is not quite the same
as an “Integer” in VB6.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 5

5785ch01.qxd 3/31/06 10:20 AM Page 5

The .NET Solution
So much for the brief history lesson. The bottom line is that life as a Windows programmer has been
less than perfect. The .NET Framework is a rather radical and brute-force approach to streamlining
the application development process. The solution proposed by .NET is “Change everything” (sorry,
you can’t blame the messenger for the message). As you will see during the remainder of this book,
the .NET Framework is a completely new model for building systems on the Windows family of
operating systems, as well as on numerous non-Microsoft operating systems such as Mac OS X and
various Unix/Linux distributions. To set the stage, here is a quick rundown of some core features
provided courtesy of .NET:

• Full interoperability with existing code: This is (of course) a good thing. Existing ActiveX
components can commingle (i.e., interop) with newer .NET applications and vice versa.
Also, Platform Invocation Services (PInvoke) allows you to call C-based libraries (including
the underlying API of the operating system) from .NET code.

• Complete and total language integration: .NET supports cross-language inheritance, cross-
language error handling, and cross-language debugging.

• A common runtime engine shared by all .NET-aware languages: One aspect of this engine is
a well-defined set of types that each .NET-aware language “understands.”

• A common base class library: This library provides shelter from the complexities of raw API
calls and offers a consistent object model used by all .NET-aware languages.

• No more COM plumbing: Legacy COM interfaces (such as IUnknown and IDispatch), COM
type libraries, and the COM-centric Variant data type have no place in a native .NET binary.

• A truly simplified deployment model: Under .NET, there is no need to register a binary unit
into the system registry. Furthermore, .NET allows multiple versions of the same *.dll to
exist in harmony on a single machine.

As you can most likely gather from the previous bullet points, the .NET platform has nothing to
do with COM (beyond the fact that both frameworks originated from Microsoft). In fact, the only way
.NET and COM types can interact with each other is using the interoperability layer (a topic you’ll
explore in Chapter 17).

Introducing the Building Blocks of the .NET
Platform (the CLR, CTS, and CLS)
Now that you know some of the benefits provided by .NET, let’s preview three key (and interrelated)
entities that make it all possible: the CLR, CTS, and CLS. From a programmer’s point of view, .NET
can be understood as a new runtime environment and a comprehensive base class library. The run-
time layer is properly referred to as the common language runtime, or CLR. The primary role of the
CLR is to locate, load, and manage .NET types on your behalf. The CLR also takes care of a number
of low-level details such as memory management and performing security checks.

Another building block of the .NET platform is the Common Type System, or CTS. The CTS
specification fully describes the underlying type system and programming constructs supported by
the runtime, specifies how these entities can interact with each other, and details how they are rep-
resented in the .NET metadata format (more information on metadata later in this chapter).

Understand that a given .NET-aware language might not support each and every feature defined
by the CTS. The Common Language Specification (CLS) is a related specification that defines a sub-
set of common types and programming constructs that all .NET programming languages can agree
on. Thus, if you build .NET types that only expose CLS-compliant features, you can rest assured that

CHAPTER 1 ■ THE PHILOSOPHY OF .NET6

5785ch01.qxd 3/31/06 10:20 AM Page 6

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 7

Figure 1-1. The CLR, CTS, CLS, and base class library relationship

all .NET-aware languages can consume them. Conversely, if you make use of a data type or pro-
gramming construct that is outside of the bounds of the CLS, you cannot guarantee that every .NET
programming language can interact with your .NET code library.

The Role of the Base Class Libraries
In addition to the CLR and CTS/CLS specifications, the .NET platform provides a base class library
that is available to all .NET programming languages. Not only does this base class library encapsulate
various primitives such as threads, file input/output (I/O), graphical rendering, and interaction with
various external hardware devices, but it also provides support for a number of services required by
most real-world applications.

For example, the base class libraries define types that facilitate database access, XML manipu-
lation, programmatic security, and the construction of web-enabled (as well as traditional desktop
and console-based) front ends. From a high level, you can visualize the relationship between the
CLR, CTS, CLS, and the base class library, as shown in Figure 1-1.

What Visual Basic 2005 Brings to the Table
Because .NET is such a radical departure from previous Microsoft technologies, it should be clear
that legacy COM-based languages such as VB6 are unable to directly integrate with the .NET plat-
form. Given this fact, Microsoft introduced a brand-new programming language, Visual Basic .NET
(VB .NET), with the release of .NET 1.0. As developers quickly learned, although VB .NET had a similar
look and feel to VB6, it introduced such a large number of new keywords and constructs that many
programmers (including myself) eventually regarded VB .NET as a new member of the BASIC family
rather than “Visual Basic 7.0.”

For example, unlike VB6, VB .NET provided developers with a full-blown object-oriented language
that is just about as powerful as languages such as C++, Java, or C#. Using VB .NET, developers are
able to build multithreaded desktop applications, websites, and XML web services; define custom
class construction subroutines; overload members; and define callback functions (via delegates). In
a nutshell, here are some of the core features provided courtesy of VB .NET:

5785ch01.qxd 3/31/06 10:20 AM Page 7

• Full support for classical inheritance and classical polymorphism.

• Strongly typed keywords to define classes, structures, enumerations, delegates, and interfaces.
Given these new keywords, VB .NET code is always contained within a *.vb file (in contrast
to the VB6-centric *.cls, *.bas, and *.frm files).

• Full support for interface-based programming techniques.

• Full support for attribute-based programming. This brand of development allows you to
annotate types and their members to further qualify their behavior.

With the release of .NET 2.0, the VB .NET programming language is now properly referred to
as Visual Basic 2005 (VB 2005). While VB 2005 is fully backward-compatible with VB .NET, it adds
numerous new additional bells and whistles, most notability the following:

• The ability to redefine how intrinsic operators of the language (such as the + symbol) can be
interpreted by your custom classes or structures. Formally speaking, this feature is termed
operator overloading.

• The introduction of the My namespace. The introduction of the My namespace, which provides
instant access to machine- and project-specific information (which greatly reduces the amount
of code you need to author manually).

• The ability to build generic types and generic members. Using generics, you are able to build
very efficient and type-safe code that defines numerous “placeholders” specified at the time
you interact with the generic item.

• The ability to customize the process of registering, unregistering, or sending events using the
new Custom keyword.

• Support for signed data types (SByte, ULong, etc.).

• The ability to define a single type across multiple code files using the Partial keyword.

Perhaps the most important point to understand about Visual Basic 2005 is that it can only
produce code that can execute within the .NET runtime (therefore, you could never use VB 2005 to
build a native ActiveX COM server). Officially speaking, the term used to describe the code targeting
the .NET runtime is managed code. The binary unit that contains the managed code is termed an
assembly (more details on assemblies in just a bit). Conversely, code that cannot be directly hosted
by the .NET runtime is termed unmanaged code.

Additional .NET-Aware Programming Languages
Understand that Visual Basic 2005 is not the only language that can be used to build .NET applications.
When the .NET platform was first revealed to the general public during the 2000 Microsoft Professional
Developers Conference (PDC), several vendors announced they were busy building .NET-aware
versions of their respective compilers.

At the time of this writing, dozens of different languages have undergone .NET enlightenment.
In addition to the five languages that ship with Visual Studio 2005 (Visual Basic 2005, C#, J#, Managed
Extensions for C++, and JScript .NET), there are .NET compilers for Smalltalk, COBOL, and Pascal
(to name a few). Although this book focuses (almost) exclusively on Visual Basic 2005, be aware of
the following website (please note that this URL is subject to change):

http://www.dotnetlanguages.net

Here you will find a list of numerous .NET programming languages and related links where you are
able to download various compilers (see Figure 1-2).

CHAPTER 1 ■ THE PHILOSOPHY OF .NET8

5785ch01.qxd 3/31/06 10:20 AM Page 8

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 9

While I assume you are primarily interested in building .NET programs using the syntax of VB
2005, I encourage you to visit this site, as you are sure to find many .NET languages worth investi-
gating at your leisure (LISP .NET, anyone?).

Life in a Multilanguage World
As developers first come to understand the language-agnostic nature of .NET, numerous questions
arise. The most prevalent of these questions would have to be, “If all .NET languages compile down
to ‘managed code,’ why do we need more than one compiler?” There are a number of ways to answer
this question. First, we programmers are a very particular lot when it comes to our choice of pro-
gramming language (myself included). Some prefer languages full of semicolons and curly brackets,
with as few keywords as possible (such as C#, C++, and J#). Others enjoy a language that offers more
“human-readable” syntax (such as Visual Basic 2005). Still others may want to leverage their main-
frame skills while moving to the .NET platform (via COBOL .NET).

Now, be honest. If Microsoft were to build a single “official” .NET language that was derived from
the C family of languages, can you really say all programmers would be happy with this choice? Or,
if the only “official” .NET language was based on Fortran syntax, imagine all the folks out there who
would ignore .NET altogether. Because the .NET runtime couldn’t care less which language was used
to build an assembly, .NET programmers can stay true to their syntactic preferences, and share the
compiled code among teammates, departments, and external organizations (regardless of which
.NET language others choose to use).

Figure 1-2. .NET Languages is one of many sites documenting known .NET programming languages.

5785ch01.qxd 3/31/06 10:20 AM Page 9

CHAPTER 1 ■ THE PHILOSOPHY OF .NET10

Another excellent by-product of integrating various .NET languages into a single unified software
solution is the simple fact that all programming languages have their own sets of strengths and
weaknesses. For example, some programming languages offer excellent intrinsic support for advanced
mathematical processing. Others offer superior support for financial calculations, logical calculations,
interaction with mainframe computers, and so forth. When you take the strengths of a particular
programming language and then incorporate the benefits provided by the .NET platform, everybody
wins.

Of course, in reality the chances are quite good that you will spend much of your time building
software using your .NET language of choice. However, once you learn the syntax of one .NET lan-
guage, it is very easy to master another. This is also quite beneficial, especially to the consultants of
the world. If your language of choice happens to be Visual Basic 2005, but you are placed at a client
site that has committed to C#, you are still able to leverage the functionality of the .NET Framework,
and you should be able to understand the overall structure of the code base with minimal fuss and
bother. Enough said.

An Overview of .NET Assemblies
Despite the fact that .NET binaries take the same file extension as COM servers and unmanaged
Win32 binaries (*.dll or *.exe), they have absolutely no internal similarities. For example, .NET
assemblies are not described using COM type libraries and are not registered into the system reg-
istry. Perhaps most important, .NET binaries do not contain platform-specific instructions, but
rather platform-agnostic intermediate language (IL) as well as type metadata. Figure 1-3 shows the
big picture of the story thus far.

Figure 1-3. All .NET-aware compilers emit IL instructions and metadata.

5785ch01.qxd 3/31/06 10:20 AM Page 10

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 11

■Note There is one point to be made regarding the abbreviation “IL.” During the development of .NET, the official
term for IL was Microsoft intermediate language (MSIL). However with the final release of .NET 1.0, the term was
changed to common intermediate language (CIL). Thus, as you read the .NET literature, understand that IL, MSIL,
and CIL are all describing the same exact entity. In keeping with the current terminology, I will use the abbreviation
“CIL” throughout this text.

When a *.dll or *.exe has been created using a .NET-aware compiler, the resulting module is
bundled into an assembly. You will examine numerous details of .NET assemblies in Chapter 13.
However, to facilitate the discussion of the .NET runtime environment, you do need to understand
some basic properties of this new file format.

As mentioned, an assembly contains CIL code, which is conceptually similar to Java bytecode
in that it is not compiled to platform-specific instructions until absolutely necessary. Typically,
“absolutely necessary” is the point at which a block of CIL instructions (such as a method imple-
mentation) is referenced for use by the .NET runtime.

In addition to CIL instructions, assemblies also contain metadata that describes in vivid detail
the characteristics of every “type” living within the binary. For example, if you have a class named
SportsCar, the type metadata describes details such as SportsCar’s base class, which interfaces are
implemented by SportsCar (if any), as well as a full description of each member supported by the
SportsCar type.

.NET metadata is a dramatic improvement to COM type metadata. As you may already know,
COM binaries are typically described using an associated type library (which is little more than
a binary version of Interface Definition Language [IDL] code). The problems with COM type infor-
mation are that it is not guaranteed to be present and the fact that IDL code has no way to document
the externally referenced servers that are required for the correct operation of the current COM server.
In contrast, .NET metadata is always present and is automatically generated by a given .NET-aware
compiler.

Finally, in addition to CIL and type metadata, assemblies themselves are also described using
metadata, which is officially termed a manifest. The manifest contains information about the current
version of the assembly, culture information (used for localizing string and image resources), and
a list of all externally referenced assemblies that are required for proper execution. You’ll examine
various tools that can be used to examine an assembly’s types, metadata, and manifest information
over the course of the next few chapters.

Single-File and Multifile Assemblies
In a great number of cases, there is a simple one-to-one correspondence between a .NET assembly
and the binary file (*.dll or *.exe). Thus, if you are building a .NET *.dll, it is safe to consider that
the binary and the assembly are one and the same. Likewise, if you are building an executable desk-
top application, the *.exe can simply be referred to as the assembly itself. As you’ll see in Chapter 13,
however, this is not completely accurate. Technically speaking, if an assembly is composed of a single
*.dll or *.exe module, you have a single-file assembly. Single-file assemblies contain all the necessary
CIL, metadata, and associated manifest in an autonomous, single, well-defined package.

Multifile assemblies, on the other hand, are composed of numerous .NET binaries, each of which
is termed a module. When building a multifile assembly, one of these modules (termed the primary
module) must contain the assembly manifest (and possibly CIL instructions and metadata for vari-
ous types). The other related modules contain a module level manifest, CIL, and type metadata. As
you might suspect, the primary module documents the set of required secondary modules within
the assembly manifest.

5785ch01.qxd 3/31/06 10:20 AM Page 11

CHAPTER 1 ■ THE PHILOSOPHY OF .NET12

So, why would you choose to create a multifile assembly? When you partition an assembly into
discrete modules, you end up with a more flexible deployment option. For example, if a user is ref-
erencing a remote assembly that needs to be downloaded onto his or her machine, the runtime will
only download the required modules. Therefore, you are free to construct your assembly in such
a way that less frequently required types (such as a type named HardDriveReformatter) are kept in
a separate stand-alone module.

In contrast, if all your types were placed in a single-file assembly, the end user may end up
downloading a large chunk of data that is not really needed (which is obviously a waste of time).
Thus, as you can see, an assembly is really a logical grouping of one or more related modules that
are intended to be initially deployed and versioned as a single unit.

The Role of the Common Intermediate Language
Now that you have a better feel for .NET assemblies, let’s examine the role of the common intermediate
language (CIL) in a bit more detail. CIL is a language that sits above any particular platform-specific
instruction set. Regardless of which .NET-aware language you choose, the associated compiler emits
CIL instructions. For example, the following Visual Basic 2005 code models a trivial calculator. Don’t
concern yourself with the exact syntax for now, but do notice the format of the Add() function in the
Calc class:

' Calc.vb

Imports System

Namespace CalculatorExample

' Defines the program's entry point

Module CalcApp

Sub Main()

Dim ans As Integer

Dim c As New Calc()

ans = c.Add(10, 84)

Console.WriteLine("10 + 84 is {0}.", ans)

Console.ReadLine()

End Sub

End Module

' The VB 2005 calculator.

Class Calc

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

End Class

End Namespace

Once the VB 2005 compiler (vbc.exe) compiles this source code file, you end up with a single-
file executable assembly that contains a manifest, CIL instructions, and metadata describing each
aspect of the Calc and CalcApp classes. For example, if you were to open this assembly using the
ildasm.exe utility (examined a little later in this chapter), you would find that the Add() method is
represented using CIL such as the following:

.method public instance int32 Add(int32 x, int32 y) cil managed

{

// Code size 9 (0x9)

.maxstack 2

.locals init ([0] int32 Add)

IL_0000: nop

IL_0001: ldarg.1

5785ch01.qxd 3/31/06 10:20 AM Page 12

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 13

IL_0002: ldarg.2

IL_0003: add.ovf

IL_0004: stloc.0

IL_0005: br.s IL_0007

IL_0007: ldloc.0

IL_0008: ret

} // end of method Calc::Add

Don’t worry if you are unable to make heads or tails of the resulting CIL code for this method.
In reality, a vast majority of .NET developers could care less about the details of the CIL programming
language. Simply understand that the Visual Basic 2005 compiler translates your code statements
into terms of CIL.

Now, recall that this is true of all .NET-aware compilers. To illustrate, assume you created this
same application using C#, rather than VB 2005 (again, don’t sweat the syntax, but do note the simi-
larities in the code bases):

// Calc.cs

using System;

namespace CalculatorExample

{

// Defines the program's entry point.

public class CalcApp

{

static void Main()

{

Calc c = new Calc();

int ans = c.Add(10, 84);

Console.WriteLine("10 + 84 is {0}.", ans);

Console.ReadLine();

}

}

// The C# calculator.

public class Calc

{

public int Add(int x, int y)

{ return x + y; }

}

}

If you examine the CIL for the Add() method, you find similar instructions (slightly tweaked by
the C# compiler):

.method public hidebysig instance int32 Add(int32 x, int32 y) cil managed

{

// Code size 8 (0x8)

.maxstack 2

.locals init ([0] int32 CS$1$0000)

IL_0000: ldarg.1

IL_0001: ldarg.2

IL_0002: add

IL_0003: stloc.0

IL_0004: br.s IL_0006

IL_0006: ldloc.0

IL_0007: ret

} // end of method Calc::Add

5785ch01.qxd 3/31/06 10:20 AM Page 13

CHAPTER 1 ■ THE PHILOSOPHY OF .NET14

■Source Code The Calc.vb and Calc.cs code files are included under the Chapter 1 subdirectory.

Benefits of CIL
At this point, you might be wondering exactly what is gained by compiling source code into CIL
rather than directly to a specific instruction set. One benefit is language integration. As you have
already seen, each .NET-aware compiler produces nearly identical CIL instructions. Therefore, all
languages are resolved to a well-defined binary arena that makes use of the same identical type
system.

Furthermore, given that CIL is platform-agnostic, the .NET Framework itself is platform-agnostic,
providing the same benefits Java developers have grown accustomed to (i.e., a single code base run-
ning on numerous operating systems). In fact, .NET distributions already exist for many non-Windows
operating systems (more details at the conclusion of this chapter). In contrast to the J2EE platform,
however, .NET allows you to build applications using your language of choice.

Compiling CIL to Platform-Specific Instructions
Due to the fact that assemblies contain CIL instructions, rather than platform-specific instructions,
CIL code must be compiled on the fly before use. The entity that compiles CIL code into meaningful
CPU instructions is termed a just-in-time (JIT) compiler, which sometimes goes by the friendly name
of Jitter. The .NET runtime environment leverages a JIT compiler for each CPU targeting the runtime,
each optimized for the underlying platform.

For example, if you are building a .NET application that is to be deployed to a handheld device
(such as a Pocket PC or .NET-enabled cell phone), the corresponding Jitter is well equipped to
run within a low-memory environment. On the other hand, if you are deploying your assembly to
a back-end server (where memory is seldom an issue), the Jitter will be optimized to function in
a high-memory environment. In this way, developers can write a single body of code that can be
efficiently JIT-compiled and executed on machines with different architectures.

Furthermore, as a given Jitter compiles CIL instructions into corresponding machine code, it
will cache the results in memory in a manner suited to the target operating system. In this way, if
a call is made to a method named PrintDocument(), the CIL instructions are compiled into platform-
specific instructions on the first invocation and retained in memory for later use. Therefore, the
next time PrintDocument() is called, there is no need to recompile the CIL.

The Role of .NET Type Metadata
In addition to CIL instructions, a .NET assembly contains full, complete, and accurate metadata,
which describes each and every type (class, structure, enumeration, and so forth) defined in the
binary, as well as the members of each type (properties, methods, events, and so on). Thankfully, it
is always the job of the compiler (not the programmer) to emit the latest and greatest type metadata.
Because .NET metadata is so wickedly meticulous, assemblies are completely self-describing entities—
so much so, in fact, that .NET binaries have no need to be registered into the system registry.

To illustrate the format of .NET type metadata, let’s take a look at the metadata that has been
generated for the Add() method of the Calc class you examined previously (the metadata generated
for the C# version of the Add() method is similar):

5785ch01.qxd 3/31/06 10:20 AM Page 14

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 15

TypeDef #2 (02000003)

TypDefName: CalculatorExample.Calc (02000003)

Flags : [Public] [AutoLayout] [Class]

[AnsiClass] [BeforeFieldInit] (00100001)

Extends : 01000001 [TypeRef] System.Object

Method #1 (06000003)

MethodName: Add (06000003)

Flags : [Public] [HideBySig] [ReuseSlot] (00000086)

RVA : 0x00002090

ImplFlags : [IL] [Managed] (00000000)

CallCnvntn: [DEFAULT]

hasThis

ReturnType: I4

2 Arguments

Argument #1: I4

Argument #2: I4

2 Parameters

(1) ParamToken : (08000001) Name : x flags: [none] (00000000)

(2) ParamToken : (08000002) Name : y flags: [none] (00000000)

Despite what you may be thinking, metadata is a very useful entity (rather than an academic
detail) consumed by numerous aspects of the .NET runtime environment, as well as by various
development tools. For example, the IntelliSense feature provided by Visual Studio 2005 is made
possible by reading an assembly’s metadata at design time. Metadata is also used by various object-
browsing utilities, debugging tools, and the Visual Basic 2005 compiler itself. To be sure, metadata is
the backbone of numerous .NET technologies including the remoting layer, reflection services, late
binding facilities, XML web services, and the object serialization process. Chapter 14 will formalize
the role of .NET metadata.

The Role of the Assembly Manifest
Last but not least, remember that a .NET assembly also contains metadata that describes the
assembly itself (technically termed a manifest). Among other details, the manifest documents all
external assemblies required by the current assembly to function correctly, the assembly’s version
number, copyright information, and so forth. Like type metadata, it is always the job of the com-
piler to generate the assembly’s manifest. Here are some relevant details of the manifest defined by
the VB 2005 calculator example shown earlier:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 2:0:0:0

}

...

.assembly VbNetCalculator

{

...

.ver 0:0:0:0

}

.module VbNetCalculator.exe

.imagebase 0x00400000

.subsystem 0x00000003

.file alignment 512

.corflags 0x00000001

5785ch01.qxd 3/31/06 10:20 AM Page 15

CHAPTER 1 ■ THE PHILOSOPHY OF .NET16

In a nutshell, this manifest documents the list of external assemblies required by
VbNetCalculator.exe (via the .assembly extern directive) as well as various characteristics of
the assembly itself (version number, module name, etc.).

Understanding the Common Type System
A given assembly may contain any number of distinct “types.” In the world of .NET, “type” is simply
a generic term used to refer to a member from the set {class, structure, interface, enumeration,
delegate}. When you build solutions using a .NET-aware language, you will most likely interact with
each of these types. For example, your assembly may define a single class that implements some
number of interfaces. Perhaps one of the interface methods takes an enumeration type as an input
parameter and returns a structure to the caller.

Recall that the Common Type System (CTS) is a formal specification that documents how types
must be defined in order to be hosted by the CLR. Typically, the only individuals who are deeply
concerned with the inner workings of the CTS are those building tools and/or compilers that target
the .NET platform. It is important, however, for all .NET programmers to learn about how to work
with the five types defined by the CTS in their language of choice. Here is a brief overview.

CTS Class Types
Every .NET-aware language supports, at the very least, the notion of a class type, which is the cornerstone
of object-oriented programming (OOP). A class may be composed of any number of members (such
as properties, methods, and events) and data points (field data, otherwise known as member variables).
In Visual Basic 2005, classes are declared using the Class keyword:

' A class type.

Public Class Calc

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

End Class

If you have a background in VB6 class development, be aware that class types are no longer
defined within a *.cls file, given the fact that we now have a specific keyword for defining class
types. Chapters 5 and 6 will examine the full details of building class types with Visual Basic 2005.

CTS Structure Types
The concept of a structure is also formalized under the CTS. If you have a background in C or C++,
you may recall that structures can be thought of as a lightweight alternative to class types, which have
value-based semantics (see Chapter 11 for full details). Typically, structures are best suited for modeling
geometric and mathematical data and are created in VB 2005 using the Structure keyword:

' A structure type.

Structure Point

Public xPos As Integer

Public yPos As Integer

Public Sub New(ByVal x As Integer, ByVal y As Integer)

xPos = x

yPos = y

End Sub

Public Sub Display()

Console.WriteLine("({0}, {1}", xPos, yPos)

End Sub

End Structure

5785ch01.qxd 3/31/06 10:20 AM Page 16

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 17

CTS Interface Types
Interfaces are nothing more than a named collection of members definitions, which may be supported
(i.e., implemented) by a given class or structure. Unlike COM, .NET interfaces do not derive a common
base interface such as IUnknown. In VB 2005, interface types are defined using the Interface keyword,
for example:

' Classes or structures which implement this interface

' know how to render themselves.

Public Interface IDraw

Sub Draw()

End Interface

On their own, interfaces are of little use. However, when a class or structure implements a given
interface in its unique way, you are able to request access to the supplied functionality using an inter-
face reference in a “polymorphic manner.” Interface-based programming will be fully explored in
Chapter 9.

CTS Enumeration Types
Enumerations are a handy programming construct that allows you to group name/value pairs. For
example, assume you are creating a video game application that allows the player to select one of
three character categories (Wizard, Fighter, or Thief). Rather than keeping track of raw numerical
values to represent each possibility, you could build a custom enumeration using the VB 2005 Enum
keyword:

' An enumeration type.

Public Enum CharacterType

Wizard = 100

Fighter = 200

Thief = 300

End Enum

The CTS demands that enumerated types derive from a common base class, System.Enum. As
you will see in Chapter 4, this base class defines a number of interesting members that allow you to
extract, manipulate, and transform the underlying name/value pairs programmatically.

CTS Delegate Types
Delegates are the .NET equivalent of a type-safe C-style function pointer. Again, based on your pro-
gramming background, you may know that C and C++ programmers make use of function pointers
to allow distinct aspects of a program to engage in a two-way conversation. The key difference is that
a .NET delegate is a class that derives from System.MulticastDelegate, rather than a simple pointer
to a raw memory address. In Visual Basic 2005, delegates are declared using the Delegate keyword:

' This delegate type can 'point to' any method

' returning an integer and taking two integers as input.

Public Delegate Function BinaryOp(ByVal x As Integer, _

ByVal y As Integer) As Integer

Delegates are useful when you wish to provide a way for one entity to forward a call to another
entity, and provide the foundation for the .NET event architecture. As you will see in Chapters 10
and 16, delegates have intrinsic support for multicasting (i.e., forwarding a request to multiple
recipients) and asynchronous (i.e., nonblocking) method invocations.

5785ch01.qxd 3/31/06 10:20 AM Page 17

CHAPTER 1 ■ THE PHILOSOPHY OF .NET18

■Note VB 2005 provides numerous keywords that remove the need to manually define delegate types. However,
you are able to define delegates directly when you wish to build more intricate and powerful solutions.

CTS Type Members
Now that you have previewed each of the types formalized by the CTS, realize that most types take
any number of members. Formally speaking, a type member is constrained by the set {constructor,
finalizer, shared constructor, nested type, operator, method, property, indexer, field, read-only field,
constant, event}.

The CTS defines various “adornments” that may be associated with a given member. For exam-
ple, each member has a given visibility trait (e.g., public, private, protected, etc.). Some members
may be declared as abstract to enforce a polymorphic behavior on derived types as well as virtual to
define a canned (but overridable) implementation. Also, most members may be configured as shared
(bound at the class level) or instance (bound at the object level). The construction of type members
is examined over the course of the next several chapters.

■Note As described in Chapter 12, .NET 2.0 supports the construction of generic types and generic members.

Intrinsic CTS Data Types
The final aspect of the CTS to be aware of for the time being is that it establishes a well-defined set
of core data types. Although a given language typically has a unique keyword used to declare an intrin-
sic CTS data type, all language keywords ultimately resolve to the same type defined in an assembly
named mscorlib.dll. Consider Table 1-1, which documents how key CTS data types are expressed
in various .NET languages.

■Note With the release of .NET 2.0, Visual Basic 2005 now provides keywords for signed data types (SByte,
UShort, UInteger, and ULong).

Table 1-1. The Intrinsic CTS Data Types

CTS Data Type VB 2005 Keyword C# Keyword Managed Extensions for C++ Keyword

System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __int64

System.UInt16 UShort ushort unsigned short

System.UInt32 UInteger uint unsigned int or unsigned long

System.UInt64 ULong ulong unsigned __int64

System.Single Single float float

System.Double Double double double

System.Object Object object Object^

5785ch01.qxd 3/31/06 10:20 AM Page 18

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 19

CTS Data Type VB 2005 Keyword C# Keyword Managed Extensions for C++ Keyword

System.Char Char char wchar_t

System.String String string String^

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool bool

Understanding the Common Language
Specification
As you are aware, different languages express the same programming constructs in unique,
language-specific terms. For example, in VB 2005 you typically denote string concatenation using
the ampersand operator (&), while in C# you always make use of the plus sign (+). Even when two
distinct languages express the same programmatic idiom (e.g., a method with no return value), the
chances are very good that the syntax will appear quite different on the surface:

' A VB 2005 subroutine.

Public Sub MyMethod()

' Some interesting code...

End Sub

// A C# method returning nothing.

public void MyMethod()

{

// Some interesting code...

}

As you have already seen, these minor syntactic variations are inconsequential in the eyes of
the .NET runtime, given that the respective compilers (vbc.exe or csc.exe, in this case) emit a similar
set of CIL instructions. However, languages can also differ with regard to their overall level of func-
tionality. For example, a .NET language may or may not have a keyword to represent unsigned data,
and may or may not support pointer types. Given these possible variations, it would be ideal to have
a baseline to which all .NET-aware languages are expected to conform.

The Common Language Specification (CLS) is a set of rules that describe in vivid detail the
minimal and complete set of features a given .NET-aware compiler must support to produce code
that can be hosted by the CLR, while at the same time be accessed in a uniform manner by all lan-
guages that target the .NET platform. In many ways, the CLS can be viewed as a subset of the full
functionality defined by the CTS.

The CLS is ultimately a set of rules that compiler builders must conform to, if they intend their
products to function seamlessly within the .NET universe. Each rule is assigned a simple name (e.g.,
“CLS Rule 6”) and describes how this rule affects those who build the compilers as well as those who
(in some way) interact with them. The crème de la crème of the CLS is the mighty Rule 1:

• Rule 1: CLS rules apply only to those parts of a type that are exposed outside the defining
assembly.

Given this rule, you can (correctly) infer that the remaining rules of the CLS do not apply to the
logic used to build the inner workings of a .NET type. The only aspects of a type that must conform
to the CLS are the member definitions themselves (i.e., naming conventions, parameters, and return
types). The implementation logic for a member may use any number of non-CLS techniques, as the
outside world won’t know the difference.

To illustrate, the following Add() method is not CLS-compliant, as the parameters and return
values make use of unsigned data (which is not a requirement of the CLS):

5785ch01.qxd 3/31/06 10:20 AM Page 19

CHAPTER 1 ■ THE PHILOSOPHY OF .NET20

Public Class Calc

' Exposed unsigned data is not CLS compliant!

Public Function Add(ByVal x As ULong, ByVal y As ULong) As ULong

Return x + y

End Function

End Class

However, if you were to simply make use of unsigned data internally as follows:

Public Class Calc

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

' As this ULong variable is only used internally,

' we are still CLS compliant.

Dim temp As ULong

...

Return x + y

End Function

End Class

you have still conformed to the rules of the CLS, and can rest assured that all .NET languages are
able to invoke the Add() method.

Of course, in addition to Rule 1, the CLS defines numerous other rules. For example, the CLS
describes how a given language must represent text strings, how enumerations should be represented
internally (the base type used for storage), how to define shared members, and so forth. Luckily, you
don’t have to commit these rules to memory to be a proficient .NET developer. Again, by and large,
an intimate understanding of the CTS and CLS specifications is only of interest to tool/compiler
builders.

Ensuring CLS Compliance
As you will see over the course of this book, VB 2005 does define a few programming constructs that
are not CLS-compliant. The good news, however, is that you can instruct the VB 2005 compiler to
check your code for CLS compliance using a single .NET attribute:

' Tell the compiler to check for CLS compliance.

<Assembly: System.CLSCompliant(True)>

Chapter 14 dives into the details of attribute-based programming. Until then, simply understand
that the <CLSCompliant> attribute will instruct the VB 2005 compiler to check each and every line of
code against the rules of the CLS. If any CLS violations are discovered, you receive a compiler error
and a description of the offending code.

Understanding the Common Language Runtime
In addition to the CTS and CLS specifications, the next TLA (three letter abbreviation) to contend
with at the moment is the CLR. Programmatically speaking, the term runtime can be understood as
a collection of external services that are required to execute a given compiled unit of code. For example,
when developers make use of the Microsoft Foundation Classes (MFC) to create a new application,
they are aware that their program requires the MFC runtime library (i.e., mfc42.dll). Other popular
languages also have a corresponding runtime. VB6 programmers are also tied to a runtime module
or two (e.g., msvbvm60.dll). Java developers are tied to the Java Virtual Machine (JVM) and so forth.

The .NET platform offers yet another runtime system. The key difference between the .NET
runtime and the various other runtimes I just mentioned is the fact that the .NET runtime provides
a single well-defined runtime layer that is shared by all languages and platforms that are .NET-aware.

5785ch01.qxd 3/31/06 10:20 AM Page 20

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 21

The crux of the CLR is physically represented by a library named mscoree.dll (aka the Common
Object Runtime Execution Engine). When an assembly is referenced for use, mscoree.dll is loaded
automatically, which in turn loads the required assembly into memory. The runtime engine is
responsible for a number of tasks. First and foremost, it is the entity in charge of resolving the location
of an assembly and finding the requested type within the binary by reading the contained metadata.
The CLR then lays out the type in memory, compiles the associated CIL into platform-specific
instructions, performs any necessary security checks, and then executes the code in question.

In addition to loading your custom assemblies and creating your custom types, the CLR will
also interact with the types contained within the .NET base class libraries when required. Although
the entire base class library has been broken into a number of discrete assemblies, the key assembly
is mscorlib.dll. mscorlib.dll contains a large number of core types that encapsulate a wide variety
of common programming tasks as well as the core data types used by all .NET languages. When you
build .NET solutions, you automatically have access to this particular assembly.

Figure 1-4 illustrates the workflow that takes place between your source code (which is making
use of base class library types), a given .NET compiler, and the .NET execution engine.

Figure 1-4. mscoree.dll in action

5785ch01.qxd 3/31/06 10:20 AM Page 21

CHAPTER 1 ■ THE PHILOSOPHY OF .NET22

The Assembly/Namespace/Type Distinction
Each of us understands the importance of code libraries. The point of libraries found within VB6,
J2EE, or MFC is to give developers a well-defined set of existing code to leverage in their applications.
However, the VB 2005 language does not come with a language-specific code library. Rather, VB 2005
developers leverage the language-neutral .NET libraries. To keep all the types within the base class
libraries well organized, the .NET platform makes extensive use of the namespace concept.

Simply put, a namespace is a grouping of related types contained in an assembly. For example,
the System.IO namespace contains file I/O related types, the System.Data namespace defines core
database access types, the System.Windows.Forms namespace defines GUI elements, and so on. It is
very important to point out that a single assembly (such as mscorlib.dll) can contain any number
of namespaces, each of which can contain any number of types (classes, interfaces, structures, enu-
merations, or delegates).

To clarify, Figure 1-5 shows a screen shot of the Visual Studio 2005 Object Brower utility (you’ll
learn more about this tool in Chapter 2). This tool allows you to examine the assemblies referenced
by your current solution, the namespaces within a particular assembly, the types within a given
namespace, and the members of a specific type. Note that mscorlib.dll contains many different
namespaces, each with its own semantically related types.

The key difference between this approach and a language-specific library such as the Java API
is that any language targeting the .NET runtime makes use of the same namespaces and same types.
For example, the following three programs all illustrate the ubiquitous “Hello World” application,
written in VB 2005, C#, and Managed Extensions for C++:

' Hello world in VB 2005

Imports System

Public Module MyApp

Sub Main()

Console.WriteLine("Hi from VB 2005")

End Sub

End Module

Figure 1-5. A single assembly can have any number of namespaces.

5785ch01.qxd 3/31/06 10:20 AM Page 22

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 23

// Hello world in C#

using System;

public class MyApp

{

static void Main()

{

Console.WriteLine("Hi from C#");

}

}

// Hello world in Managed Extensions for C++

#include "stdafx.h"

using namespace System;

int main(array<System::String ^> ^args)

{

Console::WriteLine(L"Hi from managed C++");

return 0;

}

Notice that each language is making use of the Console class defined in the System namespace.
Beyond minor syntactic variations, these three applications look and feel very much alike, both
physically and logically.

Clearly, your primary goal as a .NET developer is to get to know the wealth of types defined in
the (numerous) .NET namespaces. The most fundamental namespace to get your hands around is
named System. This namespace provides a core body of types that you will need to leverage time
and again as a .NET developer. In fact, you cannot build any sort of functional .NET application
without at least making a reference to the System namespace. Table 1-2 offers a rundown of some
(but certainly not all) of the .NET namespaces.

Table 1-2. A Sampling of .NET Namespaces

.NET Namespace Meaning in Life

System Within System you find numerous useful types dealing with
intrinsic data, mathematical computations, random number
generation, environment variables, and garbage collection, as
well as a number of commonly used exceptions and attributes.

System.Collections These namespaces define a number of stock container objects
System.Collections.Generic (ArrayList, Queue, and so forth), as well as base types and

interfaces that allow you to build customized collections. As of
.NET 2.0, the collection types have been extended with generic
capabilities.

System.Data These namespaces are used for interacting with databases
System.Data.Odbc using ADO.NET.
System.Data.OracleClient
System.Data.OleDb
System.Data.SqlClient

System.Diagnostics Here, you find numerous types that can be used to
programmatically debug and trace your source code.

System.Drawing Here, you find numerous types wrapping graphical primitives
System.Drawing.Drawing2D such as bitmaps, fonts, and icons, as well as printing capabilities.
System.Drawing.Printing

Continued

5785ch01.qxd 3/31/06 10:20 AM Page 23

CHAPTER 1 ■ THE PHILOSOPHY OF .NET24

Table 1-2. Continued

.NET Namespace Meaning in Life

System.IO These namespaces define numerous types for I/O operations.
System.IO.Compression As of .NET 2.0, the IO namespaces now include support
System.IO.Ports compression and port manipulation.

System.Net This namespace (as well as other related namespaces)
contains types related to network programming
(requests/responses, sockets, end points, and so on).

System.Reflection These namespaces define types that support runtime type
System.Reflection.Emit discovery as well as dynamic creation of types.

System.Runtime.InteropServices This namespace provides facilities to allow .NET types to
interact with “unmanaged code” (e.g., C-based DLLs and
COM servers) and vice versa.

System.Runtime.Remoting This namespace (among others) defines types used to build
solutions that incorporate the .NET remoting layer.

System.Security Security is an integrated aspect of the .NET universe. In the
security-centric namespaces you find numerous types dealing
with permissions, cryptography, and so on.

System.Threading This namespace defines types used to build multithreaded
applications.

System.Web A number of namespaces are specifically geared toward the
development of .NET web applications, including ASP.NET
and XML web services.

System.Windows.Forms This namespace contains types that facilitate the construction
of traditional desktop GUI applications.

System.Xml The XML-centric namespaces contain numerous types used
to interact with XML data.

Accessing a Namespace Programmatically
It is worth reiterating that a namespace is nothing more than a convenient way for us mere humans
to logically understand and organize related types. Consider again the System namespace. From your
perspective, you can assume that System.Console represents a class named Console that is contained
within a namespace called System. However, in the eyes of the .NET runtime, this is not so. The run-
time engine only sees a single entity named System.Console.

In Visual Basic 2005, the Imports keyword simplifies the process of referencing types defined in
a particular namespace. Here is how it works. Let’s say you are interested in building a traditional
desktop application. The main window renders a bar chart based on some information obtained
from a back-end database and displays your company logo. While learning the types each name-
space contains takes study and experimentation, here are some obvious candidates to reference in
your program:

' Here are all the namespaces used to build this application.

Imports System ' General base class library types.

Imports System.Drawing ' Graphical rendering types.

Imports System.Windows.Forms ' GUI widget types.

Imports System.Data ' General data-centric types.

Imports System.Data.SqlClient ' MS SQL Server data access types.

5785ch01.qxd 3/31/06 10:20 AM Page 24

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 25

Once you have specified some number of namespaces (and set a reference to the assemblies
that define them, which is explained in Chapter 2), you are free to create instances of the types they
contain. For example, if you are interested in creating an instance of the Bitmap class (defined in the
System.Drawing namespace), you can write the following:

' Explicitly list the namespaces used by this file.

Imports System

Imports System.Drawing

Class MyApp

Public Sub DisplayLogo()

' Create a 20 x 20 pixel bitmap.

Dim companyLogo As Bitmap = New Bitmap(20, 20)

...

End Sub

End Class

Because your application is referencing System.Drawing, the compiler is able to resolve the
Bitmap class as a member of this namespace. If you did not specify the System.Drawing namespace,
you would be issued a compiler error. However, you are free to declare variables using a fully quali-
fied name as well:

' Not listing System.Drawing namespace!

Imports System

Class MyApp

Public Sub DisplayLogo()

' Create a 20 x 20 pixel bitmap.

Dim companyLogo As System.Drawing.Bitmap = _

New System.Drawing.Bitmap(20, 20)

...

End Sub

End Class

While defining a type using the fully qualified name provides greater readability, I think you’d
agree that the VB 2005 Imports keyword reduces keystrokes. In this text, I will avoid the use of fully
qualified names (unless there is a definite ambiguity to be resolved) and opt for the simplified
approach of the Imports keyword.

However, always remember that this technique is simply a shorthand notation for specifying
a type’s fully qualified name, and each approach results in the exact same underlying CIL (given the
fact that CIL code always makes use of fully qualified names) and has no effect on performance or
the size of the generated assembly.

Referencing External Assemblies
In addition to specifying a namespace via the VB 2005 Imports keyword, you also need to tell the
VB 2005 compiler the name of the assembly containing the actual CIL definition for the referenced
type. As mentioned, many core .NET namespaces live within mscorlib.dll. However, the System.
Drawing.Bitmap type is contained within a separate assembly named System.Drawing.dll. A vast
majority of the .NET Framework assemblies are located under a specific directory termed the global
assembly cache (GAC). On a Windows machine, this can be located under C:\WINDOWS\assembly,
as shown in Figure 1-6.

5785ch01.qxd 3/31/06 10:20 AM Page 25

CHAPTER 1 ■ THE PHILOSOPHY OF .NET26

Depending on the development tool you are using to build your .NET applications, you will
have various ways to inform the compiler which assemblies you wish to include during the compi-
lation cycle. You’ll examine how to do so in the next chapter, so I’ll hold off on the details for now.

Using ildasm.exe
If you are beginning to feel a tad overwhelmed at the thought of gaining mastery over every name-
space in the .NET platform, just remember that what makes a namespace unique is that it contains
types that are somehow semantically related. Therefore, if you have no need for a user interface
beyond a simple console application, you can forget all about the System.Windows.Forms and
System.Web namespaces (among others). If you are building a painting application, the database
namespaces are most likely of little concern. Like any new set of prefabricated code, you learn as
you go. (Sorry, there is no shortcut to “magically” know all the assemblies, namespaces. and types at
your disposal; then again, that is why you are reading this book!)

The Intermediate Language Disassembler utility (ildasm.exe) allows you to load up any .NET
assembly and investigate its contents, including the associated manifest, CIL code, and type meta-
data. By default, ildasm.exe should be installed under C:\Program Files\Microsoft Visual Studio
8\SDK\v2.0\Bin (if you cannot find ildasm.exe in this location, simply search your machine for
an application named “ildasm.exe”).

Once you locate and run this tool, proceed to the File ➤ Open menu command and navigate to
an assembly you wish to explore. By way of illustration, Figure 1-7 shows the VbNetCalculator.exe
assembly built using the code seen earlier in this chapter. As you can see, ildasm.exe presents the
structure of an assembly using a familiar tree-view format.

Viewing CIL Code
In addition to showing the namespaces, types, and members contained in a given assembly,
ildasm.exe also allows you to view the CIL instructions for a given member. For example, if you
were to double-click the Main() method of the CalcApp class, a separate window would display the
underlying CIL (see Figure 1-8).

Figure 1-6. The base class libraries reside in the GAC.

5785ch01.qxd 3/31/06 10:20 AM Page 26

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 27

Viewing Type Metadata
If you wish to view the type metadata for the currently loaded assembly, press Ctrl+M. Figure 1-9
shows the metadata for the Calc.Add() method.

Figure 1-7. Your new best friend, ildasm.exe

Figure 1-8. Viewing the underlying CIL

5785ch01.qxd 3/31/06 10:20 AM Page 27

CHAPTER 1 ■ THE PHILOSOPHY OF .NET28

Viewing Assembly Metadata
Finally, if you are interested in viewing the contents of the assembly’s manifest, simply double-click
the MANIFEST icon (see Figure 1-10).

Figure 1-9. Viewing type metadata via ildasm.exe

Figure 1-10. Double-click here to view the assembly manifest.

To be sure, ildasm.exe has more options than shown here, and I will illustrate additional features
of the tool where appropriate in the text. As you read through this book, I strongly encourage you to
open your assemblies using ildasm.exe to see how your VB 2005 code is processed into platform-
agnostic CIL code. Although you do not need to become an expert in CIL code to be a VB 2005
superstar, understanding the syntax of CIL will only strengthen your programming muscle.

Deploying the .NET Runtime
It should come as no surprise that .NET assemblies can be executed only on a machine that has the
.NET Framework installed. As an individual who builds .NET software, this should never be an issue,
as your development machine will be properly configured at the time you install the freely available

5785ch01.qxd 3/31/06 10:20 AM Page 28

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 29

.NET Framework 2.0 SDK (as well as commercial .NET development environments such as Visual
Studio 2005).

However, if you deploy an assembly to a computer that does not have .NET installed, it will fail
to run. For this reason, Microsoft provides a setup package named dotnetfx.exe that can be freely
shipped and installed along with your custom software. This installation program is included with
the .NET Framework 2.0 SDK, and it is also freely downloadable from Microsoft (in fact, it is suggested
by Windows Update when necessary).

Once dotnetfx.exe is installed, the target machine will now contain the .NET base class libraries,
.NET runtime (mscoree.dll), and additional .NET infrastructure (such as the GAC).

■Note Do be aware that if you are building a .NET web application, the end user’s machine does not need to be con-
figured with the .NET Framework, as the browser will simply receive generic HTML and possibly client-side JavaScript.

The Platform-Independent Nature of .NET
To close this chapter, allow me to briefly comment on the platform-independent nature of the .NET
platform. To the surprise of most developers, .NET assemblies can be developed and executed on
non-Microsoft operating systems (Mac OS X, numerous Linux distributions, and FreeBSD, to name
a few). To understand how this is possible, you need to come to terms with yet another abbreviation
in the .NET universe: CLI (Common Language Infrastructure).

When Microsoft released the .NET platform, it also crafted a set of formal documents that described
the syntax and semantics of the C# and CIL languages, the .NET assembly format, core .NET name-
spaces, and the mechanics of a hypothetical .NET runtime engine (known as the Virtual Execution
System, or VES). Better yet, these documents have been submitted to Ecma International as official
international standards (http://www.ecma-international.org). The specifications of interest are

• ECMA-334: The C# Language Specification

• ECMA-335: The Common Language Infrastructure (CLI)

■Note Microsoft has not defined a formal specification regarding the Visual Basic 2005 programming language.
The good news, however, is that the major open-source .NET distributions ship with a compatible BASIC compiler.

The importance of these documents becomes clear when you understand that they enable
third parties to build distributions of the .NET platform for any number of operating systems and/or
processors. ECMA-335 is perhaps the more “meaty” of the two specifications, so much so that is
has been broken into five partitions, as shown in Table 1-3.

Table 1-3. Partitions of the CLI

Partitions of ECMA-335 Meaning in Life

Partition I: Architecture Describes the overall architecture of the CLI, including the rules of the
CTS and CLS, and the mechanics of the .NET runtime engine

Partition II: Metadata Describes the details of .NET metadata

Partition III: CIL Describes the syntax and semantics of CIL code

Partition IV: Libraries Gives a high-level overview of the minimal and complete class libraries
that must be supported by a .NET distribution

Partition V: Annexes A collection of “odds and ends” details such as class library design
guidelines and the implementation details of a CIL compiler

5785ch01.qxd 3/31/06 10:20 AM Page 29

Be aware that Partition IV (Libraries) defines only a minimal set of namespaces that represent
the core services expected by a CLI distribution (collections, console I/O, file I/O, threading, reflec-
tion, network access, core security needs, XML manipulation, and so forth). The CLI does not define
namespaces that facilitate web development (ASP.NET), database access (ADO.NET), or desktop
graphical user interface (GUI) application development (Windows Forms).

The good news, however, is that the mainstream .NET distributions extend the CLI libraries with
Microsoft-compatible equivalents of ASP.NET, ADO.NET, and Windows Forms in order to provide
full-featured, production-level development platforms. To date, there are two major implementa-
tions of the CLI (beyond Microsoft’s Windows-specific offering). Although this text focuses on the
creation of .NET applications using Microsoft’s .NET distribution, Table 1-4 provides information
regarding the Mono and Portable .NET projects.

Table 1-4. Open Source .NET Distributions

Distribution Meaning in Life

http://www.mono-project.com The Mono project is an open source distribution of the CLI that
targets various Linux distributions (e.g., SuSE, Fedora, and so
on) as well as Win32 and Mac OS X.

http://www.dotgnu.org Portable.NET is another open source distribution of the CLI
that runs on numerous operating systems. Portable.NET aims
to target as many operating systems as possible (Win32, AIX,
BeOS, Mac OS X, Solaris, all major Linux distributions, and so on).

Both Mono and Portable.NET provide an ECMA-compliant C# compiler, .NET runtime engine,
code samples, documentation, as well as numerous development tools that are functionally
equivalent to the tools that ship with Microsoft’s .NET Framework 2.0 SDK. Furthermore, Mono
and Portable.NET collectively ship with a Visual Basic 2005, Java, and C complier.

■Note If you wish to learn more about Mono or Portable.NET, check out Cross-Platform .NET Development: Using
Mono, Portable.NET, and Microsoft .NET by M. J. Easton and Jason King (Apress, 2004).

Summary
The point of this chapter was to lay out the conceptual framework necessary for the remainder of this
book. I began by examining a number of limitations and complexities found within the technologies
prior to .NET, and followed up with an overview of how .NET and Visual Basic 2005 attempt to
streamline the current state of affairs.

.NET basically boils down to a runtime execution engine (mscoree.dll) and base class library
(mscorlib.dll and associates). The common language runtime (CLR) is able to host any .NET binary
(aka assembly) that abides by the rules of managed code. As you have seen, assemblies contain CIL
instructions (in addition to type metadata and the assembly manifest) that are compiled to platform-
specific instructions using a just-in-time (JIT) compiler. In addition, you explored the role of the
Common Language Specification (CLS) and Common Type System (CTS).

This was followed by an examination of the ildasm.exe utility, as well as coverage of how to
configure a machine to host .NET applications using dotnetfx.exe. I wrapped up by briefly address-
ing the platform-independent nature of the .NET platform and the Mono and Portable.NET CLI
distributions.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET30

5785ch01.qxd 3/31/06 10:20 AM Page 30

C H A P T E R 2

■ ■ ■

Building Visual Basic 2005
Applications

As a VB 2005 programmer, you may choose among numerous tools to build your .NET applications.
This approach is quite different from the world of VB6, where we had only a single IDE to contend
with: Microsoft Visual Basic 6.0. That being said, the point of this chapter is to provide a tour of vari-
ous .NET development options, including, of course, Visual Studio 2005. The chapter opens, however,
with an examination of working with the VB 2005 command-line compiler, vbc.exe, and the simplest
of all text editors, Notepad (notepad.exe). Once you become comfortable compiling code “IDE-free,”
you will then examine how the TextPad application allows you to edit and compile VB 2005 source
code files in a (slightly) more sophisticated manner.

While you could work through this entire text using nothing other than vbc.exe and Notepad/
TextPad, I’d bet you are also interested in working with feature-rich integrated development envi-
ronments (IDEs). To this end, you will be introduced to an open source IDE named SharpDevelop.
This IDE rivals the functionality of many commercial .NET development environments (and it’s free!).
After briefly examining the Visual Basic 2005 Express IDE, you will turn your attention to Visual Studio
2005. This chapter also provides a quick tour of a number of complementary .NET development tools
that every .NET developer should be aware of, and wraps up with a brief discussion regarding the
role of the Microsoft.VisualBasic.dll assembly.

Installing the .NET Framework 2.0 SDK
Before you are able to build .NET applications using the VB 2005 programming language and the
.NET Framework, the first step is to install the freely downloadable .NET Framework 2.0 Software
Development Kit (SDK).

■Note Be aware that the .NET Framework 2.0 SDK is automatically installed with Visual Studio 2005 as well as
Visual Basic 2005 Express; therefore, if you plan to use either of these IDEs, there is no need to manually download
or install this software package.

If you are not developing with Visual Studio 2005/Visual Basic 2005 Express, navigate to
http://msdn.microsoft.com/netframework and search for “.NET Framework 2.0 SDK”. Once you
have located the appropriate page, download the setup program (setup.exe) and save it to a con-
venient location on your hard drive. At this point, double-click the executable to install the software.

31

5785ch02.qxd 3/31/06 10:13 AM Page 31

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS32

After the installation process has completed, not only will your development machine be
configured with the necessary .NET infrastructure, but it also now contains numerous development
tools (a majority of which are command-line utilities), a very robust local help system (the MSDN
Library), sample code, tutorials, and various white papers.

By default, the .NET Framework 2.0 SDK is installed under C:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0. Here you will find StartHere.htm, which (as the name suggests) serves as an
entry point to other related documentation. Table 2-1 describes the details behind some of the core
subdirectories off the installation root.

Table 2-1. Select Subdirectories of the .NET Framework 2.0 SDK Installation Root

Subdirectory Meaning in Life

\Bin Contains a majority of the .NET development tools. Check out
StartTools.htm for a description of each utility.

\BootStrapper Although you can ignore most of the content in the directory, be aware
that dotnetfx.exe (see Chapter 1) resides under the \Packages\dotnetfx
subdirectory.

\CompactFramework Contains the installer program for the .NET Compact Framework 2.0.

\Samples Provides the setup program (and core content) for the .NET Framework
2.0 SDK samples. To learn how to install the samples, consult
StartSamples.htm.

In addition to the content installed under C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0,
the setup program also creates the Microsoft.NET\Framework subdirectory under your Windows
directory. Here you will find a subdirectory for each version of the .NET Framework installed on
your machine. Within a version-specific subdirectory, you will find command-line compilers for
each language that ships with the Microsoft .NET Framework (CIL, VB 2005, C#, J#, and JScript .NET),
as well as additional command-line development utilities and .NET assemblies.

The VB 2005 Command-Line Compiler (vbc.exe)
There are a number of techniques you may use to compile VB 2005 source code. In addition to Visual
Studio 2005 (as well as various third-party .NET IDEs), you are able to create .NET assemblies using
the VB 2005 command-line compiler, vbc.exe (where vbc stands for the Visual Basic Compiler). This
tool is included with the .NET Framework 2.0 SDK. While it is true that you may never decide to build
a large-scale application using the command-line compiler, it is important to understand the basics
of how to compile your *.vb files by hand. I can think of a few reasons you should get a grip on the
process:

• The most obvious reason is the simple fact that you might not have a copy of Visual Studio 2005.

• You plan to make use of automated .NET build tools such as MSBuild or NAnt.

• You want to deepen your understanding of VB 2005. When you use graphical IDEs to build
applications, you are ultimately instructing vbc.exe how to manipulate your VB 2005 input
files. In this light, it’s edifying to see what takes place behind the scenes.

Another nice by-product of working with vbc.exe in the raw is that you become that much
more comfortable manipulating other command-line tools included with the .NET Framework 2.0
SDK. As you will see throughout this book, a number of important utilities are accessible only from
the command line.

5785ch02.qxd 3/31/06 10:13 AM Page 32

Configuring the VB 2005 Command-Line Compiler
Before you can begin to make use of the VB 2005 command-line compiler, you need to ensure that
your development machine recognizes the existence of vbc.exe. If your machine is not configured
correctly, you are forced to specify the full path to the directory containing vbc.exe before you can
compile your VB 2005 code (which can be a pain in the neck).

To equip your development machine to compile *.vb files from any directory, follow these
steps (which assume a Windows XP installation; Windows NT/2000 steps will differ slightly):

1. Right-click the My Computer icon and select Properties from the pop-up menu.

2. Select the Advanced tab and click the Environment Variables button.

3. Double-click the Path variable from the System Variables list box.

4. Add the following line to the end of the current Path value (note each value in the Path vari-
able is separated by a semicolon):

C:\Windows\Microsoft.NET\Framework\v2.0.50727

Of course, your entry may need to be adjusted based on your current version and location of
the .NET Framework 2.0 SDK (so be sure to do a sanity check using Windows Explorer). Once you
have updated the Path variable, you may take a test run by closing any command windows open in
the background (to commit the settings), and then open a new command window and enter the fol-
lowing command:

vbc /?

If you set things up correctly, you should see a list of options supported by the VB 2005 compiler.

■Note When specifying command-line arguments for a given .NET development tool, you may use either – or /
(i.e., vbc -? or vbc /?).

Configuring Additional .NET Command-Line Tools
Before you begin to investigate vbc.exe, add the following additional Path variable to the System
Variables list box using the steps outlined previously (again, perform a sanity check to ensure
a valid path):

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin

Recall that this directory contains additional command-line tools that are commonly used during
.NET development. With these two paths established, you should now be able to run any .NET util-
ity from any command window. If you wish to confirm this new setting, close any open command
windows, open a new command window, and enter the following command to view the options of
the Global Assembly Cache (GAC) utility, gacutil.exe:

gacutil /?

■Tip Now that you have seen how to manually configure your machine, I’ll let you in on a shortcut. The .NET
Framework 2.0 SDK provides a preconfigured command window that recognizes all .NET command-line utilities
out of the box. Click the Start button, and then activate the SDK Command Prompt located under the All Programs
➤ Microsoft .NET Framework SDK v2.0 menu selection.

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 33

5785ch02.qxd 3/31/06 10:13 AM Page 33

Building VB 2005 Applications Using vbc.exe
Now that your development machine recognizes vbc.exe, the next goal is to build a simple single-
file assembly named TestApp.exe using the VB 2005 command-line compiler and Notepad. First,
you need some source code. Open Notepad and enter the following:

' A simple VB 2005 application.

Imports System

Module TestApp

Sub Main()

Console.WriteLine("Testing! 1, 2, 3")

End Sub

End Module

Once you have finished, save the file in a convenient location (e.g., C:\VbcExample) as TestApp.vb.
Now, let’s get to know the core options of the VB 2005 compiler. The first point of interest is to under-
stand how to specify the name and type of assembly to create (e.g., a console application named
MyShell.exe, a code library named MathLib.dll, a Windows Forms application named MyWinApp.
exe, etc.). Each possibility is represented by a specific flag passed into vbc.exe as a command-line
parameter (see Table 2-2).

Table 2-2. Output-centric Options of the VB 2005 Compiler

Option Meaning in Life

/out This option is used to specify the name of the assembly to be created. By default,
the assembly name is the same as the name of the initial input *.vb file.

/target:exe This option builds an executable console application. This is the default
target, and thus may be omitted when building console applications.

/target:library This option builds a single-file *.dll assembly.

/target:module This option builds a module. Modules are elements of multifile assemblies
(fully described in Chapter 13).

/target:winexe This option builds an executable Windows application. Although you are
free to build Windows-based applications using the /target:exe flag, the
/target:winexe flag prevents a console window from appearing in the
background.

To compile TestApp.vb into a console application named TextApp.exe, open a command
prompt and change to the directory containing your source code file using the cd command:

cd c:\VbcExample

Next, enter the following command set (note that command-line flags must come before the
name of the input files, not after):

vbc /target:exe TestApp.vb

Here I did not explicitly specify an /out flag, therefore the executable will be named TestApp.exe,
given the name of the initial input file. However, if you wish to specify a unique name for your
assembly, you could enter the following command:

vbc /target:exe /out:MyFirstApp.exe TestApp.vb

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS34

5785ch02.qxd 3/31/06 10:13 AM Page 34

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 35

Also be aware that most of the VB 2005 compiler flags support an abbreviated version, such as
/t rather than /target (you can view all abbreviations by entering vbc /? at the command prompt).
For example, you can save yourself a few keystrokes by specifying the following:

vbc /t:exe TestApp.vb

Furthermore, given that the /t:exe flag is the default output used by the VB 2005 compiler, you
could also compile TestApp.vb simply by typing

vbc TestApp.vb

TestApp.exe can now be run from the command line by typing the name of the executable. If
all is well, you should see the message “Testing! 1, 2, 3” print out to the command window (see
Figure 2-1).

Referencing External Assemblies Using vbc.exe
Next up, let’s examine how to compile an application that makes use of types defined in an external
.NET assembly. Speaking of which, just in case you are wondering how the VB 2005 compiler understood
your reference to the System.Console type, recall from Chapter 1 that mscorlib.dll is automatically ref-
erenced during the compilation process.

To illustrate the process of referencing external assemblies, let’s update the TestApp application
to display a Windows Forms message box. Open your TestApp.vb file and modify it as follows:

' A simple VB 2005 application.

Imports System

' Add this!

Imports System.Windows.Forms

Module TestApp

Sub Main()

Console.WriteLine("Testing! 1, 2, 3")

' Add this!

MessageBox.Show("Hello!")

End Sub

End Module

Notice the reference to the System.Windows.Forms namespace via the VB 2005 Imports keyword
(introduced in Chapter 1). Recall that when you explicitly list the namespaces used within a given
*.vb file, you avoid the need to make use of fully qualified names (which can lead to hand cramps).

Figure 2-1. TestApp in action

5785ch02.qxd 3/31/06 10:13 AM Page 35

Figure 2-2. Your first Windows Forms application

At the command line, you must inform vbc.exe which assembly contains the imported name-
spaces. Given that you have made use of the MessageBox class, you must specify the System.Windows.
Forms.dll assembly using the /reference flag (which can be abbreviated to /r):

vbc /r:System.Windows.Forms.dll testapp.vb

If you now rerun your application, you should see what appears in Figure 2-2 in addition to the
console output.

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS36

Compiling Multiple Source Files Using vbc.exe
The current incarnation of the TestApp.exe application was created using a single *.vb source code
file. While it is perfectly permissible to have all of your .NET types defined in a single *.vb file, most
projects are composed of multiple *.vb files to keep your code base a bit more flexible. Assume you
have authored an additional class (again, using Notepad) contained in a new file named HelloMsg.vb:

' The HelloMessage class

Imports System

Imports System.Windows.Forms

Class HelloMessage

Sub Speak()

MessageBox.Show("Hello Again")

End Sub

End Class

Assuming you have saved this new file in the same location as your first file (e.g., C:\VbcExample),
update your TestApp class to make use of this new type, and comment out the previous Windows
Forms logic. Here is the complete update:

' A simple VB 2005 application.

Imports System

' Don't need this anymore.

' Imports System.Windows.Forms

Module TestApp

Sub Main()

Console.WriteLine("Testing! 1, 2, 3")

' Don't need this anymore either.

' MessageBox.Show("Hello!")

' Exercise the HelloMessage class!

Dim h As New HelloMessage()

h.Speak()

End Sub

End Module

5785ch02.qxd 3/31/06 10:13 AM Page 36

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 37

You can compile your VB 2005 files by listing each input file explicitly:

vbc /r:System.Windows.Forms.dll testapp.vb hellomsg.vb

As an alternative, the VB 2005 compiler allows you to make use of the wildcard character (*)
to inform vbc.exe to include all *.vb files contained in the project directory as part of the current
build:

vbc /r:System.Windows.Forms.dll *.vb

When you run the program again, the output is identical. The only difference between the two
applications is the fact that the current logic has been split among multiple files.

Referencing Multiple External Assemblies Using vbc.exe
On a related note, what if you need to reference numerous external assemblies using vbc.exe?
Simply list each assembly using a comma-delimited list. You don’t need to specify multiple external
assemblies for the current example, but some sample usage follows:

vbc /r:System.Windows.Forms.dll,System.Drawing.dll *.vb

Working with vbc.exe Response Files
As you might guess, if you were to build a complex VB 2005 application at the command prompt,
your life would be full of pain as you type in the flags that specify numerous referenced assemblies
and *.vb input files. To help lessen your typing burden, the VB 2005 compiler honors the use of
response files.

VB 2005 response files contain all the instructions to be used during the compilation of your
current build. By convention, these files end in an *.rsp (response) extension. Assume that you
have created a response file named TestApp.rsp that contains the following arguments (as you can
see, comments are denoted with the # character):

This is the response file

for the TestApp.exe app

of Chapter 2.

External assembly references.

/r:System.Windows.Forms.dll

output and files to compile (using wildcard syntax).

/target:exe /out:TestApp.exe *.vb

Now, assuming this file is saved in the same directory as the VB 2005 source code files to be
compiled, you are able to build your entire application as follows (note the use of the @ symbol):

vbc @TestApp.rsp

If the need should arise, you are also able to specify multiple *.rsp files as input (e.g.,
vbc @FirstFile.rsp @SecondFile.rsp @ThirdFile.rsp). If you take this approach, do be aware that
the compiler processes the command options as they are encountered! Therefore, command-line
arguments in a later *.rsp file can override options in a previous response file.

Also note that flags listed explicitly on the command line before a response file will be overrid-
den by the specified *.rsp file. Thus, if you were to enter

vbc /out:MyCoolApp.exe @TestApp.rsp

5785ch02.qxd 3/31/06 10:13 AM Page 37

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS38

the name of the assembly would still be TestApp.exe (rather than MyCoolApp.exe), given the
/out:TestApp.exe flag listed in the TestApp.rsp response file. However, if you list flags after
a response file, the flag will override settings in the response file. Thus, in the following command
set, your assembly is indeed named MyCoolApp.exe.

vbc @TestApp.rsp /out:MyCoolApp.exe

■Note The /reference flag is cumulative. Regardless of where you specify external assemblies (before, after,
or within a response file) the end result is a summation of each reference assembly.

The Default Response File (vbc.rsp)
The final point to be made regarding response files is that the VB 2005 compiler has an associated
default response file (vbc.rsp), which is located in the same directory as vbc.exe itself (e.g., C:\
Windows\Microsoft.NET\Framework\v2.0.50727). If you were to open this file using Notepad, you
will find that numerous .NET assemblies have already been specified using the /r: flag. As you would
expect, you will come to understand the role of each of these .NET libraries over the course of the
text. However, to set the stage, here is a look within vbc.rsp:

This file contains command-line options that the VB

command-line compiler (VBC) will process as part

of every compilation, unless the "/noconfig" option

is specified.

Reference the common Framework libraries

/r:Accessibility.dll

/r:Microsoft.Vsa.dll

/r:System.Configuration.dll

/r:System.Configuration.Install.dll

/r:System.Data.dll

/r:System.Data.OracleClient.dll

/r:System.Data.SqlXml.dll

/r:System.Deployment.dll

/r:System.Design.dll

/r:System.DirectoryServices.dll

/r:System.dll

/r:System.Drawing.Design.dll

/r:System.Drawing.dll

/r:System.EnterpriseServices.dll

/r:System.Management.dll

/r:System.Messaging.dll

/r:System.Runtime.Remoting.dll

/r:System.Runtime.Serialization.Formatters.Soap.dll

/r:System.Security.dll

/r:System.ServiceProcess.dll

/r:System.Transactions.dll

/r:System.Web.dll

/r:System.Web.Mobile.dll

/r:System.Web.RegularExpressions.dll

/r:System.Web.Services.dll

/r:System.Windows.Forms.dll

/r:System.XML.dll

5785ch02.qxd 3/31/06 10:13 AM Page 38

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 39

Import System and Microsoft.VisualBasic

/imports:System

/imports:Microsoft.VisualBasic

■Note Understand that the default response file is only referenced when working with the command-line compiler.
The Visual Basic 2005 Express and Visual Studio 2005 IDEs do not automatically set references to these libraries.

When you are building your VB 2005 programs using vbc.exe, this file will be automatically ref-
erenced, even when you supply a custom *.rsp file. Given the presence of the default response file,
the current TestApp.exe application could be successfully compiled using the following command
set (as System.Windows.Forms.dll is referenced within vbc.rsp):

vbc /out:TestApp.exe *.vb

In the event that you wish to disable the automatic reading of vbc.rsp, you can specify the
/noconfig option:

vbc @TestApp.rsp /noconfig

Obviously, the VB 2005 command-line compiler has many other options that can be used to
control how the resulting .NET assembly is to be generated. At this point, however, you should have
a handle on the basics. If you wish to learn more details regarding the functionality of vbc.exe, search
the .NET Framework 2.0 documentation for the term “vbc.exe”.

■Source Code The VbcExample project is included under the Chapter 2 subdirectory.

Building .NET Applications Using TextPad
While Notepad is fine for creating simple .NET programs, it offers nothing in the way of developer
productivity. It would be ideal to author *.vb files using an editor that supports (at a minimum) key-
word coloring, font settings, and integration with the VB 2005 compiler. As luck would have it, such
a tool does exist: TextPad.

TextPad is an editor you can use to author and compile code for numerous programming lan-
guages, including VB 2005. The chief advantage of this product is the fact that it is very simple to use
and provides just enough bells and whistles to enhance your coding efforts.

To obtain TextPad, navigate to http://www.textpad.com and download the current version (4.7.3
at the time of this writing). Once you have installed the product, you will have a feature-complete
version of TextPad; however, this tool is not freeware. Until you purchase a single-user license (for
around US$30.00 at the time of this writing), you will be presented with a “friendly reminder” each
time you run the application.

Enabling VB 2005 Keyword Coloring
TextPad is not equipped to understand VB 2005 keywords or work with vbc.exe out of the box. To do
so, you will need to install an additional free add-on. Navigate to http://www.textpad.com/add-ons/
syna2g.html and locate and download vbdotnet8.zip using the “VB.NET(6)” link option. This add-
on takes into account the new keywords introduced with VB 2005 (in contrast to the older “VB.NET”
links, which are limited to keywords of Visual Basic .NET 1.1).

5785ch02.qxd 3/31/06 10:13 AM Page 39

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS40

Figure 2-3. Setting TextPad’s VB 2005 preferences

Once you have unzipped vbdotnet8.zip, place a copy of the extracted vbdotnet8.syn file in the
Samples subdirectory of the TextPad installation (e.g., C:\Program Files\TextPad 4\Samples). Next,
launch TextPad and perform the following tasks using the New Document Wizard.

1. Activate the Configure ➤ New Document Class menu option.

2. Enter the name VB 2005 in the “Document class name” edit box.

3. In the next step, enter *.vb in the “Class members” edit box.

4. Finally, enable syntax highlighting, choose vbdotnet8.syn from the drop-down list box, and
finish the wizard.

You can now tweak TextPad’s VB 2005 support using the Document Classes node accessible
from the Configure ➤ Preferences menu (see Figure 2-3).

Configuring the *.vb File Filter
The next configuration detail is to create a filter for VB 2005 source code files displayed by the Open
and Save dialog boxes:

1. Activate the Configure ➤ Preferences menu option and select File Name Filters from the
tree-view control.

2. Click the New button, and enter VB 2005 into the Description field and *.vb into the Wild
cards text box.

3. Move your new filter to the top of the list using the Move Up button, and click OK.

Create a new file (using File ➤ New) and save it in a convenient location (such as
C:\TextPadTestApp) as TestPadTest.vb. Next, enter a trivial class definition (see Figure 2-4).

5785ch02.qxd 3/31/06 10:13 AM Page 40

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 41

Figure 2-4. TestPadTest.vb

Hooking Into vbc.exe
The last major configuration detail to contend with is to associate vbc.exe with TextPad so you can
compile your *.vb files. The first way to do so is using the Tools ➤ Run menu option. Here you are
presented with a dialog box that allows you to specify the name of the tool to run and any necessary
command-line flags. To compile TextPadTest.vb into a .NET console-based executable, follow these
steps:

1. Enter the full path to vbc.exe into the Command text box (e.g., C:\Windows\Microsoft.NET\
Framework\v2.0.50727\vbc.exe).

2. Enter the command-line options you wish to specify within the Parameters text box (e.g.,
/out:myApp.exe *.vb). Recall that you can specify a custom response file to simplify matters
(e.g., @myInput.rsp).

3. Enter the directory containing the input files via the Initial folder text box (C:\TextPadTestApp
in this example).

4. If you wish TextPad to capture the compiler output directly (rather than within a separate
command window), select the Capture Output check box.

Figure 2-5 shows the complete compilation settings.

Figure 2-5. Specifying a custom run command

5785ch02.qxd 3/31/06 10:13 AM Page 41

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS42

Figure 2-6. Instructing TextPad to run myApp.exe

At this point, you can either run your program by double-clicking the executable using Win-
dows Explorer or leverage the Tools ➤ Run menu option to specify myApp.exe as the current
command (see Figure 2-6).

When you click OK, you should see the program’s output (“This is a test, this is only a test . . .”)
displayed in the Command Results document.

Associating Run Commands with Menu Items
TextPad also allows you to create custom menu items that represent predefined run commands.
Let’s create a custom item under the Tools menu named “Compile VB 2005 Code” that will compile
all VB 2005 files in the current directory into a console application:

1. Activate the Configure ➤ Preferences menu option and select Tools from the tree-view control.

2. Using the Add button, select Program and specify the full path to vbc.exe.

3. If you wish, rename vbc.exe to a more descriptive label (Compile VB 2005 Code) by clicking
the tool name and then clicking OK.

4. Finally, activate the Configure ➤ Preferences menu option once again, but this time select
Compile VB 2005 from the Tools node, and specify *.vb as the sole value in the Parameters
field (see Figure 2-7).

5785ch02.qxd 3/31/06 10:13 AM Page 42

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 43

Figure 2-7. Creating a Tools menu item

With this, you can now compile all VB 2005 files in the current directory using your custom
Tools menu item. Of course, you can repeat this process to add any number of custom menu items,
which will compile your code and execute your assemblies.

As you may agree, TextPad is a step in the right direction when contrasted to Notepad and the
command prompt. However, TextPad does not (currently) provide IntelliSense capabilities for VB
2005 code, GUI designer tools, project templates, or database manipulation wizards. To address
such needs, allow me to introduce the next .NET development tool: SharpDevelop.

Building .NET Applications Using SharpDevelop
SharpDevelop is an open source and feature-rich IDE that you can use to build .NET assemblies
using Visual Basic .NET, C#, Managed Extensions for C++, or CIL. Beyond the fact that this IDE is
completely free, it is interesting to note that it was written entirely in C#. In fact, you have the choice
to download and compile the *.cs files manually or run a setup.exe program to install SharpDevelop
on your development machine. Both distributions can be obtained from http://www.icsharpcode.
net/OpenSource/SD/Download.

Once you have installed SharpDevelop, the File ➤ New ➤ Combine menu option allows
you to pick which type of project you wish to generate (and in which .NET language). In the lingo
of SharpDevelop, a combine is a collection of individual projects (analogous to a Visual Studio solution).
Assume you wish to create a VB 2005 Windows application named MySDWinApp (see Figure 2-8).

5785ch02.qxd 3/31/06 10:13 AM Page 43

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS44

■Note Be aware that version 1.1 of SharpDevelop is configured to make use of the VB .NET 1.1 compiler. At the
time of this writing, SharpDevelop 2.0 is in beta 2 and has full support for all .NET 2.0 language features. In this
overview, the menu options and screen shots are all specific to SharpDevelop 1.1.

Learning the Lay of the Land: SharpDevelop
SharpDevelop provides numerous productivity enhancements and in many cases is as feature-rich
as Visual Studio .NET 2003 (but not currently as powerful as Visual Studio 2005). Here is a hit list of
some of the major benefits:

• Support for the Microsoft and Mono (see Chapter 1) compilers

• IntelliSense and code expansion capabilities

• An Add Reference dialog box to reference external assemblies, including assemblies
deployed to the Global Assembly Cache (GAC)

• A visual Windows Forms designer

• Various project perspective windows (termed scouts) to view your projects

• An integrated object browser utility (the Assembly Scout)

• Database manipulation utilities

• A VB .NET to C# (and vice versa) code conversion utility

• Integration with the NUnit (a .NET unit test utility), NDoc (a .NET code documentation util-
ity), and NAnt (a .NET build utility)

• Integration with the .NET Framework SDK documentation (e.g., the MSDN Library)

Figure 2-8. The SharpDevelop New Project dialog box

5785ch02.qxd 3/31/06 10:13 AM Page 44

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 45

Figure 2-9. The Project Scout

Figure 2-10. The SharpDevelop Add Reference dialog box

Impressive for a free IDE, is it not? Although this chapter doesn’t cover each of these points in
detail, let’s walk through a few items of interest. If you require further details of SharpDevelop, be
aware that it ships with very thorough documentation accessible from the Help ➤ Help Topics
menu option.

The Project and Classes Scouts
When you create a new combine, you can make use of the Project Scout (accessed via the View ➤
Project menu option) to view the set of files, referenced assemblies, and resource files of each project
(see Figure 2-9).

When you wish to reference an external assembly for your current project, simply right-click
the References icon within the Project Scout and select the Add Reference context menu. Once you
do, you may select assemblies directly from the GAC as well as custom assemblies via the .NET
Assembly Browser tab (see Figure 2-10).

5785ch02.qxd 3/31/06 10:13 AM Page 45

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS46

The Classes Scout (accessed via the View ➤ Classes menu option) provides a more object-
oriented view of your combine in that it displays the namespaces, types, and members within each
project (see Figure 2-11).

If you double-click any item, SharpDevelop responds by opening the corresponding file and
placing your mouse cursor at the item’s definition.

The Assembly Scout
The Assembly Scout utility (accessible from the View menu) allows you to graphically browse the
assemblies referenced within your project. This tool is split into two panes. On the left is a tree-view
control that allows you to drill into an assembly and view its namespaces and the contained types
(see Figure 2-12).

The right side of the Assembly Scout utility allows you to view details of the item selected on
the left pane. Not only can you view the basic details using the Info tab, but also you can view the
underlying CIL code of the item and save its definition to an XML file.

Figure 2-11. The Classes Scout

Figure 2-12. Viewing referenced assemblies using the Assembly Scout

5785ch02.qxd 3/31/06 10:13 AM Page 46

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 47

Windows Forms Designers
As you will learn later in this book, Windows Forms is a toolkit used to build desktop applications
with the .NET platform. To continue tinkering with SharpDevelop, click the Design tab located at
the bottom of the MainForm.vb code window. Once you do, you will open the integrated Windows
Forms designer.

Using the Windows Forms section of your Tools window, you can create a GUI for the Form you
are designing. To demonstrate this, place a single Button type on your main Form by activating the
Tools Scout (via the View menu), selecting the Button icon, and clicking the designer. To update the
look and feel of any GUI item, you can make use of the Properties window (see Figure 2-13), which
you activate from the View ➤ Properties menu selection. Select the Button from the drop-down list
and change various aspects of the Button type (e.g., BackColor and Text).

Using this same window, you can handle events for a given GUI item. To do so, click the
lightning bolt icon at the top of the Properties window. Next, select the GUI item you wish to inter-
act with from the drop-down list (your Button in this case). Finally, handle the Click event by typing
in the name of the method to be called when the user clicks the button (see Figure 2-14).

Figure 2-13. The Properties window

Figure 2-14. Handing events via the Properties window

5785ch02.qxd 3/31/06 10:13 AM Page 47

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS48

Once you press the Enter key, SharpDevelop responds by generating stub code for your new
method. To complete the example, enter the following statement within the scope of your event
handler:

Private Sub ButtonClicked(sender As System.Object, _

e As System.EventArgs)

' Update the Form's caption with a custom message.

Me.Text = "Stop clicking my button!"

End Sub

At this point, you can run your program (using the Debug ➤ Run menu item). Sure enough,
when you click your Button, you should see the Form’s caption update as expected.

That should be enough information to get you up and running using the SharpDevelop IDE.
I do hope you now have a good understanding of the basics, though obviously there is much more
to this tool than presented here.

Building .NET Applications Using Visual Basic
2005 Express
During the summer of 2004, Microsoft introduced a brand-new line of IDEs that fall under the des-
ignation of “Express” products (http://msdn.microsoft.com/vstudio/express). To date, there are six
members of the Express family:

• Visual Web Developer 2005 Express: A lightweight tool for building dynamic websites and
XML web services using ASP.NET 2.0

• Visual Basic 2005 Express: A streamlined programming tool ideal for .NET programmers who
want to learn how to build applications using the user-friendly syntax of Visual Basic

• C# Express,Visual C++ 2005 Express, and Visual J# 2005 Express: Targeted IDEs for students and
enthusiasts who wish to learn the fundamentals of computer science in their syntax of choice

• SQL Server 2005 Express: An entry-level database management system geared toward hobby-
ists, enthusiasts, and student developers

■Note At the time of this writing, the Express family products are available free of charge for one calendar year.
After that term of use has expired, you may purchase a given Express IDE for around US$49.00.

By and large, Express products are slimmed-down versions of their Visual Studio 2005 counterparts
and are primarily targeted at .NET hobbyists and students. Like SharpDevelop, Visual Basic 2005
Express provides various object browsing tools, a Windows Forms designer, the Add References dia-
log box, IntelliSense capabilities, and code expansion templates. As well, Visual Basic 2005 Express
offers a few (important) features currently not available in SharpDevelop, including

• An integrated graphical debugger

• Tools to simplify access to XML web services

Because the look and feel of Visual Basic 2005 Express is so similar to that of Visual Studio 2005
(and, to some degree, SharpDevelop) I will not provide a full walk-through of this particular IDE
here. However, once you have installed this product, you may create a new Visual Basic 2005 project

5785ch02.qxd 3/31/06 10:13 AM Page 48

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 49

via the File ➤ New Project menu option. Notice in Figure 2-15 that not only are you able to define
Windows, console, and code library–based projects, but also you can create a new “starter kit”
application. Simply put, starter kits are complete VB 2005 applications that can be dissected and
extended to your liking.

The Big Kahuna: Building .NET Applications Using
Visual Studio 2005
If you are a professional .NET software engineer, the chances are extremely good that your employer
has purchased Microsoft’s premier IDE, Visual Studio 2005, for your development endeavors
(http://msdn.microsoft.com/vstudio/products). This tool is far and away the most feature-rich
and enterprise-ready IDE examined in this chapter. Of course, this power comes at a price, which
will vary based on the version of Visual Studio 2005 you purchase. As you might suspect, each ver-
sion supplies a unique set of features.

My assumption during the remainder of this text is that you have chosen to make use of Visual
Studio 2005 as your IDE of choice. Do understand that owning a copy of Visual Studio 2005 is not
required for you to use this edition of the text. In the worst case, I may examine an option that is not
provided by your IDE. However, rest assured that all of this book’s sample code will compile just fine
when processed by your tool of choice.

■Note Once you download the source code for this book from the Downloads area of the Apress website
(http://www.apress.com), you may load the current example into Visual Studio 2005 by double-clicking the
example’s *.sln file. If you are not using Visual Studio 2005, you will need to manually configure your IDE to
compile the provided *.vb files.

Figure 2-15. Creating a new Visual Basic 2005 Express project

5785ch02.qxd 3/31/06 10:13 AM Page 49

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS50

Learning the Lay of the Land: Visual Studio 2005
Visual Studio 2005 ships with the expected GUI designers, database manipulation tools, object and
file browsing utilities, and an integrated help system. Unlike the IDEs we have already examined,
Visual Studio 2005 provides numerous additions. Here is a partial list:

• Visual XML editors/designers

• Support for mobile device development (such as Smartphones and Pocket PC devices)

• Support for Microsoft Office development

• The ability to track changes for a given source document and view revisions

• Support for XML-based code expansions

• Visual tools to construct ASP.NET 2.0 web applications

To be completely honest, Visual Studio 2005 provides so many features that it would take an
entire book (and a large book at that) to fully describe every aspect of the IDE. This is not that book.
However, I do want to point out some of the major enhancements in the pages that follow. As you
progress through the text, you’ll learn more about the Visual Studio 2005 IDE where appropriate.

The Solution Explorer Utility
If you are following along, create a new VB 2005 console application (named Vs2005Example) using
the File ➤ New ➤ Project menu item. The Solution Explorer utility (accessible from the View menu)
allows you to view the set of all content files and referenced assemblies that comprise the current
project (see Figure 2-16).

Similar to SharpDevelop, when you need to reference additional assemblies, right-click the
Project icon and select Add Reference. At this point, you can select your assembly from the resulting
dialog box (console projects reference System.dll, System.Data.dll, System.Deployment.dll, and
System.Xml.dll by default).

■Note If you wish to view the set of all assemblies referenced by your current project, one way to do so is to
click the Show All Files button at the top of Solution Explorer and open the References folder. Once you do, you will
see an icon for each assembly currently referenced.

The My Project Perspective
Next, notice an icon named My Project within Solution Explorer. When you double-click this item,
you are presented with an enhanced project configuration editor (see Figure 2-17).

Figure 2-16. Visual Studio 2005 Solution Explorer

5785ch02.qxd 3/31/06 10:13 AM Page 50

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 51

You will see various aspects of the Project Properties window as you progress through this text.
However, if you take some time to poke around, you will see that you can establish various security
settings, “strongly name” your assembly, insert string resources, and configure pre- and postbuild
events.

The Class View Utility
The next tool to examine is the Class View utility, which you can load from the View menu. Like
SharpDevelop, the purpose of this utility is to show all of the types in your current project from an
object-oriented perspective. The top pane displays the set of namespaces and their types, while the
bottom pane displays the currently selected type’s members (see Figure 2-18).

The Object Browser Utility
As you may recall from Chapter 1, Visual Studio 2005 also provides a utility to investigate the set of
referenced assemblies within your current project. Activate the Object Browser using the View ➤
Other Windows menu, and then select the assembly you wish to investigate (see Figure 2-19).

Figure 2-17. The MyProject window

Figure 2-18. The Class View utility

5785ch02.qxd 3/31/06 10:13 AM Page 51

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS52

Visual Studio 2005 Code Snippet Technology
Visual Studio 2005 (as well as Visual Basic 2005 Express) also has the capability to insert complex
blocks of VB 2005 code using menu selections, context-sensitive mouse clicks, and/or keyboard
shortcuts using code snippets. Simply put, a code snippet is a predefined block of Visual Basic 2005
code that will expand within the active code file. As you would guess, code snippets can greatly help
increase productivity given that the tool will generate the necessary code statements (rather than us!).

To see this functionality firsthand, right-click a blank line within your Main() method and acti-
vate the Insert Snippet menu. From here, you will see that related code snippets are grouped under
a specific category (Collections, Math, Security, XML, etc.). For this example, select the Math cate-
gory and then activate the Calculate a Monthly Payment on a Loan snippet (see Figure 2-20).

Once you select a given snippet, you will find the related code is expanded automatically (press
the Esc key to dismiss the pop-up menu). Many predefined code snippets identify specific “place-
holders” for custom content. For example, once you activate the Calculate a Monthly Payment on
a Loan snippet, you will find three regions are highlighted within the code window. Using the Tab
key, you are able to cycle through each selection to modify the code as you see fit (see Figure 2-21).

Figure 2-19. The Visual Studio 2005 Object Browser utility

Figure 2-20. Inserting VB 2005 code snippets

5785ch02.qxd 3/31/06 10:13 AM Page 52

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 53

As you can see, Visual Studio 2005 defines a good number of code snippets. To be sure, the best
way to learn about each possibility is simply through experimentation. Under the hood, each code
snippet is defined within an XML document (taking a *.snippet extension by default) located under
the C:\Program Files\Microsoft Visual Studio 8\Vb\Snippets\1033 directory. In fact, given that each
snippet is simply an XML description of the code to be inserted within the IDE, it is very simple to
build custom code snippets.

■Note Details of how to build custom snippets can be found in my article “Investigating Code Snippet Technology”
at http://msdn.microsoft.com. While the article illustrates building C# code snippets, you can very easily build
VB 2005 snippets by authoring VB 2005 code (rather than C# code) within the snippet’s CDATA section.

The Visual Class Designer
Visual Studio 2005 gives us the ability to design classes visually (but this capability is not included
in Visual Basic 2005 Express). The Class Designer utility allows you to view and modify the relation-
ships of the types (classes, interfaces, structures, enumerations, and delegates) in your project.
Using this tool, you are able to visually add (or remove) members to (or from) a type and have your
modifications reflected in the corresponding *.vb file. As well, as you modify a given VB 2005 file,
changes are reflected in the class diagram.

To work with this aspect of Visual Studio 2005, the first step is to insert a new class diagram file.
There are many ways to do so, one of which is to click the View Class Diagram button located on
Solution Explorer’s right side (see Figure 2-22).

Figure 2-21. The inserted snippet

5785ch02.qxd 3/31/06 10:13 AM Page 53

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS54

Once you do, you will find class icons that represent the classes in your current project. If you
click the arrow image, you can show or hide the type’s members (see Figure 2-23). Do note that
Visual Studio 2005 will show you all members in the current project by default. If you wish to delete
a given item from the diagram, simply right-click and select Delete from the context menu (this will
not delete the related code file).

This utility works in conjunction with two other aspects of Visual Studio 2005: the Class Details
window (activated using the View ➤ Other Windows menu) and the Class Designer Toolbox (activated
using the View ➤ Toolbox menu item). The Class Details window not only shows you the details of
the currently selected item in the diagram, but also allows you to modify existing members and
insert new members on the fly (see Figure 2-24).

Figure 2-22. Inserting a class diagram file

Figure 2-23. The Class Diagram viewer

5785ch02.qxd 3/31/06 10:13 AM Page 54

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 55

The Class Designer Toolbox (see Figure 2-25) allows you to insert new types into your project (and
create relationships between these types) visually. (Be aware that you must have a class diagram as
the active window to view this toolbox.) As you do so, the IDE automatically creates new VB 2005
type definitions in the background.

By way of example, drag a new class from the Class Designer Toolbox onto your Class Designer.
Name this class Car in the resulting dialog box. Now, using the Class Details window, add a public
String field named petName (see Figure 2-26).

Figure 2-24. The Class Details window

Figure 2-25. The Class Designer Toolbox

5785ch02.qxd 3/31/06 10:13 AM Page 55

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS56

If you now look at the VB 2005 definition of the Car class (within the newly generated Car.vb
file), you will see it has been updated accordingly:

Public Class Car

' Public data is typically a bad idea,

' however it will simplify this example.

Public petName As String

End Class

Now, add another new class to the designer named SportsCar. Next, select the Inheritance icon
from the Class Designer Toolbox and click the SportsCar icon. Without releasing the mouse button,
move the mouse cursor on top of the Car class icon and release the mouse button. If you performed
these steps correctly, you have just derived the SportsCar class from Car (see Figure 2-27).

To complete this example, update the generated SportsCar class with a public method named
PrintPetName() as follows (don’t concern yourself with the syntax at this point; you’ll dig into the
details of class design beginning in the next chapter):

Figure 2-26. Adding a field with the Class Details window

Figure 2-27. Visually deriving from an existing class

5785ch02.qxd 3/31/06 10:13 AM Page 56

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 57

Public Class SportsCar

Inherits Car

Public Sub PrintPetName()

petName = "Fred"

Console.WriteLine("Name of this car is: {0}", petName)

End Sub

End Class

Object Test Bench
Another nice visual tool provided by Visual Studio 2005 is Object Test Bench (OTB). This aspect of
the IDE allows you to quickly create an instance of a class and invoke its members without the need
to compile and run the entire application. This can be extremely helpful when you wish to test
a specific method, but would rather not step through dozens of lines of code to do so.

To work with OTB, right-click the type you wish to create using the Class Designer. For example,
right-click the SportsCar type, and from the resulting context menu select Create Instance ➤
SportsCar(). This will display a dialog box that allows you to name your temporary object variable
(and supply any constructor arguments if required). Once the process is complete, you will find your
object hosted within the IDE. Right-click the object icon and invoke the PrintPetName() method
(see Figure 2-28).

You will see the message “Name of this car is: Fred” appear within the Visual Studio 2005 Quick
Console.

The Integrated Help System
The final aspect of Visual Studio 2005 you must be comfortable with from the outset is the fully inte-
grated help system. The .NET Framework 2.0 SDK documentation (aka, the MSDN Library) is
extremely good, very readable, and full of useful information. Given the huge number of predefined
.NET types (which number well into the thousands), you must be willing to roll up your sleeves and
dig into the provided documentation. If you resist, you are doomed to a long, frustrating, and painful
existence as a .NET developer.

Visual Studio 2005 provides the Dynamic Help window (accessed via the Help ➤ Dynamic Help
menu selection), which changes its contents (dynamically!) based on what item (window, menu, source
code keyword, etc.) is currently selected. For example, if you place the cursor on the Console class,
the Dynamic Help window displays a set of links regarding the System.Console type.

You should also be aware of a very important subdirectory of the .NET Framework 2.0 SDK
documentation. Under the .NET Development ➤ .NET Framework SDK ➤ Class Library Reference

Figure 2-28. The Visual Studio 2005 Object Test Bench

5785ch02.qxd 3/31/06 10:13 AM Page 57

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS58

node of the documentation, you will find complete documentation of each and every namespace in
the .NET base class libraries (see Figure 2-29).

Each “book” defines the set of types in a given namespace, the members of a given type, and
the parameters of a given member. Furthermore, when you view the help page for a given type, you
will be told the name of the assembly and namespace that contains the type in question (located at
the top of said page). As you read through the remainder of this book, I assume that you will dive
into this very, very critical node to read up on additional details of the entity under examination.

■Note I’d like to stress again the importance of working with the supplied .NET Framework 2.0 documentation.
When you are learning a brand-new framework and programming language, you will need to roll up your sleeves
and dig into the details. No book, regardless of its size, can cover every detail of building applications with Visual
Basic 2005. Thus, if you encounter a type or member that you would like more information about as you work
through this text, be sure to leverage your help system!

The Role of the Visual Basic 6.0 Compatibility
Assembly
As you will most certainly come to realize over the course of this book, Visual Basic 2005 is such as
major overhaul of VB6 that it is often best to simply regard VB 2005 as a brand-new language in the
BASIC family, rather than as “Visual Basic 7.0.” To this end, many familiar VB6 functions, enumera-
tions, user-defined types, and intrinsic objects are nowhere to be found directly within the .NET
base class libraries.

While this is technically true, every Visual Basic 2005 project created with Visual Studio 2005 (as
well as Visual Basic 2005 Express Edition) automatically references a particular .NET assembly
named Microsoft.VisualBasic.dll, which defines types that provide the same functionality of the
legacy VB6 constructs. As you would expect, the Microsoft.VisualBasic.dll assembly is composed
of numerous namespaces that group together likeminded types (see Figure 2-30).

Figure 2-29. The .NET base class library reference

5785ch02.qxd 3/31/06 10:13 AM Page 58

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 59

Furthermore, each of these namespaces are automatically available to each *.vb file in your
project. Given this point, you do not need to explicitly add a set of Imports statements to gain access
to their types. Thus, if you wished to do so, you could still make use of various VB6-isms, such as the
MsgBox() call to display a simple message box:

' The Microsoft.VisualBasic namespaces

' are automatically referenced by a

' Visual Studio 2005 VB project.

Module Module1

Sub Main()

MsgBox("Hello, old friend...")

End Sub

End Module

Notice how it appears that you are calling a global method named MsgBox() directly within Main().
In reality, the MsgBox() method is a member of a VB 2005 Module type named Interaction that is
defined within the Microsoft.VisualBasic namespace (see Figure 2-31).

As you will see in Chapter 3, a VB 2005 Module is similar to a VB6 *.bas file, in that members
defined within a Module can be directly called without the need to prefix the name of the defining
Module. However, if you were to prefix the Interaction Module to the MsgBox() function, the pro-
gram would function identically:

Figure 2-30. The Microsoft.VisualBasic.dllVB6 compatibility assembly

Figure 2-31. The Microsoft.VisualBasic.Interaction.MsgBox() method

5785ch02.qxd 3/31/06 10:13 AM Page 59

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS60

Module Module1

Sub Main()

Interaction.MsgBox("Everything old is new again!")

End Sub

End Module

Now although it may feel a bit reassuring to know that the functionality of VB6 can still be
accessed from new Visual Basic 2005 projects, I recommend that you avoid using these types where
possible. First of all, the writing seems to be on the wall regarding the lifetime of VB6, in that Microsoft
itself plans to phase out support for VB6 over time, and given this, you cannot guarantee that this
compatibility assembly will be supported in the future.

As well, the base class libraries provide numerous managed types that offer much more func-
tionality than the (soon-to-be) legacy VB6 programming language. Given these points, this text will
not make use of the VB6 compatibility layer. Rather, you will focus on learning the .NET base class
libraries and how to interact with these types using the syntax of Visual Basic 2005.

A Partial Catalogue of Additional .NET
Development Tools
Given the release of the .NET platform, Microsoft-centric programmers are now able to dive into
the world of open source programming. As you may know, the Java and Unix/Linux communities
have made use of this model for years. Simply put, open source development allows programmers
to download free software tools with the underlying source code in order to extend or change the
tool’s functionality. (SharpDevelop is one example of such an open source application.)

To close this chapter, I would like to point out a number of .NET development tools that com-
plement the functionality provided by your IDE of choice. While I don’t have the space to cover the
details of these utilities, Table 2-3 lists a number of the tools I have found to be extremely helpful as
well as URLs you can visit to find more information about them (of course, the URLs are subject to
change).

Table 2-3. Select .NET Development Tools

Tool Meaning in Life URL

FxCop This is a must-have for any .NET http://www.gotdotnet.com/
developer interested in .NET best team/fxcop
practices. FxCop will test any .NET
assembly against the official
Microsoft .NET best-practice
coding guidelines.

Lutz Roeder’s This advanced .NET decompiler/ http://www.aisto.com/roeder/
Reflector for .NET object browser allows you to view the dotnet

.NET implementation of any .NET type
using CIL, VB 2005, Object Pascal .NET
(Delphi), and Visual Basic .NET.

NAnt NAnt is the .NET equivalent of Ant, http://sourceforge.net/
the popular Java automated build tool. projects/nant
NAnt allows you to define and execute
detailed build scripts using an
XML-based syntax.

5785ch02.qxd 3/31/06 10:13 AM Page 60

CHAPTER 2 ■ BUILDING VISUAL BASIC 2005 APPLICATIONS 61

Tool Meaning in Life URL

NDoc NDoc is a tool that will generate code http://sourceforge.net/
documentation files for VB 2005 code projects/ndoc
(or a compiled .NET assembly) in a variety
of popular formats (MSDN’s *.chm, XML,
HTML, Javadoc, and LaTeX).

NUnit NUnit is the .NET equivalent of the http://www.nunit.org
Java-centric JUnit unit testing tool. Using
NUnit, you are able to facilitate the
testing of your managed code.

Refactor! To the disappointment of many, http://msdn.microsoft.com/
Microsoft has chosen not to integrate vbasic/downloads/2005/tools/
refactoring capabilities for Visual refactor/
Basic 2005 projects. The good news is
that this freely downloadable plug-in
allows Visual Basic 2005 developers to
apply dozens of code refactorings using
Visual Studio 2005.

Vil Think of Vil as a friendly “big brother” for http://www.1bot.com
.NET developers. This tool will analyze
your .NET code and offer various opinions
as to how to improve your code via
refactoring, structured exception
handling, and so forth.

Summary
So as you can see, you have many new toys at your disposal! The point of this chapter was to provide
you with a tour of the major programming tools a VB 2005 programmer may leverage during the
development process. You began the journey by learning how to generate .NET assemblies using
nothing other than the free VB 2005 compiler and Notepad. Next, you were introduced to the TextPad
application and walked through the process of enabling this tool to edit and compile *.vb code files.

You also examined three feature-rich IDEs, starting with the open source SharpDevelop, followed
by Microsoft’s Visual Basic 2005 Express and Visual Studio 2005. While this chapter only scratched
the surface of each tool’s functionality, you should be in a good position to explore your chosen IDE
at your leisure. The chapter wrapped up by describing the role of Microsoft.VisualBasic.dll and
examined a number of open source .NET development tools that extend the functionality of your
IDE of choice.

5785ch02.qxd 3/31/06 10:13 AM Page 61

5785ch02.qxd 3/31/06 10:13 AM Page 62

Visual Basic 2005 Language
Fundamentals

P A R T 2

■ ■ ■

5785ch03.qxd 3/31/06 10:18 AM Page 63

5785ch03.qxd 3/31/06 10:18 AM Page 64

65

C H A P T E R 3

■ ■ ■

VB 2005 Programming Constructs,
Part I

This chapter begins your formal investigation of the Visual Basic 2005 programming language. Do
be aware this chapter and the next will present a number of bite-sized stand-alone topics you must
be comfortable with as you explore the .NET Framework. Unlike the remaining chapters in this text,
there is no overriding theme in this part beyond examining the core syntactical features of VB 2005.

This being said, the first order of business is to understand the role of the Module type as well as
the format of a program’s entry point: the Main() method. Next, you will investigate the intrinsic
VB 2005 data types (and their equivalent types in the System namespace) as well as various data
type conversion routines. We wrap up by examining the set of operators, iteration constructs, and
decision constructs used to build valid code statements.

The Role of the Module Type
Visual Basic 2005 supports a specific programming construct termed a Module. For example, when
you create a console application using Visual Studio 2005, you automatically receive a *.vb file that
contains the following code:

Module Module1

Sub Main()

End Sub

End Module

Under the hood, a Module is actually nothing more than a class type, with a few notable excep-
tions. First and foremost, any public function, subroutine, or member variable defined within the
scope of a module is exposed as a “shared member” that is directly accessible throughout an appli-
cation. Simply put, shared members allow us to simulate a global scope within your application that
is roughly analogous to the functionality of a VB 6.0 *.bas file (full details on shared members can
be found in Chapter 5).

Given that members in a Module type are directly accessible, you are not required to prefix the
module’s name when accessing its contents. To illustrate working with modules, create a new con-
sole application project (named FunWithModules) and update your initial Module type as follows:

Module Module1

Sub Main()

' Show banner.

DisplayBanner()

5785ch03.qxd 3/31/06 10:18 AM Page 65

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I66

' Get user name and say howdy.

GreetUser()

End Sub

Sub DisplayBanner()

' Pick your color of choice for the console text.

Console.ForegroundColor = ConsoleColor.Yellow

Console.WriteLine("******* Welcome to FunWithModules *******")

Console.WriteLine("This simple program illustrates the role")

Console.WriteLine("of the VB 2005 Module type.")

Console.WriteLine("***")

' Reset to previous color of your console text.

Console.ForegroundColor = ConsoleColor.Green

Console.WriteLine()

End Sub

Sub GreetUser()

Dim userName As String

Console.Write("Please enter your name: ")

userName = Console.ReadLine()

Console.WriteLine("Hello there {0}. Nice to meet ya.", userName)

End Sub

End Module

Figure 3-1 shows one possible output.

Projects with Multiple Modules
In our current example, notice that the Main() method is able to directly call the DisplayBanner()
and GreetUser() methods. Because these methods are defined within the same module as Main(),
we are not required to prefix the name of our module (Module1) to the member name. However, if
you wish to do so, you could retrofit Main() as follows:

Sub Main()

' Show banner.

Module1.DisplayBanner()

' Get user name and say howdy.

Module1.GreetUser()

End Sub

In this case, this is a completely optional bit of syntax (there is no difference in terms of per-
formance or the size of the compiled assembly). However, assume you were to define a new module
(MyModule) in your project (within the same *.vb file, for example), which defines an identically formed
GreetUser() method:

Figure 3-1. Modules at work

5785ch03.qxd 3/31/06 10:18 AM Page 66

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 67

Module MyModule

Public Sub GreetUser()

Console.WriteLine("Hello user...")

End Sub

End Module

If you wish to call MyModule.GreetUser() from within the Main() method, you would now need
to explicitly prefix the module name. If you do not specify the name of the module, the Main() method
automatically calls the Module1.GreetUser() method, as it is in the same scope as Main():

Sub Main()

' Show banner.

DisplayBanner()

' Call the GreetUser() method in MyModule.

MyModule.GreetUser()

End Sub

Again, do understand that when a single project defines multiple modules, you are not required
to prefix the module name unless the methods are ambiguous. Thus, if your current project were to
define yet another module named MyMathModule:

Module MyMathModule

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

Function Subtract(ByVal x As Integer, ByVal y As Integer) As Integer

Return x - y

End Function

End Module

you could directly invoke the Add() and Subtract() functions anywhere within your application (or
optionally prefix the module’s name):

Sub Main()

...

' Add some numbers.

Console.WriteLine("10 + 10 is {0}.", Add(10, 10))

' Subtract some numbers

' (module prefix optional)

Console.WriteLine("10 - 10 is {0}.", MyMathModule.Subtract(10, 10))

End Sub

■Note If you are new to the syntax of BASIC languages, rest assured that Chapter 4 will cover the details of
building functions and subroutines using VB 2005.

Modules Are Not Creatable
Another trait of the Module type is that it cannot be directly created using the VB 2005 New keyword
(any attempt to do so will result in a compiler error). Therefore the following code is illegal:

' Nope! Error, can't allocated modules!

Dim m as New Module1()

Rather, a Module type simply exposes shared members.

5785ch03.qxd 3/31/06 10:18 AM Page 67

68 CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I

■Note If you already have a background in object-oriented programming, be aware that Module types cannot be
used to build class hierarchies as they are implicitly sealed. As well, unlike “normal” classes, modules cannot
implement interfaces.

Renaming Your Initial Module
By default, Visual Studio 2005 names the initial Module type with the rather nondescript Module1. If
you were to change the name of the module defining your Main() method to a more fitting name
(Program, for example), the compiler will generate an error such as the following:

'Sub Main' was not found in 'FunWithModules.Module1'.

In order to inform Visual Studio 2005 of the new module name, you are required to reset the
“startup object” using the Application tab of the My Project dialog box, as you see in Figure 3-2.

Once you do so, you will be able to compile your application without error.

■Note As a shortcut, if you double-click this specific compiler error within the VS 2005 Error List window, you
will be presented with a dialog box that allows you to select the new name of your project’s entry point.

Members of Modules
To wrap up our investigation of Module types, do know that modules can have additional members
beyond subroutines and functions. If you wish to define field data (as well as other members, such
as properties or events), you are free to do so. For example, assume you wish to update MyModule to
contain a single piece of public string data. Note that the GreetUser() method will now print out
this value when invoked:

Module MyModule

Public userName As String

Figure 3-2. Resetting the module name

5785ch03.qxd 3/31/06 10:18 AM Page 68

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 69

Sub GreetUser()

Console.WriteLine("Hello, {0}.", userName)

End Sub

End Module

Like any Module member, the userName field can be directly accessed by any part of your appli-
cation. For example:

Sub Main()

...

' Set userName and call second form of GreetUser().

userName = "Fred"

MyModule.GreetUser()

...

End Sub

■Source Code The FunWithModules project is located under the Chapter 3 subdirectory.

The Role of the Main Method
Every VB 2005 executable application (such as a console program, Windows service, or Windows
Forms application) must contain a type defining a Main() method, which represents the entry point
of the application. As you have just seen, the Main() method is typically placed within a Module type,
which as you recall implicitly defines Main() as a shared method.

Strictly speaking, however, Main() can also be defined within the scope of a Class type or Structure
type as well. If you do define your Main() method within either of these types, you must explicitly
make use of the Shared keyword. To illustrate, create a new console application named FunWithMain.
Delete the code within the initial *.vb file and replace it with the following:

Class Program

' Unlike Modules, members in a Class are not

' automatically shared.

Shared Sub Main()

End Sub

End Class

If you attempt to compile your program, you will again receive a compiler error informing you
that the Main() method cannot be located. Using the Application tab of the My Project dialog box,
you can now specify Sub Main() as the entry point to the program (as previously shown in Figure 3-2).

Processing Command-line Arguments Using System.Environment
One common task Main() will undertake is to process any incoming command-line arguments. For
example, consider the VB 2005 command-line compiler, vbc.exe (see Chapter 2). As you recall, we
specified various options (such as /target, /out, and so forth) when compiling our code files. The
vbc.exe compiler processed these input flags in order to compile the output assembly. When you
wish to build a Main() method that can process incoming command-line arguments for your cus-
tom applications, you have a few possible ways to do so.

Your first approach is to make use of the shared GetCommandLineArgs() method defined by the
System.Environment type. This method returns you an array of String data types. The first item in
the array represents the path to the executable program, while any remaining items in the array
represent the command-line arguments themselves. To illustrate, update your current Main() method
as follows:

5785ch03.qxd 3/31/06 10:18 AM Page 69

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I70

Class Program

Shared Sub Main()

Console.WriteLine("***** Fun with Main() *****")

' Get command-line args.

Dim args As String() = Environment.GetCommandLineArgs()

Dim s As String

For Each s In args

Console.WriteLine("Arg: {0}", s)

Next

End Sub

End Class

If you were to now run your application at the command prompt, you can feed in your arguments
in an identical manner as you did when working with vbc.exe (see Figure 3-3).

Of course, it is up to you to determine which command-line arguments your program will
respond to and how they must be formatted (such as with a - or / prefix). Here we simply passed in
a series of options that were printed to the command prompt. Assume however you were creating
a new video game using Visual Basic 2005 and programmed your application to process an option
named -godmode. If the user starts your application with the flag, you know the user is in fact a cheater,
and can take an appropriate course of action.

Processing Command-line Arguments with Main()
If you would rather not make use of the System.Environment type to process command-line arguments,
you can define your Main() method to take an incoming array of strings. To illustrate, update your
code base as follows:

Shared Sub Main(ByVal args As String())

Console.WriteLine("***** Fun with Main() *****")

' Get command-line args.

Dim s As String

For Each s In args

Console.WriteLine("Arg: {0}", s)

Next

End Sub

When you take this approach, the first item in the incoming array is indeed the first command-
line argument (rather than the path to the executable). If you were to run your application once again,
you will find each command-line option is printed to the console.

Figure 3-3. Processing command-line arguments

5785ch03.qxd 3/31/06 10:18 AM Page 70

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 71

Main() As a Function (not a Subroutine)
It is also possible to define Main() as a function returning an Integer, rather than a subroutine (which
never has a return value). This approach to building a Main() method has its roots in C-based languages,
where returning the value 0 indicates the program has terminated without error. You will seldom (if
ever) need to build your Main() method in this manner; however, for the sake of completion, here is
one example:

Shared Function Main(ByVal args As String()) As Integer

Console.WriteLine("***** Fun with Main() *****")

Dim s As String

For Each s In args

Console.WriteLine("Arg: {0}", s)

Next

' Return a value to the OS.

Return 0

End Function

Regardless of how you define your Main() method, the purpose remains the same: interact with
the types that carry out the functionality of your application. Once the final statement within the Main()
method has executed, Main() exits and your application terminates.

Simulating Command-line Arguments Using Visual Studio 2005
Finally, let me point out that Visual Studio 2005 does allow you to simulate incoming command-line
arguments. Rather than having to run your application at a command line to feed in arguments,
you can explicitly specify arguments using the Debug tab of the My Project dialog box, shown in
Figure 3-4 (note the Command line arguments text area).

Figure 3-4. Simulating command-line arguments

When you compile and run your application under Debug mode, the specified arguments are
passed to your Main() method automatically. Do know that when you compile and run a Release
build of your application (which can be established using the Compile tab of the My Project dialog
box), this is no longer the case.

5785ch03.qxd 3/31/06 10:18 AM Page 71

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I72

An Interesting Aside: Some Additional Members of
the System.Environment Class
The Environment type exposes a number of extremely helpful methods beyond GetCommandLineArgs().
This class allows you to obtain a number of details regarding the operating system currently
hosting your .NET application using various shared members. To illustrate the usefulness of
System.Environment, update your Main() method with the following logic:

Shared Function Main(ByVal args As String()) As Integer

...

' OS running this app?

Console.WriteLine("Current OS: {0}", Environment.OSVersion)

' List the drives on this machine.

Dim drives As String() = Environment.GetLogicalDrives()

Dim d As String

For Each d In drives

Console.WriteLine("You have a drive named {0}.", d)

Next

' Which version of the .NET platform is running this app?

Console.WriteLine("Executing version of .NET: {0}", _

Environment.Version)

Return 0

End Function

Figure 3-5 shows a possible test run.

The Environment type defines members other than those seen in the previous example. Table 3-1
documents some additional properties of interest; however, be sure to check out the .NET Framework
2.0 SDK documentation for full details.

Figure 3-5. Displaying system environment variables

5785ch03.qxd 3/31/06 10:18 AM Page 72

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 73

Table 3-1. Select Properties of System.Environment

Property Meaning in Life

CurrentDirectory Gets the full path to the current application

MachineName Gets the name of the current machine

NewLine Gets the newline symbol for the current environment

ProcessorCount Returns the number of processors on the current machine

SystemDirectory Returns the full path to the system directory

UserName Returns the name of the user that started this application

■Source Code The FunWithMain project is located under the Chapter 3 subdirectory.

The System.Console Class
Almost all of the example applications created over the course of the initial chapters of this text make
extensive use of the System.Console class. While it is true that a console user interface (CUI) is not as
enticing as a graphical user interface (GUI) or web-based front end, restricting the early examples to
console applications will allow us to keep focused on the syntax of Visual Basic 2005 and the core
aspects of the .NET platform, rather than dealing with the complexities of building GUIs.

As its name implies, the Console class encapsulates input, output, and error stream manipula-
tions for console-based applications. While System.Console has been a part of the .NET Framework
since its inception, with the release of .NET 2.0, the Console type has been enhanced with additional
functionality. Table 3-2 lists some (but definitely not all) of the new members of interest.

Table 3-2. Select .NET 2.0–Specific Members of System.Console

Member Meaning in Life

Beep() Forces the console to emit a beep of a specified frequency and duration.

BackgroundColor These properties set the background/foreground colors for the current output.
ForegroundColor They may be assigned any member of the ConsoleColor enumeration.

BufferHeight These properties control the height/width of the console’s buffer area.
BufferWidth

Title This property sets the title of the current console.

WindowHeight These properties control the dimensions of the console in relation to the
WindowWidth established buffer.
WindowTop
WindowLeft

Clear() This method clears the established buffer and console display area.

Basic Input and Output with the Console Class
In addition to the members in Table 3-2, the Console type defines a set of methods to capture input
and output, all of which are shared and are therefore called by prefixing the name of the class (Console)
to the method name. As you have seen, WriteLine() pumps a text string (including a carriage return) to
the output stream. The Write() method pumps text to the output stream without a carriage return.
ReadLine() allows you to receive information from the input stream up until the carriage return, while
Read() is used to capture a single character from the input stream.

5785ch03.qxd 3/31/06 10:18 AM Page 73

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I74

To illustrate basic I/O using the Console class, create a new console application named
BasicConsoleIO and update your Main() method with logic that prompts the user for some bits of infor-
mation and echoes each item to the standard output stream.

Sub Main()

Console.WriteLine("***** Fun with Console IO *****")

' Echo some information to the console.

Console.Write("Enter your name: ")

Dim s As String = Console.ReadLine()

Console.WriteLine("Hello, {0}", s)

Console.Write("Enter your age: ")

s = Console.ReadLine()

Console.WriteLine("You are {0} years old", s)

End Sub

Formatting Console Output
During these first few chapters, you have certainly noticed numerous occurrences of the tokens {0}, {1},
and the like embedded within a string literal. The .NET platform introduces a new style of string for-
matting, which can be used by any .NET programming language (including VB 2005). Simply put,
when you are defining a string literal that contains segments of data whose value is not known until
runtime, you are able to specify a placeholder within the literal using this curly-bracket syntax. At run-
time, the value(s) passed into Console.WriteLine() are substituted for each placeholder. To illustrate,
update your current Main() method as follows:

Sub Main()

...

' Specify string placeholders and values to use at

' runtime.

Dim theInt As Integer = 90

Dim theDouble As Double = 9.99

Dim theBool As Boolean = True

Console.WriteLine("Value of theInt: {0}", theInt)

Console.WriteLine("theDouble is {0} and theBool is {1}.", _

theDouble, theBool)

End Sub

The first parameter to WriteLine() represents a string literal that contains optional placeholders
designated by {0}, {1}, {2}, and so forth. Be very aware that the first ordinal number of a curly-bracket
placeholder always begins with 0. The remaining parameters to WriteLine() are simply the values
to be inserted into the respective placeholders (in this case, an Integer, a Double, and a Boolean).

■Note If you have a mismatch between the number of uniquely numbered curly-bracket placeholders and fill
arguments, you will receive a FormatException exception at runtime.

It is also permissible for a given placeholder to repeat within a given string. For example, if you
are a Beatles fan and want to build the string "9, Number 9, Number 9" you would write

' John says...

Console.WriteLine("{0}, Number {0}, Number {0}", 9)

Also know, that it is possible to position each placeholder in any location within a string literal,
and need not follow an increasing sequence. For example, consider the following code snippet:

' Prints: 20, 10, 30

Console.WriteLine("{1}, {0}, {2}", 10, 20, 30)

5785ch03.qxd 3/31/06 10:18 AM Page 74

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 75

.NET String Formatting Flags
If you require more elaborate formatting, each placeholder can optionally contain various format
characters. Each format character can be typed in either uppercase or lowercase with little or no
consequence. Table 3-3 shows your core formatting options.

Table 3-3. .NET String Format Characters

String Format Character Meaning in Life

C or c Used to format currency. By default, the flag will prefix the local cultural
symbol (a dollar sign [$] for U.S. English).

D or d Used to format decimal numbers. This flag may also specify the
minimum number of digits used to pad the value.

E or e Used for exponential notation.

F or f Used for fixed-point formatting.

G or g Stands for general. This character can be used to format a number to
fixed or exponential format.

N or n Used for basic numerical formatting (with commas).

X or x Used for hexadecimal formatting. If you use an uppercase X, your hex
format will also contain uppercase characters.

These format characters are suffixed to a given placeholder value using the colon token (e.g.,
{0:C}, {1:d}, {2:X}, and so on). Now, update the Main() method with the following logic:

' Now make use of some format tags.

Sub Main()

...

Console.WriteLine("C format: {0:C}", 99989.987)

Console.WriteLine("D9 format: {0:D9}", 99999)

Console.WriteLine("E format: {0:E}", 99999.76543)

Console.WriteLine("F3 format: {0:F3}", 99999.9999)

Console.WriteLine("N format: {0:N}", 99999)

Console.WriteLine("X format: {0:X}", 99999)

Console.WriteLine("x format: {0:x}", 99999)

End Sub

Here we are defining numerous string literals, each of which has a segment not known until
runtime. At runtime, the format character will be used internally by the Console type to print out the
entire string in the desired format.

Be aware that the use of the .NET string formatting characters are not limited to console appli-
cations! These same flags can be used when calling the shared String.Format() method. This can be
helpful when you need to build a string containing numerical values in memory for use in any appli-
cation type (Windows Forms, ASP.NET, XML web services, and so on). To illustrate, update Main() with
the following final code:

' Now make use of some format tags.

Sub Main()

...

' Use the shared String.Format() method to build a new string.

Dim formatStr As String

formatStr = _

String.Format("Don't you wish you had {0:C} in your account?", 99989.987)

Console.WriteLine(formatStr)

End Sub

5785ch03.qxd 3/31/06 10:18 AM Page 75

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I76

Figure 3-6 shows a test run of our application.

■Source Code The BasicConsoleIO project is located under the Chapter 3 subdirectory.

The System Data Types and VB 2005 Shorthand
Notation
Like any programming language, VB 2005 defines an intrinsic set of data types, which are used to
represent local variables, member variables, and member parameters. Although many of the VB 2005
data types are named identically to data types found under VB 6.0, be aware that there is not a direct
mapping (especially in terms of a data type’s maximum and minimum range). Furthermore, VB 2005
defines a set of brand new data types not supported by previous versions of the language (UInteger,
ULong, SByte) that account for signed and unsigned data.

■Note The UInteger, ULong, and SByte data types are not CLS compliant (see Chapters 1 and 14 for details on
CLS compliance). Therefore, if you expose these data types from an assembly, you cannot guarantee that every
.NET programming language will be able to process this data.

The most significant change from VB 6.0 is that the data type keywords of Visual Basic 2005 are
actually shorthand notations for full-blown types in the System namespace. Table 3-4 documents
the data types of VB 2005 (with the size of storage allocation), the System data type equivalents, and
the range of each type.

Figure 3-6. The System.Console type in action

5785ch03.qxd 3/31/06 10:18 AM Page 76

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 77

Table 3-4. The Intrinsic Data Types of VB 2005

VB 2005 Data Type System Data Type Range

Boolean System.Boolean True or False.
(platform dependent)

Byte (1 byte) System.Byte 0 to 255 (unsigned).

Char (2 bytes) System.Char 0 to 65535 (unsigned).

Date (8 bytes) System.DateTime January 1, 0001 to December 31, 9999.

Decimal (16 bytes) System.Decimal +/–79,228,162,514,264,337,593,543,950,335 with no
decimal point. +/–7.9228162514264337593543950335
with 28 places to the right of the decimal; smallest
nonzero number is
+/–0.0000000000000000000000000001.

Double (8 bytes) System.Double –1.79769313486231E+308 to
–4.94065645841247E–324 for negative values.
4.94065645841247E–324 to 1.79769313486231E+308
for positive values.

Integer (4 bytes) System.Int32 –2,147,483,648 to 2,147,483,647.

Long (8 bytes) System.Int64 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

Object (4 bytes) System.Object Any type can be stored in a variable of type Object.

SByte (1 byte) System.SByte –128 through 127 (signed).

Short (2 bytes) System.Int16 –32,768 to 32,767.

Single (4 bytes) System.Single This single-precision floating-point value can take
the range of –3.402823E+38 to –1.401298E–45 for
negative values; 1.401298E–45 to 3.402823E+38 for
positive values.

String System.String A string of Unicode characters between 0 to
(platform dependent) approximately 2 billion characters.

UInteger (4 bytes) System.UInt32 0 through 4,294,967,295 (unsigned).

ULong (8 bytes) System.UInt64 0 through 18,446,744,073,709,551,615 (unsigned).

SByte (2 bytes) System.UInt16 0 through 65,535 (unsigned).

Each of the numerical types (Short, Integer, and so forth) as well as the Date type map to a cor-
responding structure in the System namespace. In a nutshell, structures are “value types” allocated
on the stack rather than on the garbage-collected heap. On the other hand, String and Object are
“reference types,” meaning the variable is allocated on the managed heap. You examine full details
of value and reference types in Chapter 11.

5785ch03.qxd 3/31/06 10:18 AM Page 77

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I78

Variable Declaration and Initialization
When you are declaring a data type as a local variable (e.g., within a member scope), you do so using
the Dim and As keywords. By way of a few examples:

Sub MyMethod()

' Dim variableName As dataType

Dim age As Integer

Dim firstName As String

Dim isUserOnline As Boolean

End Sub

One helpful syntactic change that has occurred with the release of the .NET platform is the abil-
ity to declare a sequence of variables on a single line of code. Of course, VB 6.0 also supported this
ability, but the semantics were a bit nonintuitive and a source of subtle bugs. For example, under
VB 6.0, if you do not explicitly set the data types of each variable, the unqualified variables were set
to the VB 6.0 Variant data type:

' In this line of VB 6.0 code, varOne

' is implicitly defined to be of type Variant!

Dim varOne, varTwo As Integer

This behavior is a bit cumbersome, given that the only way you are able to define multiple
variables of the same type under VB 6.0 is to write the following slightly redundant code:

Dim varOne As Integer, varTwo As Integer

or worse yet, on multiple lines of code:

Dim varOne As Integer

Dim varTwo As Integer

Although these approaches are still valid using VB 2005, when you declare multiple variables
on a single line, they all are defined in terms of the specified data type. Thus, in the following VB 2005
code, you have created two variables of type Integer.

Sub MyMethod()

' In this line of VB 2005 code, varOne

' and varTwo are both of type Integer!

Dim varOne, varTwo As Integer

End Sub

On a final note, VB 2005 now supports the ability to assign a value to a type directly at the point
of declaration. To understand the significance of this new bit of syntax, consider the fact that under
VB 6.0, you were forced to write the following:

' VB 6.0 code.

Dim i As Integer

i = 99

While this is in no way a major showstopper, VB 2005 allows you to streamline variable assign-
ment using the following notation:

5785ch03.qxd 3/31/06 10:18 AM Page 78

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 79

Sub MyMethod()

' Dim variableName As dataType = initialValue

Dim age As Integer = 36

Dim firstName As String = "Sid"

Dim isUserOnline As Boolean = True

End Sub

Default Values of Data Types
All VB 2005 data types have a default value that will automatically be assigned to the variable. The
default values are very predictable, and can be summarized as follows:

• Boolean types are set to False.

• Numeric data is set to 0 (or 0.0 in the case of floating-point data types).

• String types are set to empty strings.

• Char types are set to a single empty character.

• Date types are set to 1/1/0001 12:00:00 AM.

• Initialized object references are set to Nothing.

Given these rules, ponder the following code:

' Fields of a class or Module receive automatic default assignments.

Module Program

Public myInt As Integer ' Set to 0.

Public myString As String ' Set to empty String.

Public myBool As Boolean ' Set to False.

Public myObj As Object ' Set to Nothing.

End Module

In Visual Basic 2005, the same rules of default values hold true for local variables defined
within a given scope. Given this, the following method would return the value 0, given that each
local Integer has been automatically assigned the value 0:

Function Add() As Integer

Dim a, b As Integer

Return a + b ' Returns zero.

End Function

The Data Type Class Hierarchy
It is very interesting to note that even the primitive .NET data types are arranged in a “class hierarchy.”
If you are new to the world of inheritance, you will discover the full details in Chapter 6. Until then,
just understand that types at the top of a class hierarchy provide some default behaviors that are
granted to the derived types. The relationship between these core system types can be understood
as shown in Figure 3-7.

5785ch03.qxd 3/31/06 10:18 AM Page 79

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I80

Notice that each of these types ultimately derives from System.Object, which defines a set of
methods (ToString(), Equals(), GetHashCode(), and so forth) common to all types in the .NET base
class libraries (these methods are fully detailed in Chapter 6).

Also note that many numerical data types derive from a class named System.ValueType. Descen-
dents of ValueType are automatically allocated on the stack and therefore have a very predictable
lifetime and are quite efficient. On the other hand, types that do not have System.ValueType in
their inheritance chain (such as System.Type, System.String, System.Array, System.Exception, and
System.Delegate) are not allocated on the stack, but on the garbage-collected heap.

Without getting too hung up on the details of System.Object and System.ValueType for the time
being (again, more details in Chapter 11), simply know that because a VB 2005 keyword (such as
Integer) is simply shorthand notation for the corresponding system type (in this case, System.Int32),
the following is perfectly legal syntax, given that System.Int32 (the VB 2005 Integer) eventually derives
from System.Object, and therefore can invoke any of its public members:

Figure 3-7. The class hierarchy of System types

5785ch03.qxd 3/31/06 10:18 AM Page 80

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 81

Sub Main()

' A VB 2005 Integer is really a shorthand for System.Int32.

' which inherits the following members from System.Object.

Console.WriteLine(12.GetHashCode()) ' Prints the type's hash code value.

Console.WriteLine(12.Equals(23)) ' Prints False

Console.WriteLine(12.ToString()) ' Returns the value "12"

Console.WriteLine(12.GetType()) ' Prints System.Int32

End Sub

■Note By default, Visual Studio 2005 does not show these “advanced” methods from IntelliSense. To disable this
behavior (which I recommend you do), activate the Tools ➤ Options menu, select Basic from the Text Editor node,
and uncheck Hide Advanced members.

“New-ing” Intrinsic Data Types
All intrinsic data types support what is known as a default constructor (see Chapter 5). In a nutshell,
this feature allows you to create a variable using the New keyword, which automatically sets the variable
to its default value. Although it is more cumbersome to use the New keyword when creating a basic
data type variable, the following is syntactically well-formed VB 2005 code:

' When you create a basic data type with New,

' it is automatically set to its default value.

Dim b1 As New Boolean() ' b1 automatically set to False.

On a related note, you could also declare an intrinsic data type variable using the full type name
through either of these approaches:

' These statements are also functionally identical.

Dim b2 As System.Boolean = New System.Boolean()

Dim b3 As System.Boolean

Of course, the chances that you will define a simple Boolean using the full type name or the New
keyword in your code is slim to none. It is important, however, to always remember that the VB 2005
keywords for simple data types are little more than a shorthand notation for real types in the System
namespace.

Experimenting with Numerical Data Types
To experiment with the intrinsic VB 2005 data types, create a new console application named
BasicDataTypes. First up, understand that the numerical types of .NET support MaxValue and
MinValue properties that provide information regarding the range a given type can store. For example:

Sub Main()

Console.WriteLine("***** Fun with Data Types *****")

Console.WriteLine("Max of Integer: {0}", Integer.MaxValue)

Console.WriteLine("Min of Integer: {0}", Integer.MinValue)

Console.WriteLine("Max of Double: {0}", Double.MaxValue)

Console.WriteLine("Min of Double: {0}", Double.MinValue)

End Sub

In addition to the MinValue/MaxValue properties, a given numerical system type may define further
useful members. For example, the System.Double type allows you to obtain the values for epsilon and
infinity (which may be of interest to those of you with a mathematical flare):

Console.WriteLine("Double.Epsilon: {0}", Double.Epsilon)

Console.WriteLine("Double.PositiveInfinity: {0}", _

5785ch03.qxd 3/31/06 10:18 AM Page 81

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I82

Double.PositiveInfinity)

Console.WriteLine("Double.NegativeInfinity: {0}", _

Double.NegativeInfinity)

Members of System.Boolean
Next, consider the System.Boolean data type. The only valid assignment a VB 2005 Boolean can take
is from the set {True | False}. Given this point, it should be clear that System.Boolean does not
support a MinValue/MaxValue property set, but rather TrueString/FalseString (which yields the
string "True" or "False" respectively):

Console.WriteLine("Boolean.FalseString: {0}", Boolean.FalseString)

Console.WriteLine("Boolean.TrueString: {0}", Boolean.TrueString)

Members of System.Char
VB 2005 textual data is represented by the intrinsic String and Char keywords, which are simple
shorthand notations for System.String and System.Char, both of which are Unicode under the
hood. As you most certainly already know, a string is a contiguous set of characters (e.g., "Hello").
As of the .NET platform, VB now has a data type (Char) that can represent a single slot in a String

type (e.g, 'H').
By default, when you define textual data within double quotes, the VB 2005 compiler assumes

you are defining a full-blown String type. However, to build a single character string literal that should
be typed as a Char, place the character between double quotes and tack on a single c after the closing
quote. Doing so ensures that the double-quoted text literal is indeed represented as a System.Char,
rather than a System.String:

Dim myChar As Char = "a"c

■Note When you enable Option Strict (described in just a moment) for your project, the VB 2005 compiler
demands that you tack on the c suffix to a Char data type when assigning a value.

The System.Char type provides you with a great deal of functionality beyond the ability to hold
a single point of character data. Using the shared methods of System.Char, you are able to determine
whether a given character is numerical, alphabetical, a point of punctuation, or whatnot. To illustrate,
update Main() with the following statements:

' Fun with System.Char.

Dim myChar As Char = "a"c

Console.WriteLine("Char.IsDigit('a'): {0}", Char.IsDigit(myChar))

Console.WriteLine("Char.IsLetter('a'): {0}", Char.IsLetter(myChar))

Console.WriteLine("Char.IsWhiteSpace('Hello There', 5): {0}", _

Char.IsWhiteSpace("Hello There", 5))

Console.WriteLine("Char.IsWhiteSpace('Hello There', 6): {0}", _

Char.IsWhiteSpace("Hello There", 6))

Console.WriteLine("Char.IsPunctuation('?'): {0}", _

Char.IsPunctuation("?"c))

As illustrated in the previous code snippet, the members of System.Char have two calling
conventions: a single character or a string with a numerical index that specifies the position of the
character to test.

5785ch03.qxd 3/31/06 10:18 AM Page 82

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 83

Parsing Values from String Data
The .NET data types provide the ability to generate a variable of their underlying type given a tex-
tual equivalent (e.g., parsing). This technique can be extremely helpful when you wish to convert
a bit of user input data (such as a selection from a GUI-based drop-down list box) into a numerical
value. Consider the following parsing logic:

' Fun with parsing

Dim b As Boolean = Boolean.Parse("True")

Console.WriteLine("Value of myBool: {0}", b)

Dim d As Double = Double.Parse("99.884")

Console.WriteLine("Value of myDbl: {0}", d)

Dim i As Integer = Integer.Parse("8")

Console.WriteLine("Value of myInt: {0}", i)

Dim c As Char = Char.Parse("w")

Console.WriteLine("Value of myChar: {0}", c)

■Source Code The BasicDataTypes project is located under the Chapter 3 subdirectory.

Understanding the System.String Type
As mentioned, String is a native data type in VB 2005. Like all intrinsic types, the VB 2005 String
keyword actually is a shorthand notation for a true type in the .NET base class library, which in this
case is System.String. Therefore, you are able to declare a String variable using either of these nota-
tions (in addition to using the New keyword as shown previously):

' These two string declarations are functionally equivalent.

Dim firstName As String

Dim lastName As System.String

System.String provides a number of methods you would expect from such a utility class, including
methods that return the length of the character data, find substrings within the current string, convert
to and from uppercase/lowercase, and so forth. Table 3-5 lists some (but by no means all) of the
interesting members.

Table 3-5. Select Members of System.String

Member of String Class Meaning in Life

Chars This property returns a specific character within the current string.

Length This property returns the length of the current string.

Compare() Compares two strings.

Contains() Determines whether a string contain a specific substring.

Equals() Tests whether two string objects contain identical character data.

Format() Formats a string using other primitives (i.e., numerical data, other
strings) and the {0} notation examined earlier in this chapter.

Insert() Inserts a string within a given string.

PadLeft() These methods are used to pad a string with some character.
PadRight()

Remove() Use these methods to receive a copy of a string, with modifications
Replace() (characters removed or replaced).

Continued

5785ch03.qxd 3/31/06 10:18 AM Page 83

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I84

Table 3-5. Continued

Member of String Class Meaning in Life

Split() Returns a String array containing the substrings in this instance that
are delimited by elements of a specified Char or String array.

Trim() Removes all occurrences of a set of specified characters from the
beginning and end of the current string.

ToUpper() Creates a copy of the current string in uppercase or lowercase format.
ToLower()

Basic String Manipulation
Working with the members of System.String is as you would expect. Simply create a String data
type and make use of the provided functionality via the dot operator. Do be aware that a few of the
members of System.String are shared members, and are therefore called at the class (rather than
the object) level. Assume you have created a new console application named FunWithStrings, and
updated Main() as follows:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Strings *****")

Dim firstName As String = "June"

Console.WriteLine("Value of firstName: {0}", firstName)

Console.WriteLine("firstName has {0} characters.", firstName.Length)

Console.WriteLine("firstName in uppercase: {0}", firstName.ToUpper())

Console.WriteLine("firstName in lowercase: {0}", firstName.ToLower())

Dim myValue As Integer = 3456787

Console.WriteLine("Hex vaule of myValue is: {0}", _

String.Format("{0:X}", myValue))

Console.WriteLine("Currency vaule of myValue is: {0}", _

String.Format("{0:C}", myValue))

End Sub

End Module

Notice how the shared Format() method supports the same formatting tokens as the Console.
WriteLine() method examined earlier in the chapter. Also notice that unlike String.Format(), the
ToUpper() and ToLower() methods have not implemented as shared members and are therefore
called directly from the String object.

String Concatenation (and the “Newline” Constant)
String variables can be connected together to build a larger String via the VB 2005 ampersand
operator (&). As you may know, this technique is formally termed string concatenation:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Strings *****")

...

Dim s1 As String = "Programming the "

Dim s2 As String = "PsychoDrill (PTP)"

Dim s3 As String = s1 & s2

Console.WriteLine(s3)

End Sub

End Module

5785ch03.qxd 3/31/06 10:18 AM Page 84

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 85

■Note VB 2005 also allows you to concatenate String objects using the plus sign (+). However, given that the +
symbol can be applied to numerous data types, there is a possibility that your String object cannot be “added” to
one of the operands. The ampersand, on the other hand, can only apply to Strings, and therefore is the recom-
mend approach.

You may be interested to know that the VB 2005 & symbol is processed by the compiler to emit
a call to the shared String.Concat() method. In fact, if you were to compile the previous code and
open the assembly within ildasm.exe (see Chapter 1), you would find the CIL code shown in Figure 3-8.

Given this, it is possible to perform string concatenation by calling String.Concat() directly
(although you really have not gained anything by doing so, in fact you have incurred additional
keystrokes!):

Module Program

Sub Main()

Console.WriteLine("***** Fun with Strings *****")

...

Dim s1 As String = "Programming the "

Dim s2 As String = "PsychoDrill (PTP)"

Dim s3 As String = String.Concat(s1, s2)

Console.WriteLine(s3)

End Sub

End Module

On a related note, do know that the VB 6.0–style string constants (such as vbLf, vbCrLf, and vbCr)
are still exposed through the Microsoft.VisualBasic.dll assembly (see Chapter 2). Therefore, if you
wish to concatenate a string that contains various newline characters (for display purposes), you may
do so as follows:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Strings *****")

...

Dim s1 As String = "Programming the "

Dim s2 As String = "PsychoDrill (PTP)"

Figure 3-8. The VB 2005 & operator results in a call to String.Concat().

5785ch03.qxd 3/31/06 10:18 AM Page 85

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I86

Dim s3 As String = String.Concat(s1, s2)

s3 += vbLf & "was a great industral project."

Console.WriteLine(s3)

End Sub

End Module

■Note If you have a background in C-based languages, understand that the vbLf constant is functionally equivalent
to the newline escape character (\n).

Strings and Equality
As fully explained in Chapter 11, a reference type is an object allocated on the garbage-collected man-
aged heap. By default, when you perform a test for equality on reference types (via the VB 2005 = and
<> operators), you will be returned True if the references are pointing to the same object in memory.
However, even though the String data type is indeed a reference type, the equality operators have
been redefined to compare the values of String objects, not the memory to which they refer:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Strings *****")

...

Dim strA As String = "Hello!"

Dim strB As String = "Yo!"

' False!

Console.WriteLine("strA = strB?: {0}", strA = strB)

strB = "HELLO!"

' False!

Console.WriteLine("strA = strB?: {0}", strA = strB)

strB = "Hello!"

' True!

Console.WriteLine("strA = strB?: {0}", strA = strB)

End Sub

End Module

Notice that the VB 2005 equality operators perform a case-sensitive, character-by-character
equality test. Therefore, "Hello!" is not equal to "HELLO!", which is different from "hello!".

Strings Are Immutable
One of the interesting aspects of System.String is that once you assign a String object with its initial
value, the character data cannot be changed. At first glance, this might seem like a flat-out lie, given
that we are always reassigning strings to new values and due to the fact that the System.String type
defines a number of methods that appear to modify the character data in one way or another (upper-
case, lowercase, etc.). However, if you look closer at what is happening behind the scenes, you will
notice the methods of the String type are in fact returning you a brand new String object in a modified
format:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Strings *****")

...

' Set initial string value

Dim initialString As String = "This is my string."

Console.WriteLine("Initial value: {0}", initialString)

5785ch03.qxd 3/31/06 10:18 AM Page 86

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 87

' Uppercase the initialString?

Dim upperString As String = initialString.ToUpper()

Console.WriteLine("Upper case copy: {0}", upperString)

' Nope! initialString is in the same format!

Console.WriteLine("Initial value: {0}", initialString)

End Sub

End Module

If you examine the output in Figure 3-9, you can verify that the original String object
(initialString) is not uppercased when calling ToUpper(), rather you are returned a copy of the
string in a modified format.

The same law of immutability holds true when you use the VB 2005 assignment operator. To
illustrate, comment out any existing code within Main() (to decrease the amount of generated CIL
code) and add the following logic:

Module Program

Sub Main()

Dim strObjA As String = "String A reporting."

strObjA = "This is a new string"

End Sub

End Module

Now, compile your application and load the assembly into ildasm.exe (again, see Chapter 1).
If you were to double-click the Main() method, you would find the CIL code shown in Figure 3-10.

Figure 3-9. Strings are immutable!

Figure 3-10. Assigning a value to a String object results in a new String object.

5785ch03.qxd 3/31/06 10:18 AM Page 87

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I88

Although I don’t imagine you are too interested in the low-level details of the Common Inter-
mediate Language (CIL), do note that the Main() method makes numerous calls to the ldstr (load
string) opcode. Simply put, the ldstr opcode of CIL will always create a new String object on the
managed heap. The previous String object that contained the value "String A reporting." is no
longer being used by the program, and will eventually be garbage collected.

So, what exactly are we to gather from this insight? In a nutshell, the String type can be ineffi-
cient and result in bloated code if misused. If you need to represent basic character data such as a US
Social Security number, first or last names, or simple string literals used within your application, the
String data type is the perfect choice.

However, if you are building an application that makes heavy use of textual data (such as a word
processing program), it would be a very bad idea to represent the word processing data using String
types, as you will most certainly (and often indirectly) end up making unnecessary copies of string data.
So what is a programmer to do? Glad you asked.

The System.Text.StringBuilder Type
Given that the String type can be quite inefficient when used with reckless abandon, the .NET base
class libraries provide the System.Text namespace. Within this (relatively small) namespace lives
a class named StringBuilder. Like the System.String class, StringBuilder defines methods that
allow you to replace or format segments and so forth.

What is unique about the StringBuilder is that when you call members of the StringBuilder,
you are directly modifying the object’s internal character data, not obtaining a copy of the data in
a modified format (and is thus more efficient). When you create an instance of the StringBuilder,
you will supply the object’s initial startup values via one of many constructors. Chapter 5 dives into
the details of class constructors; however, if you are new to the topic, simply understand that con-
structors allow you to create an object with an initial state when you apply the New keyword. Consider
the following usage of StringBuilder:

Imports System.Text ' StringBuilder lives here!

Module Program

Sub Main()

...

' Use the StringBuilder.

Dim sb As New StringBuilder("**** Fantastic Games ****")

sb.Append(vbLf)

sb.AppendLine("Half Life 2")

sb.AppendLine("Beyond Good and Evil")

sb.AppendLine("Deus Ex 1 and 2")

sb.Append("System Shock")

sb.Replace("2", "Deus Ex: Invisible War")

Console.WriteLine(sb)

Console.WriteLine("sb as {0} chars.", sb.Length)

End Sub

End Module

Here we see constructed a StringBuilder set to the initial value "**** Fantastic Games ****".
As you can see, we are appending to the internal buffer, and are able to replace (or remove) charac-
ters at will. By default, a StringBuilder is only able to hold a string of 16 characters or less; however,
this initial value can be changed via a constructor argument:

' Make a StringBuilder with an initial size of 256.

Dim sb As New StringBuilder("**** Fantastic Games ****", 256)

If you append more characters than the specified limit, the StringBuilder object will copy its
data into a new instance and grow the buffer by the specified limit.

5785ch03.qxd 3/31/06 10:18 AM Page 88

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 89

■Source Code The FunWithStrings project is located under the Chapter 3 subdirectory.

Final Commentary of VB 2005 Data Types
To wrap up the discussion of intrinsic data types, there are a few points of interest, especially when
it comes to changes between VB 6.0 and VB 2005. As you have already seen in Table 3-4, the maximum
and minimum bounds of many types have been retrofitted to be consistent with the rules of the .NET-
specific Common Type System (CTS). In addition to this fact, also be aware of the following updates:

• VB 2005 does not support a Currency data type. The Decimal type supports far greater precision
(and functionality) than the VB 6.0 Currency type.

• The Variant data type is no longer supported under the .NET platform. However, if you are
using a legacy COM type returning a VB 6.0 Variant, it is still possible to process the data.

At this point, I hope you understand that each data type keyword of VB 2005 has a corresponding
type in the .NET base class libraries, each of which exposes a fixed functionality. While I have not
detailed each member of these core types, you are in a great position to dig into the details as you
see fit. Be sure to consult the .NET Framework 2.0 SDK documentation for full details regarding the
intrinsic .NET data types.

Narrowing (Explicit) and Widening (Implicit) Data
Type Conversions
Now that you understand how to interact with intrinsic data types, let’s examine the related topic of
data type conversion. Assume you have a new console application (named TypeConversions) that
defines the following module:

Module Program

Sub Main()

Console.WriteLine("***** The Amazing Addition Program *****")

Dim a As Short = 9

Dim b As Short = 10

Console.WriteLine("a + b = {0}", Add(a, b))

End Sub

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

End Module

Notice that the Add() method expects to be sent two Integer parameters. However, note that
the Main() method is in fact sending in two Short variables. While this might seem like a complete
and total mismatch of data types, the program compiles and executes without error, returning the
expected result of 19.

The reason that the compiler treats this code as syntactically sound is due to the fact that there
is no possibility for loss of data. Given that the maximum value of a Short (32,767) is well within the
range of an Integer (2,147,483,647), the compiler automatically widens each Short to an Integer.
Technically speaking, widening is the term used to define a safe “upward cast” that does not result in
a loss of data.

5785ch03.qxd 3/31/06 10:18 AM Page 89

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I90

■Note In other languages (especially C-based languages such as C#, C++, and Java) “widening” is termed an
implicit cast.

Table 3-6 illustrates which data types can be safely widened to a specific data types.

Table 3-6. Safe Widening Conversions

VB 2005 Type Safely Widens to...

Byte SByte, UInteger, Integer, ULong, Long, Single, Double, Decimal

SByte SByte, Integer, Long, Single, Double, Decimal

Short Integer, Long, Single, Double, Decimal

SByte UInteger, Integer, ULong, Long, Single, Double, Decimal

Char SByte, UInteger, Integer, ULong, Long, Single, Double, Decimal

Integer Long, Double, Decimal

UInteger Long, Double, Decimal

Long Decimal

ULong Decimal

Single Double

Although this automatic widening worked in our favor for the previous example, other times
this “automatic type conversion” can be the source of subtle and difficult-to-debug runtime errors.
For example, assume that you have modified the values assigned to the a and b variables within Main()
to values that (when added together) overflow the maximum value of a Short. Furthermore, assume
you are storing the return value of the Add() method within a new local Short variable, rather than
directly printing the result to the console:

Module Program

Sub Main()

Console.WriteLine("***** The Amazing Addition Program *****")

Dim a As Short = 30000

Dim b As Short = 30000

Dim answer As Short = Add(a, b)

Console.WriteLine("a + b = {0}", answer)

End Sub

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

End Module

In this case, although your application compiles just fine, when you run the application you will
find the CLR throws a runtime error; specifically a System.OverflowException, as shown in Figure 3-11.

5785ch03.qxd 3/31/06 10:18 AM Page 90

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 91

The problem is that although the Add() method can return an Integer with the value 60,000 (as
this fits within the range of an Integer), the value cannot be stored in a Short (as it overflows the bounds
of this data type). In this case, the CLR attempts to apply a narrowing operation, which resulted in
a runtime error. As you can guess, narrowing is the logical opposite of widening, in that a larger value
is stored within a smaller variable.

■Note In other languages (especially C-based languages such as C#, C++, and Java) “narrowing” is termed an
explicit cast.

Not all narrowing conversions result in a System.OverflowException of course. For example,
consider the following code:

' This narrowing conversion is a-OK.

Dim myByte As Byte

Dim myInt As Integer = 200

myByte = myInt

Console.WriteLine("Value of myByte: {0}", myByte)

Here, the value contained within the Integer variable myInt is safely within the range of a Byte,
therefore the narrowing operation does not result in a runtime error. Although it is true that many
narrowing conversions are safe and nondramatic in nature, you may agree that it would be ideal to
trap narrowing conversions at compile time rather than runtime. Thankfully there is such a way,
using the VB 2005 Option Strict directive.

Understanding Option Strict
Option Strict ensures compile-time (rather than runtime) notification of any narrowing conversion
so it can be corrected in a timely fashion. If we are able to identify these narrowing conversions
upfront, we can take a corrective course of action and decrease the possibility of nasty runtime
errors.

A Visual Basic 2005 project, as well as specific *.vb files within a given project, can elect to enable
or disable implicit narrowing via the Option Strict directive. When turning this option On, you are
informing the compiler to check for such possibilities during the compilation process. Thus, if you
were to add the following to the very top of your current file:

' Option directives must be the very first code statements in a *.vb file!

Option Strict On

you would now find a compile-time error for each implicit narrowing conversion, as shown in
Figure 3-12.

Figure 3-11. Oops! The value returned from Add() was greater than the maximum value of a Short!

5785ch03.qxd 3/31/06 10:18 AM Page 91

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I92

Here, we have enabled Option Strict on a single file within our project. This approach can be
useful when you wish to selectively allow narrowing conversions within specific *.vb files. However,
if you wish to enable Option Strict for each and every file in your project, you can do so using the
Compile tab of the My Project dialog box, as shown in Figure 3-13.

Figure 3-12. Option Strict disables automatic narrowing of data

Figure 3-13. Enabling Option Strict on the project level

■Note Under Visual Studio 2005, Option Strict is disabled for new Visual Basic 2005 projects. I would recom-
mend, however, that you always enable this setting for each application you are creating, given that it is far better
to resolve problems at compile time than runtime!

Now that we have some compile-time checking, we are able to resolve the error using one of two
approaches. The most direct (and often more favorable) choice is to simply redefine the variable to
a data type that will safely hold the result. For example:

5785ch03.qxd 3/31/06 10:18 AM Page 92

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 93

Sub Main()

Console.WriteLine("***** The Amazing Addition Program *****")

Dim a As Short = 30000

Dim b As Short = 30000

' Nope...Dim answer As Short = Add(a, b)

Dim answer As Integer = Add(a, b)

Console.WriteLine("a + b = {0}", answer)

...

End Sub

Another approach is to make use of an explicit Visual Basic 2005 type conversion function, such
as CByte() for this example:

Sub Main()

...

Dim myByte As Byte

Dim myInt As Integer = 200

' myByte = myInt

myByte = CByte(myInt)

Console.WriteLine("Value of myByte: {0}", myByte)

End Sub

■Note Another useful Option statement is Option Explicit. When enabled, the compiler demands that all
variables are defined using a proper As clause (e.g., Dim a As Integer rather than Dim A). I would recommend
you always enable Option Explicit, as this can pinpoint many otherwise unseen programming errors.

Explicit Conversion Functions
Visual Basic 2005 provides a number of conversion functions in addition to CByte() that enable you
to explicitly allow a narrowing cast when Option Strict is enabled. Table 3-7 documents the core
VB 2005 conversion functions.

Table 3-7. VB 2005 Conversion Functions

Conversion Function Meaning in Life

CBool Converts a Boolean expression into a Boolean value

CByte Makes an expression a Byte

CChar Makes the first character of a string into a Char

CDate Makes a string containing a data expression into a Date

CDbl Makes a numeric expression double precision

CDec Makes a numeric expression of the Decimal type

CInt Makes a numeric expression an Integer by rounding

CLng Makes a numeric expression a long integer by rounding

CObj Makes any item into an Object

CSByte Makes a numeric expression into an SByte by rounding

CShort Makes a numeric expression into a Short by rounding

CSng Makes a numeric expression into a Single

CStr Returns a string representation of the expression

CUInt Makes a numeric expression into a UInteger by rounding

CULng Makes a numeric expression into a ULong

CUShort Makes a numeric expression into a UShort

5785ch03.qxd 3/31/06 10:18 AM Page 93

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I94

In addition to these data type–specific conversion functions, with the release of the .NET platform,
the Visual Basic language also supports the CType function. CType takes two arguments, the first is the
“thing you have,” while the second is the “thing you want.” For example, the following conversions are
functionally equivalent:

Sub Main()

...

Dim myByte As Byte

Dim myInt As Integer = 200

myByte = CByte(myInt)

myByte = CType(myInt, Byte)

Console.WriteLine("Value of myByte: {0}", myByte)

End Sub

One benefit of the CType function is that it handles all the conversions of the (primarily VB 6.0-cen-
tric) conversion functions shown in Table 3-7. Furthermore, as you will see later in this text, CType allows
you to convert between base and derived classes, as well as objects and their implemented interfaces.

■Note As you will see in Chapter 11, VB 2005 provides two new alternatives to CType—DirectCast and TryCast.
However, they can only be used if the arguments are related by inheritance or interface implementation.

The Role of System.Convert
To wrap up the topic of data type conversions, I’d like to point out the fact that the System name-
space defines a class named Convert that can also be used to widen or narrow a data assignment:

Sub Main()

...

Dim myByte As Byte

Dim myInt As Integer = 200

myByte = CByte(myInt)

myByte = CType(myInt, Byte)

myByte = Convert.ToByte(myInt)

Console.WriteLine("Value of myByte: {0}", myByte)

End Sub

One benefit of using System.Convert is that it provides a language-neutral manner to convert
between data types. However, given that Visual Basic 2005 provides numerous built-in conversion
functions (CBool, CByte, and the like), using the Convert type to do your data type conversions is
usually nothing more than a matter of personal preference.

■Source Code The TypeConversions project is located under the Chapter 3 subdirectory.

Building Visual Basic 2005 Code Statements
As a software developer, you are no doubt aware that a statement is simply a line of code that can be
processed by the compiler (without error, of course). For example, you have already seen how to craft
a local variable declaration statement over the course of this chapter:

' VB 2005 variable declaration statements.

Dim i As Integer = 10

Dim j As System.Int32 = 20

Dim k As New Integer()

5785ch03.qxd 3/31/06 10:18 AM Page 94

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 95

On a related note, you have also previewed the correct syntax to declare a Function using the
syntax of VB 2005:

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

While it is true that when you are comfortable with the syntax of your language of choice, you
tend to intuitively know what constitutes a valid statement, there are two idioms of VB 2005 code
statements that deserve special mention to the uninitiated.

The Statement Continuation Character
White space (meaning blank lines of code) are ignored by the VB 2005 compiler unless you attempt
to define a single code statement over multiple lines of code. This is quite different from C-based lan-
guages, where white space never matters, given that languages in the C family explicitly mark the
end of a statement with a semicolon and scope with curly brackets.

In this light, the following two C# functions are functionally identical (although the second ver-
sion is hardly readable and very bad style!):

// C# Add() method take one.

public int Add(int x, int y)

{ return x + y; }

// C# Add() method take two.

public int Add(

int x, int y) { return x

+

y; }

Under Visual Basic 2005, if you wish to define a statement or member over multiple lines of code, you
must split each line using the under bar (_) token, formally termed the statement continuation character.
Furthermore, there must be a blank space on each side of the statement continuation character. Thus:

' VB 2005 Add() method take one.

Function Add(ByVal x As Integer, _

ByVal y As Integer) As Integer

Return x + y

End Function

' VB 2005 Add() method take two.

Function Add(ByVal x As Integer, _

ByVal y As Integer) _

As Integer

Return x + y

End Function

' VB 2005 Add() method take three.

Function Add(ByVal x As Integer, _

ByVal y As Integer) _

As Integer

Return x + y

End _

Function

Of course, you would never use the statement continuation character as shown in the last iteration
of the Add() method, as the code is less than readable. In the real world, this feature is most helpful
when defining a member that takes a great number of arguments, to space them out in such a way
that you can view them within your editor of choice (rather than scrolling the horizontal scroll bar
to see the full prototype!).

5785ch03.qxd 3/31/06 10:18 AM Page 95

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I96

Defining Multiple Statements on a Single Line
Sometimes it is convenient to define multiple code statements on a single line of code within the
editor. For example, assume you have a set of local variables that need to be assigned to initial val-
ues. While you could assign a value to each variable on discrete lines of code:

Sub MyMethod()

Dim s As String

Dim i As Integer

s = "Fred"

i = 10

End Sub

you can compact the scope of this subroutine using the colon character:

Sub MyMethod()

Dim s As String

Dim i As Integer

s = "Fred" : i = 10

End Sub

Understand that misuse of the colon can easily result in hard-to-read code. As well, when com-
bined with the statement continuation character, you can end up with nasty statements such as the
following:

Sub MyMethod()

Dim s As String : Dim i As Integer

s = "Fred" _

: i = 10

End Sub

To be sure, defining multiple statements on a single line using the colon character should be
used sparingly. For the most part, this language feature is most useful when you need to make sim-
ple assignments to multiple variables.

VB 2005 Flow-control Constructs
Now that you can define a single simple code statement, let’s examine the flow-control keywords
that allow you to alter the flow of your program and several keywords that allow you to build com-
plex code statements using the And, Or, and Not operators.

Like other programming languages, VB 2005 defines several ways to make runtime decisions
regarding how your application should function. In a nutshell, we are offered the following flow-
control constructs:

• The If/Then/Else statement

• The Select/Case statement

The If/Then/Else Statement
First up, you have your good friend, the If/Then/Else statement. In the simplest form, the If construct
does not have a corresponding Else. Within the If statement, you will construct an expression that
can resolve to a Boolean value. For example:

Sub Main()

Dim userDone As Boolean

5785ch03.qxd 3/31/06 10:18 AM Page 96

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 97

' Gather user input to assign

' Boolean value...

If userDone = True Then

Console.WriteLine("Thanks for running this app")

End If

End Sub

A slightly more complex If statement can involve any number of Else statements to account
for a range of values set to the expression being tested against:

Sub Main()

Dim userOption As String

' Read user option from command line.

userOption = Console.ReadLine()

If userOption = "GodMode" Then

Console.WriteLine("You will never die...cheater!")

ElseIf userOption = "FullLife" Then

Console.WriteLine("At the end, heh?")

ElseIf userOption = "AllAmmo" Then

Console.WriteLine("Now we can rock and roll!")

Else

Console.WriteLine("Unknown option...")

End If

End Sub

Note that any secondary “else” condition is marked with the ElseIf keyword, while the final
condition is simply Else.

Building Complex Expressions
The expression tested against within a flow-control construct need not be a simple assignment. If
required, you are able to leverage the VB 2005 equality/relational operators listed in Table 3-8.

Table 3-8. VB 2005 Relational and Equality Operators

VB 2005 Equality/Relational Operator Example Usage Meaning in Life

= If age = 30 Then Returns true only if each
expression is the same

<> If "Foo" <> myStr Then Returns true only if each
expression is different

< If bonus < 2000 Then Returns true if expression A is
> If bonus > 2000 Then less than, greater than, less than
<= If bonus <= 2000 Then or equal to, or greater than or
>= If bonus >= 2000 Then equal to expression B,

respectively

■Note Unlike C-based languages, the VB 2005 = token is used to denote both assignment and equality semantics
(therefore VB 2005 does not supply a == operator).

5785ch03.qxd 3/31/06 10:18 AM Page 97

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I98

In addition, you may build a complex expression to test within a flow-control construct using
the code conditional operators (also known as the logical operators) listed in Table 3-9. This table
outlines the most common conditional operators of the language.

Table 3-9. VB 2005 Conditional Operators

VB 2005
Conditional Operator Example Meaning in Life

And If age = 30 And name = "Fred" Then Conditional AND operator,
where both conditions must
be True for the condition to
be True

AndAlso If age = 30 AndAlso name = "Fred" Then A conditional AND operator
that supports short-circuiting,
meaning if the first expression
is False, the second
expression is not evaluated

Or If age = 30 Or name = "Fred" Then Conditional OR operator

OrElse If age = 30 OrElse name = "Fred" Then Conditional OR operator that
supports short-circuiting,
meaning if either expression
is True, True is returned

Not If Not myBool Then Conditional NOT operator

As I am assuming you have prior experience in BASIC or C-based languages, I won’t belabor the
use of these operators. If you require additional details beyond the following code snippet, I will assume
you will consult the .NET Framework SDK documentation. However, here is a simple example:

Sub Main()

Dim userOption As String

Dim userAge As Integer

' Read user option from command line.

userOption = Console.ReadLine()

userAge = Console.ReadLine()

If userOption = "AdultMode" And userAge >= 21 Then

Console.WriteLine("We call this Hot Coffee Mode...")

ElseIf userOption = "AllAmmo" Then

Console.WriteLine("Now we can rock and roll!")

Else

Console.WriteLine("Unknown option...")

End If

End Sub

The Select/Case Statement
The other selection construct offered by VB 2005 is the Select statement. This can be a more compact
alternative to the If/Then/Else statement when you wish to handle program flow based on a known
set of choices. For example, the following Main() method prompts the user for one of three known
values. If the user enters an unknown value, you can account for this using the Case Else statement:

5785ch03.qxd 3/31/06 10:18 AM Page 98

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 99

Sub Main()

' Prompt user with choices.

Console.WriteLine("Welcome to the world of .NET")

Console.WriteLine("1 = C# 2 = Managed C++ (MC++) 3 = VB 2005")

Console.Write("Please select your implementation language: ")

' Get choice.

Dim s As String = Console.ReadLine()

Dim n As Integer = Integer.Parse(s)

' Based on input, act accordingly...

Select Case n

Case Is = 1

Console.WriteLine("C# is all about managed code.")

Case Is = 2

Console.WriteLine("Maintaining a legacy system, are we?")

Case Is = 3

Console.WriteLine("VB 2005: Full OO capabilities...")

Case Else

Console.WriteLine("Well...good luck with that!")

End Select

End Sub

VB 2005 Iteration Constructs
All programming languages provide ways to repeat blocks of code until a terminating condition has
been met. Regardless of which language you are coming from, the VB 2005 iteration statements
should cause no raised eyebrows and require little explanation. In a nutshell, VB 2005 provides the
following iteration constructs:

• For/Next loop

• For/Each loop

• Do/While loop

• Do/Until loop

• With loop

Let’s quickly examine each looping construct in turn. Do know that I will only concentrate on
the core features of each construct. I’ll assume that you will consult the .NET Framework 2.0 SDK
documentation if you require further details.

For/Next Loop
When you need to iterate over a block of code statements a fixed number of times, the For statement
is the looping construct of champions. In essence, you are able to specify how many times a block
of code repeats itself, using an expression that will evaluate to a Boolean:

Sub Main()

' Prints out the numbers 5 – 25, inclusive.

Dim i As Integer

For i = 5 To 25

Console.WriteLine("Number is: {0}", i)

Next

End Sub

5785ch03.qxd 3/31/06 10:18 AM Page 99

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I100

One nice improvement to the For looping construct is we are now able declare the counter
variable directly within the For statement itself (rather than in a separate code statement). There-
fore, the previous code sample could be slightly streamlined as the following:

Sub Main()

' A slightly simplified For loop.

For i As Integer = 5 To 25

Console.WriteLine("Number is: {0}", i)

Next

End Sub

The For loop can also make use of the Step keyword to offset the value of the counter. For example,
if you wish to increment the counter variable by five with each iteration, you would do so with the
following:

Sub Main()

' Increment i by 5 with each pass.

For i As Integer = 5 To 25 Step 5

Console.WriteLine("Number is: {0}", i)

Next

End Sub

For/Each Loop
The For/Each construct is a variation of the standard For loop, where you are able to iterate over the
contents of an array without the need to explicitly monitor the container’s upper limit (as in the case
of a traditional For/Next loop). Assume you have defined an array of String types and wish to print
each item to the command window (VB 2005 array syntax will be fully examined in the next chapter).
In the following code snippet, note that the For Each statement can define the type of item iterated
over directly within the statement:

Sub Main()

Dim myStrings() As String = _

{"Fun", "with", "VB 2005"}

For Each str As String In myStrings

Console.WriteLine(str)

Next

End Sub

or on discrete lines of code:

Sub Main()

Dim myStrings() As String = _

{"Fun", "with", "VB 2005"}

Dim item As String

For Each item In myStrings

Console.WriteLine(item)

Next

End Sub

In these examples, our counter was explicitly defined as a String data type, given that our array
is full of strings as well. However, if you wish to iterate over an array of Integers (or any other type),
you would simply define the counter in the terms of the items in the array. For example:

5785ch03.qxd 3/31/06 10:18 AM Page 100

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I 101

Sub Main()

' Looping over an array of Integers.

Dim myInts() As Integer = _

{10, 20, 30, 40}

For Each int As Integer In myInts

Console.WriteLine(int)

Next

End Sub

■Note The For Each construct can iterate over any types that support the correct infrastructure. I’ll hold off on
the details until Chapter 9, as this aspect of the For Each loop entails an understanding of interface-based pro-
gramming and the system-supplied IEnumerator and IEnumerable interfaces.

Do/While and Do/Until Looping Constructs
You have already seen that the For/Next statement is typically used when you have some foreknowl-
edge of the number of iterations you want to perform (e.g., j > 20). The Do statements, on the other
hand, are useful for those times when you are uncertain how long it might take for a terminating
condition to be met (such as when gathering user input).

Do/While and Do/Until are (in many ways) interchangeable. Do/While keeps looping until the
terminating condition is false. On the other hand, Do/Until keeps looping until the terminating
condition is true. For example:

' Keep looping until X is not equal to an empty string.

Do

' Some code statements to loop over.

Loop Until X <> ""

' Keep looping as long as X is equal to an empty string.

Do

' Some code statements to loop over.

Loop While X = ""

Note that in these last two examples, the test for the terminating condition was placed at the
end of the Loop keyword. Using this syntax, you can rest assured that the code within the loop will
be executed at least once (given that the test to exit the loop occurs after the first iteration). If you
prefer to allow for the possibility that the code within the loop may never be executed, move the
Until or While clause to the beginning of the loop:

' Keep looping until X is not equal to an empty string.

Do Until X <> ""

' Some code to loop over.

Loop

' Keep looping as long as X is not equal to an empty string.

Do While X = ""

' Some code to loop over.

Loop

Finally, understand that VB 2005 still supports the raw While loop. However, the Wend keyword
has been replaced with a more fitting End While:

5785ch03.qxd 3/31/06 10:18 AM Page 101

CHAPTER 3 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I102

Dim j As Integer

While j < 20

Console.Write(j & ", ")

j += 1

End While

The With Construct
To wrap this chapter up, allow me to say that the VB 6.0 With construct is still supported under
VB 2005. In a nutshell, the With keyword allows you to invoke members of a type within a predefined
scope. Do know that the With keyword is nothing more than a typing time saver.

For example, the System.Collections namespace has a type named ArrayList, which like any
type has a number of members. You are free to manipulate the ArrayList on a statement by state-
ment basis as follows:

Sub Main()

Dim myStuff As New ArrayList()

myStuff.Add(100)

myStuff.Add("Hello")

Console.WriteLine("Size is: {0}", myStuff.Count)

End Sub

or use the VB 2005 With keyword:

Sub Main()

Dim myStuff As New ArrayList()

With myStuff

.Add(100)

.Add("Hello")

Console.WriteLine("Size is: {0}", .Count)

End With

End Sub

Summary
Recall that the goal of this chapter was to expose you to numerous core aspects of the VB 2005
programming language. Here, we examined the constructs that will be commonplace in any appli-
cation you may be interested in building. After examining the Module type, you learned that every
VB 2005 executable program must have a type defining a Main() method, which serves as the pro-
gram’s entry point. Within the scope of Main(), you typically create any number of objects that work
together to breathe life into your application.

Next, we dove into the details of the built-in data types of VB 2005, and came to understand
that each data type keyword (e.g., Integer) is really a shorthand notation for a full-blown type in the
System namespace (System.Int32 in this case). Given this, each VB 2005 data type has a number of
built-in members. Along the same vein, you also learned about the role of widening and narrowing
as well as the role of Option Strict.

We wrapped up by checking out the various iteration and decision constructs supported by
VB 2005. Now that you have some of the basic nuts-and-bolts in your mind, the next chapter
completes our examination of core language features.

5785ch03.qxd 3/31/06 10:18 AM Page 102

C H A P T E R 4

■ ■ ■

VB 2005 Programming Constructs,
Part II

This chapter picks up where the previous chapter left off, and completes your investigation of the
core aspects of the Visual Basic 2005 programming language. We begin by examining various details
regarding the construction of VB 2005 subroutines and functions, learning about the Optional,
ByRef, ByVal, and ParamArray keywords along the way.

Once you examine the topic of method overloading, the next task is to investigate the details
behind manipulating array types using the syntax of VB 2005 and get to know the functionality con-
tained within the related System.Array class type. We wrap things up with a discussion regarding
the construction of enumeration and structure types. Once you have completed this chapter, you
will be well prepared for the next section where we dive into the world of object-oriented develop-
ment using Visual Basic 2005.

Defining Subroutines and Functions
To begin this chapter, let’s examine the details of defining subroutines and functions using Visual
Basic 2005. As you know, a method exists to allow the type to perform a unit of work. Methods may
or may not take parameters and may or may not return values. Visual Basic has long distinguished
between a “subroutine” and “function.” While you can collectively refer to each syntactic variation
as a “method,” the distinction is that subroutines do not return a value once the method has com-
pleted, whereas functions do.

When you define a subroutine, simply use the Sub keyword and list any necessary arguments.
If you wish to define a function, use the Function keyword and establish the return value via the As
keyword. To illustrate, create a new console application named FunWithMethods. Insert a new
module into your current project named HelperFunctions via the Project ➤ Add New Item menu
option of Visual Studio 2005. Update the HelperFunctions module as follows:

Module HelperFunctions

' Subroutines have no return value.

Public Sub PrintMessage(ByVal msg As String)

Console.WriteLine(msg)

End Sub

' Functions have a return value.

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

' Return sum using VB 6.0-style syntax.

Add = 5

End Function

End Module

103

5785ch04.qxd 3/31/06 10:21 AM Page 103

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I104

As seen here, Visual Basic 2005 supports the VB 6.0–style function return syntax, where a function’s
return value is denoted by assigning the function name to the resulting output. However, since the
release of the .NET platform, we are now supplied with a Return keyword for an identical purpose.
Thus, the Add() method could be implemented like so:

' VB 2005 code!

' Much cleaner!

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return 5

End Function

The final introductory note regarding functions is that it is possible to forgo specifying an explicit
return value for a function if (and only if) Option Strict is not enabled. If you do not specify a return
value for a function, System.Object is assumed:

' This will not compile if Option Strict is on!

Function Test() ' As Object assumed.

Return 5

End Function

As you will see throughout the remainder of this book, subroutines and functions can be
implemented within the scope of modules, classes, and structures (and prototyped within interface
types). While the definition of a method in VB 2005 is quite straightforward, there are a handful of
keywords that you can use to control how arguments are passed to the method in question, and
these are listed in Table 4-1.

Table 4-1. Visual Basic 2005 Parameter Modifier

Parameter Modifier Keyword Meaning in Life

ByVal The method is passed a copy of the original data. This is the default
parameter passing behavior.

ByRef The method is passed a reference to the original data in memory.

Optional Marks an argument that does not need to be specified by the caller.

ParamArray Defines an argument that may be passed a variable number of
arguments of the same type.

Let’s walk through the role of each keyword in turn.

The ByVal Parameter Modifier
Under Visual Basic 2005, all parameters are passed by value by default. When an argument is marked
with the ByVal keyword, the method receives a copy of the original data declared elsewhere. Given
that this is indeed a local copy, the method is free to change the parameter’s value; however, the
caller will not see the change. For example, if our Add() function were to reassign the values of the
incoming Integer data types as follows:

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Dim answer As Integer = x + y

' Try to set the params to a new value.

x = 22 : y = 30

Return answer

End Function

5785ch04.qxd 3/31/06 10:21 AM Page 104

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 105

the caller (Main() in this case) would be totally unaware of this attempted reassignment, given that
a copy of the data was modified, not the caller’s original data. This can be verified by printing out
the input values after the call to Add():

Sub Main()

Console.WriteLine("***** Fun with Methods *****")

' Pass two Integers by value.

Dim x, y As Integer

x = 10 : y = 20

Console.WriteLine("{0} + {1} = {2}", x, y, Add(x, y))

' X is still 10 and y is still 20.

Console.WriteLine("After call x = {0} and y = {1}", x, y)

End Sub

It is also worth pointing out that the ByVal keyword is technically optional, given that this is the
default assumption:

' These args are implicitly ByVal.

Function Add(x As Integer, y As Integer) As Integer

End Function

However, if you do not specify ByVal or ByRef for a given parameter, Visual Studio 2005 will
automatically add the ByVal modifier when you hit the Enter key.

■Note If you have a background in earlier versions of VB, do be very aware that this default setting is the exact
opposite behavior as we had in the past! Before the release of .NET, VB passed parameters by reference (ByRef)
as the default.

The ByRef Parameter Modifier
Some methods need to be created in such a way that the caller should be able to realize any reas-
signments that have taken place within the method scope. For example, you might have a method
that needs to alter the state of a string (e.g., uppercase the characters), assign an incoming reference
to a new object, or simply modify the value of a numerical argument. For this very reason, VB 2005
supplies the ByRef keyword. Consider the following update to the PrintMessage() method:

Sub PrintMessage(ByRef msg As String)

Console.WriteLine("Your message is: {0}", msg)

' Caller will see this change!

msg = "Thank you for calling this method"

End Sub

If we were to update Main() as follows:

Sub Main()

Console.WriteLine("***** Fun with Methods *****")

...

Dim msg As String = "Hello from Main!"

PrintMessage(msg)

Console.WriteLine("After call msg = {0}", msg)

End Sub

and you were to compile and run your project, you would find the output shown in Figure 4-1.

5785ch04.qxd 3/31/06 10:21 AM Page 105

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I106

Figure 4-1. ByRef arguments can be changed (and seen) by the caller.

Figure 4-2. Wrapping a ByRef argument within parentheses forces ByVal semantics.

There is one additional parameter-passing-centric language feature of VB 2005, which is a carryover
from earlier versions of the language. If you are calling a method prototyped to take a parameter ByRef,
you can force the runtime to pass in a copy of the data (thereby treating it as if it were defined with
the ByVal keyword). To do so, wrap the ByRef argument within an extra set of parentheses. For example,
if you were to update the call to PrintMessage() like so:

Sub Main()

Console.WriteLine("***** Fun with Methods *****")

...

' Pass a string by value

Dim msg As String = "Hello from Main!"

PrintMessage((msg))

Console.WriteLine("After call msg = {0}", msg)

End Sub

you will now find that the string reassignment is not “remembered” as indicated in Figure 4-2.

■Note The ByRef and ByVal keywords will be revisited in Chapter 11. As you will see, the behaviors of these
keywords change just a bit depending on whether the argument is a “value type” or “reference type.”

Defining Optional Arguments
VB has long supported the use of optional arguments. Simply put, this language feature allows you
to define a set of parameters that are not required to be supplied by the caller. If the caller chooses
not to pass these optional elements, the argument will be assigned to a predefined default value. As
you would hope, this feature is also part of VB 2005 with one important distinction—all optional
parameters must now be set to an explicit default value. In contrast, under Visual Basic 6.0, optional
arguments were assigned to their default values (0 for numerical and "" for strings) automatically.

Assume we have defined a new subroutine named PrintFormattedMessage() within the
HelperFunctions module, which takes three optional arguments that are used to control how
the incoming String is to be printed to the console:

5785ch04.qxd 3/31/06 10:21 AM Page 106

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 107

Sub PrintFormattedMessage(ByVal msg As String, _

Optional ByVal upperCase As Boolean = False, _

Optional ByVal timesToRepeat As Integer = 0, _

Optional ByVal textColor As ConsoleColor = ConsoleColor.Green)

' Store current console foreground color.

Dim fGroundColor As ConsoleColor = Console.ForegroundColor

' Set Console foreground color.

Console.ForegroundColor = textColor

' Print mesage in correct case x number of times.

For i As Integer = 0 To timesToRepeat

Console.WriteLine(msg)

Next

' Reset current console forground color.

Console.ForegroundColor = fGroundColor

End Sub

Given this definition, we are now able to call PrintFormattedMessage() in a variety of ways. First,
if we wish to accept all defaults, we can simply supply the mandatory String argument as follows:

' Accept all defaults for the optional args.

PrintFormattedMessage("Call One")

If we would rather provide custom values for each optional argument, we can do so explicitly
as follows:

' Provide each optional argument.

PrintFormattedMessage("Call Two", True, 5, ConsoleColor.Yellow)

Furthermore, when you are calling a method that has some number of optional arguments,
you may be interested in only providing a subset of specific values, given that some of the default
values fit the bill. To do so, your first approach is to skip over the optional arguments for which you
wish to accept the defaults using a blank parameter:

' Print this message in current case, one time, in gray.

PrintFormattedMessage("Call Three", , , ConsoleColor.Gray)

While skipping over optional arguments is syntactically valid, it does not necessarily lend itself to
readable (or easily maintainable) code. A more elegant manner in which to skip over select optional
arguments is using named arguments:

' Same as previously shown, but cleaner!

PrintFormattedMessage("Call Four", textColor:=ConsoleColor.Gray)

As you can see, an argument is named by using the := operator. The left side is the name of
the parameter itself, while the right side is the value to pass this argument. Using this approach, the
unnamed optional arguments will still be assigned to their predefined default.

As an interesting side note, given that VB 2005 supports named arguments, it is possible to call
a method and pass in each argument in any order you so choose. This behavior is possible for any
method, not simply for methods that define optional parameters. For example, the Add() method
could be legally called like so:

' Pass x and y values out of order.

Add(y:=10, x:=90)

Of course, if you overuse this language feature, you not only incur additional keystrokes, but
your code can also be much harder on the eyes. By and large, you should limit your use of named
arguments to the invocation of methods that define optional arguments.

5785ch04.qxd 3/31/06 10:21 AM Page 107

Working with ParamArrays
In addition to optional parameters, Visual Basic 2005 supports the use of parameter arrays. To
understand the role of the ParamArray argument, you must (as the name implies) understand how
to manipulate VB 2005 arrays. If this is not the case, you may wish to return to this section once you
have finished this chapter. However, if you are already comfortable with the process of defining and
initializing a VB array under the .NET platform, read on.

In a nutshell, a ParamArray allows you to pass into a method a variable number of parameters
(of the same type) as a single logical parameter. As well, arguments marked with the ParamArray
keyword can be processed if the caller sends in a strongly typed array or a comma-delimited list of
items. Yes, this can be confusing. To clear things up, assume you wish to create a function named
CalculateAverage(). Given the nature of this method, you would like to allow the caller to pass in
any number of arguments, and return the calculated average.

If you were to prototype this method to take an array of Integers, this would force the caller to
first define the array, then fill the array, and finally pass it into the method. However, if you define
CalculateAverage() to take a ParamArray of Integer data types, the caller can simply pass a comma-
delimited list of Integers. The .NET runtime will automatically package the set of Integers into an
array of type Integer behind the scenes:

Function CalculateAverage(ByVal ParamArray itemsToAvg() As Integer) As Double

Dim itemCount As Integer = UBound(itemsToAvg)

Dim result As Integer

For i As Integer = 0 To itemCount

result += itemsToAvg(i)

Next

Return result / itemCount

End Function

As mentioned, when calling this method, you may send in an explicitly defined array of Integers,
or alternatively, implicitly specify an array of Integers as a comma-delimited list. For example:

Sub Main()

...

' ParamArray data can be sent as a caller supplied array

' or a comma-delimited list of arguments.

Console.WriteLine(CalculateAverage(10, 11, 12, 44))

Dim data() As Integer = {22, 33, 44, 55}

Console.WriteLine(CalculateAverage(data))

End Sub

As you might guess, this technique is nothing more than a convenience for the caller, given that
the array is created by the CLR as necessary. By the time the array is within the scope of the method
being called, you are able to treat it as a full-blown .NET array that contains all the function of the
System.Array base class library type.

■Note To avoid any ambiguity, VB 2005 demands a method only support a single ParamArray argument, which
must be the final argument in the parameter list.

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I108

5785ch04.qxd 3/31/06 10:21 AM Page 108

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 109

Method Calling Conventions
The next aspect of building VB 2005 methods to be aware of is that all methods (subroutines and
functions) are now called by wrapping arguments in parentheses (even if the method in question takes
no arguments whatsoever). In stark contrast, VB 6.0 supported some rather ridiculous calling conven-
tions that forced you to call subs using a different syntax than functions. In general, under VB 6.0, subs
do not require parentheses, while functions do. However, the following variations do occur:

' VB 6.0 function calling insanity.

Dim i as Integer

i = myFunction(myArg) ' Use () to capture return value.

MyFunction myArg ' Forgo () if you don't care about return value.

Call myFunction(myArg) ' Same as previous line.

myFunction(myArg) ' Pass myArg by value.

' VB 6.0 Subroutine calling insanity.

mySub myArg ' Subs don't take ()...

Call mySub (myArg) ' ...unless you use the Call keyword...

mySub (myArg) ' ...or you want to pass by value.

VB 2005 stops the madness once and for all by stating that all functions and all subs must be
called using parentheses. Thus, if a sub or function does not require arguments, parentheses are
still used:

' VB 2005 simplicity.

Dim i as Integer

i = AFuncWithNoArgs() ' Use ()

ASubWithNoArgs() ' Use ()

ASubWithArgs(89, 44, "Ahhh. Better") ' Use ()

Dim IAmPassedByValue as Boolean

SomeMethod((IAmPassedByValue)) ' Use ()

Methods Containing Static Data
In VB 2005 (as well as earlier versions of the language), the Static keyword is used to define a point
of data that is in memory as long as the application is running, but is visible only within the func-
tion in which it was declared. Assume you have added the following subroutine to your
HelperFunctions module:

Sub PrintLocalCounter()

' Note the Static keyword.

Static Dim localCounter As Integer

localCounter += 1

Console.Write("{0} ", localCounter)

End Sub

As you would expect, the first time this function is called, the static data is allocated and initial-
ized to its default value (0 in the case of an Integer). However, because the local variable has been
defined with the Static keyword, its previous value is retained across each method invocation.
Therefore, if you invoke PrintLocalCounter() a handful of times within your Main() method as follows:

Sub Main()

...

For i As Integer = 0 To 10

PrintLocalCounter()

Next

End Sub

you would see the printout to the console shown in Figure 4-3.

5785ch04.qxd 3/31/06 10:21 AM Page 109

Figure 4-3. Static data is retained between invocations.

Of course, if a local variable is not defined with the Static keyword:

Sub PrintLocalCounter()

Dim localCounter As Integer

localCounter += 1

Console.Write("{0} ", localCounter)

End Sub

you would see “1” printed out 11 times, as the Integer is re-created between calls.

■Note Unlike VB 6.0, VB 2005 no longer allows you to apply the Static keyword on the method level (in order
to treat all local variables as Static). If you require the same behavior from a VB 2005 application, you need to
explicitly define each data point using the Static keyword.

Understanding Member Overloading
Like other modern object-oriented languages, VB 2005 allows a method to be overloaded. Simply put,
when you define a set of identically named members that differ by the number (or type) of parame-
ters, the member in question is said to be overloaded.

To understand why overloading is so useful, consider life as a VB 6.0 developer. Assume you are
using VB 6.0 to build a set of methods that return the sum of various incoming types (Integers, Doubles,
and so on). Given that VB 6.0 does not support method overloading, we would be required to define
a unique set of methods that essentially do the same thing (return the sum of the arguments):

' VB 6.0 code.

Public Function AddInts(ByVal x As Integer, ByVal y As Integer) As Integer

AddInts = x + y

End Function

Public Function AddDoubles(ByVal x As Double, ByVal y As Double) As Double

AddDoubles = x + y

End Function

Public Function AddLongs(ByVal x As Long, ByVal y As Long) As Long

AddLongs = x + y

End Function

Not only can code such as this become tough to maintain, but the object user must now be
painfully aware of the name of each method. Using overloading, we are able to allow the caller to
call a single method named Add(). Again, the key is to ensure that each version of the method has
a distinct set of arguments (members differing only by return type are not unique enough):

' VB 2005 code.

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I110

5785ch04.qxd 3/31/06 10:21 AM Page 110

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 111

Public Function Add(ByVal x As Double, ByVal y As Double) As Double

Return x + y

End Function

Public Function Add(ByVal x As Long, ByVal y As Long) As Long

Return x + y

End Function

The caller can now simply invoke Add() with the required arguments and the compiler is happy
to comply, given the fact that the compiler is able to resolve the correct implementation to invoke
given the provided arguments:

Sub Main()

...

' Calls Integer version of Add()

Console.WriteLine(Add(10, 10))

' Calls Long verson of Add()

Console.WriteLine(Add(900000000000, 900000000000))

' Calls Double version of Add()

Console.WriteLine(Add(4.3, 4.4))

End Sub

The Overloads Keyword
Also know that VB 2005 provides the Overloads keyword, which can be used when you want to explicitly
mark a member as overloaded. Using this keyword, however, is completely optional. The compiler
assumes you are overloading if it finds identically named methods with varying arguments:

' VB 2005 code.

Public Overloads Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

Public Overloads Function Add(ByVal x As Double, ByVal y As Double) As Double

Return x + y

End Function

Public Overloads Function Add(ByVal x As Long, ByVal y As Long) As Long

Return x + y

End Function

Details of Method Overloading
When you are overloading a method, the VB 2005 parameter modifiers come into play to define
valid forms of overloading. First of all, if the only point of differentiation between two methods is
the ByVal/ByRef parameter modifier, it is not unique enough to be overloaded:

' Compiler error! Methods can't differ only by

' ByRef / ByVal

Sub TestSub(ByVal a As Integer)

End Sub

Sub TestSub(ByRef a As Integer)

End Sub

Also, if a method is overloaded by nothing more than an argument marked with the Optional
keyword, you will once again receive a compiler error. Consider the following:

Sub TestSub(ByVal a As Integer)

End Sub

Sub TestSub(ByVal a As Integer, Optional ByVal b As Integer = 0)

End Sub

5785ch04.qxd 3/31/06 10:21 AM Page 111

The reason the compiler refuses to allow this overload is due to the fact that it cannot disam-
biguate the following code:

Sub Main()

...

' Are you calling the one arg version,

' or the two arg version and omitting the second parameter?

TestSub(1)

End Sub

■Source Code The FunWithMethods application is located under the Chapter 4 subdirectory.

That wraps up our examination of building methods using the syntax of VB 2005. Next up, let’s
check out how to build and manipulate arrays, enumerations, and structures.

Array Manipulation in VB 2005
As I would guess you are already aware, an array is a set of data points, accessed using a numerical
index. More specifically, an array is a set of contiguous data points of the same type (an array of
Integers, an array of Strings, an array of SportsCars, and so on). Declaring an array with Visual
Basic 2005 is quite straightforward. For example, here are three arrays of varying types:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Arrays *****")

' An array of 11 Strings

Dim myStrings(10) As String

' An array of 3 Integers

Dim myInts(2) As Integer

' An array of 5 Objects

Dim myObjs(4) As Object

End Sub

End Module

Look closely at the code comments. When declaring a VB 2005 array, the number used in the
array declaration represents the upper bound of the array, not the maximum number of elements.
Thus, unlike C-based languages, when you write Dim myInts(2) As Integer you end up with three
elements (0 through 2, inclusive).

Once you have defined an array, you are then able to fill the elements index by index as shown
in the following Main() method:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Arrays *****")

' Create and fill an array of 3 Integers

Dim myInts(2) As Integer

myInts(0) = 100

myInts(1) = 200

myInts(2) = 300

' Now print each value.

For Each i As Integer In myInts

Console.WriteLine(i)

Next

End Sub

End Module

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I112

5785ch04.qxd 3/31/06 10:21 AM Page 112

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 113

Do be aware that if you declare an array, but do not explicitly fill each index, each item will be set
the default value of the data type (e.g., an array of Booleans will be set to False, an array of Integers
will be set to zero, and so forth). Given this, the following code will first print out three blank lines,
followed by the names Cerebus, Jaka, and Astoria:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Arrays *****")

...

' An array of (empty) Strings.

Dim myStrs(2) As String

For Each s As String In myStrs

Console.WriteLine(s)

Next

' Fill and print again.

myStrs(0) = "Cerebus"

myStrs(1) = "Jaka"

myStrs(2) = "Astoria"

For Each s As String In myStrs

Console.WriteLine(s)

Next

End Sub

End Module

VB 2005 Array Initialization Syntax
In addition to filling an array using an item-by-item approach, you are also able to fill the items of
an array using the VB 2005 member initialization syntax. To do so, specify each array item within the
scope of curly brackets ({}). This syntax can be helpful when you are creating an array of a known
size, and wish to quickly specify the initial values. For example, the values of the myInts array could
be established as follows:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Arrays *****")

...

' An array of 3 Integers

Dim myInts() As Integer = {100, 200, 300}

For Each i As Integer In myInts

Console.WriteLine(i)

Next

End Sub

End Module

Notice that when you make use of this “curly bracket array” syntax, you do not specify the size
of the array, given that this will be inferred by the number of items within the scope of the curly brackets.
Thus, the following statement results in a compiler error:

' OOPS! Don't specify upper bound when using

' curly bracket array initialization syntax!

Dim myInts(2) As Integer = {100, 200, 300}

Defining an Array of Objects
As mentioned, when you define an array, you do so by specifying the type of item that can be within
the array variable. While this seems quite straightforward, there is one notable twist. As you will come
to understand in Chapter 6, System.Object is the ultimate base class to each and every type (including

5785ch04.qxd 3/31/06 10:21 AM Page 113

Figure 4-4. Investigating an array of Objects using Object.GetType()

fundamental data types) in the .NET type system. Given this fact, if you were to define an array of
Objects, the subitems could be anything at all:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Arrays *****")

...

' An array of Objects can be anything at all.

Dim myObjects(3) As Object

myObjects(0) = 10

myObjects(1) = False

myObjects(2) = New DateTime(1969, 3, 24)

myObjects(3) = "Form & Void"

For Each obj As Object In myObjects

' Print the type and value for each item in array.

Console.WriteLine("Type: {0}, Value: {1}", obj.GetType(), obj)

Next

End Sub

End Module

Here, as we are iterating over the contents of myObjects, we print out the underlying type of
each item using the GetType() method of System.Object as well as the value of the current item.
Without going into too much detail regarding System.Object.GetType() at this point in the text,
simply understand that this method can be used to obtain the fully qualified name of the item
(Chapter 14 fully examines the topic of type information and reflection services). Figure 4-4 shows
the output of the previous snippet.

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I114

Defining the Lower Bound of an Array
Visual Basic 6.0 allows developers to build an array with an arbitrary lower bound using the To key-
word. To determine the upper and lower bounds of an array, we were provided with the LBound()
and UBound() helper functions:

' VB 6.0 code!

Dim myNumbers(5 To 7) As Integer

myNumbers(5) = 10

myNumbers(6) = 10

myNumbers(7) = 10

Dim i As Integer

For i = LBound(myNumbers) To UBound(myNumbers)

MsgBox i

Next i

5785ch04.qxd 3/31/06 10:21 AM Page 114

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 115

Although the To keyword can still be used under VB 2005, the lower bound of an array is always
zero in order to keep VB 2005 in step with the rules of the Common Type System (CTS). Given this
point, the To keyword is more or less optional under the .NET platform:

' Under VB 2005, the To keyword does not bring much to the table.

Dim myNumbers(0 To 5) as Integer

Dim moreNumbers(5) as Integer

For new VB 2005 projects, the fact should pose no problems; however, if you are building an
application that needs to communicate with a legacy VB 6.0 COM application that sends or receives
arrays with arbitrary lower bounds, this can be an issue. For example, assume you are building a new
.NET application that is making use of an ActiveX *.dll that contains a COM object that returns an
array with a lower bound of 5. Given all .NET arrays have a lower bound of zero, how would you be
able to process this array back within the .NET program?

Under the .NET platform, the only way to create (or represent) an array with a lower bound other
than zero is to use the shared CreateInstance() method of System.Array. We will examine the role
of System.Array in just a moment; however, ponder the following code, which does indeed build an
array with a lower bound of 5 and an upper bound of 7:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Arrays *****")

...

' An array representing the length of each dimension

Dim myLengths() As Integer = {3}

' An array representing the lower bound of each dimension.

Dim myBounds() As Integer = {5}

' Call Array.CreateInstance() specifying

' the type of array, length and bounds.

Dim mySpecialArray As Array = _

Array.CreateInstance(GetType(Integer), myLengths, myBounds)

Console.WriteLine("Lower Bound: {0}", LBound(mySpecialArray))

Console.WriteLine("Upper Bound: {0}", UBound(mySpecialArray))

End Sub

End Module

While this code is more verbose than simply using the To keyword to set up a lower bound, it is
not as complex as it might look. We begin by declaring two arrays of Integers that represent the length
and lower bounds of each dimension of the array we are interested in building. The reason we have
to represent the length and lower bound as an array of Integers (rather than two simple numbers)
is due to the fact that Array.CreateInstance() can create single or multidimensional arrays. Here,
we are creating an array of a single dimension, given that the myLengths and myBounds variables con-
tain a single item. If you were to run this application, you would find the output shown in Figure 4-5.

Figure 4-5. Creating an array with a lower bound of 5 using VB 2005

5785ch04.qxd 3/31/06 10:21 AM Page 115

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I116

The Redim/Preserve Syntax
VB 2005 allows you to dynamically reestablish the upper bound of a previous allocated array using
the Redim/Preserve syntax. For example, assume you created an array of 10 Integers somewhere
within your program. At a later time, you realize that this array needs to grow by 5 items (to hold
a maximum of 16 Integers). To do so, you are able to author the following code:

' Make an array with 10 slots.

Dim myValues(9) As Integer

For i As Integer = 0 To 9

myValues(i) = i

Next

For i As Integer = 0 To UBound(myValues)

Console.Write("{0} ", myValues(i))

Next

' ReDim the array with extra slots.

ReDim Preserve myValues(15)

For i As Integer = 9 To UBound(myValues)

myValues(i) = i

Next

For i As Integer = 0 To UBound(myValues)

Console.Write("{0} ", myValues(i))

Next

Now, be very aware that the ReDim/Preserve syntax generates quite a bit of CIL code behind
the scenes. You would be correct to assume that a new array will be created followed by a member-
by-member transfer of the items from the old array into the new array (load your assembly into
ildasm.exe to check out the code first hand).

Simply put, overuse of the ReDim/Preserve syntax can be inefficient. When you wish to use
a container whose contents can dynamically grow (or shrink) on demand, you will always prefer
using members from the System.Collections (Chapter 9) or System.Collections.Generic (Chapter 12)
namespaces.

■Note This System.Array class provides the language-neutral Resize() method, which serves a similar function
as VB 2005’s ReDim/Preserve syntax.

Working with Multidimensional Arrays
In addition to the single dimensional arrays you have seen thus far, VB 2005 also supports the cre-
ation of multidimensional arrays. To declare and fill a multidimensional array, proceed as follows:

Sub Main()

...

Dim myMatrix(6, 6) As Integer ' makes a 7x7 array

' Populate array.

Dim k As Integer, j As Integer

For k = 0 To 6

For j = 0 To 6

myMatrix(k, j) = k * j

Next j

Next k

' Show array.

For k = 0 To 6

For j = 0 To 6

Console.Write(myMatrix(k, j) & " ")

5785ch04.qxd 3/31/06 10:21 AM Page 116

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 117

Next j

Console.WriteLine()

Next k

End Sub

So, at this point you should (hopefully) feel comfortable with the process of defining, filling,
and examining the contents of a VB 2005 array type. To complete the picture, let’s now examine the
role of the System.Array class.

The System.Array Base Class
The most striking difference between VB 6.0 and VB 2005 arrays is the fact that every array you create
gathers much of its functionality from the .NET System.Array class. Using these common members,
we are able to operate on an array using a consistent object model. In fact, in most cases you are able
to simply use the members of System.Array rather than the VB 6.0 style array functions (LBound(),
UBound(), and so on). Table 4-2 gives a rundown of some of the more interesting members (be sure
to check the .NET Framework 2.0 SDK for full details).

Table 4-2. Select Members of System.Array

Member of Array Class Meaning in Life

Clear() This shared method sets a range of elements in the array to empty
values (0 for value items, shared for object references).

CopyTo() Used to copy elements from the source array into the destination array.

GetEnumerator() Returns the IEnumerator interface for a given array. I address interfaces
in Chapter 9, but for the time being, keep in mind that this interface is
required by the For Each construct.

Length This property returns the number of items within the array.

Rank This property returns the number of dimensions of the current array.

Reverse() This shared method reverses the contents of a one-dimensional array.

Sort() This shared method sorts a one-dimensional array of intrinsic types. If
the elements in the array implement the IComparer interface, you can
also sort your custom types (see Chapter 9).

Let’s see some of these members in action. The following code makes use of the shared Reverse()

and Clear() methods to pump out information about an array of string types to the console:

' Create some string arrays and exercise some System.Array members.

Sub Main()

...

' Initialize items at startup.

Console.WriteLine("* Fun with System.Array *")

Dim gothicBands() As String = _

{"Tones on Tail", "Bauhaus", "Sisters of Mercy"}

' Print out names in declared order.

Console.WriteLine(" -> " & "Here is the array:")

For i As Integer = 0 To gothicBands.GetUpperBound(0)

' Print a name

Console.Write(gothicBands(i) & " ")

Next

Console.WriteLine()

5785ch04.qxd 3/31/06 10:21 AM Page 117

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I118

Figure 4-6. Fun with System.Array

' Reverse them...

Array.Reverse(gothicBands)

Console.WriteLine(" -> " & "The reversed array")

' ... and print them.

For i As Integer = 0 To gothicBands.GetUpperBound(0)

' Print a name

Console.Write(gothicBands(i) & " ")

Next

Console.WriteLine()

' Clear out all but the final member.

Console.WriteLine(" -> " & "Cleared out all but one...")

Array.Clear(gothicBands, 1, 2)

For i As Integer = 0 To gothicBands.GetUpperBound(0)

' Print a name

Console.Write(gothicBands(i) & " ")

Next

End Sub

The output can be seen in Figure 4-6.

Notice that many members of System.Array are defined as shared members and are therefore
called at the class level (for example, the Array.Sort() or Array.Reverse() methods). Methods such
as these are passed in the array you wish to process. Other methods of System.Array (such as the
GetUpperBound() method or Length property) are bound at the object level, and thus you are able to
invoke the member directly on the array.

■Source Code The FunWithArrays application is located under the Chapter 4 subdirectory.

Understanding VB 2005 Enumerations
Recall from Chapter 1 that the .NET type system is composed of classes, structures, enumerations,
interfaces, and delegates (also recall that a module is nothing more than a class type in disguise). To
begin our exploration of these types, let’s check out the role of the enumeration.

When building a system, it is often convenient to create a set of symbolic names that map to
known numerical values. For example, if you are creating a payroll system, you may want to refer to
the type of employees using constants such as VP, Manager, Grunt, and Contractor rather than raw
numerical values such as {0, 1, 2, 3}. Like other managed languages, VB 2005 supports the notion of
custom enumerations for this very reason. For example, here is an enumeration named EmpType:

5785ch04.qxd 3/31/06 10:21 AM Page 118

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 119

' A custom enumeration.

Enum EmpType

Manager ' = 0

Grunt ' = 1

Contractor ' = 2

VP ' = 3

End Enum

The EmpType enumeration defines four named constants, corresponding to discrete numerical
values. In VB 2005, the numbering scheme sets the first element to zero (0) by default, followed by
an n+1 progression. You are free to change the initial value as you see fit. For example, if it made sense
to number the members of EmpType as 102 through 105, you could do so as follows:

' Begin with 102.

Enum EmpType

Manager = 102

Grunt ' = 103

Contractor ' = 104

VP ' = 105

End Enum

Enumerations do not necessarily need to follow a sequential ordering. If (for some reason or
another) it makes sense to establish your EmpType as seen here, the compiler continues to be happy:

' Elements of an enumeration need not be sequential!

Enum EmpType

Manager = 10

Grunt = 1

Contractor = 100

VP = 9

End Enum

Controlling the Underlying Storage for an Enum
By default, the storage type used to hold the values of an enumeration is a System.Int32 (the VB 2005
Integer); however, you are free to change this to your liking. VB 2005 enumerations can be defined
in a similar manner for any of the core system types (Byte, Short, Integer, or Long). For example, if
you want to set the underlying storage value of EmpType to be a Byte rather than an Integer, you can
write the following:

' This time, EmpType maps to an underlying Byte.

Enum EmpType As Byte

Manager = 10,

Grunt = 1,

Contractor = 100,

VP = 9

End Enum

Changing the underlying type of an enumeration can be helpful if you are building a .NET
application that will be deployed to a low-memory device (such as a .NET-enabled cell phone or PDA)
and need to conserve memory wherever possible. Of course, if you do establish your enumeration
to use a Byte as storage, each value must be within its range!

Declaring and Using Enums
Once you have established the range and storage type of your enumeration, you can use them in
place of so-called magic numbers. Because enumerations are nothing more than a user-defined

5785ch04.qxd 3/31/06 10:21 AM Page 119

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I120

type, you are able to use them as function return values, method parameters, local variables, and so
forth. Assume you have a module defining a public method, taking EmpType as the sole parameter:

Module Program

' Enums as parameters.

Public Sub AskForBonus(ByVal e As EmpType)

Select Case (e)

Case EmpType.Contractor

Console.WriteLine("You already get enough cash...")

Case EmpType.Grunt

Console.WriteLine("You have got to be kidding...")

Case EmpType.Manager

Console.WriteLine("How about stock options instead?")

Case EmpType.VP

Console.WriteLine("VERY GOOD, Sir!")

End Select

End Sub

Sub Main()

Console.WriteLine("**** Fun with Enums *****")

' Make a contractor type.

Dim emp as EmpType

emp = EmpType.Contractor

AskForBonus(emp)

End Sub

End Module

Notice that when you are assigning a value to an Enum variable, you must scope the Enum name
(EmpType) to the value (Grunt). Because enumerations are a fixed set of name/value pairs, it is illegal
to set an Enum variable to a value that is not defined directly by the enumerated type:

Sub Main()

Console.WriteLine("**** Fun with Enums *****")

Dim emp as EmpType

' Error! SalesManager is not in the EmpType enum!

emp = EmpType.SalesManager

' Error! Forgot to scope Grunt to EmpType!

emp= Grunt

End Sub

The System.Enum Class (and a Lesson in Resolving Keyword
Name Clashes)
The interesting thing about .NET enumerations is that they gain functionality from the System.Enum
class type. This class defines a number of methods that allow you to interrogate and transform a given
enumeration. Before seeing some of this functionality first hand, you have one VB-ism to be aware
of. As you know, VB is a case-insensitive language. Therefore, in the eyes of vbc.exe, Enum, enum, and
ENUM all refer to the intrinsic Enum keyword.

While this can in fact be helpful (given that the Visual Studio 2005 IDE transforms keywords to
the correct case), there is one problem. Specifically, if you attempt to access the shared members of
Enum directly using the dot operator, you will be issued a compiler error. Assume you have updated
your Main() method with the following call to Enum.GetUnderlyingType(). As the name implies, this
method returns the data type used to store the values of the enumerated type (System.Byte in the
case of EmpType):

5785ch04.qxd 3/31/06 10:21 AM Page 120

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 121

' Print out the data type used to store the values?

Sub Main()

Console.WriteLine("**** Fun with Enums *****")

Dim emp As EmpType

emp = EmpType.Contractor

AskForBonus(emp)

' Compiler error!

Console.WriteLine("EmpType uses a {0} for storage", _

Enum.GetUnderlyingType(emp.GetType())

End Sub

The problem is that the compiler assumes “Enum” refers to the VB 2005 keyword, not the
System.Enum type! To resolve this name clash, you have a few choices. First, you could explicitly specify
System.Enum everywhere in your code base:

Sub Main()

Console.WriteLine("**** Fun with Enums *****")

Dim emp As EmpType

emp = EmpType.Contractor

AskForBonus(emp)

' Use fully qualified name.

Console.WriteLine("EmpType uses a {0} for storage", _

System.Enum.GetUnderlyingType(emp.GetType())

End Sub

While this fits the bill, it can be cumbersome to use fully qualified names. To help lessen your
typing burden, you can make use of a variation of the VB 2005 Imports statement that allows you to
define a simple token that maps to a fully qualified name:

' Build an alias to System.Enum

Imports DotNetEnum = System.Enum

Module Program

...

End Module

In this case, you defined an alias to System.Enum, called DotNetEnum. In your code, you can make
use of this moniker whenever you want to make use of the members of the Enum type. At compile time,
however, all occurences of DotNetEnum are replaced with System.Enum.

The final manner to resolve this nameclash is to wrap the Enum token within square brackets.
This informs the compiler that you are refering to the Enum type not the Enum keyword:

Sub Main()

Console.WriteLine("**** Fun with Enums *****")

Dim emp As EmpType

emp = EmpType.Contractor

AskForBonus(emp)

' Wrap token in square brackets.

Console.WriteLine("EmpType uses a {0} for storage", _

[Enum].GetUnderlyingType(emp.GetType())

End Sub

In any case, of greater interest than extracting the underlying type of an enumeration is the
ability to extract the string names behind the numerical values. All VB 2005 enumerations support
a method named ToString(), which as you would expect returns the string name of the current
enumeration’s value. For example:

Sub Main()

Console.WriteLine("**** Fun with Enums *****")

5785ch04.qxd 3/31/06 10:21 AM Page 121

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I122

Figure 4-7. Fun with System.Enum

...

' Prints out "emp is a Contractor".

Console.WriteLine("emp is a {0}", emp.ToString())

End Sub

Using the shared Enum.Format() method, you gain a finer level of formatting options by
specifying the desired format flag (the same formatting flags used when formatting data using the
Console.WriteLine() method). In this context, "g" is the string value, the hexadecimal value is
marked by "x" while the decimal value is obtained using "d". Format() takes two parameters, the first
of which is the type information of the Enum you want to examine, while the second is the format flag.

System.Enum also defines another shared method named GetValues(). This method returns an
instance of System.Array. Each item in the array corresponds to a member of the specified enumer-
ation. Thus the following code will print out each name/value pair within the EmpType enumeration:

Sub Main()

Console.WriteLine("**** Fun with Enums *****")

' Make a contractor type.

Dim emp As EmpType

emp = EmpType.Contractor

...

' Get all stats for EmpType.

Dim obj As Array = DotNetEnum.GetValues(emp.GetType())

Console.WriteLine("This enum has {0} members.", obj.Length)

' Now show the string name and associated value.

Dim e As EmpType

For Each e In obj

Console.Write("String name: {0}", DotNetEnum.Format(emp.GetType(), e, "G"))

Console.Write(" ({0})", DotNetEnum.Format(emp.GetType(), e, "D"))

Console.WriteLine(" hex: {0}", DotNetEnum.Format(emp.GetType(), e, "X"))

Next

End Sub

The output is shown in Figure 4-7.

System.Enum also supports the IsDefined property. This allows you to determine whether a given
string name is a member of the current enumeration. For example, assume you want to know whether
the value "SalesPerson" is part of the EmpType enumeration:

' Does EmpType have a SalesPerson value?

If (DotNetEnum.IsDefined(emp.GetType(), "SalesPerson")) Then

Console.WriteLine("Yep, we have sales people.")

5785ch04.qxd 3/31/06 10:21 AM Page 122

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I 123

Else

Console.WriteLine("No, we have no profits....")

End If

As you will see over the course of this text, enumerations are used extensively throughout the
.NET base class libraries. For example, ADO.NET makes use of numerous enums to represent the
state of a connection (opened, closed, etc.), the state of a row in a DataTable (changed, new, detached,
etc.), and so forth. Therefore, when you make use of a system-supplied enumeration, always remember
that you are able to interact with the name/value pairs using the members of System.Enum.

■Source Code The FunWithEnums project is located under the Chapter 4 subdirectory.

Introducing the VB 2005 Structure Type
Now that you understand the role of enumeration types, let’s conclude this chapter by introducing
the .NET structure. A structure (like an enumeration) is a user-defined type; however, structures are
not simply a collection of name/value pairs. Rather, structures are types that can contain any number
of fields and members that operate on these fields. For example, structures can define constructors,
can implement interfaces, and can contain any number of properties, methods, events, and fields
(if some of these terms are unfamiliar at this point, don’t fret. All of these topics are fully examined
in later chapters).

■Note If you have a background in OOP, you can think of a structure as a “lightweight class type,” given that
structures provide a way to define a type that supports encapsulation, but cannot be used to build a family of
related types (as structures are implicitly sealed).

To define a structure in VB 2005, you use the Structure keyword (and the required End Structure
scope marker):

Structure Point

Public x, y As Integer

Public Sub Display()

Console.WriteLine("{0}, {1}", x, y)

End Sub

Public Sub Increment()

x += 1 : y += 1

End Sub

Public Sub Decrement()

x -= 1 : y -= 1

End Sub

Public Function PointAsHexString() As String

Return String.Format("{0:x}, {1:x}", x, y)

End Function

End Structure

Structures are types that are well suited for modeling mathematical, geometric, and numerical
types. Here, the Point structure is modeling an (x, y) coordinate represented by two Integer types,
which can be altered via a handful of members.

Unlike arrays, strings, or enumerations, VB 2005 structures do not have an identically named
class representation in the .NET library (that is, there is no System.Structure class), but are implicitly
derived from System.ValueType.

5785ch04.qxd 3/31/06 10:21 AM Page 123

CHAPTER 4 ■ VB 2005 PROGRAMMING CONSTRUCTS, PART I I124

Simply put, the role of System.ValueType is to ensure that the derived type (e.g., any structure)
is allocated on the stack rather than the garbage collected heap. Given this, the lifetime of a struc-
ture is very predictable. When a structure variable falls out of the defining scope, it is removed from
memory immediately:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Structs *****")

' Create a Point

Dim myPoint As Point

myPoint.x = 100

myPoint.y = 200

myPoint.Display()

' Increase value of Point

myPoint.Increment()

myPoint.Display()

Console.WriteLine("Value of Point in hex: {0}", _

myPoint.PointAsHexString())

End Sub ' myPoint destroyed here!

End Module

We will revisit Structure types (and System.ValueType) and learn about numerous additional
details in Chapter 11 when we drill into the distinction between value types and reference types.
Until that point, just understand that a Structure allows you to define types that have a fixed and
predictable lifetime.

■Source Code The FunWithStructures project is located under the Chapter 4 subdirectory.

Summary
This chapter began with an examination of several VB 2005 keywords that allow you to build custom
subroutines and functions. Recall that by default, parameters are passed by value (via the ByVal
keyword); however, you may pass a parameter by reference if you mark it with ByRef. You also learned
about the role of optional parameters and how to define and invoke methods taking parameter arrays.

Once we investigated the topic of method overloading, the remainder of this chapter examined
several details regarding how arrays, enumerations, and structures are defined in Visual Basic 2005
and represented within the .NET base class libraries.

With this, our initial investigation of the Visual Basic 2005 programming language is complete!
In the next chapter, we will begin to dig into the details of object-oriented development.

5785ch04.qxd 3/31/06 10:21 AM Page 124

Core Object-Oriented
Programming Techniques

P A R T 3

■ ■ ■

5785ch05.qxd 3/31/06 10:28 AM Page 125

5785ch05.qxd 3/31/06 10:28 AM Page 126

C H A P T E R 5

■ ■ ■

Defining Encapsulated Class Types

In the previous two chapters, you investigated a number of core syntactical constructs that are
commonplace to any .NET application you may be developing. Here, you will begin your examina-
tion of the object-oriented capabilities of VB 2005. Unlike Visual Basic 6.0, VB 2005 is a full-blown
object-oriented programming language that has complete support for the famed “pillars of OOP”
(encapsulation, inheritance, and polymorphism) and is therefore (for the most part) just as power-
ful as other OO languages such as Java, C++, or C#.

The first order of business is to examine the process of building well-defined class types with
any number of constructors. Once you understand the basics of defining and allocating class types,
the remainder of this chapter will examine the role of encapsulation. Along the way you will under-
stand how to define class properties as well as the role of shared fields and members, read-only
fields, and constant data. We wrap up by examining the new VB 2005 XML code documentation syntax.

Introducing the VB 2005 Class Type
As far as the .NET platform is concerned, the most fundamental programming construct is the
class type. Formally, a class is a user-defined type that is composed of field data (often called member
variables) and members that operate on this data (such as constructors, properties, subroutines,
functions, events, and so forth). Collectively, the set of field data represents the “state” of a class
instance (otherwise known as an object). The power of object-based languages such as Visual Basic
2005 is that by grouping data and related functionality in a class definition, you are able to model
your software after entities in the real world.

To get the ball rolling, create a new VB 2005 console application named SimpleClassExample.
Next, insert a new class file (named Car.vb) into your project using the Project ➤ Add New Item
menu selection, choose the Class icon from the resulting dialog box as shown in Figure 5-1, and
click the Add button.

127

5785ch05.qxd 3/31/06 10:28 AM Page 127

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES128

A class is defined in VB 2005 using the Class keyword. Like other constructs in the language, the
scope of a class is terminated using the End keyword (End Class to be specific):

Public Class Car

End Class

Once you have defined a class type, you will need to consider the set of member variables that
will be used to represent its state. For example, you may decide that cars maintain an Integer data
type to represent the current speed and a String data type to represent the car’s friendly pet name.
Given these initial design notes, update your Car class as follows:

Public Class Car

' The 'state' of the Car.

Public petName As String

Public currSpeed As Integer

End Class

Notice that these member variables are declared using the Public access modifier. Public
members of a class are directly accessible once an object of this type has been created. As you may
already know, the term “object” is used to represent an instance of a given class type created using
the New keyword.

■Note Field data of a class should seldom (if ever) be defined as Public. To preserve the integrity of your state
data, it is a far better design to define data as Private and allow controlled access to the data via type properties
(as shown later in this chapter). However, to keep this first example as simple as possible, Public data fits the bill.

After you have defined the set of member variables that represent the state of the type, the next
design step is to establish to members that model its behavior. For this example, the Car class will
define one subroutine name SpeedUp() and another named PrintState():

Figure 5-1. Inserting a new Class type

5785ch05.qxd 3/31/06 10:28 AM Page 128

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 129

Public Class Car

' The 'state' of the Car.

Public petName As String

Public currSpeed As Integer

' The functionality of the Car.

Public Sub PrintState()

Console.WriteLine("{0} is going {1} MPH.", _

petName, currSpeed)

End Sub

Public Sub SpeedUp(ByVal delta As Integer)

currSpeed += delta

End Sub

End Class

As you can see, PrintState() is more or less a diagnostic function that will simply dump the
current state of a given Car object to the command window. SpeedUp() will increase the speed of
the Car by the amount specified by the incoming Integer parameter. Now, update your module’s
Main() method with the following code:

' If you rename your module, don't forget to reset the startup object

' using the My Project dialog box (see Chapter 3).

Module Program

Sub Main()

Console.WriteLine("***** Fun with Class Types *****")

' Allocate and configure a Car object.

Dim myCar As New Car()

myCar.petName = "Sven"

myCar.currSpeed = 10

' Speed up the car a few times and print out the

' new state.

For i As Integer = 0 To 10

myCar.SpeedUp(5)

myCar.PrintState()

Next

End Sub

End Module

Once you run your program, you will see that the Car object (myCar) maintains its current state
throughout the life of the application, as shown in Figure 5-2.

Figure 5-2. Taking the Car for a test drive (pun intended)

5785ch05.qxd 3/31/06 10:28 AM Page 129

Allocating Objects with the New Keyword
As shown in the previous code example, objects must be allocated into memory using the New
keyword. If you do not make use of the New keyword and attempt to make use of your class variable
in a subsequent statement, you will receive a compiler warning. Even worse, if you execute code
that makes use of an unallocated object, you will receive a runtime error (specifically, an exception
of type NullReferenceException, which is the .NET equivalent of the dreaded VB 6.0 runtime error
91 “Object variable or With block variable not set”):

Sub Main()

' Runtime error! Forgot to use 'New'!

Dim myCar As Car

myCar.petName = "Fred"

End Sub

To correctly create a class type variable, you may define and allocate a Car object on a single
line of code as follows:

Sub Main()

Dim myCar As New Car()

myCar.petName = "Fred"

End Sub

As an alternative, you can allocate an object using the assignment operator in conjunction with
the New keyword. This syntax is provided to offer consistency within the language, given that this
approach mimics the initialization of simple data types (such as an Integer). For example:

Sub Main()

' An alternative manner to allocate an object.

Dim myInt as Integer = 10

Dim myCar As Car = New Car()

End Sub

■Note Unlike Visual Basic 6.0, there is no longer a performance penalty incurred when defining and allocating an
object on a single line of code.

Finally, if you wish to define and allocate an object on separate lines of code, you may do so as
follows:

Sub Main()

Dim myCar as Car

myCar = New Car()

myCar.petName = "Fred"

End Sub

■Note Under the .NET platform, the Set keyword has been deprecated. Thus, you no longer allocate objects
using the VB 6.0 Set keyword (if you do so, Visual Studio 2005 will delete Set from the code statement when you
hit the Enter key).

Here, the first code statement simply declares a reference to a yet-to-be-determined Car object.
It is not until you assign a reference to an object via the New keyword that this reference points to
a valid class instance. Without “new-ing” the reference, class variables are automatically assigned
the value Nothing, as verified with the following If statement:

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES130

5785ch05.qxd 3/31/06 10:28 AM Page 130

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 131

Sub Main()

Dim ref As Car

' The following condition is true!

If ref Is Nothing Then

Console.WriteLine("ref is not initialized!")

End If

End Sub

So at this point we have a trivial class type that defines a few points of data and some basic
methods. To enhance the functionality of the current Car type, we need to understand the role class
constructors.

Understanding Class Constructors
Given that objects have state (represented by the values of an object’s member variables), the object
user will typically want to assign relevant values to the object’s field data before use. Currently, the
Car type demands that the petName and currSpeed fields be assigned on a field-by-field basis. For the
current example, this is not too problematic, given that we have only two data points. However, it is
not uncommon for a class to have dozens of fields to contend with. Clearly, it would be undesirable
to author 20 initialization statements to set 20 points of data. Even using the With construct we are
at a disadvantage. By way of illustration:

Sub Main()

Dim o As New SomeClass()

With o

.Field1 = 10

.Field2 = True

.Field3 = New AnotherClass()

.Field4 = 9.99

...

.Field20 = "Gad, this is nasty!"

End Sub

Before the release of the .NET platform, VB class designers handled the Initialize event to
establish default values of an object’s field data. Within the handler for the Initialize event, you
were able to perform any necessary startup logic, to ensure the object came to life in a proper state.
Thus, if you were to define a Car type in Visual Basic 6.0, and wish to assume that all car objects
begin life named “Clunker” moving at 10 MPH, you might define the VB 6.0 Car.cls file shown in
Figure 5-3.

Figure 5-3. A VB 6.0 Car class

5785ch05.qxd 3/31/06 10:28 AM Page 131

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES132

The problem with this approach is that the Initialize event handler does not allow the object
user to supply initialization parameters. Without this possibility, the object user is still required to
establish the state of the object on a member-by-member basis:

' A VB 6.0 would require something like so.

Dim vb6Car As Car

Set vb6Car = New Car ' Initialize event fired!

With vb6Car

.currSpeed = 90

.petName = "Chucky"

End With

To help the object user along, and reduce the number of “hits” required to establish the state
of the object, many VB 6.0 developers created an ad hoc construction subroutine, often named
Create(). For example, assume we have added the following method to the VB 6.0 Car.cls file:

Public Sub Create(ByVal pn As String, ByVal cs As Integer)

petName = pn

currSpeed = cs

End Sub

Although this technique does indeed reduce the number of hits to construct the object, it is
now the responsibility of the caller to invoke the custom Create() method. If this step is forgotten,
the object’s state data is assigned to the values established within the Initialize event handler. In
any case, here is an example of invoking our ad hoc VB 6.0 Create() method:

' A slightly better VB 6.0 solution.

Dim vb6Car As Car

Set vb6Car = New Car ' Initialize fired! Default values established.

Vb6Car.Create "Zippy", 90 ' Supply custom values.

In an ideal world, the object user could specify startup values at the time of creation. In essence,
you would like to be able to write the following VB 6.0 code:

' ILLEGAL VB 6.0 code!!!

Dim vb6Car As New Car("Zippy", 90)

While illegal in VB 6.0, using VB 2005 you are able to do this very thing by defining any number
of class constructors. Simply put, a constructor is a subroutine of a class that is called by the CLR at
runtime when you allocate an object into memory using the New keyword.

■Note The VB 6.0 class Initialize (and Terminate) events are no longer available under VB 2005. However,
the default constructor (examined next) is the functional equivalent of Initialize. On a related note, Chapter 8
examines the garbage collection process and the logical replacement of the VB 6.0 Terminate event.

The Role of the Default Constructor
First of all, understand that every VB 2005 class is provided with a freebee default constructor that you
may redefine if need be. By definition, default constructors never take arguments. Beyond allocating
the new object into memory, the default constructor ensures that all state data is set to an appropriate
default value (see Chapter 3 for information regarding the default values of VB 2005 data types).

If you are not satisfied with these default assignments, you may redefine the default constructor
by defining a Public subroutine named New() on any VB 2005 class type. To illustrate, update your
VB 2005 Car class as follows:

5785ch05.qxd 3/31/06 10:28 AM Page 132

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 133

Public Class Car

' The 'state' of the Car.

Public petName As String

Public currSpeed As Integer

' A custom default constructor.

Public Sub New()

petName = "Chuck"

currSpeed = 10

End Sub

...

End Class

In this case, we are forcing all Car objects to begin life named Chuck, and are moving down the
road at 10 MPH. With this, you are able to create a Car object set to these default values as follows:

Sub Main()

' Invoking the default constructor.

Dim chuck As New Car()

' Prints "Chuck is going 10 MPH."

chuck.PrintState()

End Sub

Strictly speaking, the VB 2005 compiler allows you to omit the empty parentheses when invok-
ing the default constructor. This is purely a typing time saver and has no effect on performance or
code size. Given this point, we could allocate a Car type using the default constructor as follows:

Sub Main()

' Note lack of () on constructor call.

Dim chuck As New Car

End Sub

Defining Custom Constructors
Typically, classes define additional constructors beyond the default. In doing so, you provide the
object user with a simple and consistent way to initialize the state of an object directly at the time
of creation. Given this fact, VB 2005 developers have no need to author VB 6.0–style ad hoc creations
methods (such as a Create() method) to allow the caller to set the object’s state data. Ponder the
following update to the Car class, which now supports a total of three class constructors:

Public Class Car

...

' A custom default constructor.

Public Sub New()

petName = "Chuck"

currSpeed = 10

End Sub

' Here, currSpeed will receive the

' default value of an Integer (zero).

Public Sub New(ByVal pn As String)

petName = pn

End Sub

Public Sub New(ByVal pn As String, ByVal cs As Integer)

petName = pn

currSpeed = cs

End Sub

End Class

5785ch05.qxd 3/31/06 10:28 AM Page 133

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES134

Keep in mind that what makes one constructor different from another (in the eyes of the
VB 2005 compiler) is the number of and type of constructor arguments. Recall from Chapter 4, when
you define a method of the same name that differs by the number or type of arguments, you have
overloaded the method. Thus, the Car type has overloaded the constructor to provide a number of
ways to create the object at the time of declaration. In any case, you are now able to create Car objects
using any of the public constructors. For example:

Sub Main()

' Make a Car called Chuck going 10 MPH.

Dim chuck As New Car()

chuck.PrintState()

' Make a Car called Mary going 0 MPH.

Dim mary As New Car("Mary")

mary.PrintState()

' Make a Car called Daisy going 75 MPH.

Dim daisy As New Car("Daisy", 75)

daisy.PrintState()

End Sub

The Default Constructor Revisited
As you have just learned, all classes are endowed with a free default constructor. Thus, if you insert
a new class into your current project named Motorcycle, defined like so:

Public Class Motorcycle

Public Sub PopAWheely()

Console.WriteLine("Yeeeeeee Haaaaaeewww!")

End Sub

End Class

you are able to create an instance of the Motorcycle type via the default constructor out of the box:

Sub Main()

Dim mc As New Motorcycle()

mc.PopAWheely()

End Sub

However, as soon as you define a custom constructor, the default constructor is silently removed
from the class and is no longer available! Think of it this way: if you do not define a custom constructor,
the VB 2005 compiler grants you a default in order to allow the object user to allocate an instance of
your type with field data set to their default values. However, when you define a unique constructor,
the compiler assumes you have taken matters into your own hands.

Therefore, if you wish to allow the object user to create an instance of your type with the default
constructor, as well as your custom constructor, you must explicitly redefine the default. To this end,
understand that in a vast majority of cases, the implementation of the default constructor of a class
is intentionally empty, as all you require is the ability to create an object with default values:

Public Class Motorcycle

Public driverIntensity As Integer

Public Sub PopAWheely()

For i As Integer = 0 To driverIntensity

Console.WriteLine("Yeeeeeee Haaaaaeewww!")

Next

End Sub

5785ch05.qxd 3/31/06 10:28 AM Page 134

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 135

' Put back the default constructor.

Public Sub New()

End Sub

' Our custom constructor.

Public Sub New(ByVal intensity As Integer)

driverIntensity = intensity

End Sub

End Class

The Role of the Me Keyword
Like earlier additions of Visual Basic, VB 2005 supplies a Me keyword that provides access to the current
class instance. One possible use of the Me keyword is to resolve scope ambiguity, which can arise when
an incoming parameter is named identically to a data field of the type. Of course, ideally you would
simply adopt a naming convention that does not result in such ambiguity; however, to illustrate this
use of the Me keyword, update your Motorcycle class with a new String field (named name) to represent
the driver’s name. Next, add a subroutine named SetDriverName() implemented as follows:

Public Class Motorcycle

Public driverIntensity As Integer

Public name As String

Public Sub SetDriverName(ByVal name As String)

name = name

End Sub

...

End Class

Although this code will compile just fine, if you update Main() to call SetDriverName() and then
print out the value of the name field, you may be surprised to find that the value of the name field is
an empty string!

' Make a Motorcycle named Tiny?

Dim c As New Motorcycle(5)

c.SetDriverName("Tiny")

c.PopAWheely()

Console.WriteLine("Rider name is {0}", c.name) ' Prints an empty name value!

The problem is that the implementation of SetDriverName() is assigning the incoming parameter
back to itself given that the compiler assumes name is referring to the variable currently in the method
scope rather than the name field at the class scope. To inform the compiler that you wish to set the
current object’s name data field to the incoming name parameter, simply use Me:

Public Sub SetDriverName(ByVal name As String)

Me.name = name

End Sub

Do understand that if there is no ambiguity, you are not required to make use of the Me keyword
when a class wishes to access its own data or members. For example, if we rename the String data
member to driverName, the use of Me is optional as there is no longer a scope ambiguity:

Public Class Motorcycle

Public driverIntensity As Integer

Public driverName As String

5785ch05.qxd 3/31/06 10:28 AM Page 135

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES136

Public Sub SetDriverName(ByVal name As String)

' These two line are functionally identical.

driverName = name

Me.driverName = name

End Sub

...

End Class

Even though there is little to be gained when using Me in unambiguous situations, you may still
find this keyword useful when implementing members, as IDEs such as SharpDevelop and Visual
Studio 2005 will enable IntelliSense when Me is specified. This can be very helpful when you have
forgotten the name of a class item and want to quickly recall the definition. Consider Figure 5-4.

■Note It is a compiler error to use the Me keyword within the implementation of a Shared member (explained
shortly). As you will see, shared methods operate on the class (not object) level, and therefore at the class level,
there is no current object (thus no Me)!

Chaining Constructor Calls Using Me
Another use of the Me keyword is to design a class using a technique termed constructor chaining.
This design pattern is helpful when you have a class that defines multiple constructors. Given the
fact that constructors often validate the incoming arguments to enforce various business rules, it
can be quite common to find redundant validation logic within a class’s constructor set. Consider
the following updated Motorcycle:

Public Class Motorcycle

Public driverIntensity As Integer

Public driverName As String

...

' Redundent constructor logic.

Public Sub New()

End Sub

Public Sub New(ByVal intensity As Integer)

If intensity > 10 Then

intensity = 10

Figure 5-4. The IntelliSense of Me

5785ch05.qxd 3/31/06 10:28 AM Page 136

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 137

End If

driverIntensity = intensity

End Sub

Public Sub New(ByVal intensity As Integer, ByVal name As String)

If intensity > 10 Then

intensity = 10

End If

driverIntensity = intensity

driverName = name

End Sub

End Class

Here (perhaps in an attempt to ensure the safety of the rider), each constructor is ensuring that
the intensity level is never greater than 10. While this is all well and good, we do have redundant code
statements in two constructors. This is less than ideal, as we are now required to update code in multi-
ple locations if our rules change (for example, if the intensity should not be greater than 5).

One way to improve the current situation is to define a method in the Motorcycle class that will
validate the incoming argument(s). If we were to do so, each constructor could make a call to this
method before making the field assignment(s). While this approach does allow us to isolate the code
we need to update when the business rules change, we are now dealing with the following redundancy:

Public Class Motorcycle

Public driverIntensity As Integer

Public driverName As String

...

' Constructors.

Public Sub New()

End Sub

Public Sub New(ByVal intensity As Integer)

ValidateIntensity(intensity)

driverIntensity = intensity

End Sub

Public Sub New(ByVal intensity As Integer, ByVal name As String)

ValidateIntensity(intensity)

driverIntensity = intensity

driverName = name

End Sub

Sub ValidateIntensity(ByRef intensity As Integer)

If intensity > 10 Then

intensity = 10

End If

End Sub

End Class

Under VB 2005, a cleaner approach is to designate the constructor that takes the greatest number
of arguments as the “master constructor” and have its implementation perform the required valida-
tion logic. The remaining constructors can make use of the Me keyword to forward the incoming
arguments to the master constructor and provide any additional parameters as necessary. In this
way, we only need to worry about maintaining a single constructor for the entire class, while the
remaining constructors are basically empty. Here is the final iteration of the Motorcycle class (with
one additional constructor for the sake of illustration):

Public Class Motorcycle

Public driverIntensity As Integer

Public driverName As String

...

' Constructors.

5785ch05.qxd 3/31/06 10:28 AM Page 137

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES138

Public Sub New()

End Sub

Public Sub New(ByVal intensity As Integer)

Me.New(intensity, "")

End Sub

Public Sub New(ByVal name As String)

Me.New(5, name)

End Sub

' This is the 'master' constructor that does all the real work.

Public Sub New(ByVal intensity As Integer, ByVal name As String)

If intensity > 10 Then

intensity = 10

End If

driverIntensity = intensity

driverName = name

End Sub

End Class

■Note When a constructor forwards parameters to the master constructor using Me.New(), it must do so on the
very first line within the constructor body. If you fail to do so, you will receive a compiler error.

Understand that using the Me keyword to chain constructor calls is never mandatory. However,
when you make use of this technique, you do tend to end up with a more maintainable and concise
class definition. Again, using this technique you can simplify your programming tasks, as the real
work is delegated to a single constructor (typically the constructor that has the most parameters),
while the other constructors simply “pass the buck.”

Observing Constructor Flow
On a final note, do know that once a constructor passes arguments to the designated master construc-
tor (and that constructor has processed the data), the constructor invoked originally by the object
user will finish executing any remaining code statements. To clarify, update each of the constructors
of the Motorcycle class with a fitting call to Console.WriteLine():

Public Class Motorcycle

...

' Constructors.

Public Sub New()

Console.WriteLine("In default c-tor")

End Sub

Public Sub New(ByVal intensity As Integer)

Me.New(intensity, "")

Console.WriteLine("In c-tor taking an Integer")

End Sub

Public Sub New(ByVal name As String)

Me.New(5, name)

Console.WriteLine("In c-tor taking a String")

End Sub

5785ch05.qxd 3/31/06 10:28 AM Page 138

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 139

Public Sub New(ByVal intensity As Integer, ByVal name As String)

Console.WriteLine("In master c-tor")

If intensity > 10 Then

intensity = 10

End If

driverIntensity = intensity

driverName = name

End Sub

End Class

Now, ensure your Main() method exercises a Motorcycle object as follows:

Sub Main()

...

' Make a Motorcycle.

Dim c As New Motorcycle(5)

c.SetDriverName("Tiny")

c.PopAWheely()

Console.WriteLine("Rider name is {0}", c.name)

End Sub

With this, ponder the output in Figure 5-5.

As you can see, the flow of constructor logic is as follows:

• We create our object by invoking the constructor requiring a single Integer.

• This constructor forwards the supplied data to the master constructor and provides any
additional startup arguments not specified by the caller.

• The master constructor assigns the incoming data to the object’s field data.

• Control is returned to the constructor originally called, and executes any remaining code
statements.

Great! At this point you are able to define a class with field data and various members that can
be created using any number of constructors. Next up, let’s formalize the role of the Shared keyword.

■Source Code The SimpleClassExample project is included under the Chapter 5 subdirectory.

Figure 5-5. Constructor chaining at work

5785ch05.qxd 3/31/06 10:28 AM Page 139

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES140

Understanding the Shared Keyword
A VB 2005 class (or structure) may define any number of shared members via the Shared keyword.
When you do so, the member in question must be invoked directly from the class level, rather than
from a type instance. To illustrate the distinction, consider our good friend System.Console. As you
have seen, you do not invoke the WriteLine() method from the object level:

' Error! WriteLine() is not an instance level method!

Dim c As New Console()

c.WriteLine("I can't be printed...")

but instead simply prefix the type name to the shared WriteLine() member:

' Correct! WriteLine() is a Shared method.

Console.WriteLine("Thanks...")

Simply put, Shared members are items that are deemed (by the type designer) to be so
commonplace that there is no need to create an instance of the type when invoking the member.

Defining Shared Methods (and Fields)
Assume you have a new console project named SharedMethods and have inserted a class named
Teenager that defines a Shared method named Complain(). This method returns a random string,
obtained in part by calling a helper function named GetRandomNumber():

Class Teenager

Public Shared r As Random = New Random()

Public Shared Function GetRandomNumber(ByVal upperLimit As Short) As Integer

Return r.Next(upperLimit)

End Function

Public Shared Function Complain() As String

Dim messages As String() = _

{"Do I have to?", "He started it!", "I'm too tired...", _

"I hate school!", "You are sooo wrong."}

Return messages(GetRandomNumber(5))

End Function

End Class

Notice that the System.Random member variable and the GetRandomNumber() helper function
method have also been declared as Shared members of the Teenager class, given the rule that Shared
members can operate only on other Shared members.

■Note Allow me to repeat myself. Shared members can operate only on Shared data and call Shared methods
of the defining class. If you attempt to make use of non-Shared data or call a non-Shared method within a Shared

member, you’ll receive a compiler error.

Like any Shared member, to call Complain(), prefix the name of the defining class:

Sub Main()

Console.WriteLine("***** Shared Methods *****")

For i As Integer = 0 To 5

Console.WriteLine(Teenager.Complain())

Next

End Sub

5785ch05.qxd 3/31/06 10:28 AM Page 140

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 141

As stated, shared members are bound at the class not object level. However, a strange VB-ism
exists that allows us to invoke the shared Complain() method as follows:

Sub Main()

Console.WriteLine("***** Shared Methods *****")

' VB-ism!

Dim bob As New Teenager()

For i As Integer = 0 To 5

Console.WriteLine(bob.Complain())

Next

End Sub

Although the previous code will result in invoking the Complain() method, you will also receive
a compiler warning:

warning BC42025: Access of shared member, constant member, enum member or nested

type through an instance; qualifying expression will not be evaluated.

Basically, this warning is informing us that Complain() cannot be invoked from our Teenager
object named bob. How then is Complain() invoked? Under the covers, the VB 2005 compiler simply
substitutes a correct call to Teenager.Complain() in the CIL code, which can be verified using
ildasm.exe (see Chapter 1):

.method public static void Main() cil managed

{

...

IL_002c: call string SharedMethods.Teenager::Complain()

...

} // end of method Program::Main

As you might agree, the VB-ism is confusing at best. If you wish to inform the VB 2005 compiler
to emit an error (rather than a warning) when invoking a shared member from an object variable,
you can do so by opening the My Project icon, selecting the Compile tab, and setting the Instance
variable accesses shared member condition to Error. By doing so, we would now receive a compile-
time error when writing code such as

Sub Main()

Dim bob as New Teenager()

For i As Integer = 0 To 5

' Now an compile time error.

Console.WriteLine(bob.Complain())

Next

End Sub

■Source Code The SharedMethods application is located under the Chapter 5 subdirectory.

Defining Shared Data
In addition to Shared members, a type may also define Shared field data (such as the Random member
variable seen in the previous Teenager class). Understand that when a class defines non-Shared data
(properly referred to as instance data), each object of this type maintains an independent copy of the
field. For example, assume a class that models a savings account is defined in a new console appli-
cation named SharedData:

5785ch05.qxd 3/31/06 10:28 AM Page 141

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES142

' This class has a single piece of non-Shared data.

Class SavingsAccount

Public currBalance As Double

Public Sub New(ByVal balance As Double)

currBalance = balance

End Sub

End Class

When you create SavingsAccount objects, memory for the currBalance field is allocated for
each class instance. Shared data, on the other hand, is allocated once and shared among all objects
of the same type. To illustrate the usefulness of Shared data, assume you add piece of Shared data
named currInterestRate to the SavingsAccount class:

Class SavingsAccount

Public currBalance As Double

' A Shared point of data.

Public Shared currInterestRate As Double = 0.04

Public Sub New(ByVal balance As Double)

currBalance = balance

End Sub

End Class

If you were to create three instances of SavingsAccount as follows:

Sub Main()

Console.WriteLine("***** Fun with Shared Data *****")

Dim s1 As New SavingsAccount(50)

Dim s2 As New SavingsAccount(100)

Dim s3 As New SavingsAccount(10000.75)

End Sub

the in-memory data allocation would look something like Figure 5-6.

Figure 5-6. Shared data is allocated once and shared among all instances of the class.

Let’s update the SavingsAccount class to define two Shared methods to get and set the interest
rate value:

Class SavingsAccount

Public currBalance As Double

Public Shared currInterestRate As Double = 0.04

5785ch05.qxd 3/31/06 10:28 AM Page 142

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 143

Public Sub New(ByVal balance As Double)

currBalance = balance

End Sub

' Shared members to get/set interest rate.

Public Shared Sub SetInterestRate(ByVal newRate As Double)

currInterestRate = newRate

End Sub

Public Shared Function GetInterestRate() As Double

Return currInterestRate

End Function

' Instance members to get/set interest rate.

Public Sub SetInterestRateObj(ByVal newRate As Double)

currInterestRate = newRate

End Sub

Public Function GetInterestRateObj() As Double

Return currInterestRate

End Function

End Class

As stated, Shared methods can operate only on Shared data. However, a non-Shared method can
make use of both Shared and non-Shared data. This should make sense, given that Shared data is
available to all instances of the type. Now, observe the following usage and the output in Figure 5-7:

Sub Main()

Console.WriteLine("***** Fun with Shared Data *****")

Dim s1 As New SavingsAccount(50)

Dim s2 As New SavingsAccount(100)

' Get and Set interest rate at object level.

Console.WriteLine("Interest Rate is: {0}", s1.GetInterestRateObj())

s2.SetInterestRateObj(0.08)

' Make new object, this does NOT 'reset' the interest rate.

Dim s3 As New SavingsAccount(10000.75)

Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate())

Console.ReadLine()

End Sub

Figure 5-7. Shared data is allocated only once.

As you can see, when you create new instances of the SavingsAccount class, the value of the Shared
data is not reset, as the CLR will allocate the data into memory exactly one time. After that point, all
objects of type SavingsAccount operate on the same value. Thus, if one object were to change the
interest rate, all other objects report the same value:

5785ch05.qxd 3/31/06 10:28 AM Page 143

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES144

Sub Main()

...

SavingsAccount.SetInterestRate(0.09)

' All three lines print out "Interest Rate is: 0.09"

Console.WriteLine("Interest Rate is: {0}", s1.GetInterestRateObj())

Console.WriteLine("Interest Rate is: {0}", s2.GetInterestRateObj())

Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate())

Console.ReadLine()

End Sub

Defining Shared Constructors
As you know, constructors are used to set the value of a type’s data at the time of construction. Thus,
if you were to assign the value to a piece of Shared data within an instance-level constructor, you
would be saddened to find that the value is reset each time you create a new object! For example,
assume you have updated the SavingsAccount class as follows:

Class SavingsAccount

Public currBalance As Double

Public Shared currInterestRate As Double

Public Sub New(ByVal balance As Double)

currBalance = balance

currInterestRate = 0.04

End Sub

...

End Class

If you execute the previous Main() method, notice how the currInterestRate variable is reset
each time you create a new SavingsAccount object (see Figure 5-8).

Figure 5-8. Assigning Shared data in a constructor “resets” the value.

While you are always free to establish the initial value of Shared data using the member initial-
ization syntax, what if the value for your Shared data needed to be obtained from a database or
external file? To perform such tasks requires a method scope (such as a constructor) to execute the
code statements. For this very reason, VB 2005 allows you to define a Shared constructor:

Class SavingsAccount

Public currBalance As Double

Public Shared currInterestRate As Double

' A shared constructor.

Shared Sub New()

Console.WriteLine("In Shared ctor!")

currInterestRate = 0.04

End Sub

...

End Class

5785ch05.qxd 3/31/06 10:28 AM Page 144

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 145

Simply put, a shared constructor is a special constructor that is an ideal place to initialize the
values of shared data when the value is not known at compile time (e.g., you need to read in the
value from an external file, etc.). Here are a few points of interest regarding Shared constructors:

• A given class (or structure) may define only a single Shared constructor.

• A Shared constructor does not take an access modifier and cannot take any parameters.

• A Shared constructor executes exactly one time, regardless of how many objects of the type
are created.

• The runtime invokes the Shared constructor when it creates an instance of the class or before
accessing the first Shared member invoked by the caller.

• The Shared constructor executes before any instance-level constructors.

Given this modification, when you create new SavingsAccount objects, the value of the Shared
data is preserved, and the output is identical to Figure 5-7 (shown previously).

■Source Code The SharedData project is located under the Chapter 5 subdirectory.

Sweet! At this point in the chapter you (hopefully) feel comfortable defining simple class types
containing constructors, fields, and various shared members. Now that you have the basics under
your belt, we can formally investigate the three pillars of object-oriented programming.

Defining the Pillars of OOP
All object-based languages must contend with three core principals of object-oriented programming,
often called the “pillars of object-oriented programming (OOP)”:

• Encapsulation: How does this language hide an object’s internal implementation details and
preserve data integrity?

• Inheritance: How does this language promote code reuse?

• Polymorphism: How does this language let you treat related objects in a similar way?

As you are most likely already aware, VB 6.0 did not support each pillar of object technology.
Specifically, VB 6.0 lacked inheritance (and therefore lacked true polymorphism). VB 2005, on the
other hand, supports each aspect of OOP, and is on par with any other modern-day OO language
(C#, Java, C++, Delphi, etc.). Before digging into the syntactic details of each pillar, it is important
that you understand the basic role of each. Here is an overview of each pillar, which will be exam-
ined in full detail over the remainder of this chapter and the next.

The Role of Encapsulation
The first pillar of OOP is called encapsulation. This trait boils down to the language’s ability to hide
unnecessary implementation details from the object user. For example, assume you are using a class
named DatabaseReader, which has two primary methods: Open() and Close():

' This object encapsulates the details of opening and closing a database.

Dim dbReader As New DatabaseReader()

dbReader.Open("C:\MyCars.mdf")

' Do something with data file...

dbReader.Close()

5785ch05.qxd 3/31/06 10:28 AM Page 145

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES146

The fictitious DatabaseReader class encapsulates the inner details of locating, loading, manipulating,
and closing the data file. Object users love encapsulation, as this pillar of OOP keeps programming
task simpler. There is no need to worry about the numerous lines of code that are working behind
the scenes to carry out the work of the DatabaseReader class. All you do is create an instance and
send the appropriate messages (e.g., “Open the file named MyCars.mdf located on my C drive”).

Closely related to the notion of encapsulating programming logic is the idea of data hiding.
Ideally, an object’s state data should be specified as Private (or possibly Protected). In this way, the
outside world must ask politely in order to change or obtain the underlying value. This is a good
thing, as publicly declared data points can easily become corrupted (hopefully by accident rather
than intent!). You will formally examine this aspect of encapsulation in just a bit.

The Role of Inheritance
The next pillar of OOP, inheritance, boils down to the language’s ability to allow you to build new
class definitions based on existing class definitions. In essence, inheritance allows you to extend the
behavior of a base (or “parent”) class by inheriting core functionality into the derived subclass (also
called a “child class”). Figure 5-9 shows a simple example.

Figure 5-9. The “is-a” relationship

You can read the diagram in Figure 5-9 as “A hexagon is-a shape that is-an object.” When you
have classes related by this form of inheritance, you establish “is-a” relationships between types.
The is-a relationship is often termed classical inheritance. Under Visual Basic 2005, System.Object is
always the topmost base class in any .NET hierarchy, which defines some bare-bones functionality
fully described in the next chapter. The Shape class extends Object. You can assume that Shape defines
some number of members that are common to all descendents. The Hexagon class extends Shape, and
inherits the core functionality defined by Shape and Object, as well as defines additional hexagon-
related details of its own (whatever those may be).

There is another form of code reuse in the world of OOP: the containment/delegation model
(also known as the “has-a” relationship or “aggregation”). This form of reuse (used exclusively by VB 6.0)
is not used to establish parent/child relationships. Rather, the “has-a” relationship allows one class to
contain an instance of another class and expose its functionality (if required) to the object user indirectly.

For example, assume you are again modeling an automobile. You might want to express the
idea that a car “has-a” radio. It would be illogical to attempt to derive the Car class from a Radio, or
vice versa (a Car “is-a” Radio? I think not!). Rather, you have two independent classes working together,
where the Car class creates and exposes the Radio’s functionality:

Public Class Radio

Public Sub Power(ByVal turnOn As Boolean)

Console.WriteLine("Radio on: {0}", turnOn)

End Sub

End Class

5785ch05.qxd 3/31/06 10:28 AM Page 146

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 147

Public Class Car

' Car 'has-a' Radio

Private myRadio As Radio = New Radio()

Public Sub TurnOnRadio(ByVal onOff As Boolean)

' Delegate call to inner object.

myRadio.Power(onOff)

End Sub

End Class

Notice that the object user has no clue that the Car class is making use of an inner object.

Sub Main()

' Call is forwarded to Radio internally.

Dim viper as New Car()

viper.TurnOnRadio(False)

End Sub

The Role of Polymorphism
The final pillar of OOP is polymorphism. This trait captures a language’s ability to treat related objects
in a similar manner. Specifically, this tenant of an object-oriented language allows a base class to
define a set of members (formally termed the polymorphic interface) that are available to all descen-
dents. A class’s polymorphic interface is constructed using any number of virtual or abstract members
(see Chapter 6 for full details).

In a nutshell, a virtual member is a member in a base class that defines a default implementation
that may be changed (or more formally speaking, overridden) by a derived class. In contrast, an
abstract method is a member in a base class that does not provide a default implementation, but does
provide a signature. When a class derives from a base class defining an abstract method, it must be
overridden by a derived type. In either case, when derived types override the members defined by
a base class, they are essentially redefining how they respond to the same request.

To preview polymorphism, let’s provide some details behind the shapes hierarchy shown in
Figure 5-9. Assume that the Shape class has defined a virtual subroutine named Draw() that takes no
parameters. Given the fact that every shape needs to render itself in a unique manner, subclasses
(such as Hexagon and Circle) are free to override this method to their own liking (see Figure 5-10).

Figure 5-10. Classical polymorphism

Once a polymorphic interface has been designed, you can begin to make various assumptions
in your code. For example, given that Hexagon and Circle derive from a common parent (Shape), an
array of Shape types could contain anything deriving from this base class. Furthermore, given that
Shape defines a polymorphic interface to all derived types (the Draw() method in this example), we
can assume each member in the array has this functionality.

5785ch05.qxd 3/31/06 10:28 AM Page 147

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES148

Consider the following Main() method, which instructs an array of Shape-derived types to render
themselves using the Draw() method:

Module Program

Sub Main()

Dim myShapes(2) As Shape

myShapes(0) = New Hexagon()

myShapes(1) = New Circle()

myShapes(2) = New Hexagon()

For Each s As Shape In myShapes

s.Draw()

Next

Console.ReadLine()

End Sub

End Class

This wraps up our brisk overview of the pillars of OOP. Now that you have the theory in your
mind, the remainder of this chapter explores further details of how encapsulation is handled under
Visual Basic 2005. The next chapter will tackle the details of inheritance and polymorphism.

Visual Basic 2005 Access Modifiers
When working with encapsulation, you must always take into account which aspects of a type are
visible to various parts of your application. Specifically, types (classes, interfaces, structures, enu-
merations, delegates) and their members (properties, subroutines, functions, constructors, fields,
and so forth) are always defined using a specific keyword to control how “visible” the item is to
other parts of your application. Although VB 2005 defines numerous keywords to control access,
they differ on where they can be successfully applied (type or member). Table 5-1 documents the
role of each access modifier and where they may be applied.

Table 5-1. Visual Basic Access Modifiers

Visual Basic 2005
Access Modifier May Be Applied To Meaning in Life

Public Types or type members Public items have no access restrictions.
A public item can be accessed from an
object as well as any derived class.

Private Type members or nested types Private items can only be accessed by the
class (or structure) that defines the item.

Protected Type members or nested types Protected items are not accessible from an
object; however, they are directly accessible
by derived classes.

Friend Types or type members Friend items are accessible only within the
current assembly. Therefore, if you define
a set of Friend-level types within a .NET
class library, other assemblies are not able
to make use of them.

Protected Friend Type members or nested types When the Protected and Friend members
are combined on an item, the item is
accessible within the defining assembly, the
defining class, and by derived classes.

5785ch05.qxd 3/31/06 10:28 AM Page 148

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 149

In this chapter, we are only concerned with the Public and Private keywords. Later chapters
will examine the role of the Friend and Protected Friend modifiers (useful when you build .NET
code libraries) and the Protected modifier (useful when you are creating class hierarchies).

Access Modifiers and Nested Types
Notice that the Private, Protected, and Protected Friend access modifiers can be applied to
a “nested type.” Chapter 6 will examine nesting in detail. What you need to know at this point, how-
ever, is that a nested type is a type declared directly within the scope of Class or Structure. By way
of example, here is a Private Enum (named Color) nested within a Public class (named SportsCar):

Public Class SportsCar

' OK! Nested types can be marked Private.

Private Enum CarColor

Red

Green

Blue

End Enum

End Class

Here, it is permissible to apply the Private access modifier on the nested type. However,
nonnested types (such as the SportsCar) can only be defined with the Public or Friend modifiers.
Therefore, the following Class is illegal:

' Error! Non-nested types cannot be marked Private!

Private Class Radio

End Class

The Default Access Modifier
By default, a type’s set of properties, subroutines, and functions are implicitly Public:

' A public class with a public default constructor.

Public Class Radio

Sub New()

End Sub

End Class

If you wish to be very clear in your intentions, you are free to explicitly mark a member with the
Public keyword; however, the end result is identical in terms of performance and the size of the output
assembly:

' Functionally identical to the previous class definition.

Public Class Radio

Public Sub New()

End Sub

End Class

Access Modifiers and Field Data
Fields of a Class or Structure must be defined with an access modifier. Unlike type members (con-
structors, properties, subroutines, or functions), there is not a “default” access level for field data.
Consider the following illegal update to the Radio class:

Public Class Radio

' Error! Must define access modifer

' for field data!

favoriteStation as Double

5785ch05.qxd 3/31/06 10:28 AM Page 149

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES150

Sub New()

End Sub

End Class

To rectify the situation, simply define the type with your access modifier of choice:

Public Class Radio

Private favoriteStation as Double

Sub New()

End Sub

End Class

■Note It is possible to define a data field of a Class or Structure using the Dim keyword (although it is consid-
ered bad style). If you do so, the variable behaves as if it were declared with the Private access modifier.

The First Pillar: VB 2005’s Encapsulation Services
The concept of encapsulation revolves around the notion that an object’s internal data should not
be directly accessible from an object instance. Rather, if the caller wants to alter the state of an object,
the user does so indirectly using accessor (e.g., “getter”) and mutator (e.g., “setter”) methods. In
VB 2005, encapsulation is enforced at the syntactic level using the Public, Private, Friend, and Protected
keywords. To illustrate the need for encapsulation services, assume you have created the following
class definition:

' A class with a single field.

Public Class Book

Public numberOfPages As Integer

End Class

The problem with public field data is that the items have no ability to intrinsically “understand”
whether the current value to which they are assigned is valid with regard to the current business
rules of the system. As you know, the upper range of a VB 2005 Integer is quite large (2,147,483,647).
Therefore, the compiler allows the following assignment:

' Humm. That is one heck of a mini-novel!

Sub Main()

Dim miniNovel As New Book()

miniNovel.numberOfPages = 30000000

End Sub

Although you have not overflowed the boundaries of an integer data type, it should be clear
that a mini-novel with a page count of 30,000,000 pages is a bit unreasonable. As you can see, public
fields do not provide a way to trap logical upper (or lower) limits. If your current system has a business
rule that states a book must be between 1 and 1,000 pages, you are at a loss to enforce this program-
matically. Because of this, public fields typically have no place in a production-level class definition.

Encapsulation provides a way to preserve the integrity of an object’s state data. Rather than
defining public fields (which can easily foster data corruption), you should get in the habit of defin-
ing private data, which is indirectly manipulated using one of two main techniques:

• Define a pair of accessor (get) and mutator (set) methods.

• Define a type property.

Additionally, VB 2005 supports the special keywords ReadOnly and WriteOnly, which also deliver
a level of data protection. Whichever technique you choose, the point is that a well-encapsulated
class should hide the details of how it operates from the prying eyes of the outside world. This is

5785ch05.qxd 3/31/06 10:28 AM Page 150

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 151

often termed black box programming. The beauty of this approach is that an object is free to change
how a given method is implemented under the hood. It does this without breaking any existing code
making use of it, provided that the signature of the method remains constant.

Encapsulation Using Traditional Accessors and Mutators
Over the remaining pages in this chapter, we will be building a fairly complete class that models
a general employee. To get the ball rolling, create a new console application named EmployeeApp
and insert a new Class (named Employee.vb) using the Project ➤ Add Class menu item. Update the
Employee class with the following fields, subroutines, and constructors:

Public Class Employee

' Field data.

Private empName As String

Private empID As Integer

Private currPay As Single

' Constructors

Sub New()

End Sub

Sub New(ByVal name As String, ByVal id As Integer, ByVal pay As Single)

empName = name

empID = id

currPay = pay

End Sub

' Members.

Sub GiveBonus(ByVal amount As Single)

currPay += amount

End Sub

Sub DisplayStats()

Console.WriteLine("Name: {0}", empName)

Console.WriteLine("ID: {0}", empID)

Console.WriteLine("Pay: {0}", currPay)

End Sub

End Class

Notice that the fields of the Employee class are currently defined using the Private access keyword.
Given this, the empName, empID, and currPay fields are not directly accessible from an object:

Sub Main()

' Error! Cannot directly access Private members

' from an object!

Dim emp As New Employee()

emp.empName = "Marv"

End Sub

If you want the outside world to interact with your private string representing a worker’s full
name, tradition dictates defining an accessor (get method) and mutator (set method). For example,
to encapsulate the empName field, you could add the following Public members to the existing Employee
class type:

' Traditional accessor and mutator for a point of private data.

Public Class Employee

' Field data.

Private empName As String

...

' Accessor (get method)

5785ch05.qxd 3/31/06 10:28 AM Page 151

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES152

Public Function GetName() As String

Return empName

End Function

' Mutator (set method)

Public Sub SetName(ByVal name As String)

' Remove any illegal characters (!,@,#,$,%),

' check maximum length or case before making assignment.

empName = name

End Sub

End Class

This technique requires two uniquely named methods to operate on a single data point. To
illustrate, update your Main() method as follows:

Sub Main()

Console.WriteLine("***** Fun with Encapsulation *****")

Dim emp As New Employee("Marvin", 456, 30000)

emp.GiveBonus(1000)

emp.DisplayStats()

' Use the get/set methods to interact with the object's name.

emp.SetName("Marv")

Console.WriteLine("Employee is named: {0}", emp.GetName())

Console.ReadLine()

End Sub

Encapsulation Using Type Properties
Although you can encapsulate a piece of field data using traditional get and set methods, .NET lan-
guages prefer to enforce data protection using properties that are defined via the Property keyword.
Visual Basic 6.0 programmers have long used properties to simulate direct access to field data; how-
ever, the syntax to do so has been modified under the .NET platform.

First of all, understand that properties always map to “real” accessor and mutator methods in
terms of CIL code. Therefore, as a class designer, you are still able to perform any internal logic
necessary before making the value assignment (e.g., uppercase the value, scrub the value for illegal
characters, check the bounds of a numerical value, and so on). Here is the updated Employee class,
now enforcing encapsulation of each field using property syntax rather than get and set methods:

Public Class Employee

' Field data.

Private empName As String

Private empID As Integer

Private currPay As Single

' Properties

Public Property Name() As String

Get

Return empName

End Get

Set(ByVal value As String)

empName = value

End Set

End Property

5785ch05.qxd 3/31/06 10:28 AM Page 152

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 153

Public Property ID() As Integer

Get

Return empID

End Get

Set(ByVal value As Integer)

empID = value

End Set

End Property

Public Property Pay() As Single

Get

Return currPay

End Get

Set(ByVal value As Single)

currPay = value

End Set

End Property

...

End Class

Unlike VB 6.0, a property is not represented by independent Get, Let, or Set members. Rather,
a VB 2005 property is composed by defining a Get scope (accessor) and Set scope (mutator) directly
within the property scope itself. Once we have these properties in place, it appears to the object user
that they are getting and setting a public point of data; however, the correct Get and Set block is called
behind the scenes:

Sub Main()

Console.WriteLine("***** Fun with Encapsulation *****")

Dim emp As New Employee("Marvin", 456, 30000)

emp.GiveBonus(1000)

emp.DisplayStats()

' Set and Get the Name property.

emp.Name = "Marv"

Console.WriteLine("Employee is named: {0}", emp.Name)

Console.ReadLine()

End Sub

Properties (as opposed to accessors and mutators) also make your types easier to manipulate,
in that properties are able to respond to the intrinsic operators of VB 2005. To illustrate, assume that
the Employee class type has an internal private member variable representing the age of the employee.
Here is our update:

Public Class Employee

...

Private empAge As Integer

...

Public Property Age() As Integer

Get

Return empAge

End Get

Set(ByVal value As Integer)

empAge = value

End Set

End Property

5785ch05.qxd 3/31/06 10:28 AM Page 153

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES154

' Constructors

Sub New()

End Sub

Sub New(ByVal name As String, ByVal age As Integer, _

ByVal id As Integer, ByVal pay As Single)

empName = name

empAge = age

empID = id

currPay = pay

End Sub

' Members.

...

Sub DisplayStats()

Console.WriteLine("Name: {0}", empName)

Console.WriteLine("Age: {0}", empAge)

Console.WriteLine("ID: {0}", empID)

Console.WriteLine("Pay: {0}", currPay)

End Sub

End Class

Now assume you have created an Employee object named joe. On his birthday, you wish to
increment the age by one. Using traditional accessor and mutator methods, you would need to
write code such as the following:

Dim joe As New Employee()

joe.SetAge(joe.GetAge() + 1)

However, if you encapsulate empAge using property syntax, you are able to simply write

Dim joe As New Employee()

joe.Age = joe.Age + 1

Internal Representation of Properties
Many programmers (especially those who program with a C-based language such as C++) tend to
design traditional accessor and mutator methods using “get_” and “set_” prefixes (e.g., get_Name()
and set_Name()). This naming convention itself is not problematic as far as VB 2005 is concerned.
However, it is important to understand that under the hood, a property is represented in CIL code
using these same prefixes. For example, if you open up the EmployeeApp.exe assembly using ildasm.exe,
you see that each property is mapped to hidden get_XXX()/set_XXX() methods called internally by
the CLR (see Figure 5-11).

5785ch05.qxd 3/31/06 10:28 AM Page 154

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 155

Assume the Employee type now has a private member variable named empSSN to represent an indi-
vidual’s Social Security number, which is manipulated by a property named SocialSecurityNumber:

' Add support for a new field representing the employee's SSN.

Public Class Employee

...

Private empSSN As String

...

Public Property SocialSecurityNumber() As String

Get

Return empSSN

End Get

Set(ByVal value As String)

empSSN = value

End Set

End Property

' Constructors

Sub New()

End Sub

Sub New(ByVal name As String, ByVal age As Integer, _

ByVal id As Integer, ByVal pay As Single, _

ByVal ssn As String)

empName = name

empAge = age

empID = id

empSSN = ssn

currPay = pay

End Sub

' Members.

...

Sub DisplayStats()

Console.WriteLine("Name: {0}", empName)

Console.WriteLine("Age: {0}", empAge)

Figure 5-11. A property is represented by get/set methods internally.

5785ch05.qxd 3/31/06 10:28 AM Page 155

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES156

Console.WriteLine("SSN: {0}", empSSN)

Console.WriteLine("ID: {0}", empID)

Console.WriteLine("Pay: {0}", currPay)

End Sub

End Class

If you were to also define two methods named get_SocialSecurityNumber() and
set_SocialSecurityNumber(), you would be issued compile-time errors:

' Remember, a property really maps to a get_/set_ pair.

Public Class Employee

...

Public Function get_SocialSecurityNumber() As String

Return empSSN

End Function

Public Sub set_SocialSecurityNumber(ByVal val As String)

empSSN = val

End Sub

End Class

■Note The .NET base class libraries always favor type properties over traditional accessor and mutator methods.
Therefore, if you wish to build custom types that integrate well with the .NET platform, avoid defining traditional
get and set methods.

Controlling Visibility Levels of Property Get/Set Statements
Prior to VB 2005, the visibility of get and set logic was solely controlled by the access modifier of the
property declaration:

' The get and set logic is both public,

' given the declaration of the property.

Public Property SocialSecurityNumber() As String

Get

Return empSSN

End Get

Set(ByVal value As String)

empSSN = value

End Set

End Property

In some cases, it would be helpful to specify unique accessibility levels for get and set logic. To
do so, simply prefix an accessibility keyword to the appropriate Get or Set keyword (the unqualified
scope takes the visibility of the property’s declaration):

' Object users can only get the value, however

' the Employee class and derived types can set the value.

Public Property SocialSecurityNumber() As String

Get

Return empSSN

End Get

Protected Set(ByVal value As String)

empSSN = value

End Set

End Property

In this case, the set logic of SocialSecurityNumber can only be called by the current class and
derived classes and therefore cannot be called from an object instance.

5785ch05.qxd 3/31/06 10:28 AM Page 156

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 157

Read-Only and Write-Only Properties
When creating class types, you may wish to configure a read-only property. To do so, simply build
a property using the ReadOnly keyword and omit the Set block. Likewise, if you wish to have a write-
only property, build a property using the WriteOnly keyword and omit the Get block. For example,
here is how the SocialSecurityNumber property could be retrofitted as read-only:

Public Class Employee

...

' Now as a read-only property.

Public ReadOnly Property SocialSecurityNumber() As String

Get

Return empSSN

End Get

End Property

End Class

Given this adjustment, the only manner in which an employee’s US Social Security number can
be set is through a constructor argument.

Shared Properties
VB 2005 also supports shared properties. Recall from earlier in this chapter that shared members
are accessed at the class level, not from an instance (object) of that class. For example, assume that
the Employee type defines a shared point of data to represent the name of the organization employ-
ing these workers. You may encapsulate a shared property as follows:

' Shared properties must operate on static data!

Public Class Employee

...

Private Shared companyName As String

...

Public Shared Property Company() As String

Get

Return companyName

End Get

Set(ByVal value As String)

companyName = value

End Set

End Property

End Class

Shared properties are manipulated in the same manner as static methods, as seen here:

' Interact with the Shared property.

Sub Main()

Employee.Company = "Intertech Training"

Console.WriteLine("These folks work at {0}", Employee.Company)

End Sub

Finally, recall that classes can support shared constructors. Thus, if you wanted to ensure that
the name of the static CompName field was always assigned to “Intertech Training”, you would write
the following:

' Shared constructors are used to initialize shared data.

Public Class Employee

Private Shared companyName As String

....

5785ch05.qxd 3/31/06 10:28 AM Page 157

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES158

Shared Sub New()

companyName = "Intertech Training"

End Sub

End Class

Using this approach, there is no need to explicitly set the companyName value:

' Set to Intertech Training via Shared constructor.

Sub Main()

Console.WriteLine("These folks work at {0}", Employee.Company)

End Sub

To wrap up the examination of encapsulation using VB 2005 properties, understand that these
syntactic entities are used for the same purpose as a classical accessor/mutator pair. The benefit of
properties is that the users of your objects are able to manipulate the internal data point using
a single named item.

Understanding Constant Data
Now that you can create fields that can be modified using type properties, allow me to illustrate how
to define data that can never change after the initial assignment. VB 2005 offers the Const keyword
to define constant data. As you might guess, this can be helpful when you are defining a set of known
values for use in your applications that are logically connected to a given class or structure.

Turning away from the Employee example for a moment, assume you are building a utility class
named MyMathClass that needs to define a value for the value PI (which we will assume to be 3.14).
Given that we would not want to allow other developers to change this value in code, PI could be
modeled with the following constant:

Public Class MyMathClass

Public Const PI As Double = 3.14

End Class

Module Program

Sub Main()

Console.WriteLine("The value of PI is: {0}", MyMathClass.PI)

End Sub

End Module

Because PI has been defined as constant, it would be a compile-time error to attempt to modify
this value within our code base:

Module Program

Sub Main()

Console.WriteLine("The value of PI is: {0}", MyMathClass.PI)

' Error! Can't change a constant!

MyMathClass.PI = 3.1444

End Sub

End Module

Notice that we are referencing the constant data defined by the MyConstants class using a class
name prefix. This is due to the fact that constant fields of a class or structure are implicitly shared.
As mentioned early in this chapter, VB 2005 does allow you to access shared members from an
object (provided you have not altered your compiler error settings!). Thus, you could write the follow-
ing code to access the value of PI:

5785ch05.qxd 3/31/06 10:28 AM Page 158

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 159

Module Program

Sub Main()

Dim m As New MyMathClass()

Console.WriteLine("The value of PI is: {0}", m.PI)

End Sub

End Module

As well, it is permissible to define a local piece of constant data within a type member. By way
of example:

Module Program

Sub Main()

Console.WriteLine("The value of PI is: {0}", MyMathClass.PI)

' A local constant data point.

Const fixedStr As String = "Fixed String Data"

Console.WriteLine(fixedStr)

' Error!

fixedStr = "This will not work!"

End Sub

End Module

Regardless of where you define a constant piece of data, the one point to always remember is
that the initial value assigned to the constant must be specified at the time you define the constant.
Thus, if you were to modify your MyMathClass in such a way that the value of PI is assigned in a class
constructor as follows:

Public Class MyMathClass

Public Const PI As Double

Public Sub New()

' Nope! Compiler error!

PI = 3.14

End Sub

End Class

you would receive a compile-time error. The reason for this restriction has to do with the fact the
value of constant data must be known at compile time. Constructors, as you know, are invoked at
runtime.

Understanding Read-Only Fields
Closely related to constant data is the notion of read-only field data. Like a constant, a read-only
field cannot be changed after the initial assignment. However, unlike a constant, the value assigned
to a read-only field can be determined at runtime, and therefore can legally be assigned within the
scope of a constructor (but nowhere else).

This can be very helpful when you don’t know the value of a field until runtime (perhaps because
you need to read an external file to obtain the value), but wish to ensure that the value will not change
after that point. For the sake of illustration, assume the following update to MyMathClass:

Public Class MyMathClass

' Now as a read only field.

Public ReadOnly PI As Double

Public Sub New()

' This is now OK.

PI = 3.14

End Sub

End Class

5785ch05.qxd 3/31/06 10:28 AM Page 159

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES160

Again, any attempt to make assignments to a field marked ReadOnly outside the scope of
a constructor results in a compiler error:

Module Program

Sub Main()

Dim m As New MyMathClass()

' Error.

m.PI = 9

End Sub

End Module

Shared Read-Only Fields
Unlike a constant field, read-only fields are not implicitly shared. Thus, if you wish to expose PI from
the class level, you must explicitly make use of the Shared keyword. If you know the value of a shared
read-only field at compile time, the initial assignment looks very similar to that of a constant:

Public Class MyMathClass

Public Shared ReadOnly PI As Double = 3.14

End Class

Module Program

Sub Main()

Console.WriteLine("The value of PI is {0}", MyMathClass.PI)

End Sub

End Module

However, if the value of a shared read-only field is not known until runtime, you must make use
of a shared constructor as described earlier in this chapter:

Public Class MyMathClass

Public Shared ReadOnly PI As Double

Shared Sub New()

PI = 3.14

End Sub

End Class

Module Program

Sub Main()

Console.WriteLine("The value of PI is {0}", MyMathClass.PI)

End Sub

End Module

Now that we have examined the role of constant data and read-only fields, we can return to the
Employee example and put the wraps on this chapter.

Understanding Partial Types
VB 2005 introduces a new type modifier named Partial that allows you to define a type across
multiple *.vb files. Earlier versions of the VB programming language required all code for a given
type be defined within a single *.vb file. Given the fact that a production-level VB 2005 class may be
hundreds of lines of code (or more), this can end up being a mighty lengthy file indeed.

In these cases, it would be ideal to partition a type’s implementation across numerous *.vb
files in order to separate code that is in some way more important for other details. For example,
using the Partial class modifier, you could place all of the Employee constructors and properties
into a new file named Employee.Internals.vb:

5785ch05.qxd 3/31/06 10:28 AM Page 160

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 161

Partial Public Class Employee

' Constructors

...

' Properties

...

End Class

while the private field data and type methods are defined within the initial Employee.vb:

Partial Public Class Employee

' Field data.

Private empName As String

Private empID As Integer

Private currPay As Single

Private empAge As Integer

Private empSSN As String

Private Shared companyName As String

' Public methods.

Sub GiveBonus(ByVal amount As Single)

currPay += amount

End Sub

Sub DisplayStats()

Console.WriteLine("Name: {0}", empName)

Console.WriteLine("Age: {0}", empAge)

Console.WriteLine("SSN: {0}", empSSN)

Console.WriteLine("ID: {0}", empID)

Console.WriteLine("Pay: {0}", currPay)

End Sub

End Class

As you might guess, this can be helpful to new team members who need to quickly learn about
the public interface of the type. Rather than reading though a single (lengthy) VB 2005 file to find the
members of interest, they can focus on the public members. Of course, once these files are compiled
by the VB 2005 compiler, the end result is a single unified type. To this end, the Partial modifier is
purely a design-time construct.

■Note As you will see during our examination of Windows Forms and ASP.NET, Visual Studio 2005 makes use of
the Partial keyword to partition code generated by the IDE’s designer tools. Using this approach, you can keep
focused on your current solution, and be blissfully unaware of the designer-generated code.

Documenting VB 2005 Source Code via XML
To wrap this chapter up, the final task is to examine VB 2005–specific comment tokens that yield
XML-based code documentation. If you have worked with the Java programming language, you
may be familiar with the javadoc utility. Using javadoc, you are able to turn Java source code into
a corresponding HTML representation. The VB 2005 documentation model is slightly different, in
that the “code comments to XML” conversion process is the job of the VB 2005 compiler (via the
/doc option) rather than a stand-alone utility.

So, why use XML to document our type definitions rather than HTML? The main reason is
that XML is a very “enabling technology.” Given that XML separates the definition of data from the
presentation of that data, we can apply any number of XML transformations to the underlying XML
to display the code documentation in a variety of formats (MSDN format, HTML, etc.).

5785ch05.qxd 3/31/06 10:28 AM Page 161

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES162

When you wish to document your VB 2005 types in XML, your first step is to make use of the
new triple tick (''') code comment notations. Once a documentation comment has been declared,
you are free to use any well-formed XML elements, including the recommended set shown in Table 5-2.

Table 5-2. Recommended Code Comment XML Elements

Predefined XML
Documentation Element Meaning in Life

<c> Indicates that the following text should be displayed in a specific “code font”

<code> Indicates multiple lines should be marked as code

<example> Mocks up a code example for the item you are describing

<exception> Documents which exceptions a given class may throw

<list> Inserts a list or table into the documentation file

<param> Describes a given parameter

<paramref> Associates a given XML tag with a specific parameter

<permission> Documents the security constraints for a given member

<remarks> Builds a description for a given member

<returns> Documents the return value of the member

<see> Cross-references related items in the document

<seealso> Builds an “also see” section within a description

<summary> Documents the “executive summary” for a given member

<value> Documents a given property

If you are making use of the new VB 2005 XML code comment notation, do be aware the Visual
Studio 2005 IDE will generate documentation skeletons on your behalf. For example, if you right-click
the Employee class definition and select the Insert Comment menu option, as shown in Figure 5-12,
the IDE will autocomplete the initial set of XML elements.

Figure 5-12. Inserting an XML comment via Visual Studio 2005

5785ch05.qxd 3/31/06 10:28 AM Page 162

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 163

Simply fill in the blanks with your custom content:

''' <summary>

''' This is the employee class.

''' </summary>

''' <remarks></remarks>

Partial Public Class Employee

...

End Class

By way of another example, right-click your custom five-argument constructor and insert a code
comment. This time the comment builder utility has been kind enough to add <param> elements:

''' <summary>

'''

''' </summary>

''' <param name="name"></param>

''' <param name="age"></param>

''' <param name="id"></param>

''' <param name="pay"></param>

''' <param name="ssn"></param>

''' <remarks></remarks>

Sub New(ByVal name As String, ByVal age As Integer, _

ByVal id As Integer, ByVal pay As Single, _

ByVal ssn As String)

...

End Sub

Once you have documented your code with XML comments, you will need to generate a corre-
sponding *.xml file. If you are building your VB 2005 programs using the command-line compiler
(vbc.exe), the /doc flag is used to generate a specified *.xml file based on your XML code comments:

vbc /doc:XmlCarDoc.xml *.vb

Visual Studio 2005 projects allow you to specify the name of an XML documentation file using
the Generate XML documentation file check box option found on the Build tab of the Properties
window (see Figure 5-13).

Figure 5-13. Generating an XML code comment file via Visual Studio 2005

5785ch05.qxd 3/31/06 10:28 AM Page 163

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES164

Once you have enabled this behavior, the compiler will place the generated *.xml file within
your project’s \bin\Debug folder. You can verify this for yourself by clicking the Show All Files button
on the Solution Explorer, generating the result in Figure 5-14.

■Note There are many other elements and notations that may appear in VB 2005 XML code comments. If you
are interested in more details, look up the topic “Documenting Your Code with XML (Visual Basic)” within the .NET
Framework SDK 2.0 documentation.

Transforming XML Code Comments via NDoc
Now that you have generated an *.xml file that contains your source code comments, you may be
wondering exactly what to do with it. Sadly, Visual Studio 2005 does not provide a built-in utility
that transforms XML data into a more user-friendly help format (such as an HTML page). If you are
comfortable with the ins and outs of XML transformations, you are, of course, free to manually create
your own style sheets.

A simpler alternative, however, are the numerous third-party tools that will translate an XML
code file into various helpful formats. For example, recall from Chapter 2 that the NDoc application
generates documentation in several different formats. Again, information regarding NDoc can be
found at http://ndoc.sourceforge.net.

Visualizing the Fruits of Our Labor
At this point, you have created a fairly interesting class named Employee. If you are using Visual
Studio 2005, you may wish to insert a new class diagram file (see Chapter 2) in order to view (and
maintain) your class at design time. Figure 5-15 shows the completed Employee class type.

Figure 5-14. Locating the generated XML documentation file

5785ch05.qxd 3/31/06 10:28 AM Page 164

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 165

As you will see in the next chapter, this Employee class will function as a base class for a family
of derived class types (WageEmployee, SalesEmployee, and Manager).

■Source Code The EmployeeApp project can be found under the Chapter 5 subdirectory.

Summary
The point of this chapter was to introduce you to the role of the VB 2005 class type. As you have seen,
classes can take any number of constructors that enable the object user to establish the state of the
object upon creation. This chapter also illustrated several class design techniques (and related key-
words). Recall that the Me keyword can be used to obtain access to the current object, the Shared
keyword allows you to define fields and members that are bound at the class (not object) level, and
the Const keyword allows you to define a point of data that can never change after the initial assignment.

The bulk of this chapter dug into the details of the first pillar of OOP: encapsulation. Here you
learned about the access modifiers of Visual Basic 2005 and the role of type properties, partial classes,
and XML code documentation.

Figure 5-15. The completed Employee class

5785ch05.qxd 3/31/06 10:28 AM Page 165

5785ch05.qxd 3/31/06 10:28 AM Page 166

C H A P T E R 6

■ ■ ■

Understanding Inheritance and
Polymorphism

The previous chapter examined the first pillar of OOP: encapsulation. At that time you learned
how to build a single well-defined class type with constructors and various members (fields, prop-
erties, constants, read-only fields, etc.). This chapter will focus on the remaining two pillars of OOP:
inheritance and polymorphism.

First, you will learn how to build families of related classes using inheritance. As you will see,
this form of code reuse allows you to define common functionality in a parent class that can be
leveraged (and possibly altered) by child classes. Along the way, you will learn how to establish
a polymorphic interface into the class hierarchies using virtual and abstract members. We wrap up
by examining the role of the ultimate parent class in the .NET base class libraries: System.Object.

The Basic Mechanics of Inheritance
Recall from the previous chapter that inheritance is the aspect of OOP that facilitates code reuse.
Specifically speaking, inheritance comes in two flavors: classical inheritance (the “is-a” relationship)
and the containment/delegation model (the “has-a” relationship). Let’s begin by examining the
classical “is-a” model.

When you establish “is-a” relationships between classes, you are building a dependency between
two or more class types. The basic idea behind classical inheritance is that new classes may leverage
(and possibily extend) the functionality of existing classes. To illustrate, assume you have designed
a simple class named Car that models some basic details of an automobile:

' A simple base class.

Public Class Car

Public ReadOnly MaxSpeed As Integer

Private currSpeed As Integer

Public Sub New(ByVal max As Integer)

MaxSpeed = max

End Sub

Public Sub New()

MaxSpeed = 55

End Sub

Public Property Speed() As Integer

Get

Return currSpeed

End Get

167

5785ch06.qxd 3/31/06 10:26 AM Page 167

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM168

Set(ByVal value As Integer)

currSpeed += value

If currSpeed > MaxSpeed Then

currSpeed = MaxSpeed

End If

End Set

End Property

End Class

Notice that the Car class is making use of encapsulation services to control access to the private
currSpeed field using a public property named Speed. At this point you can exercise your Car type as
follows:

Module Program

Sub Main()

' Make a Car type.

Dim myCar As New Car(80)

myCar.Speed = 50

Console.WriteLine("My car is going {0} MPH", _

myCar.Speed)

End Sub

End Module

The Inherits Keyword
Now assume you wish to build a new class named MiniVan. Like a basic Car, you wish to define the
MiniVan class to support a maximum speed, current speed, and a property named Speed to allow the
object user to modify the object’s state. Clearly, the Car and MiniVan classes are related, in fact we can
say that a MiniVan “is-a” Car. The “is-a” relationship (formally termed classical inheritance) allows
you to build new class definitions that extend the functionality of an existing class.

The existing class that will serve as the basis for the new class is termed a base or parent class.
The role of a base class is to define all the common data and members for the classes that extend it.
The “extending” classes are formally termed derived or child classes. In VB 2005, we make use of the
Inherits keyword to establish an “is-a” relationship between classes:

' MiniVan derives from Car

Public Class MiniVan

Inherits Car

End Class

So, what have we gained by building our MiniVan by deriving from the Car base class? Simply
put, the MiniVan class automatically gains the functionality of each and every member in the parent
class declared as Public or Protected. Do know that inheritance preserves encapsulation! Therefore,
the MiniVan class cannot directly access Private members of the parent. Given the relation between
these two class types, we could now make use of the MiniVan type like so:

Module Program

Sub Main()

...

' Make a MiniVan

Dim myVan As New MiniVan()

myVan.Speed = 10

Console.WriteLine("My van is going {0} MPH", _

myVan.Speed)

End Sub

End Module

5785ch06.qxd 3/31/06 10:26 AM Page 168

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 169

Notice that although we have not added any members to the MiniVan type, we have direct
access to the public Speed property (thus we have reused code). Recall, however, that encapsulation
is preserved, therefore the following code results in a compiler error:

Module Program

Sub Main()

...

' Make a MiniVan

Dim myVan As New MiniVan()

myVan.Speed = 10

Console.WriteLine("My van is going {0} MPH", _

myVan.Speed)

' Error! Cannot access private data of the parent from an object!

myVan.currSpeed = 10

End Sub

End Module

As well, if the MiniVan defined its own set of members, it would not be able to access any private
member of the Car base class:

Public Class MiniVan

Inherits Car

Public Sub TestMethod()

' OK! Can use public members

' within derived type.

Speed = 10

' Error! Cannot access private

' members within derived type.

currSpeed = 10

End Sub

End Class

Regarding Multiple Base Classes
Speaking of base classes, it is important to keep in mind that the .NET platform demands that
a given class have exactly one direct base class. It is not possible to create a class type that derives
from two or more base classes (this technique is known as multiple inheritance, or simply MI):

' Illegal! The .NET platform does not allow

' multiple inheritance for classes!

Public Class WontWork

Inherits BaseClassOne

Inherits BaseClassTwo

End Class

As you will see in Chapter 9, VB 2005 does allow a given type to implement any number of dis-
crete interfaces. In this way, a VB 2005 class can exhibit a number of behaviors while avoiding the
complexities associated with MI. On a related note, it is permissible for a single interface to derive
from multiple interfaces (again, see Chapter 9).

The NotInheritable Keyword
VB 2005 supplies another keyword, named NotInheritable, that prevents inheritance from occurring.
When you mark a class as NotInheritable, the compiler will not allow you to derive from this type.
For example, assume you have decided that it makes no sense to further extend the MiniVan class:

5785ch06.qxd 3/31/06 10:26 AM Page 169

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM170

Figure 6-1. The base class libraries define numerous sealed types.

' This class cannot be extended!

Public NotInheritable Class MiniVan

Inherits Car

End Class

If you (or a teammate) were to attempt to derive from this class, you would receive a compile-
time error:

' Error! Cannot extend

' a class marked NotInheritable!

Public Class TryAnyway

Inherits MiniVan

End Class

Formally speaking, the MiniVan class has been sealed. Most often, sealing a class makes the
most sense when you are designing a utility class. For example, the System namespace defines
numerous sealed classes (System.Console, System.Math, System.Environment, System.Sting, etc.).
You can verify this for yourself by opening up the Visual Studio 2005 Object Browser (via the
View menu) and selecting the System.Console type defined within mscorlib.dll. Notice in
Figure 6-1 the use of the NotInheritable keyword.

Thus, just like the MiniVan, if you attempted to build a new class that extends System.Console,
you will receive a compile-time error:

' Another error! Cannot extend

' a class marked NotInheritable!

Public Class MyConsole

Inherits Console

End Class

■Note In Chapter 4, you were introduced to the structure type. Structures are always implicitly sealed. Therefore,
you can never derive one structure from another structure, a class from a structure or a structure from a class.

5785ch06.qxd 3/31/06 10:26 AM Page 170

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 171

Figure 6-2. Inserting a new class diagram

As you would guess, there are many more details to inheritance that you will come to know during
the remainder of this chapter. For now, simply keep in mind that the Inherits keyword allows you to
establish base/derived class relationships, while the NotInheritable keyword prevents inheritance
from occurring.

Revising Visual Studio 2005 Class Diagrams
Back in Chapter 2, I briefly mentioned that Visual Studio 2005 now allows you to establish base/
derived class relationships visually at design time. To leverage this aspect of the IDE, your first step
is to include a new class diagram file into your current project. To do so, access the Project ➤ Add
New Item menu option and select the Class Diagram icon (in Figure 6-2, I renamed the file from
ClassDiagram1.cd to Cars.cd).

When you do, the IDE responds by automatically including all types, including a set of types
that are not directly visible from the Solution Explorer such as MySettings, Resources, etc. Realize
that if you delete an item from the visual designer, this will not delete the associated source code.
Given this, delete all visual icons except the Car, MiniVan, and Program types, as shown in Figure 6-3.

5785ch06.qxd 3/31/06 10:26 AM Page 171

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM172

Beyond simply displaying the relationships of the types within your current application, recall
that you can also create brand new types (and populate their members) using the Class Designer
toolbox and Class Details window (see Chapter 2 for details). If you wish to make use of these visual
tools during the remainder of the book, feel free. However! Always make sure you analyze the gener-
ated code so you have a solid understanding of what these tools have done on your behalf.

■Source Code The BasicInheritance project is located under the Chapter 6 subdirectory.

The Second Pillar: The Details of Inheritance
Now that you have seen the basics of inheritance, let’s create a more complex example and get to know
the numerous details of building class hierarchies. To do so, we will be reusing the Employee class we
designed in Chapter 5. To begin, create a brand new console application named Employees. Next,
activate the Project ➤ Add Existing Item menu option and navigate to the location of your Employee.vb
and Employee.Internals.vb files. Select each of them (via a Ctrl+left click) and click the OK button.
Visual Studio 2005 responds by copying each file into the current project. Once you have done so,
compile your current application just to ensure you are up and running.

Our goal is to create a family of classes that model various types of employees in a company.
Assume that you wish to leverage the functionality of the Employee class to create two new classes
(SalesPerson and Manager). The class hierarchy we will be building initially looks something like
what you see in Figure 6-4.

Figure 6-3. The visual designer of Visual Studio 2005

5785ch06.qxd 3/31/06 10:26 AM Page 172

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 173

As illustrated in Figure 6-4, you can see that a SalesPerson “is-a” Employee (as is a Manager).
Remember that under the classical inheritance model, base classes (such as Employee) are used to
define general characteristics that are common to all descendents. Subclasses (such as SalesPerson
and Manager) extend this general functionality while adding more specific behaviors.

For our example, we will assume that the Manager class extends Employee by recording the num-
ber of stock options, while the SalesPerson class maintains the number of sales made. Insert a new
class file (Manager.vb) that defines the Manager type as follows:

' Managers need to know their number of stock options.

Public Class Manager

Inherits Employee

Private numberOfOptions As Integer

Public Property StockOptions() As Integer

Get

Return numberOfOptions

End Get

Set(ByVal value As Integer)

numberOfOptions = value

End Set

End Property

End Class

Next, add another new class file (SalesPerson.vb) that defines the SalesPerson type:

' Salespeople need to know their number of sales.

Public Class SalesPerson

Inherits Employee

Private numberOfSales As Integer

Public Property SalesNumber() As Integer

Figure 6-4. The initial Employees hierarchy

5785ch06.qxd 3/31/06 10:26 AM Page 173

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM174

Get

Return numberOfSales

End Get

Set(ByVal value As Integer)

numberOfSales = value

End Set

End Property

End Class

Now that you have established an “is-a” relationship, SalesPerson and Manager have automati-
cally inherited all public members of the Employee base class. To illustrate:

' Create a subclass and access base class functionality.

Module Program

Sub Main()

Console.WriteLine("***** The Employee Class Hierarchy *****")

Console.WriteLine()

' Make a salesperson.

Dim danny As New SalesPerson()

With danny

.Age = 29

.ID = 100

.SalesNumber = 50

.Name = "Dan McCabe"

End With

End Sub

End Module

Controlling Base Class Creation with MyBase
Currently, SalesPerson and Manager can only be created using the freebee default constructor (see
Chapter 5). With this in mind, assume you have added a new six-argument constructor to the
Manager type, which is invoked as follows:

Sub Main()

...

' Assume we now have the following constructor.

' (name, age, ID, pay, SSN, number of stock options).

Dim chucky As New Manager("Chucky", 45, 101, 30000, "222-22-2222", 90)

End Sub

If you look at the argument list, you can clearly see that most of these parameters should be
stored in the member variables defined by the Employee base class. To do so, you might implement
this custom constructor on the Manager class as follows:

Public Sub New(ByVal fullName As String, ByVal age As Integer, _

ByVal empID As Integer, ByVal currPay As Single, _

ByVal ssn As String, ByVal numbOfOpts As Integer)

' This field is defined by the Manager class.

numberOfOptions = numbOfOpts

' Assign incoming parameters using the

' inherited properties of the parent class.

ID = empID

age = age

Name = fullName

Pay = currPay

5785ch06.qxd 3/31/06 10:26 AM Page 174

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 175

' OOPS! This would be a compiler error,

' as the SSN property is read-only!

SocialSecurityNumber = ssn

End Sub

The first issue with this approach is that we defined the SocialSecurityNumber property in the
parent as read-only, therefore we are unable to assign the incoming String parameter to this field.

The second issue is that we have indirectly created a rather inefficient constructor, given the
fact that under VB 2005, unless you say otherwise, the default constructor of a base class is called
automatically before the logic of the custom Manager constructor is executed. After this point, the
current implementation accesses numerous public properties of the Employee base class to estab-
lish its state. Thus, you have really made seven hits (five inherited properties and two constructor
calls) during the creation of a Manager object!

To help optimize the creation of a derived class, you will do well to implement your subclass
constructors to explicitly call an appropriate custom base class constructor, rather than the default.
In this way, you are able to reduce the number of calls to inherited initialization members (which
saves processing time). Let’s retrofit the custom constructor to do this very thing using the MyBase
keyword:

' This time, use the VB 2005 "MyBase" keyword to call a custom

' constructor on the base class.

Public Sub New(ByVal fullName As String, ByVal age As Integer, _

ByVal empID As Integer, ByVal currPay As Single, _

ByVal ssn As String, ByVal numbOfOpts As Integer)

' Pass these arguments to the parent's constructor.

MyBase.New(fullName, age, empID, currPay, ssn)

' This belongs with us!

numberOfOptions = numbOfOpts

End Sub

Here, the first statement within your custom constructor is making use of the MyBase keyword.
In this situation, you are explicitly calling the five-argument constructor defined by Employee and
saving yourself unnecessary calls during the creation of the child class. The custom SalesPerson
constructor looks almost identical:

' As a general rule, all subclasses should explicitly call an appropriate

' base class constructor.

Public Sub New(ByVal fullName As String, ByVal age As Integer, _

ByVal empID As Integer, ByVal currPay As Single, _

ByVal ssn As String, ByVal numbOfSales As Integer)

' Pass these arguments to the parent's constructor.

MyBase.New(fullName, age, empID, currPay, ssn)

' This belongs with us!

numberOfSales = numbOfSales

End Sub

Also be aware that you may use the MyBase keyword anytime a subclass wishes to access a pub-
lic or protected member defined by a parent class. Use of this keyword is not limited to constructor
logic. You will see examples using MyBase in this manner during our examination of polymorphism
later in this chapter.

■Note When using MyBase to call a parent’s constructor, the MyBase.New() statement must be the very first
executable code statement within the constructor body. If this is not the case, you will receive a compiler error.

5785ch06.qxd 3/31/06 10:26 AM Page 175

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM176

Keeping Family Secrets: The Protected Keyword
As you already know, public items are directly accessible from anywhere, while private items cannot
be accessed from any object beyond the class that has defined it. Recall from Chapter 5 that VB 2005
takes the lead of many other modern object languages and provides an additional keyword to define
member accessibility: Protected.

When a base class defines protected data or protected members, it establishes a set of items
that can be accessed directly by any descendent. If you wish to allow the SalesPerson and Manager
child classes to directly access the data sector defined by Employee, you can update the original
Employee class definition as follows:

' Protected state data.

Partial Public Class Employee

' Derived classes can directly access this information.

Protected empName As String

Protected empID As Integer

Protected currPay As Single

Protected empAge As Integer

Protected empSSN As String

Protected Shared companyName As String

...

End Class

The benefit of defining protected members in a base class is that derived types no longer have
to access the data using public methods or properties. The possible downfall, of course, is that when
a derived type has direct access to its parent’s internal data, it is very possible to accidentally bypass
existing business rules found within public properties. When you define protected members, you
are creating a level of trust between the parent and child class, as the compiler will not catch any
violation of your type’s business rules.

Finally, understand that as far as the object user is concerned, protected data is regarded as
private (as the user is “outside” of the family). Therefore, the following is illegal:

Sub Main()

' Error! Can't access protected data from object instance.

Dim emp As New Employee()

emp.empSSN = "111-11-1111"

End Sub

■Note Although Protected field data can break encapsulation, it is quite safe (and useful) to define Protected
subroutines and functions. When building class hierarchies, it is very common to define a set of methods that are
only for use by derived types.

Adding a Sealed Class
Recall that a sealed class cannot be extended by other classes. As mentioned, this technique is most
often used when you are designing a utility class. However, when building class hierarchies, you
might find that a certain branch in the inheritance chain should be “capped off,” as it makes no
sense to further extend the linage. For example, assume you have added yet another class to your
program (PTSalesPerson) that extends the existing SalesPerson type. Figure 6-5 shows the current
update.

5785ch06.qxd 3/31/06 10:26 AM Page 176

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 177

Figure 6-5. The part-time salesperson class

PTSalesPerson is a class representing (of course) a part-time salesperson. For the sake of argument,
let’s say that you wish to ensure that no other developer is able to subclass from PTSalesPerson. (After
all, how much more part-time can you get than “part-time”?) To prevent others from extending a class,
make use of the VB 2005 NotInheritable keyword:

Public NotInheritable Class PTSalesPerson

Inherits SalesPerson

Public Sub New(ByVal fullName As String, ByVal age As Integer, _

ByVal empID As Integer, ByVal currPay As Single, _

ByVal ssn As String, ByVal numbOfSales As Integer)

' Pass these arguments to the parent's constructor.

MyBase.New(fullName, age, empID, currPay, ssn, numbOfSales)

End Sub

' Assume other members here...

End Class

Given that sealed classes cannot be extended, you may wonder if it is possible to reuse the code
within a class marked NotInheritable. If you wish to build a new class that leverages the functionality
of a sealed class, your only option is to forego classical inheritance and make use of the containment/
delegation model (aka the “has-a” relationship).

5785ch06.qxd 3/31/06 10:26 AM Page 177

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM178

Programming for Containment/Delegation
As noted a bit earlier in this chapter, inheritance comes in two flavors. We have just explored the
classical “is-a” relationship. To conclude the exploration of the second pillar of OOP, let’s examine
the “has-a” relationship (also known as the containment/delegation model or aggregation). Assume
you have created a new class that models an employee benefits package:

' This type will function as a contained class.

Public Class BenefitPackage

' Assume we have other members that represent

' 401K plans, dental/health benefits, and so on.

Public Function ComputePayDeduction() As Double

Return 125.0

End Function

End Class

Obviously, it would be rather odd to establish an “is-a” relationship between the BenefitPackage
class and the employee types. (Manager “is-a” BenefitPackage? I don’t think so.) However, it should
be clear that some sort of relationship between the two could be established. In short, you would
like to express the idea that each employee “has-a” BenefitPackage. To do so, you can update the
Employee class definition as follows:

' Employees now have benefits.

Partial Public Class Employee

' Contain a BenefitPackage object.

Protected empBenefits As BenefitPackage = New BenefitPackage()

...

End Class

At this point, you have successfully contained another object. However, to expose the function-
ality of the contained object to the outside world requires delegation. Delegation is simply the act of
adding members to the containing class that make use of the contained object’s functionality. For
example, we could update the Employee class to expose the contained empBenefits object using
a custom property as well as make use of its functionality internally using a new method named
GetBenefitCost():

Partial Public Class Employee

' Contain a BenefitPackage object.

Protected empBenefits As BenefitPackage = New BenefitPackage()

' Expose certain benefit behaviors of object.

Public Function GetBenefitCost() As Double

Return empBenefits.ComputePayDeduction()

End Function

' Expose object through a custom property.

Public Property Benefits() As BenefitPackage

Get

Return empBenefits

End Get

Set(ByVal value As BenefitPackage)

empBenefits = value

End Set

End Property

...

End Class

In the following updated Main() method, notice how we can interact with the internal
BenefitsPackage type defined by the Employee type:

5785ch06.qxd 3/31/06 10:26 AM Page 178

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 179

Module Program

Sub Main()

...

Dim chucky As New Manager("Chucky", 45, 101, 30000, "222-22-2222", 90)

Dim cost As Double = chucky.GetBenefitCost()

End Sub

End Module

Nested Type Definitions
Before examining the final pillar of OOP (polymorphism), let’s explore a programming technique
termed nesting types (briefly mentioned in the previous chapter). In VB 2005, it is possible to define
a type (enum, class, interface, struct, or delegate) directly within the scope of a class or structure. When
you have done so, the nested (or “inner”) type is considered a member of the nesting (or “outer”) class,
and in the eyes of the runtime can be manipulated like any other member (fields, properties, meth-
ods, events, etc.). The syntax used to nest a type is quite straightforward:

Public Class OuterClass

' A public nested type can be used by anybody.

Public Class PublicInnerClass

End Class

' A private nested type can only be used by members

' of the containing class.

Private Class PrivateInnerClass

End Class

End Class

Although the syntax is clean, understanding why you might do this is not readily apparent. To
understand this technique, ponder the following traits of nesting a type:

• Nesting types is similar to aggregation (“has-a”), except that you have complete control over
the access level of the inner type instead of a contained object.

• Because a nested type is a member of the containing class, it can access private members of
the containing class.

• Oftentimes, a nested type is only useful as a helper for the outer class, and is not intended for
use by the outside world.

When a type nests another class type, it can create member variables of the type, just as it
would for any point of data. However, if you wish to make use of a nested type from outside of the
containing type, you must qualify it by the scope of the nesting type. Consider the following code:

Sub Main()

' Create And use the Public inner Class. OK!

Dim inner As OuterClass.PublicInnerClass

inner = New OuterClass.PublicInnerClass

' Compiler Error! Cannot access the private class.

Dim inner2 As OuterClass.PrivateInnerClass

inner2 = New OuterClass.PrivateInnerClass

End Sub

To make use of this concept within our employees example, assume we have now nested the
BenefitPackage directly within the Employee class type:

Partial Public Class Employee

Public Class BenefitPackage

5785ch06.qxd 3/31/06 10:26 AM Page 179

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM180

' Assume we have other members that represent

' 401K plans, dental/health benefits, and so on.

Public Function ComputePayDeduction() As Double

Return 125.0

End Function

End Class

...

End Class

The nesting process can be as “deep” as you require. For example, assume we wish to create
an enumeration named BenefitPackageLevel, which documents the various benefit levels an
employee may choose. To programmatically enforce the tight connection between Employee,
BenefitPackage, and BenefitPackageLevel, we could nest the enumeration as follows:

' Employee nests BenefitPackage.

Partial Public Class Employee

' BenefitPackage nests BenefitPackageLevel.

Public Class BenefitPackage

Public Enum BenefitPackageLevel

Standard

Gold

Platinum

End Enum

Public Function ComputePayDeduction() As Double

Return 125.0

End Function

End Class

...

End Class

Because of the nesting relationships, note how we are required to make use of this enumeration:

Sub Main()

...

' Define my benefit level.

Dim myBenefitLevel As Employee.BenefitPackage.BenefitPackageLevel = _

Employee.BenefitPackage.BenefitPackageLevel.Platinum

End Sub

Excellent! At this point you have been exposed to a number of keywords (and concepts) that
allow you to build hierarchies of related types via inheritance. If the overall process is not quite
crystal clear, don’t sweat it. You will be building a number of additional hierarchies over the remain-
der of this text. Next up, let’s examine the final pillar of OOP: polymorphism.

The Third Pillar: VB 2005’s Polymorphic Support
Recall that the Employee base class defined a method named GiveBonus(), which was originally
implemented as follows:

Partial Public Class Employee

Public Sub GiveBonus(ByVal amount As Single)

currPay += amount

End Sub

...

End Class

Because this method has been defined with the Public keyword, you can now give bonuses to
salespeople and managers (as well as part-time salespeople):

5785ch06.qxd 3/31/06 10:26 AM Page 180

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 181

Module Program

Sub Main()

Console.WriteLine("***** The Employee Class Hierarchy *****")

Console.WriteLine()

' Give each employee a bonus?

Dim chucky As New Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000)

chucky.GiveBonus(300)

chucky.DisplayStats()

Dim fran As New SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31)

fran.GiveBonus(200)

fran.DisplayStats()

Console.ReadLine()

End Sub

End Module

The problem with the current design is that the inherited GiveBonus() method operates identi-
cally for all subclasses. Ideally, the bonus of a salesperson or part-time salesperson should take into
account the number of sales. Perhaps managers should gain additional stock options in conjunction
with a monetary bump in salary. Given this, you are suddenly faced with an interesting question:
“How can related types respond differently to the same request?” Glad you asked!

The Overridable and Overrides Keywords
Polymorphism provides a way for a subclass to define its own version of a method defined by its
base class, using the process termed method overriding. To retrofit your current design, you need to
understand the meaning of the VB 2005 Overridable and Overrides keywords. If a base class wishes
to define a method that may be (but does not have to be) overridden by a subclass, it must mark the
method with the Overridable keyword:

Partial Public Class Employee

' This method may now be "overridden" by derived classes.

Public Overridable Sub GiveBonus(ByVal amount As Single)

currPay += amount

End Sub

...

End Class

■Note Methods that have been marked with the Overridable keyword are termed virtual methods.

When a subclass wishes to redefine a virtual method, it does so using the Overrides keyword.
For example, the SalesPerson and Manager could override GiveBonus() as follows (assume that
PTSalesPerson will not override GiveBonus() and therefore simply inherit the version defined by
SalesPerson):

Public Class SalesPerson

Inherits Employee

...

' A salesperson's bonus is influenced by the number of sales.

Public Overrides Sub GiveBonus(ByVal amount As Single)

Dim salesBonus As Integer = 0

If numberOfSales >= 0 AndAlso numberOfSales <= 100 Then

salesBonus = 10

5785ch06.qxd 3/31/06 10:26 AM Page 181

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM182

Else

If numberOfSales >= 101 AndAlso numberOfSales <= 200 Then

salesBonus = 15

Else

salesBonus = 20

End If

End If

MyBase.GiveBonus(amount * salesBonus)

End Sub

End Class

Public Class Manager

Inherits Employee

...

Public Overrides Sub GiveBonus(ByVal amount As Single)

MyBase.GiveBonus(amount)

Dim r As Random = New Random()

numberOfOptions += r.Next(500)

End Sub

End Class

Notice how each overridden method is free to leverage the default behavior using the Mybase key-
word. In this way, you have no need to completely reimplement the logic behind GiveBonus(), but can
reuse (and possibly extend) the default behavior of the parent class.

Also assume that Employee.DisplayStats() has been declared virtual, and has been overridden
by each subclass to account for displaying the number of sales (for salespeople) and current stock
options (for managers). Now that each subclass can interpret what these virtual methods means to
itself, each object instance behaves as a more independent entity:

Module Program

Sub Main()

Console.WriteLine("***** The Employee Class Hierarchy *****")

Console.WriteLine()

' A better bonus system!

Dim chucky As New Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000)

chucky.GiveBonus(300)

chucky.DisplayStats()

Console.WriteLine()

Dim fran As New SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31)

fran.GiveBonus(200)

fran.DisplayStats()

Console.ReadLine()

End Sub

End Module

Overriding with Visual Studio 2005
As you may have already noticed, when you are overriding a member, you must recall the type of
each and every parameter—not to mention the method name and parameter passing conventions
(ByRef, ParamArray, etc.). Visual Studio 2005 has a very helpful feature that you can make use of
when overriding a virtual member. If you type the word “Overrides” within the scope of a class type,
IntelliSense will automatically display a list of all the overridable members defined in your parent
classes, as you see in Figure 6-6.

5785ch06.qxd 3/31/06 10:26 AM Page 182

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 183

Figure 6-6. Quickly viewing virtual methods a la Visual Studio 2005

When you select a member and hit the Enter key, the IDE responds by automatically filling in
the method stub on your behalf. Note that you also receive a code statement that calls your parent’s
version of the virtual member (you are free to delete this line if it is not required):

Public Overrides Sub DisplayStats()

MyBase.DisplayStats()

End Sub

The NotOverridable Keyword
Recall that the NotInheritable keyword can be applied to a class type to prevent other types from
extending its behavior via inheritance. As you may remember, we sealed PTSalesPerson as we assumed
it made no sense for other developers to extend this line of inheritance any further.

On a related note, sometimes you may not wish to seal an entire class, but simply want to prevent
derived types from overriding particular virtual methods. For example, assume we do not want
part-time salespeople to obtain customized bonuses. To prevent the PTSalesPerson class from over-
riding the virtual GiveBonus(), we could effectively seal this method in the SalesPerson class with the
NotOverridable keyword:

' SalesPerson has sealed the GiveBonus() method!

Public Class SalesPerson

Inherits Employee

...

Public NotOverridable Overrides Sub GiveBonus()

...

End Sub

End Class

Here, SalesPerson has indeed overridden the virtual GiveBonus() method defined in the Employee
class; however, it has explicitly marked it as NotOverridable. Thus, if we attempted to override this
method in the PTSalesPerson class:

5785ch06.qxd 3/31/06 10:26 AM Page 183

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM184

Public Class PTSalesPerson

Inherits SalesPerson

...

' No bonus for you!

Public Overrides Sub GiveBonus()

' Rats. Can't change this method any further.

End Sub

End Class

we receive compile-time errors.

Understanding Abstract Classes and the MustInherit Keyword
Currently, the Employee base class has been designed to supply protected member variables for its
descendents, as well as supply two virtual methods (GiveBonus() and DisplayStats()) that may be
overridden by a given descendent. While this is all well and good, there is a rather odd byproduct of
the current design: you can directly create instances of the Employee base class:

' What exactly does this mean?

Dim X As New Employee()

In this example, the only real purpose of the Employee base class is to define common members
for all subclasses. In all likelihood, you did not intend anyone to create a direct instance of this class,
reason being that the Employee type itself is too general of a concept. For example, if I were to walk
up to you and say, “I’m an employee!” I would bet your very first question to me would be, “What
kind of employee are you?” (a consultant, trainer, admin assistant, copy editor, White House aide, etc.).

Given that many base classes tend to be rather nebulous entities, a far better design for our
example is to prevent the ability to directly create a new Employee object in code. In VB 2005, you
can enforce this programmatically by using the MustInherit keyword. Formally speaking, classes
marked with the MustInherit keyword are termed abstract base classes:

' Update the Employee class as abstract

' to prevent direct instantiation.

Partial Public MustInherit Class Employee

...

End Class

With this, if you now attempt to create an instance of the Employee class, you are issued a compile-
time error:

' Error! Cannot create an abstract class!

Dim X As New Employee()

Excellent! At this point you have constructed a fairly interesting employee hierarchy. We will
add a bit more functionality to this application later in this chapter when examining VB 2005 casting
rules. Until then, Figure 6-7 illustrates the core design of our current types.

5785ch06.qxd 3/31/06 10:26 AM Page 184

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 185

■Source Code The Employees project is included under the Chapter 6 subdirectory.

Building a Polymorphic Interface with MustOverride
When a class has been defined as an abstract base class (via the MustInherit keyword), it may define
any number of abstract members. Abstract members can be used whenever you wish to define a mem-
ber that does not supply a default implementation. By doing so, you enforce a polymorphic interface
on each descendent, leaving them to contend with the task of providing the details behind your
abstract methods.

Simply put, an abstract base class’s polymorphic interface simply refers to its set of virtual
(Overridable) and abstract (MustOverride) methods. This is much more interesting than first meets
the eye, as this trait of OOP allows us to build very extendable and flexible software applications. To
illustrate, we will be implementing (and slightly modifying) the shapes hierarchy briefly examined
in Chapter 5 during our overview of the pillars of OOP.

In Figure 6-8, notice that the Hexagon and Circle types each extend the Shape base class. Like
any base class, Shape defines a number of members (a PetName property and Draw() method in this
case) that are common to all descendents.

Figure 6-7. The completed Employee hierarchy

5785ch06.qxd 3/31/06 10:26 AM Page 185

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM186

Much like the employee hierarchy, you should be able to tell that you don’t want to allow the
object user to create an instance of Shape directly, as it is too abstract of a concept. Again, to prevent
the direct creation of the Shape type, you could define it as a MustInherit class. As well, given that
we wish the derived types to respond uniquely to the Draw() method, let’s mark it as Overridable
and define a default implementation:

' The abstract base class of the hierarchy.

Public MustInherit Class Shape

Protected shapeName As String

Public Sub New()

shapeName = "NoName"

End Sub

Public Sub New(ByVal s As String)

shapeName = s

End Sub

Public Overridable Sub Draw()

Console.WriteLine("Inside Shape.Draw()")

End Sub

Public Property PetName() As String

Get

Return shapeName

End Get

Set(ByVal value As String)

shapeName = value

End Set

End Property

End Class

Notice that the virtual Draw() method provides a default implementation that simply prints out
a message that informs us we are calling the Draw() method within the Shape base class. Now recall
that when a method is marked with the Overridable keyword, the method provides a default

Figure 6-8. The shapes hierarchy

5785ch06.qxd 3/31/06 10:26 AM Page 186

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 187

Figure 6-9. Humm...something is not quite right.

implementation that all derived types automatically inherit. If a child class so chooses, it may
override the method but does not have to. Given this, consider the following implementation of the
Circle and Hexagon types:

'Circle DOES NOT override Draw().

Public Class Circle

Inherits Shape

Public Sub New()

End Sub

Public Sub New(ByVal name As String)

MyBase.New(name)

End Sub

End Class

' Hexagon DOES override Draw().

Public Class Hexagon

Inherits Shape

Public Sub New()

End Sub

Public Sub New(ByVal name As String)

MyBase.New(name)

End Sub

Public Overrides Sub Draw()

Console.WriteLine("Drawing {0} the Hexagon", shapeName)

End Sub

End Class

The usefulness of abstract methods becomes crystal clear when you once again remember that
subclasses are never required to override virtual methods (as in the case of Circle). Therefore, if you
create an instance of the Hexagon and Circle types, you’d find that the Hexagon understands how to
draw itself correctly. The Circle, however, is more than a bit confused (see Figure 6-9 for output):

Sub Main()

Console.WriteLine("***** Fun with Polymorphism *****")

Console.WriteLine()

Dim hex As New Hexagon("Beth")

hex.Draw()

Dim cir As New Circle("Cindy")

' Calls base class implementation!

cir.Draw()

Console.ReadLine()

End Sub

5785ch06.qxd 3/31/06 10:26 AM Page 187

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM188

Clearly, this is not a very intelligent design for the current hierarchy. To force each child class to
override the Draw() method, you can define Draw() as an abstract method of the Shape class, which
by definition means you provide no default implementation whatsoever. To mark a method as abstract
in VB 2005, you use the MustOverride keyword and define your member without an expected End
construct:

' Force all child classes to define how to be rendered.

Public MustInherit Class Shape

...

Public MustOverride Sub Draw()

...

End Class

■Note MustOverride methods can only be defined in MustInherit classes. If you attempt to do otherwise,
you will be issued a compiler error.

Methods marked with MustOverride are pure protocol. They simply define the name, return value
(if any), and argument set. Here, the abstract Shape class informs the derived types “I have a subrou-
tine named Draw() that takes no arguments. If you derive from me, you figure out the details.”

Given this, we are now obligated to override the Draw() method in the Circle class. If you do not,
Circle is also assumed to be a noncreatable abstract type that must be adorned with the MustInherit
keyword (which is obviously not very useful in this example). Here is the code update:

' If we did not implement the MustOverride Draw() method, Circle would also be

' considered abstract, and would have to be marked MustInherit!

Public Class Circle

Inherits Shape

Public Sub New()

End Sub

Public Sub New(ByVal name As String)

MyBase.New(name)

End Sub

Public Overrides Sub Draw()

Console.WriteLine("Drawing {0} the Circle", shapeName)

End Sub

End Class

The short answer is that we can now make the assumption that anything deriving from Shape does
indeed have a unique version of the Draw() method. To illustrate the full story of polymorphism,
consider the following code:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Polymorphism *****")

Console.WriteLine()

' Make an array of Shape compatible objects.

Dim myShapes As Shape() = {New Hexagon, New Circle, _

New Hexagon("Mick"), New Circle("Beth"), _

New Hexagon("Linda")}

' Loop over each items and interact with the

' polymorphic interface.

For Each s As Shape In myShapes

s.Draw()

5785ch06.qxd 3/31/06 10:26 AM Page 188

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 189

Next

Console.ReadLine()

End Sub

End Module

Figure 6-10 shows the output.

This Main() method illustrates polymorphism at its finest. Although it is not possible to directly
create an abstract base class (the Shape), you are able to freely store references to any subclass with
an abstract base variable. Therefore, when you are creating an array of Shapes, the array can hold any
object deriving from the Shape base class (if you attempt to place Shape-incompatible objects into
the array, you receive a compiler error).

Given that all items in the myShapes array do indeed derive from Shape, we know they all support
the same polymorphic interface (or said more plainly, they all have a Draw() method). As you iterate
over the array of Shape references, it is at runtime that the underlying type is determined. At this point,
the correct version of the Draw() method is invoked.

This technique also makes it very simple to safely extend the current hierarchy. For example,
assume we derived five more classes from the abstract Shape base class (Triangle, Square, etc.). Due
to the polymorphic interface, the code within our For loop would not have to change in the slightest
as the compiler enforces that only Shape-compatible types are placed within the myShapes array.

Understanding Member Shadowing
VB 2005 provides a facility that is the logical opposite of method overriding termed shadowing.
Formally speaking, if a derived class defines a member that is identical to a member defined in a base
class, the derived class has shadowed the parent’s version. In the real world, the possibility of this
occurring is the greatest when you are subclassing from a class you (or your team) did not create
yourselves (for example, if you purchase a third- party .NET software package).

For the sake of illustration, assume you receive a class named ThreeDCircle from a coworker
(or classmate) that defines a subroutine named Draw() taking no arguments:

Public Class ThreeDCircle

Public Sub Draw()

Console.WriteLine("Drawing a 3D Circle")

End Sub

End Class

You figure that a ThreeDCircle “is-a” Circle, so you derive from your existing Circle type:

Public Class ThreeDCircle

Inherits Circle

Public Sub Draw()

Figure 6-10. Polymorphism in action

5785ch06.qxd 3/31/06 10:26 AM Page 189

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM190

To address this issue, you have two options. You could simply update the parent’s version of Draw()
using the Overrides keyword (as suggested by the compiler). With this approach, the ThreeDCircle
type is able to extend the parent’s default behavior as required.

As an alternative, you can include the Shadows keyword to the offending Draw() member of the
ThreeDCircle type. Doing so explicitly states that the derived type’s implementation is intentionally
designed to hide the parent’s version (again, in the real world, this can be helpful if external .NET
software somehow conflicts with your current software).

' This class extends Circle and hides the inherited Draw() method.

Public Class ThreeDCircle

Inherits Circle

' Hide any Draw() implementation above me.

Public Shadows Sub Draw()

Console.WriteLine("Drawing a 3D Circle")

End Sub

End Class

You can also apply the Shadows keyword to any member type inherited from a base class (field,
constant, shared member, property, etc.). As a further example, assume that ThreeDCircle wishes to
hide the inherited shapeName field:

' This class extends Circle and hides the inherited Draw() method.

Public Class ThreeDCircle

Inherits Circle

' Hide the shapeName field above me.

Protected Shadows shapeName As String

' Hide any Draw() implementation above me.

Public Shadows Sub Draw()

Console.WriteLine("Drawing a 3D Circle")

End Sub

End Class

Finally, be aware that it is still possible to trigger the base class implementation of a shadowed
member using an explicit cast (described in the next section). For example:

Figure 6-11. Oops! We just shadowed a member in our parent class.

Console.WriteLine("Drawing a 3D Circle")

End Sub

End Class

Once you recompile, you find the warning you see in Figure 6-11 shown in Visual Studio 2005.

5785ch06.qxd 3/31/06 10:26 AM Page 190

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 191

Module Program

Sub Main()

...

' Fun with shadowing.

Dim o As ThreeDCircle = New ThreeDCircle()

o.Draw()

CType(o, Circle).Draw()

Console.ReadLine()

End Sub

End Module

■Source Code The Shapes project can be found under the Chapter 6 subdirectory.

Understanding Base Class/Derived Class Casting Rules
Now that you can build a family of related class types, you need to learn the laws of VB 2005 casting
operations. To do so, let’s return to the Employees hierarchy created earlier in this chapter. Under the
.NET platform, the ultimate base class in the system is System.Object. Therefore, everything “is-a”
Object and can be treated as such. Given this fact, it is legal to store an instance of any type within
an object variable:

' A Manager "is-a" System.Object.

Dim frank As Object = _

New Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5)

In the Employees system, Managers, SalesPerson, and PTSalesPerson types all extend Employee,
so we can store any of these objects in a valid base class reference. Therefore, the following statements
are also legal:

' A Manager "is-a" Employee too.

Dim moonUnit As Employee = New Manager("MoonUnit Zappa", 2, 3001, _

20000, "101-11-1321", 1)

' A PTSalesPerson "is-a" SalesPerson.

Dim jill As SalesPerson = New PTSalesPerson("Jill", 834, 3002, _

100000, "111-12-1119", 90)

The first law of casting between class types is that when two classes are related by an “is-a”
relationship, it is always safe to store a derived type within a base class reference. Formally, this is
called an implicit cast, as “it just works” given the laws of inheritance. This leads to some powerful
programming constructs. For example, assume you have defined a new method within your current
module:

Sub FireThisPerson(ByVal emp As Employee)

' Remove from database...

' Get key and pencil sharpener from fired employee...

End Sub

Because this method takes a single parameter of type Employee, you can effectively pass any
descendent from the Employee class into this method directly, given the “is-a” relationship:

' Streamline the staff.

FireThisPerson(moonUnit) ' "moonUnit" was declared as an Employee.

FireThisPerson(jill) ' "jill" was declared as a SalesPerson.

5785ch06.qxd 3/31/06 10:26 AM Page 191

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM192

The following code compiles given the implicit cast from the base class type (Employee) to the
derived type. However, what if you also wanted to fire Frank Zappa (currently stored in a generic
System.Object reference)? If you pass the frank object directly into TheMachine.FireThisPerson() as
follows:

' This will only work if Option Strict is Off!

Dim frank As Object = _

New Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5)

FireThisPerson(frank)

you will find the code will only work if Option Strict is disabled. However, if you were to enable this
option for your project (which is always a good idea), you are issued a compiler error. The reason is
you cannot automatically treat a System.Object as a derived Employee directly, given that Object
“is-not-a” Employee. As you can see, however, the object reference is pointing to an Employee-compatible
object. You can satisfy the compiler by performing an explicit cast.

This is the second law of casting: you must explicitly downcast using the VB 2005 CType() func-
tion. Recall that CType() takes two parameters. The first parameter is the object you currently have
access to. The second parameter is the name of the type you want to have access to. The value
returned from CType() is the result of the downward cast. Thus, the previous problem can be avoided
as follows:

' OK even with Option Strict enabled.

FireThisPerson(CType(frank, Manager))

As you will see in Chapter 9, CType() is also the safe way of obtaining an interface reference
from a type. Furthermore, CType() may operate safely on numerical types, but don’t forget you have
a number of related conversion functions at your disposal (CInt() and so on). Finally, be aware that
if you attempt to cast an object into an incompatible type, you receive an invalid cast exception at
runtime. Chapter 7 examines the details of structured exception handling.

■Note In Chapter 11 you will examine two additional manners in which you can perform explicit casts using the
DirectCast and TryCast keywords of VB 2005.

Determining the “Type of” Employee
Given that the FireThisPerson() method has been designed to take any possible type derived from
Employee, one question on your mind may be how this method can determine which derived type
was sent into the method. On a related note, given that the incoming parameter is of type Employee,
how can you gain access to the specialized members of the SalesPerson and Manager types?

The VB 2005 language provides the TypeOf/Is statement to determine whether a given base class
reference is actually referring to a derived type. Consider the following updated FireThisPerson()
method:

Public Sub FireThisPerson(ByVal emp As Employee)

If TypeOf emp Is SalesPerson Then

Console.WriteLine("Lost a sales person named {0}", emp.Name)

Console.WriteLine("{0} made {1} sale(s)...", emp.Name, _

CType(emp, SalesPerson).SalesNumber)

End If

If TypeOf emp Is Manager Then

Console.WriteLine("Lost a suit named {0}", emp.Name)

Console.WriteLine("{0} had {1} stock options...", emp.Name, _

CType(emp, Manager).StockOptions)

End If

End Sub

5785ch06.qxd 3/31/06 10:26 AM Page 192

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 193

Here you are performing a runtime check to determine what the incoming base class reference
is actually pointing to in memory. Once you determine whether you received a SalesPerson or Manager
type, you are able to perform an explicit cast via CType() to gain access to the specialized members
of the class.

The Master Parent Class: System.Object
To wrap up this chapter, I’d like to examine the details of the master parent class in the .NET plat-
form: Object. As you were reading the previous section, you may have noticed that the base classes
in our hierarchies (Car, Shape, Employee) never explicitly marked their parent classes using the
Inherits keyword:

' Who is the parent of Car?

Public Class Car

...

End Class

In the .NET universe, every type ultimately derives from a common base class named System.Object.
The Object class defines a set of common members for every type in the framework. In fact, when you
do build a class that does not explicitly define its parent, the compiler automatically derives your type
from Object. If you want to be very clear in your intentions, you are free to define classes that derive
from Object as follows:

' Here we are explicitly deriving from System.Object.

Class Car

Inherits System.Object

End Class

Like any class, System.Object defines a set of members. In the following formal VB 2005 defini-
tion, note that some of these items are declared Overridable, which specifies that a given member
may be overridden by a subclass, while others are marked with Shared (and are therefore called at
the class level):

' The top-most class in the .NET world: System.Object

Public Class Object

Public Overridable Function Equals(ByVal obj As Object) As Boolean

Public Shared Function Equals(ByVal objA As Object, _

ByVal objB As Object) As Boolean

Public Overridable Function GetHashCode() As Integer

Public Function GetType() As Type

Protected Function MemberwiseClone() As Object

Public Shared Function ReferenceEquals(ByVal objA As Object, _

ByVal objB As Object) As Boolean

Public Overridable Function ToString() As String

End Class

Table 6-1 offers a rundown of the functionality provided by each method.

5785ch06.qxd 3/31/06 10:26 AM Page 193

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM194

Table 6-1. Core Members of System.Object

Instance Method of Object Class Meaning in Life

Equals() By default, this method returns True only if the items being
compared refer to the exact same item in memory. Thus, Equals()
is used to compare object references, not the state of the object.
Typically, this method is overridden to return True only if the
objects being compared have the same internal state values (that
is, value-based semantics).
Be aware that if you override Equals(), you should also override
GetHashCode().

GetHashCode() Returns an Integer that identifies a specific object instance.

GetType() This method returns a Type object that fully describes the object
you are currently referencing. In short, this is a Runtime Type
Identification (RTTI) method available to all objects (discussed
in greater detail in Chapter 14).

ToString() Returns a string representation of this object, using the
<namespace>.<type name> format (termed the fully qualified name).
This method can be overridden by a subclass to return a tokenized
string of name/value pairs that represent the object’s internal state,
rather than its fully qualified name.

Finalize() For the time being, you can understand this method (when
overridden) is called to free any allocated resources before the
object is destroyed. I talk more about the CLR garbage collection
services in Chapter 8.

MemberwiseClone() This method exists to return a member by member copy of the
current object.
This method cannot be overridden or accessed by the outside
world from an object instance. If you need to allow the outside
world to obtain deep copies of a given type, implement the
ICloneable interface, which you do in Chapter 9.

To illustrate some of the default behavior provided by the Object base class, create a new console
application named ObjectOverrides. Add an empty class definition for a type named Person (shown
in the following code snippet). Finally, update your Main() subroutine to interact with the inherited
members of System.Object.

■Note By default, the members of Object are not shown through IntelliSense. To do so, activate the Tools ➤
Options menu item, and uncheck Hide Advanced Members located under the Text Editor ➤ Basic node of the tree
view control.

' Remember! Person extends Object!

Public Class Person

End Class

Module Program

Sub Main()

Console.WriteLine("***** Fun with System.Object *****")

Dim p1 As New Person()

5785ch06.qxd 3/31/06 10:26 AM Page 194

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 195

First, notice how the default implementation of ToString() returns the fully qualified name of
the current type (ObjectOverrides.Person). The default behavior of Equals() is to test whether two
variables are pointing to the same object in memory. Here, you create a new Person variable named
p1. At this point, a new Person object is placed on the managed heap. p2 is also of type Person. However,
you are not creating a new instance, but rather assigning this variable to reference p1. Therefore, p1
and p2 are both pointing to the same object in memory, as is the variable o (of type Object, which was
thrown in for good measure). Given that p1, p2, and o all point to the same memory location, the
equality test succeeds.

Although the canned behavior of System.Object can fit the bill in a number of cases, it is quite
common for your custom types to override some of these inherited methods. To illustrate, update
the Person class to support some state data representing an individual’s first name, last name, and
age, each of which can be set by a custom constructor:

' Remember! Person extends Object.

Class Person

Public Sub New(ByVal firstName As String, ByVal lastName As String, _

ByVal age As Byte)

fName = firstName

lName = lastName

personAge = age

End Sub

Sub New()

End Sub

Figure 6-12. Invoking the inherited members of System.Object

' Use inherited members of System.Object.

Console.WriteLine("ToString: {0}", p1.ToString())

Console.WriteLine("Hash code: {0}", p1.GetHashCode())

Console.WriteLine("Type: {0}", p1.GetType())

' Make some other references to hc.

Dim p2 As Person = p1

Dim o As Object = p2

' Are the references pointing to the same object in memory?

If o.Equals(p1) AndAlso p2.Equals(o) Then

Console.WriteLine("Same instance!")

End If

End Sub

End Module

Figure 6-12 shows the output.

5785ch06.qxd 3/31/06 10:26 AM Page 195

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM196

' Public only for simplicity. Properties and Private data

' would obviously be perferred.

Public fName As String

Public lName As String

Public personAge As Byte

End Class

Overriding System.Object.ToString()
Many classes (and structures) that you create can benefit from overriding ToString() in order to return
a string textual representation of the type’s state. This can be quite helpful for purposes of debugging
(among other reasons). How you choose to construct this string is a matter of personal choice; how-
ever, a recommended approach is to separate each name/value pair with semicolons and wrap the
entire string within square brackets (many types in the .NET base class libraries follow this approach).
Consider the following overridden ToString() for our Person class:

Public Overrides Function ToString() As String

Dim myState As String

myState = String.Format("[First Name: {0}; Last Name: {1}; Age: {2}]",

fName, lName, personAge)

Return myState

End Function

This implementation of ToString() is quite straightforward, given that the Person class only
has three pieces of state data. However, always remember that a proper ToString() override should
also account for any data defined up the chain of inheritance. When you override ToString() for
a class extending a custom base class, the first order of business is to obtain the ToString() value
from your parent using MyBase.

Overriding System.Object.Equals()
Let’s also override the behavior of Object.Equals() to work with value-based semantics. Recall that
by default, Equals() returns True only if the two objects being compared reference the same object
instance in memory. For the Person class, it may be helpful to implement Equals() to return True if
the two variables being compared contain the same state values (e.g., first name, last name, and age).

First of all, notice that the incoming argument of the Equals() method is a generic System.Object.
Given this, our first order of business is to ensure the caller has indeed passed in a Person type, and
as an extra safeguard, to make sure the incoming parameter is not an unallocated object.

Once we have established the caller has passed us an allocated Person, one approach to imple-
ment Equals() is to perform a field-by-field comparison against the data of the incoming object to
the data of the current object:

Public Overrides Function Equals(ByVal obj As Object) As Boolean

If TypeOf obj Is Person AndAlso obj IsNot Nothing Then

Dim temp As Person

temp = CType(obj, Person)

If temp.fName = Me.fName AndAlso _

temp.lName = Me.fName AndAlso _

temp.personAge = Me.personAge Then

Return True

Else

Return False

End If

Return False

End If

End Function

5785ch06.qxd 3/31/06 10:26 AM Page 196

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 197

Here, you are examining the values of the incoming object against the values of our internal
values (note the use of the Me keyword). If the name and age of each are identical, you have two
objects with the exact same state data and therefore return True. Any other possibility results in
returning False.

While this approach does indeed work, you can certainly imagine how labor intensive it would
be to implement a custom Equals() method for nontrivial types that may contain dozens of data
fields. One common shortcut is to leverage your own implementation of ToString(). If a class has
a prim-and-proper implementation of ToString() that accounts for all field data up the chain of
inheritance, you can simply perform a comparison of the object’s string data:

Public Overrides Function Equals(ByVal obj As Object) As Boolean

' No need to cast 'obj' to a Person anymore,

' as everyting has a ToString() method.

Return obj.ToString = Me.ToString()

End Function

Overriding System.Object.GetHashCode()
When a class overrides the Equals() method, you should also override the default implementation
of GetHashCode(). Simply put, a hash code is a numerical value that represents an object as a partic-
ular state. For example, if you create two string objects that hold the value Hello, you would obtain
the same hash code. However, if one of the string objects were in all lowercase (hello), you would
obtain different hash codes.

By default, System.Object.GetHashCode() uses your object’s current location in memory to yield
the hash value. However, if you are building a custom type that you intend to store in a Hashtable

type (within the System.Collections namespace), you should always override this member, as the
Hashtable will be internally invoking Equals() and GetHashCode() to retrieve the correct object.

Although we are not going to place our Person into a System.Collections.Hashtable, for com-
pletion, let’s override GetHashCode(). There are many algorithms that can be used to create a hash
code, some fancy, others not so fancy. Most of the time, you are able to generate a hash code value
by leveraging the System.String’s GetHashCode() implementation.

Given that the String class already has a solid hash code algorithm that is using the character
data of the String to compute a hash value, if you can identify a piece of field data on your class that
should be unique for all instances (such as the Social Security number), simply call GetHashCode() on
that point of field data. If this is not the case, but you have overridden ToString(), call GetHashCode()
on your own string representation:

' Return a hash code based on the person's ToString() value.

Public Overrides Function GetHashCode() As Integer

Return Me.ToString().GetHashCode()

End Function

Testing Our Modified Person Class
Now that we have overridden the Overridable members of Object, update Main() to test your
updates (see Figure 6-13 for output).

Module Program

Sub Main()

Console.WriteLine("***** Fun with System.Object *****")

Console.WriteLine()

5785ch06.qxd 3/31/06 10:26 AM Page 197

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM198

' NOTE: We want these to be identical to test

' the Equals() and GetHashCode() methods.

Dim p1 As Person = New Person("Homer", "Simpson", 50)

Dim p2 As Person = New Person("Homer", "Simpson", 50)

' Get stringified version of objects.

Console.WriteLine("p1.ToString() = {0}", p1.ToString())

Console.WriteLine("p2.ToString() = {0}", p2.ToString())

' Test Overridden Equals()

Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2))

' Test hash codes.

Console.WriteLine("Same hash codes?: {0}", _

p1.GetHashCode() = p2.GetHashCode())

Console.WriteLine()

' Change age of p2 and test again.

p2.personAge = 45

Console.WriteLine("p1.ToString() = {0}", p1.ToString())

Console.WriteLine("p2.ToString() = {0}", p2.ToString())

Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2))

Console.WriteLine("Same hash codes?: {0}", _

p1.GetHashCode() = p2.GetHashCode())

Console.ReadLine()

End Sub

End Module

The Shared Members of System.Object
In addition to the instance-level members you have just examined, System.Object does define two
(very helpful) shared members that also test for value-based or reference-based equality. Consider
the following code:

' Shared members of System.Object.

Dim p3 As Person = New Person("Sally", "Jones", 4)

Dim p4 As Person = New Person("Sally", "Jones", 4)

Console.WriteLine("P3 and P4 have same state: {0}", Object.Equals(p3, p4))

Console.WriteLine("P3 and P4 are pointing to same object: {0}", _

Object.ReferenceEquals(p3, p4))

Figure 6-13. Our customized Person type

5785ch06.qxd 3/31/06 10:26 AM Page 198

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 199

Here, you are able to simply send in two objects (of any type) and allow the System.Object class
to determine the details automatically.

■Source Code The ObjectOverrides project is located under the Chapter 6 subdirectory.

Summary
This chapter explored the role and details of inheritance and polymorphism. Over these pages you
were introduced to numerous new keywords to support each of these techniques. For example, recall
that the Inherits keyword is used to establish the parent class of a given type. Parent types are able to
define any number of virtual (Overridable) and/or abstract (MustOverride) members to establish
a polymorphic interface. Derived types override such members using the Overrides keyword.

In addition to building numerous class hierarchies, this chapter also examined how to explicitly
cast between base and derived types using the CType() operator, and wrapped up by diving into the
details of the cosmic parent class in the .NET base class libraries: System.Object.

5785ch06.qxd 3/31/06 10:26 AM Page 199

5785ch06.qxd 3/31/06 10:26 AM Page 200

C H A P T E R 7

■ ■ ■

Understanding Structured
Exception Handling

The point of this chapter is to understand how to handle runtime anomalies in your VB 2005 code
base through the use of structured exception handling. Not only will you learn about the VB 2005
keywords that allow you to handle such matters (Try, Catch, Throw, Finally), but you will also come
to understand the distinction between application-level and system-level exceptions. This discussion
will also serve as a lead-in to the topic of building custom exceptions, as well as how to leverage the
exception-centric debugging tools of Visual Studio 2005.

Ode to Errors, Bugs, and Exceptions
Despite what our (sometimes inflated) egos may tell us, no programmer is perfect. Writing software
is a complex undertaking, and given this complexity, it is quite common for even the best software
to ship with various problems. Sometimes the problem is caused by “bad code” (such as overflowing
the bounds of an array). Other times, a problem is caused by bogus user input that has not been
accounted for in the application’s code base (e.g., a phone number field assigned “Chucky”). Now,
regardless of the cause of said problem, the end result is that your application does not work as expected.
To help frame the upcoming discussion of structured exception handling, allow me to provide defi-
nitions for three commonly used anomaly-centric terms:

• Bugs: This is, simply put, an error on the part of the programmer. For example, assume you
are programming with unmanaged C++. If you make calls on a NULL pointer or fail to delete
allocated memory (resulting in a memory leak), you have a bug.

• User errors: Unlike bugs, user errors are typically caused by the individual running your
application, rather than by those who created it. For example, an end user who enters a mal-
formed string into a text box could very well generate an error if you fail to handle this faulty
input in your code base.

• Exceptions: Exceptions are typically regarded as runtime anomalies that are difficult, if not
impossible, to account for while programming your application. Possible exceptions include
attempting to connect to a database that no longer exists, opening a corrupted file, or contact-
ing a machine that is currently offline. In each of these cases, the programmer (and end user)
has little control over these “exceptional” circumstances.

201

5785ch07.qxd 3/31/06 10:29 AM Page 201

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING202

Given the previous definitions, it should be clear that .NET structured exception handling is
a technique well suited to deal with runtime exceptions. However, as for the bugs and user errors that
have escaped your view, the CLR will often generate a corresponding exception that identifies the
problem at hand. The .NET base class libraries define numerous exceptions such as FormatException,
IndexOutOfRangeException, FileNotFoundException, ArgumentOutOfRangeException, and so forth.

Before we get too far ahead of ourselves, let’s formalize the role of structured exception handling
and check out how it differs from traditional error handling techniques.

■Note To make the code examples used in this book as clean as possible, I will not catch every possible exception
that may be thrown by a given method in the base class libraries. In your production-level projects, you should, of
course, make liberal use of the techniques presented in this chapter.

The Role of .NET Exception Handling
Prior to .NET, error handling under the Windows operating system was a confused mishmash of
techniques. Many programmers rolled their own error handling logic within the context of a given
application. For example, a development team may define a set of numerical constants that repre-
sent known error conditions, and make use of them as function return values.

This approach is less than ideal, given the fact that raw numerical values are not self-describing
and offer little detail regarding how to deal with the problem at hand. Ideally, you would like to wrap
the name, message, and other helpful information regarding this error condition into a single, well-
defined package (which is exactly what happens under structured exception handling).

In addition to a developer’s ad hoc techniques, the Windows API defines hundreds of predefined
error codes. Also, many COM developers have made use of a small set of standard COM interfaces
(e.g., ISupportErrorInfo, IErrorInfo, ICreateErrorInfo) and COM objects (the VB 6.0 Err object) to
return meaningful error information to a COM client.

The obvious problem with these previous techniques is the tremendous lack of symmetry. Each
approach is more or less tailored to a given technology, a given language, and perhaps even a given
project. In order to put an end to this madness, the .NET platform provides a standard technique to
send and trap runtime errors: structured exception handling (SEH).

The beauty of this approach is that developers now have a unified approach to error handling,
which is common to all languages targeting the .NET universe. Therefore, the way in which a VB 2005
programmer handles errors is syntactically similar to that of a C# programmer. As an added bonus,
the syntax used to throw and catch exceptions across assemblies and machine boundaries is identical.

Another bonus of .NET exceptions is the fact that rather than receiving a raw numerical value
that identifies the problem at hand, exceptions are objects that contain a human-readable description
of the problem, as well as a detailed snapshot of the call stack that triggered the exception in the first
place. Furthermore, you are able to provide the end user with help link information that points the
user to a URL that provides detailed information regarding the error at hand as well as custom user-
defined data.

The Atoms of .NET Exception Handling
Programming with structured exception handling involves the use of four interrelated entities:

• A class that represents the exception itself

• A member (property, subroutine, or function) that throws an instance of the exception class
to the caller

5785ch07.qxd 3/31/06 10:29 AM Page 202

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 203

• A block of code on the caller’s side that invokes the exception-prone member

• A block of code on the caller’s side that will process (or catch) the exception should it occur

The VB 2005 programming language offers four keywords (Try, Catch, Throw, and Finally) that
allow you to throw and handle exceptions. The type that represents the problem at hand is a class
derived from System.Exception (or a descendent thereof). Given this fact, let’s check out the role of
this exception-centric base class.

The System.Exception Base Class
All user- and system-defined exceptions ultimately derive from the System.Exception base class
(which in turn derives from System.Object). In the member prototypes that follow, notice that some
of these members are declared with the Overridable keyword and may thus be overridden by derived
types:

' Member prototypes of select members.

Public Class Exception

Implements ISerializable, _Exception

' Methods

Public Sub New(ByVal message As String, ByVal innerException As Exception)

Public Overridable Function GetBaseException() As Exception

Public Function GetType() As Type

Public Overrides Function ToString() As String

...

' Properties

Public Overridable ReadOnly Property Data As IDictionary

Public Overridable Property HelpLink As String

Protected Property HResult As Integer

Public ReadOnly Property InnerException As Exception

Public Overridable ReadOnly Property Message As String

Public Overridable Property Source As String

Public Overridable ReadOnly Property StackTrace As String

Public ReadOnly Property TargetSite As MethodBase

End Class

As you can see, many of the properties defined by System.Exception are read-only in nature.
This is due to the simple fact that derived types will typically supply default values for each property
(for example, the default message of the IndexOutOfRangeException type is “Index was outside the
bounds of the array”).

■Note As of .NET 2.0, the _Exception interface is implemented by System.Exception to expose its functionality
to unmanaged code via the interoperability layer.

Table 7-1 describes the details of some (but not all) of the members of System.Exception.

5785ch07.qxd 3/31/06 10:29 AM Page 203

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING204

Table 7-1. Core Members of the System.Exception Type

System.Exception Property Meaning in Life

Data This property (which is new to .NET 2.0) retrieves a collection of
key/value pairs (represented by an object implementing IDictionary)
that provides additional, user-defined information about the exception.
By default, this collection is empty.

HelpLink This property returns a URI to a help file describing the error in full
detail.

InnerException This read-only property can be used to obtain information about the
previous exception(s) that caused the current exception to occur.
The previous exception(s) are recorded by passing them into the
constructor of the most current exception.

Message This read-only property returns the textual description of a given
error. The error message itself is set as a constructor parameter.

Source This property returns the name of the assembly that threw the
exception.

StackTrace This read-only property contains a string that identifies the sequence
of calls that triggered the exception. As you might guess, this property
is very useful during debugging.

TargetSite This read-only property returns a MethodBase type, which describes
numerous details about the method that threw the exception
(ToString() will identify the method by name).

The Simplest Possible Example
To illustrate the usefulness of structured exception handling, we need to create a type that may throw
an exception under the correct circumstances. Assume we have created a new console application
project (named SimpleException) that defines two class types (Car and Radio) associated using the
“has-a” relationship. The Radio type defines a single method that turns the radio’s power on or off:

Public Class Radio

Public Sub TurnOn(ByVal state As Boolean)

If state = True Then

Console.WriteLine("Jamming...")

Else

Console.WriteLine("Quiet time...")

End If

End Sub

End Class

In addition to leveraging the Radio type, the Car type is defined in such a way that if the user
accelerates a Car object beyond a predefined maximum speed (specified using a constant member
variable), its engine explodes, rendering the Car unusable (captured by a Boolean member variable
named carIsDead). Beyond these points, the Car type has a few member variables to represent the
current speed and a user-supplied “pet name” as well as various constructors. Here is the complete
definition (with code annotations):

Public Class Car

' Constant for maximum speed.

Public Const maxSpeed As Integer = 100

5785ch07.qxd 3/31/06 10:29 AM Page 204

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 205

' Internal state data.

Private currSpeed As Integer

Private petName As String

' Is the car still operational?

Private carIsDead As Boolean

' A car has a radio.

Private theMusicBox As Radio = New Radio()

' Constructors.

Public Sub New()

End Sub

Public Sub New(ByVal name As String, ByVal currSp As Integer)

currSpeed = currSp

petName = name

End Sub

Public Sub CrankTunes(ByVal state As Boolean)

theMusicBox.TurnOn(state)

End Sub

' See if Car has overheated.

Public Sub Accelerate(ByVal delta As Integer)

If carIsDead Then

Console.WriteLine("{0} is out of order...", petName)

Else

currSpeed += delta

If currSpeed > maxSpeed Then

Console.WriteLine("{0} has overheated!", petName)

currSpeed = 0

carIsDead = True

Else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

End Class

Now, if we were to implement a Main() method that forces a Car object to exceed the prede-
fined maximum speed (represented by the maxSpeed constant) as shown here:

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Console.ReadLine()

End Sub

End Module

we would see the output displayed in Figure 7-1.

5785ch07.qxd 3/31/06 10:29 AM Page 205

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING206

Figure 7-1. The initial Car type in action

Throwing a Generic Exception
Now that we have a functional Car type, I’ll illustrate the simplest way to throw an exception. The
current implementation of Accelerate() displays an error message if the caller attempts to speed
up the Car beyond its upper limit. To retrofit this method to throw an exception if the user attempts
to speed up the automobile after it has met its maker, you want to create and configure a new instance
of the System.Exception class, setting the value of the read-only Message property via the class con-
structor. When you wish to send the error object back to the caller, make use of the VB 2005 Throw
keyword. Here is the relevant code update to the Accelerate() method (the remainder of the Car
class has been unchanged):

' See if Car has overheated.

Public Sub Accelerate(ByVal delta As Integer)

If carIsDead Then

Console.WriteLine("{0} is out of order...", petName)

Else

currSpeed += delta

If currSpeed >= maxSpeed Then

carIsDead = True

currSpeed = 0

' Throw new exception! This car is toast!

Throw New Exception(String.Format("{0} has overheated!", petName))

Else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

Before examining how a caller would catch this exception, a few points of interest. First of all,
when you are throwing an exception, it is always up to you to decide exactly what constitutes the error
in question, and when it should be thrown. Here, you are making the assumption that if the program
attempts to increase the speed of a car that has expired, a System.Exception type should be thrown
to indicate the Accelerate() method cannot continue (which may or may not be a valid assumption).

Alternatively, you could implement Accelerate() to recover automatically without needing to
throw an exception in the first place. By and large, exceptions should be thrown only when a more
terminal condition has been met (for example, not finding a necessary file, failing to connect to
a database, and whatnot). Deciding exactly what constitutes throwing an exception is a design issue
you must always contend with. For our current purposes, assume that asking a doomed automobile
to increase its speed justifies a cause to throw an exception.

5785ch07.qxd 3/31/06 10:29 AM Page 206

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 207

Catching Exceptions
Because the Accelerate() method now throws an exception, the caller needs to be ready to handle
the exception should it occur. When you are invoking a method that may throw an exception, you
make use of a Try/Catch block. Once you have caught the exception type, you are able to invoke the
members of the System.Exception type to extract the details of the problem.

What you do with this data is largely up to you. You may wish to log this information to a report
file, write the data to the Windows event log, e-mail a system administrator, or display the problem
to the end user. Here, you will simply dump the contents to the console window:

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As Exception

Console.WriteLine("*** Error! ***")

Console.WriteLine("Method: {0}", ex.TargetSite)

Console.WriteLine("Message: {0}", ex.Message)

Console.WriteLine("Source: {0}", ex.Source)

End Try

' The error has been handled, processing continues with the next statement.

Console.WriteLine("***** Out of exception logic *****")

Console.ReadLine()

End Sub

End Module

In essence, a Try block is a group of statements that may throw an exception during execution.
If an exception is detected, the flow of program execution is sent to the appropriate Catch block (as
you will see in just a bit, it is possible to define multiple Catch blocks for a single Try). On the other
hand, if the code within a Try block does not trigger an exception, the Catch block is skipped entirely,
and all is right with the world. Figure 7-2 shows a test run of this program.

Figure 7-2. Dealing with the error using structured exception handling

5785ch07.qxd 3/31/06 10:29 AM Page 207

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING208

As you can see, once an exception has been handled, the application is free to continue on from
the point after the Catch block. In some circumstances, a given exception may be critical enough to
warrant the termination of the application. However, in a good number of cases, the logic within the
exception handler will ensure the application will be able to continue on its merry way (although it
may be slightly less functional, such as the case of not being able to connect to a remote data source).

Configuring the State of an Exception
Currently, the System.Exception object configured within the Accelerate() method simply establishes
a value exposed by the Message property (via a constructor parameter). As shown in Table 7-1, how-
ever, the Exception class also supplies a number of additional members (TargetSite, StackTrace,
HelpLink, and Data) that can be useful in further qualifying the nature of the problem. To spruce up
our current example, let’s examine further details of these members on a case-by-case basis.

The TargetSite Property
The System.Exception.TargetSite property allows you to determine various details about the method
that threw a given exception. As shown in the previous Main() method, printing the value of TargetSite
will display the return value, name, and parameters of the method that threw the exception. However,
TargetSite does not simply return a vanilla-flavored string, but a strongly typed System.Reflection.
MethodBase object. This type can be used to gather numerous details regarding the offending method
as well as the class that defines the offending method. To illustrate, assume the previous Catch logic
has been updated as follows:

Module Program

Sub Main()

...

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As Exception

Console.WriteLine("*** Error! ***")

Console.WriteLine("Member name: {0}", ex.TargetSite)

Console.WriteLine("Class defining member: {0}", _

ex.TargetSite.DeclaringType)

Console.WriteLine("Member type: {0}", ex.TargetSite.MemberType)

Console.WriteLine("Message: {0}", ex.Message)

Console.WriteLine("Source: {0}", ex.Source)

End Try

...

End Sub

End Module

This time, you make use of the MethodBase.DeclaringType property to determine the fully qualified
name of the class that threw the error (SimpleException.Car in this case) as well as the MemberType
property of the MethodBase object to identify the type of member (such as a property versus a method)
where this exception originated. Figure 7-3 shows the updated output.

5785ch07.qxd 3/31/06 10:29 AM Page 208

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 209

Figure 7-3. Obtaining aspects of the target site

The StackTrace Property
The System.Exception.StackTrace property allows you to identify the series of calls that resulted in
the exception. Be aware that you never set the value of StackTrace as it is established automatically
at the time the exception is created. To illustrate, assume you have once updated your Catch logic
with the following additional statement:

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As Exception

...

Console.WriteLine("Stack: {0}", ex.StackTrace)

End Try

If you were to run the program, you would find the following stack trace is printed to the console
(your line numbers and application path may differ, of course):

Stack: at SimpleException.Car.Accelerate(Int32 delta)

in C:\Ch_07 Code\SimpleException\Car.vb:line 36

at SimpleException.Program.Main() in C:\SimpleException\Program.vb:line 9

The string returned from StackTrace documents the sequence of calls that resulted in the
throwing of this exception. Notice how the bottommost line number of this string identifies the first
call in the sequence, while the topmost line number identifies the exact location of the offending
member. Clearly, this information can be quite helpful during the debugging of a given application,
as you are able to “follow the flow” of the error’s origin.

The HelpLink Property
While the TargetSite and StackTrace properties allow programmers to gain an understanding of
a given exception, this information is of little use to the end user. As you have already seen, the
System.Exception.Message property can be used to obtain human-readable information that may
be displayed to the current user. In addition, the HelpLink property can be set to point the user to
a specific URL or standard Windows help file that contains more detailed information.

5785ch07.qxd 3/31/06 10:29 AM Page 209

By default, the value managed by the HelpLink property is an empty string. If you wish to fill
this property with an interesting value, you will need to do so before throwing the System.Exception
type. Here are the relevant updates to the Car.Accelerate() method:

' See if Car has overheated.

Public Sub Accelerate(ByVal delta As Integer)

If carIsDead Then

Console.WriteLine("{0} is out of order...", petName)

Else

currSpeed += delta

If currSpeed >= maxSpeed Then

carIsDead = True

currSpeed = 0

' We need to call the HelpLink property, thus we need to

' create a local variable before throwing the Exception object.

Dim ex As New Exception(String.Format("{0} has overheated!", petName))

ex.HelpLink = "http://www.CarsRUs.com"

Throw ex

Else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

The Catch logic could now be updated to print out this help link information as follows:

Catch ex As Exception

...

Console.WriteLine("Help Link: {0}", ex.HelpLink)

End Try

The Data Property
The Data property of System.Exception is new to .NET 2.0, and allows you to fill an exception object
with any additional relevant bits of information (such as a time stamp or what have you). The Data
property returns an object implementing an interface named IDictionary, defined in the System.
Collection namespace. Chapter 9 examines the role of interface-based programming as well as the
System.Collections namespace. For the time being, just understand that dictionary collections
allow you to create a set of values that are retrieved using a specific key value. Observe the next rele-
vant update to the Car.Accelerate() method:

' See if Car has overheated.

Public Sub Accelerate(ByVal delta As Integer)

If carIsDead Then

Console.WriteLine("{0} is out of order...", petName)

Else

currSpeed += delta

If currSpeed >= maxSpeed Then

carIsDead = True

currSpeed = 0

' We need to call the HelpLink property, thus we need to

' create a local variable before throwing the Exception object.

Dim ex As New Exception(String.Format("{0} has overheated!", petName))

ex.HelpLink = "http://www.CarsRUs.com"

' Stuff in custom data regarding the error.

ex.Data.Add("TimeStamp", _

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING210

5785ch07.qxd 3/31/06 10:29 AM Page 210

Figure 7-4. Obtaining custom data

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 211

String.Format("The car exploded at {0}", DateTime.Now))

ex.Data.Add("Cause", "You have a lead foot.")

Throw ex

Else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

To successfully enumerate over the key/value pairs, you first must make sure to specify
an Imports directive for the System.Collection namespace, given we will make use of a
DictionaryEntry type in the file containing the module implementing your Main() method:

Imports System.Collections

Next, we need to update the catch logic to test that the value returned from the Data property is
not Nothing (the default setting). After this point, we make use of the Key and Value properties of the
DictionaryEntry type to print the custom user data to the console:

Catch ex As Exception

...

' By default, the data field is empty, so check for Nothing.

Console.WriteLine("-> Custom Data:")

If (ex.Data IsNot Nothing) Then

For Each de As DictionaryEntry In ex.Data

Console.WriteLine("-> {0} : {1}", de.Key, de.Value)

Next

End If

End Try

With this, we would now find the update shown in Figure 7-4.

Cool! At this point you hopefully have a better idea how to throw and catch exception objects to
account for runtime errors. Next, let’s examine the process of building strongly typed custom excep-
tion objects.

■Source Code The SimpleException project is included under the Chapter 7 subdirectory.

5785ch07.qxd 3/31/06 10:29 AM Page 211

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING212

System-Level Exceptions (System.SystemException)
The .NET base class libraries define many classes derived from System.Exception. For example, the System
namespace defines core error objects such as ArgumentOutOfRangeException, IndexOutOfRangeException,
StackOverflowException, and so forth. Other namespaces define exceptions that reflect the behavior of
that namespace (e.g., System.Drawing.Printing defines printing exceptions, System.IO defines IO-based
exceptions, System.Data defines database-centric exceptions, and so forth).

Exceptions that are thrown by the CLR are (appropriately) called system exceptions. These
exceptions are regarded as nonrecoverable, fatal errors. System exceptions derive directly from
a base class named System.SystemException, which in turn derives from System.Exception (which
derives from System.Object):

Public Class SystemException

Inherits Exception

' Various constructors.

End Class

Given that the System.SystemException type does not add any additional functionality beyond
a set of constructors, you might wonder why SystemException exists in the first place. Simply put,
when an exception type derives from System.SystemException, you are able to determine that the
.NET runtime is the entity that has thrown the exception, rather than the code base of the executing
application. For example, the NullReferenceException class extends SystemException. You can verify
this quite simply using the VB 2005 TypeOf/Is construct:

' True!

Dim nullRefEx As New NullReferenceException

Console.WriteLine("NullReferenceException is-a SystemException? : {0}", _

TypeOf nullRefEx Is SystemException)

Application-Level Exceptions
(System.ApplicationException)
Given that all .NET exceptions are class types, you are free to create your own application-specific
exceptions. However, due to the fact that the System.SystemException base class represents exceptions
thrown from the CLR, you may naturally assume that you should derive your custom exceptions from
the System.Exception type. While you could do so, best practice dictates that you instead derive from
the System.ApplicationException type:

Public Class ApplicationException

Inherits Exception

' Various constructors.

End Class

Like SystemException, ApplicationException does not define any additional members
beyond a set of constructors. Functionally, the only purpose of System.ApplicationException is
to identify the source of the (nonfatal) error. When you handle an exception deriving from System.
ApplicationException, you can assume the exception was raised by the code base of the executing
application, rather than by the .NET base class libraries.

Building Custom Exceptions, Take One
While you can always throw instances of System.Exception to signal a runtime error (as shown in
our first example), it is sometimes advantageous to build a strongly typed exception that represents
the unique details of your current problem. For example, assume you wish to build a custom exception

5785ch07.qxd 3/31/06 10:29 AM Page 212

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 213

(named CarIsDeadException) to represent the error of speeding up a doomed automobile. The first
step is to derive a new class from System.ApplicationException (by convention, all exception classes
end with the “Exception” suffix; in fact, this is a .NET best practice).

' This custom exception describes the details of the car-is-dead condition.

Public Class CarIsDeadException

Inherits ApplicationException

End Class

Like any class, you are free to include any number of custom members that can be called
within the Catch block of the calling logic. You are also free to override any virtual members defined
by your parent classes. For example, we could implement CarIsDeadException by overriding the
virtual Message property:

Public Class CarIsDeadException

Inherits ApplicationException

Private messageDetails As String

Public Sub New()

End Sub

Public Sub New(ByVal msg As String)

messageDetails = msg

End Sub

' Override the Exception.Message property.

Public Overrides ReadOnly Property Message() As String

Get

Return String.Format("Car Error Message: {0}", messageDetails)

End Get

End Property

End Class

Here, the CarIsDeadException type maintains a private data member (messageDetails) that
represents data regarding the current exception, which can be set using a custom constructor.
Throwing this error from the Accelerate() is straightforward. Simply allocate, configure, and throw
a CarIsDeadException type rather than a generic System.Exception:

' Throw the custom CarIsDeadException.

Public Sub Accelerate(ByVal delta As Integer)

...

Dim ex As New CarIsDeadException(String.Format("{0} has overheated!", petName))

...

End Sub

To catch this incoming exception explicitly, your Catch scope can now be updated to catch
a specific CarIsDeadException type (however, given that CarIsDeadException “is-a” System.Exception,
it is still permissible to catch a generic System.Exception as well):

Sub Main()

...

Catch ex As CarIsDeadException

' Process incoming exception.

End Try

...

End Sub

5785ch07.qxd 3/31/06 10:29 AM Page 213

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING214

So, now that you understand the basic process of building a custom exception, you may wonder
when you are required to do so. Typically, you only need to create custom exceptions when the error
is tightly bound to the class issuing the error (for example, a custom File class that throws a number
of file-related errors, a Car class that throws a number of car-related errors, and so forth). In doing so,
you provide the caller with the ability to handle numerous exceptions on an error-by-error basis.

Building Custom Exceptions, Take Two
The current CarIsDeadException type has overridden the System.Exception.Message property in
order to configure a custom error message. However, we can simplify our programming tasks if we
set the parent’s Message property via an incoming constructor parameter. By doing so, we have no
need to write anything other than the following:

Public Class CarIsDeadException

Inherits ApplicationException

Public Sub New()

End Sub

Public Sub New(ByVal msg As String)

MyBase.New(msg)

End Sub

End Class

Notice that this time you have not defined a string variable to represent the message, and have
not overridden the Message property. Rather, you are simply passing the parameter to your base
class constructor. With this design, a custom exception class is little more than a uniquely named class
deriving from System.ApplicationException, devoid of any member variables (or base class overrides).

Don’t be surprised if most (if not all) of your custom exception classes follow this simple pattern.
Many times, the role of a custom exception is not necessarily to provide additional functionality
beyond what is inherited from the base classes, but to provide a strongly named type that clearly
identifies the nature of the error.

Building Custom Exceptions, Take Three
If you wish to build a truly prim-and-proper custom exception class, you would want to make sure
your type adheres to the exception-centric .NET best practices. Specifically, this requires that your
custom exception

• Derives from Exception/ApplicationException

• Is marked with the <System.Serializable> attribute

• Defines a default constructor

• Defines a constructor that sets the inherited Message property

• Defines a constructor to handle “inner exceptions”

• Defines a constructor to handle the serialization of your type

Now, based on your current background with .NET, you may have no idea regarding the role of
attributes or object serialization, which is just fine. I’ll address these topics later in the text (Chapters 14
and 19, respectively). However, to finalize our examination of building custom exceptions, here is
the final iteration of CarIsDeadException:

<Serializable()> _

Public Class CarIsDeadException

Inherits ApplicationException

Public Sub New()

End Sub

5785ch07.qxd 3/31/06 10:29 AM Page 214

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 215

Public Sub New(ByVal message As String)

MyBase.New(message)

End Sub

Public Sub New(ByVal message As String, ByVal inner As System.Exception)

MyBase.New(message, inner)

End Sub

Protected Sub New(ByVal info As System.Runtime.Serialization.SerializationInfo, _

ByVal context As System.Runtime.Serialization.StreamingContext)

MyBase.New(info, context)

End Sub

End Class

So, at this point, you are able to build custom strongly typed exceptions that represent the
application-specific errors your program may generate. Next up, we need to examine the process of
handling multiple exceptions that may result from a single Try scope.

Processing Multiple Exceptions
In its simplest form, a Try block has a single Catch block. In reality, you often run into a situation
where the statements within a Try block could trigger numerous possible exceptions. For example,
assume the car’s Accelerate() method also throws the predefined ArgumentOutOfRangeException if
you pass an invalid parameter (which we will assume is any value less than zero):

Public Sub Accelerate(ByVal delta As Integer)

If delta < 0 Then

Throw New ArgumentOutOfRangeException()

End If

...

End Sub

The Catch logic could now specifically respond to each type of exception:

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As ArgumentOutOfRangeException

' Process bad arguments.

Catch ex As CarIsDeadException

' Process CarIsDeadException.

End Try

...

End Sub

End Module

When you are authoring multiple Catch blocks, you must be aware that when an exception is
thrown, it will be processed by the “first available” catch. To illustrate exactly what the “first available”
catch means, assume you retrofitted the previous logic with an additional Catch scope that attempts
to handle all exceptions beyond CarIsDeadException and ArgumentOutOfRangeException by catching
a generic System.Exception as follows:

5785ch07.qxd 3/31/06 10:29 AM Page 215

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING216

' This code will generate warnings!

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As Exception

' Try to catch all other exceptions here?

Catch ex As ArgumentOutOfRangeException

' Process bad arguments.

Catch ex As CarIsDeadException

' Process CarIsDeadException.

End Try

...

End Sub

End Module

This exception handling logic generates several warnings. The problem is due to the fact that
the first Catch block can handle anything derived from System.Exception (given the “is-a” relation-
ship), including the CarIsDeadException and ArgumentOutOfRangeException types. Therefore, the
final two Catch blocks are unreachable!

The rule of thumb to keep in mind is to make sure your Catch blocks are structured such that
the very first Catch is the most specific exception (i.e., the most derived type in an exception type
inheritance chain), leaving the final Catch for the most general (i.e., the base class of a given excep-
tion inheritance chain, in this case System.Exception).

Thus, if you wish to define a Catch statement that will handle any errors beyond CarIsDeadException
and ArgumentOutOfRangeException, you would write the following:

' This code compiles without warning.

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As ArgumentOutOfRangeException

' Process bad arguments.

Catch ex As CarIsDeadException

' Process CarIsDeadException.

Catch ex As Exception

' Try to catch all other exceptions here? Ok!

End Try

...

End Sub

End Module

5785ch07.qxd 3/31/06 10:29 AM Page 216

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 217

Generic Catch Statements
VB 2005 also supports a “generic” Catch scope that does not explicitly receive the exception object
thrown by a given member:

' A generic catch.

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch

Console.WriteLine("Oops! Something bad happened...")

End Try

End Sub

End Module

Obviously, this is not the most informative way to handle exceptions, given that you have no
way to obtain meaningful data about the error that occurred (such as the method name, call stack,
or custom message). Nevertheless, VB 2005 does allow for such a construct, which can be helpful
when you wish to handle all errors in a very generic fashion.

Rethrowing Exceptions
Be aware that it is permissible for logic in a Try block to rethrow an exception up the call stack to
the previous caller. To do so, simply make use of the Throw keyword within a Catch block. This
passes the exception up the chain of calling logic, which can be helpful if your Catch block is only
able to partially handle the error at hand:

' Passing the buck.

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As ArgumentOutOfRangeException

' Process bad arguments.

Catch ex As CarIsDeadException

' Do any partial processing of this error and pass the buck.

' Here, we are rethrowing the incoming CarIsDeadException object.

' However, you are also free to throw a different exception if need be.

Throw ex

Catch ex As Exception

' Try to catch all other exceptions here? Ok!

End Try

...

End Sub

End Module

5785ch07.qxd 3/31/06 10:29 AM Page 217

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING218

Be aware that in this example code, the ultimate receiver of CarIsDeadException is the CLR, given
that it is the Main() method rethrowing the exception. Given this point, your end user is presented
with a system-supplied error dialog box. Typically, you would only rethrow a partially handled
exception to a caller that has the ability to handle the incoming exception more gracefully.

Inner Exceptions
As you may suspect, it is entirely possible to trigger an exception at the time you are handling another
exception. For example, assume that you are handing a CarIsDeadException within a particular Catch
scope, and during the process you attempt to record the stack trace to a file on your C drive named
carErrors.txt. Although we have not yet examined the topic of file IO, assume you have imported
the System.IO namespace (via the Imports keyword) and authored the following code:

Catch ex As CarIsDeadException

' Attempt to open a file named carErrors.txt on the C drive.

Dim fs As FileStream = File.Open("C:\carErrors.txt", FileMode.Open)

...

End Try

Now, if the specified file is not located on your C drive, the call to File.Open() results in
a FileNotFoundException! Later in this text, you will learn all about the System.IO namespace where
you will discover how to programmatically determine whether a file exists on the hard drive before
attempting to open the file in the first place (thereby avoiding the exception altogether). However,
to keep focused on the topic of exceptions, assume the exception has been raised.

When you encounter an exception while processing another exception, best practice states
that you should record the new exception object as an “inner exception” within a new object of the
same type as the initial exception (that was a mouthful). The reason we need to allocate a new object
of the exception being handled is that the only way to document an inner exception is via a constructor
parameter. Consider the following code:

Module Program

Sub Main()

...

Try

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

Catch ex As ArgumentOutOfRangeException

' process any bad arguments here.

Catch ex As CarIsDeadException

Try

' Attempt to open a file named carErrors.txt on the C drive.

Dim fs As FileStream = File.Open("C:\carErrors.txt", FileMode.Open)

Catch ex2 As Exception

' Throw a exception that records the new exception,

' as well as the message of the first exception.

Throw New CarIsDeadException(ex.Message, ex2)

End Try

...

Catch ex As Exception

' Try to catch all other exceptions here? OK!

End Try

...

End Sub

End Module

5785ch07.qxd 3/31/06 10:29 AM Page 218

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 219

Notice in this case, we have passed in the FileNotFoundException object as the second parame-
ter to the CarIsDeadException constructor. Once we have configured this new object, we throw it up
the call stack to the next caller, which in this case would be the Main() method.

Given that there is no “next caller” beyond the CLR after Main() to catch the exception, we would
be again presented with an error dialog box. Much like the act of rethrowing an exception, recording
inner exceptions is usually only useful when the caller has the ability to gracefully catch the exception
in the first place. If this is the case, the caller’s catch logic can make use of the InnerException property
to extract the details of the inner exception object.

The Finally Block
A Try/Catch scope may also define an optional Finally block. The motivation behind a Finally block
is to ensure that a set of code statements will always execute, exception (of any type) or not. To illus-
trate, assume you wish to always power down the car’s radio before exiting Main(), regardless of any
handled exception:

Module Program

Sub Main()

Console.WriteLine("***** Creating a car and stepping on it *****")

Dim myCar As Car = New Car("Zippy", 20)

myCar.CrankTunes(True)

Try

' Speed up logic

Catch ex As ArgumentOutOfRangeException

' Process arg out of range.

Catch ex As CarIsDeadException

' Process car is dead.

Catch ex As Exception

' Try to catch all other exceptions here.

Finally

' This will always execute, error or not.

myCar.CrankTunes(False)

End Try

' The error has been handled, processing continues with the next statement.

Console.WriteLine("***** Out of exception logic *****")

Console.ReadLine()

End Sub

End Module

If you did not include a Finally block, the radio would not be turned off if an exception is
encountered (which may or may not be problematic). In a more real-world scenario, when you
need to dispose of objects, close a file, detach from a database (or whatever), a Finally block
ensures a location for proper cleanup.

Who Is Throwing What?
Given that a method in the .NET Framework could throw any number of exceptions (under various
circumstances), a logical question would be “How do I know which exceptions may be thrown by
a given base class library method?” The ultimate answer is simple: consult the .NET Framework 2.0
SDK documentation. Each method in the help system documents the exceptions a given member
may throw.

5785ch07.qxd 3/31/06 10:29 AM Page 219

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING220

Figure 7-5. Identifying the exceptions thrown from a given method

For example, if you wish to see the exceptions the Console.ReadLine() method could throw,
click the ReadLine() method and press the F1 key. This will open up the correct help page for the
method in question. From here, simply consult the Exceptions table (see Figure 7-5).

Do understand that if a given member throws multiple exceptions, you are not literally required
to catch each object within a separate Catch block. In many cases, you can handle all possible errors
thrown from a set scope by catching a single System.Exception:

Sub Main()

Try

' This one catch will handle all exceptions

' thrown from the Open() method.

File.Open("IDontExist.txt", FileMode.Open)

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

End Sub

However, if you do wish to handle specific exceptions uniquely, just make use of multiple
Catch blocks as shown throughout this chapter. Using this approach, you can take unique courses
of action based on the type of exception object, and therefore have a finer grain of control.

The Result of Unhandled Exception
At this point, you might be wondering what would happen if you do not handle an exception thrown
your direction. Assume that the logic in Main() increases the speed of the Car object beyond the
maximum speed, without the benefit of Try/Catch logic. The result of ignoring an exception would
be highly obstructive to the end user of your application, as an “unhandled exception” dialog box is
displayed. On a machine where .NET debugging tools are installed, you would see something similar
to Figure 7-6 (a nondevelopment machine would display a similar intrusive dialog box).

5785ch07.qxd 3/31/06 10:29 AM Page 220

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 221

Figure 7-6. The result of not dealing with exceptions

Figure 7-7. Debugging unhandled custom exceptions with Visual Studio 2005

■Source Code The CustomException project is included under the Chapter 7 subdirectory.

Debugging Unhandled Exceptions Using Visual
Studio 2005
As you would hope, Visual Studio 2005 provides a number of tools that help you debug exceptions.
Again, assume you have increased the speed of a Car object beyond the maximum and are not mak-
ing use of structured exception handling. If you were to start a debugging session (using the Debug ➤
Start menu selection), Visual Studio automatically breaks at the time the uncaught exception is thrown.
Better yet, you are presented with a window (see Figure 7-7) displaying the value of the Message
property.

5785ch07.qxd 3/31/06 10:29 AM Page 221

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING222

If you click the View Detail link, you will find the details regarding the state of the object (see
Figure 7-8).

■Note If you fail to handle an exception thrown by a method in the .NET base class libraries, the Visual Studio
2005 debugger breaks at the statement that called the offending method.

Blending VB 6.0 Error Processing and Structured
Exception Handling
To wrap up this chapter, allow me to point out that the VB 6.0 error handling constructs are still sup-
ported under Visual Basic 2005. As you may know, the On Error Goto construct allows you to define
a label in the scope of a method, where control will be transferred in the event of an error. At this point,
you can make use of the intrinsic Err object to scrape out select details of the problem at hand.

Since the release of the .NET platform, the VB Err object has been enhanced with a new method
named GetException(), which returns a reference to the underlying System.Exception derived type.
Consider the following code, which blends both approaches to handle the CarIsDeadException:

Module Program

Sub Main()

On Error GoTo OOPS

Dim myCar As New Car("Sven", 80)

For i As Integer = 0 To 10

myCar.Accelerate(10)

Next

OOPS:

' Use Err object.

Console.WriteLine("=> Handling error with Err object.")

Console.WriteLine(Err.Description)

Console.WriteLine(Err.Source)

Figure 7-8. Viewing the details of an exception with Visual Studio 2005

5785ch07.qxd 3/31/06 10:29 AM Page 222

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 223

' Use Err object to get exception object.

Console.WriteLine("=> Handling error with exception.")

Console.WriteLine(Err.GetException().StackTrace)

Console.WriteLine(Err.GetException().TargetSite)

End Sub

End Module

Although the On Error construct is still supported, I prefer to make use of the structured excep-
tion handling techniques presented in this chapter. As you build new VB 2005 programs, it is best to
regard the legacy VB 6.0 style of error handling as little more than a vehicle for backwards compatibility.

■Source Code The Vb6StyleErrorHandling project is included under the Chapter 7 subdirectory.

Summary
In this chapter, you examined the role of structured exception handling. When a method needs to
send an error object to the caller, it will allocate, configure, and throw a specific System.Exception
derived type via the VB 2005 Throw keyword. The caller is able to handle any possible incoming
exceptions using the VB 2005 Try/Catch keywords and an optional Finally scope.

When you are creating your own custom exceptions, you ultimately create a class type deriving
from System.ApplicationException, which denotes an exception thrown from the currently execut-
ing application. In contrast, error objects deriving from System.SystemException represent critical
(and fatal) errors thrown by the CLR.

This chapter also illustrated various tools within Visual Studio 2005 that can be used to debug
exceptions as they occur. Last but not least, I pointed out that the legacy VB 6.0 style of error han-
dling (On Error) is still supported under Visual Basic 2005 for purposes of backwards compatibility.

5785ch07.qxd 3/31/06 10:29 AM Page 223

5785ch07.qxd 3/31/06 10:29 AM Page 224

C H A P T E R 8

■ ■ ■

Understanding Object Lifetime

At this point in the text, you learned a good deal about how to build custom class types using
VB 2005. Here, you will come to understand how the CLR is managing allocated objects via garbage
collection. VB 2005 programmers never directly deallocate a managed object from memory and,
unlike classic COM, we are no longer required to interact with finicky interface reference counting
logic (which occurred behind the scenes by VB 6.0). Rather, .NET objects are allocated onto a region
of memory termed the managed heap, where they will be automatically destroyed by the garbage
collector at “some time in the future.”

Once you have examined the core details of the collection process, you will learn how to
programmatically interact with the garbage collector using the System.GC class type. Next you
examine how the virtual System.Object.Finalize() method and IDisposable interface can be used
to build types that release internal unmanaged resources in a timely manner. By the time you have
completed this chapter, you will have a solid understanding of how .NET objects are managed by
the CLR.

Classes, Objects, and References
To frame the topics examined in this chapter, it is important to further clarify the distinction
between classes, objects, and references. Recall that a class is nothing more than a blueprint that
describes how an instance of this type will look and feel in memory. Classes, of course, are defined
within a code file (which in VB 2005 takes a *.vb extension by convention). Consider a simple Car
class defined within Car.vb:

' Car.vb

Public Class Car

Private currSp As Integer

Private petName As String

Public Sub New()

End Sub

Public Sub New(ByVal name As String, ByVal speed As Integer)

petName = name

currSp = speed

End Sub

Public Overrides Function ToString() As String

Return String.Format("{0} is going {1} MPH", petName, currSp)

End Function

End Class

225

5785ch08.qxd 3/31/06 10:34 AM Page 225

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME226

Figure 8-1. References to objects on the managed heap

Once a class is defined, you can create any number of objects using the VB 2005 New keyword.
Understand, however, that the New keyword returns a reference to the object on the heap, not the actual
object itself. This reference variable is stored on the stack for further use in your application. When you
wish to invoke members on the object, apply the VB 2005 dot operator on the stored reference:

Module Program

Sub Main()

' Create a new Car object on

' the managed heap. We are

' returned a reference to this

' object ('refToMyCar').

Dim refToMyCar As New Car("Zippy", 50)

' The VB 2005 dot operator (.) is used

' to invoke members on the object

' using our reference variable.

Console.WriteLine(refToMyCar.ToString())

Console.ReadLine()

End Sub

End Module

Figure 8-1 illustrates the class, object, and reference relationship.

The Basics of Object Lifetime
When you are building your VB 2005 applications, you are correct to assume that the managed heap
will take care of itself without your direct intervention. In fact, the golden rule of .NET memory
management is simple:

■Rule Allocate an object onto the managed heap using the New keyword and forget about it.

Once instantiated, the garbage collector will destroy the object when it is no longer needed. The
next obvious question, of course, is, “How does the garbage collector determine when an object is no
longer needed”? The short (i.e., incomplete) answer is that the garbage collector removes an object
from the heap when it is unreachable by any part of your code base. Assume you have a method that
allocates a local Car object:

Sub MakeACar()

' If myCar is the only reference to the Car object,

' it may be destroyed when the method returns.

Dim myCar As New Car()

End Sub

5785ch08.qxd 3/31/06 10:34 AM Page 226

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 227

Notice that the Car reference (myCar) has been created directly within the MakeACar() method
and has not been passed outside of the defining scope. Thus, once this method call completes, the
myCar reference is no longer reachable, and the associated Car object is now a candidate for garbage
collection. Understand, however, that you cannot guarantee that this object will be reclaimed from
memory immediately after MakeACar() has completed. All you can assume at this point is that when
the CLR performs the next garbage collection, the myCar object could be safely destroyed.

As you will most certainly discover, programming in a garbage-collected environment will
greatly simplify your application development. By allowing the garbage collector to be in charge of
destroying objects, the burden of memory management has been taken from your shoulders and
placed onto those of the CLR.

■Note If you happen to have a background in COM development, do know that .NET objects do not maintain an
internal reference counter, and therefore managed objects do not expose methods such as AddRef() or Release().

The CIL of New
Before we examine the exact rules that determine when an object is removed from the managed
heap, let’s check out the role of the New keyword a bit more closely. First, understand that the man-
aged heap is more than just a random chunk of memory accessed by the CLR. The .NET garbage
collector is quite a tidy housekeeper of the heap, given that it will compact empty blocks of memory
(when necessary) to optimize the process of locating allocated objects. To aid in this endeavor, the
managed heap maintains a pointer (commonly referred to as the next object pointer or new object
pointer) that identifies exactly where the next object will be located.

To better understand the dirty details of exactly how objects are allocated on the heap requires
us to examine a bit of CIL code. When the VB 2005 compiler encounters the New keyword, it will emit
a CIL newobj instruction into the method implementation. If you were to compile the current exam-
ple code and investigate the resulting assembly using ildasm.exe, (see Chapter 1), you would find
the following CIL statements within the MakeACar() method:

.method public static void MakeACar() cil managed

{

// Code size 9 (0x9)

.maxstack 1

.locals init ([0] class SimpleGC.Car myCar)

IL_0000: nop

IL_0001: newobj instance void SimpleGC.Car::.ctor()

IL_0006: stloc.0

IL_0007: nop

IL_0008: ret

} // end of method Program::MakeACar

The newobj instruction informs the CLR to perform the following core tasks:

• Calculate the total amount of memory required for the object to be allocated (including the
necessary memory required by the type’s member variables and the type’s base classes).

• Examine the managed heap to ensure that there is indeed enough room to host the object to
be allocated. If this is the case, the type’s constructor is called, and the caller is ultimately
returned a reference to the new object in memory, whose address just happens to be identi-
cal to the last position of the next object pointer.

• Finally, before returning the reference to the caller, advance the next object pointer to point
to the next available slot on the managed heap.

5785ch08.qxd 3/31/06 10:34 AM Page 227

Figure 8-2. The details of allocating objects onto the managed heap

The basic process is illustrated in Figure 8-2.

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME228

As you are busy allocating objects in your application, the space on the managed heap may
eventually become full. When processing the newobj instruction, if the CLR determines that the
managed heap does not have sufficient memory to allocate the requested type, it will perform
a garbage collection in an attempt to free up memory. Thus, the next rule of garbage collection is
also quite simple:

■Rule If the managed heap does not have sufficient memory to allocate a requested object, a garbage collection
will occur.

When a collection does take place, the garbage collector temporarily suspends all active threads
within the current process to ensure that the application does not access the heap during the col-
lection process. We will examine the topic of threads in Chapter 16; however, for the time being,
simply regard a thread as a path of execution within a running executable. Once the garbage collection
cycle has completed, the suspended threads are permitted to carry on their work. Thankfully, the .NET
garbage collector is highly optimized; you will seldom (if ever) notice this brief interruption in
your application.

Setting Object References to Nothing
Those who have created COM objects using Visual Basic 6.0 were well aware that it was always
preferable to set their references to Nothing when they were finished using them. Under the covers,
the reference count of the COM object was decremented by one, and may be removed from mem-
ory if the object’s reference count equaled zero.

Of course, .NET objects do not make use of the COM reference counting scheme. Given this
fact, you might wonder what the end result is of assigning object references to Nothing under Visual
Basic 2005. For example, assume the MakeACar() subroutine has now been updated as follows:

Sub MakeACar()

Dim myCar As New Car()

myCar = Nothing

End Sub

When you assign references to Nothing, the compiler will generate CIL code that ensures the
reference (myCar in this example) no longer points to any object. If you were once again to make use
of ildasm.exe to view the CIL code of the modified MakeACar(), you would find the ldnull opcode:

5785ch08.qxd 3/31/06 10:34 AM Page 228

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 229

.method public static void MakeACar() cil managed

{

// Code size 11 (0xb)

.maxstack 1

.locals init ([0] class SimpleGC.Car myCar)

IL_0000: nop

IL_0001: newobj instance void SimpleGC.Car::.ctor()

IL_0006: stloc.0

IL_0007: ldnull

IL_0008: stloc.0

IL_0009: nop

IL_000a: ret

} // end of method Program::MakeACar

What you must understand, however, is that assigning a reference to Nothing does not in any
way force the garbage collector to fire up at that exact moment and remove the object from the heap.
The only thing you have accomplished is explicitly clipping the connection between the reference
and the object it previously pointed to.

The Role of Application Roots
Now, back to the topic of how the garbage collector determines when an object is “no longer
needed.” To understand the details, you need to be aware of the notion of application roots. Simply
put, a root is a storage location containing a reference to an object on the heap. Strictly speaking,
a root can fall into any of the following categories:

• References to global objects (while not allowed in VB 2005, CIL code does permit allocation
of global objects)

• References to currently used shared objects/shared fields

• References to local objects within a given method

• References to object parameters passed into a method

• References to objects waiting to be finalized (described later in this chapter)

• Any CPU register that references a local object

During a garbage collection process, the runtime will investigate objects on the managed heap
to determine whether they are still reachable (aka rooted) by the application. To do so, the CLR will
build an object graph, which represents each reachable object on the heap. Object graphs will be
explained in greater detail during our discussion of object serialization (in Chapter 19). For now,
just understand that object graphs are used to document all reachable objects. As well, be aware
that the garbage collector will never graph the same object twice, thus avoiding the nasty circular
reference count that could be found in classic COM programming.

Assume the managed heap contains a set of objects named A, B, C, D, E, F, and G. During a garbage
collection, these objects (as well as any internal object references they may contain) are examined
for active roots. Once the graph has been constructed, unreachable objects (which we will assume
are objects C and F) are marked as garbage. Figure 8-3 diagrams a possible object graph for the
scenario just described (you can read the directional arrows using the phrase depends on or requires,
for example, “E depends on G and indirectly B,” “A depends on nothing,” and so on).

5785ch08.qxd 3/31/06 10:34 AM Page 229

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME230

Figure 8-3. Object graphs are constructed to determine which objects are reachable by application roots.

Figure 8-4. A clean and compacted heap

Once an object has been marked for termination (C and F in this case—as they are not accounted
for in the object graph), they are swept from memory. At this point, the remaining space on the
heap is compacted, which in turn will cause the CLR to modify the set of active application roots to
refer to the correct memory location (this is done automatically and transparently). Last but not
least, the next object pointer is readjusted to point to the next available slot. Figure 8-4 illustrates
the resulting readjustment.

■Note Strictly speaking, the garbage collector makes use of two distinct heaps, one of which is specifically used
to store very large objects. This heap is less frequently consulted during the collection cycle, given possible perfor-
mance penalties involved with relocating large objects. Regardless of this fact, it is safe to consider the “managed
heap” as a single region of memory.

Understanding Object Generations
When the CLR is attempting to locate unreachable objects, is does not literally examine each and
every object placed on the managed heap. Obviously, doing so would involve considerable time,
especially in larger (i.e., real-world) applications.

To help optimize the process, each object on the heap is assigned to a specific “generation.”
The idea behind generations is simple: the longer an object has existed on the heap, the more likely
it is to stay there. For example, the object representing the main Form of a Windows Forms application

5785ch08.qxd 3/31/06 10:34 AM Page 230

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 231

Figure 8-5. Generation 0 objects that survive a garbage collection are promoted to generation 1.

will be in memory until the program terminates. Conversely, objects that have been recently placed
on the heap are likely to be unreachable rather quickly (such as an object created within a local
method scope). Given these assumptions, each object on the heap belongs to one of the following
generations:

• Generation 0: Identifies a newly allocated object that has never been marked for collection

• Generation 1: Identifies an object that has survived a garbage collection (i.e., it was marked
for collection, but was not removed due to the fact that the sufficient heap space was acquired)

• Generation 2: Identifies an object that has survived more than one sweep of the garbage
collector

The garbage collector will investigate all generation 0 objects first. If marking and sweeping
these objects results in the required amount of free memory, any surviving objects are promoted to
generation 1. To illustrate how an object’s generation affects the collection process, ponder Figure 8-5,
which diagrams how a set of surviving generation 0 objects (A, B, and E) are promoted once the
required memory has been reclaimed.

If all generation 0 objects have been evaluated, but additional memory is still required, genera-
tion 1 objects are then investigated for their “reachability” and collected accordingly. Surviving
generation 1 objects are then promoted to generation 2. If the garbage collector still requires addi-
tional memory, generation 2 objects are then evaluated for their reachability. At this point, if
a generation 2 object survives a garbage collection, it remains a generation 2 object given the
predefined upper limit of object generations. (As of .NET 2.0, that is. Future versions of the platform
may increase this upper generational limit.)

The bottom line is that by assigning a generational value to objects on the heap, newer objects
(such as local variables) will be removed quickly, while older objects (such as a program’s main Form)
are not “bothered” as often.

The System.GC Type
The base class libraries provide a class type named System.GC that allows you to programmatically
interact with the garbage collector using a set of shared members. Now, do be very aware that you
will seldom (if ever) need to make use of this type directly in your code. Typically speaking, the only
time you will make use of the members of System.GC is when you are creating types that make use
of unmanaged resources. Table 8-1 provides a rundown of some of the more interesting members
(consult the .NET Framework 2.0 SDK documentation for complete details).

5785ch08.qxd 3/31/06 10:34 AM Page 231

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME232

Table 8-1. Select Members of the System.GC Type

System.GC Member Meaning in Life

AddMemoryPressure() Allow you to specify a numerical value that represents the calling
RemoveMemoryPressure() object’s “urgency level” regarding the garbage collection process.

Be aware that these methods should alter pressure in tandem
and thus never remove more pressure than the total amount you
have added.

Collect() Forces the GC to perform a garbage collection.

CollectionCount() Returns a numerical value representing how many times a given
generation has been swept.

GetGeneration() Returns the generation to which an object currently belongs.

GetTotalMemory() Returns the estimated amount of memory (in bytes) currently
allocated on the managed heap. The Boolean parameter specifies
whether the call should wait for garbage collection to occur before
returning.

MaxGeneration Returns the maximum of generations supported on the target
system. Under Microsoft’s .NET 2.0, there are three possible
generations (0, 1, and 2).

SuppressFinalize() Sets a flag indicating that the specified object should not have its
Finalize() method called.

WaitForPendingFinalizers() Suspends the current thread until all finalizable objects have been
finalized. This method is typically called directly after invoking
GC.Collect().

Ponder the following Main() method, which illustrates select members of System.GC:

Sub Main()

' Print out estimated number of bytes on heap.

Console.WriteLine("Estimated bytes on heap: {0}", _

GC.GetTotalMemory(False))

' MaxGeneration is zero based, so add 1 for display purposes.

Console.WriteLine("This OS has {0} object generations.", _

(GC.MaxGeneration + 1))

Dim refToMyCar As New Car("Zippy", 100)

Console.WriteLine(refToMyCar.ToString())

' Print out generation of refToMyCar object.

Console.WriteLine("Generation of refToMyCar is: {0}", _

GC.GetGeneration(refToMyCar))

Console.ReadLine()

End Sub

Forcing a Garbage Collection
Again, the whole purpose of the .NET garbage collector is to manage memory on our behalf. However,
under some very rare (and I do mean very rare) circumstances, it may be beneficial to programmati-
cally force a garbage collection using GC.Collect(). Specifically:

5785ch08.qxd 3/31/06 10:34 AM Page 232

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 233

• Your application is about to enter into a block of code that you do not wish to be interrupted
by a possible garbage collection.

• Your application has just finished allocating an extremely large number of objects and you
wish to clean up as much of the acquired memory as possible.

If you determine it may be beneficial to have the garbage collector check for unreachable
objects, you could explicitly trigger a garbage collection, as follows:

Sub Main()

...

' Force a garbage collection and wait for

' each object to be finalized.

GC.Collect()

GC.WaitForPendingFinalizers()

...

End Sub

When you manually force a garbage collection, you should always make a call to
GC.WaitForPendingFinalizers(). With this approach, you can rest assured that all finalizable
objects (described in detail later in this chapter) have had a chance to perform any necessary
cleanup before your program continues forward. Under the hood, GC.WaitForPendingFinalizers()
will suspend the calling thread during the collection process. This is a good thing, as it ensures your
code does not invoke methods on an object currently being destroyed!

The GC.Collect() method can also be supplied a numerical value that identifies the oldest
generation on which a garbage collection will be performed. For example, if you wished to instruct
the CLR to only investigate generation 0 objects, you would write the following:

Sub Main()

...

' Only investigate generation 0 objects.

GC.Collect(0)

GC.WaitForPendingFinalizers()

...

End Sub

Like any garbage collection, calling GC.Collect() will promote surviving generations. To illustrate,
assume that our Main() method has been updated as follows:

Sub Main()

Console.WriteLine("***** Fun with System.GC *****")

' Print out estimated number of bytes on heap.

Console.WriteLine("Estimated bytes on heap: {0}", _

GC.GetTotalMemory(False))

' MaxGeneration is zero based.

Console.WriteLine("This OS has {0} object generations.", _

(GC.MaxGeneration + 1))

Dim refToMyCar As New Car("Zippy", 100)

Console.WriteLine(refToMyCar.ToString())

' Print out generation of refToMyCar.

Console.WriteLine("Generation of refToMyCar is: {0}", _

GC.GetGeneration(refToMyCar))

5785ch08.qxd 3/31/06 10:34 AM Page 233

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME234

Figure 8-6. Interacting with the CLR garbage collector via System.GC

' Make a ton of objects for testing purposes.

Dim tonsOfObjects(5000) As Object

For i As Integer = 0 To UBound(tonsOfObjects)

tonsOfObjects(i) = New Object()

Next

' Collect only gen 0 objects.

GC.Collect(0)

GC.WaitForPendingFinalizers()

' Print out generation of refToMyCar.

Console.WriteLine("Generation of refToMyCar is: {0}", _

GC.GetGeneration(refToMyCar))

' See if tonsOfObjects(4000) is still alive.

If (tonsOfObjects(4000) IsNot Nothing)

Console.WriteLine("Generation of tonsOfObjects(4000) is: {0}", _

GC.GetGeneration(tonsOfObjects(4000)))

Else

Console.WriteLine("tonsOfObjects(4000) is no longer alive.")

End If

' Print out how many times a generation has been swept.

Console.WriteLine("Gen 0 has been swept {0} times", _

GC.CollectionCount(0))

Console.WriteLine("Gen 1 has been swept {0} times", _

GC.CollectionCount(1))

Console.WriteLine("Gen 2 has been swept {0} times", _

GC.CollectionCount(2))

Console.ReadLine()

End Sub

Here, we have purposely created a very large array of System.Objects for testing purposes. As
you can see from the output shown in Figure 8-6, even though this Main() method only made one
explicit request for a garbage collection, the CLR performed a number of them in the background.

At this point in the chapter, I hope you feel more comfortable regarding the details of object
lifetime. The remainder of this chapter examines the garbage collection process a bit further by
addressing how you can build finalizable objects as well as disposable objects. Be very aware that the
following techniques will only be useful if you are building managed classes that maintain internal
unmanaged resources.

5785ch08.qxd 3/31/06 10:34 AM Page 234

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 235

■Source Code The SimpleGC project is included under the Chapter 8 subdirectory.

Building Finalizable Objects
In Chapter 6, you learned that the supreme base class of .NET, System.Object, defines a virtual
method named Finalize(). The default implementation of this method does nothing whatsoever,
however do note this method has been marked as Overridable:

' System.Object

Class Object

...

Protected Overridable Sub Finalize()

End Sub

End Class

When you override Finalize() for your custom classes, you establish a specific location to per-
form any necessary cleanup logic for your type. Given that this member is defined as protected, it is
not possible to directly call an object’s Finalize() method. Rather, the garbage collector will call an
object’s Finalize() method (if supported) before removing the object from memory.

Of course, a call to Finalize() will (eventually) occur during a “natural” garbage collection or
possibly when you programmatically force a collection via GC.Collect(). In addition, a type’s final-
izer method will automatically be called when the application domain hosting your application is
unloaded from memory.

Based on your current background in .NET, you may know that application domains (or simply
AppDomains) are used to host an executable assembly and any necessary external code libraries. If
you are not familiar with this .NET concept, you will be by the time you’ve finished Chapter 15. The
short answer is that when your AppDomain is unloaded from memory, the CLR automatically invokes
finalizers for every finalizable object created during its lifetime.

Now, despite what your developer instincts may tell you, a vast majority of your VB 2005
classes will not require any explicit cleanup logic. The reason is simple: if your types are simply mak-
ing use of other managed objects, everything will eventually be garbage collected. The only time you
would need to design a class that can clean up after itself is when you are making use of unmanaged
resources (such as raw OS file handles, raw unmanaged database connections, or other unman-
aged resources).

As you may know, unmanaged resources are obtained by directly calling into the API of the
operating system using PInvoke (platform invocation) services or due to some very elaborate COM
interoperability scenarios. We will examine interoperability in Chapter 17; however, consider the
next rule of garbage collection:

■Rule The only reason to override Finalize() is if your VB 2005 class is making use of unmanaged resources via
PInvoke or complex COM interoperability tasks (typically via the System.Runtime.InteropServices.Marshal type).

■Note As you will see in Chapter 11, it is illegal to override Finalize() on structure types. This makes perfect
sense given that structures are value types, which are never allocated on the heap to begin with, and therefore are
not garbage collected!

5785ch08.qxd 3/31/06 10:34 AM Page 235

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME236

Overriding System.Object.Finalize()
In the rare case that you do build a VB 2005 class that makes use of unmanaged resources, you will
obviously wish to ensure that the underlying memory is released in a predictable manner. Assume
you have created a class named MyResourceWrapper that makes use of an unmanaged resource
(whatever that may be) and you wish to override Finalize().

Perhaps because the act of overriding Finalize() is considered a rather rare task, the Visual
Studio 2005 IDE does not display Finalize() as an Overridable method when you type the Overrides
keyword, as you see in Figure 8-7.

Given this, you are required to manually type the definition of Finalize() within the code editor.
Here is a custom finalizer for a class named MyResourceWrapper that will issue a system beep when
invoked. Obviously this is only for instructional purposes. A real-world finalizer would do nothing
more than free any unmanaged resources and would not interact with the members of other managed
objects, as you cannot assume they are still alive at the point the garbage collector invokes your
Finalize() method:

Class MyResourceWrapper

' Override System.Object.Finalize()

Protected Overrides Sub Finalize()

' Clean up any unmanaged resources here!

' Beep when destroyed (testing purposes only!)

Console.Beep()

End Sub

End Class

While the previous implementation of Finalize() is syntactically correct, best practices state
that a proper finalization routine should explicitly call the Finalize() method of its base class, to
ensure that any unmanaged resources up the chain of inheritance are cleaned up as well. Further-
more, to make a Finalize() method as robust as possible, you should wrap your code statements
within a Try/Finally construct. Given these notes, here is a prim-and-proper Finalize() method:

Class MyResourceWrapper

' Override System.Object.Finalize()

Protected Overrides Sub Finalize()

Try

' Clean up any unmanaged resources here!

' Beep when destroyed (testing purposes only!)

Console.Beep()

Figure 8-7. Although not displayed, it is still legal to override Finalize()!

5785ch08.qxd 3/31/06 10:34 AM Page 236

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 237

Finally

MyBase.Finalize()

End Try

End Sub

End Class

If you were to now test the MyResourceWrapper type, you would find that a system beep occurs
when the application terminates, given that the CLR will automatically invoke finalizers upon
AppDomain shutdown:

Sub Main()

Console.WriteLine("***** Fun with Finalizers *****")

Console.WriteLine("Hit the return key to shut down this app")

Console.WriteLine("and force the GC to invoke Finalize()")

Console.WriteLine("for finalizable objects created in this AppDomain.")

Console.ReadLine()

Dim rw As New MyResourceWrapper()

End Sub

■Source Code The SimpleFinalize project is included under the Chapter 8 subdirectory.

Detailing the Finalization Process
Not to beat a dead horse, but always remember that the role of the Finalize() method is to ensure
that a .NET object can clean up unmanaged resources when garbage collected. Thus, if you are
building a type that does not make use of unmanaged entities (by far the most common case),
finalization is of little use. In fact, if at all possible, you should design your types to avoid supporting
a Finalize() method for the very simple reason that finalization takes time.

When you allocate an object onto the managed heap, the runtime automatically determines
whether your object supports a custom Finalize() method. If so, the object is marked as finalizable,
and a pointer to this object is stored on an internal queue named the finalization queue. The final-
ization queue is a table maintained by the garbage collector that points to each and every object
that must be finalized before it is removed from the heap.

When the garbage collector determines it is time to free an object from memory, it examines
each entry on the finalization queue, and copies the object off the heap to yet another managed
structure termed the finalization reachable table (often abbreviated as freachable, and pronounced
“eff-reachable”). At this point, a separate thread is spawned to invoke the Finalize() method for each
object on the freachable table at the next garbage collection. Given this, it will take at the very least
two garbage collections to truly finalize an object.

The bottom line is that while finalization of an object does ensure an object can clean up
unmanaged resources, it is still nondeterministic in nature, and due to the extra behind-the-
curtains processing, considerably slower.

Building Disposable Objects
Given that so many unmanaged resources are “precious items” that should be cleaned up ASAP,
allow me to introduce you to another possible technique used to handle an object’s cleanup. As an
alternative to overriding Finalize(), your class could implement the IDisposable interface, which
defines a single method named Dispose():

Public Interface IDisposable

Sub Dispose()

End Interface

5785ch08.qxd 3/31/06 10:34 AM Page 237

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME238

If you are new to interface-based programming, Chapter 9 will take you through the details. In
a nutshell, an interface is a collection of abstract members a class or structure may support. When
you do support the IDisposable interface, the assumption is that when the object user is finished
using the object, it manually calls Dispose() before allowing the object reference to drop out of
scope. In this way, your objects can perform any necessary cleanup of unmanaged resources with-
out incurring the hit of being placed on the finalization queue and without waiting for the garbage
collector to trigger the class’s finalization logic.

■Note Structures and class types can both implement IDisposable (unlike overriding Finalize(), which is
reserved for class types), as the object user (not the garbage collector) invokes the Dispose() method.

Here is an updated MyResourceWrapper class that now implements IDisposable, rather than
overriding System.Object.Finalize():

' Implementing IDisposable.

Class MyResourceWrapper

Implements IDisposable

' The object user should call this method

' when they finished with the object.

Public Sub Dispose() Implements IDisposable.Dispose

' Clean up unmanaged resources here.

' Dispose other contained disposable objects.

End Sub

End Class

■Note Visual Studio 2005 will autocomplete interface implementation as soon as you hit the Enter key. In fact,
when implementing IDisposable, the IDE injects a good deal of code statements, which will become more
understandable once you complete this chapter.

Notice that a Dispose() method is not only responsible for releasing the type’s unmanaged
resources, but should also call Dispose() on any other contained disposable methods. Unlike
Finalize(), it is perfectly safe to communicate with other managed objects within a Dispose()

method. The reason is simple: the garbage collector has no clue about the IDisposable interface
and will never call Dispose(). Therefore, when the object user calls this method, the object is still
living a productive life on the managed heap and has access to all other heap-allocated objects.
The calling logic is straightforward:

Sub Main

Dim rw As New MyResourceWrapper()

rw.Dispose()

Console.ReadLine()

End Sub

Of course, before you attempt to call Dispose() on an object, you will want to ensure the type
supports the IDisposable interface. While you will typically know which objects implement IDisposable
by consulting the .NET Framework 2.0 SDK documentation, a programmatic check can be accom-
plished using the TypeOf/Is syntax discussed in Chapter 6:

Sub Main()

Dim rw As New MyResourceWrapper()

If (TypeOf rw Is IDisposable) Then

5785ch08.qxd 3/31/06 10:34 AM Page 238

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 239

rw.Dispose()

End If

Console.ReadLine()

End Sub

This example exposes yet another rule of working with .NET memory management:

■Rule Always call Dispose() on any object you directly create if the object implements IDisposable. The
assumption you should make is that if the class designer chose to support the Dispose() method, the type has
some cleanup to perform.

The VB 2005 Using Keyword
When you are handling a managed object that implements IDisposable, it will be quite common to
make use of structured exception handling (see Chapter 7) to ensure the type’s Dispose() method is
called in the event of a runtime exception:

Module Program

Sub Main()

Dim rw As New MyResourceWrapper()

Try

' Call members of rw.

Finally

rw.Dispose()

End Try

Console.ReadLine()

End Sub

End Module

While this is a fine example of defensive programming, the truth of the matter is that few developers
are thrilled by the prospects of wrapping each and every disposable type within a Try/Catch/Finally
block just to ensure the Dispose() method is called. To achieve the same result in a much less obtru-
sive manner, VB 2005 supports a special bit of syntax that looks like this:

Module Program

Sub Main()

Using rw As New MyResourceWrapper()

' Use the object, Dispose() automatically called!

End Using

Console.ReadLine()

End Sub

End Module

Notice that the Using keyword (which is new as of .NET 2.0) allows you to establish a scope within
a given method. Within this scope, you are free to call any methods of the type, and once the scope
has ended, the type’s Dispose() method is called automatically. As you might agree, this can certainly
simplify your coding efforts. Also be aware that a single scope defined with the Using keyword can
define multiple objects, each of which is denoted using a comma-delimited list. For example:

Module Program

Sub Main()

Using rw As New MyResourceWrapper(), _

rw2 As New MyResourceWrapper(), _

myCar As New Car()

' Use the objects, Dispose() automatically called!

5785ch08.qxd 3/31/06 10:34 AM Page 239

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME240

End Using

Console.ReadLine()

End Sub

End Module

■Note If you attempt to “use” an object that does not implement IDisposable, you will receive a compiler error.

Even better, if you were to look at the CIL code behind this Main() method using ildasm.exe,
you will find the Using construct informs the compiler to wrap your code within Try/Finally logic,
with the expected call to Dispose() in the Finally scope. In this light, the new VB 2005 Using keyword
is simply a shortcut for wrapping disposable objects within exception handling logic.

■Source Code The SimpleDispose project is included under the Chapter 8 subdirectory.

Building Finalizable and Disposable Types
At this point, we have seen two different approaches to construct a class that cleans up internal
unmanaged resources. On the one hand, we could override System.Object.Finalize(). Using this
technique, we have the peace of mind that comes with knowing the object cleans itself up when
garbage collected (whenever that may be) without the need for user interaction. On the other hand,
we could implement IDisposable to provide a way for the object user to clean up the object as soon
as it is finished. However, if the caller forgets to call Dispose(), the unmanaged resources may be held
in memory indefinitely.

As you might suspect, it is possible to blend both techniques into a single class definition. By
doing so, you gain the best of both models. If the object user does remember to call Dispose(), you
can inform the garbage collector to bypass the finalization process by calling GC.SuppressFinalize().
If the object user forgets to call Dispose(), the object will eventually be finalized. The good news is
that the object’s internal unmanaged resources will be freed one way or another in the most optimal
manner. Here is the next iteration of MyResourceWrapper, which is now finalizable and disposable:

' A sophisticated resource wrapper.

Class MyResourceWrapper

Implements IDisposable

' The object user should call this method

' when they finished with the object.

Public Sub Dispose() Implements IDisposable.Dispose

' Clean up unmanaged resources here.

' Dispose other contained disposable objects.

' No need to finalize if user called Dispose(),

' so suppress finalization.

GC.SuppressFinalize(Me)

End Sub

' The garbage collector will call this method if the

' object user forgets to call Dispose().

Protected Overrides Sub Finalize()

Try

' Clean up any internal unmanaged resources.

' Do **not** call Dispose() on any managed objects.

5785ch08.qxd 3/31/06 10:34 AM Page 240

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 241

Finally

MyBase.Finalize()

End Try

End Sub

End Class

Notice that this Dispose() method has been updated to call GC.SuppressFinalize(), which informs
the CLR that it is no longer necessary to call the destructor when this object is garbage collected, given
that the unmanaged resources have already been freed via the Dispose() logic.

A Formalized Disposal Pattern
The current implementation of MyResourceWrapper does work fairly well; however, we are left with
a few minor drawbacks. First, the Finalize() and Dispose() method each have to clean up the same
unmanaged resources. This of course results in duplicate code, which can easily become a nightmare
to maintain. Ideally, you would define a private helper function that is called by either method. Next,
you would like to make sure that the Finalize() method does not attempt to dispose of any managed
objects, while the Dispose() method should do so. Finally, you would also like to make sure that the
object user can safely call Dispose() multiple times without error. Currently our Dispose() method
has no such safeguards.

To address these design issues, Microsoft has defined a formal, prim-and-proper disposal pat-
tern that strikes a balance between robustness, maintainability, and performance. Here is the final
(and annotated) version of MyResourceWrapper, which makes use of this official pattern (and is very
similar to the autogenerated code injected by the IDE when implementing the IDisposable interface
using Visual Studio 2005):

Public Class MyResourceWrapper

Implements IDisposable

' Used to determine if Dispose()

' has already been called.

Private disposed As Boolean = False

Public Sub Dispose() Implements IDisposable.Dispose

' Call our helper method.

' Specifying True signifies that

' the object user triggered the clean up.

CleanUp(True)

GC.SuppressFinalize(Me)

End Sub

Private Sub CleanUp(ByVal disposing As Boolean)

' Be sure we have not already been disposed!

If Not Me.disposed Then

If disposing Then

' Dispose managed resources.

End If

' Clean up unmanaged resources here.

End If

disposed = True

End Sub

Protected Overrides Sub Finalize()

' Call our helper method.

' Specifying False signifies that

' the GC triggered the clean up.

5785ch08.qxd 3/31/06 10:34 AM Page 241

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME242

CleanUp(False)

End Sub

End Class

Notice that MyResourceWrapper now defines a private helper method named CleanUp(). When
specifying True as an argument, we are signifying that the object user has initiated the cleanup,
therefore we should clean up all managed and unmanaged resources. However, when the garbage
collector initiates the cleanup, we specify False when calling CleanUp() to ensure that internal dis-
posable objects are not disposed (as we can’t assume they are still in memory!). Last but not least,
our Boolean member variable (disposed) is set to true before exiting CleanUp() to ensure that Dispose()
can be called numerous times without error.

■Source Code The FinalizableDisposableClass project is included under the Chapter 8 subdirectory.

That wraps up our investigation of how the CLR is managing your objects via garbage collection.
While there are additional advanced details regarding the collection process I have not examined here
(such as weak references and object resurrection), you are certainly in a perfect position for further
exploration on your own terms if you so choose.

Summary
The point of this chapter was to demystify the garbage collection process. As you have seen, the garbage
collector will only run when it is unable to acquire the necessary memory from the managed heap
(or when a given AppDomain unloads from memory). When a collection does occur, you can rest
assured that Microsoft’s collection algorithm has been optimized by the use of object genera-
tions, secondary threads for the purpose of object finalization, and a managed heap dedicated to
host large objects.

This chapter also illustrated how to programmatically interact with the garbage collector using
the System.GC class type. As mentioned, the only time when you will really need to do so is when you
are building finalizable or disposable class types. Recall that finalizable types are classes that have
overridden the virtual System.Object.Finalize() method to clean up unmanaged resources (at some
time in the future). Disposable objects, on the other hand, are classes (or structures) that implement
the IDisposable interface. Using this technique, you expose a public method to the object user that
can be called to perform internal cleanup ASAP. Finally, you learned about an official “disposal” pat-
tern that blends both approaches.

5785ch08.qxd 3/31/06 10:34 AM Page 242

Advanced Object-Oriented
Programming Techniques

P A R T 4

■ ■ ■

5785ch09.qxd 3/31/06 10:50 AM Page 243

5785ch09.qxd 3/31/06 10:50 AM Page 244

C H A P T E R 9

■ ■ ■

Working with Interfaces and
Collections

This chapter builds on your current understanding of object-oriented development by examining
the topic of interface-based programming. Here you learn how to use VB 2005 to define and implement
interfaces, and come to understand the benefits of building types that support “multiple behaviors.”

Once you understand how to build and implement custom interfaces, the remainder of this
chapter is spent examining a number of interfaces defined within the .NET base class libraries. As
you will see, your custom types are free to implement these predefined interfaces to support a num-
ber of advanced behaviors such as object cloning, object enumeration, and object sorting.

To showcase how interfaces are leveraged in the .NET base class libraries, this chapter will also
examine numerous predefined interfaces implemented by various collection classes (ArrayList, Stack,
etc.) defined by the System.Collections namespace. The information presented here will equip you
to understand the topic of Chapter 12: generics and the System.Collections.Generic namespace.

Understanding Interface Types
To begin this chapter, allow me to provide a formal definition of the “interface type.” An interface is
nothing more than a named set of abstract members. Recall from Chapter 6 that abstract methods
(defined using the VB 2005 MustOverride keyword) are pure protocol, in that they do not provide
a default implementation. The specific members defined by an interface depend on the exact behavior
it is modeling. Yes, it’s true. An interface expresses a behavior that a given class or structure may
choose to implement.

As you might guess, the .NET base class libraries ship with hundreds of predefined interface types
that are implemented by various classes and structures. For example, as you will see in Chapter 24,
ADO.NET ships with multiple data providers that allow you to communicate with a particular data-
base management system. Thus, unlike COM-based ADO, under ADO.NET we have numerous
connection objects we may choose between (SqlConnection, OracleConnection, OdbcConnection, etc.).

Regardless of the fact that each connection object has a unique name, are defined within differ-
ent namespaces, and (in some cases) are bundled within different assemblies, they all implement
a common interface named IDbConnection:

' The IDbConnection interface defines a common

' set of members supported by all connection objects.

Public Interface IDbConnection

Implements IDisposable

245

5785ch09.qxd 3/31/06 10:50 AM Page 245

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS246

' Methods

Function BeginTransaction() As IDbTransaction

Function BeginTransaction(ByVal il As IsolationLevel) As IDbTransaction

Sub ChangeDatabase(ByVal databaseName As String)

Sub Close()

Function CreateCommand() As IDbCommand

Sub Open()

' Properties

Property ConnectionString As String

ReadOnly Property ConnectionTimeout As Integer

ReadOnly Property Database As String

ReadOnly Property State As ConnectionState

End Interface

■Note By convention, .NET interface types are prefixed with a capital letter “I.” When you are creating your own
custom interfaces, it is considered a best practice to do the same.

Don’t sweat the details of what these members actually do at this point. Simply understand that
the IDbConnection interface defines a set of members that are common to all ADO.NET connection
objects. Given this, you are guaranteed that each and every connection object supports members
such as Open(), Close(), CreateCommand(), and so forth.

Another example: the System.Windows.Forms namespace defines a class named Control, which is
a base class to a number of UI widgets (DataGrid, Label, StatusBar, TreeView, etc.). The Control class
implements an interface named IDropTarget, which defines drag-and-drop functionality:

Public Interface IDropTarget

' Methods

Sub OnDragDrop(ByVal e As DragEventArgs)

Sub OnDragEnter(ByVal e As DragEventArgs)

Sub OnDragLeave(ByVal e As EventArgs)

Sub OnDragOver(ByVal e As DragEventArgs)

End Interface

Based on this interface, we can now correctly assume that any class that extends System.Windows.
Forms.Control supports four subroutines named OnDragDrop(), OnDragEnter(), OnDragLeave(), and
OnDragOver().

As we work through the remainder of this text, you will be exposed to dozens of interfaces that
ship with the .NET base class libraries. As well, you will discover that you are free to implement these
standard interfaces on your own custom classes and structures to define types that integrate tightly
within the framework.

Contrasting Interface Types to Abstract Base Classes
Given your work in Chapter 6, the interface type may seem functionally equivalent to abstract base
classes. Recall that when a class is marked as abstract (via the MustInherit keyword), it may define
any number of abstract members to define a polymorphic interface to all derived types. However,
when a class type does define a set of abstract members, it is also free to define any number of con-
structors, field data, nonabstract members (with implementation), and so on.

5785ch09.qxd 3/31/06 10:50 AM Page 246

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 247

The polymorphic interface established by a parent class suffers from one major limitation in
that only derived types are forced to support a set of members. However, in larger systems, it is very
common to develop multiple class hierarchies that have no common parent beyond System.Object.
Given that abstract members in an abstract base class only apply to derived types, we have no way to
configure types in different hierarchies to support the same polymorphic interface.

As you would guess, interface types come to the rescue. When you define an interface, they can
be implemented by any type, in any hierarchy, within any namespaces. Given this, interfaces are highly
polymorphic. By way of a simple example, consider a standard .NET interface named ICloneable.
This interface defines a single method named Clone():

Public Interface ICloneable

Function Clone() As Object

End Interface

If you were to examine the .NET Framework 2.0 SDK documentation, you would find that a large
number of seemingly unrelated types (System.Array, System.Data.SqlClient.SqlConnection, System.
OperatingSystem, System.String, etc.) all implement this interface type. Although these types have
no common parent (other than System.Object), we can treat them polymorphically via the ICloneable
interface type.

Another limitation of traditional abstract base classes is that each and every derived type must
contend with the set of abstract members and provide an implementation. In fact, the only way that
a type can “ignore” abstract members is if the derived class is also defined as abstract (aka MustInherit).
To see the problem, recall the shapes hierarchy we defined in Chapter 6. Assume we wish to define
an abstract method in the Shape base class named GetNumberOfPoints(), which allows the derived
type to return the number of points required to render the shape:

Public MustInherit Class Shape

...

Public MustOverride Function GetNumberOfPoints() As Byte

End Class

Clearly, the only type that has any points in the first place is Hexagon. However, with this update,
every derived type (Circle, Hexagon, and ThreeDCircle) must now provide a concrete implementation
of this function even if it makes no sense to do so.

Again, the interface type provides a solution. If we were to define an interface that represents
the behavior of “having points,” we could simply plug it into the Hexagon type, leaving Circle and
ThreeDCircle untouched.

Defining Custom Interfaces
Now that you better understand the overall role of interface types, let’s see an example of defining
custom interfaces. To begin, create a brand new console application named CustomInterface. Using
the Project ➤ Add Existing Item menu option, insert the MyShapes.vb file you created back in Chapter 6
during the Shapes example. Finally, insert a new interface into your project named IPointy using the
Project ➤ Add New Item menu option, as shown in Figure 9-1.

5785ch09.qxd 3/31/06 10:50 AM Page 247

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS248

An interface is defined using the VB 2005 Interface keyword. Unlike .NET class types, interfaces
never specify a base class (not even System.Object) and contain members that are always implicitly
Public and abstract (MustOverride). Our custom IPointy interface will model the behavior of “having
points.” Therefore, we could define a single function as follows:

' This interface defines the behavior of "having points."

Public Interface IPointy

' Implicitly public and abstract.

Function GetNumberOfPoints() As Byte

End Interface

Notice that when you define a function or subroutine within an interface, you do not close the
member with the expected End Sub/End Function syntax. Interfaces are pure protocol, and therefore
never define an implementation (that is up to the supporting class or structure). Therefore, the fol-
lowing version of IPointy would result in compiler errors:

' Ack! Compiler errors abound!

Public Interface IPointy

' Error! Interfaces can't define field data!

Public myInt as Integer

' Error! Interfaces can't provide implementation!

Function GetNumberOfPoints() As Byte

Return 0

End Function

End Interface

.NET interface types are also able to define any number of properties. For example, you could
define the IPointy interface to use a read-only property rather than a function:

' The pointy behavior as a read-only property.

Public Interface IPointy

ReadOnly Property Points() As Byte

End Point

Figure 9-1. Interfaces, like classes, can be defined in any *.vb file.

5785ch09.qxd 3/31/06 10:50 AM Page 248

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 249

Interface types are quite useless on their own, as they are nothing more than a named collection
of abstract members. Given this, you cannot allocate interface types as you would a class or structure:

Module Program

Sub Main()

' It is a compiler error to directly create

' interface types!

Dim i As New IPointy

End Sub

End Module

Interfaces do not bring much to the table until they are implemented by a class or structure. As
you might already suspect, the IPointy behavior might be useful in the shapes hierarchy developed
in Chapter 6. The idea is simple: some classes in the shapes hierarchy have points (such as the
Hexagon), while others (such as the Circle and ThreeDCircle) do not.

Implementing an Interface
When a class (or structure) chooses to extend its functionality by supporting interface types, it does
so using the Implements keyword. To illustrate, insert a brand new class into your project named
Triangle that extends the abstract Shape base class and implements the IPointy interface. If you are
using Visual Studio 2005 or Visual Basic 2005 Express, you will find that the integrated IntelliSense
will automatically define skeleton code for each member defined by the interface (as well as any
MustOverride methods in the parent class) as soon as you press the Enter key. Given this, our Triangle
initially appears like so:

Public Class Triangle

Inherits Shape

Implements IPointy

Public Overrides Sub Draw()

End Sub

Public ReadOnly Property Points() As Byte Implements IPointy.Points

Get

End Get

End Property

End Class

Notice that the Implements keyword is used twice. First, the class definition is updated to list
each interface supported by the type. Second, the Implements keyword is used to “attach” the inter-
face member to a member on the class itself. At first glance, this can appear to be quite redundant;
however, as you will see later in this chapter, this approach can be quite helpful when you need to
resolve name clashes that can occur when a type implements multiple interfaces.

Recall that when a class or structure supports an interface, it is now under obligation to provide
a fitting implementation for each member. Given that the IPointy interface defines a single read-only
property, this is not too much of a burden. However, if you are implementing an interface that defines
ten members, the type is now responsible for fleshing out the details of the ten abstract entities.

To complete the Triangle class, we will simply return the correct number of points (3), provide
a fitting implementation of the abstract Draw() method defined by the Shape parent class, and define
a set of constructors:

Public Class Triangle

Inherits Shape

Implements IPointy

5785ch09.qxd 3/31/06 10:50 AM Page 249

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS250

Public Sub New()

End Sub

Public Sub New(ByVal name As String)

MyBase.New(name)

End Sub

Public Overrides Sub Draw()

Console.WriteLine("Drawing {0} the Triangle", shapeName)

End Sub

Public ReadOnly Property Points() As Byte Implements IPointy.Points

Get

Return 3

End Get

End Property

End Class

Updating the Hexagon Class
Given that the Hexagon class also has some number of points, let’s update the class definition to now
support the IPointy interface as well. This time, our read-only Points property returns the expected
value of 6.

' The Hexagon now supports the IPointy interface

Public Class Hexagon

Inherits Shape

Implements IPointy

...

Public ReadOnly Property Points() As Byte Implements IPointy.Points

Get

Return 6

End Get

End Property

End Class

Each class now returns its number of points to the caller when asked to do so. To sum up the
story so far, the Visual Studio 2005 class diagram shown in Figure 9-2 illustrates IPointy-compatible
classes using the popular “lollipop” notation.

Figure 9-2. The shapes hierarchy, now with interfaces

5785ch09.qxd 3/31/06 10:50 AM Page 250

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 251

Again notice that Circle and ThreeDCircle do not support the IPointy interface, and therefore
do not have a Points property. In contrast, if we defined Points as an abstract member in the Shapes
base class, we would be forced to do so (which, again, really makes no sense for these classes).

Types Supporting Multiple Interfaces
As far as the .NET platform is concerned, a class can only have one direct base class. However,
a class or structure can implement any number of interfaces, each of which defines some number
of members that models a particular behavior. When you wish to show support for numerous inter-
faces on a single type, you may either list each interface using a comma-delimited list or specify each
interface with a discrete Implements statement.

We have no need to do so at this point; however, if we did wish to update the Hexagon to sup-
port System.ICloneable as well as IPointy, either of the following class definitions would do:

' Multiple interfaces via a comma-delimited list.

Public Class Hexagon

Inherits Shape

Implements IPointy, ICloneable

...

End Class

or

' Multiple interfaces via multiple Implements statements

Public Class Hexagon

Inherits Shape

Implements IPointy

Implements ICloneable

...

End Class

As you can see, interface types are quite helpful given that VB 2005 (and .NET-aware languages
in general) only support single inheritance; the interface-based protocol allows a given type to
support numerous behaviors, while avoiding the issues that arise when deriving from extending
multiple-base classes.

Interacting with Types Supporting Interfaces
Now that you have a set of types that support the IPointy interface, the next question is how you
interact with the new functionality. The most straightforward way to interact with functionality sup-
plied by a given interface is to invoke the members directly from the object level:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Interfaces *****")

Dim hex As New Hexagon()

Console.WriteLine("Number of Points: {0}", hex.Points)

Console.ReadLine()

End Sub

End Module

This approach works fine in this particular case, given that you are well aware that the Hexagon
type has implemented the interface in question. In fact, if you attempted to invoke the Points prop-
erty on a type that did not implement IPointy, you will receive a compile-time error:

5785ch09.qxd 3/31/06 10:50 AM Page 251

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS252

Module Program

Sub Main()

...

' Compiler error! Circle does not implement IPointy!

Dim c As New Circle()

Console.WriteLine("Number of Points: {0}", c.Points)

Console.ReadLine()

End Sub

End Module

Other times, however, you will not be able to determine at compile time which interfaces are
supported by a given type. For example, assume you have an array containing 50 Shape-compatible
types, only some of which support IPointy. Obviously, if you attempt to invoke the Points property
on a type that has not implemented IPointy, you receive a runtime error. This brings up a very impor-
tant question: how can we determine at runtime which interfaces are supported by a given type?

Obtaining Interface References Using CType()
The first way you can determine at runtime whether a type supports a specific interface is to per-
form an explicit cast via CType(). If the type does not support the requested interface, you receive an
InvalidCastException. On the other hand, if the type does support the interface, you are returned
a reference to the implemented interface. Using this variable, you are able to call any member defined
by the interface itself. Because explicit casting is not evaluated until runtime, you will most certainly
want to make use of structured exception handling to account for the possibility of an invalid cast:

Module Program

Sub Main()

...

' Circle does not support IPointy!

Dim c As New Circle()

Dim itfPointy As IPointy

' Try to get IPointy from Circle.

Try

itfPointy = CType(c, IPointy)

Console.WriteLine("Number of Points: {0}", itfPointy.Points)

Catch ex As Exception

Console.WriteLine("{0} does not implement IPointy!", c)

End Try

Console.ReadLine()

End Sub

End Module

Although we could make use of Try/Catch logic to determine whether a given type supports an
interface, it would be ideal to determine which interfaces are supported before invoking the inter-
face members prior to casting in the first place. If we were able to do so, we would have no need to
account for a possible InvalidCastException object being thrown at runtime when performing the
explicit cast.

Obtaining Interface References Using TypeOf/Is
A more type-safe manner to determine whether a given type supports an interface is to make use of
the TypeOf/Is construct, which was first introduced in Chapter 6. Recall that this construct can be
used to test whether a given object derives from a particular base class. This same syntax can be used

5785ch09.qxd 3/31/06 10:50 AM Page 252

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 253

to determine whether a type implements a given interface. If the variable in question is not compat-
ible with the specified interface, you are returned the value False. Consider the following runtime tests:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Interfaces *****")

Dim hex As New Hexagon()

Dim c As New Circle()

...

' See which objects support IPointy.

Console.WriteLine("Circle implements IPointy?: {0}", TypeOf c Is IPointy)

Console.WriteLine("Hexagon implements IPointy?: {0}", TypeOf hex Is IPointy)

Console.ReadLine()

End Sub

End Module

Now assume we have defined an array of Shape-compatible types, only some of which implement
IPointy. Notice how simple it is to dynamically determine which members of the array support IPointy.
If the type is compatible with the interface in question, you can safely call the members without
needing to make use of Try/Catch logic, given that you would never fall into the scope of the If block
when the evaluation returns False:

Module Program

Sub Main()

...

' Make an array of Shape-compatible types.

Dim myShapes() As Shape = {New Hexagon("Fred"), New Circle("Angie"), _

New ThreeDCircle(), New Triangle("Adam")}

' Now figure out which ones support IPointy.

For Each s As Shape In myShapes

If TypeOf s Is IPointy Then

itfPointy = CType(s, IPointy)

Console.WriteLine("{0} has {1} points.", _

s.PetName, itfPointy.Points)

Else

Console.WriteLine("{0} does not implement IPointy!", s)

End If

Next

Console.ReadLine()

End Sub

End Module

The output can be seen in Figure 9-3.

Figure 9-3. Who supports IPointy?

5785ch09.qxd 3/31/06 10:50 AM Page 253

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS254

Interfaces As Member Parameters
Given that interfaces are valid .NET types, you may construct methods that take interfaces as
parameters. To illustrate, assume you have defined another interface named IDraw3D that supports
a single subroutine named Draw3D():

' Models the ability to render a type in stunning 3D.

Public Interface IDraw3D

Sub Draw3D()

End Interface

Next, assume that two of your shapes (Circle and Hexagon) have been configured to support
this new behavior:

' Circle supports IDraw3D.

Public Class Circle

Inherits Shape

Implements IDraw3D

...

Public Sub Draw3D() Implements IDraw3D.Draw3D

Console.WriteLine("Drawing circle in 3D!")

End Sub

End Class

' Hexagon supports IPointy and IDraw3D.

Public Class Hexagon

Inherits Shape

Implements IPointy, IDraw3D

...

Public Sub Draw3D() Implements IDraw3D.Draw3D

Console.WriteLine("Drawing Hexagon in 3D!")

End Sub

End Class

Figure 9-4 presents the updated Visual Studio 2005 class diagram.

Figure 9-4. The updated shapes hierarchy

5785ch09.qxd 3/31/06 10:50 AM Page 254

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 255

If you now define a new method within your module taking an IDraw3D interface as a parameter,
you are able to effectively send in any object implementing IDraw3D. Furthermore, because interfaces
are strongly typed entities, if you attempt to pass into this method a type that does not support
IDraw3D, you will receive a compile-time error:

' This method can receive anything implementing IDraw3D.

Sub DrawIn3D(ByVal itf3d As IDraw3D)

Console.WriteLine("-> Drawing IDraw3D compatible type")

itf3d.Draw3D()

End Sub

If we were to now call this method while cycling through the array of Shapes, only the IDraw3D-
compatible types are sent into our new subroutine (see Figure 9-5 for output).

Sub Main()

...

For Each s As Shape In myShapes

If TypeOf s Is IPointy Then

itfPointy = CType(s, IPointy)

Console.WriteLine("{0} has {1} points.", s.PetName, itfPointy.Points)

Else

Console.WriteLine("{0} does not implement IPointy!", s)

End If

If TypeOf s Is IDraw3D Then

DrawIn3D(CType(s, IDraw3D))

End If

Next

Console.ReadLine()

End Sub

Interfaces As Return Values
Interfaces can also be used as function return values. For example, you could write a method that
takes any System.Object, checks for IPointy compatibility, and returns a reference to the extracted
interface (if it exists):

' This method tests for IPointy-compatibility and,

' if able, returns an interface reference.

Function ExtractPointyness(ByVal o As Object) As IPointy

Figure 9-5. Rendering the IDraw3D-compatible types

5785ch09.qxd 3/31/06 10:50 AM Page 255

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS256

If TypeOf o Is IPointy Then

Return CType(o, IPointy)

Else

Return Nothing

End If

End Function

We could interact with this method as follows:

Sub Main()

...

' Can we extract IPointy from an Array of Integers?

Dim myInts() As Integer = {10, 20, 30}

Dim i As IPointy = ExtractPointyness(myInts)

' Nope!

If i Is Nothing Then

Console.WriteLine("Sorry, this object was not IPointy compatible")

End If

End Sub

Arrays of Interface Types
The true power of interfaces comes through loud and clear when you recall that the same interface
can be implemented by numerous types, even if they are not defined within the same class hierarchy
and do not share a common base class beyond System.Object. This can yield some very powerful
programming constructs.

For example, assume that you have developed a brand new class hierarchy modeling kitchen
utensils and another modeling gardening equipment. Although these hierarchies are completely
unrelated from a classical inheritance point of view, you can treat them polymorphically using
a common interface. Consider Figure 9-6.

Figure 9-6. Recall that interfaces can be “plugged into” any type in any part of a class hierarchy.

5785ch09.qxd 3/31/06 10:50 AM Page 256

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 257

If you did create the PitchFork, Fork, and Knife types, you could now define an array of IPointy-
compatible objects. Given that these members all support the same interface, you are able to iterate
through the array and treat each object as an IPointy-compatible object, regardless of the overall
diversity of the class hierarchies:

Sub Main()

...

' This array can only contain types that

' implement the IPointy interface.

Dim pointyThings() As IPointy = {New Hexagon(), New Knife(), _

New Triangle(), New Fork(), New PitchFork()}

For Each p As IPointy In pointyThings

Console.WriteLine("Object has {0} points.", p.Points)

Next

End Sub

■Source Code The CustomInterface project is located under the Chapter 9 subdirectory.

Resolving Name Clashes with the Implements
Keyword
As you have seen earlier in this chapter, a single class or structure can implement any number of
interfaces. Given this, there is always a possibility that you may implement interfaces that contain
identically named members, and therefore have a name clash to contend with. To illustrate various
manners in which you can resolve this issue, create a brand new console application named (not
surprisingly) InterfaceNameClash.

Now design three custom interfaces that represent various locations to which an implementing
type could render their data:

' Draw image to a Form.

Public Interface IDrawToForm

Sub Draw()

End Interface

' Draw to buffer in memory.

Public Interface IDrawToMemory

Sub Draw()

End Interface

' Render to the printer

Public Interface IDrawToPrinter

Sub Draw()

End Interface

Notice that each of these methods have been named Draw(). If you now wish to support each of
these interfaces on a single class type named Octagon, the IDE will automatically generate three differ-
ent Public members on the class, following the rather nondescript naming convention of suffixing
a numerical value after the interface member name:

' To resolve name clashes,

' the IDE will autogenerate unique names where necessary.

Public Class Octagon

Implements IDrawToForm, IDrawToMemory, IDrawToPrinter

5785ch09.qxd 3/31/06 10:50 AM Page 257

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS258

Public Sub Draw() Implements IDrawToForm.Draw

End Sub

Public Sub Draw1() Implements IDrawToMemory.Draw

End Sub

Public Sub Draw2() Implements IDrawToPrinter.Draw

End Sub

End Class

Although the generated method names are a bit ambiguous, it should be clear that the coding
logic used to render image data to a Form, a region of memory, or a piece of paper is quite different.
Therefore, the most straightforward manner to clean up the Octagon type is to simply rename the
autogenerated class members to a more fitting title:

Public Class Octagon

Implements IDrawToForm, IDrawToMemory, IDrawToPrinter

Public Sub Draw() Implements IDrawToForm.Draw

' Insert interesting code here...

End Sub

Public Sub RenderToMemory() Implements IDrawToMemory.Draw

' Insert interesting code here...

End Sub

Public Sub Print() Implements IDrawToPrinter.Draw

' Insert interesting code here...

End Sub

End Class

Notice that the name of the method defined on the class does not necessarily need to match
the name of the interface method, given the fact that it is the Implements keyword that binds an
interface member to a supporting class member. Thus, if we were to create an instance of Octagon,
we would find the members shown in Figure 9-7 exposed through IntelliSense.

However, if the caller obtains an interface reference using an explicit cast, only the specific
interface methods are exposed. Consider the following code:

Figure 9-7. Triggering interface members from the object level

5785ch09.qxd 3/31/06 10:50 AM Page 258

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 259

Module Program

Sub Main()

Dim o As New Octagon

' Call IDrawToMemory.Draw()

Dim iMem As IDrawToMemory

iMem = CType(o, IDrawToMemory)

iMem.Draw()

' Call IDrawToPrinter.Draw()

Dim iPrint As IDrawToPrinter

iPrint = CType(o, IDrawToPrinter)

iPrint.Draw()

' Call IDrawToForm.Draw()

Dim iForm As IDrawToForm

iForm = CType(o, IDrawToForm)

iForm.Draw()

End Sub

End Module

Defining a Common Implementation with the Implements
Keyword
Given the fact that the Implements keyword allows you to explicitly bind an interface member to
a class (or structure) member, it is permissible to define a single member that implements the
members of multiple interfaces (provided each interface member has an identical signature). By
way of example:

Public Class Line

Implements IDrawToForm, IDrawToMemory, IDrawToPrinter

' This single class method defines an implementation for

' each interface method.

Public Sub Draw() Implements IDrawToForm.Draw, _

IDrawToMemory.Draw, IDrawToPrinter.Draw

End Sub

End Class

Of course, in this example, it really makes no sense to share the implementation of each version
of Draw() given the semantics of the interface types. Nevertheless, under some circumstances it can
be the case that a shared implementation of multiple interface members fits the bill. Using this
approach, you are able to simplify the overall class design.

Hiding Interface Methods from the Object Level Using the
Implements Keyword
The final aspect of the Implements keyword to be aware of is that it is perfectly fine to bind an interface
member to a private class member:

' Notice each class method has been defined as Private

' and has been given very a nondescript name.

Public Class BlackAndWhiteBitmap

Implements IDrawToForm, IDrawToMemory, IDrawToPrinter

5785ch09.qxd 3/31/06 10:50 AM Page 259

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS260

Private Sub X() Implements IDrawToForm.Draw

' Insert interesting code...

End Sub

Private Sub Y() Implements IDrawToMemory.Draw

' Insert interesting code...

End Sub

Private Sub Z() Implements IDrawToPrinter.Draw

' Insert interesting code...

End Sub

End Class

When you map an interface member to a Private type member, it is now illegal to call the inter-
face members from the object level. Thus, if we were to create an instance of BlackAndWhiteBitmap, we
would only see the inherited members of our good friend System.Object, as shown in Figure 9-8.

Figure 9-8. Explicitly implemented interface members are not visible from the object level.

When you hide interface members from the implementing type, the only possible way to call
these members is by extracting out the interface using an explicit cast:

Dim bwBmp As New BlackAndWhiteBitmap

Dim i As IDrawToForm

i = CType(bwBmp, IDrawToForm)

i.Draw()

Notice that the actual methods that implement the interface members (X(), Y(), and Z()) are
never exposed in any manner. Like any other Private member, the only part of your system that can
directly call these members is the type that defines them (BlackAndWhiteBitmap in this case).

So, when would you choose to explicitly implement an interface member? Truth be told, this class
design technique is never mandatory. However, by doing so you can hide some more “advanced”
members from the object level. In this way, when the object user applies the dot operator, they will
only see a subset of the type’s overall functionality. However, those who require the more advanced
behaviors can extract out the desired interface via an explicit cast.

■Source Code The InterfaceNameClash project is located under the Chapter 9 subdirectory.

5785ch09.qxd 3/31/06 10:50 AM Page 260

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 261

Designing Interface Hierarchies
Before we turn our attention to working with various predefined interfaces that ship with the .NET
base class libraries, it is worth pointing out that interfaces can be arranged into an interface hierarchy.
Like a class hierarchy, when an interface extends an existing interface, it inherits the abstract mem-
bers defined by the parent type(s). Of course, unlike class inheritance, derived interfaces never
inherit true implementation. Rather, a derived interface simply extends its own definition with
additional abstract members.

Interface hierarchies can be useful when you wish to extend the functionality of an existing
interface without breaking existing code bases. To illustrate, let’s redesign the previous set of inter-
faces (from the InterfaceNameClash example) such that IDrawable is the root of the family tree:

Public Interface IDrawable

Sub Draw()

End Interface

Given that IDrawable defines a basic drawing behavior, we could now create a derived interface
that extends this type with the ability to render its output to the printer:

Public Interface IPrintable

Inherits IDrawable

Sub Print()

End Interface

And just for good measure, we could define a final interface named IRenderToMemory, which
extends IPrintable:

Public Interface IRenderToMemory

Inherits IPrintable

Sub Render()

End Interface

Given our design, if a type were to implement IRenderToMemory, we would now be required to
implement each and every member defined up the chain of inheritance (specifically, the Render(),
Print(), and Draw() subroutines). On the other hand, if a type were to only implement IPrintable,
we would only need to contend with Print() and Draw(). For example:

Public Class SuperShape

Implements IRenderToMemory

Public Sub Draw() Implements IDrawable.Draw

' Code...

End Sub

Public Sub Print() Implements IPrintable.Print

' Code...

End Sub

Public Sub Render() Implements IRenderToMemory.Render

' Code...

End Sub

End Class

Now, when we make use of the SuperShape, we are able to invoke each method at the object
level (as they are all Public) as well as extract out a reference to each supported interface explicitly
via casting:

Module Program

Sub Main()

Console.WriteLine("***** The SuperShape *****")

5785ch09.qxd 3/31/06 10:50 AM Page 261

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS262

' Call from object level.

Dim myShape As New SuperShape

myShape.Draw()

' Get IPrintable explicitly.

' (and IDrawable implicitly!)

Dim iPrint As IPrintable

iPrint = CType(myShape, IPrintable)

iPrint.Draw()

iPrint.Print()

End Sub

End Module

At this point, you hopefully feel more comfortable with the process of defining and implementing
custom interfaces using the syntax of Visual Basic 2005. To be honest, interface-based programming
can take awhile to get comfortable with, so if you are in fact still scratching your head just a bit, this
is a perfectly normal reaction. To summarize the story thus far, remember that interfaces can be
extremely useful when

• You have a single hierarchy where only a subset of the derived types support a common
behavior.

• You need to model a common behavior that is found across multiple hierarchies.

Next up, let’s check out the role of several predefined interfaces found within the .NET base
class libraries.

■Source Code The InterfaceHierarchy project is located under the Chapter 9 subdirectory.

Building Enumerable Types (IEnumerable and
IEnumerator)
The System.Collections namespace defines two interfaces named IEnumerable and IEnumerator. When
you build a type that supports these behaviors, you are able to iterate over any contained subitems
using the For Each construct of Visual Basic 2005. Assume you have developed a class named Garage
that contains a set of individual Car types (see Chapter 7) stored within a System.Array:

' Garage contains a set of Car objects.

Public Class Garage

Private myCars() As Car = New Car(3) {}

Public Sub New()

myCars(0) = New Car("Fred", 40)

myCars(1) = New Car("Zippy", 60)

myCars(2) = New Car("Mabel", 0)

myCars(3) = New Car("Max", 80)

End Sub

End Class

Ideally, it would be convenient to iterate over the Garage object’s subitems using the VB 2005
For Each construct. Assuming your Car class now supports two new properties (Name and Speed) that
encapsulate the petName and currSpeed member variables, the following logic would be ideal:

5785ch09.qxd 3/31/06 10:50 AM Page 262

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 263

' This seems reasonable...

Module Program

Sub Main()

Dim myCars As New Garage

' Hand over each car in the collection?

For Each c As Car In myCars

Console.WriteLine("{0} is going {1} MPH", _

c.Name, c.Speed)

Next

End Sub

End Module

Sadly, the compiler informs you that the Garage class is not a “collection type.” Specifically, col-
lection types support a method named GetEnumerator(), which is formalized by the IEnumerable
interface:

' This interface informs the caller

' that the object's subitems can be enumerated.

Public Interface IEnumerable

Function GetEnumerator() As IEnumerator

End Interface

As you can see, the GetEnumerator() method returns a reference to yet another interface named
System.Collections.IEnumerator. This interface provides the infrastructure to allow the caller to
traverse the internal objects contained by the IEnumerable-compatible container:

Public Interface IEnumerator

' Advance to the next object in collection.

Function MoveNext() As Boolean

' Reset to first object in collection.

Sub Reset()

' Pluck out current object pointed to.

ReadOnly Property Current As Object

End Interface

If you wish to update the Garage type to support these interfaces, you could take the long road
and implement each method manually. While you are certainly free to provide customized versions
of GetEnumerator(), MoveNext(), Current, and Reset(), there is a simpler way. As the System.Array
type (as well as many other types) already implements IEnumerable and IEnumerator, you can simply
forward the request to the System.Array as follows:

Public Class Garage

Implements System.Collections.IEnumerable

Private myCars() As Car = New Car(3) {}

Public Sub New()

myCars(0) = New Car("Fred", 40)

myCars(1) = New Car("Zippy", 60)

myCars(2) = New Car("Mabel", 0)

myCars(3) = New Car("Max", 80)

End Sub

5785ch09.qxd 3/31/06 10:50 AM Page 263

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS264

Public Function GetEnumerator() As System.Collections.IEnumerator _

Implements System.Collections.IEnumerable.GetEnumerator

Return myCars.GetEnumerator()

End Function

End Class

Once you have updated your Garage type, you can now safely use the type within the VB 2005
For Each construct. Furthermore, given that the GetEnumerator() method has been defined publicly,
the object user could also interact with the IEnumerator type:

Module Program

Sub Main()

...

' Get IEnumerable directly.

Dim iEnum As IEnumerator

iEnum = myCars.GetEnumerator()

iEnum.Reset()

iEnum.MoveNext()

Dim firstCar As Car = CType(iEnum.Current, Car)

Console.WriteLine("First car in collection is: {0}", firstCar.Name)

End Sub

End Module

Given that the only part of your system that is typically interested in manipulating the IEnumerator
interface directly is indeed the For Each construct, you may wish to define GetEnumerator() as Private,
to hide this member from the object level:

Private Function GetEnumerator() As System.Collections.IEnumerator _

Implements System.Collections.IEnumerable.GetEnumerator

Return myCars.GetEnumerator()

End Function

■Source Code The CustomEnumerator project is located under the Chapter 9 subdirectory.

Building Cloneable Objects (ICloneable)
As you recall from Chapter 6, System.Object defines a member named MemberwiseClone(). This
method is used to obtain a shallow copy of the current object. Object users do not call this method
directly (as it is protected); however, a given object may call this method itself during the cloning
process. Simply put, a shallow copy produces a copy of an object where each point of field data is
copied verbatim. To illustrate, assume you have a class named Point:

' A class named Point.

Public Class Point

' Public for easy access.

Public xPos, yPos As Integer

Public Sub New()

End Sub

Public Sub New(ByVal x As Integer, ByVal y As Integer)

xPos = x : yPos = y

End Sub

5785ch09.qxd 3/31/06 10:50 AM Page 264

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 265

Public Overrides Function ToString() As String

Return String.Format("X = {0} ; Y = {1}", xPos, yPos)

End Function

End Class

As fully described in Chapter 11, when you assign one reference type to another, you are simply
redirecting which object the reference is pointing to in memory. Thus, the following assignment
operation results in two references to the same Point instance; modifications using either refer-
ence affect the same object on the heap. Therefore, each of the following calls to
Console.WriteLine() prints the string "X = 0 ; Y = 50":

Sub Main()

' Two references to same object!

Dim p1 As New Point(50, 50)

Dim p2 As Point = p1

p2.xPos = 0

Console.WriteLine(p1)

Console.WriteLine(p2)

End Sub

When you wish to equip your custom types to support the ability to return an identical copy of
itself to the caller, you may implement the standard ICloneable interface. As shown at the beginning
of this chapter, this type defines a single method named Clone():

Public Interface ICloneable

Function Clone() As Object

End Interface

Obviously, the implementation of the Clone() method varies between objects. However, the
basic functionality tends to be the same: copy the values of your member variables into a new
instance, and return it to the user. To illustrate, ponder the following update to the Point class:

' The Point now supports "clone-ability."

Public Class Point

Implements ICloneable

...

Public Function Clone() As Object Implements System.ICloneable.Clone

Return New Point(xPos, yPos)

End Function

End Class

In this way, you can create exact stand-alone copies of the Point type, as illustrated by the
following code:

Module Program

Sub Main()

' Two references to same object!

Dim p1 As New Point(50, 50)

' If Option Strict is enabled, you must

' perform an explicit cast, as Clone()

' returns a generic System.Object.

Dim p2 As Point = CType(p1.Clone(), Point)

p2.xPos = 0

' Prints X = 50 ; Y = 50

Console.WriteLine(p1)

5785ch09.qxd 3/31/06 10:50 AM Page 265

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS266

' Prints X = 0 ; Y = 50

Console.WriteLine(p2)

End Sub

End Module

While the current implementation of Point fits the bill, you can streamline things just a bit.
Because the Point type does not contain reference type variables, you could simplify the implemen-
tation of the Clone() method as follows:

Public Function Clone() As Object

' Copy each field of the Point member by member.

Return Me.MemberwiseClone()

End Function

Be aware, however, that if the Point did contain any reference type member variables,
MemberwiseClone() will copy the references to those objects (aka a shallow copy). If you wish to
support a true deep copy, you will need to create a new instance of any reference type variables dur-
ing the cloning process. Let’s see an example.

A More Elaborate Cloning Example
Now assume the Point class contains a reference type member variable of type PointDescription.
This class maintains a point’s friendly name as well as an identification number expressed as
a System.Guid (if you don’t come from a COM background, know that a Globally Unique Identifier
[GUID] is a statistically unique 128-bit number). Here is the implementation:

Public Class PointDescription

Public petName As String

Public pointID As Guid

Public Sub New()

Me.petName = "No-name"

pointID = Guid.NewGuid

End Sub

End Class

The initial updates to the Point class itself included modifying ToString() to account for these
new bits of state data, as well as defining and creating the PointDescription reference type. To allow
the outside world to establish a string moniker for the Point, you also update the arguments passed
into the overloaded constructor:

Public Class Point

Implements ICloneable

Public xPos, yPos As Integer

Public desc As New PointDescription()

Sub New()

End Sub

Sub New(ByVal x As Integer, ByVal y As Integer)

xPos = x : yPos = y

End Sub

Sub New(ByVal x As Integer, ByVal y As Integer, ByVal name As String)

xPos = x : yPos = y

desc.petName = name

End Sub

5785ch09.qxd 3/31/06 10:50 AM Page 266

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 267

Public Overrides Function ToString() As String

Return String.Format("X = {0} ; Y = {1} ; Name = {2} : ID = {3}", _

xPos, yPos, desc.petName, desc.pointID)

End Function

Public Function Clone() As Object Implements System.ICloneable.Clone

' Return New Point(xPos, yPos)

Return Me.MemberwiseClone()

End Function

End Class

Notice that you did not yet update your Clone() method. Therefore, when the object user asks
for a clone using the current implementation, a shallow (member-by-member) copy is achieved. To
illustrate, assume you have updated Main() as follows:

Module Program

Sub Main()

Dim p1 As New Point(50, 50, "Brad")

Dim p2 As Point = CType(p1.Clone(), Point)

Console.WriteLine("Before modification:")

Console.WriteLine("p1: {0} ", p1)

Console.WriteLine("p2: {0} ", p2)

p2.desc.petName = "Mr. X"

p2.xPos = 9

Console.WriteLine("Changed p2.desc.petName and p2.x")

Console.WriteLine("After modification:")

Console.WriteLine("p1: {0} ", p1)

Console.WriteLine("p2: {0} ", p2)

End Sub

End Module

Now, observe the output in Figure 9-9.

Figure 9-9. Oops! We just copied the PointDescription reference!

In order for your Clone() method to make a complete deep copy of the internal reference
types, you need to configure the object returned by MemberwiseClone() to account for the current
point’s name (the System.Guid type is in fact a structure, so the numerical data is indeed copied).
Here is one possible implementation:

5785ch09.qxd 3/31/06 10:50 AM Page 267

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS268

' Now we need to adjust for the PointDescription member.

Public Function Clone() As Object Implements System.ICloneable.Clone

Dim newPoint As Point = CType(Me.MemberwiseClone(), Point)

Dim currentDesc As PointDescription = New PointDescription()

currentDesc.petName = Me.desc.petName

currentDesc.pointID = Me.desc.pointID

newPoint.desc = currentDesc

Return newPoint

End Function

If you rerun the application once again, you see that the Point returned from Clone() does
copy its internal reference type member variables (see Figure 9-10).

To summarize the cloning process, if you have a class or structure that contains nothing but
value types, implement your Clone() method using MemberwiseClone(). However, if you have a cus-
tom type that maintains other reference types, you need to establish a new object that takes into
account the state of each member variable.

■Source Code The CloneablePoint project is located under the Chapter 9 subdirectory.

Building Comparable Objects (IComparable)
The System.IComparable interface specifies a behavior that allows an object to be sorted based on
some specified key. Here is the formal definition:

' This interface allows an object to specify its

' relationship between other like objects.

Public Interface IComparable

Function CompareTo(ByVal obj As Object) As Integer

End Interface

Let’s assume you have updated the Car class to maintain a numerical identifier (represented by
a simple integer named carID) that can be set via a constructor parameter and manipulated using
a new property named ID. Here are the relevant updates to the Car type:

Public Class Car

...

Private carID As Integer

Public Property ID() As Integer

Figure 9-10. Much better! We now copied the PointDescription object!

5785ch09.qxd 3/31/06 10:50 AM Page 268

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 269

Get

Return carID

End Get

Set(ByVal value As Integer)

carID = value

End Set

End Property

Public Sub New(ByVal name As String, _

ByVal currSp As Integer, ByVal id As Integer)

currSpeed = currSp

petName = name

carID = id

End Sub

...

End Class

Object users might create an array of Car types as follows:

Module Program

Sub Main()

' Make an array of Car types.

Dim myAutos(4) As Car

myAutos(0) = New Car("Rusty", 80, 1)

myAutos(1) = New Car("Mary", 40, 234)

myAutos(2) = New Car("Viper", 40, 34)

myAutos(3) = New Car("Mel", 40, 4)

myAutos(4) = New Car("Chucky", 40, 5)

For Each c As Car In myAutos

Console.WriteLine("Car {0} is named {1}.", c.ID, c.Name)

Next

End Sub

End Module

As you may recall from Chapter 4, the System.Array class defines a shared method named Sort().
When you invoke this method on an array of intrinsic types (Integer, Short, String, etc.), you are
able to sort the items in the array in numerical/alphabetic order as these intrinsic data types
implement IComparable. However, what if you were to send an array of Car types into the Sort()
method as follows?

' Sort my cars?

Array.Sort(myAutos)

If you run this test, you would find that an ArgumentException exception is thrown by the runtime,
with the following message: “At least one object must implement IComparable.” When you build
custom types, you can implement IComparable to allow arrays of your types to be sorted. When you
flesh out the details of CompareTo(), it will be up to you to decide what the baseline of the ordering
operation will be. For the Car type, the internal carID seems to be the most logical candidate:

' The iteration of the Car can be ordered

' based on the carID.

Public Function CompareTo(ByVal obj As Object) As Integer _

Implements System.IComparable.CompareTo

Dim temp As Car = CType(obj, Car)

If Me.carID > temp.carID Then

Return 1

End If

5785ch09.qxd 3/31/06 10:50 AM Page 269

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS270

If Me.carID < temp.carID Then

Return -1

Else

Return 0

End If

End Function

As you can see, the logic behind CompareTo() is to test the incoming type against the current
instance based on a specific point of data. The return value of CompareTo() is used to discover if this
type is less than, greater than, or equal to the object it is being compared with (see Table 9-1).

Table 9-1. CompareTo() Return Values

CompareTo() Return Value Meaning in Life

Any number less than zero This instance comes before the specified object in the sort order.

Zero This instance is equal to the specified object.

Any number greater than zero This instance comes after the specified object in the sort order.

Now that your Car type understands how to compare itself to like objects, you can write the
following user code:

Module Program

Sub Main()

Console.WriteLine("***** Fun with IComparable *****")

' Make an array of Car types.

Dim myAutos(4) As Car

myAutos(0) = New Car("Rusty", 80, 1)

myAutos(1) = New Car("Mary", 40, 234)

myAutos(2) = New Car("Viper", 40, 34)

myAutos(3) = New Car("Mel", 40, 4)

myAutos(4) = New Car("Chucky", 40, 5)

Console.WriteLine("-> Before Sorting:")

For Each c As Car In myAutos

Console.WriteLine("Car {0} is named {1}.", c.ID, c.Name)

Next

Console.WriteLine()

' Sort my cars?

Array.Sort(myAutos)

Console.WriteLine("-> After Sorting:")

For Each c As Car In myAutos

Console.WriteLine("Car {0} is named {1}.", c.ID, c.Name)

Next

End Sub

End Module

Figure 9-11 illustrates a test run.

5785ch09.qxd 3/31/06 10:50 AM Page 270

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 271

Specifying Multiple Sort Orders (IComparer)
In this version of the Car type, you made use of the car’s ID to function as the baseline of the sort
order. Another design might have used the pet name of the car as the basis of the sorting algorithm
(to list cars alphabetically). Now, what if you wanted to build a Car that could be sorted by ID as well
as by pet name? If this is the behavior you are interested in, you need to make friends with another
standard interface named IComparer, defined within the System.Collections namespace as follows:

' A generic way to compare two objects.

Public Interface IComparer

Function Compare(ByVal x As Object, ByVal y As Object) As Integer

End Interface

Unlike the IComparable interface, IComparer is typically not implemented on the type you are
trying to sort (i.e., the Car). Rather, you implement this interface on any number of helper classes,
one for each sort order (pet name, car ID, etc.). Currently, the Car type already knows how to com-
pare itself against other cars based on the internal car ID. Therefore, to allow the object user to sort
an array of Car types by pet name will require an additional helper class that implements IComparer.
Here’s the code:

' This helper class is used to sort an array of Cars by pet name.

Imports System.Collections

Public Class PetNameComparer

Implements IComparer

Public Sub New()

End Sub

Public Function Compare(ByVal x As Object, ByVal y As Object) _

As Integer Implements System.Collections.IComparer.Compare

Dim t1 As Car = CType(x, Car)

Dim t2 As Car = CType(y, Car)

Return String.Compare(t1.Name, t2.Name)

End Function

End Class

The object user code is able to make use of this helper class. System.Array has a number of
overloaded Sort() methods, one that just happens to take an object implementing IComparer (see
Figure 9-12 for output):

Figure 9-11. Sorting Cars by ID via IComparable

5785ch09.qxd 3/31/06 10:50 AM Page 271

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS272

Module Program

Sub Main()

...

' Now sort by pet name.

Array.Sort(myAutos, New PetNameComparer())

Console.WriteLine("-> Ordering by pet name:")

For Each c As Car In myAutos

Console.WriteLine("{0} has the ID of {1}.", c.Name, c.ID)

Next

End Sub

End Module

Custom Properties, Custom Sort Types
When building custom types that can be sorted in a variety of manners, it is common to define the
related IComparer helper class directly within the type. Assume the Car class has added a shared
read-only property named SortByPetName() that returns an instance of an object implementing the
IComparer interface (PetNameComparer, in this case):

' We now support a custom property to return

' the correct IComparer interface.

Public Class Car

Implements IComparable

...

' Property to return the pet name comparer.

Public Shared ReadOnly Property SortByPetName() As IComparer

Get

Return CType(New PetNameComparer(), IComparer)

End Get

End Property

End Class

The object user code can now sort by pet name using a strongly associated property, rather
than just “having to know” to use the stand-alone PetNameComparer class type:

Figure 9-12. Sorting Cars via IComparable

5785ch09.qxd 3/31/06 10:50 AM Page 272

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 273

' Sorting by pet name made a bit cleaner.

Array.Sort(myAutos, Car.SortByPetName)

■Source Code The ComparableCar project is located under the Chapter 9 subdirectory.

So, at this point, you not only understand how to define and implement interface types, but
have examined a few useful interfaces defined in the .NET base class libraries. To be sure, interfaces
will be found within every major .NET namespace. As you would expect, some interfaces are more
immediately useful than others, so be sure to consult the .NET Framework SDK 2.0 documentation
for full details regarding the interfaces you encounter throughout the remainder of this text. To wrap
up this chapter, let’s check out the interfaces (and core classes) of the System.Collections namespace.

The Interfaces of the System.Collections Namespace
The most primitive of all containers in the .NET universe would have to be our good friend System.
Array. As you have already seen in Chapter 4, this class provides a number of services (e.g., reversing,
sorting, clearing, and enumerating). However, the simple Array class has a number of limitations,
most notably it does not dynamically resize itself as you add or clear items. When you need to
contain types in a more flexible container, you may wish to leverage the types defined within the
System.Collections namespace (or as discussed in Chapter 12, the System.Collections.Generic
namespace).

The System.Collections namespace defines a number of interfaces, some of which you have
already implemented during the course of this chapter. As you might guess, a majority of the collection
classes implement these interfaces to provide access to their contents. Table 9-2 gives a breakdown
of the core collection-centric interfaces.

Table 9-2. Interfaces of System.Collections

System.Collections Interface Meaning in Life

ICollection Defines generic characteristics (e.g., count and thread safety)
for a collection type.

IComparer Allows two objects to be compared.

IDictionary Allows an object to represent its contents using name/value pairs.

IDictionaryEnumerator Enumerates the contents of a type supporting IDictionary.

IEnumerable Returns the IEnumerator interface for a given object.

IEnumerator Generally supports foreach-style iteration of subtypes.

IHashCodeProvider Returns the hash code for the implementing type using
a customized hash algorithm.

IKeyComparer (This interface is new to .NET 2.0.) Combines the functionality
of IComparer and IHashCodeProvider to allow objects to be
compared in a “hash-code-compatible manner” (e.g., if the
objects are indeed equal, they must also return the same hash
code value).

IList Provides behavior to add, remove, and index items in a list of
objects. Also, this interface defines members to determine
whether the implementing collection type is read-only and/or
a fixed-size container.

5785ch09.qxd 3/31/06 10:50 AM Page 273

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS274

Many of these interfaces are related by an interface hierarchy, while others are stand-alone
entities. Figure 9-13 illustrates the relationship between each type (recall that it is permissible for
a single interface to derive from multiple interfaces).

The Role of ICollection
The ICollection interface is the most primitive interface of the System.Collections namespace in
that it defines a behavior supported by a collection type. In a nutshell, this interface provides a small
set of properties that allow you to determine (a) the number of items in the container, (b) the thread
safety of the container, as well as (c) the ability to copy the contents into a System.Array type. Formally,
ICollection is defined as follows (note that ICollection extends IEnumerable):

Public Interface ICollection

Inherits IEnumerable

Sub CopyTo(ByVal array As Array, ByVal index As Integer)

ReadOnly Property Count As Integer

ReadOnly Property IsSynchronized As Boolean

ReadOnly Property SyncRoot As Object

End Interface

The Role of IDictionary
As you may already be aware, a dictionary is simply a collection that maintains a set of name/value
pairs. For example, you could build a custom type that implements IDictionary such that you can
store Car types (the values) that may be retrieved by ID or pet name (e.g., names). Given this func-
tionality, you can see that the IDictionary interface defines a Keys and Values property as well as
Add(), Remove(), and Contains() methods. The individual items may be obtained by the type indexer.
Here is the formal definition:

Figure 9-13. The interfaces of System.Collections

5785ch09.qxd 3/31/06 10:50 AM Page 274

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 275

Public Interface IDictionary

Inherits ICollection, IEnumerable

Sub Add(ByVal key As Object, ByVal value As Object)

Sub Clear()

Function Contains(ByVal key As Object) As Boolean

Function GetEnumerator() As IDictionaryEnumerator

Sub Remove(ByVal key As Object)

ReadOnly Property IsFixedSize As Boolean

ReadOnly Property IsReadOnly As Boolean

Property Item(ByVal key As Object) As Object

ReadOnly Property Keys As ICollection

ReadOnly Property Values As ICollection

End Interface

The Role of IDictionaryEnumerator
If you were paying attention, you may have noted that IDictionary.GetEnumerator() returns an
instance of the IDictionaryEnumerator type. IDictionaryEnumerator is simply a strongly typed enu-
merator, given that it extends IEnumerator by adding the following functionality:

Public Interface IDictionaryEnumerator

Inherits IEnumerator

ReadOnly Property Entry As DictionaryEntry

ReadOnly Property Key As Object

ReadOnly Property Value As Object

End Interface

Notice how IDictionaryEnumerator allows you to enumerate over items in the dictionary via
the generic Entry property, which returns a System.Collections.DictionaryEntry class type. In
addition, you are also able to traverse the name/value pairs using the Key/Value properties.

The Role of IList
The final key interface of System.Collections is IList, which provides the ability to insert, remove,
and index items into (or out of) a container:

Public Interface IList

Inherits ICollection, IEnumerable

Function Add(ByVal value As Object) As Integer

Sub Clear()

Function Contains(ByVal value As Object) As Boolean

Function IndexOf(ByVal value As Object) As Integer

Sub Insert(ByVal index As Integer, ByVal value As Object)

Sub Remove(ByVal value As Object)

Sub RemoveAt(ByVal index As Integer)

ReadOnly Property IsFixedSize As Boolean

ReadOnly Property IsReadOnly As Boolean

Property Item(ByVal index As Integer) As Object

End Interface

The Class Types of System.Collections
As I hope you understand by this point in the chapter, interfaces by themselves are not very useful
until they are implemented by a given class or structure. Table 9-3 provides a rundown of the core
classes in the System.Collections namespace and the key interfaces they support.

5785ch09.qxd 3/31/06 10:50 AM Page 275

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS276

Table 9-3. Classes of System.Collections

System.Collections Class Meaning in Life Key Implemented Interfaces

ArrayList Represents a dynamically sized IList, ICollection,
array of objects. IEnumerable, and ICloneable

Hashtable Represents a collection of objects IDictionary, ICollection,
identified by a numerical key. IEnumerable, and ICloneable
Custom types stored in a Hashtable
should always override System.
Object.GetHashCode().

Queue Represents a standard first-in, ICollection, ICloneable,
first-out (FIFO) queue. IEnumerable

SortedList Like a dictionary; however, the IDictionary, ICollection,
elements can also be accessed IEnumerable, and ICloneable
by ordinal position (e.g., index).

Stack A last-in, first-out (LIFO) queue ICollection, ICloneable,
and provides push and pop IEnumerable
(and peek) functionality.

In addition to these key types, System.Collections defines some minor players (at least in
terms of their day-to-day usefulness) such as BitArray, CaseInsensitiveComparer, and
CaseInsensitiveHashCodeProvider. Furthermore, this namespace also defines a small set of
abstract base classes (CollectionBase, ReadOnlyCollectionBase, and DictionaryBase) that can be
used to build strongly typed containers.

As you begin to experiment with the System.Collections types, you will find they all tend to
share common functionality (that’s the point of interface-based programming). Thus, rather than
listing out the members of each and every collection class, the next task of this chapter is to illustrate
how to interact with three common collection types: ArrayList, Queue, and Stack. Once you under-
stand the functionality of these types, gaining an understanding of the remaining collection classes
should naturally follow (especially since each of the types is fully documented within online help).

Working with the ArrayList Type
The ArrayList type is bound to be your most frequently used type in the System.Collections name-
space in that it allows you to dynamically resize the contents at your whim. To illustrate the basics
of this type, ponder the following code, which leverages the ArrayList to manipulate a set of Car objects:

Module Program

Sub Main()

' Make ArrayList and add a range of Cars.

Dim carArList As ArrayList = New ArrayList

carArList.AddRange(New Car() {New Car("Fred", 90, 10), _

New Car("Mary", 100, 50), New Car("MB", 190, 11)})

Console.WriteLine("Items in carArList: {0}", carArList.Count)

' Iterate over contents.

For Each c As Car In carArList

Console.WriteLine("Car pet name: {0}", c.Name)

Next

' Insert new car.

Console.WriteLine("->Inserting new Car.")

carArList.Insert(2, New Car("TheNewCar", 0, 12))

Console.WriteLine("Items in carArList: {0}", carArList.Count)

5785ch09.qxd 3/31/06 10:50 AM Page 276

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 277

' Get the subobjects as an array.

Dim arrayOfCars As Object() = carArList.ToArray()

Dim i As Integer = 0

' Now iterate over array

While i < arrayOfCars.Length

Console.WriteLine("Car pet name: {0}", CType(arrayOfCars(i), Car).Name)

i = i + 1

End While

End Sub

End Module

Here you are making use of the AddRange() method to populate your ArrayList with a set of
Car types (as you can tell, this is basically a shorthand notation for calling Add() n number of times).
Once you print out the number of items in the collection (as well as enumerate over each item to
obtain the pet name), you invoke Insert(). As you can see, Insert() allows you to plug a new item
into the ArrayList at a specified index. Finally, notice the call to the ToArray() method, which returns
a generic array of System.Object types based on the contents of the original ArrayList.

Working with the Queue Type
Queues are containers that ensure items are accessed using a first-in, first-out manner. Sadly, we
humans are subject to queues all day long: lines at the bank, lines at the movie theater, and lines at
the morning coffeehouse. When you are modeling a scenario in which items are handled on a first-
come, first-served basis, System.Collections.Queue is your type of choice. In addition to the functionality
provided by the supported interfaces, Queue defines the key members shown in Table 9-4.

Table 9-4. Members of the Queue Type

Member of System.Collection.Queue Meaning in Life

Dequeue() Removes and returns the object at the beginning of the
Queue

Enqueue() Adds an object to the end of the Queue

Peek() Returns the object at the beginning of the Queue without
removing it

To illustrate these methods, we will leverage our automobile theme once again and build
a Queue object that simulates a line of cars waiting to enter a car wash. First, assume the following
shared helper method to your Module type:

Public Sub WashCar(ByVal c As Car)

Console.WriteLine("Cleaning {0}", c.Name)

End Sub

Now, consider the following code:

Sub Main()

...

' Make a Q with three items.

Dim carWashQ As New Queue()

carWashQ.Enqueue(New Car("FirstCar", 0, 1))

carWashQ.Enqueue(New Car("SecondCar", 0, 2))

carWashQ.Enqueue(New Car("ThirdCar", 0, 3))

5785ch09.qxd 3/31/06 10:50 AM Page 277

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS278

' Peek at first car in Q.

Console.WriteLine("First in Q is {0}", _

CType(carWashQ.Peek(), Car).Name)

' Remove each item from Q.

WashCar(CType(carWashQ.Dequeue(), Car))

WashCar(CType(carWashQ.Dequeue(), Car))

WashCar(CType(carWashQ.Dequeue(), Car))

' Try to de-Q again?

Try

WashCar(CType(carWashQ.Dequeue(), Car))

Catch ex As Exception

Console.WriteLine("Error!! {0}", ex.Message)

End Try

End Sub

Here, you insert three items into the Queue type via its Enqueue() method. The call to Peek()
allows you to view (but not remove) the first item currently in the Queue, which in this case is the car
named FirstCar. Finally, the call to Dequeue() removes the item from the line and sends it into the
WashCar() helper function for processing. Do note that if you attempt to remove items from an empty
queue, a runtime exception is thrown.

Working with the Stack Type
The System.Collections.Stack type represents a collection that maintains items using a last-in, first-
out manner. As you would expect, Stack defines a member named Push() and Pop() (to place items
onto or remove items from the stack). The following stack example makes use of the standard
System.String:

Sub Main()

...

Dim stringStack As New Stack()

stringStack.Push("One")

stringStack.Push("Two")

stringStack.Push("Three")

' Now look at the top item, pop it, and look again.

Console.WriteLine("Top item is: {0}", stringStack.Peek())

Console.WriteLine("Popped off {0}", stringStack.Pop())

Console.WriteLine("Top item is: {0}", stringStack.Peek())

Console.WriteLine("Popped off {0}", stringStack.Pop())

Console.WriteLine("Top item is: {0}", stringStack.Peek())

Console.WriteLine("Popped off {0}", stringStack.Pop())

Try

Console.WriteLine("Top item is: {0} ", stringStack.Peek())

Console.WriteLine("Popped off {0} ", stringStack.Pop())

Catch ex As Exception

Console.WriteLine("Error!! {0} ", ex.Message)

End Try

End Sub

Here, you build a stack that contains three string types (named according to their order of inser-
tion). As you peek onto the stack, you will always see the item at the very top, and therefore the first
call to Peek() reveals the third string. After a series of Pop() and Peek() calls, the stack is eventually
empty, at which time additional Peek()/Pop() calls raise a system exception.

5785ch09.qxd 3/31/06 10:50 AM Page 278

CHAPTER 9 ■ WORKING WITH INTERFACES AND COLLECTIONS 279

■Source Code The CollectionTypes project can be found under the Chapter 9 subdirectory.

System.Collections.Specialized Namespace
In addition to the types defined within the System.Collections namespace, you should also be aware
that the .NET base class libraries provide the System.Collections.Specialized namespace, which
defines another set of types that are more (pardon the redundancy) specialized. For example,
the StringDictionary and ListDictionary types each provide a stylized implementation of the
IDictionary interface. Table 9-5 documents the key class types.

Table 9-5. Types of the System.Collections.Specialized Namespace

Member of System.Collections.Specialized Meaning in Life

CollectionsUtil Creates collections that ignore the case in strings.

HybridDictionary Implements IDictionary by using a ListDictionary
while the collection is small, and then switching
to a Hashtable when the collection gets large.

ListDictionary Implements IDictionary using a singly linked list.
Recommended for collections that typically contain
ten items or fewer.

NameValueCollection Represents a sorted collection of associated String
keys and String values that can be accessed either
with the key or with the index.

StringCollection Represents a collection of strings.

StringDictionary Implements a hashtable with the key strongly typed
to be a string rather than an object.

StringEnumerator Supports a simple iteration over a StringCollection.

Summary
An interface can be defined as a named collection of abstract members. Because an interface does
not provide any implementation details, it is common to regard an interface as a behavior that may
be supported by a given type. When two or more classes implement the same interface, you are able
to treat each type the same way (via interface-based polymorphism) even if the types are defined
within unique class hierarchies.

VB 2005 provides the Interface keyword to allow you to define a new interface. As you have seen,
a type can support as many interfaces as necessary using the Implements keyword. Furthermore, it
is permissible to build interfaces that derive from multiple base interfaces.

In addition to building your custom interfaces, the .NET libraries define a number of framework-
supplied interfaces. As you have seen, you are free to build custom types that implement these
predefined interfaces to gain a number of desirable traits such as cloning, sorting, and enumerat-
ing. Finally, you spent some time investigating the stock collection classes defined within the
System.Collectionsnamespace and examining a number of common interfaces used by the collection-
centric types.

5785ch09.qxd 3/31/06 10:50 AM Page 279

5785ch09.qxd 3/31/06 10:50 AM Page 280

C H A P T E R 1 0

■ ■ ■

Callback Interfaces, Delegates,
and Events

Up to this point in the text, every application you have developed added various bits of code to
Main(), which, in some way or another, sent requests to a given object by invoking its members.
However, you have not yet examined how an object can talk back to the entity that created it. In
most programs, it is quite common for objects to engage in a two-way conversation through the use
of callback interfaces, events, and other programming constructs. Although we most often think of
events in the context of a GUI environment (for example, handling the Click event of a button or
detecting mouse movement), the truth of the matter is events can be used to allow any two objects
in memory to communicate (visible or not).

This chapter opens by examining how interface types may be used to enable callback functionality.
Although the .NET event architecture is not directly tied to interface-based programming techniques,
callback interfaces can be quite useful given that they are language and architecture neutral.

Next, you learn about the .NET delegate type, which is a type-safe object that “points to” other
method(s) that can be invoked at a later time. As you will see, .NET delegates are quite sophisticated, in
that they have built-in support for multicasting and asynchronous (e.g., nonblocking) invocations.

Once you learn how to create and manipulate delegate types, you then investigate a set of VB 2005
keywords (Event, Handles, RaiseEvent, etc.) that simplify the process of working with delegate types
in the raw. Finally, this chapter examines a new language feature provided by Visual Basic 2005,
specifically the ability to build “custom events” in order to intercept the process of registering with,
detaching from, and sending an event notification.

■Note You will be happy to know that the event-centric techniques shown in this chapter are found all throughout
the .NET platform. In fact, when you are handling Windows Forms or ASP.NET events, you will be using the exact
same syntax.

Using Interfaces As a Callback Mechanism
As you have seen in the previous chapter, interfaces can be used to define a behavior that may be
supported by various types in your system. Beyond using interfaces to establish polymorphism
across hierarchies, interfaces may also be used as a callback mechanism. This technique enables
objects to engage in a two-way conversation using an agreed upon set of members.

To illustrate the use of callback interfaces (also termed event interfaces), let’s retrofit the now
familiar Car type (first defined in Chapter 6) in such a way that it is able to inform the caller when
the engine is about to explode (when the current speed is 10 miles below the maximum speed) and
has exploded (when the current speed is at or above the maximum speed). The ability to send and
receive these events will be facilitated with a custom interface named IEngineStatus:

281

5785ch10.qxd 3/31/06 10:51 AM Page 281

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS282

' The callback interface.

Public Interface IEngineStatus

Sub AboutToBlow(msg As String)

Sub Exploded(msg As String)

End Interface

In order to keep an application’s code base as flexible and reusable as possible, callback interfaces
are not typically implemented directly by the object interested in receiving the events, but rather by
a helper object called a sink object. Assume we have created a class named CarEventSink that imple-
ments IEngineStatus by printing the incoming messages to the console. As well, our sink will also
maintain a string used as a textual identifier. As you will see, it is possible to register multiple sink
objects for a given event source; therefore, it will prove helpful to identify a sink by name. This being
said, consider the following implementation:

' Car event sink.

Public Class CarEventSink

Implements IEngineStatus

Private name As String

Public Sub New(ByVal sinkName As String)

name = sinkName

End Sub

Public Sub AboutToBlow(ByVal msg As String) _

Implements IEngineStatus.AboutToBlow

Console.WriteLine("{0} reporting: {1}", name, msg)

End Sub

Public Sub Exploded(ByVal msg As String) _

Implements IEngineStatus.Exploded

Console.WriteLine("{0} reporting: {1}", name, msg)

End Sub

End Class

Now that you have a sink object that implements the event interface, your next task is to pass
a reference to this sink into the Car type. The Car holds onto this object and makes calls back on the
sink when appropriate. In order to allow the Car to receive the caller-supplied sink reference, we will
need to add a public helper member to the Car type that we will call Connect(). Likewise, to allow the
caller to detach from the event source, we will define another helper method on the Car type named
Disconnect(). Finally, to enable the caller to register multiple sink objects (for the purposes of
multicasting), the Car now maintains an ArrayList to represent each outstanding connection. Here
are the relevant updates to the Car type:

' This iteration of the Car type maintains a list of

' objects implementing the IEngineStatus interface.

Public Class Car

' The set of connected clients.

Private clientSinks As New ArrayList()

' The client calls these methods to connect

' to, or detatch from, the event notification.

Public Sub Connect(ByVal sink As IEngineStatus)

clientSinks.Add(sink)

End Sub

Public Sub Disconnect(ByVal sink As IEngineStatus)

clientSinks.Remove(sink)

End Sub

...

End Class

5785ch10.qxd 3/31/06 10:51 AM Page 282

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 283

To actually send the events, let’s update the Car.Accelerate() method to iterate over the list of
sinks maintained by the ArrayList and send the correct notification when appropriate. Here is the
updated member in question:

' The Accelerate method now fires event notifications to the caller,

' rather than throwing a custom exception.

Public Sub Accelerate(ByVal delta As Integer)

' If the car is doomed, sent out event to

' each connected client.

If carIsDead Then

For Each i As IEngineStatus In clientSinks

i.Exploded("Sorry! This car is toast!")

Next

Else

currSpeed += delta

' Send out 'about to blow' event?

If (maxSpeed - currSpeed) = 10 Then

For Each i As IEngineStatus In clientSinks

i.AboutToBlow("Careful! About to blow!")

Next

End If

' Is the car doomed?

If currSpeed >= maxSpeed Then

carIsDead = True

Else

' We are OK, just print out speed.

Console.WriteLine("=> CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

To complete the example, here is a Main() method making use of a callback interface to listen
to the Car events:

' Make a car and listen to the events.

Module Program

Sub Main()

Console.WriteLine("***** Interfaces as event enablers *****")

Dim myCar As New Car("SlugBug", 10)

' Make sink object.

Dim sink As New CarEventSink("MySink")

' Register the sink with the Car.

myCar.Connect(sink)

' Speed up (this will trigger the event notifications).

For i As Integer = 0 To 5

myCar.Accelerate(20)

Next

' Detach from event source.

myCar.Disconnect(sink)

Console.ReadLine()

End Sub

End Module

5785ch10.qxd 3/31/06 10:51 AM Page 283

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS284

Figure 10-1. Interfaces as event protocols

Figure 10-1 shows the end result of this interface-based event protocol.

Notice that we call Disconnect() before exiting Main(), although this is not actually necessary
for the example to function as intended. However, the Disconnect() method can be very helpful in
that it allows the caller to selectively detach from an event source at will. Assume that the application
now wishes to register two sink objects, dynamically remove a particular sink during the flow of exe-
cution, and continue processing the program at large:

Module Program

Sub Main()

Console.WriteLine("***** Interfaces as event enablers *****")

Dim myCar As New Car("SlugBug", 10)

' Make sink object.

Console.WriteLine("***** Creating Sinks! *****")

Dim sink As New CarEventSink("First Sink")

Dim otherSink As New CarEventSink("Second Sink")

' Pass both sinks to car.

myCar.Connect(sink)

myCar.Connect(otherSink)

' Speed up (this will trigger the events).

For i As Integer = 0 To 5

myCar.Accelerate(20)

Next

' Detach from first sink.

myCar.Disconnect(sink)

' Speed up again (only otherSink will be called).

For i As Integer = 0 To 5

myCar.Accelerate(20)

Next

' Detach from other sink.

myCar.Disconnect(otherSink)

Console.ReadLine()

End Sub

End Module

Figure 10-2 shows the update.

5785ch10.qxd 3/31/06 10:51 AM Page 284

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 285

Figure 10-2. Working with multiple sinks

So! Hopefully you agree that event interfaces can be helpful in that they can be used under any
language (VB 6.0, VB 2005, C++, etc.) or platform (COM, .NET, or J2EE) that supports interface-based
programming. However, as you may be suspecting, the .NET platform defines an “official” event
protocol that is not dependent on the construction of interfaces. To understand .NET’s intrinsic event
architecture, we begin by examining the role of the delegate type.

■Source Code The EventInterface project is located under the Chapter 10 subdirectory.

Understanding the .NET Delegate Type
Before formally defining .NET delegates, let’s gain a bit of historical perspective regarding the Windows
platform. Since its inception many years ago, the Win32 API made use of C-style function pointers
to support callback functionality. Using these function pointers, programmers were able to configure
one function in the program to invoke another function in the application. As you would imagine,
this approach allowed applications to handle events from various UI elements, intercept messages in
a distributed system, and numerous other techniques. Although BASIC-style languages have histor-
ically avoided the complexity of working with function pointers (thankfully), the callback construct
is burned deep into the fabric of the Windows API.

One of the problems found with C-style callback functions is that they represent little more than
a raw address in memory, which offers little by way of type safety or object orientation. Ideally, callback
functions could be configured to include additional type-safe information such as the number of
(and types of) parameters and the return value (if any) of the method being “pointed to.” Alas, this is
not the case in traditional callback functions, and, as you may suspect, can therefore be a frequent
source of bugs, hard crashes, and other runtime disasters.

Nevertheless, callbacks are useful entities in that they can be used to build event architectures.
In the .NET Framework, callbacks are still possible, and their functionality is accomplished in a much
safer and more object-oriented manner using delegates. In essence, a delegate is a type-safe object
that points to another method (or possibly multiple methods) in the application, which can be
invoked at a later time. Specifically speaking, a delegate type maintains three important pieces of
information:

• The address of the method on which it will make calls

• The arguments (if any) required by this method

• The return value (if any) returned from this method

5785ch10.qxd 3/31/06 10:51 AM Page 285

Figure 10-3. The BinaryOp delegate under the hood

Once a delegate has been defined and provided the necessary information, you may dynamically
invoke the method(s) it points to at runtime. As you will see, every delegate in the .NET Framework
(including your custom delegates) is automatically endowed with the ability to call their methods
synchronously (using the calling thread) or asynchronously (on a secondary thread in a nonblocking
manner). This fact greatly simplifies programming tasks, given that we can call a method on a sec-
ondary thread of execution without manually creating and managing a Thread object. This chapter will
focus on the synchronous aspect of the delegate type. We will examine the asynchronous behavior
of delegate types during our investigation of the System.Threading namespace in Chapter 16.

Defining a Delegate in VB 2005
When you want to create a delegate in VB 2005, you make use of the Delegate keyword. The name
of your delegate can be whatever you desire. However, you must define the delegate to match the
signature of the method it will point to. For example, assume you wish to build a delegate named
BinaryOp that can point to any method that returns an Integer and takes two Integers as input
parameters:

' This delegate can point to any method,

' taking two Integers and returning an

' Integer.

Public Delegate Function BinaryOp(ByVal x as Integer, _

ByVal y as Integer) As Integer

When the VB 2005 compiler processes a delegate type, it automatically generates a sealed class
deriving from System.MulticastDelegate. This class (in conjunction with its base class, System.
Delegate) provides the necessary infrastructure for the delegate to hold onto the list of methods to
be invoked at a later time. For example, if you examine the BinaryOp delegate using ildasm.exe, you
would find the autogenerated class type depicted in Figure 10-3.

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS286

As you can see, the generated BinaryOp class defines three public methods. Invoke() is perhaps
the core method, as it is used to invoke each method maintained by the delegate type in a synchronous
manner, meaning the caller must wait for the call to complete before continuing on its way. Strangely
enough, the synchronous Invoke() method is typically not directly called in code. As you will see in
just a bit, Invoke() is called behind the scenes when you make use of the appropriate VB 2005 syntax.

5785ch10.qxd 3/31/06 10:51 AM Page 286

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 287

BeginInvoke() and EndInvoke() provide the ability to call the method pointed to by the delegate
asynchronously on a second thread of execution. If you have a background in multithreading, you
are aware that one of the most common reasons developers create secondary threads of execution
is to invoke methods that require a good deal of time to complete. Although the .NET base class
libraries provide an entire namespace devoted to multithreaded programming (System.Threading),
delegates provide this functionality out of the box.

Investigating the Autogenerated Class Type
So, how exactly does the compiler know how to define the Invoke(), BeginInvoke(), and EndInvoke()
methods? To understand the process, here is the crux of the generated BinaryOp class type, shown in
dazzling pseudo-code:

' This is only pseudo-code!

NotInheritable Class BinaryOp

Inherits System.MulticastDelegate

' Compiler generated constructor.

Public Sub New(ByVal target As Object, ByVal functionAddress As System.UInt32)

End Sub

' Used for synchronous calls.

Public Sub Invoke(ByVal x As Integer, ByVal y As Integer)

End Sub

' Used for asynchronous calls on a second thread.

Public Function BeginInvoke(ByVal x As Integer, ByVal y As Integer, _

ByVal cb As AsyncCallback, ByVal state As Object) As IAsyncResult

End Function

Public Function EndInvoke(ByVal result As IAsyncResult) As Integer

End Function

End Class

First, notice that the parameters and return value defined for the Invoke() method exactly
match the definition of the BinaryOp delegate. The initial parameters to BeginInvoke() members
(two Integers in our case) are also based on the BinaryOp delegate; however, BeginInvoke() will
always provide two final parameters (of type AsyncCallback and Object) that are used to facilitate
asynchronous method invocations. Finally, the return value of EndInvoke() is identical to the original
delegate declaration and will always take as a sole parameter an object implementing the IAsyncResult
interface.

Let’s see another example. Assume you have defined a delegate that can point to any method
returning a String and receiving three Boolean input parameters:

Public Delegate Function MyDelegate(ByVal a As Boolean, ByVal b As Boolean, _

ByVal c As Boolean) As String

This time, the autogenerated class breaks down as follows:

NotInheritable Class MyDelegate

Inherits System.MulticastDelegate

Public Sub New(ByVal target As Object, ByVal functionAddress As System.UInt32)

End Sub

Public Function Invoke(ByVal a As Boolean, ByVal b As Boolean, _

ByVal c As Boolean) As String

End Function

Public Function BeginInvoke(ByVal a As Boolean, ByVal b As Boolean, _

ByVal c As Boolean, ByVal cb As AsyncCallback, _

ByVal state As Object) As IAsyncResult

End Function

5785ch10.qxd 3/31/06 10:51 AM Page 287

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS288

Public Function EndInvoke(ByVal result As IAsyncResult) As String

End Function

End Class

Delegates can also “point to” methods that contain any number of ByRef parameters. For example,
assume the following delegate type definition:

Public Delegate Function MyOtherDelegate(ByRef a As Boolean, _

ByRef b As Boolean, ByVal c As Integer) As String

The signatures of the Invoke() and BeginInvoke() methods look as you would expect; however,
check out the EndInvoke() method, which now includes the set of all ByRef arguments defined by
the delegate type:

NotInheritable Class MyOtherDelegate

Inherits System.MulticastDelegate

Public Sub New(ByVal target As Object, ByVal functionAddress As System.UInt32)

End Sub

Public Function Invoke(ByRef a As Boolean, ByRef b As Boolean, _

ByVal c As Integer) As String

End Function

Public Function BeginInvoke(ByRef a As Boolean, ByRef b As Boolean, _

ByVal c As Integer, ByVal cb As AsyncCallback, _

ByVal state As Object) As IAsyncResult

End Function

Public Function EndInvoke(ByRef a As Boolean, ByRef b As Boolean, _

ByVal result As IAsyncResult) As String

End Function

End Class

To summarize the story thus far, a VB 2005 delegate definition results in a compiler-generated
sealed class containing three methods (as well as an internally called constructor) whose parameter
and return types are based on the delegate’s declaration. Again, the good news is that the VB 2005
compiler is the entity in charge of defining the actual delegate definition on our behalf.

The System.MulticastDelegate and System.Delegate
Base Classes
So, when you build a type using the VB 2005 Delegate keyword, you indirectly declare a class type
that derives from System.MulticastDelegate. This class provides descendents with access to a list
that contains the addresses of the methods maintained by the delegate type, as well as several addi-
tional methods to interact with the invocation list. MulticastDelegate obtains additional functionality
from its parent class, System.Delegate.

Now, do understand that you will never directly derive from these base classes (in fact it is a com-
plier error to do so). However, all delegate types inherit the members documented in Table 10-1
(consult the .NET Framework 2.0 documentation for full details).

5785ch10.qxd 3/31/06 10:51 AM Page 288

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 289

Table 10-1. Select Members of System.MultcastDelegate/System.Delegate

Inherited Member Meaning in Life

Method This property returns a System.Reflection.MethodInfo type that
represents details of a shared method that is maintained by the delegate.

Target If the method to be called is defined at the object level (rather than
a shared method), Target returns the name of the method maintained by
the delegate. If the value returned from Target equals Nothing, the
method to be called is a shared member.

Combine() This shared method adds a method to the list maintained by the delegate.

GetInvocationList() This method returns an array of System.Delegate types, each representing
a particular method maintained by the delegate’s invocation list.

Remove() These shared methods removes a method (or all methods) from the
RemoveAll() invocation list.

The Simplest Possible Delegate Example
Delegates tend to cause a great deal of confusion when encountered for the first time (even for
those who do have experience with C-style callback functions). Thus, to get the ball rolling, let’s take
a look at a very simple console application (named SimpleDelegate) that makes use of our BinaryOp
delegate type. Here is the complete code (defined within a single *.vb file), with analysis to follow:

' Our delegate type can point to any method

' taking two integers and returning an integer.

Public Delegate Function BinaryOp(ByVal x As Integer, _

ByVal y As Integer) As Integer

' This class defines the methods that will be 'pointed to' by the delegate.

Public Class SimpleMath

Public Shared Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

Public Shared Function Subtract(ByVal x As Integer, _

ByVal y As Integer) As Integer

Return x - y

End Function

End Class

Module Program

Sub Main()

Console.WriteLine("***** Simple Delegate Example *****")

' Make a delegate object and add method to invocation

' list using the AddressOf keyword.

Dim b As BinaryOp = New BinaryOp(AddressOf SimpleMath.Add)

' Invoke the method 'pointed to'

Console.WriteLine("10 + 10 is {0}", b(10, 10))

Console.ReadLine()

End Sub

End Module

5785ch10.qxd 3/31/06 10:51 AM Page 289

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS290

Again notice the format of the BinaryOp delegate, which can point to any method taking two
Integers and returning an Integer. Given this, we have created a class named SimpleMath, which
defines two shared methods that (surprise, surprise) match the pattern defined by the BinaryOp
delegate. When you want to insert the target method to a given delegate, simply pass in the name
of the method to the delegate’s constructor using the VB 2005 AddressOf keyword.

At this point, you are able to invoke the member pointed to using a syntax that looks like
a direct method invocation:

' Invoke() is really called here!

Console.WriteLine("10 + 10 is {0}", b(10, 10))

Under the hood, the runtime actually calls the compiler-generated Invoke() method. You can
verify this fact for yourself if you open your assembly in ildasm.exe and investigate the CIL code
within the Main() method. Here is a partial code snippet:

.method private hidebysig static void Main(string[] args) cil managed

{

...

callvirt instance int32 SimpleDelegate.BinaryOp::Invoke(int32, int32)

...

}

If you wish to call the Invoke() method directly, you are free to do so:

' Call Invoke() directly.

Console.WriteLine("10 + 10 is {0}", b.Invoke(10, 10))

Recall that .NET delegates are intrinsically type safe. Therefore, if you attempt to pass a delegate
the address of a method that does not “match the pattern,” you receive a compile-time error. To
illustrate, assume the SimpleMath class now defines an additional method named SquareNumber() as
follows:

Public Class SimpleMath

...

Public Shared Function SquareNumber(ByVal a As Integer) As Integer

Return a * a

End Function

End Class

Given that the BinaryOp delegate can only point to methods that take two Integers and return
an Integer, the following code is illegal and will not compile:

' Error! Method does not match delegate pattern!

Dim b As New BinaryOp(AddressOf SimpleMath.SquareNumber)

Interacting with a Delegate Object
Let’s spice up the current example by defining a helper function within our module named
DisplayDelegateInfo(). This method will print out names of the methods maintained by the
incoming delegate type as well as the name of the class defining the method. To do so, we will iterate
over the System.Delegate array returned by GetInvocationList(), invoking each object’s Target
and Method properties:

Sub DisplayDelegateInfo(ByVal delObj As System.Delegate)

For Each d As System.Delegate In delObj.GetInvocationList()

Console.WriteLine("Method Name: {0}", d.Method)

Console.WriteLine("Type Name: {0}", d.Target)

Next

End Sub

5785ch10.qxd 3/31/06 10:51 AM Page 290

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 291

Figure 10-4. Investigation our BinaryOp delegate

Figure 10-5. “Pointing to” instance-level methods

Assuming you have updated your Main() method to actually call this new helper method by
passing in your BinaryOp object:

Sub Main()

...

Dim b As BinaryOp = New BinaryOp(AddressOf SimpleMath.Add)

' Invoke the method 'pointed to' as before.

Console.WriteLine("10 + 10 is {0}", b(10, 10))

DisplayDelegateInfo(b)

...

End Sub

you would find the output shown in Figure 10-4.

Notice that the name of the type (SimpleMath) is currently not displayed by the Target property.
The reason has to do with the fact that our BinaryOp delegate is pointing to shared methods and
therefore there is no object to reference! However, if we update the Add() and Subtract methods to
be instance-level members (simply by deleting the Shared keywords), we could create an instance
of the SimpleMath type and specify the methods to invoke as follows:

Sub Main()

Console.WriteLine("***** Simple Delegate Example *****")

' Make a new SimpleMath object.

Dim myMath As New SimpleMath()

' Use this object to specify the address of the Add method.

Dim b As BinaryOp = New BinaryOp(AddressOf myMath.Add)

' Invoke the method 'pointed to' as before.

Console.WriteLine("10 + 10 is {0}", b(10, 10))

DisplayDelegateInfo(b)

Console.ReadLine()

End Sub

In this case, we would find the output shown in Figure 10-5.

5785ch10.qxd 3/31/06 10:51 AM Page 291

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS292

■Source Code The SimpleDelegate project is located under the Chapter 10 subdirectory.

Retrofitting the Car Type with Delegates
Clearly, the previous SimpleDelegate example was intended to be purely illustrative in nature, given
that there would be no compelling reason to build a delegate simply to add two numbers. Hopefully,
however, this example demystifies the basic process of working with delegate types.

To provide a more realistic use of delegate types, let’s retrofit our Car type to send the Exploded
and AboutToBlow notifications using .NET delegates rather than a custom event interface. Beyond
no longer implementing IEngineStatus, here are the steps we will take:

• Define the AboutToBlow and Exploded delegates.

• Declare member variables of each delegate type in the Car class.

• Create helper functions on the Car that allow the caller to specify the methods to add to the
delegate member variable’s invocation lists.

• Update the Accelerate() method to invoke the delegate’s invocation list under the correct
circumstances.

First, consider the following updates to the Car class, which address the first three points:

Public Class Car

' Our delegate types are nested in the Car type.

Public Delegate Sub AboutToBlow(ByVal msg As String)

Public Delegate Sub Exploded(ByVal msg As String)

' Because delegates are simply classes, we can create

' member variables of delegate types.

Private almostDeadList As AboutToBlow

Private explodedList As Exploded

' To allow the caller to pass us a delegate object.

Public Sub OnAboutToBlow(ByVal clientMethod As AboutToBlow)

almostDeadList = clientMethod

End Sub

Public Sub OnExploded(ByVal clientMethod As Exploded)

explodedList = clientMethod

End Sub

...

End Class

Notice in this example that we define the delegate types directly within the scope of the Car type.
From a design point of view, it is quite natural to define a delegate within the scope of the type it
naturally works with given that it illustrates a tight association between the two types. Furthermore,
given that the compiler transforms a delegate into a full class definition, what we have actually done
is indirectly created two nested classes.

Next, note that we declare two member variables (one for each delegate type) and two helper
functions (OnAboutToBlow() and OnExploded()) that allow the client to add a method to the delegate’s
invocation list. In concept, these methods are similar to the Connect() and Disconnect() methods we
created during the EventInterface example. Of course, in this case, the incoming parameter is a client-
allocated delegate object rather than a sink implementing a specific event interface.

At this point, we need to update the Accelerate() method to invoke each delegate, rather than
iterate over an ArrayList of client-supplied sinks:

5785ch10.qxd 3/31/06 10:51 AM Page 292

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 293

Public Sub Accelerate(ByVal delta As Integer)

If carIsDead Then

' If the car is doomed, send out the Exploded notification.

If Not (explodedList Is Nothing) Then

explodedList("Sorry, this car is dead...")

End If

Else

currSpeed += delta

' Are we almost doomed? If so, send out AboutToBlow notification.

If 10 = maxSpeed - currSpeed AndAlso Not (almostDeadList Is Nothing) Then

almostDeadList("Careful buddy! Gonna blow!")

End If

If currSpeed >= maxSpeed Then

carIsDead = True

Else

Console.WriteLine("->CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

Notice that before we invoke the methods maintained by the almostDeadList and explodedList
member variables, we are checking them against the value Nothing. The reason is that it will be the
job of the caller to allocate these objects when calling the OnAboutToBlow() and OnExploded() helper
methods. If the caller does not call these methods (given that it may not wish to hear about these
events), and we attempt to invoke the delegate’s invocation list, we will trigger a NullReferenceException

and bomb at runtime (which would obviously be a bad thing!).
Now that we have the delegate infrastructure in place, observe the updates to the Program module:

Module Program

Sub Main()

Console.WriteLine("***** Delegates as event enablers *****")

Dim c1 As Car = New Car("SlugBug", 10)

' Pass the address of the methods that will be maintained

' by the delegate member variables of the Car type.

c1.OnAboutToBlow(AddressOf CarAboutToBlow)

c1.OnExploded(AddressOf CarExploded)

Console.WriteLine("***** Speeding up *****")

For i As Integer = 0 To 5

c1.Accelerate(20)

Next

Console.ReadLine()

End Sub

' These are called by the Car object.

Public Sub CarAboutToBlow(ByVal msg As String)

Console.WriteLine(msg)

End Sub

Public Sub CarExploded(ByVal msg As String)

Console.WriteLine(msg)

End Sub

End Module

Notice that in this code example, we are not directly allocating an instance of the Car.AboutToBlow
or Car.Exploded delegate objects. However, when we make use of the VB 2005 AddressOf keyword, the
compiler will automatically generate a new instance of the related delegate type. This can be verified
using ildasm.exe (which I will leave as an exercise to the interested reader).

5785ch10.qxd 3/31/06 10:51 AM Page 293

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS294

While the fact that the AddressOf keyword automatically generates the delegate objects in the
background is quite helpful, there will be times when you will prefer to allocate the delegate object
manually for later use in your application. We will see a practical reason to do so in the next section;
however, to illustrate the process, consider the following iteration of Main():

Module Program

Sub Main()

Console.WriteLine("***** Delegates as event enablers *****")

Dim c1 As Car = New Car("SlugBug", 10)

' Manually create the delegate objects.

Dim aboutToBlowDel As New Car.AboutToBlow(AddressOf CarAboutToBlow)

Dim explodedDel As New Car.Exploded(AddressOf CarExploded)

' Now pass in delegate objects.

c1.OnAboutToBlow(aboutToBlowDel)

c1.OnExploded(explodedDel)

...

End Sub

Public Sub CarAboutToBlow(ByVal msg As String)

Console.WriteLine(msg)

End Sub

Public Sub CarExploded(ByVal msg As String)

Console.WriteLine(msg)

End Sub

End Module

The only major point to be made here is because of the fact that the AboutToBlow and Exploded dele-
gates are nested within the Car class, we must allocate them using their full name (e.g., Car.AboutToBlow).
Like any delegate constructor, we pass in the name of the method to add to the invocation list.

Enabling Multicasting
Recall that .NET delegates have the intrinsic ability to multicast. In other words, a delegate object
can maintain a list of methods to call (provided they match the pattern defined by the delegate),
rather than a single method. When you wish to add multiple methods to a delegate object, you will
need to call System.Delegate.Combine(). To enable multicasting on the Car type, we could update
the OnAboutToBlow() and OnExploded() methods as follows:

Class Car

...

' Now with multicasting!

Public Sub OnAboutToBlow(ByVal clientMethod As AboutToBlow)

almostDeadList = System.Delegate.Combine(almostDeadList, clientMethod)

End Sub

Public Sub OnExploded(ByVal clientMethod As Exploded)

explodedList = System.Delegate.Combine(explodedList, clientMethod)

End Sub

...

End Class

Be aware that the previous code will only compile if Option Strict is not enabled in your proj-
ect. Since this is always good practice, here would be a more type-safe (and compiler acceptable)
implementation of these methods using explicit casting:

' Now with type-safe multicasting!

Public Sub OnAboutToBlow(ByVal clientMethod As AboutToBlow)

5785ch10.qxd 3/31/06 10:51 AM Page 294

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 295

almostDeadList = CType(System.Delegate.Combine(almostDeadList, _

clientMethod), AboutToBlow)

End Sub

Public Sub OnExploded(ByVal clientMethod As Exploded)

explodedList = CType(System.Delegate.Combine(explodedList, _

clientMethod), Exploded)

End Sub

In either case, the first argument to pass into Combine() is the delegate object that is maintain-
ing the current invocation list, while the second argument is the new delegate object you wish to
add to the list. At this point, the caller can now register multiple targets as follows:

Module Program

Sub Main()

Console.WriteLine("***** Delegates as event enablers *****")

Dim c1 As Car = New Car("SlugBug", 10)

' Register multiple event handlers!

c1.OnAboutToBlow(AddressOf CarAboutToBlow)

c1.OnAboutToBlow(AddressOf CarIsAlmostDoomed)

c1.OnExploded(AddressOf CarExploded)

...

End Sub

' This time, two methods are called

' when the AboutToBlow notification fires.

Public Sub CarAboutToBlow(ByVal msg As String)

Console.WriteLine(msg)

End Sub

Public Sub CarIsAlmostDoomed(ByVal msg As String)

Console.WriteLine("Critical Message from Car: {0}", msg)

End Sub

Public Sub CarExploded(ByVal msg As String)

Console.WriteLine(msg)

End Sub

End Module

Removing a Target from a Delegate’s Invocation List
The Delegate class also defines a shared Remove() method that allows a caller to dynamically
remove a member from the invocation list. If you wish to allow the caller the option to detach from
the AboutToBlow and Exploded notifications, you could add the following additional helper methods
to the Car type:

Class Car

...

' To remove a target from the list.

Public Sub RemoveAboutToBlow(ByVal clientMethod As AboutToBlow)

almostDeadList = CType(System.Delegate.Remove(almostDeadList, _

clientMethod), AboutToBlow)

End Sub

Public Sub RemoveExploded(ByVal clientMethod As Exploded)

explodedList = CType(System.Delegate.Remove(explodedList, _

clientMethod), Exploded)

End Sub

...

End Class

5785ch10.qxd 3/31/06 10:51 AM Page 295

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS296

Figure 10-6. The Car type, now with delegates

Thus, we could stop receiving the Exploded notification by updating Main() as follows:

Sub Main()

Console.WriteLine("***** Delegates as event enablers *****")

Dim c1 As Car = New Car("SlugBug", 10)

' Register multiple event handlers!

c1.OnAboutToBlow(AddressOf CarAboutToBlow)

c1.OnAboutToBlow(AddressOf CarIsAlmostDoomed)

c1.OnExploded(AddressOf CarExploded)

Console.WriteLine("***** Speeding up *****")

For i As Integer = 0 To 5

c1.Accelerate(20)

Next

' Remove CarExploded from invocation list.

c1.RemoveExploded(AddressOf CarExploded)

' This will not fire the Exploded event.

For i As Integer = 0 To 5

c1.Accelerate(20)

Next

Console.ReadLine()

End Sub

The final output of our CarDelegate application can be seen in Figure 10-6.

■Source Code The CarDelegate project is located under the Chapter 10 subdirectory.

Understanding (and Using) Events
Delegates are fairly interesting constructs in that they enable two objects in memory to engage in
a two-way conversation in a type-safe and object-oriented manner. As you may agree, however,
working with delegates in the raw does entail a good amount of boilerplate code (defining the dele-
gate, declaring any necessary member variables, and creating custom registration/unregistration
methods).

5785ch10.qxd 3/31/06 10:51 AM Page 296

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 297

Because the ability for one object to call back to another object is such a helpful construct, VB 2005
provides a small set of keywords to lessen the burden of using delegates in the raw. For example, when
the compiler processes the Event keyword, you are automatically provided with registration and
unregistration methods that allow the caller to hook into an event notification. Better yet, using the
Event keyword removes the need to define delegate objects in the first place. In this light, the Event
keyword is little more than syntactic sugar, which can be used to save you some typing time.

To illustrate these new keywords, let’s reconfigure the Car class to make use of VB 2005 events,
rather than raw delegates. First, you need to define the events themselves using the VB .NET Event
keyword. Notice that events are defined with regards to the set of parameters passed into the regis-
tered handler:

Public Class Car

...

' This car can send these events.

Public Event Exploded(ByVal msg As String)

Public Event AboutToBlow(ByVal msg As String)

...

End Class

Firing an Event Using the RaiseEvent Keyword
Firing an event is as simple as specifying the event by name (with any specified parameters) using
the RaiseEvent keyword. To illustrate, update the previous implementation of Accelerate() to send
each event accordingly:

Public Sub Accelerate(ByVal delta As Integer)

If carIsDead Then

' If the car is doomed, raise Exploded event.

RaiseEvent Exploded("Sorry, this car is dead...")

Else

currSpeed += delta

' Are we almost doomed? If so, send out AboutToBlow event.

If 10 = maxSpeed - currSpeed Then

RaiseEvent AboutToBlow("Careful buddy! Gonna blow!")

End If

If currSpeed >= maxSpeed Then

carIsDead = True

Else

Console.WriteLine("->CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

With this, you have configured the car to send two custom events (under the correct conditions).
You will see the usage of this new automobile in just a moment, but first, let’s dig a bit deeper into
the VB 2005 Event keyword.

Events Under the Hood
A VB 2005 event actually encapsulates a good deal of information. Each time you declare an event
with the Event keyword, the compiler generates the following information within the defining class:

5785ch10.qxd 3/31/06 10:51 AM Page 297

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS298

• A new hidden, nested delegate is created automatically and added to your class. The name of
this delegate is always EventName+EventHandler. For example, if you have an event named
Exploded, the autogenerated delegate is named ExplodedEventHandler.

• Two hidden public functions, one having an “add_” prefix, the other having a “remove_” prefix,
are automatically added to your class. These are used internally to call Delegate.Combine()
and Delegate.Remove(), in order to add and remove methods to/from the list maintained by
the delegate.

• A new hidden member variable is added to your class that represents a new instance of the
autogenerated delegate type (see the first bullet item).

As you can see, the Event keyword is indeed a timesaver as it instructs the compiler to author
the same sort of code you created manually when using the delegate type directly!

If you were to compile the CarEvent example and load the assembly into ildasm.exe, you could
check out the CIL instructions behind the compiler-generated add_AboutToBlow(). Notice it calls
Delegate.Combine() on your behalf. Also notice that the parameter passed to add_AboutToBlow() is
an instance of the autogenerated AboutToBlowEventHandler delegate:

.method public specialname instance void

add_AboutToBlow(class CarEvent.Car/AboutToBlowEventHandler obj)

cil managed synchronized

{

...

IL_0008: call class [mscorlib]System.Delegate

[mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate,

class [mscorlib]System.Delegate)

...

} // end of method Car::add_AboutToBlow

Furthermore, remove_AboutToBlow() makes the call to Delegate.Remove() automatically, passing
in the incoming AboutToBlowEventHandler delegate:

.method public specialname instance void

remove_AboutToBlow(class CarEvent.Car/AboutToBlowEventHandler obj)

cil managed synchronized

{

...

IL_0008: call class [mscorlib]System.Delegate

[mscorlib]System.Delegate::Remove(class [mscorlib]System.Delegate,

class [mscorlib]System.Delegate)

...

} // end of method Car::remove_AboutToBlow

The CIL instructions for the event declaration itself makes use of the .addon and .removeon CIL
tokens to connect the correct add_XXX() and remove_XXX() methods:

.event CarEvents.Car/EngineHandler AboutToBlow

{

.addon

void CarEvents.Car::add_AboutToBlow(class CarEvents.Car/EngineHandler)

.removeon

void CarEvents.Car::remove_AboutToBlow(class CarEvents.Car/EngineHandler)

} // end of event Car::AboutToBlow

Perhaps most important, if you check out the CIL behind this iteration of the Accelerate()
method, you find that the delegate is invoked on your behalf. Here is a partial snapshot of the CIL
that invokes the invocation list maintained by the ExplodedEventHandler delegate:

5785ch10.qxd 3/31/06 10:51 AM Page 298

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 299

.method public instance

void Accelerate(int32 delta) cil managed

{

...

IL_001d: callvirt

instance void CarEvents.Car/ExplodedEventHandler::Invoke(string)

...

}

As you can see, the VB 2005 Event keyword is quite helpful, given that it builds and manipulates
raw delegates on your behalf. As you saw earlier in this chapter, however, you are able to directly
manipulate delegates if you so choose.

Hooking into Incoming Events Using WithEvents and Handles
Now that you understand how to build a class that can send events, the next big question is how you
can configure an object to receive these events. Assume you have now created an instance of the Car
class and want to listen to the events it is capable of sending.

The first step is to declare a member variable for which you wish to process incoming events
using the WithEvents keyword. Next, you will associate an event to a particular event handler using
the Handles keyword. For example:

Module Program

' Declare member variables 'WithEvents' to

' capture the events.

Dim WithEvents c As New Car("NightRider", 50)

Sub Main()

Console.WriteLine("***** Fun with Events *****")

Dim i As Integer

For i = 0 To 5

c.Accelerate(10)

Next

End Sub

' Event Handlers.

Public Sub MyExplodedHandler(ByVal s As String) _

Handles c.Exploded

Console.WriteLine(s)

End Sub

Public Sub MyAboutToDieHandler(ByVal s As String) _

Handles c.AboutToBlow

Console.WriteLine(s)

End Sub

End Module

In many ways, things look more or less like traditional VB 6.0 event logic. The only new spin is
the fact that the Handles keyword is now used to connect the handler to an object’s event.

■Note As you may know, VB 6.0 demanded that event handlers always be named using very strict naming
conventions (NameOfTheObject_NameOfTheEvent) that could easily break as you renamed the objects in your
code base. With the VB 2005 Handles keyword, however, the name of your event handlers can be anything you choose.

5785ch10.qxd 3/31/06 10:51 AM Page 299

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS300

Multicasting Using the Handles Keyword
Another extremely useful aspect of the Handles statement is the fact that you are able to configure
multiple methods to process the same event. For example, if you update your module as follows:

Module Program

...

Public Sub MyExplodedHandler(ByVal s As String) _

Handles c.Exploded

Console.WriteLine(s)

End Sub

' Both of these handlers will be called when AboutToBlow is fired.

Public Sub MyAboutToDieHandler(ByVal s As String) _

Handles c.AboutToBlow

Console.WriteLine(s)

End Sub

Public Sub MyAboutToDieHandler2(ByVal s As String) _

Handles c.AboutToBlow

Console.WriteLine(s)

End Sub

End Module

you would see the incoming String object sent by the AboutToBlow event print out twice, as we have
handled this event using two different event handlers.

Defining a Single Handler for Multiple Events
The Handles keyword also allows you to define a single handler to (pardon the redundancy) handle
multiple events, provided that the events are passing in the same set of arguments. This should make
sense, as the VB 2005 Event keyword is simply a shorthand notation for working with type-safe delegates.
In our example, given that the Exploded and AboutToBlow events are both passing a single string by
value, we could intercept each event using the following handler:

Module Program

Dim WithEvents c As New Car("NightRider", 50)

Sub Main()

Console.WriteLine("***** Fun with Events *****")

Dim i As Integer

For i = 0 To 5

c.Accelerate(10)

Next

End Sub

' A single handler for each event.

Public Sub MyExplodedHandler(ByVal s As String) _

Handles c.Exploded, c.AboutToBlow

Console.WriteLine(s)

End Sub

End Module

■Source Code The CarEvents project is located under the Chapter 10 subdirectory.

5785ch10.qxd 3/31/06 10:51 AM Page 300

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 301

Dynamically Hooking into Incoming Events with AddHandler/
RemoveHandler
Currently, we have been hooking into an event by explicitly declaring the variable using the WithEvents
keyword. When you do so, you make a few assumptions in your code:

• The variable is not a local variable, but a member variable of the defining type (Module, Class,
or Structure).

• You wish to be informed of the event throughout the lifetime of your application.

Given these points, it is not possible to declare a local variable using the WithEvents keyword:

Sub Main()

' Error! Local variables cannot be

' declared 'with events'.

Dim WithEvents myCar As New Car()

End Sub

However, under the .NET platform, you do have an alternative method that may be used to
hook into an event. It is possible to declare a local object (as well as a member variable of a type)
without using the WithEvents keyword, and dynamically rig together an event handler at runtime.

To do so, you ultimately need to call the correct autogenerated add_XXX() method to ensure
that your method is added to the list of function pointers maintained by the Car’s internal delegate
(remember, the Event keyword expands to produce—among other things—a delegate type). Of course,
you do not call add_XXX() directly, but rather use the VB 2005 AddHandler statement.

As well, if you wish to dynamically remove an event handler from the underlying delegate’s invoca-
tion list, you can indirectly call the compiler-generated remove_XXX() method using the RemoveHandler
statement.

In a nutshell, AddHandler/RemoveHandler allows us to gain “delegate-like” functionality without
directly interacting defining the delegate types. Consider the following reworked Main() method:

Module Program

Sub Main()

Console.WriteLine("***** Fun with AddHandler/RemoveHandler *****")

' Note lack of WithEvents keyword.

Dim c As New Car("NightRider", 50)

' Dynamically hook into event using AddHandler.

AddHandler c.Exploded, AddressOf CarEventHandler

AddHandler c.AboutToBlow, AddressOf CarEventHandler

For i As Integer = 0 To 5

c.Accelerate(10)

Next

Console.ReadLine()

End Sub

' Event Handler for both events

' (note lack of Handles keyword).

Public Sub CarEventHandler(ByVal s As String)

Console.WriteLine(s)

End Sub

End Module

5785ch10.qxd 3/31/06 10:51 AM Page 301

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS302

As you can see, the AddHandler statement requires the name of the event you want to listen to,
and the address of the method that will be invoked when the event is sent. Here, you also routed each
event to a single handler (which is of course not required). As well, if you wish to enable multicasting,
simple use the AddHandler statement multiple times and specify unique targets:

' Multicasting!

AddHandler c.Exploded, AddressOf MyExplodedHandler

AddHandler c. Exploded, AddressOf MySecondExplodedHandler

RemoveHandler works in the same manner. If you wish to stop receiving events from a particular
object, you may do so using the following syntax:

' Dynamically unhook a handler using RemoveHandler.

RemoveHandler c. Exploded, AddressOf MySecondExplodedHandler

At this point you may wonder when (or if) you would ever need to make use of the AddHandler
and RemoveHandler statements, given that VB 2005 supports the WithEvents syntax. Again, understand
that this approach is very powerful, given that you have the ability to detach from an event source
at will.

When you make use of the WithEvent keyword, you will continuously receive events from the
source object until the object dies (which typically means until the client application is terminated).
Using the RemoveHandler statements, you can simply tell the object “Stop sending me this event,”
even though the object may be alive and well in memory.

■Source Code The DynamicCarEvents project is located under the Chapter 10 subdirectory.

Defining a “Prim-and-Proper” Event
Truth be told, there is one final enhancement we could make to our CarEvents examples that mirrors
Microsoft’s recommended event pattern. As you begin to explore the events sent by a given type in
the base class libraries, you will find that the target method’s first parameter is a System.Object, while
the second parameter is a type deriving from System.EventArgs.

The System.Object argument represents a reference to the object that sent the event (such as
the Car), while the second parameter represents information regarding the event at hand. The
System.EventArgs base class represents an event that is not sending any custom information:

Public Class EventArgs

Public Shared ReadOnly Empty As EventArgs

Shared Sub New()

End Sub

Public Sub New()

End Sub

End Class

Our current examples have specified the parameters they send directly within the definition of
the event itself:

Public Class Car

...

' Notice we are specifying the event arguments directly.

Public Event Exploded(ByVal msg As String)

Public Event AboutToBlow(ByVal msg As String)

...

End Class

5785ch10.qxd 3/31/06 10:51 AM Page 302

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 303

As you have learned, the compiler will take these arguments to define a proper delegate behind
the scenes. While this approach is very straightforward, if you do wish to follow the recommended
design pattern, the Exploded and AboutToBlow events should be retrofitted to send a System.Object

and System.EventArgs descendent.
Although you can pass an instance of EventArgs directly, you lose the ability to pass in custom

information to the registered event handler. Thus, when you wish to pass along custom data, you
should build a suitable class deriving from EventArgs. For our example, assume we have a class named
CarEventArgs, which maintains a string representing the message sent to the receiver:

Public Class CarEventArgs

Inherits EventArgs

Public ReadOnly msgData As String

Public Sub New(ByVal msg As String)

msgData = msg

End Sub

End Class

With this, we would now update the events sent from the Car type like so:

Public Class Car

...

' These events follow Microsoft design guidelines.

Public Event Exploded(ByVal sender As Object, ByVal e As CarEventArgs)

Public Event AboutToBlow(ByVal sender As Object, ByVal e As CarEventArgs)

...

End Class

When firing our events from within the Accelerate() method, we would now need to supply
a reference to the current Car (via the Me keyword) and an instance of our CarEventArgs type:

Public Sub Accelerate(ByVal delta As Integer)

If carIsDead Then

' If the car is doomed, send out the Exploded notification.

RaiseEvent Exploded(Me, New CarEventArgs("This car is doomed..."))

Else

currSpeed += delta

' Are we almost doomed? If so, send out AboutToBlow notification.

If 10 = maxSpeed - currSpeed Then

RaiseEvent AboutToBlow(Me, New CarEventArgs("Slow down!"))

End If

If currSpeed >= maxSpeed Then

carIsDead = True

Else

Console.WriteLine("->CurrSpeed = {0}", currSpeed)

End If

End If

End Sub

On the caller’s side, all we would need to do is update our event handlers to receive the incoming
parameters and obtain the message via our read-only field. For example:

' Assume this event was handled using AddHandler.

Public Sub AboutToBlowHandler(ByVal sender As Object, ByVal e As CarEventArgs)

Console.WriteLine("{0} says: {1}", sender, e.msgData)

End Sub

5785ch10.qxd 3/31/06 10:51 AM Page 303

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS304

If the receiver wishes to interact with the object that sent the event, we can explicitly cast the
System.Object. Thus, if we wish to power down the radio when the Car object is about to meet its
maker, we could author an event handler looking something like the following:

' Assume this event was handled using AddHandler.

Public Sub ExplodedHandler(ByVal sender As Object, ByVal e As CarEventArgs)

If TypeOf sender Is Car Then

Dim c As Car = CType(sender, Car)

c.CrankTunes(False)

End If

Console.WriteLine("Critical message from {0}: {1}", sender, e.msgData)

End Sub

■Source Code The PrimAndProperEvent project is located under the Chapter 10 subdirectory.

Defining Events in Terms of Delegates
As I am sure you have figured out by now (given that I have mentioned it numerous times), the VB 2005
Event keyword automatically creates a delegate behind the scenes. However, if you have already
defined a delegate type, you are able to associate it to an event using the As keyword. By doing so,
you inform the VB 2005 compiler to make use of your delegate-specific type, rather than generating
a delegate class on the fly. For example:

Public Class Car

...

' Define the delegate used for these events

Public Delegate Sub CarDelegate(ByVal sender As Object, ByVal e As CarEventArgs)

' Now associate the delegate to the event.

Public Event Exploded As CarDelegate

Public Event AboutToBlow As CarDelegate

...

End Class

The truth of the matter is that you would seldom (if ever) need to follow this approach to define
an event using VB 2005. However, now that you understand this alternative syntax for event declaration,
we can address the final topic of this chapter and come to understand a new event-centric keyword
introduced with Visual Basic 2005: Custom.

Customizing the Event Registration Process
Although a vast majority of your applications will simply make use of the Event, Handles, and RaiseEvent
keywords, .NET 2.0 now supplies Visual Basic 2005 with a new event-centric keyword named Custom.
As the name implies, this allows you to author custom code that will execute when a caller interacts
with an event or when the event is raised in your code.

The first question probably on your mind is what exactly is meant by “customizing the event
process”? Simply put, using the Custom keyword, you are able to author code that will execute when
the caller registers with an event via AddHandler or detaches from an event via RemoveHandler, or
when your code base sends the event via RaiseEvent. Custom events also have a very important
restriction:

• The event must be defined in terms of a specific delegate.

5785ch10.qxd 3/31/06 10:51 AM Page 304

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 305

In many cases, the delegate you associate to the event will be a standard type that ships with
the base class libraries named System.EventHandler (although as you will see, you can make use of
any delegate, including custom delegates you have created yourself). The System.EventHandler
delegate can point to any method that takes a System.Object as the first parameter and a System.

EventArgs as the second. Given this requirement, here is a skeleton of what a custom event looks
like in the eyes of VB 2005:

Public Custom Event MyEvent As RelatedDelegate

' Triggered when caller uses AddHandler.

AddHandler(ByVal value As RelatedDelegate)

End AddHandler

' Triggered when caller uses RemoveHandler.

RemoveHandler(ByVal value As RelatedDelegate)

End RemoveHandler

' Triggered when RaiseEvent is called.

RaiseEvent(Parameters required by RelatedDelegate)

End RaiseEvent

End Event

As you can see, a custom event is defined in terms of the associated delegate via the As keyword.
Next, notice that within the scope of the custom event we have three subscopes that allow us to
author code to execute when the AddHandler, RemoveHandler, or RaiseEvent statements are used.

Defining a Custom Event
To illustrate, assume a simple Car type that defines a custom event named EngineStart, defined in
terms of the standard System.EventHandler delegate. The Car defines a member variable of type
ArrayList that will be used to hold onto each of the incoming delegate objects passed by the caller
(very much like our interface-based approach shown at the beginning of this chapter).

Furthermore, when the Car fires the EngineStart event (from a method named Start()) our
customization of RaiseEvent will iterate over each connection to invoke the client-side event han-
dler. Ponder the following class definition:

Public Class Car

' This ArrayList will hold onto the delegates

' sent from the caller.

Private arConnections As New ArrayList

' This event has been customized!

Public Custom Event EngineStart As System.EventHandler

AddHandler(ByVal value As EventHandler)

Console.WriteLine("Added connection")

arConnections.Add(value)

End AddHandler

RemoveHandler(ByVal value As System.EventHandler)

Console.WriteLine("Removed connection")

arConnections.Remove(value)

End RemoveHandler

RaiseEvent(ByVal sender As Object, ByVal e As System.EventArgs)

For Each h As EventHandler In arConnections

Console.WriteLine("Raising event")

h(sender, e)

5785ch10.qxd 3/31/06 10:51 AM Page 305

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS306

Figure 10-7. Interacting with a custom event

Next

End RaiseEvent

End Event

Public Sub Start()

RaiseEvent EngineStart(Me, New EventArgs())

End Sub

End Class

Beyond adding (and removing) System.EventHandler delegates to the ArrayList member vari-
able, the other point of interest to note is that the implementation of Start() must now raise the
EngineStart event by passing a System.Object (representing the sender of the event) and a new
System.EventArgs, given the use of the System.EventHandler delegate (that was a mouthful!). Also
recall that we are indirectly calling Invoke() on each System.EventHandler delegate to invoke the
target in a synchronous manner:

' We could also call Invoke() directly

' like so: h.Invoke(sender, e)

h(sender, e)

On the caller’s side, we could now proceed as expected using AddHandler and RemoveHandler:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Custom Events *****")

Dim c As New Car()

' Dynamically hook into event.

AddHandler c.EngineStart, AddressOf EngineStartHandler

c.Start()

' Just to trigger our custom logic.

RemoveHandler c.EngineStart, AddressOf EngineStartHandler

' Just to test we are no longer sending event.

c.Start()

Console.ReadLine()

End Sub

' Our handler must match this signature given that

' EngineStart has been prototyped using the System.EventHandler delegate.

Public Sub EngineStartHandler(ByVal sender As Object, ByVal e As EventArgs)

Console.WriteLine("Car has started")

End Sub

End Module

The output can be seen in Figure 10-7. While not entirely fascinating, we are able to verify that
our custom code statements are executing whenever AddHandler, RemoveHandler, or RaiseEvent is
used in our code base.

5785ch10.qxd 3/31/06 10:51 AM Page 306

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 307

■Note If the caller invokes an event on a member variable declared using the WithEvents modifier, the custom
AddHandler and RemoveHandler scope is (obviously) not executed.

■Source Code The CustomEvent project is located under the Chapter 10 subdirectory.

Custom Events Using Custom Delegates
Currently, our custom event has been defined in terms of a standard delegate named System.
EventHandler. As you would guess, however, we can make use of any delegate that meets our
requirements, including our own custom delegate. Here would be a retrofitted Car type that is now
making use of a custom delegate named CarDelegate (which takes our CarEventArgs as a second
parameter):

Public Class Car

' The custom delegate.

Public Delegate Sub CarDelegate(ByVal sender As Object, _

ByVal args As CarEventArgs)

Private arConnections As New ArrayList

' Now using CarDelegate.

Public Custom Event EngineStart As CarDelegate

AddHandler(ByVal value As CarDelegate)

Console.WriteLine("Added connection")

arConnections.Add(value)

End AddHandler

RemoveHandler(ByVal value As CarDelegate)

Console.WriteLine("Removed connection")

arConnections.Remove(value)

End RemoveHandler

RaiseEvent(ByVal sender As Object, ByVal e As CarEventArgs)

For Each h As CarDelegate In arConnections

Console.WriteLine("Raising event")

h.Invoke(sender, e)

Next

End RaiseEvent

End Event

Public Sub Start()

RaiseEvent EngineStart(Me, New CarEventArgs("Enjoy the ride"))

End Sub

End Class

The caller’s code would now be modified to make sure that the event handlers take a CarEventArgs

as the second parameter, rather than the System.EventArgs type required by the System.EventHandler
delegate:

Module Program

...

Public Sub EngineStartHandler(ByVal sender As Object, ByVal e As CarEventArgs)

Console.WriteLine("Message from {0}: {1}", sender, e.msgData)

End Sub

End Module

5785ch10.qxd 3/31/06 10:51 AM Page 307

CHAPTER 10 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS308

Now that you have seen the process of building a custom event, you might be wondering when
you might need to do so. While the simple answer is “whenever you want to customize the event
process,” a very common use of this technique is when you wish to fire out events in a nonblocking
manner using secondary threads of execution. However, at this point in the text, I have yet to dive
into the details of the System.Threading namespace or the asynchronous nature of the delegate type
(see Chapter 16 for details). In any case, just understand that the Custom keyword allows you to author
custom code statements that will execute during the handing and sending of events.

■Source Code The CustomEventWithCustomDelegate project is located under the Chapter 10 subdirectory.

Summary
Over the course of this chapter you have seen numerous approaches that can be used to “connect”
two objects in order to enable a two-way conversation (interface types, delegates, and the VB 2005
event architecture). Recall that the Delegate keyword is used to indirectly construct a class derived
from System.MulticastDelegate. As you have seen, a delegate is simply an object that maintains
a list of methods to call when told to do so (most often using the Invoke() method).

Next, we examined the Event, RaiseEvent, and WithEvents keywords. Although they have been
retrofitted under the hood to work with .NET delegates, they look and feel much the same as the
legacy event-centric keywords of VB 6.0. As you have seen, VB .NET now supports the Handles statement,
which is used to syntactically associate an event to a given method (as well as enable multicasting).

You also examined the process of hooking into (and detaching from) an event dynamically
using the AddHandler and RemoveHandler statements. This is a very welcome addition to the Visual
Basic language, given that you now have a type-safe way to dynamically intercept events on the fly.
Finally, you learned about the new Custom keyword, which allows you to control how events are
handled and sent by a given type.

The output can be seen in Figure 10-8.

Figure 10-8. Interacting with a custom event, take two

5785ch10.qxd 3/31/06 10:51 AM Page 308

C H A P T E R 1 1

■ ■ ■

Advanced VB 2005 Programming
Constructs

This chapter will complete your investigation of the core syntax and semantics of the Visual Basic
2005 language by examining a number of slightly more advanced programming techniques. We
begin by examining the various “preprocessor” directives that are supported by the VB 2005 compiler
(#If, #ElseIf, etc.) and the construction of code regions (à la #Region/#End Region).

Next up, you will come to understand the gory details of value types and reference types (and
various combinations thereof). As you will see, the CLR handles structure and class variables very
differently in regards to their memory allocation. At this time, you will revisit the ByVal and ByRef
keywords to see how they handle value types and reference types under the hood. At this time, you
will also come to understand the role of boxing and unboxing operations.

The remainder of this chapter will concentrate on several new programming constructs sup-
ported by VB 2005 with the release of .NET 2.0. Here you will come to understand the role of operator
overloading and the creation of explicit (and implicit) conversion routines. To wrap up, you’ll check
out the role of two new casting-centric keywords (DirectCast and TryCast). At the conclusion of this
chapter, you will have a very solid grounding on the core features of the language, and be in a perfect
position to understand the topic of generics in Chapter 12.

The VB 2005 Preprocessor Directives
VB 2005, like many other C-based programming languages, supports the use of various tokens that
allow you to interact with the compilation process. Before examining various VB 2005 preprocessor
directives, let’s get our terminology correct. The term “VB 2005 preprocessor directive” is not entirely
accurate. In reality, this term is used only for consistency with the C and C++ programming languages.
In VB 2005, there is no separate preprocessing step. Rather, preprocessor directives are processed as
part of the lexical analysis phase of the compiler.

In any case, the syntax of the VB 2005 preprocessor directives is very similar to that of the other
members of the C family, in that the directives are always prefixed with the pound sign (#). Table 11-1
defines some of the more commonly used directives (consult the .NET Framework 2.0 SDK docu-
mentation for complete details).

309

5785ch11.qxd 3/31/06 1:50 PM Page 309

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS310

Table 11-1. Common VB 2005 Preprocessor Directives

Directives Meaning in Life

#Region, #End Region Although not technically “preprocessor directives” in the classic
definition of the term (as they are ignored by the compiler), these
tokens are used to mark sections of collapsible source code within
the editor.

#Const Used to define conditional compilation symbols.

#If, #ElseIf, #Else, #End If Used to conditionally skip sections of source code (based on
specified compilation symbols).

Specifying Code Regions
Perhaps some of the most useful of all directives are #Region and #End Region. Using these tags, you
are able to specify a block of code that may be hidden from view and identified by a friendly textual
marker. Use of regions can help keep lengthy *.vb files more manageable. For example, you could
create one region for a type’s constructors, another for type properties, and so forth:

Class Car

Private petName As String

Private currSp As Integer

#Region "Constructors"

Public Sub New()

...

End Sub

Public Sub New(ByVal currSp As Integer, ByVal petName As String)

...

End Sub

#End Region

#Region "Properties"

Public Property Speed() As Integer

...

End Property

Public Property Name() As String

...

End Property

#End Region

End Class

When you place your mouse cursor over a collapsed region, you are provided with a snapshot
of the code lurking behind, as you see in Figure 11-1.

5785ch11.qxd 3/31/06 1:50 PM Page 310

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 311

Figure 11-1. Code regions allow you to define a set of collapsible code statements.

Do be aware that not all .NET IDEs support the use of regions. If you are making use of Visual
Studio 2005, Visual Basic 2005 Express, or SharpDevelop, you will be happy to find regions are sup-
ported. Other .NET IDEs (including simple text editors such as TextPad or NotePad) ignore the #Region
and #End Region directives completely.

■Note Visual Basic 2005 does not allow you to define regions within the scope of a property or method. Rather,
regions are used to group related members or types.

Conditional Code Compilation
The next batch of preprocessor directives (#If, #ElseIf, #Else, #End If) allow you to conditionally
compile a block of code, based on predefined symbols. The classic use of these directives is to iden-
tify a block of code that is compiled only under a debug (rather than a release) build:

Module Program

Sub Main()

' This code will only execute if the project is

' compiled as a Debug build.

#If DEBUG Then

Console.WriteLine("***** In Debug Mode! *****")

Console.WriteLine("App directory: {0}", _

Environment.CurrentDirectory)

Console.WriteLine("Box: {0}", _

Environment.MachineName)

Console.WriteLine("OS: {0}", _

Environment.OSVersion)

Console.WriteLine(".NET Version: {0}", _

Environment.Version)

#End If

End Sub

End Module

5785ch11.qxd 3/31/06 1:50 PM Page 311

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS312

Here, you are checking for a symbol named DEBUG. If it is present, you dump out a number of
interesting statistics using some shared members of the System.Environment class. If the DEBUG sym-
bol is not defined, the code placed between #If and #End If will not be compiled into the resulting
assembly, and it will be effectively ignored.

■Note When you create a new VB 2005 project with Visual Studio 2005, you are automatically configured to
compile under a Debug mode. Before you ship the software, be sure to recompile your application under Release
mode as this typically results in a more compact and better performing assembly. Debug/Release mode can be set
using the Debug tab of the My Project Properties page.

Defining Symbolic Constants
By default, Visual Studio 2005 always defines a DEBUG symbol; however, this can be prevented by
deselecting the Define DEBUG constant check box of the Advanced Compile Options dialog box
located under the Compile tab of the My Project Properties page. Assuming you did disable this
autogenerated DEBUG symbol, you could now define this symbol on a file-by-file basis using the
#Const preprocessor directive.

When you use this directive, you must make a value assignment to your symbol. If this value is
zero, you have just disabled this constant for the given file. This can be helpful when you wish to
define an application-wide constant, but selectively ignore its presence on a file-by-file basis. When
the value is set to any value other than zero, the constant is enabled. For example:

' The DEBUG constant was disabled in the My Project

' property page, but defined and enabled in this file.

#Const DEBUG = 1

Module Program

Sub Main()

' This code will only execute if the project is

' compiled as a Debug build.

#If DEBUG Then

...

#End If

End Sub

End Module

While you typically would have no need to disable the autogenerated DEBUG constant, the
#Const directive allows you to define any number of custom preprocessor symbols for your projects.
For example, assume you have authored a VB 2005 class that should be compiled a bit differently
under the Mono distribution of .NET (see Chapter 1). Using #Const, you can define a symbol named
MONO_BUILD on a file-by-file basis:

#Const MONO_BUILD = 1

Class SomeClass

Public Sub SomeMethod()

#If MONO_BUILD Then

Console.WriteLine("Compiling under Mono!")

#Else

Console.WriteLine("Compiling under Microsoft .NET")

#End If

End Sub

End Class

5785ch11.qxd 3/31/06 1:50 PM Page 312

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 313

Figure 11-2. Defining project-wide symbolic precompilation constants

Here, the #Const directive has been used to define (or disable) a preprocessor constant on
a file-by-file basis. To create a project-wide symbol, make use of the Custom Constants text box
located in the Advanced Compile Options dialog box located under the Compile tab of the My
Project Properties page (see Figure 11-2).

Cool! Now that you understand the role of the VB 2005 preprocessor directives, we can turn our
attention to a meatier topic that you should be well aware of: the value type/reference type distinction.

■Source Code The Preprocessor project is located under the Chapter 11 subdirectory.

Understanding Value Types and Reference Types
Like any programming language, VB 2005 defines a number of keywords that represent basic data
types such as whole numbers, character data, floating-point numbers, and Boolean values. Each of
these intrinsic types are fixed entities in the CTS, meaning that when you create an integer variable
(which is captured using the Integer keyword in VB 2005), all .NET-aware languages understand the
fixed nature of this type, and all agree on the range it is capable of handling.

Specifically speaking, a .NET data type may be value-based or reference-based. Value-based
types, which include all numerical data types (Integer, Double, etc.), as well as enumerations and
structures, are allocated on the stack. Given this factoid, value types can be quickly removed from
memory once they fall out of the defining scope:

' Integers are value types!

Public Sub SomeMethod()

Dim i As Integer = 0

5785ch11.qxd 3/31/06 1:50 PM Page 313

Console.WriteLine("Value of i is: {0}", i)

End Sub ' i is popped off the stack here!

When you assign one value type to another, a member-by-member copy is achieved by default.
In terms of numerical or Boolean data types, the only “member” to copy is the value of the variable
itself:

' Assigning two intrinsic value types results in

' two independent variables on the stack.

Public Sub SomeOtherMethod()

Dim i As Integer = 99

Dim k As Integer = i

' After the following assignment, 'i' is still 99.

k = 8732

End Sub

While the previous example is no major newsflash, understand that .NET structures and
enumerations are also value types. Structures, as you may recall from Chapter 4, provide a way to
achieve the bare-bones benefits of object orientation (i.e., encapsulation) while having the effi-
ciency of stack-allocated data. Like a class, structures can take constructors (provided they have
arguments) and define any number of members (properties, fields, subroutines, etc.).

All structures are implicitly derived from a class named System.ValueType. Functionally, the
only purpose of System.ValueType is to override the virtual methods defined by System.Object to
honor value-based, versus reference-based, semantics. In fact, the instance methods defined by
System.ValueType are identical to those of System.Object, as you can see from the following method
prototypes:

' Structures and enumerations extend System.ValueType.

Public MustInherit Class ValueType

Inherits Object

Public Overrides Function Equals(ByVal obj As Object) As Boolean

Public Overrides Function GetHashCode() As Integer

Public Overrides Function ToString() As String

End Class

Assume you have created a VB 2005 structure named MyPoint, using the VB 2005 Structure

keyword:

' Structures are value types!

Structure MyPoint

Public x, y As Integer

End Structure

To allocate a structure type, you may make use of the New keyword, which may seem counterin-
tuitive given that we typically think New always implies heap allocation. This is part of the smoke and
mirrors maintained by the CLR. As programmers, we can assume everything can be treated as an
object. However, when the runtime encounters a type derived from System.ValueType, stack alloca-
tion is achieved:

' Still on the stack!

Dim p As New MyPoint()

As an alternative, structures can be allocated without using the New keyword:

Dim p1 As MyPoint

p1.x = 100

p1.y = 100

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS314

5785ch11.qxd 3/31/06 1:50 PM Page 314

Figure 11-3. Assigning one value type to another results in a bitwise copy of the field data.

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 315

In either case, the MyPoint variable is allocated on the stack, and will be removed from memory
as soon as the defining scope exits.

Value Types, References Types, and the Assignment Operator
Now, consider the following Main() method and observe the output shown in Figure 11-3:

Sub Main()

Console.WriteLine("***** Value Types / Reference Types *****")

Console.WriteLine("-> Creating p1")

Dim p1 As New MyPoint()

p1.x = 100

p1.y = 100

Console.WriteLine("-> Assigning p2 to p1")

Dim p2 As MyPoint = p1

' Here is p1.

Console.WriteLine("p1.x = {0}", p1.x)

Console.WriteLine("p1.y = {0}", p1.y)

' Here is p2.

Console.WriteLine("p2.x = {0}", p2.x)

Console.WriteLine("p2.y = {0}", p2.y)

' Change p2.x. This will NOT change p1.x.

Console.WriteLine("-> Changing p2.x to 900")

p2.x = 900

' Print again.

Console.WriteLine("-> Here are the X values again...")

Console.WriteLine("p1.x = {0}", p1.x)

Console.WriteLine("p2.x = {0}", p2.x)

Console.ReadLine()

End Sub

Here you have created a variable of type MyPoint (named p1) that is then assigned to another
MyPoint (p2). Because MyPoint is a value type, you have two copies of the MyPoint type on the stack,

5785ch11.qxd 3/31/06 1:50 PM Page 315

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS316

each of which can be independently manipulated. Therefore, when you change the value of p2.x,
the value of p1.x is unaffected (just like the behavior seen in the previous Integer example).

In stark contrast, reference types (classes) are allocated on the managed heap. These objects
stay in memory until the .NET garbage collector destroys them. By default, assignment of reference
types results in a new reference to the same object on the heap. To illustrate, let’s change the defini-
tion of the MyPoint type from a VB 2005 structure to a VB 2005 class:

' Classes are always reference types.

Class MyPoint

Public x, y As Integer

End Class ' Now a class!

If you were to run the test program once again, you would notice a change in behavior (see
Figure 11-4).

In this case, you have two references pointing to the same object on the managed heap. There-
fore, when you change the value of x using the p2 reference, p1.x reports the same value.

Value Types Containing Reference Types
Now that you have a better feeling for the differences between value types and reference types, let’s
examine a more complex example. Assume you have the following reference (class) type that main-
tains an informational string that can be set using a custom constructor:

Class ShapeInfo

Public infoString As String

Public Sub New(ByVal info As String)

infoString = info

End Sub

End Class

Now assume that you want to contain a variable of this class type within a value type named
MyRectangle. To allow the outside world to set the value of the inner ShapeInfo, you also provide
a custom constructor (as explained in just a bit, the default constructor of a structure is reserved
and cannot be redefined):

Structure MyRectangle

' The MyRectangle structure contains a reference type member.

Public rectInfo As ShapeInfo

Public top, left, bottom, right As Integer

Figure 11-4. Assigning one reference type to another results in redirecting the reference.

5785ch11.qxd 3/31/06 1:50 PM Page 316

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 317

Figure 11-5. r1 and r2 are both pointing to the same ShapeInfo object!

Public Sub New(ByVal info As String)

rectInfo = New ShapeInfo(info)

top = 10 : left = 10

bottom = 10 : right = 100

End Sub

End Structure

At this point, you have contained a reference type within a value type. The million-dollar ques-
tion now becomes, what happens if you assign one MyRectangle variable to another? Given what
you already know about value types, you would be correct in assuming that the Integer field data
(which are indeed structures) should be independent entities for each MyRectangle variable. But
what about the internal reference type? Will the object’s state be fully copied, or will the reference to
that object be copied? Consider the following updated Main() method and check out Figure 11-5 for
the answer.

Sub Main()

' Previous code commented out...

' Create the first MyRectangle.

Console.WriteLine("-> Creating r1")

Dim r1 As New MyRectangle("This is my first rect")

' Now assign a new MyRectangle to r1.

Console.WriteLine("-> Assigning r2 to r1")

Dim r2 As MyRectangle

r2 = r1

' Change values of r2.

Console.WriteLine("-> Changing all values of r2")

r2.rectInfo.infoString = "This is new info!"

r2.bottom = 4444

' Print values

Console.WriteLine("-> Values after change:")

Console.WriteLine("-> r1.rectInfo.infoString: {0}", r1.rectInfo.infoString)

Console.WriteLine("-> r2.rectInfo.infoString: {0}", r2.rectInfo.infoString)

Console.WriteLine("-> r1.bottom: {0}", r1.bottom)

Console.WriteLine("-> r2.bottom: {0}", r2.bottom)

End Sub

When you run this program, you will find that when you change the value of the informational
string using the r2 reference, the r1 reference displays the same value.

5785ch11.qxd 3/31/06 1:50 PM Page 317

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS318

By default, when a value type contains other reference types, assignment results in a copy of
the references. In this way, you have two independent structures, each of which contains a reference
pointing to the same object in memory (i.e., a “shallow copy”). When you want to perform a “deep
copy,” where the state of internal references is fully copied into a new object, you need to implement
the ICloneable interface (as you did in Chapter 9).

■Source Code The ValAndRef project is located under the Chapter 11 subdirectory.

Passing Reference Types by Value
Reference types can obviously be passed as parameters to functions and subroutines. However,
passing an object by reference is quite different from passing it by value. To understand the distinc-
tion, assume you have a simple Person class, defined as follows:

Class Person

Public fullName As String

Public age As Integer

Public Sub New(ByVal n As String, ByVal a As Integer)

fullName = n

age = a

End Sub

Public Sub New()

End Sub

Public Sub PrintInfo()

Console.WriteLine("{0} is {1} years old", fullName, age)

End Sub

End Class

Now, what if you create a method that allows the caller to send in the Person type by value:

Sub SendAPersonByValue(ByVal p As Person)

' Change the age of 'p'?

p.age = 99

' Will the caller see this reassignment?

p = New Person("Nikki", 999)

End Sub

Notice how the SendAPersonByValue() method attempts to reassign the incoming Person refer-
ence to a new Person object as well as change some state data. Now let’s test this method using the
following Main() method:

Sub Main()

' Passing ref types by value.

Console.WriteLine("***** Passing Person object by value *****")

Dim fred As Person = New Person("Fred", 12)

Console.WriteLine("Before by value call, Person is:")

fred.PrintInfo()

SendAPersonByValue(fred)

Console.WriteLine("After by value call, Person is:")

fred.PrintInfo()

End Sub

Figure 11-6 shows the output of this code.

5785ch11.qxd 3/31/06 1:50 PM Page 318

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 319

As you can see, the value of age has been modified. This behavior seems to fly in the face of what
it means to pass a parameter “by value.” Given that you were able to change the state of the incom-
ing Person, what was copied? The answer: a copy of the reference to the caller’s object. Therefore, as
the SendAPersonByValue() method is pointing to the same object as the caller, it is possible to alter
the object’s state data. What is not possible is to reassign what the reference is pointing to.

Passing Reference Types by Reference
Now assume you have a SendAPersonByReference() method, which passes a reference type by reference
(note the ByRef parameter modifier):

Sub SendAPersonByReference(ByRef p As Person)

' Change some data of 'p'.

p.age = 555

' 'p' is now pointing to a new object on the heap!

p = New Person("Nikki", 999)

End Sub

As you might expect, this allows complete flexibility of how the callee is able to manipulate the
incoming parameter. Not only can the callee change the state of the object, but if it so chooses, it
may also reassign the reference to a new Person object. Now ponder the following usage:

Sub Main()

' Previous code commented out...

' Passing ref types by ref.

Console.WriteLine("***** Passing Person object by reference *****")

Dim mel As New Person("Mel", 23)

Console.WriteLine("Before by ref call, Person is:")

mel.PrintInfo()

SendAPersonByReference(mel)

Console.WriteLine("After by ref call, Person is:")

mel.PrintInfo()

End Sub

As you can see from Figure 11-7, the object named mel returns after the call as an object
named Nikki.

Figure 11-6. Passing reference types by value “locks” which object the reference points to.

5785ch11.qxd 3/31/06 1:50 PM Page 319

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS320

The golden rule to keep in mind when passing reference types by reference is as follows:

• If a reference type is passed by reference, the callee may change the values of the object’s
state data as well as the object it is referencing.

■Source Code The RefTypeValTypeParams project is located under the Chapter 11 subdirectory.

Value and Reference Types: Final Details
To wrap up this topic, ponder the information in Table 11-2, which summarizes the core distinctions
between value types and reference types.

Table 11-2. Value Types and Reference Types Side by Side

Intriguing Question Value Type Reference Type

Where is this type allocated? Allocated on the stack. Allocated on the managed heap.

How is a variable represented? Value type variables are Reference type variables are
local copies. pointing to the memory

occupied by the allocated
instance.

What is the base type? Must derive from Can derive from any other
System.ValueType. type (except System.

ValueType), as long as that type
is not “sealed” (see Chapter 6).

Can this type function No. Value types are always Yes. If the type is not sealed,
as a base to other types? sealed and cannot be extended. it may function as a base to

other types.

What is the default Variables are passed by value Variables are passed by
parameter passing behavior? (i.e., a copy of the variable is reference (e.g., the address of

passed into the called function). the variable is passed into the
called function).

Can this type override No. Value types are never Yes (see Chapter 8).
System.Object.Finalize()? placed onto the heap and

therefore do not need to
be finalized.

Can I define constructors Yes, but the default constructor But of course!
for this type? is reserved (i.e., your custom

constructors must all have
arguments).

When do variables of When they fall out of the When the managed heap is
this type die? defining scope. garbage collected.

Figure 11-7. Passing reference types by reference allows you to reset what the reference points to on the heap.

5785ch11.qxd 3/31/06 1:50 PM Page 320

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 321

Despite their differences, value types and reference types both have the ability to implement
interfaces and may support any number of fields, methods, overloaded operators, constants, prop-
erties, and events.

Understanding Boxing and Unboxing Operations
Given that .NET defines two major categories of types (value based and reference based), you may
occasionally need to represent a variable of one category as a variable of the other category. The
.NET platform provides a very simple mechanism, known as boxing, to convert a value type to a ref-
erence type. Assume that you have created a variable of type Short:

' Make a short value type.

Dim s As Short = 25

If, during the course of your application, you wish to represent this value type as a reference
type, you would box the value as follows:

' Box the value into an object reference.

Dim objShort As Object = s

Boxing can be formally defined as the process of assigning a value type to a System.Object vari-
able. When you do so, the CLR allocates a new object on the heap and copies the value type’s value
(in this case, 25) into that instance. What is returned to you is a reference to the newly allocated object.
Using this technique, .NET developers have no need to make use of a set of wrapper classes used to
temporarily treat stack data as heap-allocated objects.

The opposite operation is also permitted through unboxing. Unboxing is the process of con-
verting the value held in the object back into a corresponding value type on the stack. The unboxing
operation begins by verifying that the receiving data type is equivalent to the boxed type, and if so, it
copies the value back into a local stack-based variable. For example, the following unboxing opera-
tion works successfully, given that the underlying type of the objShort is indeed a Short:

' Unbox the reference back into a corresponding short.

Dim anotherShort As Short = CType(objShort, Short)

■Note If you do not have Option Strict enabled, you are not required to explicitly cast via CType() to perform
an unboxing operation. However, given that enabling Option Strict is always a good idea, use of CType() is
necessary.

Some Practical (Un)Boxing Examples
So, you may be thinking, when would you really need to manually box (or unbox) a data type? The
previous examples were purely illustrative in nature, as there was no good reason to box (and then
unbox) the Short variable. The truth of the matter is that you will seldom—if ever—need to manually
box data types. Much of the time, the VB 2005 compiler automatically boxes variables when appro-
priate. For example, if you pass a value type into a method requiring an Object parameter, boxing
occurs behind the curtains.

Module Program

Sub Main()

' Make a value type.

Dim s As Short = 25

' Because 's' is passed into a

' method prototyped to take an Object,

' it is 'boxed' automatically.

5785ch11.qxd 3/31/06 1:50 PM Page 321

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS322

UseThisObject(s)

Console.ReadLine()

End Sub

Sub UseThisObject(ByVal o As Object)

Console.WriteLine("Value of o is: {0}", o)

End Sub

End Module

Automatic boxing also occurs when working with the types of the .NET base class libraries. For
example, recall that the System.Collections namespace (examined in Chapter 9) defines a class
type named ArrayList. Like most collection types, ArrayList provides members that allow you to
insert, obtain, and remove items. Consider the following member prototypes:

Public Class ArrayList

Implements IList, ICollection, IEnumerable, ICloneable

...

Public Overrideable Function Add(ByVal value As Object) As Integer

Public Overrideable Sub Insert(ByVal index As Integer, ByVal value As Object)

Public Overrideable Sub Remove(ByVal value As Object)

End Class

As you can see, these members operate on generic System.Object types. Given that everything
ultimately derives from this common base class, the following code is perfectly legal:

Sub Main()

...

Dim myData As New ArrayList()

myData.Add(88)

myData.Add(3.33)

myData.Add(False)

Console.ReadLine()

End Sub

However, given your understanding of value types and reference types, you might wonder exactly
what was placed into the ArrayList type. (References? Copies of references? Copies of structures?)
Just like with the previous UseThisObject() method, it should be clear that each of these value types
were indeed boxed before being placed into the ArrayList type. To retrieve an item from the ArrayList
type, you are required to unbox accordingly:

Sub Main()

...

Dim myData As New ArrayList()

myData.Add(88)

myData.Add(3.33)

myData.Add(False)

' Unbox first item from ArrayList.

Dim firstItem As Integer = CType(myData(0), Integer)

Console.WriteLine("First item is {0}", firstItem)

Console.ReadLine()

End Sub

To be sure, boxing and unboxing types takes some processing time and, if used without restraint,
could hurt the performance of your application. However, with this technique, you are able to sym-
metrically operate on value-based and reference-based types.

5785ch11.qxd 3/31/06 1:50 PM Page 322

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 323

■Note Under .NET 2.0, boxing and unboxing penalties can be eliminated using generics, which you’ll examine in
Chapter 12.

Unboxing Custom Value Types
When you pass custom structures or enumerations into a method prototyped to take a System.Object,
a boxing operation also occurs. However, once the incoming parameter has been received by the
called method, you will not be able to access any members of the structure (or enum) until you
unbox the type. Recall the MyPoint structure defined previously in this chapter:

' Structures are value types!

Structure MyPoint

Public x, y As Integer

End Structure

Assume you now send a MyPoint variable into a new method named UseBoxedMyPoint():

Sub Main()

...

Dim p As MyPoint

p.x = 10

p.y = 20

UseBoxedMyPoint(p)

Console.ReadLine()

End Sub

If you attempt to access the field data of MyPoint, you receive a compiler error (assuming Option
Strict is enabled), as the method assumes you are operating on a strongly typed System.Object:

Sub UseBoxedMyPoint(ByVal o As Object)

' Error! System.Object does not have

' member variables named 'x' or 'y'.

Console.WriteLine("{0}, {1}", o.x, o.y)

End Sub

To access the field data of MyPoint, you must first unbox the parameter:

Sub UseBoxedMyPoint(ByVal o As Object)

If TypeOf o Is MyPoint Then

Dim p As MyPoint = CType(o, MyPoint)

Console.WriteLine("{0}, {1}", p.x, p.y)

End If

End Sub

■Source Code The Boxing project is included under the Chapter 11 subdirectory.

Understanding Operator Overloading
Visual Basic 2005, like any programming language, has a canned set of tokens that are used to per-
form basic operations on intrinsic types. For example, you know that the + operator can be applied
to two Integers in order to yield a larger Integer (assuming the numbers are both positive!):

' The + operator with Integers.

Dim a As Integer = 100

Dim b As Ingeter = 240

Dim c As Integer = a + b ' c is now 340

5785ch11.qxd 3/31/06 1:50 PM Page 323

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS324

Again, this is no major newsflash, but have you ever stopped and noticed how the same +
operator can be applied to most intrinsic VB 2005 data types? For example, consider this code:

' The + operator with Strings.

Dim s1 As String = "Hello"

Dim s2 As String = " world!"

Dim s3 As String = s1 + s2 ' s3 is now "Hello world!"

In essence, the + operator functions in unique ways based on the supplied data types (Strings
or Integers in this case). When the + operator is applied to numerical types, the result is the sum-
mation of the operands. However, when the + operator is applied to string types, the result is string
concatenation.

As of .NET 2.0, the VB 2005 language now provides the capability for you to build custom
classes and structures that also respond uniquely to the same set of basic tokens (such as the +
operator). As you will see over the next several pages, if you use this language feature correctly, your
custom classes and structures can be used in a more intuitive manner. However, you should also
understand that if used incorrectly, types that support overloaded operators can make your code
much more confusing to other developers.

Before you see a working example of overloading operators, be aware that although VB 2005
defines many operators, only a subset can be redefined for your custom types. Table 11-3 lists the
possibilities.

Table 11-3. Valid Overloadable Operators

VB 2005 Operator Overloadability

Not, IsTrue, IsFalse This set of unary operators can be overloaded.

+, –, *, /, \, &, |, ^, <<, >>, These binary operators can be overloaded.
Mod, And, Or, Xor, Like

=, <>, <, >, <=, >= The comparison operators can be overloaded. VB 2005 will demand that
“like” operators (i.e., < and >, <= and >=, = and <>) are overloaded together.

CType The CType operator can be overloaded to implement a custom
conversion method.

Overloading Binary Operators
To illustrate the process of overloading binary operators, assume again our simple MyPoint structure,
now with an overridden ToString() implementation and a custom constructor:

Public Structure MyPoint

Private x As Integer, y As Integer

Public Sub New(ByVal xPos As Integer, ByVal yPos As Integer)

x = xPos

y = yPos

End Sub

Public Overrides Function ToString() As String

Return String.Format("[{0}, {1}]", Me.x, Me.y)

End Function

End Structure

Now, logically speaking, it makes sense to add MyPoints together to yield a new, larger MyPoint
that is based on the “x” and “y” values of objects. On a related note, it may be helpful to subtract one
MyPoint from another (to obtain a smaller MyPoint). For example, you would like to be able to author
the following code, which sadly will not yet compile:

5785ch11.qxd 3/31/06 1:50 PM Page 324

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 325

' Adding and subtracting two MyPoints?

Sub Main()

Console.WriteLine("***** Fun with Overloaded Operators *****")

Console.WriteLine()

' Make two MyPoints.

Dim ptOne As MyPoint = New MyPoint(100, 100)

Dim ptTwo As MyPoint = New MyPoint(40, 40)

Console.WriteLine("ptOne = {0}", ptOne)

Console.WriteLine("ptTwo = {0}", ptTwo)

' Add the points to make a bigger point?

Console.WriteLine("ptOne + ptTwo: {0}", ptOne + ptTwo)

' Subtract the points to make a smaller point?

Console.WriteLine("ptOne - ptTwo: {0}", ptOne - ptTwo)

Console.ReadLine()

End Sub

To allow a custom type to respond uniquely to intrinsic operators, VB 2005 provides the Operator
keyword, which you can only use in conjunction with shared methods. When you are overloading
a binary operator (such as + and -), you will pass in two arguments that are the same type as the
defining class (a MyPoint in this example), as illustrated in the following code update:

' A more intelligent MyPoint type.

Public Structure MyPoint

...

' overloaded operator +.

Public Shared Operator +(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As MyPoint

Return New MyPoint(p1.x + p2.x, p1.y + p2.y)

End Operator

' overloaded operator -.

Public Shared Operator -(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As MyPoint

Return New MyPoint(p1.x - p2.x, p1.y - p2.y)

End Operator

End Struture

The logic behind operator + is simply to return a brand new MyPoint based on the summation
of the fields of the incoming MyPoint parameters. Thus, when you write pt1 + pt2, under the hood
you can envision the following hidden call to the shared operator + method:

' p3 = MyPoint.Operator+ (p1, p2)

Dim p3 As MyPoint = p1 + p2

Likewise, p1 - p2 maps to the following:

' p3 = MyPoint.operator- (p1, p2)

Dim p3 As MyPoint = p1 - p2

Overloading Equality Operators
As you may recall from Chapter 6, System.Object.Equals() can be overridden to perform value-
based (rather than referenced-based) comparisons between types. If you choose to override Equals()
(and the often-related System.Object.GetHashCode() method), it is trivial to overload the equality
operators (= and <>). To illustrate, here is the updated MyPoint type:

5785ch11.qxd 3/31/06 1:50 PM Page 325

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS326

' This incarnation of MyPoint also overloads the = and <> operators.

Public Structure MyPoint

...

' Overridden methods of System.Object.

Public Overrides Function Equals(ByVal o As Object) As Boolean

If TypeOf o Is MyPoint Then

If Me.ToString() = o.ToString() Then

Return True

End If

End If

Return False

End Function

Public Overrides Function GetHashCode() As Integer

Return Me.ToString().GetHashCode()

End Function

' Now let's overload the = and <> operators.

Public Shared Operator =(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As Boolean

Return p1.Equals(p2)

End Operator

Public Shared Operator <>(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As Boolean

Return Not p1.Equals(p2)

End Operator

End Structure

Notice how the implementation of operator = and operator <> simply makes a call to the over-
ridden Equals() method to get the bulk of the work done. Given this, you can now exercise your
MyPoint class as follows:

' Make use of the overloaded equality operators.

Sub Main()

...

Console.WriteLine("ptOne = ptTwo : {0}", ptOne = ptTwo)

Console.WriteLine("ptOne <> ptTwo : {0}", ptOne <> ptTwo)

End Sub

As you can see, it is quite intuitive to compare two objects using the well-known = and <>
operators rather than making a call to Object.Equals(). If you do overload the equality operators
for a given class, keep in mind that VB 2005 demands that if you override the = operator, you must
also override the <> operator (if you forget, the compiler will let you know).

Overloading Comparison Operators
In Chapter 9, you learned how to implement the IComparable interface in order to compare the
relative relationship between two like objects. Additionally, you may also overload the comparison
operators (<, >, <=, and >=) for the same class. Like the equality operators, VB 2005 demands that if
you overload <, you must also overload >. The same holds true for the <= and >= operators. If the
MyPoint type overloaded these comparison operators, the object user could now compare MyPoints
as follows:

' Using the overloaded < and > operators.

Sub Main()

...

Console.WriteLine("ptOne < ptTwo : {0}", ptOne < ptTwo)

Console.WriteLine("ptOne > ptTwo : {0}", ptOne > ptTwo)

End Sub

5785ch11.qxd 3/31/06 1:50 PM Page 326

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 327

Assuming you have implemented the IComparable interface, overloading the comparison
operators is trivial. Here is the updated class definition:

' MyPoint is also comparable using the comparison operators.

Public Structure MyPoint

Implements IComparable

...

Public Function CompareTo(ByVal obj As Object) As Integer _

Implements IComparable.CompareTo

If TypeOf obj Is MyPoint Then

Dim p As MyPoint = CType(obj, MyPoint)

If Me.x > p.x AndAlso Me.y > p.y Then

Return 1

End If

If Me.x < p.x AndAlso Me.y < p.y Then

Return -1

Else

Return 0

End If

Else

Throw New ArgumentException()

End If

End Function

' The overloaded comparison ops.

Public Shared Operator <(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As Boolean

Return (p1.CompareTo(p2) < 0)

End Operator

Public Shared Operator >(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As Boolean

Return (p1.CompareTo(p2) > 0)

End Operator

Public Shared Operator <=(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As Boolean

Return (p1.CompareTo(p2) <= 0)

End Operator

Public Shared Operator >=(ByVal p1 As MyPoint, ByVal p2 As MyPoint) As Boolean

Return (p1.CompareTo(p2) >= 0)

End Operator

End Structure

Final Thoughts Regarding Operator Overloading
As you have seen, VB 2005 now provides the capability to build types that can respond uniquely to
various intrinsic, well-known operators. Now, before you go and retrofit all your classes to support
such behavior, you must be sure that the operator(s) you are about to overload make some sort of
logical sense in the world at large.

For example, let’s say you overloaded the multiplication operator for the Engine class. What
exactly would it mean to multiply two Engine objects? Not much. Overloading operators is generally
only useful when you’re building utility types. Strings, points, rectangles, fractions, and hexagons
make good candidates for operator overloading. People, managers, cars, database connections, and
dialog boxes do not. As a rule of thumb, if an overloaded operator makes it harder for the user to
understand a type’s functionality, don’t do it. Use this feature wisely.

■Source Code The OverloadedOps project is located under the Chapter 11 subdirectory.

5785ch11.qxd 3/31/06 1:50 PM Page 327

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS328

Understanding Custom Type Conversions
Let’s now examine a topic closely related to operator overloading: custom type conversions. To set
the stage for the discussion to follow, let’s quickly review the notion of explicit and implicit conver-
sions between numerical data and related class types.

Recall: Numerical Conversions
In terms of the intrinsic numerical types (Byte, Integer, Double, etc.), an explicit conversion (or
narrowing conversion) is required when you attempt to store a larger value in a smaller container, as
this may result in a loss of data. Basically, this is your way to tell the compiler, “Leave me alone, I know
what I am trying to do.” Conversely, an implicit conversion (or widening conversion) happens auto-
matically when you attempt to place a smaller type in a destination type that will not result in a loss
of data:

Sub Main()

Dim a As Integer = 123

Dim b As Long = a ' Implicit conversion from Integer to Long

Dim c As Integer = CType(b, Integer) ' Explicit conversion from Long to Integer

End Sub

Recall: Conversions Among Related Class Types
As shown in Chapter 6, class types may be related by classical inheritance (the “is-a” relationship).
In this case, the VB 2005 conversion process allows you to cast up and down the class hierarchy. For
example, a derived class can always be implicitly cast into a given base type. However, if you wish to
store a base class type in a derived variable, you must perform an explicit cast:

' Two related class types.

Class Base

End Class

Class Derived

Inherits Base

End Class

Module Program

Sub Main()

' Implicit cast between derived to base.

Dim myBaseType As Base

myBaseType = New Derived()

' Must explicitly cast to store base reference

' in derived type.

Dim myDerivedType As Derived = CType(myBaseType, Derived)

End Sub

End Module

This explicit cast works due to the fact that the Base and Derived classes are related by classical
inheritance. However, what if you have two class types in different hierarchies that require conver-
sions? Given that they are not related by classical inheritance, explicit casting offers no help.

On a related note, consider value types. Assume you have two .NET structures named Square
and Rectangle. Given that structures cannot leverage classic inheritance, you have no natural way
to cast between these seemingly related types (assuming it made sense to do so).

5785ch11.qxd 3/31/06 1:50 PM Page 328

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 329

While you could build helper methods in the structures (such as Rectangle.ToSquare()), VB 2005
allows you to build custom conversion routines that allow your types to respond to the CType()
operator. Therefore, if you configured the Square structure correctly, you would be able to use the
following syntax to explicitly convert between these structure types:

' Convert a Rectangle structure to a Square structure.

Dim rect As Rectangle

rect.Width = 3

rect.Height = 10

Dim sq As Square = CType(rect, Square)

Creating Custom Conversion Routines
VB 2005 provides two keywords, Widening and Narrowing, that can be used when redefining how
your class or structure responds to the CType() operator. The difference between these conversion
routines can be summarized as follows:

• Narrowing conversions do not always succeed at runtime, and may result in loss of data. If
Option Strict is enabled, CType must be used for all narrowing conversions.

• Widening conversion always succeeds at runtime and never incurs data loss.

To illustrate, assume you have the following structure definitions:

Public Structure Rectangle

' Public for ease of use;

' however, feel free to encapsulate with properties.

Public Width As Integer, Height As Integer

Public Sub Draw()

Console.WriteLine("Drawing a rect.")

End Sub

Public Overloads Overrides Function ToString() As String

Return String.Format("[Width = {0}; Height = {1}]", Width, Height)

End Function

End Structure

Public Structure Square

Public Length As Integer

Public Sub Draw()

Console.WriteLine("Drawing a square.")

End Sub

Public Overloads Overrides Function ToString() As String

Return String.Format("[Length = {0}]", Length)

End Function

' Rectangles can be explicitly converted

' into Squares.

Public Shared Narrowing Operator CType(ByVal r As Rectangle) As Square

Dim s As Square

s.Length = r.Width

Return s

End Operator

End Structure

5785ch11.qxd 3/31/06 1:50 PM Page 329

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS330

Notice that this iteration of the Square type defines a custom narrowing conversion operation.
Like the process of overloading an operator, conversion routines make use of the VB 2005 Operator
keyword (in conjunction with the Narrowing or Widening keyword) and must be defined as a shared
member. The incoming parameter is the entity you are converting from, while the return value is
the entity you are converting to:

Public Shared Narrowing Operator CType(ByVal r As Rectangle) As Square

...

End Operator

In any case, the assumption is that a square (being a geometric pattern in which all sides are of
equal length) can be obtained from the width of a rectangle. Thus, you are free to convert a Rectangle

into a Square as follows:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Custom Conversions *****")

Console.WriteLine()

' Create a 5 * 10 Rectangle.

Dim rect As Rectangle

rect.Width = 10

rect.Height = 5

Console.WriteLine("rect = {0}", rect)

' Convert Rectangle to a 10 * 10 Square.

Dim sq As Square = CType(rect, Square)

Console.WriteLine("sq = {0}", sq)

Console.ReadLine()

End Sub

End Module

While it may not be all that helpful to convert a Rectangle into a Square within the same scope,
assume you have a function that has been prototyped to take Square types.

' This method requires a Square type.

Sub DrawSquare(ByVal sq As Square)

sq.Draw()

End Sub

Using your explicit conversion operation, you can safely pass in Rectangle types for processing:

Sub Main()

Console.WriteLine("***** Fun with Custom Conversions *****")

Console.WriteLine()

' Create a 5 * 10 Rectangle.

Dim rect As Rectangle

rect.Width = 10

rect.Height = 5

Console.WriteLine("rect = {0}", rect)

' This is all right, as the Square has

' a custom narrowing CType() implementation.

DrawSquare(CType(rect, Square))

End Sub

5785ch11.qxd 3/31/06 1:50 PM Page 330

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 331

Additional Explicit Conversions for the Square Type
Now that you can explicitly convert Rectangles into Squares, let’s examine a few additional explicit
conversions. Given that a square is symmetrical on each side, it might be helpful to provide an
explicit conversion routine that allows the caller to cast from an Integer type into a Square (which,
of course, will have a side length equal to the incoming Integer). Likewise, what if you were to
update Square such that the caller can cast from a Square into an Integer? Here is the calling logic:

Sub Main()

...

' Converting an Integer to a Square.

Dim sq2 As Square = CType(90, Square)

Console.WriteLine("sq2 = {0}", sq2)

' Converting a Square to an Integer.

Dim side As Integer = CType(sq2, Integer)

Console.WriteLine("Side length of sq2 = {0}", side)

End Sub

and here is the update to the Square type:

Structure Square

...

Public Shared Narrowing Operator CType(ByVal sideLength As Integer) As Square

Dim newSq As Square

newSq.Length = sideLength

Return newSq

End Operator

Public Shared Narrowing Operator CType(ByVal s As Square) As Integer

Return s.Length

End Operator

End Structure

Wild, huh? To be honest, converting from a Square into an Integer may not be the most intu-
itive (or useful) operation. However, this does point out a very important fact regarding custom
conversion routines: the compiler does not care what you convert to or from, as long as you have
written syntactically correct code. Thus, as with overloading operators, just because you can create
an explicit cast operation for a given type does not mean you should. Typically, this technique will
be most helpful when you’re creating .NET structure types, given that they are unable to participate
in classical inheritance (where casting comes for free).

Defining Implicit Conversion Routines
Thus far, you have created various custom explicit (e.g., narrowing) conversion operations. How-
ever, what about the following implicit (e.g., widening) conversion?

Sub Main()

...

' Attempt to make an implicit cast?

Dim s3 As Square

s3.Length = 83

Dim rect2 As Rectangle = s3

...

End Sub

5785ch11.qxd 3/31/06 1:50 PM Page 331

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS332

As you might expect, this code will not compile, given that you have not provided an implicit
conversion routine for the Rectangle type. Now here is the catch: it is illegal to define explicit and
implicit conversion functions on the same type, if they do not differ by their return type or parame-
ter set. This might seem like a limitation; however, the second catch is that when a type defines an
implicit conversion routine, it is legal for the caller to make use of the explicit cast syntax!

Confused? To clear things up, let’s add an implicit conversion routine to the Rectangle struc-
ture using the VB 2005 Widening keyword (note that the following code assumes the width of the
resulting Rectangle is computed by multiplying the side of the Square by 2):

Public Structure Rectangle

...

Public Shared Widening Operator CType(ByVal s As Square) As Rectangle

Dim r As Rectangle

r.Height = s.Length

' Assume the length of the new Rectangle with

' (Length x 2)

r.Width = s.Length * 2

Return r

End Operator

End Structure

With this update, you are now able to convert between types as follows:

Sub Main()

...

' Implicit cast OK!

Dim s3 As Square

s3.Length= 83

Dim rect2 As Rectangle = s3

Console.WriteLine("rect2 = {0}", rect2)

DrawSquare(s3)

' Explicit cast syntax still OK!

Dim s4 As Square

s4.Length = 3

Dim rect3 As Rectangle = CType(s4, Rectangle)

Console.WriteLine("rect3 = {0}", rect3)

...

End Sub

Again, be aware that it is permissible to define explicit and implicit conversion routines for the
same type as long as their signatures differ. Thus, you could update the Square as follows:

Public Structure Square

...

' Can call as:

' Dim sq2 As Square = CType(90, Square)

' or as:

' Dim sq2 As Square = 90

Public Shared Widening Operator CType(ByVal sideLength As Integer) As Square

Dim newSq As Square

newSq.Length = sideLength

Return newSq

End Operator

' Must call as:

' Dim side As Integer = CType(mySquare, Square)

Public Shared Narrowing Operator CType(ByVal s As Square) As Integer

5785ch11.qxd 3/31/06 1:50 PM Page 332

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 333

return s.Length

End Operator

End Structure

■Source Code The CustomConversions project is located under the Chapter 11 subdirectory.

The VB 2005 DirectCast Keyword
To wrap things up for this chapter, allow me to comment on two new keywords introduced with
Visual Basic 2005 that can be used as alternatives to CType(). As you know by this point in the text,
CType() can be used to explicitly convert an expression to a specified data type, object, structure,
class, or interface.

Also recall that when you use CType(), the CLR will throw a runtime exception if the arguments
are incompatible. To illustrate, assume you have two class types and a single interface related as
follows:

Interface ITurboBoost

Sub TurboCharge(ByVal onOff As Boolean)

End Interface

Class Car

End Class

Class SportsCar

Inherits Car

Implements ITurboBoost

Public Sub TurboCharge(ByVal onOff As Boolean) _

Implements ITurboBoost.TurboCharge

End Sub

End Class

Now observe the following CType() statements, all of which compile, and some of which cause
a runtime exception (an InvalidCastException to be exact):

Sub Main()

Console.WriteLine("***** Fun with CType / DirectCast / TryCast ******")

Console.WriteLine()

' This CType() throws an exception,

' as Car does not implement ITurboBoost.

Dim myCar As New Car

Dim iTB As ITurboBoost

iTB = CType(myCar, ITurboBoost)

' This CType() is a-OK, as SportsCar does

' implement ITurboBoost.

Dim myViper As New SportsCar

iTB = CType(myViper, ITurboBoost)

' CType() can also be used to narrow or widen

' between primitive types.

Dim i As Integer = 200

Dim b As Byte = CType(i, Byte)

End Sub

5785ch11.qxd 3/31/06 1:50 PM Page 333

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS334

■Note Here, each call to CType() was not wrapped within Try/Catch logic, as we clearly know the relationship
between the Car, SportsCar, and ITurboBoost types. In production code, all calls to CType() should always be
wrapped within Try/Catch logic to account for the possibility that the types are not compatible.

While using CType() to convert between types is always permissible, VB 2005 now provides an
alternative keyword named DirectCast(). Syntactically, DirectCast() looks identical to CType().
Under the hood, however, DirectCast() offers better performance when converting to or from ref-
erence types. The reason is that DirectCast(), unlike CType(), does not make use of the Visual Basic
runtime helper routines for conversion. However, remember that DirectCast can only be used if the
arguments are related by the “is-a” relationship or interface implementation (and could therefore
never be used to convert between structures [and thus numerical types]). Consider the following
update to the previous Main() method:

Sub Main()

Console.WriteLine("***** Fun with CType / DirectCast / TryCast ******")

Console.WriteLine()

Dim myCar As New Car

Dim iTB As ITurboBoost

iTB = DirectCast(myCar, ITurboBoost)

Dim myViper As New SportsCar

iTB = DirectCast(myViper, ITurboBoost)

' Compiler error! Integer and Byte

' are not related to inheritance/interface

' implementation!

Dim i As Integer = 200

Dim b As Byte = DirectCast(i, Byte)

End Sub

Note that the first two DirectCast() calls function identically to CType(). The final call to
DirectCast() is a compile-time error, however. While it is true that DirectCast() can result in
greater performance for large-scale applications, this is not to say the CType() is obsolete. In fact, in
most applications, these two calls can be used interchangeably with little or no noticeable effect.
However, when you wish to squeeze out every drop of performance from a VB 2005 application,
DirectCast() is one part of the puzzle.

The VB 2005 TryCast Keyword
On a final note, VB 2005 now offers one final manner to perform runtime type conversions using
TryCast(). Again, syntactically, TryCast() looks identical to CType(). The difference is that TryCast()
returns Nothing if the arguments are not related by inheritance or interface implementation, rather
than throwing a runtime exception. Thus, rather than wrapping a call to CType() or DirectCast()
within Try/Catch logic, you can simply test the returned reference within a conditional statement.

This being said, here is the final iteration of our Main() method, which makes use of structured
exception handling/conditional tests for Nothing as required by each of the conversion operators.

Sub Main()

Console.WriteLine("***** Fun with CType / DirectCast / TryCast ******")

Console.WriteLine()

5785ch11.qxd 3/31/06 1:50 PM Page 334

CHAPTER 11 ■ ADVANCED VB 2005 PROGRAMMING CONSTRUCTS 335

Dim myCar As New Car

Dim iTB As ITurboBoost

' CType() throws

' exceptions if the types are not compatible.

Try

iTB = CType(myCar, ITurboBoost)

Catch ex As InvalidCastException

Console.WriteLine(ex.Message)

Console.WriteLine()

End Try

' Like CType(), DirectCast() throws

' exceptions if the types are not compatible.

Dim myViper As New SportsCar

Try

iTB = DirectCast(myViper, ITurboBoost)

Catch ex As Exception

Console.WriteLine(ex.Message)

Console.WriteLine()

End Try

' TryCast() returns Nothing if the types are not

' compatible.

Dim c As Car = TryCast(myViper, Car)

If c Is Nothing Then

Console.WriteLine("Sorry, types are not compatable...")

Else

Console.WriteLine(c.ToString())

End If

End Sub

■Source Code The Casting project is located under the Chapter 11 subdirectory.

Summary
This chapter has illustrated a number of more advanced aspects of the Visual Basic 2005 program-
ming language. We began by looking at the various preprocessor directives supported by VB 2005,
and saw how to conditionally compile blocks of code based on predefined constants. The first “meaty”
topic of this chapter was a detailed examination of the value type/reference type distinction and the
related topic of boxing and unboxing. Next up, you learned about several new features introduced
with the release of .NET 2.0, specifically support for overloading operators and defining custom
type conversions for your classes and structures. We wrapped up by examining two new conversion
keywords (DirectCast() and TryCast()) that can be used in place of traditional calls to CType().

5785ch11.qxd 3/31/06 1:50 PM Page 335

5785ch11.qxd 3/31/06 1:50 PM Page 336

C H A P T E R 1 2

■ ■ ■

Understanding Generics and Nullable
Data Types

With the release of .NET 2.0, the VB 2005 programming language has been enhanced to support
a new feature of the Common Type System (CTS) termed generics. Simply put, generics provide a way
for programmers to define “placeholders” (formally termed type parameters) for members (subrou-
tines, functions, fields, properties, etc.) and type definitions (classes, structures, etc.), which are
specified at the time of invoking the generic member or creating the generic type.

While it’s true that you could build an entire .NET 2.0 application without ever using a generic
item in your code, you gain several benefits by doing so. Given this, the chapter opens by qualifying
the need for generic types. Once you understand the problems generics attempt to solve, you will
then learn how to make use of existing generic types defined within the System.Collections.Generic
namespace.

Next, you will get to know the role of the System.Nullable(Of T) generic type and come to
understand a new language feature termed nullable data types. As you will see, this generic type
allows you to define numerical data that can be set to the value Nothing (which can be particularly
helpful when working with relational databases).

After you’ve seen generic support within the base class libraries, the remainder of this chapter
examines how you can build your own generic members, classes, structures, interfaces, and delegates
(and when you might wish to do so).

Revisiting the Boxing, Unboxing, and System.Object
Relationship
To understand the benefits provided by generics, it’s helpful to understand the issues programmers
had without them. As you recall from Chapter 11, the .NET platform supports automatic conversion
between stack-allocated and heap-allocated memory through boxing and unboxing. At first glance,
this may seem like a rather uneventful language feature that is more academic than practical. In real-
ity, the (un)boxing process is very helpful in that it allows us to assume everything can be treated as
a System.Object, while the CLR takes care of the memory-related details on our behalf.

To review the boxing process, assume you have created a System.Collections.ArrayList to hold
numeric (and therefore stack-allocated) data. Recall that the members that insert or remove items
into (or out of) the ArrayList are all prototyped to receive and return System.Object types. However,
rather than forcing programmers to manually wrap a numeric value into a related object wrapper,
the runtime will automatically do so via a boxing operation:

337

5785ch12.qxd 3/31/06 10:52 AM Page 337

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES338

Sub Main()

' Value types are automatically boxed when

' passed to a member requesting an object.

Dim myInts As New ArrayList()

myInts.Add(10)

Console.ReadLine()

End Sub

If you wish to retrieve this value from the ArrayList object using the type’s default property,
you must unbox the heap-allocated object into a stack-allocated integer using an explicit casting
operation (recall that explicit casting using CType() is required when Option Strict is enabled):

Sub Main()

' Value types are automatically boxed when

' passed to a member requesting an Object.

Dim myInts As New ArrayList()

myInts.Add(10)

' Value is now unboxed...then reboxed!

Console.WriteLine("Value of your int: {0}", _

CType(myInts(0), Integer))

Console.ReadLine()

End Sub

When the VB 2005 compiler transforms a boxing operation into terms of CIL code, you find the
box opcode is used internally. Likewise, the unboxing operation is transformed into a CIL unbox
operation. Here is the relevant CIL code for the previous Main() method (which can be viewed using
ildasm.exe):

.method private hidebysig static void Main() cil managed

{

...

box [mscorlib]System.Int32

callvirt instance int32

[mscorlib]System.Collections.ArrayList::Add(object)

pop

ldstr "Value of your int: {0}"

ldloc.0

ldc.i4.0

callvirt instance object [mscorlib]

System.Collections.ArrayList::get_Item(int32)

unbox [mscorlib]System.Int32

ldind.i4

box [mscorlib]System.Int32

call void [mscorlib]System.Console::WriteLine(string, object)

...

}

Note that the stack-allocated System.Int32 is boxed prior to the call to ArrayList.Add() in
order to pass in the required System.Object. Also note that System.Object is unboxed back into
a System.Int32 once retrieved from the ArrayList using the type indexer (which maps to the hidden
get_Item() method), only to be boxed again when it’s passed to the Console.WriteLine() method.

5785ch12.qxd 3/31/06 10:52 AM Page 338

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 339

The Problem with (Un)Boxing Operations
Although boxing and unboxing are very convenient from a programmer’s point of view, this
approach to stack/heap memory transfer comes with the baggage of performance issues. To under-
stand the performance issues, consider the steps that must occur to box and unbox a simple integer:

1. A new object must be allocated on the managed heap.

2. The value of the stack-based data must be transferred into that memory location.

3. When unboxed, the value stored on the heap-based object must be transferred back to the
stack using an explicit cast (via CType).

4. The now unused object on the heap will (eventually) be garbage collected.

Although the current Main() method won’t cause a major bottleneck in terms of performance,
you could certainly feel the impact if an ArrayList contained thousands of integers that are manip-
ulated by your program on a somewhat regular basis. This would result in numerous objects on the
heap that must be managed by the garbage collector, which can be yet another possible performance
penalty.

In an ideal world, the VB 2005 compiler would be able to store sets of value types in a container
that did not require boxing in the first place. If this were the case, we not only gain a higher degree
of type safety (as this would remove the need for explicit casting), but also build more performance-
driven code. As you would guess, .NET 2.0 generics are the solution to each of these issues.

Type Safety and Strongly Typed Collections
Another issue we have in a generic-less world has to do with the construction of strongly typed
collections. Again, recall that a majority of the class types within the System.Collections name-
space have been constructed to contain System.Object types, which resolves to anything at all. In
some cases, this is the exact behavior you require given the extreme flexibility:

Sub Main()

' The ArrayList can hold any item whatsoever.

Dim myStuff As New ArrayList()

myStuff.Add(10)

myStuff.Add(New ArrayList())

myStuff.Add(True)

myStuff.Add("Some text data")

Console.ReadLine()

End Sub

While this loose typing can be helpful in some circumstances, it’s often advantageous to build
a strongly-typed collection. Prior to .NET version 2.0, this was most often achieved by leveraging the
container types of System.Collections. To illustrate, assume you wish to create a custom collection
that can only contain objects of type Person:

Public Class Person

' Made public for simplicity.

Public currAge As Integer

Public fName As String

Public lName As String

Public Sub New()

End Sub

Public Sub New(ByVal firstName As String, ByVal lastName As String, _

ByVal age As Integer)

currAge = age

5785ch12.qxd 3/31/06 10:52 AM Page 339

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES340

fName = firstName

lName = lastName

End Sub

Public Overrides Function ToString() As String

Return String.Format("{0}, {1} is {2} years old.", _

lName, fName, currAge)

End Function

End Class

To build a person collection, you could define a System.Collections.ArrayList member variable
within a class named PeopleCollection and configure all members to operate on strongly typed
Person objects, rather than on System.Objects:

Public Class PeopleCollection

Implements IEnumerable

Private arPeople As ArrayList = New ArrayList()

Public Function GetPerson(ByVal pos As Integer) As Person

Return CType(arPeople(pos), Person)

End Function

Public Sub AddPerson(ByVal p As Person)

arPeople.Add(p)

End Sub

Public Sub ClearPeople()

arPeople.Clear()

End Sub

Public ReadOnly Property Count() As Integer

Get

Return arPeople.Count

End Get

End Property

Public Function GetEnumerator() As IEnumerator _

Implements IEnumerable.GetEnumerator

Return arPeople.GetEnumerator()

End Function

End Class

With these types defined, you are now assured of type safety, given that the VB 2005 compiler
will be able to determine any attempt to insert an incompatible type:

Sub Main()

Console.WriteLine("***** Strongly Typed Collections *****")

Console.WriteLine()

Dim myPeople As PeopleCollection = New PeopleCollection()

myPeople.AddPerson(New Person("Homer", "Simpson", 40))

myPeople.AddPerson(New Person("Marge", "Simpson", 38))

myPeople.AddPerson(New Person("Lisa", "Simpson", 9))

myPeople.AddPerson(New Person("Bart", "Simpson", 7))

myPeople.AddPerson(New Person("Maggie", "Simpson", 2))

' This would be a compile-time error!

myPeople.AddPerson(New Car())

For Each p As Person In myPeople

Console.WriteLine(p)

Next

Console.ReadLine()

End Sub

5785ch12.qxd 3/31/06 10:52 AM Page 340

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 341

While custom collections do ensure type safety, this approach leaves you in a position where
you must create a (almost identical) custom collection for each type you wish to contain. Thus, if
you need a custom collection that will be able to operate only on classes deriving from the Car base
class, you need to build a very similar type:

Public Class CarCollection

Implements IEnumerable

Private arCars As ArrayList = New ArrayList()

Public Function GetCar(ByVal pos As Integer) As Car

Return CType(arCars(pos), Car)

End Function

Public Sub AddCar(ByVal c As Car)

arCars.Add(c)

End Sub

Public Sub ClearCars()

arCars.Clear()

End Sub

Public ReadOnly Property Count() As Integer

Get

Return arCars.Count

End Get

End Property

Public Function GetEnumerator() As IEnumerator _

Implements IEnumerable.GetEnumerator

Return arCars.GetEnumerator()

End Function

End Class

As you may know from firsthand experience, the process of creating multiple strongly typed
collections to account for various types is not only labor intensive, but also a nightmare to maintain.
Generic collections allow us to delay the specification of the contained type until the time of creation.
Don’t fret about the syntactic details just yet, however. Consider the following code, which makes
use of a generic class named System.Collections.Generic.List(Of T) to create two type-safe con-
tainer objects:

Module Program

Sub Main()

' Use the generic List type to hold only people.

Dim morePeople As New List(Of Person)

morePeople.Add(New Person())

' Use the generic List type to hold only cars.

Dim moreCars As New List(Of Car)

moreCars.Add(New Car())

' Compile-time error!

moreCars.Add(New Person())

End Sub

End Module

Boxing Issues and Strongly Typed Collections
Strongly typed collections are found throughout the .NET base class libraries and are very useful
programming constructs. However, these custom containers do little to solve the issue of boxing
penalties. Even if you were to create a custom collection named IntegerCollection that was con-
structed to operate only on Integer data types, you must allocate some type of reference type to

5785ch12.qxd 3/31/06 10:52 AM Page 341

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES342

hold the numerical data (System.Array, System.Collections.ArrayList, etc.). Again, given that the
nongeneric types operate on System.Objects, we incur boxing and unboxing penalties:

Public Class IntegerCollection

Implements IEnumerable

Private arInts As ArrayList = New ArrayList()

Public Function GetInt(ByVal pos As Integer) As Integer

' Unboxing!

Return CType(arInts(pos), Integer)

End Function

Public Sub AddInt(ByVal i As Integer)

' Boxing!

arInts.Add(i)

End Sub

Public Sub ClearInts()

arInts.Clear()

End Sub

Public ReadOnly Property Count() As Integer

Get

Return arInts.Count

End Get

End Property

Public Function GetEnumerator() As IEnumerator _

Implements IEnumerable.GetEnumerator

Return arInts.GetEnumerator()

End Function

End Class

Regardless of which type you may choose to hold the integers (System.Array, System.Collections.
ArrayList, etc.), you cannot escape the boxing dilemma using .NET 1.x. As you might guess, generics
come to the rescue again. The following code leverages the System.Collections.Generic.List(Of T)
type to create a container of integers that does not incur any boxing or unboxing penalties when
inserting or obtaining the value type:

Module Program

Sub Main()

' No boxing!

Dim myInts As New List(Of Integer)

myInts.Add(10)

' No unboxing!

Console.WriteLine("Int value is: {0}", myInts(0))

End Sub

End Module

To summarize the story thus far, generics address the following issues:

• Performance issues incurred with boxing and unboxing

• Type safety issues found with loosely typed collections

• Code maintenance issues incurred with the construction of strongly typed collections

So now that you have a better feel for the problems generics attempt to solve, you’re ready to dig
into the details. To begin, allow me to formally introduce the System.Collections.Generic namespace.

■Source Code The StronglyTypedCollections project is located under the Chapter 12 subdirectory.

5785ch12.qxd 3/31/06 10:52 AM Page 342

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 343

The System.Collections.Generic Namespace
Generic types are found sprinkled throughout the .NET 2.0 base class libraries; however, the System.
Collections.Generic namespace is chock full of them (as its name implies). Like its nongeneric
counterpart (System.Collections), the System.Collections.Generic namespace contains numerous
class and interface types that allow you to contain subitems in a variety of containers. Not surprisingly,
the generic interfaces mimic the corresponding nongeneric types in the System.Collections
namespace:

• ICollection(Of T)

• IComparer(Of T)

• IDictionary(Of K, V)

• IEnumerable(Of T)

• IEnumerator(Of T)

• IList(Of T)

■Note By convention, generic types specify their placeholders using uppercase letters. Although any letter (or
word) will do, typically T is used to represent types, K is used for keys, and V is used for values.

The System.Collections.Generic namespace also defines a number of classes that implement
many of these key interfaces. Table 12-1 describes the core class types of this namespace, the inter-
faces they implement, and any corresponding type in the System.Collections namespace.

Table 12-1. Classes of System.Collections.Generic

Nongeneric Counterpart Class in
Generic Type System.Collections Meaning in Life

Collection(Of T) CollectionBase The basis for a generic collection

Comparer(Of T) Comparer Compares two generic objects
for equality

Dictionary(Of K, V) Hashtable A generic collection of
name/value pairs

List(Of T) ArrayList A dynamically resizable list of
items

Queue(Of T) Queue A generic implementation of
a first-in, first-out (FIFO) list

SortedDictionary(Of K, V) SortedList A generic implementation of
a sorted set of name/value pairs

Stack(Of T) Stack A generic implementation of
a last-in, first-out (LIFO) list

LinkedList(Of T) N/A A generic implementation of
a doubly linked list

ReadOnlyCollection(Of T) ReadOnlyCollectionBase A generic implementation of
a set of read-only items

The System.Collections.Generic namespace also defines a number of “helper” classes and
structures that work in conjunction with a specific container. For example, the LinkedListNode(Of T)

5785ch12.qxd 3/31/06 10:52 AM Page 343

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES344

Figure 12-1. A type parameter can be used as a placeholder throughout a type definition.

type represents a node within a generic LinkedList(Of T), the KeyNotFoundException exception is
raised when attempting to grab an item from a container using a nonexistent key, and so forth.

As you can see from Table 12-1, many of the generic collection classes have a nongeneric coun-
terpart in the System.Collections namespace (some of which are identically named). Given that
Chapter 9 illustrated how to work with these nongeneric types, I will not provide a detailed exami-
nation of each generic counterpart, as they work more or less the same as the nongeneric types.
Rather, I’ll make use of List(Of T) to illustrate the process of working with generics. If you require
details regarding other members of the System.Collections.Generic namespace, consult the .NET
Framework 2.0 SDK documentation.

Examining the List(Of T) Type
Like nongeneric classes, generic types are created via the New keyword and any necessary constructor
arguments. In addition, you are required to specify the type(s) to be substituted for the type param-
eter(s) defined by the generic type. For example, System.Collections.Generic.List(Of T) requires
you to specify a single type parameter that describes the type of item the List(Of T) will operate
upon. Therefore, if you wish to create three List(Of T) objects to contain integers and Person and
Car objects, you would make use of the VB 2005 Of keyword as follows:

Module Program

Sub Main()

' A list of Integers.

Dim myInts As New List(Of Integer)

' A list of Person objects.

Dim myPeople As New List(Of Person)

' A list of Cars.

Dim myCars As New List(Of Car)

End Sub

End Module

At this point, you might wonder what exactly becomes of the specified placeholder value. If you
were to make use of the Visual Studio 2005 Object Browser, you will find that the placeholder T is used
throughout the definition of the List(Of T) type, as you see in Figure 12-1.

5785ch12.qxd 3/31/06 10:52 AM Page 344

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 345

Thus, when you create a List(Of T) specifying Car types, Car is substituted for T throughout
the List type. Likewise, if you were to build a List(Of T) of type Integers, T is of type Integer. Of
course, when you create a generic List(Of T), the compiler does not literally create a brand new
implementation of the List(Of T) type. Rather, it will address only the members of the generic type
you actually invoke. For example, if you were to author the following Main() method, which invokes
the Add() and Count members of the List(Of T) type:

Module Program

Sub Main()

' A list of Cars.

Dim myCars As New List(Of Car)

myCars.Add(New Car())

Console.WriteLine("myCars contains {0} items", _

myCars.Count)

Console.ReadLine()

End Sub

End Module

you would find the VB 2005 compiler generates the following (slightly edited and annotated) CIL
code (which can be verified using ildasm.exe):

.method public static void Main() cil managed

{

...

// Create the List(Of T) type where 'T' is of type Car.

.locals init ([0] class

[mscorlib]System.Collections.Generic.List`1

<class SimpleGenerics.Car> myCars)

IL_0001: newobj instance void class

[mscorlib]System.Collections.Generic.List`1

<class SimpleGenerics.Car>::.ctor()

...

// Create a Car and add it into the List of

// Cars via the Add() method.

IL_0008: newobj instance void SimpleGenerics.Car::.ctor()

IL_000d: callvirt instance void class

[mscorlib]System.Collections.Generic.List`1

<class SimpleGenerics.Car>::Add(!0)

...

// Call the ReadOnly Count property.

IL_0019: callvirt instance int32 class

[mscorlib]System.Collections.Generic.List`1

<class SimpleGenerics.Car>::get_Count()

...

}

Notice that in terms of CIL code, a type parameter is specified using angled brackets. Thus, the
Visual Basic 2005 List(Of T) syntax translates into List`1<T> in terms of CIL. Also notice the type
parameters of the List(Of T) constructor, Add() method, and Count property have all been set to be
of type Car.

Now assume you have created a List(Of T) generic type where you specify T to be of type Integer:

Module Program

Sub Main()

...

' A list of Ingeters.

Dim myInts As New List(Of Integer)

5785ch12.qxd 3/31/06 10:52 AM Page 345

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES346

' No boxing!

myInts.Add(50)

' No unboxing!

Dim val As Integer = myInts.Count

Console.WriteLine("myInts contains {0} items", myInts.Count)

Console.ReadLine()

End Sub

End Module

This time, the compiler generates CIL code wherein each occurrence of T is now of type int32
(the internal representation of the VB 2005 Integer type):

.method public static void Main() cil managed

{

...

// Make a List of Integers.

.locals init ([0] class [mscorlib]

System.Collections.Generic.List`1<int32> MyInts)

IL_0001: newobj instance void class

[mscorlib]System.Collections.Generic.List`1<int32>::.ctor()

// Add the value '50' to the List.

IL_0008: ldc.i4.s 50

IL_000a: callvirt instance void class

[mscorlib]System.Collections.Generic.List`1<int32>::Add(!0)

...

// Call the ReadOnly Count property.

IL_0016: callvirt instance int32 class

[mscorlib]System.Collections.Generic.List`1<int32>::get_Count()

...

}

The most telling aspect of this CIL code snippet is the fact that we have not incurred any
boxing or unboxing penalties when inserting or obtaining the numerical data from the List type!
This is in stark contrast to inserting numerical data (or any structure) within the nongeneric
System.Collections.ArrayList.

■Source Code The SimpleGenerics project is located under the Chapter 12 subdirectory.

So, at this point you’ve looked at the process of working with the generic List(Of T) type. Again,
do understand that the remaining types of System.Collections.Generic would be manipulated in
a similar manner. Next up, let’s turn our attention to the use of another generic type within the
System namespace named Nullable(Of T).

Understanding Nullable Data Types and the
System.Nullable(Of T) Generic Type
Another very interesting generic class is System.Nullable(Of T), which allows you to define nullable
data types. As you know, CLR data types have a fixed range of possible values. For example, the
System.Boolean data type can be assigned a value from the set {True, False}. As of .NET 2.0, it’s now
possible to create nullable data types. Simply put, a nullable type can represent all the values of its

5785ch12.qxd 3/31/06 10:52 AM Page 346

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 347

underlying type, plus an empty (aka, undefined) value. Thus, if we declare a nullable System.Boolean,
it could be assigned a value from the set {True, False, Nothing}.

To define a nullable variable type, simply create a new Nullable(Of T) type and specify the type
parameter. Be aware, however, that the specified type must be a value type! If you attempt to create
a nullable reference type (including Strings), you are issued a compile-time error. For example:

Sub Main()

' Define some local nullable types.

Dim nullableInt As New Nullable(Of Integer)

Dim nullableDouble As New Nullable(Of Double)

Dim nullableBool As New Nullable(Of Boolean)

' Error! Strings are reference types!

Dim s As New Nullable(Of String)

End Sub

Like any type, System.Nullable(Of T) provides a set of members that all nullable types can
make use of. For example, you are able to programmatically discover whether the nullable variable
indeed has been assigned an undefined Nothing value using the HasValue property. The assigned
value of a nullable type may be obtained via the Value property.

Working with Nullable Types
Nullable data types can be particularly useful when you are interacting with databases, given that
columns in a data table may be intentionally empty (e.g., undefined). To illustrate, assume the follow-
ing class, which simulates the process of accessing a database containing a table of two columns
that may be undefined. Note that the GetIntFromDatabase() method has assigned the value Nothing
to the nullable Integer member variable, while GetBoolFromDatabase() is assigning the value True
to the Boolean member:

Class DatabaseReader

' Nullable data fields.

Public numbericValue As Nullable(Of Integer) = Nothing

Public boolValue As Nullable(Of Boolean) = True

' Note the nullable return type.

Public Function GetIntFromDatabase() As Nullable(Of Integer)

Return numbericValue

End Function

' Note the nullable return type.

Public Function GetBoolFromDatabase() As Nullable(Of Boolean)

Return boolValue

End Function

End Class

Now, assume the following Main() method, which invokes each member of the DatabaseReader
class, and discovers the assigned values using the HasValue and Value members:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Nullable Data *****")

Console.WriteLine()

Dim dr As New DatabaseReader()

' Get integer from 'database'.

Dim i As Nullable(Of Integer) = dr.GetIntFromDatabase()

5785ch12.qxd 3/31/06 10:52 AM Page 347

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES348

If (i.HasValue) Then

Console.WriteLine("Value of 'i' is: {0}", i.Value)

Else

Console.WriteLine("Value of 'i' is undefined.")

End If

' Get boolean from 'database'.

Dim b As Nullable(Of Boolean) = dr.GetBoolFromDatabase()

If (b.HasValue) Then

Console.WriteLine("Value of 'b' is: {0}", b.Value)

Else

Console.WriteLine("Value of 'b' is undefined.")

End If

Console.ReadLine()

End Sub

End Module

Cool! At this point, you hopefully understand how to interact with generic types that lurk
within the .NET base class libraries. During the remainder of this chapter, you’ll examine how to
create your own generic methods, types, and collections. First up, let’s check out how to build
a custom generic method.

■Source Code The NullableData project is located under the Chapter 12 subdirectory.

Creating Generic Methods
As you learned back in Chapter 4, methods can be overloaded. Recall that this language feature
allows you to define multiple versions of the same method, provided each variation differs by the
number (or type) of parameters. For example, assume you wish to build a method that can swap
two Integer data types. To do so, simply pass in each argument by reference and flip the values
around with the help of a local Integer variable:

Module NonGenericMethods

Public Function Swap(ByRef a As Integer, _

ByRef b As Integer) As Integer

Dim temp As Integer

temp = a

a = b

b = temp

End Function

End Module

With this, we could now call our Swap() method like so:

Module Program

Sub Main()

' Call the nongeneric Swap() methods.

Dim a, b As Integer

a = 10

b = 40

Console.WriteLine("Before swap: a={0}, b={1}", a, b)

Swap(a, b)

Console.WriteLine("After swap: a={0}, b={1}", a, b)

Console.ReadLine()

End Sub

End Module

5785ch12.qxd 3/31/06 10:52 AM Page 348

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 349

Although this Swap() method works as expected, assume you now wish to build a method that
can swap two Doubles. This would require you to build a second version of Swap() that now operates
on floating-point data:

Public Function Swap(ByRef a As Double, _

ByRef b As Double) As Double

Dim temp As Double

temp = a

a = b

b = temp

End Function

As you would expect, if you require other swap routines to operate on Strings, Booleans,
SportsCars, and whatnot, you would need to build new versions of the Swap() function. Clearly, this
would be a pain to maintain over the long run, not to mention the fact that each version of Swap() is
doing more-or-less the same thing.

Before the use of generics, one way to avoid this redundancy was to create a single Swap()
method that operates on Object data types. Because everything in .NET can be represented as
a System.Object, this approach would allow us to have a single version of Swap(); however, we are
once again incurring boxing and unboxing penalties when operating on value types.

To simplify our coding (and avoid undesirable boxing/unboxing operations), we could author
a generic Swap() method. Consider the following generic Swap() method, which can swap any two
data types of type T (remember, the name you give to a type parameter is entirely up to you):

' This generic method can swap any two items of type 'T'

Public Function Swap(Of T)(ByRef a As T, ByRef b As T) As T

Console.WriteLine("T is a {0}.", GetType(T))

Dim temp As T

temp = a

a = b

b = temp

End Function

Notice how a generic method is defined by specifying the type parameter after the method
name but before the parameter list. Here, you’re stating that the Swap() method can operate on any
two parameters of type T. Just to spice things up a bit, you’re printing out the type name of the sup-
plied placeholder to the console using the VB 2005 GetType() operator.

Now ponder the following Main() method, which swaps integer and string types:

Sub Main()

Console.WriteLine("***** Fun with Generic Methods *****")

Console.WriteLine()

' Swap two Integers.

Dim a, b As Integer

a = 10 : b = 40

Console.WriteLine("Before swap: a={0}, b={1}", a, b)

Swap(Of Integer)(a, b)

Console.WriteLine("After swap: a={0}, b={1}", a, b)

Console.WriteLine()

' Swap two Strings.

Dim s1, s2 As String

s1 = "Generics" : s2 = "Rock"

Console.WriteLine("Before swap: s1={0}, s2={1}", s1, s2)

Swap(Of String)(s1, s2)

Console.WriteLine("After swap: s1={0}, s2={1}", s1, s2)

Console.ReadLine()

End Sub

5785ch12.qxd 3/31/06 10:52 AM Page 349

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES350

Figure 12-2. Our generic swap method in action

The output of this program can be seen in Figure 12-2.

Omission of Type Parameters
When you invoke generic methods such as Swap(Of T), you can optionally omit the type parameter
if (and only if) the generic method requires arguments, as the compiler can infer the type parame-
ter based on the member parameters. For example, you could swap two System.Boolean types as
follows:

' Compiler will infer System.Boolean.

Dim b1, b2 As Boolean

b1 = True : b2 = False

Console.WriteLine("Before swap: b1={0}, b2={1}", b1, b2)

Swap(b1, b2)

Console.WriteLine("Before swap: b1={0}, b2={1}", b1, b2)

However, if you have another generic method named DisplayBaseClass(Of T) that does not
take any incoming parameters, as follows:

Sub DisplayBaseClass(Of T)()

Console.WriteLine("Base class of {0} is: {1}.", _

GetType(T), GetType(T).BaseType)

End Sub

you are required to supply the type parameter upon invocation:

Sub Main()

...

' Must specify 'T' when a generic

' method takes no parameters.

DisplayBaseClass(Of Boolean)()

DisplayBaseClass(Of String)()

DisplayBaseClass(Of Integer)()

End Sub

■Source Code The GenericSwapMethod project is located under the Chapter 12 subdirectory.

5785ch12.qxd 3/31/06 10:52 AM Page 350

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 351

Creating Generic Structures (or Classes)
Now that you understand how to define and invoke generic methods, let’s turn our attention to the
construction of a generic structure (the process of building a generic class is identical). Assume you
have built a flexible Point structure that supports a single type parameter representing the under-
lying storage for the (x, y) coordinates. The caller would then be able to create Point(Of T) types as
follows:

' Point using Integer.

Dim intPt As New Point(Of Integer)(100, 100)

' Point using Double.

Dim dblPt As New Point(Of Double)(5.6, 3.23)

Here is the complete definition of Point(Of T), with analysis to follow:

Public Structure Point(Of T)

Private xPos, yPos As T

Public Sub New(ByVal x As T, ByVal y As T)

xPos = x : yPos = y

End Sub

Public Property X() As T

Get

Return xPos

End Get

Set(ByVal value As T)

xPos = value

End Set

End Property

Public Property Y() As T

Get

Return xPos

End Get

Set(ByVal value As T)

yPos = value

End Set

End Property

Public Overrides Function ToString() As String

Return String.Format("({0}, {1}", xPos, yPos)

End Function

End Structure

Notice that our Point structure has been defined to operate internally with type T, just like the
previous generic Swap() method. Given that the caller must specify T at the time of creating a Point

type, we are free to use T throughout the definition, as we have here for field data, property defini-
tions, and member arguments.

Assuming this new example has implemented the Swap(Of T) method from the previous exam-
ple, we can now create, manipulate, and swap instances of the Point(Of T) type like so:

Sub Main()

Console.WriteLine("***** Fun with Custom Generic Types *****")

Console.WriteLine()

' Make a Point using Integers.

Dim intPt As New Point(Of Integer)(100, 100)

Console.WriteLine("intPt.ToString()={0}", intPt.ToString())

Console.WriteLine()

5785ch12.qxd 3/31/06 10:52 AM Page 351

Figure 12-3. Working with our generic structure

' Point using Double.

Dim dblPt As New Point(Of Double)(5.6, 3.23)

Console.WriteLine("dblPt.ToString()={0}", dblPt.ToString())

Console.WriteLine()

' Swap 2 Points.

Dim p1 As New Point(Of Integer)(10, 43)

Dim p2 As New Point(Of Integer)(6, 987)

Console.WriteLine("Before swap: {0} , {1}", p1, p2)

' Here we are swapping two points of type Integer.

Swap(Of Point(Of Integer))(p1, p2)

Console.WriteLine("Before swap: {0} , {1}", p1, p2)

Console.ReadLine()

End Sub

Notice when we swap our two Point types, we are explicitly specifying the type parameters for
the Point’s T as well as the Swap() method’s T. While this approach makes our code very explicit,
type inference allows us to simply call Swap() as follows:

' The compiler is able to infer we are using Points

' of type Integer.

Swap(p1, p2)

In either case, Figure 12-3 shows the output.

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES352

■Source Code The GenericStructure project is located under the Chapter 12 subdirectory.

Creating a Custom Generic Collection
As you have seen, the System.Collections.Generic namespace provides numerous types that allow
you to create type-safe and efficient containers. Given the set of available choices, the chances are
quite good that you will not need to build custom collection types when programming with .NET
2.0. Nevertheless, to illustrate how you could build a stylized generic container, the next task is to
build a generic collection class named CarCollection(Of T).

Like the nongeneric CarCollection created earlier in this chapter, this iteration will leverage
an existing collection type to hold the subitems (a List(Of T) in this case). As well, you will sup-
port For Each iteration by implementing the generic IEnumerable(Of T) interface. Do note that
IEnumerable(Of T) extends the nongeneric IEnumerable interface; therefore, the compiler expects
you to implement two versions of the GetEnumerator() method. Here is the definition of our type:

5785ch12.qxd 3/31/06 10:52 AM Page 352

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 353

Public Class CarCollection(Of T)

Implements IEnumerable(Of T)

Private myCars As New List(Of T)

' Generic default property.

Default Public Property Item(ByVal index As Integer) As T

Get

Return myCars(index)

End Get

Set(ByVal value As T)

myCars.Add(value)

End Set

End Property

Public Sub ClearCars()

myCars.Clear()

End Sub

Public Function CarCount() As Integer

Return myCars.Count()

End Function

Public Function GetEnumeratorGeneric() As IEnumerator(Of T) _

Implements IEnumerable(Of T).GetEnumerator

Return myCars.GetEnumerator()

End Function

Public Function GetEnumerator() As IEnumerator _

Implements IEnumerable.GetEnumerator

Return myCars.GetEnumerator()

End Function

End Class

You could make use of this updated CarCollection(Of T) as follows:

Module Program

Sub Main()

Console.WriteLine("***** Custom Generic Collection *****")

Console.WriteLine()

' Make a collection of Cars.

Dim myCars As New CarCollection(Of Car)

myCars(0) = New Car("Rusty", 20)

myCars(1) = New Car("Zippy", 90)

For Each c As Car In myCars

Console.WriteLine("PetName: {0}, Speed: {1}", _

c.PetName, c.Speed)

Next

Console.ReadLine()

End Sub

End Module

Here you are creating a CarCollection(Of T) type that contains only Car types. Again, you
could achieve a similar end result if you make use of the List(Of T) type directly. The only real ben-
efit at this point is the fact that you are free to define uniquely named methods to the CarCollection
that delegate the request to the internal List(Of T). For example, notice that we have defined two
members that clearly express we are operating on the Car type (ClearCars() and CarCount()).

While this benefit may be quite negligible, another possible benefit of building a custom generic
container is that you gain the ability to author custom code statements that should execute during
the scope of your methods. For example, the Add() method of List(Of T) simply inserts the new

5785ch12.qxd 3/31/06 10:52 AM Page 353

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES354

item into the internally maintained list. However, if you needed to ensure that when a type was
added to the List(of T) you wrote data out to an event log, fired out a custom event, or what have
you, a custom container is the most straightforward way to do so.

Constraining Type Parameters
Currently, the CarCollection(Of T) class does not buy you much beyond uniquely named public
methods. Furthermore, given that T (or any type parameter) by default can be used to specify any-
thing at all, an object user could create an instance of CarCollection(Of T) and specify a completely
unrelated type parameter:

' This is syntactically correct, but confusing at best...

Dim myInts As New CarCollection(Of Integer)

myInts(0) = 4

myInts(1) = 44

To illustrate another form of generics abuse, assume that you have now created two new
classes (SportsCar and MiniVan) that derive from the Car type:

Public Class SportsCar

Inherits Car

Public Sub New(ByVal p As String, ByVal s As Integer)

MyBase.New(p, s)

End Sub

' Assume additional SportsCar methods.

End Class

Public Class MiniVan

Inherits Car

Public Sub New(ByVal p As String, ByVal s As Integer)

MyBase.New(p, s)

End Sub

' Assume additional MiniVan methods.

End Class

Given the laws of inheritance, it’s permissible to add a MiniVan or SportsCar type directly into
a CarCollection(Of T) created with a type parameter of Car:

' CarCollection(Of Car) can hold any type deriving from Car.

Dim otherCars As New CarCollection(Of Car)

otherCars(0) = New MiniVan("Mel", 10)

otherCars(1) = New SportsCar("Suzy", 30)

Although this is syntactically correct, what if you wished to update CarCollection(Of T) with
a new public method named PrintPetName()? This seems simple enough—just access the correct
item in the List(Of T) and invoke the PetName property:

' Error! System.Object does not have a

' property named PetName.

Public Sub PrintPetName(ByVal pos As Integer)

Console.WriteLine(myCars(pos).PetName)

End Sub

However, this will not compile, given that the true identity of T is not yet known, and you can-
not say for certain whether the item in the List(Of T) type has a PetName property. When a type
parameter is not constrained in any way (as is the case here), the generic type is said to be unbound.
By design, unbound type parameters are assumed to have only the members of System.Object
(which clearly does not provide a PetName property).

5785ch12.qxd 3/31/06 10:52 AM Page 354

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 355

You may try to trick the compiler by casting the item returned from the List(Of T)’s indexer
method into a strongly typed Car, and invoking PetName from the returned object:

' Error! System.Object does not have a

' property named PetName.

Public Sub PrintPetName(ByVal pos As Integer)

Console.WriteLine(CType(myCars(pos), Car).PetName)

End Sub

This again does not compile, given that the compiler does not yet know the value of the type
parameter (Of T) and cannot guarantee the cast would be legal.

To address such issues, .NET generics may be defined with optional constraints using the As
keyword. As of .NET 2.0, generics may be constrained in the ways listed in Table 12-2.

Table 12-2. Possible Constraints for Generic Type Parameters

Generic Constraint Meaning in Life

Of T As Structure The type parameter (Of T) must have System.ValueType in its chain
of inheritance.

Of T As Class The type parameter (Of T) must not have System.ValueType in its
chain of inheritance (e.g., (Of T) must be a reference type).

Of T As New The type parameter (Of T) must have a default constructor. This is
very helpful if your generic type must create an instance of the type
parameter, as you cannot assume the format of custom constructors.
Note that this constraint must be listed last on a multiconstrained type.

Of T As NameOfBaseClass The type parameter (Of T) must be derived from the class specified
by NameOfBaseClass.

Of T As NameOfInterface The type parameter (Of T) must implement the interface specified
by NameOfInterface.

When you wish to apply constraints on a type parameter, simply make use of the As keyword.
Furthermore, a single type parameter may be assigned multiple constraints by grouping them
within curly brackets. By way of a few concrete examples, consider the following constraints of
a generic class named MyGenericClass:

' Contained items must have a default ctor.

Public Class MyGenericClass(Of T As New)

End Class

' Contained items must implement ICloneable

' and support a default ctor.

Public Class MyGenericClass(Of T As {ICloneable, New})

End Class

' MyGenericClass derives from SomeBaseClass

' and implements ISomeInterface,

' while the contained items must be structures.

Public Class MyGenericClass(Of T As Structure)

Inherits SomeBaseClass

Implements ISomeInterface

End Class

On a related note, if you are building a generic type that specifies multiple type parameters,
you can specify a unique set of constraints for each:

5785ch12.qxd 3/31/06 10:52 AM Page 355

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES356

' (Of K) must have a default ctor, while (Of T) must

' implement the generic IComparable interface.

Public Class MyGenericClass(Of K As New, T As IComparable(Of T))

End Class

If you wish to update CarCollection(Of T) to ensure that only Car-derived types can be placed
within it, you could write the following:

Public Class CarCollection(Of T As Car)

Implements IEnumerable(Of T)

Private myCars As New List(Of T)

' This is now a-OK, as the compiler knows 'T' must derive from Car.

Public Sub PrintPetName(ByVal pos As Integer)

Console.WriteLine(myCars(pos).PetName)

End Sub

...

End Class

Notice that once you constrain CarCollection(Of T) such that it can contain only Car-derived
types, the implementation of PrintPetName() is straightforward, given that the compiler now assumes
(Of T) is a Car-derived type. Furthermore, if the specified type parameter is not Car-compatible,
you are issued a compiler error:

' Now a compile-time error!

Dim myInts As New CarCollection(Of Integer)

myInts(0) = 4

myInts(1) = 44

Do be aware that type parameters of generic methods can also be constrained. For example, if
you wish to ensure that only value types are passed into the Swap() method created previously in
this chapter, update the code accordingly:

' Type 'T' must be a structure.

Public Function Swap(Of T As Structure) _

(ByRef a As T, ByRef b As T) As T

...

End Function

Understand of course, that if you were to constrain the Swap() method in this manner, you
would no longer be able to swap String types (as they are reference types).

The Lack of Operator Constraints
When you are creating generic methods, it may come as a surprise to you that it’s a compiler error
to apply any VB 2005 operators (+, -, *, etc.) on the type parameters. As an example, I am sure you
could imagine the usefulness of a class that can add or subtract generic types:

' Compiler error! Cannot apply

' operators to type parameters!

Public Class BasicMath(Of T)

Public Function Add(ByVal a As T, _

ByVal b As T) As T

Return a + b ' Error!

End Function

5785ch12.qxd 3/31/06 10:52 AM Page 356

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 357

Public Function Subtract(ByVal a As T, _

ByVal b As T) As T

Return a - b ' Error!

End Function

End Class

Sadly, the preceding BasicMath(Of T) class will not compile, as the compiler cannot guarantee
that T has overloaded the + and - operators (see Chapter 11 for details of operator overloading).
While this may seem like a major restriction, you need to remember that generics are generic.

Of course, the Integer type can work just fine with the binary operators of VB 2005. However,
for the sake of argument, if (Of T) were a custom class or structure type, the compiler cannot assume
it has overloaded the +, -, *, and / operators. Ideally, VB 2005 would allow a generic type to be con-
strained by supported operators, for example:

' Illustrative code only!

' This is not legal code under VB 2005.

Public Class BasicMath(Of T As Operator +, -)

Public Function Add(ByVal a As T, _

ByVal b As T) As T

Return a + b

End Function

Public Function Subtract(ByVal a As T, _

ByVal b As T) As T

Return a - b

End Function

End Class

Alas, operator constraints are not supported on .NET 2.0 generics.

■Source Code The CustomGenericCollection project is located under the Chapter 12 subdirectory.

Creating Generic Interfaces
As you saw earlier in the chapter during the examination of the System.Collections.Generic name-
space, generic interfaces are also permissible (e.g., IEnumerable(Of T)). You are, of course, free to
define your own generic interfaces (with or without constraints). Assume you wish to define an interface
that can perform binary operations on a generic type parameter:

Public Interface IBasicMath(Of T)

Function Add(ByVal a As T, ByVal b As T) As T

Function Subtract(ByVal a As T, ByVal b As T) As T

Function Multiply(ByVal a As T, ByVal b As T) As T

Function Divide(ByVal a As T, ByVal b As T) As T

End Interface

Of course, interfaces are more or less useless until they are implemented by a class or structure.
When you implement a generic interface, the supporting type specifies the placeholder type:

Public Class BasicMath

Implements IBasicMath(Of Integer)

Public Function Add(ByVal a As Integer, ByVal b As Integer) _

As Integer Implements IBasicMath(Of Integer).Add

Return a + b

End Function

5785ch12.qxd 3/31/06 10:52 AM Page 357

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES358

Public Function Divide(ByVal a As Integer, ByVal b As Integer) _

As Integer Implements IBasicMath(Of Integer).Divide

Return CInt(a / b)

End Function

Public Function Multiply(ByVal a As Integer, ByVal b As Integer) _

As Integer Implements IBasicMath(Of Integer).Multiply

Return a * b

End Function

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) _

As Integer Implements IBasicMath(Of Integer).Subtract

Return a - b

End Function

End Class

At this point, you make use of BasicMath as you would expect:

Module Program

Sub Main()

Console.WriteLine("***** Generic Interfaces *****")

Dim m As New BasicMath()

Console.WriteLine("1 + 1 = {0}", m.Add(1, 1))

Console.ReadLine()

End Sub

End Module

If you would rather create a BasicMath class that operates on floating-point numbers, you could
specify the type parameter like so:

Public Class BasicMath

Implements IBasicMath(Of Double)

Public Function Add(ByVal a As Double, ByVal b As Double) _

As Double Implements IBasicMath(Of Double).Add

Return a + b

End Function

...

End Class

■Source Code The GenericInterface project is located under the Chapter 12 subdirectory.

Creating Generic Delegates
Last but not least, .NET 2.0 does allow you to define generic delegate types. For example, assume
you wish to define a delegate that can call any subroutine taking a single argument. If the argument
in question may differ, you could model this using a type parameter. To illustrate, ponder the fol-
lowing code:

5785ch12.qxd 3/31/06 10:52 AM Page 358

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES 359

' This generic delegate can point to any method

' taking a single argument (specified at the time

' of creation).

Public Delegate Sub MyGenericDelegate(Of T)(ByVal arg As T)

Module Program

Sub Main()

Console.WriteLine("***** Fun with generic delegates *****")

Console.WriteLine()

' Make instance of delegate pointing to method taking an

' integer.

Dim d As New MyGenericDelegate(Of Integer) _

(AddressOf IntegerTarget)

d(100)

' Now pointing to a method taking a string.

Dim d2 As New MyGenericDelegate(Of String)(AddressOf StringTarget)

d2("Cool!")

Console.ReadLine()

End Sub

Public Sub IntegerTarget(ByVal arg As Integer)

Console.WriteLine("You passed me a {0} with the value of {1}", _

arg.GetType().Name, arg)

End Sub

Public Sub StringTarget(ByVal arg As String)

Console.WriteLine("You passed me a {0} with the value of {1}", _

arg.GetType().Name, arg)

End Sub

End Module

Notice that MyGenericDelegate(Of T) defines a single type parameter that represents the
argument to pass to the delegate target. When creating an instance of this type, you are required to
specify the value of the type parameter as well as the name of the method the delegate will invoke.
Thus, if you specified a string type, you send a string value to the target method:

' Create an instance of MyGenericDelegate(Of T)

' with string as the type parameter.

Dim d2 As New MyGenericDelegate(Of String)(AddressOf StringTarget)

d2("Cool!")

Given the format of the strTarget object, the StringTarget() method must now take a single
string as a parameter:

Public Sub StringTarget(ByVal arg As String)

Console.WriteLine("You passed me a {0} with the value of {1}", _

arg.GetType().Name, arg)

End Sub

■Source Code The GenericDelegate project is located under the Chapter 12 directory.

5785ch12.qxd 3/31/06 10:52 AM Page 359

CHAPTER 12 ■ UNDERSTANDING GENERICS AND NULLABLE DATA TYPES360

Summary
Generics can arguably be viewed as the major enhancement provided by VB 2005. As you have seen,
a generic item allows you to specify “placeholders” (i.e., type parameters) that are specified at the time
of creation (or invocation, in the case of generic methods). Essentially, generics provide a solution
to the boxing and type-safety issues that plagued .NET 1.1 development.

While you will most often simply make use of the generic types provided in the .NET base class
libraries, you are also able to create your own generic types. When you do so, you have the option of
specifying any number of constraints to increase the level of type safety and ensure that you are
performing operations on types of a “known quantity.”

5785ch12.qxd 3/31/06 10:52 AM Page 360

Programming with .NET
Assemblies

P A R T 5

■ ■ ■

5785ch13.qxd 3/31/06 10:56 AM Page 361

5785ch13.qxd 3/31/06 10:56 AM Page 362

C H A P T E R 1 3

■ ■ ■

Introducing .NET Assemblies

Each of the applications developed in this book’s first 12 chapters were along the lines of tradi-
tional “stand-alone” applications, given that all of your custom programming logic was contained
within a single executable file (*.exe). However, one major aspect of the .NET platform is the notion
of binary reuse, where applications make use of the types contained within various external assemblies
(aka code libraries). The point of this chapter is to examine the core details of creating, deploying,
and configuring .NET assemblies.

Once you examine the .NET assembly format and understand how to define your own custom
namespaces, you’ll then learn the distinction between single-file and multifile assemblies, as well
as “private” and “shared” assemblies. Next, you’ll examine exactly how the .NET runtime resolves
the location of an assembly and come to understand the role of the Global Assembly Cache (GAC),
application configuration files (*.config files), publisher policy assemblies, and the role of the
System.Configuration namespace.

The Role of .NET Assemblies
.NET applications are constructed by piecing together any number of assemblies. Simply put, an
assembly is a versioned, self-describing binary file hosted by the CLR. Now, despite the fact that
.NET assemblies have exactly the same file extensions (*.exe or *.dll) as previous Win32 binaries
(including legacy COM servers), they have very little in common under the hood. Thus, to set the
stage for the information to come, let’s ponder some of the benefits provided by the assembly format.

Assemblies Promote Code Reuse
As you have been building your console applications over the previous chapters, it may have seemed
that all of the applications’ functionality was contained within the executable assembly you were
constructing. In reality, your applications were leveraging numerous types contained within the
always accessible .NET code library, mscorlib.dll (recall that the VB 2005 compiler references
mscorlib.dll automatically), as well as System.Windows.Forms.dll, which was required for the occa-
sional call to MessageBox.Show().

As you may know, a code library (also termed a class library) is a *.dll that contains types intended
to be used by external applications. When you are creating executable assemblies, you will no doubt
be leveraging numerous system-supplied and custom code libraries as you create the application at
hand. Do be aware, however, that a code library need not take a *.dll file extension. It is perfectly
possible for an executable assembly to make use of types defined within an external executable file.
In this light, a referenced *.exe can also be considered a “code library.”

363

5785ch13.qxd 3/31/06 10:56 AM Page 363

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES364

■Note Before the release of Visual Studio 2005, the only way to reference an executable code library was using
the /reference flag of the VB 2005 compiler. However, the Add Reference dialog box of Visual Studio 2005 now
allows you to reference *.exe assemblies.

Regardless of how a code library is packaged, the .NET platform allows you to reuse types in
a language-independent manner. For example, you could create a code library in VB 2005 and reuse
that library in any other .NET programming language. It is possible to not only allocate types across
languages, but derive from them as well. A base class defined in VB 2005 could be extended by a class
authored in C#. Interfaces defined in Pascal .NET can be implemented by structures defined in
VB 2005, and so forth. The point is that when you begin to break apart a single monolithic executable
into numerous .NET assemblies, you achieve a language-neutral form of code reuse.

Assemblies Establish a Type Boundary
In Chapter 1, you were introduced to the topic of .NET namespaces, which were defined as a col-
lection of semantically related types (for example, the System.IO namespace contains file I/O types,
the System.Windows.Forms namespace defines GUI types, and so forth). Recall that a type’s fully
qualified name is composed by prefixing the type’s namespace (e.g., System) to its name (e.g., Console).
Strictly speaking, however, the assembly in which a type resides further establishes a type’s identity.
For example, if you have two uniquely named assemblies (say, MyCars.dll and YourCars.dll) that
both define a namespace (CarLibrary) containing a class named SportsCar, they are considered
unique types in the .NET universe.

Assemblies Are Versionable Units
.NET assemblies are assigned a four-part numerical version number of the form <major>.<minor>.
<build>.<revision> (if you do not provide a version number explicitly, your assembly is automati-
cally assigned a version of 0.0.0.0). This number, in conjunction with an optional public key value,
allows multiple versions of the same assembly to coexist in harmony on a single machine. Formally
speaking, assemblies that provide public key information are termed strongly named. As you will
see in this chapter, using a strong name, the CLR is able to ensure that the correct version of an
assembly is loaded on behalf of the calling client.

Assemblies Are Self-Describing
Assemblies are regarded as self-describing in part because they record every external assembly they
must have access to in order to function correctly. Thus, if your assembly requires System.Windows.
Forms.dll and System.Drawing.dll, they will be documented in the assembly’s manifest. Recall
from Chapter 1 that a manifest is a blob of metadata that describes the assembly itself (name, version,
external assemblies, etc.).

In addition to manifest data, an assembly contains metadata that describes the composition
(member names, implemented interfaces, base classes, constructors, and so forth) of every contained
type. Given that an assembly is documented in such vivid detail, the CLR does not consult the Win32
system registry to resolve its location (quite the radical departure from Microsoft’s legacy COM pro-
gramming model). As you will discover during this chapter, the CLR makes use of an entirely new
scheme to resolve the location of external code libraries.

5785ch13.qxd 3/31/06 10:56 AM Page 364

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 365

Assemblies Are Configurable
Assemblies can be deployed as “private” or “shared.” Private assemblies reside in the same directory
(or possibly a subdirectory) as the client application making use of them. Shared assemblies, on the
other hand, are libraries intended to be consumed by numerous applications on a single machine
and are deployed to a specific directory termed the Global Assembly Cache, or GAC.

Regardless of how you deploy your assemblies, you are free to author XML-based configuration
files. Using these configuration files, the CLR can be instructed to “probe” for assemblies under a spe-
cific location, load a specific version of a referenced assembly for a particular client, or consult an
arbitrary directory on your local machine, your network location, or a web-based URL. You’ll learn
a good deal more about XML configuration files throughout this chapter.

Understanding the Format of a .NET Assembly
Now that you’ve learned about several benefits provided by the .NET assembly, let’s shift gears and
get a better idea of how an assembly is composed under the hood. Structurally speaking, a .NET
assembly (*.dll or *.exe) consists of the following elements:

• A Win32 file header

• A CLR file header

• CIL code

• Type metadata

• An assembly manifest

• Optional embedded resources

While the first two elements (the Win32 and CLR headers) are blocks of data that you can typi-
cally ignore, they do deserve some brief consideration. This being said, an overview of each element
follows.

The Win32 File Header
The Win32 file header establishes the fact that the assembly can be loaded and manipulated by the
Windows family of operating systems. This header data also identifies the kind of application
(console-based, GUI-based, or *.dll code library) to be hosted by the Windows operating system. If
you open a .NET assembly using the dumpbin.exe command-line utility (using a .NET Framework 2.0
SDK command prompt) and specify the /headers flag, you can view an assembly’s Win32 header
information. Figure 13-1 shows (partial) Win32 header information for the CarLibrary.dll assembly
you will build a bit later in this chapter.

5785ch13.qxd 3/31/06 10:56 AM Page 365

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES366

The CLR File Header
The CLR header is a block of data that all .NET files must support (and do support, courtesy of the
VB 2005 compiler) in order to be hosted by the CLR. In a nutshell, this header defines numerous
flags that enable the runtime to understand the layout of the managed file. For example, flags exist
that identify the location of the metadata and resources within the file, the version of the runtime
the assembly was built against, the value of the (optional) public key, and so forth. If you supply the
/clrheader flag to dumpbin.exe, you are presented with the internal CLR header information for
a given .NET assembly, as shown in Figure 13-2.

Figure 13-1. An assembly’s Win32 file header information

Figure 13-2. An assembly’s CLR file header information

5785ch13.qxd 3/31/06 10:56 AM Page 366

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 367

CLR header data is represented by an unmanaged C-style structure (IMAGE_COR20_HEADER)
defined in the C-based header file, corhdr.h (located by default under C:\Program Files\Microsoft
Visual Studio 8\SDK\v2.0\include if you install the C++ development environment). For those who
are interested, here is the layout of the structure in question:

// CLR 2.0 header structure.

typedef struct IMAGE_COR20_HEADER

{

// Header versioning

ULONG cb;

USHORT MajorRuntimeVersion;

USHORT MinorRuntimeVersion;

// Symbol table and startup information

IMAGE_DATA_DIRECTORY MetaData;

ULONG Flags;

ULONG EntryPointToken;

// Binding information

IMAGE_DATA_DIRECTORY Resources;

IMAGE_DATA_DIRECTORY StrongNameSignature;

// Regular fixup and binding information

IMAGE_DATA_DIRECTORY CodeManagerTable;

IMAGE_DATA_DIRECTORY VTableFixups;

IMAGE_DATA_DIRECTORY ExportAddressTableJumps;

// Precompiled image info (internal use only - set to zero)

IMAGE_DATA_DIRECTORY ManagedNativeHeader;

} IMAGE_COR20_HEADER;

Again, as a .NET developer you will not need to concern yourself with the gory details of Win32
or CLR header information (unless perhaps you are building a compiler for a new .NET programming
language!). Just understand that every .NET assembly contains this data, which is used behind the
scenes by the .NET runtime and Win32 operating system.

CIL Code, Type Metadata, and the Assembly Manifest
At its core, an assembly contains CIL code, which as you recall is a platform- and CPU-agnostic
intermediate language. At runtime, the internal CIL is compiled on the fly (using a just-in-time [JIT]
compiler) to platform- and CPU-specific instructions. Given this architecture, .NET assemblies can
indeed execute on a variety of architectures, devices, and operating systems. Thankfully, it is always
the job of the VB 2005 compiler to generate CIL code based on your VB 2005 code base.

An assembly also contains metadata that completely describes the format of the contained
types as well as the format of external types referenced by this assembly. The .NET runtime uses this
metadata to resolve the location of types (and their members) within the binary, lay out types in
memory, and facilitate remote method invocations. You’ll check out the details of the .NET metadata
format in Chapter 14 during our examination of reflection services.

An assembly must also contain an associated manifest (also referred to as assembly metadata).
The manifest documents each module within the assembly, establishes the version of the assembly,
and also documents any external assemblies referenced by the current assembly (unlike legacy COM
type libraries, which did not provide a way to document external dependencies). As you will see over
the course of this chapter, the CLR makes extensive use of an assembly’s manifest during the process
of locating external assembly references.

5785ch13.qxd 3/31/06 10:56 AM Page 367

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES368

■Note Needless to say by this point in the book, when you wish to view an assembly’s CIL code, type metadata,
or manifest, ildasm.exe is the tool of choice. I will assume you will make extensive use of ildasm.exe as you
work through the code examples in this chapter (see Chapter 1 for coverage of the ildasm.exe utility).

Optional Assembly Resources
Finally, a .NET assembly may contain any number of embedded resources such as application icons,
image files, sound clips, or string tables. In fact, the .NET platform supports satellite assemblies that
contain nothing but localized resources. This can be useful if you wish to partition your resources
based on a specific culture (English, German, etc.) for the purposes of building international soft-
ware. The topic of building satellite assemblies is outside the scope of this text; however, you will
learn how to embed application resources into an assembly during our examination of GDI+ in
Chapter 22.

Single-File and Multifile Assemblies
Technically speaking, an assembly can be composed of multiple modules. A module is really noth-
ing more than a generic term for a valid .NET binary file. In most situations, an assembly is in fact
composed of a single module. In this case, there is a one-to-one correspondence between the (logi-
cal) assembly and the underlying (physical) binary (hence the term single-file assembly).

Single-file assemblies contain all of the necessary elements (header information, CIL code,
type metadata, manifest, and required resources) in a single *.exe or *.dll package. Figure 13-3
illustrates the composition of a single-file assembly.

A multifile assembly, on the other hand, is a set of .NET *.dlls that are deployed and versioned
as a single logic unit. Formally speaking, one of these *.dlls is termed the primary module and con-
tains the assembly-level manifest (as well as any necessary CIL code, metadata, header information,
and optional resources). The manifest of the primary module records each of the related *.dll files
it is dependent upon.

Figure 13-3. A single-file assembly

5785ch13.qxd 3/31/06 10:56 AM Page 368

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 369

As a naming convention, the secondary modules in a multifile assembly take a *.netmodule file
extension; however, this is not a requirement of the CLR. Secondary *.netmodules also contain CIL
code and type metadata, as well as a module-level manifest, which simply records the externally
required assemblies of that specific module.

The major benefit of constructing multifile assemblies is that they provide a very efficient way
to download content. For example, assume you have a machine that is referencing a remote multifile
assembly composed of three modules, where the primary module is installed on the client. If the
client requires a type within a secondary remote *.netmodule, the CLR will download the binary to
the local machine on demand to a specific location termed the download cache. If each *.netmodule
is 1MB, I’m sure you can see the benefit.

Another benefit of multifile assemblies is that they enable modules to be authored using multiple
.NET programming languages (which is very helpful in larger corporations, where individual depart-
ments tend to favor a specific .NET language). Once each of the individual modules has been compiled,
the modules can be logically “connected” into a logical assembly using tools such as the assembly
linker (al.exe).

In any case, do understand that the modules that compose a multifile assembly are not literally
linked together into a single (larger) file. Rather, multifile assemblies are only logically related by
information contained in the primary module’s manifest. Figure 13-4 illustrates a multifile assembly
composed of three modules, each authored using a unique .NET programming language.

At this point you (hopefully) have a better understanding about the internal composition of a .NET
binary file. With this necessary preamble out of the way, we are ready to dig into the details of building
and configuring a variety of code libraries, beginning with the topic of defining custom namespaces.

Figure 13-4. The primary module records secondary modules in the assembly manifest.

5785ch13.qxd 3/31/06 10:56 AM Page 369

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES370

Constructing Custom .NET Namespaces
During the previous 12 chapters, as you created your stand-alone *.exe assemblies, Visual Basic
2005 was secretly grouping each one of your types within a default namespace (also known as the
root namespace). By default, when you create a new VB 2005 Visual Studio 2005 project, your cus-
tom types are wrapped within a namespace that takes the identical name of the project itself. As
you would expect, it is possible to change the name of this root namespace as well as define any
number of additional namespaces via the VB 2005 Namespace keyword.

When you begin to build .NET *.dll assemblies, it is very important that you take time to
organize your types into namespaces that make sense for the code library at hand, given that other
developers will reference these libraries and need to know the set of Import statements required to
make use of your types. To illustrate the ins-and-outs of namespace definitions, create a new Class
Library project named MyCodeLibrary using Visual Studio 2005, as shown in Figure 13-5.

Observing the Root Namespace
Notice that when you create a Class Library project, you receive little more than an empty class defi-
nition for a type named Class1. Your goal when building a *.dll assembly is to populate the binary
with any number of classes, interfaces, enumerations, structures, and delegates for the task at hand.
Given this, it is important to point out that all of the skills you have developed during the previous
12 chapters apply directly to a Class Library project. The only noticeable difference between
a *.dll and *.exe assembly is how the image is loaded from disk.

In any case, double-click the My Project icon within the Solution Explorer. Notice that the
Application tab contains a text area that defines the root namespace, which as mentioned is by
default named identically to the project you have just created, as you see in Figure 13-6.

Figure 13-5. Creating a VB 2005 class library

5785ch13.qxd 3/31/06 10:56 AM Page 370

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 371

You are always free to rename your root namespace as you see fit. Recall that a namespace does not
need to be defined within an identically named assembly. Consider again our good friend mscorlib.dll.
This core .NET assembly does not define a namespace named mscorlib. Rather the mscorlib.dll assem-
bly defines a good number of unique namespaces (System.IO, System, System.Threading, System.
Collections, etc.). This brings up another very important point: the fact that a single assembly can
contain any number of uniquely named namespaces. In fact, it is also possible to have a single
namespace defined within multiple assemblies. For example, the System.IO namespace is partially
defined in mscorlib.dll as well as System.dll.

Defining Namespaces Beyond the Root
To illustrate the role of the VB 2005 Namespace keyword, update your initial *.vb file with the following
code:

' This type is in the root namespace,

' which is (by default) the same name

' as the initial project.

Public Class SomeClass

End Class

' This namespace is nested within the

' root. Therefore the fully qualified

' name of this class is MyCodeLibrary.MyTypes.SomeClass

Namespace MyTypes

Public Class SomeClass

End Class

' It is possible to nest namespaces within other

' namespaces to gain a greater level of structure.

' Thus, the fully qualified name of this enum is:

' MyCodeLibrary.MyTypes.MyEnums.TestEnum

Namespace MyEnums

Public Enum TestEnum

TestValue

End Enum

End Namespace

End Namespace

Notice that the Namespace keyword allows us to create customized namespaces that are nested
within the root. To see the impact of this firsthand, open the Visual Studio 2005 Object Browser (via
the View menu) and expand the tree view representing your project. As you can see, your single

Figure 13-6. The root namespace

5785ch13.qxd 3/31/06 10:56 AM Page 371

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES372

assembly defines three custom namespaces named MyCodeLibrary, MyCodeLibrary.MyTypes, and
MyCodeLibrary.MyTypes.MyEnums (the additional “My” namespaces are autogenerated as a convenience
for VB 2005 programmers).

■Note With the release of .NET 2.0, VB 2005 projects have access to an autogenerated namespace
named My, which provides instant access to machine and project resources. Look up My within the
.NET 2.0 Framework SDK documentation for full details.

Importing Custom Namespaces
Given the way we have organized our types, if you were to build another assembly that referenced
MyCodeLibrary.dll, you would need to add the following Imports statements to gain access to
each type:

Imports MyCodeLibrary

Imports MyCodeLibrary.MyTypes

Imports MyCodeLibrary.MyTypes.MyEnums

Also be aware that when you are building an assembly that contains multiple namespaces
(such as MyCodeLibrary.dll), you may need to make use of the Imports keyword on a file-by-file
basis where necessary. To illustrate, insert a new Class file into your current project (via the Project
➤ Add Class menu). Now, attempt to update the new Class with the following method:

Public Class Class2

Public Sub MySub()

Dim e As TestEnum

End Sub

End Class

If you were to compile your assembly, you might be surprised to find a compiler error that
states the TestEnum is not defined, regardless of the fact that this type is defined within a *.vb file in
the same project! The reason, of course, is due to the fact that the Class2 class type is defined within
the root namespace, while TestEnum is within MyCodeLibrary.MyTypes.MyEnums. Therefore, this new
*.vb file must import the defining namespace before we can compile the file successfully:

Imports MyCodeLibrary.MyTypes.MyEnums

Public Class Class2

Public Sub MySub()

Dim e As TestEnum

End Sub

End Class

■Note The References tab of the My Project namespace allows you to select any number of namespaces that
should be automatically imported into each *.vb file within your current project. If a namespace is selected in this
manner, you are not required to explicitly import the namespace using the Imports keyword.

Building Type Aliases Using the Imports Keyword
Before we build our first official code library, there is one final aspect of the Imports keyword I’d like
to point out. In our current example, you may have noticed that we have two classes named SomeClass,
one defined within MyCodeLibrary and the other within MyCodeLibrary.MyTypes. Surprisingly, if you
wish to make use of the SomeClass defined within MyCodeLibrary, you are not required to add any

5785ch13.qxd 3/31/06 10:56 AM Page 372

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 373

additional Imports statements. Given that Class2 is defined within the MyCodeLibrary namespace,
the compiler assumes you are requesting the SomeClass within the shared namespace scope:

Imports MyCodeLibrary.MyTypes.MyEnums

Public Class Class2

Public Sub MySub()

Dim e As TestEnum

' This is really MyCodeLibrary.SomeClass

Dim s As New SomeClass

End Sub

End Class

However, for the sake of argument, what if you wished to make use of the SomeClass defined
within MyCodeLibrary.MyTypes? You might think that you would simply add an Imports statement
for MyCodeLibrary.MyTypes, as follows:

Imports MyCodeLibrary.MyTypes.MyEnums

Imports MyCodeLibrary.MyTypes

Public Class Class2

Public Sub MySub()

Dim e As TestEnum

' This is STILL MyCodeLibrary.SomeClass

Dim s As New SomeClass

End Sub

End Class

However, s is still of type MyCodeLibrary.SomeClass (this can be verified using ildasm.exe)! To
inform the compiler you explicitly wish to have the SomeClass defined within MyCodeLibrary.MyTypes,
you can either use fully qualified names:

Imports MyCodeLibrary.MyTypes.MyEnums

Public Class Class2

Public Sub MySub()

Dim e As TestEnum

Dim s As New MyCodeLibrary.MyTypes.SomeClass

End Sub

End Class

or make use of a specialized form of the Imports statement shown here:

Imports MyCodeLibrary.MyTypes.MyEnums

' A type alias!

Imports TypeIWant = MyCodeLibrary.MyTypes.SomeClass

Public Class Class2

Public Sub MySub()

Dim e As TestEnum

' 's' is now of type MyCodeLibrary.MyTypes.SomeClass

Dim s As New TypeIWant

MsgBox(s.GetType().FullName)

End Sub

End Class

This format of the Imports keyword is used to build a type alias. Simply put, this allows you to
define a symbolic token (in this case TypeIWant) that is replaced at compile time with the assigned
fully qualified name (MyCodeLibrary.MyTypes.SomeClass) of a type.

5785ch13.qxd 3/31/06 10:56 AM Page 373

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES374

■Source Code The MyCodeLibrary project is located under the Chapter 13 subdirectory.

Building and Consuming a Single-File Assembly
Now that you better understand the nature of defining and using custom .NET namespaces, our
next task is to create a single-file *.dll assembly (named CarLibrary) that contains a small set of
public types. To build a code library using Visual Studio 2005, simply select the Class Library project
workspace (again, see Figure 13-5 earlier).

The design of your automobile library begins with an abstract base class named Car that defines
a number of protected data members exposed through custom properties. This class has a single
abstract method named TurboBoost(), which makes use of a custom enumeration (EngineState)
representing the current condition of the car’s engine. As all of these types will be in the root name-
space, we have no need to make use of the VB 2005 Namespace keyword:

' Represents the state of the engine.

Public Enum EngineState

engineAlive

engineDead

End Enum

' The abstract base class in the hierarchy.

Public MustInherit Class Car

Protected name As String

Protected speed As Short

Protected max_speed As Short

Protected egnState As EngineState = EngineState.engineAlive

Public MustOverride Sub TurboBoost()

Public Sub New()

End Sub

Public Sub New(ByVal name As String, ByVal max As Short, ByVal curr As Short)

name = name

max_speed = max

speed = curr

End Sub

Public Property PetName() As String

Get

Return name

End Get

Set(ByVal value As String)

name = value

End Set

End Property

Public Property CurrSpeed() As Short

Get

Return speed

End Get

Set(ByVal value As Short)

speed = value

End Set

End Property

5785ch13.qxd 3/31/06 10:56 AM Page 374

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 375

Public ReadOnly Property MaxSpeed() As Short

Get

Return max_speed

End Get

End Property

Public ReadOnly Property EngineState() As EngineState

Get

Return egnState

End Get

End Property

End Class

Now assume that you have two direct descendents of the Car type named MiniVan and SportsCar.
Each overrides the abstract TurboBoost() method in an appropriate manner.

Imports System.Windows.Forms

Public Class SportsCar

Inherits Car

Public Sub New()

End Sub

Public Sub New(ByVal name As String, ByVal max As Short, ByVal curr As Short)

MyBase.New(name, max, curr)

End Sub

Public Overrides Sub TurboBoost()

MessageBox.Show("Ramming speed!", "Faster is better...")

End Sub

End Class

Public Class MiniVan

Inherits Car

Public Sub New()

End Sub

Public Sub New(ByVal name As String, ByVal max As Short, ByVal curr As Short)

MyBase.New(name, max, curr)

End Sub

' Minivans have poor turbo capabilities!

Public Overrides Sub TurboBoost()

egnState = EngineState.engineDead

MessageBox.Show("Time to call AAA", "Your car is dead")

End Sub

End Class

Notice how each subclass implements TurboBoost() using the MessageBox class, which is defined
in the System.Windows.Forms.dll assembly. For your assembly to make use of the types defined within
this external assembly, the CarLibrary project must set a reference to this binary via the Add Reference
dialog box (see Figure 13-7), which you can access through the Visual Studio 2005 Project ➤ Add
Reference menu selection.

5785ch13.qxd 3/31/06 10:56 AM Page 375

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES376

It is really important to understand that the assemblies displayed in the .NET tab of the Add
Reference dialog box do not represent each and every assembly on your machine. The Add Reference
dialog box will not display your custom assemblies, and it does not display all assemblies located in
the GAC. Rather, this dialog box simply presents a list of common assemblies that Visual Studio 2005
is preprogrammed to display. When you are building applications that require the use of an assembly
not listed within the Add Reference dialog box, you need to click the Browse tab to manually navigate
to the *.dll or *.exe in question.

■Note Although it is technically possible to have your custom assemblies appear in the Add Reference dialog
box’s list by deploying a copy to C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\
PublicAssemblies, there is little benefit in doing so. The Recent tab keeps a running list of previously referenced
assemblies.

Exploring the Manifest
Before making use of CarLibrary.dll from a client application, let’s check out how the code library
is composed under the hood. Assuming you have compiled this project, load CarLibrary.dll into
ildasm.exe (see Figure 13-8).

Figure 13-7. Referencing external .NET assemblies begins here.

5785ch13.qxd 3/31/06 10:56 AM Page 376

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 377

Now, open the manifest of CarLibrary.dll by double-clicking the MANIFEST icon. The first
code block encountered in a manifest is used to specify all external assemblies that are required by
the current assembly to function correctly. As you recall, CarLibrary.dll made use of types within
mscorlib.dll and System.Windows.Forms.dll, both of which are listed in the manifest using the
.assembly extern token. As well, given that all VB 2005 applications created with Visual Studio 2005
automatically reference the VB 6.0 backwards-compatibility assembly, you will also find references
to System.dll and Microsoft.VisualBasic assemblies:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 2:0:0:0

}

.assembly extern Microsoft.VisualBasic

{

.publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)

.ver 8:0:0:0

}

.assembly extern System

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 2:0:0:0

}

.assembly extern System.Windows.Forms

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 2:0:0:0

}

Here, each .assembly extern block is qualified by the .publickeytoken and .ver directives. The
.publickeytoken instruction is present only if the assembly has been configured with a strong name
(more details later in this chapter). The .ver token marks (of course) the numerical version identifier.

After cataloging each of the external references, you will find a number of .custom tokens that
identify assembly-level attributes. If you examine the AssemblyInfo.vb file created by Visual Studio
2005, you will find these attributes represent basic characteristics about the assembly such as company

Figure 13-8. CarLibrary.dll loaded into ildasm.exe

5785ch13.qxd 3/31/06 10:56 AM Page 377

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES378

name, trademark, and so forth (all of which are currently empty). By default, AssemblyInfo.vb is
hidden from view. To see this file, you must click the Show All Files button on the Solution
Explorer and expand the plus node under the My Project icon. Chapter 14 examines attributes in
detail, so don’t sweat the details at this point. Do be aware, however, that the attributes defined in
AssemblyInfo.vb update the manifest with various .custom tokens, such as <AssemblyTitle>:

.assembly CarLibrary

{

...

.custom instance void [mscorlib]

System.Reflection.AssemblyTitleAttribute::.ctor(string) = (01 00 00 00 00)

.hash algorithm 0x00008004

.ver 1:0:454:30104

}

.module CarLibrary.dll

Finally, you can also see that the .assembly token is used to mark the friendly name of your
assembly (CarLibrary), while the .module token specifies the name of the module itself (CarLibrary.
dll). The .ver token defines the version number assigned to this assembly, as specified by the
<AssemblyVersion> attribute within AssemblyInfo.vb.

Exploring the CIL
Recall that an assembly does not contain platform-specific instructions; rather, it contains
platform-agnostic CIL. When the .NET runtime loads an assembly into memory, the underlying CIL
is compiled (using the JIT compiler) into instructions that can be understood by the target platform.
If you double-click the TurboBoost() method of the SportsCar class, ildasm.exe will open a new
window showing the CIL instructions:

.method public hidebysig virtual instance void

TurboBoost() cil managed

{

// Code size 17 (0x11)

.maxstack 2

IL_0000: ldstr "Ramming speed!"

IL_0005: ldstr "Faster is better..."

IL_000a: call valuetype [System.Windows.Forms]

System.Windows.Forms.DialogResult [System.Windows.Forms]

System.Windows.Forms.MessageBox::Show(string, string)

IL_000f: pop

IL_0010: ret

} // end of method SportsCar::TurboBoost

Notice that the .method tag is used to identify a method defined by the SportsCar type. Member
variables defined by a type are marked with the .field tag. Recall that the Car class defined a set of
protected data, such as currSpeed:

.field family int16 currSpeed

Properties are marked with the .property tag. Here is the CIL describing the public CurrSpeed
property (note that the read/write nature of a property is marked by .get and .set tags):

.property instance int16 CurrSpeed()

{

.get instance int16 CarLibrary.Car::get_CurrSpeed()

.set instance void CarLibrary.Car::set_CurrSpeed(int16)

} // end of property Car::CurrSpeed

5785ch13.qxd 3/31/06 10:56 AM Page 378

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 379

Exploring the Type Metadata
Finally, if you now press Ctrl+M, ildasm.exe displays the metadata for each type within the
Vb2005CarClient assembly, as you see in Figure 13-9.

Now that you have looked inside the CarLibrary.dll assembly, you can build some client
applications.

■Source Code The CarLibrary project is located under the Chapter 13 subdirectory.

Building a VB 2005 Client Application
Because each of the CarLibrary types has been declared using the Public keyword, other assemblies
are able to make use of them. Recall that you may also define types using the VB 2005 Friend keyword.
Friend types can be used only by the assembly in which they are defined. External clients can neither
see nor create friend types.

■Note .NET 2.0 now provides a way to specify “friend assemblies” that allow Friend types to be consumed by
specific assemblies. Look up the InternalsVisibleToAttribute class in the .NET Framework 2.0 SDK docu-
mentation for details.

To consume these types, create a new VB 2005 console application project (Vb2005CarClient).
Once you have done so, set a reference to CarLibrary.dll using the Browse tab of the Add Reference
dialog box (if you compiled CarLibrary.dll using Visual Studio 2005, your assembly is located

Figure 13-9. Type metadata for the types within CarLibrary.dll

5785ch13.qxd 3/31/06 10:56 AM Page 379

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES380

under the \Bin\Debug subdirectory of the CarLibrary project folder). Once you click the OK button,
Visual Studio 2005 responds by placing a copy of CarLibrary.dll into the \bin\Debug folder of the
Vb2005CarClient project folder, as shown in Figure 13-10.

At this point you can build your client application to make use of the external types. Update
your initial VB 2005 file like so:

' Import the CarLibrary namespace

' defined in the CarLibrary.dll assembly.

Imports CarLibrary

Module Program

Sub Main()

Console.WriteLine("***** Visual Basic 2005 Client *****")

Dim myMiniVan As New MiniVan()

myMiniVan.TurboBoost()

Dim mySportsCar As New SportsCar()

mySportsCar.TurboBoost()

End Sub

End Module

This code looks just like the other applications developed thus far. The only point of interest is
that the VB 2005 client application is now making use of types defined within a separate custom
assembly. Go ahead and run your program. As you would expect, the execution of this program
results in the display of various message boxes.

■Source Code The Vb2005CarClient project is located under the Chapter 13 subdirectory.

Building a C# Client Application
To illustrate the language-agnostic attitude of the .NET platform, let’s create another console appli-
cation (CSharpCarClient), this time using the C# programming (see Figure 13-11). Once you have
created the project, set a reference to CarLibrary.dll using the Add Reference dialog box.

Figure 13-10. Visual Studio 2005 copies private assemblies to the client’s directory.

5785ch13.qxd 3/31/06 10:56 AM Page 380

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 381

Like VB 2005, C# requires you to list each namespace used within the current file. However, C#
offers the using keyword rather than the VB 2005 Imports keyword. Given this, add the following
using statement within the Class1.cs code file (remember, C# is a case-sensitive programming lan-
guage!):

using System;

using System.Collections.Generic;

using System.Text;

using CarLibrary;

namespace CSharpCarClient

{

class Program

{

static void Main(string[] args)

{

}

}

}

Notice that the Main() method is defined within a C# class type (rather than the VB 2005
specific Module type). In any case, to exercise the MiniVan and SportsCar types using the syntax of
C#, update your Main() method like so:

class Program

{

static void Main(string[] args)

{

Console.WriteLine("***** Fun with C# *****");

Figure 13-11. Creating a C# console application

5785ch13.qxd 3/31/06 10:56 AM Page 381

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES382

// Make a sports car.

SportsCar viper = new SportsCar("Viper", 240, 40);

viper.TurboBoost();

// Make a minivan.

MiniVan mv = new MiniVan();

mv.TurboBoost();

Console.ReadLine();

}

}

When you compile and run your application, you will once again find a series of message boxes
displayed.

Cross-Language Inheritance in Action
A very enticing aspect of .NET development is the notion of cross-language inheritance. To illustrate,
let’s create a new C# class that derives from SportsCar (which was authored using VB 2005). First,
add a new class file to your current C# application (by selecting Project ➤ Add Class) named
PerformanceCar.cs. Update the initial class definition by deriving from the SportsCar type using
the C# inheritance token (a single colon, which is functionally equivalent to the Inherits keyword).
Furthermore, override the abstract TurboBoost() method using the override keyword:

using System;

using System.Collections.Generic;

using System.Text;

using CarLibrary;

namespace CSharpCarClient

{

public class PerformanceCar : SportsCar

{

// This C# type is deriving from the VB 2005 SportsCar.

public override void TurboBoost()

{

Console.WriteLine("Zero to 60 in a cool 4.8 seconds...");

}

}

}

To test this new class type, update the Main() method as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with C# *****");

// Make a sports car.

SportsCar viper = new SportsCar("Viper", 240, 40);

viper.TurboBoost();

// Make a minivan.

MiniVan mv = new MiniVan();

mv.TurboBoost();

PerformanceCar dreamCar = new PerformanceCar();

// Inherited property.

dreamCar.PetName = "Hank";

5785ch13.qxd 3/31/06 10:56 AM Page 382

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 383

dreamCar.TurboBoost();

Console.ReadLine();

}

Notice that the dreamCar object is able to invoke any public member (such as the PetName prop-
erty) found up the chain of inheritance, regardless of the fact that the base class has been defined in
a completely different language and is defined in a completely different code library.

■Source Code The CSharpCarClient project is located under the Chapter 13 subdirectory.

Building and Consuming a Multifile Assembly
Now that you have constructed and consumed a single-file assembly, let’s examine the process of
building a multifile assembly. Recall that a multifile assembly is simply a collection of related mod-
ules (which has nothing to do with the Visual Basic 2005 Module keyword!) that are deployed and
versioned as a single unit. At the time of this writing, Visual Studio 2005 does not support a VB 2005
multifile assembly project template. Therefore, you will need to make use of the command-line
compiler (vbc.exe) if you wish to build such as beast (see Chapter 2 for details of the command-line
compiler).

To illustrate the process, you will build a multifile assembly named AirVehicles. The primary
module (airvehicles.dll) will contain a single class type named Helicopter. The related manifest
(also contained in airvehicles.dll) catalogs an additional *.netmodule file named ufo.netmodule,
which contains another class type named (of course) Ufo. Although both class types are physically
contained in separate binaries, you will group them into a single namespace named AirVehicles.
Finally, both classes are created using VB 2005 (although you could certainly mix and match languages
if you desire).

To begin, open a simple text editor (such as Notepad or TextPad) and create the following Ufo
class definition saved to a file named ufo.vb:

' This type will be placed

' within a *.netmodule binary,

' and it thus part of a multifile

' Assembly.

Namespace AirVehicles

Public Class Ufo

Public Sub AbductHuman()

Console.WriteLine("Resistance is futile")

End Sub

End Class

End Namespace

To compile this class into a .NET module, navigate to the folder containing ufo.vb and issue
the following command to the VB 2005 compiler (the module option of the /target flag instructs
vbc.exe to produce a *.netmodule as opposed to a *.dll or an *.exe file):

vbc.exe /t:module ufo.vb

If you now look in the folder that contains the ufo.vb file, you should see a new file named
ufo.netmodule (take a peek). Next, create a new file named helicopter.vb that contains the follow-
ing class definition:

' This type will be in the

' primary module of the multifile

' assembly, therefore this assembly

' will contain the assembly manifest.

5785ch13.qxd 3/31/06 10:56 AM Page 383

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES384

Namespace AirVehicles

Public Class Helicopter

Public Sub TakeOff()

Console.WriteLine("Helicopter taking off!")

End Sub

End Class

End Namespace

Given that airvehicles.dll is the intended name of the primary module of this multifile
assembly, you will need to compile helicopter.vb using the /t:library and /out: options. To enlist
the ufo.netmodule binary into the assembly manifest, you must also specify the /addmodule flag. The
following command does the trick:

vbc /t:library /addmodule:ufo.netmodule /out:airvehicles.dll helicopter.vb

At this point, your directory should contain the primary airvehicles.dll module as well as the
secondary ufo.netmodule binary.

Exploring the ufo.netmodule File
Now, using ildasm.exe, open ufo.netmodule. As you can see, *.netmodules contain a module-level
manifest; however, its sole purpose is to list each external assembly referenced by the code base. Given
that the Ufo class did little more than make a call to Console.WriteLine(), you find the following:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 2:0:0:0

}

.assembly extern Microsoft.VisualBasic

{

.publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)

.ver 8:0:0:0

}

.module ufo.netmodule

Exploring the airvehicles.dll File
Next, using ildasm.exe, open the primary airvehicles.dll module and investigate the assembly-level
manifest. Notice that the .file token documents the associated modules in the multifile assembly
(ufo.netmodule in this case). The .class extern tokens are used to document the names of the exter-
nal types referenced for use from the secondary module (ufo):

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 2:0:0:0

}

.assembly airvehicles

{

...

.hash algorithm 0x00008004

.ver 0:0:0:0

}

5785ch13.qxd 3/31/06 10:56 AM Page 384

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 385

.file ufo.netmodule

...

.class extern public AirVehicles.Ufo

{

.file ufo.netmodule

.class 0x02000002

}

.module airvehicles.dll

Again, realize that the only entity that links together airvehicles.dll and ufo.netmodule is the
assembly manifest. These two binary files have not been merged into a single, larger *.dll.

Consuming a Multifile Assembly
The consumers of a multifile assembly couldn’t care less that the assembly they are referencing is
composed of numerous modules. To keep things simple, let’s create a new Visual Basic .NET client
application at the command line. Create a new file named Client.vb with the following Module defi-
nition. When you are done, save it in the same location as your multifile assembly.

Imports AirVehicles

Module Program

Sub Main()

Dim h As New AirVehicles.Helicopter()

h.TakeOff()

' This will load the *.netmodule on demand.

Dim u As New UFO()

u.AbductHuman()

End Sub

End Module

To compile this executable assembly at the command line, you will make use of the Visual
Basic .NET command-line compiler, vbc.exe, with the following command set:

vbc /r:airvehicles.dll Client.vb

Notice that when you are referencing a multifile assembly, the compiler needs to be supplied
only with the name of the primary module (the *.netmodules are loaded on demand when used by
the client’s code base). In and of themselves, *.netmodules do not have an individual version num-
ber and cannot be directly loaded by the CLR. Individual *.netmodules can be loaded only by the
primary module (e.g., the file that contains the assembly manifest).

■Note Visual Studio 2005 also allows you to reference a multifile assembly. Simply use the Add References
dialog box and select the primary module. Any related *.netmodules are copied during the process.

At this point, you should feel comfortable with the process of building both single-file and mul-
tifile assemblies. To be completely honest, chances are that 99.99 percent of your assemblies will be
single-file entities. Nevertheless, multifile assemblies can prove helpful when you wish to break
a large physical binary into more modular units (and they are quite useful for remote download sce-
narios). Next up, let’s formalize the concept of a private assembly.

■Source Code The MultifileAssembly project is included under the Chapter 13 subdirectory.

5785ch13.qxd 3/31/06 10:56 AM Page 385

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES386

Understanding Private Assemblies
Technically speaking, the assemblies you’ve created thus far in this chapter have been deployed as
private assemblies. Private assemblies are required to be located within the same directory as the
client application (termed the application directory) or a subdirectory thereof. Recall that when you
set a reference to CarLibrary.dll while building the VbNetCarClient.exe and CSharpCarClient.exe
applications, Visual Studio 2005 responded by placing a copy of CarLibrary.dll within the client’s
application directory.

When a client program uses the types defined within this external assembly, the CLR simply
loads the local copy of CarLibrary.dll. Because the .NET runtime does not consult the system
registry when searching for referenced assemblies, you can relocate the VbNetCarClient.exe (or
CSharpCarClient.exe) and CarLibrary.dll assemblies to a location on your machine and run the
application (this is often termed Xcopy deployment).

Uninstalling (or replicating) an application that makes exclusive use of private assemblies is
a no-brainer: simply delete (or copy) the application folder. Unlike with COM applications, you do
not need to worry about dozens of orphaned registry settings. More important, you do not need to
worry that the removal of private assemblies will break any other applications on the machine.

The Identity of a Private Assembly
The full identity of a private assembly consists of the friendly name and numerical version, both of
which are recorded in the assembly manifest. The friendly name simply is the name of the module
that contains the assembly’s manifest minus the file extension. For example, if you examine the
manifest of the CarLibrary.dll assembly, you find the following:

.assembly CarLibrary

{

...

.ver 1:0:0:0

}

Given the isolated nature of a private assembly, it should make sense that the CLR does not
bother to make use of the version number when resolving its location. The assumption is that pri-
vate assemblies do not need to have any elaborate version checking, as the client application is the
only entity that “knows” of its existence. Given this, it is (very) possible for a single machine to have
multiple copies of the same private assembly in various application directories.

Understanding the Probing Process
The .NET runtime resolves the location of a private assembly using a technique termed probing,
which is much less invasive than it sounds. Probing is the process of mapping an external assembly
request to the location of the requested binary file. Strictly speaking, a request to load an assembly
may be either implicit or explicit. An implicit load request occurs when the CLR consults the mani-
fest in order to resolve the location of an assembly defined using the .assembly extern tokens:

.assembly extern CarLibrary

{...}

An explicit load request occurs programmatically using the Load() or LoadFrom() method of
the System.Reflection.Assembly class type, typically for the purposes of late binding and dynamic
invocation of type members. You’ll examine these topics further in Chapter 14, but for now you can
see an example of an explicit load request in the following code:

' An explicit load request.

Dim asm As Assembly = Assembly.Load("CarLibrary")

5785ch13.qxd 3/31/06 10:56 AM Page 386

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 387

In either case, the CLR extracts the friendly name of the assembly and begins probing the client’s
application directory for a file named CarLibrary.dll. If this file cannot be located, an attempt is made
to locate an executable assembly based on the same friendly name (CarLibrary.exe). If neither of these
files can be located in the application directory, the runtime gives up and throws a FileNotFound

exception at runtime.

■Note Technically speaking, if a copy of the requested assembly cannot be found within the client’s application
directory, the CLR will also attempt to locate a client subdirectory with the exact same name as the assembly’s
friendly name (e.g., C:\MyClient\CarLibrary). If the requested assembly resides within this subdirectory, the CLR
will load the assembly into memory.

Configuring Private Assemblies
While it is possible to deploy a .NET application by simply copying all required assemblies to a sin-
gle folder on the user’s hard drive, you will most likely wish to define a number of subdirectories to
group related content. For example, assume you have an application directory named C:\MyApp
that contains Vb2005CarClient.exe. Under this folder might be a subfolder named MyLibraries that
contains CarLibrary.dll.

Regardless of the intended relationship between these two directories, the CLR will not probe
the MyLibraries subdirectory unless you supply a configuration file. Configuration files contain
various XML elements that allow you to influence the probing process. Configuration files must
have the same name as the launching application and take a *.config file extension, and they
must be deployed in the client’s application directory. Thus, if you wish to create a configuration file
for Vb2005CarClient.exe, it must be named Vb2005CarClient.exe.config.

To illustrate the process, create a new directory on your C drive named MyApp using Windows
Explorer. Next, copy Vb2005CarClient.exe and CarLibrary.dll to this new folder, and run the program
by double-clicking the executable. Your program should run successfully at this point (remember,
assemblies are not registered!). Next, create a new subdirectory under C:\MyApp named MyLibraries,
as shown in Figure 13-12, and move CarLibrary.dll to this location.

Try to run your client program again. Because the CLR could not locate “CarLibrary” directly
within the application directory, you are presented with a rather nasty unhandled FileNotFound
exception.

Figure 13-12. CarLibrary.dll now resides under the MyLibraries subdirectory.

5785ch13.qxd 3/31/06 10:56 AM Page 387

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES388

To rectify the situation, create a new configuration file named Vb2005CarClient.exe.config
and save it in the same folder containing the Vb2005CarClient.exe application, which in this exam-
ple would be C:\MyApp. Open this file and enter the following content exactly as shown (be aware
that XML is case sensitive!):

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<probing privatePath="MyLibraries"/>

</assemblyBinding>

</runtime>

</configuration>

.NET *.config files always open with a root element named <configuration>. The nested <runtime>
element may specify an <assemblyBinding> element, which nests a further element named <probing>.
The privatePath attribute is the key point in this example, as it is used to specify the subdirectories
relative to the application directory where the CLR should probe.

Do note that the <probing> element does not specify which assembly is located under a given
subdirectory. In other words, you cannot say, “CarLibrary is located under the MyLibraries subdirec-
tory, but MathUtils is located under the Bin subdirectory.” The <probing> element simply instructs
the CLR to investigate all specified subdirectories for the requested assembly until the first match is
encountered.

■Note Be very aware that the privatePath attribute cannot be used to specify an absolute (C:\SomeFolder\
SomeSubFolder) or relative (..\SomeFolder\AnotherFolder) path! If you wish to specify a directory outside the
client’s application directory, you will need to make use of a completely different XML element named <codeBase>,
described later in the chapter.

Multiple subdirectories can be assigned to the privatePath attribute using a semicolon-delimited
list. You have no need to do so at this time, but here is an example that informs the CLR to consult
the MyLibraries and MyLibraries\Tests client subdirectories:

<probing privatePath="MyLibraries;MyLibraries\Tests"/>

Once you’ve finished creating Vb2005CarClient.exe.config, run the client by double-clicking
the executable in Windows Explorer. You should find that Vb2005CarClient.exe executes without
a hitch (if this is not the case, double-check it for typos in your XML document).

Next, for testing purposes, change the name of your configuration file (in one way or another)
and attempt to run the program once again. The client application should now fail. Remember that
*.config files must be prefixed with the same name as the related client application. By way of a final
test, open your configuration file for editing and capitalize any of the XML elements. Once the file is
saved, your client should fail to run once again (as XML is case sensitive).

Configuration Files and Visual Studio 2005
While you are always able to create XML configuration files by hand using your text editor of choice,
Visual Studio 2005 allows you create a configuration file during the development of the client program.
To illustrate, load the Vb2005CarClient (or CSharpCarClient) solution into Visual Studio 2005 and
insert a new Application Configuration File item (see Figure 13-13) using the Project ➤ Add New
Item menu selection. Before you click the OK button, take note that the file is named app.config
(don’t rename it!). If you look in the Solution Explorer window, you will now find app.config has
been inserted into your current project.

5785ch13.qxd 3/31/06 10:56 AM Page 388

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 389

At this point, you are free to enter the necessary XML elements for the client you happen to be
creating. Now, here is the cool thing. Each time you compile your project, Visual Studio 2005 will
automatically copy the data in app.config to the \bin\Debug directory using the proper naming
convention (such as Vb2005CarClient.exe.config). However, this behavior will happen only if your
configuration file is indeed named app.config.

Using this approach, all you need to do is maintain app.config, and Visual Studio 2005 will
ensure your application directory contains the latest and greatest content (even if you happen to
rename your project).

■Note For better or for worse, when you insert a new app.config file into a VB 2005 project, the IDE will add
a good deal of data within an element named <system.diagnostics>, which has nothing to do with assembly
binding. For the remainder of this chapter, I will assume that you will delete this unnecessary XML data and author
the XML elements as shown in the remaining code examples.

Introducing the .NET Framework 2.0 Configuration Utility
Although authoring a *.config file by hand is not too traumatic, the .NET Framework 2.0 SDK does
ship with a tool that allows you to build XML configuration files using a friendly GUI editor. You can
find the .NET Framework 2.0 Configuration utility under the Administrative folder of your Control
Panel. Once you launch this tool, you will find a number of configuration options, as shown in
Figure 13-14.

Figure 13-13. The Visual Studio 2005 app.config file

5785ch13.qxd 3/31/06 10:56 AM Page 389

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES390

To build a client *.config file using this utility, your first step is to add the application to con-
figure by right-clicking the Applications node and selecting Add. In the resulting dialog box, you
may find the application you wish to configure, provided that you have executed it using Windows
Explorer. If this is not the case, click the Other button and navigate to the location of the client pro-
gram you wish to configure. For this example, select the CSharpCarClient.exe application created
earlier in this chapter (look under the Bin folder). Once you have done so, you will now find a new
subnode, as shown in Figure 13-15.

If you right-click the CSharpCarClient node and activate the Properties page, you will notice
a text field located at the bottom of the dialog box where you can enter the values to be assigned to
the privatePath attribute. Just for testing purposes, enter a subdirectory named MyLibraries (see
Figure 13-16).

Figure 13-14. The .NET Framework 2.0 Configuration utility

Figure 13-15. Preparing to configure CSharpCarClient.exe

5785ch13.qxd 3/31/06 10:56 AM Page 390

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 391

Once you click the OK button, you can examine the CSharpCarClient\Bin\Debug directory and
find that a new *.config file has been updated with the correct <probing> element.

■Note As you may guess, you can copy the XML content generated by the .NET Framework 2.0 Configuration
utility into a Visual Studio 2005 app.config file for further editing. Using this approach, you can certainly decrease
your typing burden by allowing the tool to generate the initial content.

Understanding Shared Assemblies
Now that you understand how to deploy and configure a private assembly, you can begin to exam-
ine the role of a shared assembly. Like a private assembly, a shared assembly is a collection of types
and (optional) resources. The most obvious difference between shared and private assemblies is the
fact that a single copy of a shared assembly can be used by several applications on a single machine.

Consider all the applications created in this text that required you to set a reference to System.
Windows.Forms.dll. If you were to look in the application directory of each of these clients, you
would not find a private copy of this .NET assembly. The reason is that System.Windows.Forms.dll
has been deployed as a shared assembly. Clearly, if you need to create a machine-wide class library,
this is the way to go.

As suggested in the previous paragraph, a shared assembly is not deployed within the same
directory as the application making use of it. Rather, shared assemblies are installed into the Global
Assembly Cache. The GAC is located under a subdirectory of your Windows directory named Assembly
(e.g., C:\WINDOWS\Assembly), as shown in Figure 13-17.

Figure 13-16. Configuring a private probing path graphically

5785ch13.qxd 3/31/06 10:56 AM Page 391

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES392

■Note You cannot install executable assemblies (*.exe) into the GAC. Only assemblies that take the *.dll file
extension can be deployed as a shared assembly.

Understanding Strong Names
Before you can deploy an assembly to the GAC, you must assign it a strong name, which is used to
uniquely identify the publisher of a given .NET binary. Understand that a “publisher” could be an
individual programmer, a department within a given company, or an entire company at large.

In some ways, a strong name is the modern day .NET equivalent of the COM globally unique
identifier (GUID) identification scheme. If you have a COM background, you may recall that AppIDs
are GUIDs that identify a particular COM application. Unlike COM GUID values (which are nothing
more than 128-bit numbers), strong names are based (in part) on two cryptographically related keys
(termed the public key and the private key), which are much more unique and resistant to tampering
than a simple GUID.

Formally, a strong name is composed of a set of related data, much of which is specified using
assembly-level attributes:

• The friendly name of the assembly (which you recall is the name of the assembly minus the
file extension)

• The version number of the assembly (assigned using the <AssemblyVersion> attribute)

• The public key value (assigned using the <AssemblyKeyFile> attribute)

• An optional culture identity value for localization purposes (assigned using the
<AssemblyCulture> attribute)

• An embedded digital signature created using a hash of the assembly’s contents and the
private key value

To provide a strong name for an assembly, your first step is to generate public/private key data
using the .NET Framework 2.0 SDK’s sn.exe utility (which you’ll do momentarily). The sn.exe utility
responds by generating a file (typically ending with the *.snk [Strong Name Key] file extension) that
contains data for two distinct but mathematically related keys, the “public” key and the “private”
key. Once the VB 2005 compiler is made aware of the location for your *.snk file, it will record the
full public key value in the assembly manifest using the .publickey at the time of compilation.

Figure 13-17. The GAC

5785ch13.qxd 3/31/06 10:56 AM Page 392

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 393

The VB 2005 compiler will also generate a hash code based on the contents of the entire assembly
(CIL code, metadata, and so forth). As you recall from Chapter 6, a hash code is a numerical value
that is unique for a fixed input. Thus, if you modify any aspect of a .NET assembly (even a single
character in a string literal), the compiler yields a unique hash code. This hash code is combined
with the private key data within the *.snk file to yield a digital signature embedded within the assem-
bly’s CLR header data. The process of strongly naming an assembly is illustrated in Figure 13-18.

Understand that the actual private key data is not listed anywhere within the manifest, but is
used only to digitally sign the contents of the assembly (in conjunction with the generated hash
code). Again, the whole idea of making use of public/private key data is to ensure that no two com-
panies, departments, or individuals have the same identity in the .NET universe. In any case, once
the process of assigning a strong name is complete, the assembly may be installed into the GAC.

■Note Strong names also provide a level of protection against potential evildoers tampering with your assem-
bly’s contents. Given this point, it is considered a .NET best practice to strongly name every assembly regardless of
whether it is deployed to the GAC.

Strongly Naming CarLibrary.dll Using sn.exe
Let’s walk through the process of assigning a strong name to the CarLibrary assembly created earlier
in this chapter (go ahead and open up that project using your IDE of choice). The first order of busi-
ness is to generate the required key data using the sn.exe utility. Although this tool has numerous
command-line options, all you need to concern yourself with for the moment is the -k flag, which
instructs the tool to generate a new file containing the public/private key information. Create a new
folder on your C drive named MyTestKeyPair and change to that directory using the .NET Command
Prompt. Now, issue the following command to generate a file named MyTestKeyPair.snk:

sn -k MyTestKeyPair.snk

Now that you have your key data, you need to inform the VB 2005 compiler exactly where
MyTestKeyPair.snk is located. When you create any new VB 2005 project workspace using Visual

Figure 13-18. At compile time, a digital signature is generated and embedded into the assembly based
in part on public and private key data.

5785ch13.qxd 3/31/06 10:56 AM Page 393

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES394

Studio 2005, you will receive a project file (located under the My Project node of Solution Explorer)
named AssemblyInfo.vb. By default, you cannot see this file; however, if you click the Show All Files
button on the Solution Explorer, you will see this is the case, as shown in Figure 13-19.

This file contains a number of attributes that describe the assembly itself. The AssemblyKeyFile
assembly-level attribute can be used to inform the compiler of the location of a valid *.snk file.
Simply specify the path as a string parameter, for example:

<Assembly: AssemblyKeyFile("C:\MyTestKeyPair\MyTestKeyPair.snk")>

In the AssemblyInfo.vb file, you will find another attribute named <AssemblyVersion>. Initially
the value is set to 1.0.0.0. Recall that a .NET version number is composed of these four parts:
(<major>.<minor>.<build>.<revision>).

<Assembly: AssemblyVersion("1.0.0.0")>

At this point, the VB 2005 compiler has all the information needed to generate strong name
data (as you are not specifying a unique culture value via the <AssemblyCulture> attribute, you
“inherit” the culture of your current machine). Compile your CarLibrary code library and open the
manifest using ildasm.exe. You will now see a new .publickey tag is used to document the full pub-
lic key information, while the .ver token records the version specified via the <AssemblyVersion>
attribute, as shown in Figure 13-20.

Figure 13-19. The hidden AssemblyInfo.vb file

Figure 13-20. A strongly named assembly records the public key in the manifest.

5785ch13.qxd 3/31/06 10:56 AM Page 394

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 395

Assigning Strong Names Using Visual Studio 2005
Before you deploy CarLibrary.dll to the GAC, let me point out that Visual Studio 2005 allows you to
specify the location of your *.snk file using the project’s Properties page (in fact, this is now consid-
ered the preferred approach). To do so, select the Signing node, supply the path to the *.snk file, and
select the “Sign the assembly” check box (see Figure 13-21).

Installing/Removing Shared Assemblies to/from the GAC
The final step is to install the (now strongly named) CarLibrary.dll into the GAC. The simplest way
to install a shared assembly into the GAC is to drag and drop the assembly to C:\WINDOWS\Assem-
bly using Windows Explorer, which is ideal for a quick test (know that copy/paste operations will
not work when deploying to the GAC).

In addition, the .NET Framework 2.0 SDK provides a command-line utility named gacutil.exe
that allows you to examine and modify the contents of the GAC. Table 13-1 documents some relevant
options of gacutil.exe (specify the /? flag to see each option).

Table 13-1. Various Options of gacutil.exe

Option Meaning in Life

/i Installs a strongly named assembly into the GAC

/u Uninstalls an assembly from the GAC

/l Displays the assemblies (or a specific assembly) in the GAC

Using either technique, deploy CarLibrary.dll to the GAC. Once you’ve finished, you should
see your library present and accounted for, as shown in Figure 13-22.

Figure 13-21. Specifying an *.snk file via the Properties page

5785ch13.qxd 3/31/06 10:56 AM Page 395

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES396

■Note You may right-click any assembly icon to pull up its Properties page, and you may also uninstall a specific
version of an assembly altogether from the right-click context menu (the GUI equivalent of supplying the /u flag to
gacutil.exe).

Consuming a Shared Assembly
When you are building applications that make use of a shared assembly, the only difference from
consuming a private assembly is in how you reference the library using Visual Studio 2005. In reality,
there is no difference as far as the tool is concerned (you still make use of the Add Reference dialog
box). What you must understand is that this dialog box will not allow you to reference the assembly
by browsing to the Assembly folder. Any efforts to do so will be in vain, as you cannot reference the
assembly you have highlighted. Rather, you will need to browse to the \bin\Debug directory of
the original project via the Browse tab, which is shown in Figure 13-23.

Figure 13-22. The strongly named, shared CarLibrary (version 1.0.0.0)

Figure 13-23. Correct! You must reference shared assemblies by navigating to the project’s \bin\Debug
directory using Visual Studio 2005.

5785ch13.qxd 3/31/06 10:56 AM Page 396

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 397

This (somewhat annoying) fact aside, create a new VB 2005 console application named
SharedCarLibClient and exercise your types as you wish:

Imports CarLibrary

Module Program

Sub Main()

Dim mycar As New SportsCar()

mycar.TurboBoost()

Console.ReadLine()

End Sub

End Module

Once you have compiled your client application, navigate to the directory that contains
SharedCarLibClient.exe using Windows Explorer and notice that Visual Studio 2005 has not copied
CarLibrary.dll to the client’s application directory. When you reference an assembly whose manifest
contains a .publickey value, Visual Studio 2005 assumes the strongly named assembly will most
likely be deployed in the GAC, and therefore does not bother to copy the binary.

Exploring the Manifest of SharedCarLibClient
Recall that when you generate a strong name for an assembly, the entire public key is recorded in
the assembly manifest. On a related note, when a client references a strongly named assembly, its
manifest records a condensed hash-value of the full public key, denoted by the .publickeytoken tag.
If you were to open the manifest of SharedCarLibClient.exe using ildasm.exe, you would find the
following:

.assembly extern CarLibrary

{

.publickeytoken = (21 9E F3 80 C9 34 8A 38)

.ver 1:0:0:0

}

If you compare the value of the public key token recorded in the client manifest with the public
key token value shown in the GAC, you will find a dead-on match. Recall that a public key represents
one aspect of the strongly named assembly’s identity. Given this, the CLR will only load version 1.0.0.0
of an assembly named CarLibrary that has a public key that can be hashed down to the value
219EF380C9348A38. If the CLR does not find an assembly meeting this description in the GAC (and
cannot find a private assembly named CarLibrary in the client’s directory), a FileNotFound exception
is thrown.

■Source Code The SharedCarLibClient application can be found under the Chapter 13 subdirectory.

Configuring Shared Assemblies
Like a private assembly, shared assemblies can be configured using a client *.config file. Of
course, because shared assemblies are found in a well-known location (the GAC), you will not
specify a <privatePath> element as you did for private assemblies (although if the client is using
both shared and private assemblies, the <privatePath> element may still exist in the *.config file).

You can use application configuration files in conjunction with shared assemblies whenever
you wish to instruct the CLR to bind to a different version of a specific assembly, effectively bypassing
the value recorded in the client’s manifest. This can be useful for a number of reasons. For example,
imagine that you have shipped version 1.0.0.0 of an assembly and discover a major bug sometime

5785ch13.qxd 3/31/06 10:56 AM Page 397

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES398

after the fact. One corrective action would be to rebuild the client application to reference the cor-
rect version of the bug-free assembly (say, 1.1.0.0) and redistribute the updated client and new library
to each and every target machine.

Another option is to ship the new code library and a *.config file that automatically instructs
the runtime to bind to the new (bug-free) version. As long as the new version has been installed into
the GAC, the original client runs without recompilation, redistribution, or fear of having to update
your resume.

Here’s another example: you have shipped the first version of a bug-free assembly (1.0.0.0), and
after a month or two, you add new functionality to the assembly in question to yield version 2.0.0.0.
Obviously, existing client applications that were compiled against version 1.0.0.0 have no clue about
these new types, given that their code base makes no reference to them.

New client applications, however, wish to make reference to the new functionality found in
version 2.0.0.0. Under .NET, you are free to ship version 2.0.0.0 to the target machines, and have ver-
sion 2.0.0.0 run alongside the older version 1.0.0.0. If necessary, existing clients can be dynamically
redirected to load version 2.0.0.0 (to gain access to the implementation refinements), using an
application configuration file without needing to recompile and redeploy the client application.

Freezing the Current Shared Assembly
To illustrate how to dynamically bind to a specific version of a shared assembly, open Windows
Explorer and copy the current version of CarLibrary (1.0.0.0) into a distinct subdirectory (I called mine
“Version 1.0.0.0”) off the project root to symbolize the freezing of this version (see Figure 13-24).

Building Shared Assembly Version 2.0.0.0
Now, update your CarLibrary project to define a new Enum named MusicMedia that defines four pos-
sible musical devices:

' Holds source of music.

Public Enum MusicMedia

musicCd

musicTape

musicRadio

musicMp3

End Enum

Figure 13-24. Freezing the current version of CarLibrary.dll

5785ch13.qxd 3/31/06 10:56 AM Page 398

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 399

As well, add a new public method to the Car type that allows the caller to turn on one of the
given media players (be sure to import the System.Windows.Forms namespace):

Public MustInherit Class Car

...

Public Sub TurnOnRadio(ByVal musicOn As Boolean, ByVal mm As MusicMedia)

If musicOn Then

MessageBox.Show(String.Format("Jamming {0}", mm))

Else

MessageBox.Show("Quiet time...")

End If

End Sub

...

End Class

Update the constructors of the Car class to display a MessageBox that verifies you are indeed
using CarLibrary 2.0.0.0:

Public MustInherit Class Car

...

Public Sub New()

MessageBox.Show("Car 2.0.0.0")

End Sub

Public Sub New(ByVal name As String, ByVal max As Short, ByVal curr As Short)

MessageBox.Show("Car 2.0.0.0")

name = name

max_speed = max

speed = curr

End Sub

...

End Class

Finally, before you recompile, be sure to update this version of this assembly to 2.0.0.0 by
updating the value passed to the <AssemblyVersion> and <AssemblyFileVersion> attributes within
the AssemblyInfo.vb file:

' CarLibrary version 2.0.0.0 (now with music!)

<Assembly: AssemblyFileVersion("2.0.0.0")>

<Assembly: AssemblyVersion("2.0.0.0")>

If you look in your project’s \Bin\Debug folder, you’ll see that you have a new version of this
assembly (2.0.0.0), while version 1.0.0.0 is safe in storage under the Version 1 subdirectory. Install
this new assembly into the GAC as described earlier in this chapter. Notice that you now have two
versions of the same assembly, as shown in Figure 13-25.

Figure 13-25. Side-by-side execution

5785ch13.qxd 3/31/06 10:56 AM Page 399

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES400

If you were to run the current SharedCarLibClient.exe program by double-clicking the icon
using Windows Explorer, you should not see the “Car 2.0.0.0” message box appear, as the manifest is
specifically requesting version 1.0.0.0. How then can you instruct the CLR to bind to version 2.0.0.0?
Glad you asked.

Dynamically Redirecting to Specific Versions of a Shared Assembly
When you wish to inform the CLR to load a version of a shared assembly other than the version listed
in its manifest, you may build a *.config file that contains a <dependentAssembly> element. When
doing so, you will need to create an <assemblyIdentity> subelement that specifies the friendly name
of the assembly listed in the client manifest (CarLibrary, for this example) and an optional culture
attribute (which can be assigned an empty string or omitted altogether if you wish to specify the default
culture for the machine). Moreover, the <dependentAssembly> element will define a <bindingRedirect>

subelement to define the version currently in the manifest (via the oldVersion attribute) and the
version in the GAC to load instead (via the newVersion attribute).

Create a new configuration file in the application directory of SharedCarLibClient named
SharedCarLibClient.exe.config that contains the following XML data. Of course, the value of your
public key token will be different from what you see in the following code, and it can be obtained
either by examining the client manifest using ildasm.exe or via the GAC.

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38"/>

<bindingRedirect oldVersion= "1.0.0.0"

newVersion= "2.0.0.0"/>

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

Now run the SharedCarLibClient.exe program. You should see the message that displays ver-
sion 2.0.0.0 has loaded. If you set the newVersion attribute to 1.0.0.0 (or if you simply deleted the
*.config file), you now see the message that version 1.0.0.0 has loaded, as the CLR found version
1.0.0.0 listed in the client’s manifest.

Multiple <dependentAssembly> elements can appear within a client’s configuration file. Although
you have no need to do so, assume that the manifest of SharedCarLibClient.exe also references
version 2.5.0.0 of an assembly named MathLibrary. If you wished to redirect to version 3.0.0.0 of
MathLibrary (in addition to version 2.0.0.0 of CarLibrary), the SharedCarLibClient.exe.config file
would look like the following:

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38"/>

<bindingRedirect oldVersion= "1.0.0.0"

newVersion= "2.0.0.0"/>

</dependentAssembly>

<dependentAssembly>

<assemblyIdentity name="MathLibrary"

publicKeyToken="219ef380c9348a38"/>

<bindingRedirect oldVersion= "2.5.0.0"

5785ch13.qxd 3/31/06 10:56 AM Page 400

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 401

newVersion= "3.0.0.0"/>

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

Revisiting the .NET Framework 2.0 Configuration Utility
As you would hope, you can generate shared assembly–centric *.config files using the graphical .NET
Framework 2.0 Configuration utility. Like the process of building a *.config file for private assemblies,
the first step is to reference the *.exe to configure. To illustrate, delete the SharedCarLibClient.exe.config
you just authored. Now, add a reference to SharedCarLibClient.exe by right-clicking the Applications
node. Once you do, expand the plus sign (+) icon and select the Configured Assemblies subnode. From
here, click the Configure an Assembly link on the right side of the utility.

At this point, you are presented with a dialog box that allows you to establish a <dependentAssembly>

element using a number of friendly UI elements. First, select the “Choose an assembly from the list
of assemblies this application uses” radio button (which simply means, “Show me the manifest!”)
and click the Choose Assembly button.

A dialog box now displays that shows you not only the assemblies specifically listed in the client
manifest, but also the assemblies referenced by these assemblies. For this example’s purposes, select
CarLibrary. When you click the Finish button, you will be shown a Properties page for this one small
aspect of the client’s manifest. Here, you can generate the <dependentAssembly> using the Binding
Policy tab.

Once you select the Binding Policy tab, you can set the oldVersion attribute (1.0.0.0) via the
Requested Version text field and the newVersion attribute (2.0.0.0) using the New Version text field.
Once you have committed the settings, you will find the following configuration file is generated
for you:

<?xml version="1.0"?>

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38"/>

<publisherPolicy apply="yes"/>

<bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0"/>

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

Understanding Publisher Policy Assemblies
The next configuration issue you’ll examine is the role of publisher policy assemblies. As you’ve just
seen, *.config files can be constructed to bind to a specific version of a shared assembly, thereby
bypassing the version recorded in the client manifest. While this is all well and good, imagine you’re
an administrator who now needs to reconfigure all client applications on a given machine to rebind
to version 2.0.0.0 of the CarLibrary.dll assembly. Given the strict naming convention of a configu-
ration file, you would need to duplicate the same XML content in numerous locations (assuming
you are, in fact, aware of the locations of the executables using CarLibrary!). Clearly this would be
a maintenance nightmare.

5785ch13.qxd 3/31/06 10:56 AM Page 401

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES402

Publisher policy allows the publisher of a given assembly (you, your department, your company,
or what have you) to ship a binary version of a *.config file that is installed into the GAC along with
the newest version of the associated assembly. The benefit of this approach is that client application
directories do not need to contain specific *.config files. Rather, the CLR will read the current manifest
and attempt to find the requested version in the GAC. However, if the CLR finds a publisher policy
assembly, it will read the embedded XML data and perform the requested redirection at the level of
the GAC.

Publisher policy assemblies are created at the command line using a .NET utility named al.exe
(the assembly linker). While this tool provides a large number of options, building a publisher policy
assembly requires you only to pass in the following input parameters:

• The location of the *.config or *.xml file containing the redirecting instructions

• The name of the resulting publisher policy assembly

• The location of the *.snk file used to sign the publisher policy assembly

• The version numbers to assign the publisher policy assembly being constructed

If you wish to build a publisher policy assembly that controls CarLibrary.dll, the command
set is as follows (which should be entered on a single line):

al /link: CarLibraryPolicy.xml /out:policy.1.0.CarLibrary.dll

/keyf:C:\ MyKey\ myKey.snk /v:1.0.0.0

Here, the XML content is contained within a file named CarLibraryPolicy.xml. The name of the
output file (which must be in the format policy.<major>.<minor>.assemblyToConfigure) is specified
using the obvious /out flag. In addition, note that the name of the file containing the public/private
key pair will also need to be supplied via the /keyf option. (Remember, publisher policy files are
deployed to the GAC, and therefore must have a strong name!)

Once the al.exe tool has executed, the result is a new assembly that can be placed into the
GAC to force all clients to bind to version 2.0.0.0 of CarLibrary.dll, without the use of a specific
client application configuration file.

Disabling Publisher Policy
Now, assume you (as a system administrator) have deployed a publisher policy assembly (and the
latest version of the related assembly) to a client machine’s GAC. As luck would have it, nine of the
ten affected applications rebind to version 2.0.0.0 without error. However, the remaining client
application (for whatever reason) blows up when accessing CarLibrary.dll 2.0.0.0 (as we all know,
it is next to impossible to build backward-compatible software that works 100 percent of the time).

In such a case, it is possible to build a configuration file for a specific troubled client that
instructs the CLR to ignore the presence of any publisher policy files installed in the GAC. The
remaining client applications that are happy to consume the newest .NET assembly will simply be
redirected via the installed publisher policy assembly. To disable publisher policy on a client-by-client
basis, author a (properly named) *.config file that makes use of the <publisherPolicy> element and
set the apply attribute to no. When you do so, the CLR will load the version of the assembly originally
listed in the client’s manifest.

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<publisherPolicy apply="no" />

</assemblyBinding>

</runtime>

</configuration>

5785ch13.qxd 3/31/06 10:56 AM Page 402

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 403

Understanding the <codeBase> Element
Application configuration files can also specify code bases. The <codeBase> element can be used to
instruct the CLR to probe for dependent assemblies located at arbitrary locations (such as network
share points, or simply a local directory outside a client’s application directory).

■Note If the value assigned to a <codeBase> element is located on a remote machine, the assembly will be
downloaded on demand to a specific directory in the GAC termed the download cache. You can view the content of
your machine’s download cache by supplying the /ldl option to gacutil.exe.

Given what you have learned about deploying assemblies to the GAC, it should make sense that
assemblies loaded from a <codeBase> element will need to be assigned a strong name (after all, how
else could the CLR install remote assemblies to the GAC?).

■Note Technically speaking, the <codeBase> element can be used to probe for assemblies that do not have
a strong name. However, the assembly’s location must be relative to the client’s application directory (and thus is
little more than an alternative to the <privatePath> element).

Create a console application named CodeBaseClient, set a reference to CarLibrary.dll version
2.0.0.0, and update the initial file as follows:

Imports CarLibrary

Module Program

Sub Main()

Console.WriteLine("***** Fun with CodeBases *****")

Dim c As SportsCar = New SportsCar()

Console.WriteLine("Sports car has been allocated.")

Console.ReadLine()

End Sub

End Module

Given that CarLibrary.dll has been deployed to the GAC, you are able to run the program as is.
However, to illustrate the use of the <codeBase> element, create a new folder under your C drive
(perhaps C:\MyAsms) and place a copy of CarLibrary.dll version 2.0.0.0 into this directory.

Now, add an app.config file to the CodeBaseClient project (as explained earlier in this chapter)
and author the following XML content (remember that your .publickeytoken value will differ; consult
your GAC as required):

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="SharedAssembly" publicKeyToken="219ef380c9348a38" />

<codeBase version="2.0.0.0" href="file:///C:\MyAsms\CarLibrary.dll" />

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

As you can see, the <codeBase> element is nested within the <assemblyIdentity> element, which
makes use of the name and publicKeyToken attributes to specify the friendly name as associated
publicKeyToken values. The <codeBase> element itself specifies the version and location (via the href

5785ch13.qxd 3/31/06 10:56 AM Page 403

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES404

property) of the assembly to load. If you were to delete version 2.0.0.0 of CarLibrary.dll from the GAC,
this client would still run successfully, as the CLR is able to locate the external assembly under
C:\MyAsms.

However, if you were to delete the MyAsms directory from your machine, the client would now
fail. Clearly the <codeBase> elements (if present) take precedence over the investigation of the GAC.

■Note If you place assemblies at random locations on your development machine, you are in effect re-creating
the system registry (and the related DLL hell), given that if you move or rename the folder containing your binaries,
the current bind will fail. Given this point, use <codeBase> with caution.

The <codeBase> element can also be helpful when referencing assemblies located on
a remote networked machine. Assume you have permission to access a folder located at http://
www.IntertechTraining.com. To download the remote *.dll to the GAC’s download cache on your
location machine, you could update the <codeBase> element as follows:

<codeBase version="2.0.0.0"

href="http://www.IntertechTraining.com/Assemblies/CarLibrary.dll" />

■Source Code The CodeBaseClient application can be found under the Chapter 13 subdirectory.

The System.Configuration Namespace
Currently, all of the *.config files shown in this chapter have made use of well-known XML elements
that are read by the CLR to resolve the location of external assemblies. In addition to these recognized
elements, it is perfectly permissible for a client configuration file to contain application-specific data
that has nothing to do with binding heuristics. Given this, it should come as no surprise that the .NET
Framework provides a namespace that allows you to programmatically read the data within a client
configuration file.

The System.Configuration namespace provides a small set of types you may use to read cus-
tom data from a client’s *.config file. These custom settings must be contained within the scope of
an <appSettings> element. The <appSettings> element contains any number of <add> elements that
define a key/value pair to be obtained programmatically.

For example, assume you have a *.config file for a console application named AppConfigReaderApp
that defines a database connection string and a point of data named timesToSayHello:

<configuration>

<appSettings>

<add key="appConStr"

value="server=localhost;uid='sa';pwd='';database=Cars" />

<add key="timesToSayHello" value="8" />

</appSettings>

</configuration>

Reading these values for use by the client application is as simple as calling the instance-level
GetValue() method of the System.Configuration.AppSettingsReader type. As shown in the follow-
ing code, the first parameter to GetValue() is the name of the key in the *.config file, whereas the
second parameter is the underlying type of the key (obtained via the VB 2005 GetType operator):

Imports System.Configuration

Module Program

Sub Main()

5785ch13.qxd 3/31/06 10:56 AM Page 404

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES 405

Dim ar As AppSettingsReader = New AppSettingsReader

Console.WriteLine(ar.GetValue("appConStr", GetType(String)))

Dim numbOfTimes As Integer = CType(ar.GetValue("timesToSayHello", _

GetType(Integer)), Integer)

For i As Integer = 0 To numbOfTimes

Console.WriteLine("Yo!")

Next

Console.ReadLine()

End Sub

End Module

The AppSettingsReader class type does not provide a way to write application-specific data to
a *.config file. While this may seem like a limitation at first encounter, it actually makes good sense.
The whole idea of a *.config file is that it contains read-only data that is consulted by the CLR (or
possibly the AppSettingsReader type) after an application has already been deployed to a target
machine.

■Note During our examination of ADO.NET (Chapter 24), you will learn about the new <connectionStrings>
configuration element and new types within the System.Configuration namespace. These .NET 2.0–specific
items provide a standard manner to handle connection string data.

■Source Code The AppConfigReaderApp application can be found under the Chapter 13 subdirectory.

The Machine Configuration File
The configuration files you’ve examined in this chapter have a common theme: they apply only to
a specific application (that is why they have the same name as the launching application). In addition,
each .NET-aware machine has a file named machine.config that contains a vast number of configu-
ration details (many of which have nothing to do with resolving external assemblies) that control
how the .NET platform operates.

The .NET platform maintains a separate *.config file for each version of the framework installed
on the local machine. The machine.config file for .NET 2.0 can be found under the C:\WINDOWS\
Microsoft.NET\Framework\v2.0.50727\CONFIG directory (your version may differ). If you were to
open this file, you would find numerous XML elements that control ASP.NET settings, various secu-
rity details, debugging support, and so forth.

Although this file can be directly edited using Notepad, be warned that if you alter this file
incorrectly, you may cripple the ability of the runtime to function correctly. This scenario can be far
more painful than a malformed application *.config file, given that XML errors in an application
configuration file affect only a single application, but erroneous XML in the machine.config file can
break a specific version of the .NET platform.

The Assembly Binding “Big Picture”
Now that you have drilled down into the details regarding how the CLR resolves the location of
requested external assemblies, remember that the simple case is, indeed, simple. Many (if not most)
of your .NET applications will consist of nothing more than a group of private assemblies deployed
to a single directory. In this case, simply copy the folder to a location of your choosing and run the
client executable.

5785ch13.qxd 3/31/06 10:56 AM Page 405

CHAPTER 13 ■ INTRODUCING .NET ASSEMBLIES406

As you have seen, however, the CLR will check for client configuration files and publisher policy
assemblies during the resolution process. To summarize the path taken by the CLR to resolve an
external assembly reference, ponder Figure 13-26.

Summary
This chapter drilled down into the details of how the CLR resolves the location of externally referenced
assemblies. You began by examining the content within an assembly: headers, metadata, manifests,
and CIL. Then you constructed single-file and multifile assemblies and a handful of client applica-
tions (written in a language-agonistic manner).

As you have seen, assemblies may be private or shared. Private assemblies are copied to the
client’s subdirectory, whereas shared assemblies are deployed to the Global Assembly Cache (GAC),
provided they have been assigned a strong name. Finally, as you have seen, private and shared
assemblies can be configured using a client-side XML configuration file or, alternatively, via a pub-
lisher policy assembly.

Figure 13-26. Behold the CLR’s path of assembly resolution

5785ch13.qxd 3/31/06 10:56 AM Page 406

407

C H A P T E R 1 4

■ ■ ■

Type Reflection, Late Binding, and
Attribute-based Programming

As shown in the previous chapter, assemblies are the basic unit of deployment in the .NET
universe. Using the integrated object browsers of Visual Studio 2005, you are able to examine the
types within a project’s referenced set of assemblies. Furthermore, external tools such as ildasm.exe
allow you to peek into the underlying CIL code, type metadata, and assembly manifest for a given
.NET binary. In addition to this design-time investigation of .NET assemblies, you are also able to
programmatically obtain this same information using the System.Reflection namespace. To this
end, the first task of this chapter is to define the role of reflection and the necessity of .NET metadata.

The remainder of the chapter examines a number of closely related topics, all of which hinge
upon reflection services. For example, you’ll learn how a .NET client may employ dynamic loading
and late binding to activate types it has no compile-time knowledge of. You’ll also learn how to insert
custom metadata into your .NET assemblies through the use of system-supplied and custom attributes.
To put all of these (seemingly esoteric) topics into perspective, the chapter closes by demonstrating
how to build several “snap-in objects” that you can plug into an extendable Windows Forms
application.

The Necessity of Type Metadata
The ability to fully describe types (classes, interfaces, structures, enumerations, and delegates)
using metadata is a key element of the .NET platform. Numerous .NET technologies, such as object
serialization, .NET remoting, and XML web services, require the ability to discover the format of
types at runtime. Furthermore, COM interoperability, compiler support, and an IDE’s IntelliSense
capabilities all rely on a concrete description of type.

Regardless of (or perhaps due to) its importance, metadata is not a new idea supplied by the
.NET Framework. Java, CORBA, and COM all have similar concepts. For example, COM type libraries
(which are little more than compiled IDL code) are used to describe the types contained within a COM
server. Like COM, .NET code libraries also support type metadata. Of course, .NET metadata has no
syntactic similarities to COM IDL. Recall that the ildasm.exe utility allows you to view an assembly’s
type metadata using the Ctrl+M keyboard option (see Chapter 1). Thus, if you were to open any of
the *.dll or *.exe assemblies created over the course of this book (such as CarLibrary.dll) using
ildasm.exe and then press Ctrl+M, you would find the relevant type metadata (see Figure 14-1).

5785ch14.qxd 3/31/06 1:51 PM Page 407

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING408

Figure 14-1. Viewing an assembly’s metadata

As you can see, ildasm.exe’s display of .NET type metadata is very verbose (the actual binary
format is much more compact). In fact, if I were to list the entire metadata description representing
the CarLibrary.dll assembly, it would span several pages. Given that this act would be a woeful waste
of paper, let’s just glimpse into some key metadata tokens within the CarLibrary.dll assembly.

Viewing (Partial) Metadata for the EngineState Enumeration
Each type defined within the current assembly is documented using a TypeDef #n token (where TypeDef
is short for type definition). If the type being described uses a type defined within a separate .NET
assembly, the referenced type is documented using a TypeDef #n token (where TypeRef is short for
type reference). A TypeRef token is a pointer (if you will) to the referenced type’s full metadata defini-
tion. In a nutshell, .NET metadata is a set of tables that clearly mark all type definitions (TypeDefs)
and referenced entities (TypeRefs), all of which can be viewed using ildasm.exe’s metadata window.

As far as CarLibrary.dll goes, one TypeDef we encounter is the metadata description of the
CarLibrary.EngineState enumeration (your number may differ; TypeDef numbering is based on
the order in which the VB 2005 compiler processes the source code files):

TypeDef #6 (02000007)

TypDefName: CarLibrary.EngineState (02000007)

Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass] (00000101)

Extends : 01000007 [TypeRef] System.Enum

...

Field #2 (04000007)

Field Name: engineAlive (04000007)

Flags : [Public] [Shared] [Literal] [HasDefault] (00008056)

DefltValue: (I4) 0

CallCnvntn: [FIELD]

Field type: ValueClass CarLibrary.EngineState

...

Here, the TypDefName token is used to establish the name of the given type. The Extends meta-
data token is used to document the base class of a given .NET type (in this case, the referenced type,
System.Enum). Each field of an enumeration is marked using the Field #n token. For brevity, I have
simply listed the metadata for EngineState.engineAlive.

5785ch14.qxd 3/31/06 1:51 PM Page 408

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 409

Viewing (Partial) Metadata for the Car Type
Here is a partial dump of the Car type that illustrates the following:

• How fields are defined in terms of .NET metadata

• How methods are documented via .NET metadata

• How a single type property is mapped to two discrete member functions

TypeDef #3

TypDefName: CarLibrary.Car (02000004)

Flags : [Public] [AutoLayout] [Class] [Abstract] [AnsiClass] (00100081)

Extends : 01000002 [TypeRef] System.Object

Field #1

Field Name: petName (04000008)

Flags : [Family] (00000004)

CallCnvntn: [FIELD]

Field type: String

...

Method #1

MethodName: .ctor (06000001)

Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName]

[RTSpecialName] [.ctor] (00001886)

RVA : 0x00002050

ImplFlags : [IL] [Managed] (00000000)

CallCnvntn: [DEFAULT]

hasThis

ReturnType: Void

No arguments.

...

Property #1

Prop.Name : PetName (17000001)

Flags : [none] (00000000)

CallCnvntn: [PROPERTY]

hasThis

ReturnType: String

No arguments.

DefltValue:

Setter : (06000004) set_PetName

Getter : (06000003) get_PetName

0 Others

...

First, note that the Car class metadata marks the type’s base class and includes various flags
that describe how this type was constructed (e.g., [public], [abstract], and whatnot). Methods
(such as our Car’s constructor, denoted by .ctor) are described in regard to their parameters, return
value, and name. Finally, note how properties are mapped to their internal get/set methods using
the .NET metadata Setter/Getter tokens. As you would expect, the derived Car types (SportsCar
and MiniVan) are described in a similar manner.

5785ch14.qxd 3/31/06 1:51 PM Page 409

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING410

Examining a TypeRef
Recall that an assembly’s metadata will describe not only the set of internal types (Car, EngineState, etc.),
but also any external types the internal types reference. For example, given that CarLibrary.dll has
defined two enumerations, you find a TypeRef block for the System.Enum type, which is defined in
mscorlib.dll:

TypeRef #1 (01000001)

Token: 0x01000001

ResolutionScope: 0x23000001

TypeRefName: System.Enum

MemberRef #1

Member: (0a00000f) ToString:

CallCnvntn: [DEFAULT]

hasThis

ReturnType: String

No arguments.

Documenting the Defining Assembly
The ildasm.exe metadata window also allows you to view the .NET metadata that describes the
assembly itself using the Assembly token. As you can see from the following (partial) listing, infor-
mation documented within the Assembly table is (surprise, surprise!) the same information that can
be viewable via the MANIFEST icon. Here is a partial dump of the manifest of CarLibrary.dll (ver-
sion 2.0.0.0):

Assembly

Token: 0x20000001

Name : CarLibrary

Public Key : 00 24 00 00 04 80 00 00 // Etc...

Hash Algorithm : 0x00008004

Major Version: 0x00000002

Minor Version: 0x00000000

Build Number: 0x00000000

Revision Number: 0x00000000

Locale: <null>

Flags : [SideBySideCompatible] (00000000)

Documenting Referenced Assemblies
In addition to the Assembly token and the set of TypeDef and TypeRef blocks, .NET metadata also makes
use of AssemblyRef #n tokens to document each external assembly. Given that the CarLibrary.dll
makes use of the MessageBox type, you find an AssemblyRef for System.Windows.Forms, for example:

AssemblyRef #2

Token: 0x23000002

Public Key or Token: b7 7a 5c 56 19 34 e0 89

Name: System.Windows.Forms

Version: 2.0.3600.0

Major Version: 0x00000002

Minor Version: 0x00000000

Build Number: 0x00000e10

5785ch14.qxd 3/31/06 1:51 PM Page 410

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 411

Revision Number: 0x00000000

Locale: <null>

HashValue Blob:

Flags: [none] (00000000)

Documenting String Literals
The final point of interest regarding .NET metadata is the fact that each and every string literal in
your code base is documented under the User Strings token, for example:

User Strings

70000001 : (11) L"Car 2.0.0.0"

70000019 : (11) L"Jamming {0} "

70000031 : (13) L"Quiet time..."

7000004d : (14) L"Ramming speed!"

7000006b : (19) L"Faster is better..."

70000093 : (16) L"Time to call AAA"

700000b5 : (16) L"Your car is dead"

700000d7 : (9) L"Be quiet "

700000eb : (2) L"!!"

Now, don’t be too concerned with the exact syntax of each and every piece of .NET metadata.
The bigger point to absorb is that .NET metadata is very descriptive and lists each internally defined
(and externally referenced) type found within a given code base.

The next question on your mind may be (in the best-case scenario) “How can I leverage this
information in my applications?” or (in the worst-case scenario) “Why should I care about metadata
in the first place?” To address both points of view, allow me to introduce .NET reflection services. Be
aware that the usefulness of the topics presented over the pages that follow may be a bit of a head-
scratcher until this chapter’s endgame. So hang tight.

■Note You will also find a number of .custom tokens displayed by the MetaInfo window, which documents the
attributes applied within the code base. You’ll learn about the role of .NET attributes later in this chapter.

Understanding Reflection
In the .NET universe, reflection is the process of runtime type discovery. Using reflection services,
you are able to programmatically obtain the same metadata information displayed by ildasm.exe
using a friendly object model. For example, through reflection, you can obtain a list of all types con-
tained within a given assembly (or *.netmodule, as discussed in Chapter 13), including the methods,
fields, properties, and events defined by a given type. You can also dynamically discover the set of
interfaces supported by a given class (or structure), the parameters of a method, and other related
details (base classes, namespace information, manifest data, and so forth).

Like any namespace, System.Reflection contains a number of related types. Table 14-1 lists
some of the core items you should be familiar with.

5785ch14.qxd 3/31/06 1:51 PM Page 411

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING412

Table 14-1. A Sampling of Members of the System.Reflection Namespace

Type Meaning in Life

Assembly This class (in addition to numerous related types) contains a number of
methods that allow you to load, investigate, and manipulate an assembly
programmatically.

AssemblyName This class allows you to discover numerous details behind an assembly’s
identity (version information, culture information, and so forth).

EventInfo This class holds information for a given event.

FieldInfo This class holds information for a given field.

MemberInfo This is the abstract base class that defines common behaviors for the
EventInfo, FieldInfo, MethodInfo, and PropertyInfo types.

MethodInfo This class contains information for a given method.

Module This class allows you to access a given module within a multifile assembly.

ParameterInfo This class holds information for a given parameter.

PropertyInfo This class holds information for a given property.

To understand how to leverage the System.Reflection namespace to programmatically read
.NET metadata, you need to first come to terms with the System.Type class.

The System.Type Class
The System.Type class defines a number of members that can be used to examine a type’s meta-
data, a great number of which return types from the System.Reflection namespace. For example,
Type.GetMethods() returns an array of MethodInfo types, Type.GetFields() returns an array of
FieldInfo types, and so on. The complete set of members exposed by System.Type is quite expan-
sive; however, Table 14-2 offers a partial snapshot of the members supported by System.Type (see
the .NET Framework 2.0 SDK documentation for full details).

Table 14-2. Select Members of System.Type

Type Member Meaning in Life

IsAbstract These properties (among others) allow you to discover a number of
IsArray basic traits about the Type you are referring to (e.g., if it is an abstract
IsClass method, an array, a nested class, and so forth).
IsCOMObject
IsEnum
IsGenericTypeDefinition
IsGenericParameter
IsInterfaceIsPrimitive
IsNestedPrivate
IsNestedPublic
IsSealed
IsValueType

GetConstructors() These methods (among others) allow you to obtain an array representing
GetEvents() the items (interface, method, property, etc.) you are interested in. Each
GetFields() method returns a related array (e.g., GetFields() returns a FieldInfo
GetInterfaces() array, GetMethods() returns a MethodInfo array, etc.). Be aware that each
GetMembers() of these methods has a singular form (e.g., GetMethod(), GetProperty(),
GetMethods() etc.) that allows you to retrieve a specific item by name, rather than an
GetNestedTypes() array of all related items.
GetProperties()

5785ch14.qxd 3/31/06 1:51 PM Page 412

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 413

Type Member Meaning in Life

FindMembers() This method returns an array of MemberInfo types based on search criteria.

GetType() This shared method returns a Type instance given a string name.

InvokeMember() This method allows late binding to a given item.

Obtaining a Type Reference Using System.Object.GetType()
You can obtain an instance of the Type class in a variety of ways. However, the one thing you cannot
do is directly create a Type object using the New keyword, as Type is an abstract class. Regarding your
first choice, recall that System.Object defines a method named GetType(), which returns an instance
of the Type class that represents the metadata for the current object:

' Obtain type information using a SportsCar instance.

Dim sc As SportsCar = New SportsCar()

Dim t As Type = sc.GetType()

Obviously, this approach will only work if you have compile-time knowledge of the type you
wish to investigate (SportsCar in this case). Given this restriction, it should make sense that tools
such as ildasm.exe do not obtain type information by directly calling a custom type’s GetType()
method, given that ildasm.exe was not compiled against your custom assemblies!

Obtaining a Type Reference Using System.Type.GetType()
To obtain type information in a more flexible manner, you may call the shared GetType() member
of the System.Type class and specify the fully qualified string name of the type you are interested in
examining. Using this approach, you do not need to have compile-time knowledge of the type you are
extracting metadata from, given that Type.GetType() takes an instance of the omnipresent System.String.

The Type.GetType() method has been overloaded to allow you to specify two Boolean parameters,
one of which controls whether an exception should be thrown if the type cannot be found, and the
other of which establishes the case sensitivity of the string. To illustrate, ponder the following code
statements:

' Obtain type information using the shared Type.GetType() method.

' (don't throw an exception if SportsCar cannot be found and ignore case).

Dim t As Type = Type.GetType("CarLibrary.SportsCar", False, True)

In the previous example, notice that the string you are passing into GetType() makes no mention
of the assembly containing the type. In this case, the assumption is that the type is defined within the
currently executing assembly. However, when you wish to obtain metadata for a type within an external
private assembly, the string parameter is formatted using the type’s fully qualified name, followed
by the friendly name of the assembly containing the type (each of which is separated by a comma):

' Obtain type information for a type within an external assembly.

Dim t As Type

t = Type.GetType("CarLibrary.SportsCar, CarLibrary")

As well, do know that the string passed into Type.GetType() may specify a plus token (+) to denote
a nested type. Assume you wish to obtain type information for an enumeration (SpyOptions) nested
within a class named JamesBondCar, defined in an external private assembly named CarLibrary.dll.
To do so, you would write the following:

' Obtain type information for a nested enumeration

' within the current assembly.

Dim t As Type = _

Type.GetType("CarLibrary.JamesBondCar+SpyOptions, CarLibrary")

5785ch14.qxd 3/31/06 1:51 PM Page 413

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING414

Obtaining a Type Reference Using GetType()
The final way to obtain type information is using the VB 2005 GetType operator:

' Get the Type using GetType.

Dim t As Type = GetType(SportsCar)

Like Type.GetType(), the GetType operator is helpful in that you do not need to first create an
object instance to extract type information. However, your code base must still have compile-time
knowledge of the type you are interested in examining.

Building a Custom Metadata Viewer
To illustrate the basic process of reflection (and the usefulness of System.Type), let’s create a console
application named MyTypeViewer. This program will display details of the methods, properties,
fields, and supported interfaces (in addition to some other points of interest) for any type within
mscorlib.dll (recall all .NET applications have automatic access to this core framework class library)
or a type within MyTypeViewer.exe itself.

Reflecting on Methods
The Program module will be updated to define a number of subroutines, each of which takes a single
System.Type parameter. First you have ListMethods(), which (as you might guess) prints the name
of each method defined by the incoming type. Notice how Type.GetMethods() returns an array of
System.Reflection.MethodInfo types:

' Display method names of type.

Public Sub ListMethods(ByVal t As Type)

Console.WriteLine("***** Methods *****")

Dim mi As MethodInfo() = t.GetMethods()

For Each m As MethodInfo In mi

Console.WriteLine("->{0}", m.Name)

Next

Console.WriteLine("")

End Sub

Here, you are simply printing the name of the method using the MethodInfo.Name property. Of
course, MethodInfo has many additional members that allow you to determine whether the method
is shared, virtual, or abstract. As well, the MethodInfo type allows you to obtain the method’s return
value and parameter set. You’ll spruce up the implementation of ListMethods() in just a bit.

Reflecting on Fields and Properties
The implementation of ListFields() is similar. The only notable difference is the call to Type.GetFields()
and the resulting FieldInfo array. Again, to keep things simple, you are printing out only the name
of each field.

' Display field names of type.

Public Sub ListFields(ByVal t As Type)

Console.WriteLine("***** Fields *****")

Dim fi As FieldInfo() = t.GetFields()

For Each field As FieldInfo In fi

Console.WriteLine("->{0}", field.Name)

Next

Console.WriteLine("")

End Sub

5785ch14.qxd 3/31/06 1:51 PM Page 414

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 415

The logic to display a type’s properties is similar:

' Display property names of type.

Public Sub ListProps(ByVal t As Type)

Console.WriteLine("***** Properties *****")

Dim pi As PropertyInfo() = t.GetProperties()

For Each prop As PropertyInfo In pi

Console.WriteLine("->{0}", prop.Name)

Next

Console.WriteLine("")

End Sub

Reflecting on Implemented Interfaces
Next, you will author a method named ListInterfaces() that will print out the names of any interfaces
supported on the incoming type. The only point of interest here is that the call to GetInterfaces()
returns an array of System.Types! This should make sense given that interfaces are, indeed, types:

' Display implemented interfaces.

Public Sub ListInterfaces(ByVal t As Type)

Console.WriteLine("***** Interfaces *****")

Dim ifaces As Type() = t.GetInterfaces()

For Each i As Type In ifaces

Console.WriteLine("->{0}", i.Name)

Next

Console.WriteLine("")

End Sub

Displaying Various Odds and Ends
Last but not least, you have one final helper method that will simply display various statistics (indi-
cating whether the type is generic, what the base class is, whether the type is sealed, and so forth)
regarding the incoming type:

' Just for good measure.

Public Sub ListVariousStats(ByVal t As Type)

Console.WriteLine("***** Various Statistics *****")

Console.WriteLine("Base class is: {0}", t.BaseType)

Console.WriteLine("Is type abstract? {0}", t.IsAbstract)

Console.WriteLine("Is type sealed? {0}", t.IsSealed)

Console.WriteLine("Is type generic? {0}", t.IsGenericTypeDefinition)

Console.WriteLine("Is type a class type? {0}", t.IsClass)

Console.WriteLine("")

End Sub

Implementing Main()
The Main() method of the Program class prompts the user for the fully qualified name of a type.
Once you obtain this string data, you pass it into the Type.GetType() method and send the extracted
System.Type into each of your helper methods. This process repeats until the user enters Q to termi-
nate the application:

5785ch14.qxd 3/31/06 1:51 PM Page 415

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING416

' Need to make use of the reflection namespace.

Imports System.Reflection

Module Program

Sub Main()

Console.WriteLine("***** Welcome to MyTypeViewer *****")

Dim typeName As String = ""

Dim userIsDone As Boolean = False

Do

Console.WriteLine()

Console.WriteLine("Enter a type name to evaluate")

Console.Write("or enter Q to quit: ")

' Get name of type.

typeName = Console.ReadLine()

' Does user want to quit?

If typeName.ToUpper = "Q" Then

userIsDone = True

Exit Do

End If

' Try to display type

Try

Dim t As Type = Type.GetType(typeName)

Console.WriteLine("")

ListVariousStats(t)

ListFields(t)

ListProps(t)

ListMethods(t)

ListInterfaces(t)

Catch

Console.WriteLine("Sorry, can't find {0}.", typeName)

End Try

Loop While Not userIsDone

End Sub

' Assume all the helper methods are defined below.

...

End Module

At this point, MyTypeViewer.exe is ready to take out for a test drive. For example, run your
application and enter the following fully qualified names (be aware that the manner in which you
invoked Type.GetType() requires case-sensitive string names):

• System.Int32

• System.Collections.ArrayList

• System.Threading.Thread

• System.Void

• System.IO.BinaryWriter

• System.Math

• System.Console

• MyTypeViewer.Program

5785ch14.qxd 3/31/06 1:51 PM Page 416

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 417

Figure 14-2. Reflecting on System.Math

Figure 14-2 shows the partial output when specifying System.Math.

Reflecting on Method Parameters and Return Values
So far, so good! Let’s make one minor enhancement to the current application. Specifically, you will
update the ListMethods() helper function to list not only the name of a given method, but also the
return value and incoming parameters. The MethodInfo type provides the ReturnType property and
GetParameters() method for these very tasks. In the following code, notice that you are building
a string type that contains the type and name of each parameter using a nested For Each loop:

Public Sub ListMethods(ByVal t As Type)

Console.WriteLine("***** Methods *****")

Dim mi As MethodInfo() = t.GetMethods()

For Each m As MethodInfo In mi

Dim retVal As String = m.ReturnType.FullName()

Dim paramInfo As String = "("

For Each pi As ParameterInfo In m.GetParameters()

paramInfo += String.Format("{0} {1}", pi.ParameterType, pi.Name)

Next

paramInfo += ")"

Console.WriteLine("->{0} {1} {2}", retVal, m.Name, paramInfo)

Next

Console.WriteLine("")

End Sub

If you now run this updated application, you will find that the methods of a given type are
much more detailed. Figure 14-3 shows the method metadata of the System.Globalization.
GregorianCalendar type.

5785ch14.qxd 3/31/06 1:51 PM Page 417

Figure 14-3. Method details of System.Globalization.GregorianCalendar

Interesting stuff, huh? Clearly the System.Reflection namespace and System.Type class allow
you to reflect over many other aspects of a type beyond what MyTypeViewer is currently displaying.
For example, you can obtain a type’s events, get the list of any generic parameters for a given mem-
ber, optional arguments, and glean dozens of other details.

Nevertheless, at this point you have created an (somewhat capable) object browser. The major
limitation, of course, is that you have no way to reflect beyond the current assembly (MyTypeViewer.exe)
or the always accessible mscorlib.dll. This begs the question, “How can I build applications that
can load (and reflect over) assemblies not known at compile time?”

■Source Code The MyTypeViewer project can be found under the Chapter 14 subdirectory.

Dynamically Loading Assemblies
In the previous chapter, you learned all about how the CLR consults the assembly manifest when
probing for an externally referenced assembly. While this is all well and good, there will be many
times when you need to load assemblies on the fly programmatically, even if there is no record of
said assembly in the manifest. Formally speaking, the act of loading external assemblies on demand
is known as a dynamic load.

System.Reflection defines a class named Assembly. Using this type, you are able to dynamically
load an assembly as well as discover properties about the assembly itself. Using the Assembly type,
you are able to dynamically load private or shared assemblies, as well as load an assembly located at
an arbitrary location. In essence, the Assembly class provides methods (Load() and LoadFrom() in
particular) that allow you to programmatically supply the same sort of information found in a client-
side *.config file.

To illustrate dynamic loading, create a brand-new console application named
ExternalAssemblyReflector. Your task is to construct a Main() method that prompts for the friendly
name of an assembly to load dynamically. You will pass the Assembly reference into a helper method
named DisplayTypes(), which will simply print the names of each class, interface, structure, enu-
meration, and delegate it contains. The code is refreshingly simple:

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING418

5785ch14.qxd 3/31/06 1:51 PM Page 418

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 419

Imports System.Reflection

Module Program

Sub Main()

Console.WriteLine("***** External Assembly Viewer *****")

Dim asmName As String = ""

Dim userIsDone As Boolean = False

Dim asm As Assembly = Nothing

Do

Console.WriteLine()

Console.WriteLine("Enter an assembly to evaluate")

Console.Write("or enter Q to quit: ")

' Get name of assembly.

asmName = Console.ReadLine()

' Does user want to quit?

If asmName.ToUpper = "Q" Then

userIsDone = True

Exit Do

End If

Try ' Try to load assembly.

asm = Assembly.Load(asmName)

DisplayTypesInAsm(asm)

Catch

Console.WriteLine("Sorry, can't find assembly named {0}.", asmName)

End Try

Loop While Not userIsDone

End Sub

Sub DisplayTypesInAsm(ByVal asm As Assembly)

Console.WriteLine()

Console.WriteLine("***** Types in Assembly *****")

Console.WriteLine("->{0}", asm.FullName)

Dim types As Type() = asm.GetTypes()

For Each t As Type In types

Console.WriteLine("Type: {0}", t)

Next

Console.WriteLine("")

End Sub

End Module

Notice that the shared Assembly.Load() method has been passed only the friendly name
of the assembly you are interested in loading into memory. Thus, if you wish to reflect over
CarLibrary.dll, you will need to copy the CarLibrary.dll binary to the \bin\Debug directory of the
ExternalAssemblyReflector application to run this program. Once you do, you will find output similar
to Figure 14-4.

5785ch14.qxd 3/31/06 1:51 PM Page 419

■Note If you wish to make ExternalAssemblyReflector more flexible, load the external assembly using
Assembly.LoadFrom() rather than Assembly.Load(). By doing so, you can enter an absolute path to the
assembly you wish to view (e.g., C:\MyApp\MyAsm.dll).

■Source Code The ExternalAssemblyReflector project is included in the Chapter 14 subdirectory.

Reflecting on Shared Assemblies
As you may suspect, Assembly.Load() has been overloaded a number of times. One variation of the
Assembly.Load() method allows you to specify a culture value (for localized assemblies) as well as
a version number and public key token value (for shared assemblies).

Collectively speaking, the set of items identifying an assembly is termed the display name. The
format of a display name is a comma-delimited string of name/value pairs that begins with the friendly
name of the assembly, followed by optional qualifiers (that may appear in any order). Here is the
template to follow (optional items appear in parentheses):

Name (,Culture = culture token) (,Version = major.minor.build.revision)

(,PublicKeyToken = public key token)

When you’re crafting a display name, the convention PublicKeyToken=null indicates that
binding and matching against a non–strongly-named assembly is required. Additionally, Culture=""
(or Culture+"neutral") indicates matching against the default culture of the target machine, for example:

' Load version 1.0.0.0 of CarLibrary using the default culture.

Dim a As Assembly = Assembly.Load(_

"CarLibrary, Version=1.0.0.0, PublicKeyToken=null, Culture=""")

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING420

Figure 14-4. Reflecting on the external CarLibrary assembly

5785ch14.qxd 3/31/06 1:51 PM Page 420

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 421

Also be aware that the System.Reflection namespace supplies the AssemblyName type, which
allows you to represent the preceding string information in a handy object variable. Typically, this
class is used in conjunction with System.Version, which is an OO wrapper around an assembly’s
version number. Once you have established the display name, it can then be passed into the over-
loaded Assembly.Load() method:

' Make use of AssemblyName to define the display name.

Dim asmName As AssemblyName

asmName = New AssemblyName()

asmName.Name = "CarLibrary"

Dim v As Version = New Version("1.0.0.0")

asmName.Version = v

Dim a As Assembly = Assembly.Load(asmName)

To load a shared assembly from the GAC, the Assembly.Load() parameter must specify
a publickeytoken value. For example, assume you wish to load version 2.0.0.0 of the System.Windows.

Forms.dll assembly provided by the .NET base class libraries. Given that the number of types in this
assembly is very large, the following application simply prints out the names of the first 20 types:

Imports System.Reflection

Module Program

Sub DisplayInfo(ByVal a As Assembly)

Console.WriteLine("***** Info about Assembly *****")

Console.WriteLine("Loaded from GAC? {0}", a.GlobalAssemblyCache)

Console.WriteLine("Asm Name: {0}", a.GetName.Name)

Console.WriteLine("Asm Version: {0}", a.GetName.Version)

Console.WriteLine("Asm Culture: {0}", a.GetName.CultureInfo.DisplayName)

Dim types As Type() = a.GetTypes()

' Just print out the first 20 types.

For i As Integer = 0 To 19

Try

Console.WriteLine("Type: {0}", types(i))

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

Next

End Sub

Sub Main()

Console.WriteLine("***** The Shared Asm Reflector App *****")

Console.WriteLine()

Dim displayName As String = _

"System.Windows.Forms, Version=2.0.0.0, " & _

"PublicKeyToken=b77a5c561934e089, Culture=neutral"

Dim asm As Assembly = Assembly.Load(displayName)

DisplayInfo(asm)

Console.ReadLine()

End Sub

End Module

■Source Code The SharedAssemblyReflector project is included in the Chapter 14 subdirectory.

5785ch14.qxd 3/31/06 1:51 PM Page 421

Sweet! At this point you should understand how to use some of the core items defined within
the System.Reflection namespace to discover metadata at runtime. Of course, I realize despite the
“cool factor,” you likely won’t need to build custom object browsers at your place of employment.
Do recall, however, that reflection services are the foundation for a number of very common pro-
gramming activities, including late binding.

Understanding Late Binding
Simply put, late binding is a technique in which you are able to create an instance of a given type
and invoke its members at runtime without having compile-time knowledge of its existence. When
you are building an application that binds late to a type in an external assembly, you have no reason
to set a reference to the assembly; therefore, the caller’s manifest has no direct listing of the assembly.

At first glance, you may not understand the value of late binding. It is true that if you can “bind
early” to a type (e.g., set an assembly reference and allocate the type using the VB 2005 New keyword),
you should opt to do so. For one reason, early binding allows you to determine errors at compile time,
rather than at runtime. Nevertheless, late binding does have a critical role in any extendable appli-
cation you may be building.

Late Binding with the System.Activator Class
The System.Activator class is the key to the .NET late binding process. Beyond the methods inher-
ited from System.Object, Activator defines only a small set of members, many of which have to do
with .NET remoting (see Chapter 20). For our current example, we are only interested in the
Activator.CreateInstance() method, which is used to create an instance of a type à la late binding.

This method has been overloaded numerous times to provide a good deal of flexibility. The
simplest variation of the CreateInstance() member takes a valid Type object that describes the entity
you wish to allocate on the fly. Create a new application named LateBinding, and update the Main()
method as follows (be sure to place a copy of CarLibrary.dll in the project’s \bin\Debug directory):

Imports System.Reflection

Imports System.IO

Module Program

Sub Main()

Console.WriteLine("***** Fun with Late Binding *****")

' Try to load a local copy of CarLibrary.

Dim a As Assembly = Nothing

Try

a = Assembly.Load("CarLibrary")

Catch e As FileNotFoundException

Console.WriteLine(e.Message)

Return

End Try

' If we found it, get type information about

' the minivan and create an instance.

Dim miniVan As Type = a.GetType("CarLibrary.MiniVan")

Dim obj As Object = Activator.CreateInstance(miniVan)

Console.ReadLine()

End Sub

End Module

Notice that the Activator.CreateInstance() method returns a System.Object reference rather
than a strongly typed MiniVan. Therefore, if you apply the dot operator on the obj variable, you will

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING422

5785ch14.qxd 3/31/06 1:51 PM Page 422

Figure 14-5. Late-bound method invocation

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 423

fail to see any members of the MiniVan type. At first glance, you may assume you can remedy this
problem with an explicit cast; however, this program has no clue what a MiniVan is in the first place,
therefore it would be a compiler error to attempt to use CType() to do so (as you must specify the
name of the type to convert to).

Remember that the whole point of late binding is to create instances of objects for which there
is no compile-time knowledge. Given this, how can you invoke the underlying methods of the MiniVan
object stored in the System.Object variable? The answer, of course, is by using reflection.

Invoking Methods with No Parameters
Assume you wish to invoke the TurboBoost() method of the MiniVan. As you recall, this method will
set the state of the engine to “dead” and display an informational message box. The first step is to
obtain a MethodInfo type for the TurboBoost() method using Type.GetMethod(). From the resulting
MethodInfo, you are then able to call MiniVan.TurboBoost using Invoke(). MethodInfo.Invoke() requires
you to send in all parameters that are to be given to the method represented by MethodInfo. These
parameters are represented by an array of System.Object types (as the parameters for a given method
could be any number of various entities).

Given that TurboBoost() does not require any parameters, you can simply pass Nothing. Update
your Main() method like so:

Sub Main()

' Try to load a local copy of CarLibrary.

...

' If we found it, get type information about

' the minivan and create an instance.

Dim miniVan As Type = a.GetType("CarLibrary.MiniVan")

Dim obj As Object = Activator.CreateInstance(miniVan)

' Get info for TurboBoost.

Dim mi As MethodInfo = miniVan.GetMethod("TurboBoost")

' Invoke method (Nothing for no parameters).

mi.Invoke(obj, Nothing)

End Sub

At this point you are happy to see the message box in Figure 14-5.

Invoking Methods with Parameters
To illustrate how to dynamically invoke a method that does take some number of parameters, assume
the MiniVan type defines a method named TellChildToBeQuiet() (feel free to update CarLibrary.dll
if you so choose):

' Quiet down the troops...

Public Sub TellChildToBeQuiet(ByVal kidName As String, _

5785ch14.qxd 3/31/06 1:51 PM Page 423

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING424

ByVal shameIntensity As Integer)

For i As Integer = 0 to shameIntensity

MessageBox.Show("Be quiet {0}!!", kidName)

Next

End Sub

TellChildToBeQuiet() takes two parameters: a String representing the child’s name and an
Integer representing your current level of frustration. When using late binding, parameters are
packaged as an array of System.Objects. To invoke the new method (assuming of course you have
updated your MiniVan type), add the following code to your Main() method:

' Bind late to a method taking params.

Dim args(1) As Object

args(0) = "Fred"

args(1) = 4

mi = miniVan.GetMethod("TellChildToBeQuiet")

mi.Invoke(obj, args)

Hopefully at this point you can see the relationships among reflection, dynamic loading, and
late binding. Again, you still may wonder exactly when you might make use of these techniques in
your own applications. The conclusion of this chapter should shed light on this question; however,
the next topic under investigation is the role of .NET attributes.

■Note If Option Strict is disabled (which is the case by default), you can simplify your late binding logic. See the
source code for the LateBinding project for details.

■Source Code The LateBinding project is included in the Chapter 14 subdirectory.

Understanding Attributed Programming
As illustrated at the beginning of this chapter, one role of a .NET compiler is to generate metadata
descriptions for all defined and referenced types. In addition to this standard metadata contained
within any assembly, the .NET platform provides a way for programmers to embed additional meta-
data into an assembly using attributes. In a nutshell, attributes are nothing more than code annotations
that can be applied to a given type (class, interface, structure, etc.), member (property, method, etc.),
assembly, or module.

The idea of annotating code using attributes is not new. COM IDL provided numerous predefined
attributes that allowed developers to describe the types contained within a given COM server. How-
ever, COM attributes were little more than a set of keywords. If a COM developer needed to create
a custom attribute, they could do so, but it was referenced in code by a 128-bit number (GUID),
which was cumbersome at best.

Unlike COM IDL attributes (which again were simply keywords), .NET attributes are class types
that extend the abstract System.Attribute base class. As you explore the .NET namespaces, you will
find many predefined attributes that you are able to make use of in your applications. Furthermore,
you are free to build custom attributes to further qualify the behavior of your types by creating a new
type deriving from Attribute.

Understand that when you apply attributes in your code, the embedded metadata is essentially
useless until another piece of software explicitly reflects over the information. If this is not the case,
the blurb of metadata embedded within the assembly is ignored and completely harmless.

5785ch14.qxd 3/31/06 1:51 PM Page 424

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 425

Attribute Consumers
As you would guess, the .NET Framework 2.0 SDK ships with numerous utilities that are indeed on
the lookout for various attributes. The VB 2005 compiler (vbc.exe) itself has been preprogrammed
to discover the presence of various attributes during the compilation cycle. For example, if the
VB 2005 compiler encounters the <CLSCompilant> attribute, it will automatically check the attrib-
uted item to ensure it is exposing only CLS-compliant constructs. By way of another example, if
the VB 2005 compiler discovers an item attributed with the <Obsolete> attribute, it will display
a compiler warning in the Visual Studio 2005 Error List window.

In addition to development tools, numerous methods in the .NET base class libraries are pre-
programmed to reflect over specific attributes. For example, if you wish to persist the state of an
object to a file, all you are required to do is annotate your class with the <Serializable> attribute.
If the Serialize() method of the BinaryFormatter class encounters this attribute, the object’s state
data is automatically persisted to a stream as a compact binary format.

The .NET CLR is also on the prowl for the presence of certain attributes. Perhaps the most famous
.NET attribute is <WebMethod>. If you wish to expose a method via HTTP requests and automatically
encode the method return value as XML, simply apply <WebMethod> to the method and the CLR han-
dles the details. Beyond web service development, attributes are critical to the operation of the .NET
security system, .NET remoting layer, and COM/.NET interoperability (and so on).

Finally, you are free to build applications that are programmed to reflect over your own custom
attributes as well as any attribute in the .NET base class libraries. By doing so, you are essentially able
to create a set of “keywords” that are understood by a specific set of assemblies.

Applying Predefined Attributes in VB 2005
As previously mentioned, the .NET base class library provides a number of attributes in various
namespaces. Table 14-3 gives a snapshot of some—but by absolutely no means all—predefined
attributes.

Table 14-3. A Tiny Sampling of Predefined Attributes

Attribute Meaning in Life

<CLSCompliant> Enforces the annotated item to conform to the rules of the Common
Language Specification (CLS). Recall that CLS-compliant types are
guaranteed to be used seamlessly across all .NET programming languages.

<DllImport> Allows .NET code to make calls to any unmanaged C- or C++-based code
library, including the API of the underlying operating system. Do note that
<DllImport> is not used when communicating with COM-based software.

<Obsolete> Marks a deprecated type or member. If other programmers attempt to use
such an item, they will receive a compiler warning describing the error of
their ways.

<Serializable> Marks a class or structure as being “serializable.”

<NonSerialized> Specifies that a given field in a class or structure should not be persisted
during the serialization process.

<WebMethod> Marks a method as being invokable via HTTP requests and instructs the CLR to
serialize the method return value as XML (see Chapter 28 for complete details).

5785ch14.qxd 3/31/06 1:51 PM Page 425

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING426

Figure 14-6. Attributes shown in ildasm.exe

To illustrate the process of applying attributes in VB 2005, assume you wish to build a class
named Motorcycle that can be persisted in a binary format. To do so, simply apply the <Serializable>
attribute to the class definition. If you have a field that should not be persisted, you may apply the
<NonSerialized> attribute:

' This class can be saved to a stream.

<Serializable()> _

Public Class Motorcycle

' However, this field will not be persisted.

<NonSerialized()> _

Private weightOfCurrentPassengers As Single

' These fields are still serializable.

Private hasRadioSystem As Boolean

Private hasHeadSet As Boolean

Private hasSissyBar As Boolean

End Class

■Note An attribute only applies to the “very next” item. For example, the only nonserialized field of the Motorcycle
class is weightOfCurrentPassengers. The remaining fields are serializable given that the entire class has been
annotated with <Serializable>.

At this point, don’t concern yourself with the actual process of object serialization (Chapter 19
examines the details). Just notice that when you wish to apply an attribute, the name of the attribute
is sandwiched between angled brackets.

Once this class has been compiled, you can view the extra metadata using ildasm.exe. Notice
that these attributes are recorded using the serializable and notserialized tokens (see Figure 14-6).

As you might guess, a single item can be attributed with multiple attributes. Assume you have
a legacy VB 2005 class type (HorseAndBuggy) that was marked as serializable, but is now considered
obsolete for current development. To apply multiple attributes to a single item, simply use a comma-
delimited list:

5785ch14.qxd 3/31/06 1:51 PM Page 426

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 427

Figure 14-7. Attributes in action

<Serializable(), _

Obsolete("This class is obsolete, use another vehicle!")> _

Public Class HorseAndBuggy

End Class

As an alternative, you can also apply multiple attributes on a single item by stacking each
attribute as follows (the end result is identical):

<Serializable()> _

<Obsolete("This class is obsolete, use another vehicle!")> _

Public Class HorseAndBuggy

End Class

Specifying Constructor Parameters for Attributes
Notice that the <Obsolete> attribute is able to accept what appears to be a constructor parameter. In
terms of VB 2005, the formal definition of the <Obsolete> attribute looks something like so:

Public NotInheritable Class ObsoleteAttribute

Inherits System.Attribute

Public ReadOnly Property IsError() As Boolean

End Property

Public ReadOnly Property Message() As String

End Property

Public Sub New(ByVal message As String, ByVal error As Boolean)

End Sub

Public Sub New(ByVal message As String)

End Sub

Public Sub New()

End Sub

End Class

As you can see, this class indeed defines a number of constructors, including one that receives
a System.String. However, do understand that when you supply constructor parameters to an
attribute, the attribute is not allocated into memory until the parameters are reflected upon by
another type or an external tool. The string data defined at the attribute level is simply stored within
the assembly as a blurb of metadata.

The <Obsolete> Attribute in Action
Now that HorseAndBuggy has been marked as obsolete, if you were to allocate an instance of this
type, you would find that the supplied string data is extracted and displayed within the Error List
window of Visual Studio 2005, as you see Figure 14-7.

5785ch14.qxd 3/31/06 1:51 PM Page 427

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING428

In this case, the “other piece of software” that is reflecting on the <Obsolete> attribute is the
VB 2005 compiler.

VB 2005 Attribute Shorthand Notation
If you were reading closely, you may have noticed that the actual class name of the <Obsolete>
attribute is ObsoleteAttribute, not Obsolete. As a naming convention, all .NET attributes (including
custom attributes you may create yourself) are suffixed with the Attribute token. However, to simplify
the process of applying attributes, the VB 2005 language does not require you to type in the Attribute
suffix. Given this, the following iteration of the HorseAndBuggy type is identical to the previous (it just
involves a few more keystrokes):

<SerializableAttribute()> _

<ObsoleteAttribute("This class is obsolete, use another vehicle!")> _

Public Class HorseAndBuggy

End Class

Be aware that this is a courtesy provided by VB 2005. Not all .NET-enabled languages support
this feature. In any case, at this point you should hopefully understand the following key points
regarding .NET attributes:

• Attributes are classes that derive from System.Attribute.

• Attributes result in embedded metadata.

• Attributes are basically useless until another agent reflects upon them.

• Attributes are applied in VB 2005 using angled brackets.

Next up, let’s examine how you can build your own custom attributes and a piece of custom
software that reflects over the embedded metadata.

Building Custom Attributes
The first step in building a custom attribute is to create a new class deriving from System.Attribute.
Keeping in step with the automobile theme used throughout this book, assume you have created
a brand new VB 2005 class library named AttributedCarLibrary. This assembly will define a handful
of vehicles (some of which you have already seen in this text), each of which is described using
a custom attribute named VehicleDescriptionAttribute:

' A custom attribute.

Public NotInheritable Class VehicleDescriptionAttribute

Inherits System.Attribute

Private msgData As String

Public Sub New(ByVal description As String)

msgData = description

End Sub

Public Sub New()

End Sub

Public Property Description() As String

Get

Return msgData

End Get

Set(ByVal value As String)

msgData = value

End Set

End Property

End Class

5785ch14.qxd 3/31/06 1:51 PM Page 428

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 429

Figure 14-8. Embedded vehicle description data

As you can see, VehicleDescriptionAttribute maintains a private internal string (msgData) that
can be set using a custom constructor and manipulated using a type property (Description). Beyond
the fact that this class derived from System.Attribute, there is nothing unique to this class definition.

■Note For security reasons, it is considered a .NET best practice to design all custom attributes as
NonInheritable.

Applying Custom Attributes
Given that VehicleDescriptionAttribute is derived from System.Attribute, you are now able to
annotate your vehicles as you see fit:

' Assign description using a 'named property'.

<Serializable()> _

<VehicleDescription(Description:="My rocking Harley")> _

Public Class Motorcycle

...

End Class

<SerializableAttribute()> _

<Obsolete("This class is obsolete, use another vehicle!"), _

VehicleDescription("The old grey Mare she ain't what she used to be...")> _

Public Class HorseAndBuggy

End Class

<VehicleDescription("A very long, slow but feature rich auto")> _

Public Class Winnebago

End Class

Notice that the description of Motorcycle is assigned a description using a new bit of attribute-
centric syntax termed a named property. In the constructor of the first <VehicleDescription>
attribute, you set the underlying System.String using a name/value pair. If this attribute is reflected
upon by an external agent, the value is fed into the Description property (named property syntax is
legal only if the attribute supplies a writable .NET property). In contrast, the HorseAndBuggy and
Winnebago types are not making use of named property syntax and are simply passing the string
data via the custom constructor.

Once you compile the AttributedCarLibrary assembly, you can make use of ildasm.exe to view
the injected metadata descriptions for your type. For example, Figure 14-8 shows an embedded
description of the Winnebago type.

5785ch14.qxd 3/31/06 1:51 PM Page 429

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING430

Restricting Attribute Usage
By default, custom attributes can be applied to just about any aspect of your code (methods, classes,
properties, and so on). Thus, if it made sense to do so, you could use VehicleDescription to qualify
methods, properties, or fields (among other things):

<VehicleDescription("A very long, slow, but feature-rich auto")> _

Public Class Winnebago

<VehicleDescription("My rocking CD player")> _

Public Sub PlayMusic(bool On)

End Sub

End Class

In some cases, this is exactly the behavior you require. Other times, however, you may want to
build a custom attribute that can be applied only to select code elements. If you wish to constrain
the scope of a custom attribute, you will need to apply the <AttributeUsage> attribute on the definition
of your custom attribute. The <AttributeUsage> attribute allows you to supply any combination of
values (via an OR operation) from the AttributeTargets enumeration:

' This enumeration defines the possible targets of an attribute.

Public Enum AttributeTargets

All

Assembly

Class

Constructor

Delegate

Enum

Event

Field

Interface

Method

Module

Parameter

Property

ReturnValue

Struct

End Enum

Furthermore, <AttributeUsage> also allows you to optionally set a named property (AllowMultiple)
that specifies whether the attribute can be applied more than once on the same item. As well,
<AttributeUsage> allows you to establish whether the attribute should be inherited by derived
classes using the Inherited named property.

To establish that the <VehicleDescription> attribute can be applied only once on a class or structure
(and the value is not inherited by derived types), you can update the VehicleDescriptionAttribute
definition as follows:

<AttributeUsage(AttributeTargets.Class Or _

AttributeTargets.Struct, AllowMultiple:=False, Inherited:=False)> _

Public NotInheritable Class VehicleDescriptionAttribute

...

End Class

With this, if a developer attempted to apply the <VehicleDescription> attribute on anything
other than a class or structure, he or she is issued a compile-time error.

5785ch14.qxd 3/31/06 1:51 PM Page 430

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 431

Figure 14-9. The AssemblyInfo.vb file

■Tip Always get in the habit of explicitly marking the usage flags for any custom attribute you may create, as not
all .NET programming languages honor the use of unqualified attributes!

Assembly-level (and Module-level) Attributes
It is also possible to apply attributes on all types within a given module or all modules within
a given assembly using the <Module:> and <Assembly:> tags, respectively. For example, assume you
wish to ensure that every public member of every public type defined within your assembly is
CLS-compliant. To do so, simply add the following line in any one of your VB 2005 source code files
(do note that assembly-level attributes must be outside the scope of a namespace definition):

' Enforce CLS compliance for all public types in this assembly.

<Assembly:System.CLSCompliantAttribute(True)>

If you now add a bit of code that falls outside the CLS specification (such as an exposed field of
unsigned data) like so:

' UInt64 types don't jibe with the CLS.

<VehicleDescription("A very long, slow but feature rich auto")> _

Public Class Winnebago

Public notCompliant As UInt64

End Class

you are issued a compiler error.

The Visual Studio 2005 AssemblyInfo.vb File
Visual Studio 2005 projects always contain a file named AssemblyInfo.vb; however, by default this
file is not made visible until you click the Show All Files button of the Solution Explorer. Once you
do, you can expand the My Project icon to reveal this file, as shown in Figure 14-9.

This file is a handy place to put attributes that are to be applied at the assembly level. Table 14-4
lists some assembly-level attributes to be aware of.

5785ch14.qxd 3/31/06 1:51 PM Page 431

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING432

Table 14-4. Select Assembly-level Attributes

Attribute Meaning in Life

AssemblyCompany Holds basic company information

AssemblyCopyright Holds any copyright information for the product or assembly

AssemblyCulture Provides information on what cultures or languages the assembly supports

AssemblyDescription Holds a friendly description of the product or modules that make up
the assembly

AssemblyKeyFile Specifies the name of the file containing the key pair used to sign the
assembly (i.e., establish a shared name)

AssemblyOperatingSystem Provides information on which operating system the assembly was
built to support

AssemblyProcessor Provides information on which processors the assembly was built to
support

AssemblyProduct Provides product information

AssemblyTrademark Provides trademark information

AssemblyVersion Specifies the assembly’s version information, in the format
<major.minor.build.revision>

■Note While you are free to update AssemblyInfo.vb directly, be aware that each of these attributes can be set
using various areas of the My Project GUI editor (in fact, this is the preferred manner to establish assembly-level
attributes). To do so, open the My Project editor, select the Application tab and click the Assembly Information button.

■Source Code The AttributedCarLibrary project is included in the Chapter 14 subdirectory.

Reflecting on Attributes Using Early Binding
As mentioned in this chapter, an attribute is quite useless until some piece of software reflects over
its data. Once a given attribute has been discovered, that piece of software can take whatever course
of action necessary. Now, like any application, this “other piece of software” could discover the pres-
ence of a custom attribute using either early binding or late binding. If you wish to make use of early
binding, you’ll require the client application to have a compile-time definition of the attribute in
question (VehicleDescriptionAttribute in this case). Given that the AttributedCarLibrary assembly
has defined this custom attribute as a public class, early binding is the best option.

To illustrate the process of reflecting on custom attributes, create a new VB 2005 console appli-
cation named VehicleDescriptionReader. Next, set a reference to the AttributedCarLibrary assembly.
Finally, update your initial *.cs file with the following code:

Imports AttributedCarLibrary

' Reflecting on custom attributes using early binding.

Module Program

Sub Main()

' Get a Type representing the Winnebago.

Dim t As Type = GetType(Winnebago)

' Get all attributes on the Winnebago.

Dim customAtts As Object() = t.GetCustomAttributes(False)

5785ch14.qxd 3/31/06 1:51 PM Page 432

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 433

' Print the description.

Console.WriteLine("***** Value of VehicleDescriptionAttribute *****")

For Each v As VehicleDescriptionAttribute In customAtts

Console.WriteLine()

Console.WriteLine("->{0}.", v.Description)

Next

Console.ReadLine()

End Sub

End Module

As the name implies, Type.GetCustomAttributes() returns an object array that represents all
the attributes applied to the member represented by the Type (the Boolean parameter controls
whether the search should extend up the inheritance chain). Once you have obtained the list of
attributes, iterate over each VehicleDescriptionAttribute class and print out the value obtained by
the Description property.

■Source Code The VehicleDescriptionAttributeReader application is included under the Chapter 14 subdirectory.

Reflecting on Attributes Using Late Binding
The previous example made use of early binding to print out the vehicle description data for the
Winnebago type. This was possible due to the fact that the VehicleDescriptionAttribute class type
was defined as a public member in the AttributedCarLibrary assembly. It is also possible to make
use of dynamic loading and late binding to reflect over attributes.

Create a new project called VehicleDescriptionReaderLB (where LB stands for “late binding”)
and copy AttributedCarLibrary.dll to the project’s \bin\Debug directory. Now, update your Main()
method as follows:

Imports System.Reflection

Module Project

Sub Main()

Console.WriteLine("***** Descriptions of Your Vehicles *****")

Console.WriteLine()

' Load the local copy of AttributedCarLibrary.

Dim asm As Assembly = Assembly.Load("AttributedCarLibrary")

' Get type info of VehicleDescriptionAttribute.

Dim vehicleDesc As Type = _

asm.GetType("AttributedCarLibrary.VehicleDescriptionAttribute")

' Get type info of the Description property.

Dim propDesc As PropertyInfo = vehicleDesc.GetProperty("Description")

' Get all types in the assembly.

Dim types As Type() = asm.GetTypes()

' Iterate over each attribute.

For Each t As Type In types

Dim objs As Object() = t.GetCustomAttributes(vehicleDesc, False)

For Each o As Object In objs

Console.WriteLine("-> {0} : {1}", t.Name, propDesc.GetValue(o, Nothing))

Next

Next

5785ch14.qxd 3/31/06 1:51 PM Page 433

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING434

Console.ReadLine()

End Sub

End Module

If you were able to follow along with the examples in this chapter, this Main() method should be
(more or less) self-explanatory. The only point of interest is the use of the PropertyInfo.GetValue()
method, which is used to trigger the property’s get method. Figure 14-10 shows the output.

■Source Code The VehicleDescriptionReaderLB application is included under the Chapter 14 subdirectory.

Putting Reflection, Late Binding, and Custom
Attributes in Perspective
Even though you have seen numerous examples of these techniques in action, you may still be
wondering when to make use of reflection, dynamic loading, late binding, and custom attributes
in your programs. To be sure, these topics can seem a bit on the academic side of programming
(which may or may not be a bad thing, depending on your point of view). To help map these topics
to a real-world situation, you need a solid example. Assume for the moment that you are on a pro-
gramming team that is building an application with the following requirement:

• The product must be extendable by the use of additional third-party tools.

So, what exactly is meant by extendable? Consider Visual Studio 2005. When this application
was developed, various “hooks” were inserted to allow other software vendors to snap custom mod-
ules into the IDE. Obviously, the Visual Studio 2005 team had no way to set references to external
.NET assemblies it had not programmed (thus, no early binding), so how exactly would an applica-
tion provide the required hooks?

• First, an extendable application must provide some input vehicle to allow the user to specify
the module to plug in (such as a dialog box or command-line flag). This requires dynamic
loading.

• Second, an extendable application must be able to determine whether the module supports
the correct functionality (such as a set of required interfaces) in order to be plugged into the
environment. This requires reflection.

• Finally, an extendable application must obtain a reference to the required infrastructure
(e.g., the interface types) and invoke the members to trigger the underlying functionality.
This often requires late binding.

Figure 14-10. Reflecting on attributes using late binding

5785ch14.qxd 3/31/06 1:51 PM Page 434

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 435

Simply put, if the extendable application has been preprogrammed to query for specific inter-
faces, it is able to determine at runtime whether the type can be activated. Once this verification test
has been passed, the type in question may support additional interfaces that provide a polymorphic
fabric to their functionality. This is the exact approach taken by the Visual Studio 2005 team, and
despite what you may be thinking, it is not at all difficult.

Building an Extendable Application
In the sections that follow, I will take you through a complete example that illustrates the process of
building an extendable Windows Forms application that can be augmented by the functionality of
external assemblies. What I will not do at this point is comment on the process of programming
Windows Forms applications (Chapters 21, 22, and 23 will tend to that chore). So, if you are not
familiar with the process of building Windows Forms applications, feel free to simply open up the
downloadable sample code and follow along (or build a console-based alternative). To serve as a road
map, our extendable application entails the following assemblies:

• CommonSnappableTypes.dll: This assembly contains type definitions that will be implemented
by each snap-in object as well as referenced by the extendable Windows Forms application.

• VbNetSnapIn.dll: A snap-in written in Visual Basic 2005 that leverages the types of
CommonSnappableTypes.dll.

• CSharpSnapIn.dll: A snap-in written in C# that leverages the types of CommonSnappableTypes.dll.

• MyPluggableApp.exe: This Windows Forms application will be the entity that may be extended
by the functionality of each snap-in. Again, this application will make use of dynamic loading,
reflection, and late binding to dynamically gain the functionality of assemblies it has no prior
knowledge of.

Building CommonSnappableTypes.dll
The first order of business is to create an assembly that contains the types that a given snap-in must
leverage to be plugged into your expandable Windows Forms application. The CommonSnappableTypes
class library project defines two types:

Public Interface IAppFunctionality

Sub DoIt()

End Interface

<AttributeUsage(AttributeTargets.Class)> _

Public NotInheritable Class CompanyInfoAttribute

Inherits System.Attribute

Private companyName As String

Private companyUrl As String

Public Sub New()

End Sub

Public Property Name() As String

Get

Return companyName

End Get

Set(ByVal value As String)

companyName = value

End Set

End Property

Public Property Url() As String

5785ch14.qxd 3/31/06 1:51 PM Page 435

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING436

Get

Return companyUrl

End Get

Set(ByVal value As String)

companyUrl = value

End Set

End Property

End Class

The IAppFunctionality interface provides a polymorphic interface for all snap-ins that can be
consumed by the extendable Windows Forms application. Of course, as this example is purely illus-
trative in nature, you supply a single method named DoIt(). To map this to a real-world example,
imagine an interface (or a set of interfaces) that allows the snapper to generate scripting code, render
an image onto the application’s toolbox, or integrate into the main menu of the hosting application.

The CompanyInfoAttribute type is a custom attribute that will be applied on any class type that
wishes to be snapped into the container. As you can tell by the definition of this class, <CompanyInfo>
allows the developer of the snap-in to provide some basic details about the component’s point of origin.

Building the VB 2005 Snap-In
Next up, you need to create a type that implements the IAppFunctionality interface. Again, to focus
on the overall design of an extendable application, a trivial type is in order. Assume a new VB 2005
code library named VbNetSnapIn that defines a class type named VbNetSnapIn. Given that this class
must make use of the types defined in CommonSnappableTypes, be sure to set a reference to this binary
(as well as System.Windows.Forms.dll to display a noteworthy message). This being said, here is the
code:

Imports System.Windows.Forms

Imports CommonSnappableTypes

<CompanyInfo(Name:="Chucky's Software", Url:="www.ChuckySoft.com")> _

Public Class VbNetSnapIn

Implements IAppFunctionality

Public Sub DoIt() Implements CommonSnappableTypes.IAppFunctionality.DoIt

MessageBox.Show("You have just used the VB 2005 snap in!")

End Sub

End Class

Building the C# Snap-In
Now, to simulate the role of a third-party vendor who prefers C# over VB 2005, create a new C# code
library (CSharpSnapIn) that references the same external assemblies as the previous VbNetSnapIn
project. The code is (again) intentionally simple:

using System;

using CommonSnappableTypes;

using System.Windows.Forms;

namespace CSharpSnapIn

{

[CompanyInfo(Name = "Intertech Training",

Url = "www.intertechtraining.com")]

public class TheCSharpModule : IAppFunctionality

{

void IAppFunctionality.DoIt()

{

5785ch14.qxd 3/31/06 1:51 PM Page 436

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 437

Figure 14-11. Final GUI for MyExtendableApp

MessageBox.Show("You have just used the C# snap in!");

}

}

}

Without getting hung up on the syntax of the C# language, do notice that applying attributes in
the syntax of C# requires square brackets ([]) rather than angled brackets (< >).

Building an Extendable Windows Forms Application
The final step of this example is to create a new Windows Forms application (MyExtendableApp)
that allows the user to select a snap-in using a standard Windows Open dialog box. Next, set a refer-
ence to the CommonSnappableTypes.dll assembly, but not the CSharpSnapIn.dll or VbNetSnapIn.dll
code libraries. Remember that the whole goal of this application is to make use of late binding and
reflection to determine the “snapability” of independent binaries created by third-party vendors.

Again, I won’t bother to examine all the details of Windows Forms development at this point in
the text. However, assuming you have placed a MenuStrip component onto the Form template, define
a topmost menu item named Tools that provides a single submenu named Snap In Module. This
Windows Form will also contain a ListBox type (which I renamed as lstLoadedSnapIns) that will be
used to display the names of each snap-in loaded by the user. Figure 14-11 shows the final GUI.

The code that handles the Click event of the Tools ➤ Snap In Module menu item (which may
be created simply by double-clicking the menu item from the design-time editor) displays a File
Open dialog box and extracts the path to the selected file. This path is then sent into a helper func-
tion named LoadExternalModule() for processing. This method will return False when it is unable
to find a class implementing IAppFunctionality:

Private Sub SnapInModuleToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles SnapInModuleToolStripMenuItem.Click

' Allow user to select an assembly to load.

Dim dlg As OpenFileDialog = New OpenFileDialog()

If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then

If LoadExternalModule(dlg.FileName) = False Then

MessageBox.Show("Nothing implements IAppFunctionality!")

5785ch14.qxd 3/31/06 1:51 PM Page 437

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING438

Figure 14-12. Snapping in external assemblies

End If

End If

End Sub

The LoadExternalModule() method performs the following tasks:

• Dynamically loads the assembly into memory

• Determines whether the assembly contains a type implementing IAppFunctionality

If a type implementing IAppFunctionality is found, the DoIt() method is called, and the fully
qualified name of the type is added to the ListBox (note that the For loop will iterate over all types
in the assembly to account for the possibility that a single assembly has multiple snap-in objects):

Private Function LoadExternalModule(ByVal path As String) As Boolean

Dim foundSnapIn As Boolean = False

Dim itfAppFx As IAppFunctionality

' Dynamically load the selected assembly.

Dim theSnapInAsm As Assembly = Assembly.LoadFrom(path)

' Get all types in assembly.

Dim theTypes As Type() = theSnapInAsm.GetTypes()

For i As Integer = 0 To UBound(theTypes)

' See if a type implements IAppFunctionality.

Dim t As Type = theTypes(i).GetInterface("IAppFunctionality")

If Not (t Is Nothing) Then

foundSnapIn = True

' Use late binding to create the type.

Dim o As Object = theSnapInAsm.CreateInstance(theTypes(i).FullName)

' Call DoIt() off the interface.

itfAppFx = CType(o, IAppFunctionality)

itfAppFx.DoIt()

lstLoadedSnapIns.Items.Add(theTypes(i).FullName)

End If

Next

Return foundSnapIn

End Function

At this point, you can run your application. When you select the CSharpSnapIn.dll or
VbNetSnapIn.dll assemblies, you should see the correct message displayed. Figure 14-12 shows
one possible run of this Windows Forms application.

5785ch14.qxd 3/31/06 1:51 PM Page 438

CHAPTER 14 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 439

The final task is to display the metadata provided by the <CompanyInfo>. To do so, simply
update LoadExternalModule() to call a new helper function named DisplayCompanyData() before
exiting the If scope. Notice this method takes a single System.Type parameter.

Private Function LoadExternalModule(ByVal path As String) As Boolean

...

If Not (t Is Nothing) Then

...

' Show company info.

DisplayCompanyData(theTypes(i))

End If

...

End Function

Using the incoming type, simply reflect over the <CompanyInfo> attribute:

Private Sub DisplayCompanyData(ByVal t As Type)

' Get <CompanyInfo> type.

Dim customAtts As Object() = t.GetCustomAttributes(False)

For Each c As CompanyInfoAttribute In customAtts

' Show data.

MessageBox.Show(c.Url, String.Format _

("More info about {0} can be found at", c.Name))

Next

End Sub

Excellent! That wraps up the example application. I hope at this point you can see that the top-
ics presented in this chapter can be quite helpful in the real world and are not limited to the tool
builders of the world.

■Source Code The CommonSnappableTypes, CSharpSnapIn, VbNetSnapIn, and MyExtendableApp applications
are all included under the Chapter 14 subdirectory.

Summary
Reflection is a very powerful aspect of a robust OO environment. In the world of .NET, the keys to
reflection services revolve around the System.Type class and the System.Reflection namespace. As
you have seen, reflection is the process of placing a type under the magnifying glass at runtime to
understand the who, what, where, when, why, and how of a given item.

Late binding is the process of creating a type and invoking its members without prior knowledge
of the specific names of said members. As shown during this chapter’s extendable application
example, this is a very powerful technique used by tool builders as well as tool consumers. This
chapter also examined the role of attribute-based programming. When you adorn your types with
attributes, the result is the augmentation of the underlying assembly metadata.

5785ch14.qxd 3/31/06 1:51 PM Page 439

5785ch14.qxd 3/31/06 1:51 PM Page 440

C H A P T E R 1 5

■ ■ ■

Processes, AppDomains, Contexts,
and CLR Hosts

In the previous two chapters, you examined the steps taken by the CLR to resolve the location of
an externally referenced assembly as well as the role of .NET metadata. In this chapter, you’ll drill
deeper into the details of how an assembly is hosted by the CLR and come to understand the rela-
tionship between processes, application domains, and object contexts.

In a nutshell, application domains (or, simply, AppDomains) are logical subdivisions within
a given process that host a set of related .NET assemblies. As you will see, an AppDomain is further
subdivided into contextual boundaries, which are used to group together like-minded .NET objects.
Using the notion of context, the CLR is able to ensure that objects with special runtime requirements
are handled appropriately.

Once you have come to understand how an assembly is hosted by the CLR, it’s time to address
the next obvious question: what is hosting the CLR? As you recall from Chapter 1, the CLR itself is
represented (in part) by mscoree.dll. When you launch an executable assembly, mscoree.dll is loaded
automatically; however, as you will see, there are actually a number of transparent steps happening
in the background.

Reviewing Traditional Win32 Processes
The concept of a “process” has existed within Windows-based operating systems well before the
release of the .NET platform. Simply put, a process is the term used to describe the set of resources
(such as external code libraries and the primary thread) and the necessary memory allocations used
by a running application. For each *.exe loaded into memory, the OS creates a separate and isolated
process for use during its lifetime. Using this approach to application isolation, the result is a much
more robust and stable runtime environment, given that the failure of one process does not affect
the functioning of another.

Now, every Win32 process is assigned a unique process identifier (PID) and may be independently
loaded and unloaded by the OS as necessary (as well as programmatically using Win32 API calls).
As you may be aware, the Processes tab of the Windows Task Manager utility (activated via the
Ctrl+Shift+Esc keystroke combination) allows you to view various statistics regarding the processes
running on a given machine, including its PID and image name, as you see Figure 15-1.

441

5785ch15.qxd 3/31/06 11:00 AM Page 441

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS442

Figure 15-1. Windows Task Manager

■Note If you do not see a PID column listed in Task Manager, simply select View ➤ Select Columns and check
the PID box.

An Overview of Threads
Every Win32 process has exactly one main “thread” that functions as the entry point for the applica-
tion. The next chapter examines how to create additional threads and thread-safe code using the
System.Threading namespace; however, to facilitate the topics presented here, we need a few work-
ing definitions. First of all, a thread is a path of execution within a process. Formally speaking, the
first thread created by a process’s entry point (the Main() method) is termed the primary thread.

Processes that contain a single primary thread of execution are intrinsically thread-safe, given the
fact that there is only one thread that can access the data in the application at a given time. However,
a single-threaded application (especially one that is GUI-based) may appear a bit unresponsive to
the user if this single thread is performing a complex operation (such as printing out a lengthy text
file, performing an exotic calculation, or attempting to connect to a remote server located thousands
of miles away).

Given this potential drawback of single-threaded applications, the Win32 API makes it possible
for the primary thread to spawn additional secondary threads using a handful of Win32 API functions
such as CreateThread(). Each thread (primary or secondary) becomes a unique path of execution in
the process and has concurrent access to all shared points of data.

As you may have guessed, developers typically create additional threads to help improve the
program’s overall responsiveness. Multithreaded processes provide the illusion that numerous
activities are happening at more or less the same time. For example, an application may spawn
a worker thread to perform a labor-intensive unit of work (such as printing a large text file). As this
secondary thread is churning away, the main thread is still responsive to user input, which gives the

5785ch15.qxd 3/31/06 11:00 AM Page 442

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 443

Figure 15-2. The Win32 process/thread relationship

entire process the potential of delivering greater performance. However, this may not actually be
the case: using too many threads in a single process can actually degrade performance, as the CPU
must switch between the active threads in the process (which takes time).

In reality, it is always worth keeping in mind that multithreading is most commonly an illusion
provided by the OS. Machines that host a single CPU do not have the ability to literally handle mul-
tiple threads at the same exact time. Rather, a single CPU will execute one thread for a unit of time
(called a time slice) based on the thread’s priority level. When a thread’s time slice is up, the existing
thread is suspended to allow another thread to perform its business. For a thread to remember what
was happening before it was kicked out of the way, each thread is given the ability to write to Thread
Local Storage (TLS) and is provided with a separate call stack, as illustrated in Figure 15-2.

If the subject of threads is new to you, don’t sweat the details (again, see Chapter 16). At this
point, just remember that a thread is a unique path of execution within a Win32 process. Every
process has a primary thread (created via the executable’s Main() method) and may contain addi-
tional threads that have been programmatically created.

■Note Newer Intel CPUs have a feature called Hyper-Threading Technology that allows a single CPU to handle
multiple threads simultaneously under certain circumstances. See http://www.intel.com/info/hyperthreading
for more details.

Interacting with Processes Under the .NET
Platform
Although processes and threads are nothing new, the manner in which we interact with these prim-
itives under the .NET platform has changed quite a bit (for the better). To pave the way to understanding
the world of building multithreaded assemblies, let’s begin by checking out how to interact with
processes using the .NET base class libraries.

The System.Diagnostics namespace defines a number of types that allow you to programmati-
cally interact with processes and various diagnostic-related types such as the system event log and
performance counters. In this chapter, we are only concerned with the process-centric types defined
in Table 15-1.

5785ch15.qxd 3/31/06 11:00 AM Page 443

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS444

Table 15-1. Select Members of the System.Diagnostics Namespace

Process-Centric Types of the
System.Diagnostics Namespace Meaning in Life

Process The Process class provides access to local and remote
processes and also allows you to programmatically start and
stop processes.

ProcessModule This type represents a module (*.dll or *.exe) that is loaded
into a particular process. Understand that the ProcessModule
type can represent any module—COM-based, .NET-based, or
traditional C-based binaries.

ProcessModuleCollection Provides a strongly typed collection of ProcessModule objects.

ProcessStartInfo Specifies a set of values used when starting a process via the
Process.Start() method.

ProcessThread Represents a thread within a given process. Be aware that
ProcessThread is a type used to diagnose a process’s thread
set and is not used to spawn new threads of execution within
a process.

ProcessThreadCollection Provides a strongly typed collection of ProcessThread objects.

The System.Diagnostics.Process type allows you to analyze the processes running on a given
machine (local or remote). The Process class also provides members that allow you to programmat-
ically start and terminate processes, establish a process’s priority level, and obtain a list of active
threads and/or loaded modules within a given process. Table 15-2 lists some (but not all) of the key
members of System.Diagnostics.Process.

Table 15-2. Select Members of the Process Type

Members Meaning in Life

ExitCode This property gets the value that the associated process specified when it
terminated. Do note that you will be required to handle the Exited event
(for asynchronous notification) or call the WaitForExit() method (for
synchronous notification) to obtain this value.

ExitTime This property gets the timestamp associated with the process that has
terminated (represented with a DateTime type).

Handle This property returns the handle associated to the process by the OS.

HandleCount This property returns the number of handles opened by the process.

Id This property gets the process ID (PID) for the associated process.

MachineName This property gets the name of the computer the associated process is
running on.

MainModule This property gets the ProcessModule type that represents the main
module for a given process.

MainWindowTitle MainWindowTitle gets the caption of the main window of the process (if
the process does not have a main window, you receive an empty string).

MainWindowHandle MainWindowHandle gets the underlying handle (represented via
a System.IntPtr type) of the associated window. If the process does not
have a main window, the IntPtr type is assigned the value
System.IntPtr.Zero.

Modules This property provides access to the strongly typed ProcessModuleCollection
type, which represents the set of modules (*.dll or *.exe) loaded within the
current process.

5785ch15.qxd 3/31/06 11:00 AM Page 444

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 445

Members Meaning in Life

PriorityBoostEnabled This property determines whether the OS should temporarily boost the
process if the main window has the focus.

PriorityClass This property allows you to read or change the overall priority for the
associated process.

ProcessName This property gets the name of the process (which, as you would assume,
is the name of the application itself).

Responding This property gets a value indicating whether the user interface of the
process is responding (or not).

StartTime This property gets the time that the associated process was started (via
a DateTime type).

Threads This property gets the set of threads that are running in the associated
process (represented via an array of ProcessThread types).

CloseMainWindow() This method closes a process that has a user interface by sending a close
message to its main window.

GetCurrentProcess() This shared method returns a new Process type that represents the
currently active process.

GetProcesses() This shared method returns an array of new Process components running
on a given machine.

Kill() This method immediately stops the associated process.

Start() This method starts a process.

Enumerating Running Processes
To illustrate the process of manipulating Process types (pardon the redundancy), assume you have
a VB 2005 console application named ProcessManipulator, which defines the following method in
the main Module:

Public Sub ListAllRunningProcesses()

' Get all the processes on the local machine.

Dim runningProcs As Process() = Process.GetProcesses(".")

' Print out PID and name of each process.

For Each p As Process In runningProcs

Dim info As String = String.Format("-> PID: {0}" & _

Microsoft.VisualBasic.Chr(9) & "Name: {1}", p.Id, p.ProcessName)

Console.WriteLine(info)

Next

Console.WriteLine("************************************")

Console.WriteLine()

End Sub

Notice how the shared Process.GetProcesses() method returns an array of Process types that
represent the running processes on the target machine (the dot notation shown here represents the
local computer). Once you have obtained the array of Process types, you are able to trigger any of the
members seen in Table 15-2. Here, you are simply displaying the PID and the name of each process.
Assuming the Main() method has been updated to call ListAllRunningProcesses(), you will see
something like the output shown in Figure 15-3.

5785ch15.qxd 3/31/06 11:00 AM Page 445

Investigating a Specific Process
In addition to obtaining a full and complete list of all running processes on a given machine, the
shared Process.GetProcessById() method allows you to obtain a single Process type via the associ-
ated PID. If you request access to a nonexistent process ID, an ArgumentException exception is thrown.
For example, if you were interested in obtaining a Process object representing a process with the
PID of 987, you could write the following:

' If there is no process with the PID of 987, a

' runtime exception will be thrown.

Sub Main()

Dim theProc As Process

Try

theProc = Process.GetProcessById(987)

Catch ' Generic catch for used simplicity.

Console.WriteLine("-> Sorry...bad PID!")

End Try

End Sub

Investigating a Process’s Thread Set
The Process class type also provides a manner to programmatically investigate the set of all
threads currently used by a specific process. The set of threads is represented by the strongly typed
ProcessThreadCollection collection, which contains some number of individual ProcessThread
types. To illustrate, consider the implementation of the following additional subroutine:

Public Sub EnumThreadsForPid(ByVal pID As Integer)

Dim theProc As Process

Try

theProc = Process.GetProcessById(pID)

Catch

Console.WriteLine("-> Sorry...bad PID!")

Console.WriteLine("************************************")

Console.WriteLine()

Return

End Try

Console.WriteLine("Here are the threads used by: {0}", theProc.ProcessName)

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS446

Figure 15-3. Enumerating running processes

5785ch15.qxd 3/31/06 11:00 AM Page 446

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 447

' List out stats for each thread in the specified process.

Dim theThreads As ProcessThreadCollection = theProc.Threads

For Each pt As ProcessThread In theThreads

Dim info As String = String.Format("-> Thread ID: {0}" _

& Microsoft.VisualBasic.Chr(9) & "Start Time {1}" & _

Microsoft.VisualBasic.Chr(9) & "Priority {2}", _

pt.Id, pt.StartTime.ToShortTimeString, pt.PriorityLevel)

Console.WriteLine(info)

Next

Console.WriteLine("************************************")

Console.WriteLine()

End Sub

As you can see, the Threads property of the System.Diagnostics.Process type provides access
to the ProcessThreadCollection class. Here, you are printing out the assigned thread ID, start time,
and priority level of each thread in the process specified by the client. Thus, if you update your pro-
gram’s Main() method to prompt the user for a PID to investigate, as follows:

Sub Main()

Console.WriteLine("***** The Amazing Process Manipulator App *****")

Console.WriteLine()

Console.WriteLine("***** Listing all running processes *****")

ListAllRunningProcesses()

' Prompt user for a PID and print out the set of active threads.

Console.WriteLine("***** Enter PID of process to investigate *****")

Console.Write("PID: ")

Dim pID As String = Console.ReadLine()

Try

Dim theProcID As Integer = Integer.Parse(pID)

EnumThreadsForPid(theProcID)

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

Console.ReadLine()

End Sub

you would find output along the lines of that shown in Figure 15-4.

Figure 15-4. Enumerating the threads within a running process

5785ch15.qxd 3/31/06 11:00 AM Page 447

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS448

The ProcessThread type has additional members of interest beyond Id, StartTime, and
PriorityLevel. Table 15-3 documents some members of interest.

Table 15-3. Select Members of the ProcessThread Type

Member Meaning in Life

BasePriority Gets the base priority of the thread

CurrentPriority Gets the current priority of the thread

Id Gets the unique identifier of the thread

IdealProcessor Sets the preferred processor for this thread to run on

PriorityLevel Gets or sets the priority level of the thread

ProcessorAffinity Sets the processors on which the associated thread can run

StartAddress Gets the memory address of the function that the operating system
called that started this thread

StartTime Gets the time that the operating system started the thread

ThreadState Gets the current state of this thread

TotalProcessorTime Gets the total amount of time that this thread has spent using the
processor

WaitReason Gets the reason that the thread is waiting

Before you read any further, be very aware that the ProcessThread type is not the entity used to
create, suspend, or kill threads under the .NET platform. Rather, ProcessThread is a vehicle used to
obtain diagnostic information for the active Win32 threads within a running process.

Investigating a Process’s Module Set
Next up, let’s check out how to iterate over the number of loaded modules that are hosted within
a given process. Recall that a module is a generic name used to describe a given *.dll (or the *.exe
itself) that is hosted by a specific process. When you access the ProcessModuleCollection via the
Process.Module property, you are able to enumerate over all modules hosted within a process: .NET-
based, COM-based, or traditional C-based libraries. Ponder the following additional helper function
that will enumerate the modules in a specific process based on the PID:

Public Sub EnumModsForPid(ByVal pID As Integer)

Dim theProc As Process

Try

theProc = Process.GetProcessById(pID)

Catch

Console.WriteLine("-> Sorry...bad PID!")

Console.WriteLine("************************************")

Console.WriteLine()

Return

End Try

Console.WriteLine("Here are the loaded modules for: {0}", theProc.ProcessName)

Try

Dim theMods As ProcessModuleCollection = theProc.Modules

For Each pm As ProcessModule In theMods

Dim info As String = String.Format("-> Mod Name: {0}", pm.ModuleName)

Console.WriteLine(info)

Next

Console.WriteLine("************************************")

Console.WriteLine()

5785ch15.qxd 3/31/06 11:00 AM Page 448

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 449

Figure 15-5. Enumerating the loaded modules within a running process

Catch

Console.WriteLine("No mods!")

End Try

End Sub

To see some possible output, let’s check out the loaded modules for the process hosting the
current console application (ProcessManipulator). To do so, run the application, identify the PID
assigned to ProcessManipulator.exe, and pass this value to the EnumModsForPid() method (be sure
to update your Main() method accordingly). Once you do, you may be surprised to see the list of
*.dlls used for a simple console application. Figure 15-5 shows a test run.

Starting and Stopping Processes Programmatically
The final aspects of the System.Diagnostics.Process type examined here are the Start() and Kill()
methods. As you can gather by their names, these members provide a way to programmatically launch
and terminate a process, respectively. For example, consider the following StartAndKillProcess()
method:

Public Sub StartAndKillProcess()

' Launch Internet Explorer.

Console.Write("--> Hit a key to launch IE")

Console.ReadLine()

Dim ieProc As Process = Process.Start("IExplore.exe", _

"www.intertechtraining.com")

Console.Write("--> Hit a key to kill {0}...", ieProc.ProcessName)

Console.ReadLine()

' Kill the iexplorer.exe process.

Try

ieProc.Kill()

Catch ' In case the user already killed it...

End Try

End Sub

5785ch15.qxd 3/31/06 11:00 AM Page 449

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS450

The shared Process.Start() method has been overloaded a few times, however. At minimum,
you will need to specify the friendly name of the process you wish to launch (such as IExplore.exe).
This example makes use of a variation of the Start() method that allows you to specify any additional
arguments to pass into the program’s entry point (i.e., the Main() method), which in this case is the
URL to navigate to upon startup.

Regardless of which version of the Process.Start() method you invoke, do note that you are
returned a reference to the newly activated process. When you wish to terminate the process, sim-
ply call the instance-level Kill() method.

■Note The Start() method also allows you to pass in a System.Diagnostics.ProcessStartInfo type to
specify additional bits of information regarding how a given process should come to life. See the .NET Framework
2.0 SDK documentation for full details.

■Source Code The ProcessManipulator application is included under the Chapter 15 subdirectory.

Understanding .NET Application Domains
Now that you understand the role of Win32 processes and how to interact with them from managed
code, we need to investigate the concept of a .NET application domain. Under the .NET platform,
assemblies are not hosted directly within a process (as is the case in traditional Win32 applications).
Rather, a .NET executable is hosted by a logical partition within a process termed an application domain,
or AppDomain. As you will see, a single process may contain multiple application domains, each of
which is capable of hosting a .NET application. This additional subdivision of a traditional Win32
process offers several benefits, some of which are as follows:

• AppDomains are a key aspect of the OS-neutral nature of the .NET platform, given that this
logical division abstracts away the differences in how an underlying OS represents a loaded
executable.

• AppDomains are far less expensive in terms of processing power and memory than a full-blown
process. Thus, the CLR is able to load and unload application domains much quicker than
a formal process.

• AppDomains provide a deeper level of isolation for hosting a loaded application. If one
AppDomain within a process fails, the remaining AppDomains remain functional.

As suggested in the previous hit list, a single process can host any number of AppDomains,
each of which is fully and completely isolated from other AppDomains within this process (or any
other process). Given this factoid, be very aware that an application running in one AppDomain is
unable to obtain data of any kind within another AppDomain unless it makes use of the .NET
remoting protocol (which you’ll examine in Chapter 20).

While a single process may host multiple AppDomains, this is not always the case. At the very
least, an OS process will host what is termed the default application domain. This specific applica-
tion domain is automatically created by the CLR at the time the process launches.

After this point, the CLR creates additional application domains on an as-needed basis. If the
need should arise (which it most likely will not for the majority of your .NET endeavors), you are
also able to programmatically create application domains at runtime within a given process using
various methods of the System.AppDomain class. This class is also useful for low-level control of
application domains. Key members of this class are shown in Table 15-4.

5785ch15.qxd 3/31/06 11:00 AM Page 450

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 451

Table 15-4. Select Members of AppDomain

Member Meaning in Life

CreateDomain() This shared method creates a new AppDomain in the current process.
Understand that the CLR will create new application domains as
necessary, and thus the chance of you absolutely needing to call this
member is slim to none.

GetCurrentThreadId() This shared method returns the ID of the active thread in the current
application domain.

Unload() This is another shared method that allows you to unload a specified
AppDomain within a given process.

BaseDirectory This property returns the base directory used to probe for dependent
assemblies.

CreateInstance() This method creates an instance of a specified type defined in
a specified assembly file.

ExecuteAssembly() This method executes an assembly within an application domain, given
its file name.

GetAssemblies() This method gets the set of .NET assemblies that have been loaded into
this application domain (COM-based and other unmanaged binaries
are ignored).

Load() This method is used to dynamically load an assembly into the current
application domain.

In addition, the AppDomain type also defines a small set of events that correspond to various
aspects of an application domain’s life cycle, as shown in Table 15-5.

Table 15-5. Events of the AppDomain Type

Event Meaning in Life

AssemblyLoad Occurs when an assembly is loaded

AssemblyResolve Occurs when the resolution of an assembly fails

DomainUnload Occurs when an AppDomain is about to be unloaded

ProcessExit Occurs on the default application domain when the default application
domain’s parent process exits

ResourceResolve Occurs when the resolution of a resource fails

TypeResolve Occurs when the resolution of a type fails

UnhandledException Occurs when an exception is not caught by an event handler

Enumerating a Process’s AppDomains
To illustrate how to interact with .NET application domains programmatically, assume you have
a new VB 2005 console application named AppDomainManipulator that defines a method named
PrintAllAssembliesInAppDomain(). This method makes use of AppDomain.GetAssemblies() to obtain
a list of all .NET binaries hosted within the application domain in question.

This list is represented by an array of System.Reflection.Assembly types, and thus you are
required to use the System.Reflection namespace (see Chapter 14). Once you acquire the assembly
array, you iterate over the array and print out the friendly name and version of each module:

Public Sub PrintAllAssembliesInAppDomain(ByVal ad As AppDomain)

Dim loadedAssemblies() As Assembly = ad.GetAssemblies()

5785ch15.qxd 3/31/06 11:00 AM Page 451

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS452

Figure 15-6. Enumerating assemblies within the current application domain

Console.WriteLine("***** Here are the assemblies loaded in {0} *****", _

ad.FriendlyName)

' Remember! We need to import System.Reflection to use

' the Assembly type.

For Each a As Assembly In loadedAssemblies

Console.WriteLine("-> Name: {0}", a.GetName.Name)

Console.WriteLine("-> Version: {0}", a.GetName.Version)

Next

End Sub

Now let’s update the Main() method to obtain a reference to the current application domain
before invoking PrintAllAssembliesInAppDomain(), using the AppDomain.CurrentDomain property. To
make things a bit more interesting, notice that the Main() method launches a Windows Forms mes-
sage box to force the CLR to load the System.Windows.Forms.dll, System.Drawing.dll, and System.dll
assemblies (so be sure to set a reference to these assemblies and update your Imports statements
appropriately):

Sub Main()

Console.WriteLine("***** The Amazing AppDomain app *****")

' Get info for current AppDomain.

Dim defaultAD As AppDomain = AppDomain.CurrentDomain()

MessageBox.Show("Hello")

PrintAllAssembliesInAppDomain(defaultAD)

Console.ReadLine()

End Sub

Figure 15-6 shows the output (your version numbers may differ).

Programmatically Creating New AppDomains
Recall that a single process is capable of hosting multiple AppDomains. While it is true that you will
seldom (if ever) need to manually create AppDomains in code, you are able to do so via the
shared CreateDomain()method. As you would guess, AppDomain.CreateDomain()has been overloaded
a number of times. At minimum, you will specify the friendly name of the new application domain, as
shown here:

Sub Main()

...

' Programmatically make a new appdomain.

Dim anotherAD As AppDomain = AppDomain.CreateDomain("SecondAppDomain")

5785ch15.qxd 3/31/06 11:00 AM Page 452

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 453

Figure 15-7. A single process with two application domains

PrintAllAssembliesInAppDomain(anotherAD)

Console.ReadLine()

End Sub

Now, if you run the application again, notice that the System.Windows.Forms.dll, System.
Drawing.dll, and System.dll assemblies are only loaded within the default application domain, as
shown in Figure 15-7. This may seem counterintuitive if you have a background in traditional unman-
aged Win32 (as you might suspect, both application domains have access to the same assembly set).
Recall, however, that an assembly loads into an application domain, not directly into the process itself.

Next, notice how the SecondAppDomain application domain automatically contains its own
copy of mscorlib.dll, as this key assembly is automatically loaded by the CLR for each and every
application domain. This begs the question, “How can I programmatically load an assembly into an
application domain?” Answer: with the AppDomain.Load() method (or, alternatively, AppDomain.
ExecuteAssembly()). Assuming you have copied CarLibrary.dll to the application directory of
AppDomainManipulator.exe, you may load CarLibrary.dll into the SecondAppDomain AppDomain
like so:

Sub Main()

...

' Programmatically make a new appdomain.

Dim anotherAD As AppDomain = AppDomain.CreateDomain("SecondAppDomain")

' Load CarLibrary.dll into this new appdomain.

anotherAD.Load("CarLibrary")

PrintAllAssembliesInAppDomain(anotherAD)

Console.ReadLine()

End Sub

To solidify the relationship between processes, application domains, and assemblies, Figure 15-8
diagrams the internal composition of the AppDomainManipulator.exe process just constructed.

5785ch15.qxd 3/31/06 11:00 AM Page 453

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS454

Figure 15-8. The AppDomainManipulator.exe process under the hood

Programmatically Unloading AppDomains
It is important to point out that the CLR does not permit unloading individual .NET assemblies.
However, using the AppDomain.Unload() method, you are able to selectively unload a given application
domain from its hosting process. When you do so, the application domain will unload each assembly
in turn.

Recall that the AppDomain type defines a small set of events, one of which is DomainUnload. This
event is fired when a (non-default) AppDomain is unloaded from the containing process. Another event
of interest is the ProcessExit event, which is fired when the default application domain is unloaded
from the process (which obviously entails the termination of the process itself). Thus, if you wish to
programmatically unload anotherAD from the AppDomainManipulator.exe process and be notified when
the associated application domain is torn down, you are able to write the following event logic:

Sub Main()

...

' Hook into DomainUnload event.

AddHandler anotherAD.DomainUnload, AddressOf anotherAD_DomainUnload

' Now unload anotherAD.

AppDomain.Unload(anotherAD)

Console.ReadLine()

End Sub

5785ch15.qxd 3/31/06 11:00 AM Page 454

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 455

Notice that the DomainUnload event works in conjunction with the System.EventHandler delegate,
and therefore the format of anotherAD_DomainUnload() takes the following arguments:

Public Sub anotherAD_DomainUnload(ByVal sender As Object, ByVal e As EventArgs)

Console.WriteLine("***** Unloaded anotherAD! *****")

End Sub

If you wish to be notified when the default AppDomain is unloaded, modify your Main() method
to handle the ProcessEvent event of the default application domain:

Sub Main()

...

' Hook into DomainUnload event.

AddHandler anotherAD.DomainUnload, AddressOf anotherAD_DomainUnload

AppDomain.Unload(anotherAD)

' Hook into ProcessExit.

AddHandler defaultAD.ProcessExit, AddressOf defaultAD_ProcessExit

Console.ReadLine()

End Sub

and define an appropriate event handler:

Private Sub defaultAD_ProcessExit(ByVal sender As Object, ByVal e As EventArgs)

Console.WriteLine("***** Unloaded defaultAD! *****")

End Sub

■Source Code The AppDomainManipulator project is included under the Chapter 15 subdirectory.

Understanding Object Context Boundaries
As you have just seen, AppDomains are logical partitions within a process used to host .NET assemblies.
On a related note, a given application domain may be further subdivided into numerous context
boundaries. In a nutshell, a .NET context provides a way for a single AppDomain to establish a “spe-
cific home” for a given object.

Using context, the CLR is able to ensure that objects that have special runtime requirements
are handled in an appropriate and consistent manner by intercepting method invocations into and
out of a given context. This layer of interception allows the CLR to adjust the current method invo-
cation to conform to the contextual settings of a given object. For example, if you define a VB 2005
class type that requires automatic thread safety (using the <Synchronization> attribute), the CLR will
create a “synchronized context” during allocation.

Just as a process defines a default AppDomain, every application domain has a default context.
This default context (sometimes referred to as context 0, given that it is always the first context created
within an application domain) is used to group together .NET objects that have no specific or unique
contextual needs. As you may expect, a vast majority of .NET objects are loaded into context 0. If the
CLR determines a newly created object has special needs, a new context boundary is created within
the hosting application domain. Figure 15-9 illustrates the process/AppDomain/context relationship.

5785ch15.qxd 3/31/06 11:00 AM Page 455

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS456

Context-Agile and Context-Bound Types
.NET types that do not demand any special contextual treatment are termed context-agile objects.
These objects can be accessed from anywhere within the hosting AppDomain without interfering
with the object’s runtime requirements. Building context-agile objects is a no-brainer, given that
you simply do nothing (specifically, you do not adorn the type with any contextual attributes and
do not derive from the System.ContextBoundObject base class):

' A context-agile object is loaded into context 0.

Class SportsCar

End Class

On the other hand, objects that do demand contextual allocation are termed context-bound
objects, and they must derive from the System.ContextBoundObject base class. This base class solidi-
fies the fact that the object in question can function appropriately only within the context in which
it was created. Given the role of .NET context, it should stand to reason that if a context-bound object
were to somehow end up in an incompatible context, bad things would be guaranteed to occur at
the most inopportune times.

In addition to deriving from System.ContextBoundObject, a context-sensitive type will also be
adorned by a special category of .NET attributes termed (not surprisingly) context attributes. All
context attributes derive from the System.Runtime.Remoting.Contexts.ContextAttribute base class.

Given that the ContextAttribute class is not sealed, it is possible for you to build your own cus-
tom contextual attribute (simply derive from ContextAttribute and override the necessary virtual
methods). Once you have done so, you are able to build a custom piece of software that can respond
to the contextual settings.

■Note This book doesn’t dive into the details of building custom object contexts; however, if you are interested
in learning more, check out Applied .NET Attributes (Apress, 2003).

Figure 15-9. Processes, application domains, and context boundaries

5785ch15.qxd 3/31/06 11:00 AM Page 456

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 457

Defining a Context-Bound Object
Assume that you wish to define a class (SportsCarTS) that is automatically thread-safe in nature,
even though you have not hard-coded thread synchronization logic within the member implemen-
tations. To do so, derive from ContextBoundObject and apply the <Synchronization> attribute as
follows:

Imports System.Runtime.Remoting.Contexts

' This context-bound type will only be loaded into a

' synchronized (hence thread-safe) context.

<Synchronization> _

Class SportsCarTS

Inherits ContextBoundObject

End Class

Types that are attributed with the <Synchronization> attribute are loaded into a thread-safe
context. Given the special contextual needs of the SportsCarTS class type, imagine the problems that
would occur if an allocated object were moved from a synchronized context into a nonsynchronized
context. The object is suddenly no longer thread-safe and thus becomes a candidate for massive data
corruption, as numerous threads are attempting to interact with the (now thread-volatile) reference
object. To ensure the CLR does not move SportsCarTS objects outside of a synchronized context,
simply derive from ContextBoundObject.

Inspecting an Object’s Context
Although very few of the applications you will write will need to programmatically interact with con-
text, here is an illustrative example. Create a new console application named ContextManipulator.
This application defines one context-agile class (SportsCar) and a single context-bound type
(SportsCarTS):

Imports System.Runtime.Remoting.Contexts ' For Context type.

Imports System.Threading ' For Thread type.

' SportsCar has no special contextual

' needs and will be loaded into the

' default context of the app domain.

Public Class SportsCar

Public Sub New()

' Get context information and print out context ID.

Dim ctx As Context = Thread.CurrentContext()

Console.WriteLine("{0} object in context {1}", Me.ToString, ctx.ContextID)

For Each itfCtxProp As IContextProperty In ctx.ContextProperties

Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name)

Next

End Sub

End Class

' SportsCarTS demands to be loaded in

' a synchronization context.

<Synchronization()> _

Public Class SportsCarTS

Inherits ContextBoundObject

Public Sub New()

' Get context information and print out context ID.

Dim ctx As Context = Thread.CurrentContext()

5785ch15.qxd 3/31/06 11:00 AM Page 457

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS458

Figure 15-10. Investigating an object’s context

Console.WriteLine("{0} object in context {1}", Me.ToString, ctx.ContextID)

For Each itfCtxProp As IContextProperty In ctx.ContextProperties

Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name)

Next

End Sub

End Class

Notice that each constructor obtains a Context type from the current thread of execution, via
Thread.CurrentContext(). Using the Context object, you are able to print out statistics about the
contextual boundary, such as its assigned ID, as well as a set of descriptors obtained via Context.
ContextProperties. This property returns an object implementing the IContextProperty interface,
which exposes each descriptor through the Name property. Now, update Main() to allocate an instance
of each class type:

Sub Main()

Console.WriteLine("***** The Amazing Context Application *****")

Console.WriteLine()

' Objects will display contextual info upon creation.

Dim sport As SportsCar = New SportsCar()

Console.WriteLine()

Dim sport2 As SportsCar = New SportsCar()

Console.WriteLine()

Dim synchroSport As SportsCarTS = New SportsCarTS()

Console.ReadLine()

End Sub

As the objects come to life, the class constructors will dump out various bits of context-centric
information, as shown in Figure 15-10.

Given that the SportsCar class has not been qualified with a context attribute, the CLR has allo-
cated sport and sport2 into context 0 (i.e., the default context). However, the SportsCarTS object is
loaded into a unique contextual boundary (which has been assigned a context ID of 1), given the fact
that this context-bound type was adorned with the <Synchronization> attribute.

■Source Code The ContextManipulator project is included under the Chapter 15 subdirectory.

5785ch15.qxd 3/31/06 11:00 AM Page 458

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 459

Summarizing Processes, AppDomains, and
Context
At this point, you hopefully have a much better idea about how a .NET assembly is hosted by the
CLR. To summarize the key points:

• A .NET process hosts one to many application domains. Each AppDomain is able to host any
number of related .NET assemblies and may be independently loaded and unloaded by the
CLR (or programmatically via the System.AppDomain type).

• A given AppDomain consists of one to many contexts. Using a context, the CLR is able to place
a “special needs” object into a logical container, to ensure that its runtime requirements are
honored.

If the previous pages have seemed to be a bit too low level for your liking, fear not. For the most
part, the .NET runtime automatically deals with the details of processes, application domains, and
contexts on your behalf. The good news, however, is that this information provides a solid foundation
for understanding multithreaded programming under the .NET platform. Before we turn our atten-
tion to the System.Threading namespace, though, we’ll examine how the CLR itself is hosted by the
Win32 OS.

Runtime Hosts of the CLR
To the end user, running a .NET executable is achieved simply by double-clicking the *.exe in Windows
Explorer (or activating an associated shortcut). As you recall from Chapter 1, however, the .NET
Framework is not (currently) incorporated directly into the Windows OS, but sits on top of the OS
itself. When you install Visual Studio 2005 (or the .NET Framework 2.0 SDK) on your development
machine, the .NET runtime environment (including the necessary base class libraries) is installed as
well. Also recall that Microsoft provides a freely distributable .NET runtime setup program (dotnetfx.
exe) to configure end user machines to host .NET assemblies.

Given that the Windows OS does not natively understand the format of a .NET assembly, it should
be clear that various steps occur in the background when an executable assembly is activated. Under
the Windows XP OS, the basic steps are as follows (do recall from Chapter 13 that all .NET assemblies
contain Win32 header information):

1. The Windows OS loads the executable binary file into memory.

2. The Windows OS reads the embedded WinNT header to determine whether the binary file is
a .NET assembly (via the IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR flag).

3. If the image is a .NET assembly, mscoree.dll is loaded.

4. mscoree.dll then loads one of two implementations of the CLR (mscorwks.dll or
mscorsvr.dll).

5. At this point, the CLR takes over the show, performing all .NET-centric details (finding
external assemblies, performing security checks, processing CIL code, performing garbage
collections, etc.).

As suggested by the previous list, mscoree.dll is not the CLR itself. Although it is safe to regard
mscoree.dll as the actual CLR, in reality this binary file is a shim to one of two possible CLR imple-
mentations. If the host machine makes use of a single CPU, mscorwks.dll is loaded. If the machine
supports multiple CPUs, mscorsvr.dll is loaded into memory (which is a version of the CLR optimized
to execute on multiple-processor machines).

5785ch15.qxd 3/31/06 11:00 AM Page 459

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS460

Figure 15-11. mscoree.dll lives under the System32 directory.

Figure 15-12. Resolving the version and installation path of the .NET platform

Side-by-Side Execution of the CLR
To dig just a bit deeper, realize that the .NET platform supports side-by-side execution, meaning that
multiple versions of the .NET platform can be installed on a single machine (1.0, 1.1, and 2.0 at the
time of this writing). mscoree.dll itself resides in the machine’s System32 subdirectory of the registered
Windows installation directory. On my machine, mscoree.dll lives under C:\WINDOWS\system32
(see Figure 15-11).

Once mscoree.dll has been loaded, the Win32 system registry (yes, that system registry) is con-
sulted to determine the latest installed version and installation path of the .NET Framework via
HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework, as shown in Figure 15-12.

Once the version and installation path of the .NET platform have been determined, the correct
version of mscorwks.dll/mscorsvr.dll is loaded into memory. Again, on my machine, the root instal-
lation path of the .NET platform is C:\WINDOWS\Microsoft.NET\Framework. Under this directory
are specific subdirectories for .NET version 1.0, 1.1, and (at the time of this writing) the current build
of 2.0 (see Figure 15-13; your version numbers may differ).

5785ch15.qxd 3/31/06 11:00 AM Page 460

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 461

Figure 15-13. mscorwks.dll version 2.0

Loading a Specific Version of the CLR
When mscoree.dll determines which version of mscorwks.dll/mscorsrv.dll to load (by consulting
the system registry), it will also read a subfolder under HKEY_LOCAL_MACHINE\Software\Microsoft\
.NET\Framework named “policy.” This subfolder records the CLR upgrades that may be safely per-
formed. For example, if you execute an assembly that was built using .NET version 1.0.3705, mscoree.dll
learns from the policy file that it can safely load version 1.1.4322.

This promotion occurs silently in the background and only when the upgrade is known to pro-
duce compatible execution. In the rare case that you wish to instruct mscoree.dll to load a specific
version of the CLR, you may do so using a client-side *.config file:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<startup>

<requiredRuntime version ="1.0.3705"/>

</startup>

</configuration>

Here, the <requiredRuntime> element expresses that only version 1.0.3705 should be used to
host the assembly in question. Therefore, if the target machine does not have a complete installa-
tion of .NET version 1.0.3705, the end user is presented with a runtime error.

Additional CLR Hosts
The process just defined qualifies the basic steps taken by the Windows OS to host the CLR when an
executable assembly is activated. However, Microsoft provides many applications that bypass this
out-of-the-box behavior in favor of loading the CLR programmatically. For example, Microsoft Internet
Explorer can natively host custom Windows Forms controls (the managed equivalent of the now legacy
ActiveX controls). The latest version of Microsoft SQL Server (code-named Yukon and officially called
SQL Server 2005) also has the ability to directly host the CLR internally.

As a final note, Microsoft has defined a set of interfaces that allow developers to build their own
custom CLR host. This may be done using straight C/C++ code or via a COM type library (mscoree.tlb).
While the process of building a custom CLR host is surprisingly simple (especially using the COM
type library), this topic is outside the scope of this text. If you require further information, you can
find numerous articles online (just do a search for “CLR hosts”).

5785ch15.qxd 3/31/06 11:00 AM Page 461

CHAPTER 15 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS462

Summary
The point of this chapter was to examine exactly how a .NET executable image is hosted by the .NET
platform. As you have seen, the long-standing notion of a Win32 process has been altered under the
hood to accommodate the needs of the CLR. A single process (which can be programmatically manip-
ulated via the System.Diagnostics.Process type) is now composed of multiple application domains,
which represent isolated and independent boundaries within a process. As you have seen, a single
process can host multiple application domains, each of which is capable of hosting and executing
any number of related assemblies.

Furthermore, a single application domain can contain any number of contextual boundaries.
Using this additional level of type isolation, the CLR can ensure that special-need objects are han-
dled correctly. The chapter concluded by examining the details regarding how the CLR is hosted by
the Win32 OS.

5785ch15.qxd 3/31/06 11:00 AM Page 462

C H A P T E R 1 6

■ ■ ■

Building Multithreaded Applications

In the previous chapter, you examined the relationship between processes, application domains,
and contexts. This chapter builds on your newfound knowledge by examining how the .NET platform
allows you to build multithreaded applications and how to keep shared resources thread-safe.

You’ll begin by revisiting the .NET delegate type and come to understand its intrinsic support
for asynchronous method invocations. As you’ll see, this technique allows you to invoke a method on
a secondary thread of execution automatically. Next, you’ll investigate the types within the System.
Threading namespace. Here you’ll examine numerous types (Thread, ThreadStart, etc.) that allow you
to easily create additional threads of execution.

As you will see, the complexity of multithreaded development isn’t in the creation of threads,
but in ensuring that your code base is well equipped to handle concurrent access to shared
resources. Given this, the chapter closes by examining various synchronization primitives that the
.NET Framework provides.

The Process/AppDomain/Context/Thread
Relationship
In the previous chapter, a thread was defined as a path of execution within an executable application.
While many .NET applications can live happy and productive single-threaded lives, an assembly’s
primary thread (spawned by the CLR when Main() executes) may create secondary threads of exe-
cution to perform additional units of work. By implementing additional threads, you can build more
responsive (but not necessarily faster executing) applications.

The System.Threading namespace contains various types that allow you to create multithreaded
applications. The Thread class is perhaps the core type, as it represents a given thread. If you wish to
programmatically obtain a reference to the thread currently executing a given member, simply call
the shared Thread.CurrentThread property:

Private Sub ExtractExecutingThread()

' Get the thread currently

' executing this method.

Dim currThread As Thread = Thread.CurrentThread

End Sub

Under the .NET platform, there is not a direct one-to-one correspondence between application
domains and threads. In fact, a given AppDomain can have numerous threads executing within it at
any given time. Furthermore, a particular thread is not confined to a single application domain during
its lifetime. Threads are free to cross application domain boundaries as the Win32 thread scheduler
and CLR see fit.

463

5785ch16.qxd 3/31/06 1:56 PM Page 463

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS464

Although active threads can be moved between AppDomain boundaries, a given thread can
execute within only a single application domain at any point in time (in other words, it is impos-
sible for a single thread to be doing work in more than one AppDomain). When you wish to
programmatically gain access to the AppDomain that is hosting the current thread, call the shared
Thread.GetDomain() method:

Private Sub ExtractAppDomainHostingThread()

' Obtain the AppDomain hosting the current thread.

Dim ad As AppDomain = Thread.GetDomain()

End Sub

A single thread may also be moved into a particular context at any given time, and it may be
relocated within a new context at the whim of the CLR. When you wish to obtain the current context
a thread happens to be executing in, make use of the shared Thread.CurrentContext property:

Private Sub ExtractCurrentThreadContext()

' Obtain the Context under which the

' current thread is operating

Dim ctx As Context = Thread.CurrentContext

End Sub

Again, the CLR is the entity that is in charge of moving threads into (and out of) application
domains and contexts. As a .NET developer, you can usually remain blissfully unaware where
a given thread ends up (or exactly when it is placed into its new boundary). Nevertheless, you
should be aware of the various ways of obtaining the underlying primitives.

The Problem of Concurrency and the Role of
Thread Synchronization
One of the many “joys” (read: painful aspects) of multithreaded programming is that you have little
control over how the underlying operating system or the CLR makes use of its threads. For example,
if you craft a block of code that creates a new thread of execution, you cannot guarantee that the
thread executes immediately. Rather, such code only instructs the OS to execute the thread as soon
as possible (which is typically when the thread scheduler gets around to it).

Furthermore, given that threads can be moved between application and contextual boundaries
as required by the CLR, you must be mindful of which aspects of your application are thread-volatile
(e.g., subject to multithreaded access) and which operations are atomic (thread-volatile operations
are the dangerous ones!). To illustrate, assume a thread is executing a method of a specific object.
Now assume that this thread is instructed by the thread scheduler to suspend its activity, in order to
allow another thread to access the same method of the same object.

If the original thread was not completely finished with the current operation, the second incom-
ing thread may be viewing an object in a partially modified state. At this point, the second thread is
basically reading bogus data, which is sure to give way to extremely odd (and very hard to find) bugs,
which are even harder to replicate and debug.

Atomic operations, on the other hand, are always safe in a multithreaded environment. Sadly,
there are very few operations in the .NET base class libraries that are guaranteed to be atomic. Even
the act of assigning a value to a member variable is not atomic! Unless the .NET Framework 2.0 SDK
documentation specifically says an operation is atomic, you must assume it is thread-volatile and
take precautions.

At this point, it should be clear that multithreaded application domains are in themselves quite
volatile, as numerous threads can operate on the shared functionality at (more or less) the same time.
To protect an application’s resources from possible corruption, .NET developers must make use of
any number of threading primitives (such as locks, monitors, and the <Synchronization> attribute)
to control access to the data among the executing threads.

5785ch16.qxd 3/31/06 1:56 PM Page 464

Although the .NET platform cannot make the difficulties of building robust multithreaded
applications completely disappear, the process has been simplified considerably. Using types defined
within the System.Threading namespace, you are able to spawn additional threads with minimal fuss
and bother. Likewise, when it is time to lock down shared points of data, you will find additional types
that provide the same functionality as the Win32 API threading primitives (using a much cleaner
object model).

However, the System.Threading namespace is not the only way to build multithread .NET
programs. During our examination of the .NET delegate (see Chapter 10), it was mentioned that all
delegates have the ability to invoke members asynchronously. This is a major benefit of the .NET
platform, given that one of the most common reasons a developer creates threads is for the purpose
of invoking methods in a nonblocking (aka asynchronous) manner. Although you could make use of
the System.Threading namespace to achieve a similar result, delegates make the whole process
much easier.

A Brief Review of the .NET Delegate
Recall that the .NET delegate type is a type-safe, object-oriented function pointer. When you
declare a .NET delegate, the VB 2005 compiler responds by building a sealed class that derives from
System.MulticastDelegate (which in turn derives from System.Delegate). These base classes provide
every delegate with the ability to maintain a list of method addresses, all of which may be invoked
at a later time. Consider the BinaryOp delegate first defined in Chapter 10:

' A custom delegate type.

Public Delegate Function BinaryOp(ByVal x As Integer, _

ByVal y As Integer) As Integer

Based on its definition, BinaryOp can point to any method taking two Integers as arguments
and returning an Integer. Once compiled, the defining assembly now contains a full-blown class
definition that is dynamically generated based on the delegate declaration. In the case of BinaryOp,
this class looks more or less like the following:

NotInheritable Class BinaryOp

Inherits System.MulticastDelegate

Public Sub New(ByVal target As Object, ByVal functionAddress As System.UInt32)

End Sub

Public Sub Invoke(ByVal x As Integer, ByVal y As Integer)

End Sub

Public Function BeginInvoke(ByVal x As Integer, ByVal y As Integer, _

ByVal cb As AsyncCallback, ByVal state As Object) As IAsyncResult

End Function

Public Function EndInvoke(ByVal result As IAsyncResult) As Integer

End Function

End Class

Recall that the generated Invoke() method is used to invoke the methods maintained by a del-
egate object in a synchronous manner. Therefore, the calling thread (such as the primary thread of
the application) is forced to wait until the delegate invocation completes. Also recall that in VB 2005,
the Invoke() method is called behind the scenes when you apply “normal” method invocation syntax.
Consider the following program, which invokes the shared Add() method in a synchronous (aka
blocking) manner:

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 465

5785ch16.qxd 3/31/06 1:56 PM Page 465

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS466

' Need this for the Thread.Sleep() call.

Imports System.Threading

' Our custom delegate.

Public Delegate Function BinaryOp(ByVal x As Integer, _

ByVal y As Integer) As Integer

Module Program

Sub Main()

Console.WriteLine("***** Synch Delegate Review *****")

Console.WriteLine()

' Print out the ID of the executing thread.

Console.WriteLine("Main() invoked on thread {0}.", _

Thread.CurrentThread.GetHashCode)

' Invoke Add() in a synchronous manner.

Dim b As BinaryOp = AddressOf Add

Dim answer As Integer = b(10, 10)

' These lines will not execute until

' the Add() method has completed.

Console.WriteLine("Doing more work in Main()!")

Console.WriteLine("10 + 10 is {0}.", answer)

Console.ReadLine()

End Sub

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

' Print out the ID of the executing thread.

Console.WriteLine("Add() invoked on thread {0}.", _

Thread.CurrentThread.GetHashCode)

' Pause to simulate a lengthy operation.

Thread.Sleep(5000)

Return x + y

End Function

End Module

Notice first of all that this program is making use of the System.Threading namespace. Within
the Add() method, you are invoking the shared Thread.Sleep() method to suspend the calling
thread for (more or less) 5 seconds to simulate a lengthy task. Given that you are invoking the Add()
method in a synchronous manner, the Main() method will not print out the result of the operation
until the Add() method has completed (again, approximately 5 seconds after the call).

Next, note that the Main() method is obtaining access to the currently executing thread (via
Thread.CurrentThread) and printing out its hash code. Given that a hash code represents an object in
a specific state, this value can be used as a quick-and-dirty thread ID. This same logic is repeated in
the shared Add() method. As you might suspect, given that all the work in this application is performed
exclusively by the primary thread, you find the same hash code value displayed to the console, as
shown in Figure 16-1.

5785ch16.qxd 3/31/06 1:56 PM Page 466

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 467

Figure 16-1. Synchronous method invocations are “blocking” calls.

When you run this program, you should notice that a 5-second delay takes place before you see
the Console.WriteLine() logic execute. Although many (if not most) methods may be called synchro-
nously without ill effect, .NET delegates can be instructed to call their methods asynchronously if
necessary.

■Source Code The SyncDelegate project is located under the Chapter 16 subdirectory.

The Asynchronous Nature of Delegates
If you are new to the topic of multithreading, you may wonder what exactly an asynchronous method
invocation is all about. As you are no doubt fully aware, some programming operations take time.
Although the previous Add() was purely illustrative in nature, imagine that you built a single-threaded
application that is invoking a method on a remote object, performing a long-running database query,
or writing 500 lines of text to an external file. While performing these operations, the application may
appear to hang for quite some time. Until the task at hand has been processed, all other aspects of
this program (such as menu activation, toolbar clicking, or console output) are unresponsive.

The question therefore is, how can you tell a delegate to invoke a method on a separate thread
of execution to simulate numerous tasks performing “at the same time”? The good news is that every
.NET delegate type is automatically equipped with this capability. The even better news is that you
are not required to directly dive into the details of the System.Threading namespace to do so (although
these entities can quite naturally work hand in hand).

The BeginInvoke() and EndInvoke() Methods
When the VB 2005 compiler processes the Delegate keyword, the dynamically generated class
defines two methods named BeginInvoke() and EndInvoke(). Given our definition of the BinaryOp
delegate, these methods are prototyped as follows:

NotInheritable Class BinaryOp

Inherits System.MulticastDelegate

...

' Used to invoke a method asynchronously.

Public Function BeginInvoke(ByVal x As Integer, ByVal y As Integer, _

ByVal cb As AsyncCallback, ByVal state As Object) As IAsyncResult

End Function

' Used to fetch the return value

' of the invoked method.

Public Function EndInvoke(ByVal result As IAsyncResult) As Integer

End Function

End Class

5785ch16.qxd 3/31/06 1:56 PM Page 467

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS468

The first stack of parameters passed into BeginInvoke() will be based on the format of the
VB 2005 delegate (two Integers in the case of BinaryOp). The final two arguments will always be
System.AsyncCallback and System.Object. We’ll examine the role of these parameters shortly; for
the time being, though, we’ll supply Nothing for each.

The System.IAsyncResult Interface
Also note that the BeginInvoke() method always returns an object implementing the IAsyncResult
interface, while EndInvoke() requires an IAsyncResult-compatible type as its sole parameter. The
IAsyncResult-compatible object returned from BeginInvoke() is basically a coupling mechanism
that allows the calling thread to obtain the result of the asynchronous method invocation at a later
time via EndInvoke(). The IAsyncResult interface (defined in the System namespace) is defined as
follows:

Public Interface IAsyncResult

ReadOnly Property AsyncState() As Object

ReadOnly Property AsyncWaitHandle() As WaitHandle

ReadOnly Property CompletedSynchronously() As Boolean

ReadOnly Property IsCompleted() As Boolean

End Interface

In the simplest case, you are able to avoid directly invoking these members. All you have to do
is cache the IAsyncResult-compatible object returned by BeginInvoke() and pass it to EndInvoke()
when you are ready to obtain the result of the function invocation. As you will see, you are able to
invoke the members of an IAsyncResult-compatible object when you wish to become “more involved”
with the process of fetching the method’s return value.

■Note If you asynchronously invoke a method that does not provide a return value, you can simply “fire and
forget.” In such cases, you will never need to cache the IAsyncResult-compatible object or call EndInvoke() in
the first place (as there is no return value to retrieve).

Invoking a Method Asynchronously
To instruct the BinaryOp delegate to invoke Add() asynchronously, you can update the previous
Main() method as follows:

Sub Main()

Console.WriteLine("***** Async Delegate Invocation *****")

Console.WriteLine()

' Print out the ID of the executing thread.

Console.WriteLine("Main() invoked on thread {0}.", _

Thread.CurrentThread.GetHashCode)

' Invoke Add() on a secondary thread.

Dim b As BinaryOp = New BinaryOp(Add)

Dim itfAR As IAsyncResult = b.BeginInvoke(10, 10, Nothing, Nothing)

' Do other work on primary thread...

Console.WriteLine("Doing more work in Main()!")

5785ch16.qxd 3/31/06 1:56 PM Page 468

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 469

Figure 16-2. Methods invoked asynchronously are done so on a unique thread.

' Obtain the result of the Add()

' method when ready.

Dim answer As Integer = b.EndInvoke(itfAR)

Console.WriteLine("10 + 10 is {0}.", answer)

Console.ReadLine()

End Sub

If you run this application, you will find that two unique hash codes are displayed, given that
there are in fact two threads working within the current AppDomain (see Figure 16-2).

In addition to the unique hash code values, you will also notice upon running the application
that the "Doing more work in Main()!" message displays immediately, while the secondary thread
is occupied attending to its business.

Synchronizing the Calling Thread
If you take a moment to ponder the current implementation of Main(), you might have realized that
the time span between calling BeginInvoke() and EndInvoke() is clearly less than 5 seconds. There-
fore, once "Doing more work in Main()!" prints to the console, the calling thread is now blocked
and waiting for the secondary thread to complete before being able to obtain the result of the Add()
method. Therefore, you are effectively making yet another synchronous call (in a very roundabout
fashion!):

Sub Main()

...

Dim b As BinaryOp = New BinaryOp(Add)

Dim itfAR As IAsyncResult = b.BeginInvoke(10, 10, Nothing, Nothing)

' This call takes far less than 5 seconds!

Console.WriteLine("Doing more work in Main()!")

' The calling thread is now blocked until

' EndInvoke() completes.

Dim answer As Integer = b.EndInvoke(itfAR)

...

End Sub

Obviously, asynchronous delegates would lose their appeal if the calling thread had the potential
of being blocked under various circumstances. To allow the calling thread to discover whether the
asynchronously invoked method has completed its work, the IAsyncResult interface provides
the IsCompleted property.

5785ch16.qxd 3/31/06 1:56 PM Page 469

Using this member, the calling thread is able to determine whether the asynchronous call has
indeed completed before calling EndInvoke(). If the method has not completed, IsCompleted returns
False, and the calling thread is free to carry on its work. If IsCompleted returns True, the calling
thread is able to obtain the result in the “least blocking manner” possible. Ponder the following
update to the Main() method:

Sub Main()

...

Dim b As BinaryOp = New BinaryOp(Add)

Dim itfAR As IAsyncResult = b.BeginInvoke(10, 10, Nothing, Nothing)

' This message will keep printing until

' the Add() method is finished.

While Not itfAR.IsCompleted

Console.WriteLine("Doing more work in Main()!")

' Just so we don't see hundreds of printouts!

Thread.Sleep(1000)

End While

' Now we know the Add() method is complete.

Dim answer As Integer = b.EndInvoke(itfAR)

...

End Sub

Here, you enter a loop that will continue processing the Console.WriteLine() statement until
the secondary thread has completed. Once this has occurred, you can obtain the result of the Add()
method knowing full well the method has indeed completed.

In addition to the IsCompleted property, the IAsyncResult interface provides the AsyncWaitHandle
property for more flexible waiting logic. This property returns an instance of the WaitHandle type, which
exposes a method named WaitOne(). The benefit of WaitHandle.WaitOne() is that you can specify the
maximum wait time. If the specified amount of time is exceeded, WaitOne() returns False. Ponder
the following updated while loop:

While Not itfAR.AsyncWaitHandle.WaitOne(2000, true)

Console.WriteLine("Doing more work in Main()!")

' Just so we don't see dozens of printouts!

Thread.Sleep(1000)

End While

While these properties of IAsyncResult do provide a way to synchronize the calling thread, they
are not the most efficient approach. In many ways, the IsCompleted property is much like a really
annoying manager (or classmate) who is constantly asking, “Are you done yet?” Thankfully, delegates
provide a number of additional (and more effective) techniques to obtain the result of a method that
has been called asynchronously.

■Source Code The AsyncDelegate project is located under the Chapter 16 subdirectory.

The Role of the AsyncCallback Delegate
Rather than polling a delegate to determine whether an asynchronous method has completed, it
would be ideal to have the delegate inform the calling thread when the task is finished. When you
wish to enable this behavior, you will need to supply an instance of the System.AsyncCallback dele-
gate as a parameter to BeginInvoke(), which up until this point has been Nothing. However, when
you do supply an AsyncCallback object, the delegate will call the specified method automatically
when the asynchronous call has completed.

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS470

5785ch16.qxd 3/31/06 1:56 PM Page 470

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 471

Like any delegate, AsyncCallback can only invoke methods that match a specific pattern, which
in this case is a method taking IAsyncResult as the sole parameter and returning nothing:

Sub MyAsyncCallbackMethod(ByVal itfAR As IAsyncResult)

Assume you have another application making use of the BinaryOp delegate. This time, however,
you will not poll the delegate to determine whether the Add() method has completed. Rather, you
will define a shared method named AddComplete() to receive the notification that the asynchronous
invocation is finished:

Imports System.Threading

' Our delegate.

Public Delegate Function BinaryOp(ByVal x As Integer, _

ByVal y As Integer) As Integer

Module Program

Sub Main()

Console.WriteLine("***** AsyncCallbackDelegate Example *****")

Console.WriteLine()

Console.WriteLine("Main() invoked on thread {0}.", _

Thread.CurrentThread.GetHashCode())

Dim b As BinaryOp = New BinaryOp(AddressOf Add)

Dim itfAR As IAsyncResult = _

b.BeginInvoke(10, 10, New AsyncCallback(AddressOf AddComplete), _

Nothing)

' Other work performed here...

Console.ReadLine()

End Sub

Sub AddComplete(ByVal itfAR As IAsyncResult)

Console.WriteLine("AddComplete() invoked on thread {0}.", _

Thread.CurrentThread.GetHashCode())

Console.WriteLine("Your addition is complete")

End Sub

Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Console.WriteLine("Add() invoked on thread {0}.", _

Thread.CurrentThread.GetHashCode())

Thread.Sleep(5000)

Return x + y

End Function

End Module

Again, the shared AddComplete() method will be invoked by the AsyncCallback delegate when
the Add() method has completed. If you run this program, you can confirm that the secondary thread
is the thread invoking the AddComplete() callback, as shown in Figure 16-3.

5785ch16.qxd 3/31/06 1:56 PM Page 471

The Role of the AsyncResult Class
You may have noticed in the current example that the Main() method is not caching the IAsyncResult
type returned from BeginInvoke() and is no longer calling EndInvoke(). The reason is that the target
of the AsyncCallback delegate (AddComplete() in this example) does not have access to the original
BinaryOp delegate created in the scope of Main(). While you could simply declare the BinaryOp vari-
able as a shared member of the module to allow both methods to access the same object, a more
elegant solution is to use the incoming IAsyncResult parameter.

The incoming IAsyncResult parameter passed into the target of the AsyncCallback delegate is
actually an instance of the AsyncResult class (note the lack of an I prefix, which identifies interface
types) defined in the System.Runtime.Remoting.Messaging namespace. The shared AsyncDelegate
property returns a reference to the original asynchronous delegate that was created elsewhere.
Therefore, if you wish to obtain a reference to the BinaryOp delegate object allocated within Main(),
simply cast the System.Object returned by the AsyncDelegate property into type BinaryOp. At this
point, you can trigger EndInvoke() as expected:

' Don't forget to Import the

' System.Runtime.Remoting.Messaging namespace!

Sub AddComplete(ByVal itfAR As IAsyncResult)

Console.WriteLine("AddComplete() invoked on thread {0}.", _

Thread.CurrentThread.GetHashCode)

Console.WriteLine("Your addition is complete")

' Now get the result.

Dim ar As AsyncResult = CType(itfAR, AsyncResult)

Dim b As BinaryOp = CType(ar.AsyncDelegate, BinaryOp)

Console.WriteLine("10 + 10 is {0}.", b.EndInvoke(itfAR))

End Sub

Passing and Receiving Custom State Data
The final aspect of asynchronous delegates we need to address is the final argument to the
BeginInvoke() method (which has been Nothing up to this point). This parameter allows you to
pass additional state information to the callback method from the primary thread. Because this
argument is prototyped as a System.Object, you can pass in any type of data whatsoever, as long as
the callback method knows what to expect. Assume for the sake of demonstration that the primary
thread wishes to pass in a custom text message to the AddComplete() method:

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS472

Figure 16-3. The AsyncCallback delegate in action

5785ch16.qxd 3/31/06 1:56 PM Page 472

Figure 16-4. Passing and receiving custom state data

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 473

Sub Main()

...

Dim b As BinaryOp = New BinaryOp(AddressOf Add)

Dim itfAR As IAsyncResult = _

b.BeginInvoke(10, 10, New AsyncCallback(AddressOf AddComplete), _

"Main() thanks you for adding these numbers.")

' Other work performed here...

Console.ReadLine()

End Sub

To obtain this data within the scope of AddComplete(), make use of the AsyncState property of
the incoming IAsyncResult parameter:

Sub AddComplete(ByVal itfAR As IAsyncResult)

...

' Retrieve the informational object and cast it to string

Dim msg As String = CType(itfAR.AsyncState, String)

Console.WriteLine(msg)

End Sub

Figure 16-4 shows the output of the current application.

Cool! Now that you understand how a .NET delegate can be used to automatically spin off
a secondary thread of execution to handle an asynchronous method invocation, let’s turn our atten-
tion to interacting with threads directly using the System.Threading namespace.

■Source Code The AsyncCallbackDelegate project is located under the Chapter 16 subdirectory.

The System.Threading Namespace
Under the .NET platform, the System.Threading namespace provides a number of types that enable
the construction of multithreaded applications. In addition to providing types that allow you to interact
with a particular CLR thread, this namespace defines types that allow access to the CLR-maintained
thread pool, a simple (non–GUI-based) Timer class, and numerous types used to provide synchro-
nized access to shared resources. Table 16-1 lists some of the core members of this namespace. (Be
sure to consult the .NET Framework 2.0 SDK documentation for full details.)

5785ch16.qxd 3/31/06 1:56 PM Page 473

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS474

Table 16-1. Select Types of the System.Threading Namespace

Type Meaning in Life

Interlocked This type provides atomic operations for types that are shared by
multiple threads.

Monitor This type provides the synchronization of threading objects using
locks and wait/signals. The VB 2005 SyncLock keyword makes use of
a Monitor type under the hood.

Mutex This synchronization primitive can be used for synchronization
between application domain boundaries.

ParameterizedThreadStart This delegate (which is new to .NET 2.0) allows a thread to call
methods that take any number of arguments.

Semaphore This type allows you to limit the number of threads that can access
a resource, or a particular type of resource, concurrently.

Thread This type represents a thread that executes within the CLR. Using
this type, you are able to spawn additional threads in the originating
AppDomain.

ThreadPool This type allows you to interact with the CLR-maintained thread
pool within a given process.

ThreadPriority This enum represents a thread’s priority level (Highest, Normal, etc.).

ThreadStart This delegate is used to specify the method to call for a given thread.
Unlike the ParameterizedThreadStart delegate, targets of ThreadStart
must match a fixed prototype.

ThreadState This enum specifies the valid states a thread may take (Running,
Aborted, etc.).

Timer This type provides a mechanism for executing a method at specified
intervals.

TimerCallback This delegate type is used in conjunction with Timer types.

The System.Threading.Thread Class
The most primitive of all types in the System.Threading namespace is Thread. This class represents
an object-oriented wrapper around a given path of execution within a particular AppDomain. This
type also defines a number of methods (both shared and instance level) that allow you to create new
threads within the current AppDomain, as well as to suspend, stop, and destroy a particular thread.
Consider the list of core shared members in Table 16-2.

Table 16-2. Key Shared Members of the Thread Type

Shared Member Meaning in Life

CurrentContext This read-only property returns the context in which the thread is currently
running.

CurrentThread This read-only property returns a reference to the currently running thread.

GetDomain() These methods return a reference to the current AppDomain or the ID of this
GetDomainID() domain in which the current thread is running.

Sleep() This method suspends the current thread for a specified time.

The Thread class also supports several instance-level members, some of which are shown in
Table 16-3.

5785ch16.qxd 3/31/06 1:56 PM Page 474

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 475

Table 16-3. Select Instance-Level Members of the Thread Type

Instance-Level Member Meaning in Life

IsAlive Returns a Boolean that indicates whether this thread has been started.

IsBackground Gets or sets a value indicating whether or not this thread is a “background
thread” (more details in just a moment).

Name Allows you to establish a friendly text name of the thread.

Priority Gets or sets the priority of a thread, which may be assigned a value
from the ThreadPriority enumeration.

ThreadState Gets the state of this thread, which may be assigned a value from the
ThreadState enumeration.

Abort() Instructs the CLR to terminate the thread as soon as possible.

Interrupt() Interrupts (e.g., wakes) the current thread from a suitable wait period.

Join() Blocks the calling thread until the specified thread (the one on which
Join() is called) exits.

Resume() Resumes a thread that has been previously suspended.

Start() Instructs the CLR to execute the thread ASAP.

Suspend() Suspends the thread. If the thread is already suspended, a call to
Suspend() has no effect.

Obtaining Statistics About the Current Thread
Recall that the entry point of an executable assembly (i.e., the Main() method) runs on the primary
thread of execution. To illustrate the basic use of the Thread type, assume you have a new console
application named ThreadStats. As you know, the shared Thread.CurrentThread property retrieves
a Thread object that represents the currently executing thread. Once you have obtained the current
thread, you are able to print out various statistics:

' Be sure to import the System.Threading namespace.

Sub Main()

Console.WriteLine("***** Primary Thread stats *****")

Console.WriteLine()

' Obtain and name the current thread.

Dim primaryThread As Thread = Thread.CurrentThread

primaryThread.Name = "ThePrimaryThread"

' Show details of hosting AppDomain/Context.

Console.WriteLine("Name of current AppDomain: {0}", _

Thread.GetDomain().FriendlyName)

Console.WriteLine("ID of current Context: {0}", _

Thread.CurrentContext.ContextID)

' Print out some stats about this thread.

Console.WriteLine("Thread Name: {0}", _

primaryThread.Name)

Console.WriteLine("Has thread started?: {0}", _

primaryThread.IsAlive)

Console.WriteLine("Priority Level: {0}", _

primaryThread.Priority)

Console.WriteLine("Thread State: {0}", _

primaryThread.ThreadState)

Console.ReadLine()

End Sub

5785ch16.qxd 3/31/06 1:56 PM Page 475

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS476

Figure 16-5. Gathering thread statistics

Figure 16-6. Debugging a thread with Visual Studio 2005

Figure 16-5 shows the output for the current application.

The Name Property
While this code is more or less self-explanatory, do notice that the Thread class supports a property
called Name. If you do not set this value, Name will return an empty string. However, once you assign
a friendly string moniker to a given Thread object, you can greatly simplify your debugging endeavors.
If you are making use of Visual Studio 2005, you may access the Threads window during a debugging
session (select Debug ➤ Windows ➤ Threads). As you can see from Figure 16-6, you can quickly
identify the thread you wish to diagnose.

The Priority Property
Next, notice that the Thread type defines a property named Priority. By default, all threads have
a priority level of Normal. However, you can change this at any point in the thread’s lifetime using
the ThreadPriority property and the related System.Threading.ThreadPriority enumeration:

Public Enum ThreadPriority

AboveNormal

BelowNormal

Highest

Idle

Lowest

Normal ' Default value.

TimeCritical

End Enum

5785ch16.qxd 3/31/06 1:56 PM Page 476

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 477

If you were to assign a thread’s priority level to a value other than the default
(ThreadPriority.Normal), understand that you would have little control over when the thread
scheduler switches between threads. In reality, a thread’s priority level offers a hint to the CLR
regarding the importance of the thread’s activity. Thus, a thread with the value ThreadPriority.Highest
is not necessarily guaranteed to given the highest precedence. Again, if the thread scheduler is pre-
occupied with a given task (e.g., synchronizing an object, switching threads, or moving threads), the
priority level will most likely be altered accordingly.

However, all things being equal, the CLR will read these values and instruct the thread scheduler
how to best allocate time slices. All things still being equal, threads with an identical thread priority
should each receive the same amount of time to perform their work.

In most cases, you will seldom (if ever) need to directly alter a thread’s priority level. In theory,
it is possible to jack up the priority level on a set of threads, thereby preventing lower-priority threads
from executing at their required levels (so use caution).

■Source Code The ThreadStats project is included under the Chapter 16 subdirectory.

Programmatically Creating Secondary Threads
When you wish to programmatically create additional threads to carry on some unit of work, you
will follow a very predictable process:

1. Create a method to be the entry point for the new thread.

2. Create a new ParameterizedThreadStart (or legacy ThreadStart) delegate, passing the
address of the method defined in step 1 to the constructor.

3. Create a Thread object, passing the ParameterizedThreadStart/ThreadStart delegate as
a constructor argument.

4. Establish any initial thread characteristics (name, priority, etc.).

5. Call the Thread.Start() method. This starts the thread at the method referenced by the
delegate created in step 2 as soon as possible.

As stated in step 2, you may make use of two distinct delegate types to “point to” the method that
the secondary thread will execute. The ThreadStart delegate has been part of the System.Threading
namespace since .NET 1.0, and it can point to any subroutine that takes no arguments. This dele-
gate can be helpful when the method is designed to simply run in the background without further
interaction.

The obvious limitation of ThreadStart is that you are unable to pass in parameters for processing.
As of .NET 2.0, you are provided with the ParameterizedThreadStart delegate type, which allows a single
parameter of type System.Object. Given that anything can be represented as a System.Object, you
can pass in any number of parameters via a custom class or structure. Do note, however, that like
ThreadStart the ParameterizedThreadStart delegate can only point to subroutines, not functions.

Working with the ThreadStart Delegate
To illustrate the process of building a multithreaded application (as well as to demonstrate the
usefulness of doing so), assume you have a console application (SimpleMultiThreadApp) that allows
the end user to choose whether the application will perform its duties using the single primary
thread or split its workload using two separate threads of execution.

5785ch16.qxd 3/31/06 1:56 PM Page 477

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS478

Assuming you have imported the System.Threading namespace via the VB 2005 Imports key-
word, your first step is to define a type method to perform the work of the (possible) secondary
thread. To keep focused on the mechanics of building multithreaded programs, this method will
simply print out a sequence of numbers to the console window, pausing for approximately 2 sec-
onds with each pass. Here is the full definition of the Printer class:

Public Class Printer

Public Sub PrintNumbers()

' Display Thread info.

Console.WriteLine("-> {0} is executing PrintNumbers()", _

Thread.CurrentThread.Name)

' Print out numbers.

Console.Write("Your numbers: ")

For i As Integer = 0 To 10

Console.Write(i & ", ")

Thread.Sleep(2000)

Next

Console.WriteLine()

End Sub

End Class

Now, within Main(), you will first prompt the user to determine whether one or two threads
will be used to perform the application’s work. If the user requests a single thread, you will simply
invoke the PrintNumbers() method within the primary thread. However, if the user specifies two
threads, you will create a ThreadStart delegate that points to PrintNumbers(), pass this delegate
object into the constructor of a new Thread object, and call Start() to inform the CLR this thread is
ready for processing.

To begin, set a reference to the System.Windows.Forms.dll assembly and display a message
within Main() using MessageBox.Show() (you’ll see the point of doing so once you run the program).
Here is the complete implementation of Main():

Module Program

Sub Main()

Console.WriteLine("***** The Amazing Thread App *****")

Console.Write("Do you want [1] or [2] threads?")

Dim threadCount As String = Console.ReadLine()

' Name the current thread.

Dim primaryThread As Thread = Thread.CurrentThread

primaryThread.Name = "Primary"

' Display Thread info.

Console.WriteLine("-> {0} is executing Main()", Thread.CurrentThread.Name)

' Make worker class.

Dim p As Printer = New Printer()

' How many threads does the user want?

Select Case threadCount

Case "2"

' User wants an extra thread.

Dim backgroundThread As Thread = _

New Thread(New ThreadStart(AddressOf p.PrintNumbers))

backgroundThread.Name = "Secondary"

backgroundThread.Start()

5785ch16.qxd 3/31/06 1:56 PM Page 478

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 479

Figure 16-7. Multithreaded applications result in more responsive applications.

Case "1"

p.PrintNumbers()

Case Else

Console.WriteLine("I don't know what you want...you get 1 thread.")

p.PrintNumbers()

End Select

MessageBox.Show("I'm busy!", "Work on main thread...")

Console.ReadLine()

End Sub

End Module

Now, if you run this program with a single thread, you will find that the message box will not dis-
play until the entire sequence of numbers has printed to the console. As you are explicitly pausing for
approximately 2 seconds after each number is printed, this will result in a less-than-stellar end user
experience. However, if you select two threads, the message box displays instantly, given that a unique
Thread object is responsible for printing out the numbers to the console (see Figure 16-7).

Before we move on, it is important to note that when you build multithreaded applications (which
includes the use of asynchronous delegates) on single CPU machines, you do not end up with an
application that runs any faster, as that is a function of a machine’s CPU. When running this appli-
cation using either one or two threads, the numbers are still displaying at the same pace.

In reality, multithreaded applications result in more responsive applications. To the end user, it
may appear that the program is “faster,” but this is not the case. Threads have no power to make For
loops execute quicker, to make paper print faster, or to force numbers to be added together at rocket
speed. Multithreaded applications simply allow multiple threads to share the workload.

■Source Code The SimpleMultiThreadApp project is included under the Chapter 16 subdirectory.

5785ch16.qxd 3/31/06 1:56 PM Page 479

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS480

Creating Threads: A Shorthand Notation
In the previous example, you were shown the four steps the CLR expects you to take when you wish
to spin off a new thread of execution. As you would suppose, however, some optional shorthand
notations are available. Specifically, if you do not have a need to hold onto the instance of the
ThreadStart delegate in your code, you can simply pass in the address of the method the Thread object
is pointing to directly. Therefore, the following code:

' Directly create the ThreadStart delegate.

Dim backgroundThread As Thread = _

New Thread(New ThreadStart(AddressOf p.PrintNumbers))

backgroundThread.Name = "Secondary"

backgroundThread.Start()

could be simplified like so:

' Indirectly create the ThreadStart delegate.

Dim backgroundThread As Thread = New Thread(AddressOf p.PrintNumbers)

backgroundThread.Name = "Secondary"

backgroundThread.Start()

As you might guess, the previous code snippet will force the Thread to create a new instance of
the ThreadStart delegate behind the scenes.

Working with the ParameterizedThreadStart Delegate
Recall that the ThreadStart delegate can point only to subroutines that take no arguments. While this
may fit the bill in many cases, if you wish to pass data to the method executing on the secondary thread,
you will need to make use of the ParameterizedThreadStart delegate type (rather than ThreadStart).
To illustrate, let’s re-create the logic of the AsyncCallbackDelegate project created earlier in this
chapter, this time making use of the ParameterizedThreadStart delegate type.

To begin, create a new console application named AddWithThreads and import the System.Threading
namespace. Now, given that ParameterizedThreadStart can point to any method taking a System.Object

parameter, you will create a custom type containing the numbers to be added:

Class AddParams

Public a As Integer

Public b As Integer

Public Sub New(ByVal numb1 As Integer, ByVal numb2 As Integer)

a = numb1

b = numb2

End Sub

End Class

Next, create a shared method in the Module type that will take an AddParams type and print
out the summation of each value. The code within Main() is straightforward. Simply use
ParameterizedThreadStart rather than ThreadStart. Here is the complete Module definition:

Module Program

Public Sub Add(ByVal data As Object)

If TypeOf data Is AddParams Then

Console.WriteLine("ID of thread in Add(): {0}", _

Thread.CurrentThread.GetHashCode())

Dim ap As AddParams = CType(data, AddParams)

Console.WriteLine("{0} + {1} is {2}", ap.a, ap.b, ap.a + ap.b)

End If

End Sub

5785ch16.qxd 3/31/06 1:56 PM Page 480

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 481

Sub Main(ByVal args As String())

Console.WriteLine("***** Adding with Thread objects *****")

Console.WriteLine("ID of thread in Main(): {0}", _

Thread.CurrentThread.GetHashCode())

Dim ap As AddParams = New AddParams(10, 10)

Dim t As Thread = New Thread(New ParameterizedThreadStart(AddressOf Add))

t.Start(ap)

Console.ReadLine()

End Sub

End Module

As in the previous example, you have the option of directly creating an instance of the
ParameterizedThreadStart delegate, or allowing the Thread type to do so on your behalf. Therefore,
we could allocate our new Thread object as follows:

' This time, because Add() is a method taking a System.Object,

' a new ParameterizedThreadStart delegate is created

' behind the scenes.

Dim t As Thread = New Thread(AddressOf Add)

■Source Code The AddWithThreads project is included under the Chapter 16 subdirectory.

Foreground Threads and Background Threads
Now that you have seen how to programmatically create new threads of execution using the
System.Threading namespace, let’s formalize the distinction between foreground threads and back-
ground threads:

• Foreground threads have the ability to prevent the current application from terminating. The
CLR will not shut down an application (which is to say, unload the hosting AppDomain) until
all foreground threads have ended.

• Background threads (sometimes called daemon threads) are viewed by the CLR as expend-
able paths of execution that can be ignored at any point in time (even if they are currently
laboring over some unit of work). Thus, if all foreground threads have terminated, any and
all background threads are automatically killed when the application domain unloads.

It is important to note that foreground and background threads are not synonymous with
primary and worker threads. By default, every thread you create via the Thread.Start() method is
automatically a foreground thread. Again, this means that the AppDomain will not unload until all
threads of execution have completed their units of work. In most cases, this is exactly the behavior
you require.

For the sake of argument, however, assume that you wish to invoke Printer.PrintNumbers() on
a secondary thread that should behave as a background thread. Again, this means that the method
pointed to by the Thread type (via the ThreadStart or ParameterizedThreadStart delegate) should be
able to halt safely as soon as all foreground threads are done with their work. Configuring such a thread
is as simple as setting the IsBackground property to True:

Sub Main()

Console.WriteLine("***** Background Threads *****")

Console.WriteLine()

5785ch16.qxd 3/31/06 1:56 PM Page 481

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS482

Dim p As Printer = New Printer()

Dim bgroundThread As Thread = New Thread(AddressOf p.PrintNumbers)

bgroundThread.IsBackground = True

bgroundThread.Start()

End Sub

Notice that this Main() method is not making a call to Console.ReadLine() to force the console
to remain visible until you press the Enter key. Thus, when you run the application, it will shut down
immediately because the Thread object has been configured as a background thread. Given that the
Main() method triggers the creation of the primary foreground thread, as soon as the logic in Main()
completes, the AppDomain unloads before the secondary thread is able to complete its work.

However, if you comment out the line that sets the IsBackground property, you will find that each
number prints to the console, as all foreground threads must finish their work before the AppDomain
is unloaded from the hosting process.

For the most part, configuring a thread to run as a background type can be helpful when the
worker thread in question is performing a noncritical task that is no longer needed when the main
task of the program is finished.

■Source Code The BackgroundThread project is included under the Chapter 16 subdirectory.

The Issue of Concurrency
All the multithreaded sample applications you have written over the course of this chapter have been
thread-safe, given that only a single Thread object was executing the method in question. While some
of your applications may be this simplistic in nature, a good deal of your multithreaded applications
may contain numerous secondary threads. Given that all threads in an AppDomain have concurrent
access to the shared data of the application, imagine what might happen if multiple threads were
accessing the same point of data. As the thread scheduler will force threads to suspend their work
seemingly at random, what if Thread A is kicked out of the way before it has fully completed its work?
Thread B is now reading unstable data.

To illustrate the problem of concurrency, let’s build another VB 2005 console application named
MultiThreadedPrinting. This application will once again make use of the Printer class created pre-
viously, but this time the PrintNumbers() method will force the current thread to pause for a randomly
generated amount of time:

Public Class Printer

Public Sub PrintNumbers()

Console.WriteLine("-> {0} is executing PrintNumbers()", _

Thread.CurrentThread.Name)

Console.Write("Your numbers: ")

For i As Integer = 0 To 10

Dim r As Random = New Random()

Thread.Sleep(100 * r.Next(5))

Console.Write(i & ", ")

Next

Console.WriteLine()

End Sub

End Class

The Main() method is responsible for creating an array of eleven (uniquely named) Thread
objects, each of which is making calls on the same instance of the Printer object:

5785ch16.qxd 3/31/06 1:56 PM Page 482

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 483

Figure 16-8. Concurrency in action, take one

Module Program

Sub Main()

Console.WriteLine("***** Synchronizing Threads *****")

Console.WriteLine()

Dim p As Printer = New Printer()

' Make 11 threads that are all pointing to the same

' method on the same object.

Dim threads(10) As Thread

For i As Integer = 0 To 10

threads(i) = New Thread(AddressOf p.PrintNumbers)

threads(i).Name = String.Format("Worker thread #{0}", i)

Next

' Now start each one.

For Each t As Thread In threads

t.Start()

Next

Console.ReadLine()

End Sub

End Module

Before looking at some test runs, let’s recap the problem. The primary thread within this
AppDomain begins life by spawning 11 secondary worker threads. Each worker thread is told to
make calls on the PrintNumbers() method on the same Printer instance. Given that you have taken
no precautions to lock down this object’s shared resources (the console), there is a good chance that
the current thread will be kicked out of the way before the PrintNumbers() method is able to print
out the complete results. Because you don’t know exactly when (or if) this might happen, you are
bound to get unpredictable results. For example, you might find the output shown in Figure 16-8.

5785ch16.qxd 3/31/06 1:56 PM Page 483

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS484

There are clearly some problems here. As each thread is telling the Printer to print out the
numerical data, the thread scheduler is happily swapping threads in the background. The result is
inconsistent output. What we need is a way to programmatically enforce synchronized access to the
shared resources. As you would guess, the System.Threading namespace provides a number of
synchronization-centric types. The VB 2005 programming language also provides a particular keyword
for the very task of synchronizing shared data in multithreaded applications.

■Note If you are unable to generate unpredictable outputs, increase the number of threads from 10 to 100 (for
example) or introduce a call to Thread.Sleep() within your program. Eventually, you will encounter a concurrency
issue.

Synchronization Using the VB 2005 SyncLock Keyword
The first technique you can use to synchronize access to shared resources is the VB 2005 SyncLock
keyword. This keyword allows you to define a scope of statements that must be synchronized between
threads. By doing so, incoming threads cannot interrupt the current thread, preventing it from fin-
ishing its work. The SyncLock keyword requires you to specify a token (an object reference) that must
be acquired by a thread to enter within the lock scope. When you are attempting to lock down an
instance-level method, you can simply pass in a reference to the current type:

' Use the current object as the thread token.

SyncLock Me

' All code within this scope is thread-safe.

End SyncLock

Figure 16-9. Concurrency in action, take two

Now run the application a few more times. Figure 16-9 shows another possibility (your results
will obviously differ).

5785ch16.qxd 3/31/06 1:56 PM Page 484

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 485

Figure 16-10. Concurrency in action, take three

If you examine the PrintNumbers() method, you can see that the shared resource the threads
are competing to gain access to is the console window. Therefore, if you scope all interactions with
the Console type within a lock scope as follows:

Public Class Printer

Public Sub PrintNumbers()

SyncLock Me

Console.WriteLine("-> {0} is executing PrintNumbers()", _

Thread.CurrentThread.Name)

Console.Write("Your numbers: ")

For i As Integer = 0 To 10

Dim r As Random = New Random()

Thread.Sleep(100 * r.Next(5))

Console.Write(i & ", ")

Next

Console.WriteLine()

End SyncLock

End Sub

End Class

you have effectively designed a method that will allow the current thread to complete its task. Once
a thread enters into a SyncLock scope, the lock token (in this case, a reference to the current object)
is inaccessible by other threads until the lock is released once the SyncLock scope has exited. Thus,
if Thread A has obtained the lock token, other threads are unable to enter the scope until Thread
A relinquishes the lock token. If you now run the application, you can see that each thread has
ample opportunity to finish its business, as shown in Figure 16-10.

■Source Code The MultiThreadedPrinting application is included under the Chapter 16 subdirectory.

5785ch16.qxd 3/31/06 1:56 PM Page 485

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS486

Synchronization Using the System.Threading.Monitor Type
The VB 2005 SyncLock statement is really just a shorthand notation for working with the
System.Threading.Monitor class type. Once processed by the VB 2005 compiler, a SyncLock

scope actually resolves to the following (which you can verify using ildasm.exe):

Public Sub PrintNumbers()

Monitor.Enter(Me)

Try

Console.WriteLine("-> {0} is executing PrintNumbers()", _

Thread.CurrentThread.Name)

Console.Write("Your numbers: ")

For i As Integer = 0 To 10

Dim r As Random = New Random()

Thread.Sleep(100 * r.Next(5))

Console.Write(i & ", ")

Next

Console.WriteLine()

Finally

Monitor.Exit(Me)

End Try

End Sub

First, notice that the Monitor.Enter() method is the ultimate recipient of the thread token you
specified as the argument to the SyncLock keyword. Next, all code within a lock scope is wrapped
within a try block. The corresponding Finally clause ensures that the thread token is released (via
the Monitor.Exit() method), regardless of any possible runtime exception. If you were to modify
the MultiThreadSharedData program to make direct use of the Monitor type (as just shown), you
will find the output is identical.

Now, given that the SyncLock keyword seems to require less code than making explicit use of
the System.Threading.Monitor type, you may wonder about the benefits of using the Monitor type
directly. The short answer is control. If you make use of the Monitor type, you are able to instruct the
active thread to wait for some duration of time (via the Wait() method), inform waiting threads when
the current thread is completed (via the Pulse() and PulseAll() methods), and so on.

As you would expect, in a great number of cases, the VB 2005 SyncLock keyword will fit the bill.
However, if you are interested in checking out additional members of the Monitor class, consult the
.NET Framework 2.0 SDK documentation.

Synchronization Using the System.Threading.Interlocked Type
Although it always is hard to believe until you look at the underlying CIL code, assignments and
simple arithmetic operations are not atomic! For this reason, the System.Threading namespace pro-
vides a type that allows you to operate on a single point of data atomically with less overhead than
with the Monitor type. The Interlocked class type defines the shared members shown in Table 16-4.

Table 16-4. Members of the System.Threading.Interlocked Type

Member Meaning in Life

CompareExchange() Safely tests two values for equality and, if equal, changes one of the
values with a third

Decrement() Safely decrements a value by 1

Exchange() Safely swaps two values

Increment() Safely increments a value by 1

5785ch16.qxd 3/31/06 1:56 PM Page 486

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 487

Although it might not seem like it from the onset, the process of atomically altering a single
value is quite common in a multithreaded environment. Assume you have a method named AddOne()
that increments an integer member variable named intVal. Rather than writing synchronization
code such as the following:

Public Sub AddOne()

SyncLock Me

initVal = intVal + 1

End SyncLock

End Sub

you can simplify your code via the shared Interlocked.Increment() method. Simply pass in the
variable to increment by reference. Do note that the Increment() method not only adjusts the value
of the incoming parameter, but also returns the new value:

Public Sub AddOne()

Dim newVal As Integer = Interlocked.Increment(ntVal)

End Sub

In addition to Increment() and Decrement(), the Interlocked type allows you to atomically assign
numerical and object data. For example, if you wish to assign a member variable to the value 83, you
can avoid the need to use an explicit SyncLock statement (or explicit Monitor logic) and make use of
the Interlocked.Exchange() method:

Public Sub SafeAssignment()

Interlocked.Exchange(myInt, 83)

End Sub

Finally, if you wish to test two values for equality to change the point of comparison in a thread-
safe manner, you are able to leverage the Interlocked.CompareExchange() method as follows:

Public Sub CompareAndExchange()

' If the value of myInt is currently 83, change i to 99.

Interlocked.CompareExchange(myInt, 99, 83)

End Sub

Synchronization Using the <Synchronization> Attribute
The final synchronization primitive examined here is the <Synchronization> attribute, which is
a member of the System.Runtime.Remoting.Contexts namespace. In essence, this class-level attri-
bute effectively locks down all instance member code of the object for thread safety. When the CLR
allocates objects attributed with <Synchronization>, it will place the object within a synchronized
context. As you may recall from Chapter 15, objects that should not be removed from a contextual
boundary should derive from ContextBoundObject. Therefore, if you wish to make the Printer class
type thread-safe (without explicitly writing thread-safe code within the class members), you could
update the definition like so:

Imports System.Runtime.Remoting.Contexts

...

' All methods of Printer are now thread-safe!

<Synchronization> _

Public Class Printer

Inherits ContextBoundObject

Public Sub PrintNumbers()

...

End Sub

End Class

5785ch16.qxd 3/31/06 1:56 PM Page 487

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS488

In some ways, this approach can be seen as the lazy way to write thread-safe code, given that
you are not required to dive into the details about which aspects of the type are truly manipulating
thread-sensitive data. The major downfall of this approach, however, is that even if a given method
is not making use of thread-sensitive data, the CLR will still lock invocations to the method. Obvi-
ously, this could degrade the overall functionality of the type, so use this technique with care.

At this point, you have seen a number of ways you are able to provide synchronized access to
shared data. To be sure, additional types are available under the System.Threading namespace, which
I will encourage you to explore at your leisure. To wrap up our examination of thread programming,
allow me to introduce three additional types: TimerCallback, Timer, and ThreadPool.

Programming with Timer Callbacks
Many applications have the need to call a specific method during regular intervals of time. For
example, you may have an application that needs to display the current time on a status bar via
a given helper function. As another example, you may wish to have your application call a helper
function every so often to perform noncritical background tasks such as checking for new e-mail
messages. For situations such as these, you can use the System.Threading.Timer type in conjunc-
tion with a related delegate named TimerCallback.

To illustrate, assume you have a console application that will print the current time every second
until the user presses a key to terminate the application. The first obvious step is to write the method
that will be called by the Timer type:

Sub PrintTime(ByVal state As Object)

Console.WriteLine("Time is: {0}", _

DateTime.Now.ToLongTimeString())

End Sub

Notice how this method has a single parameter of type System.Object and is a subroutine,
rather than a function. This is not optional, given that the TimerCallback delegate can only call
methods that match this signature. The value passed into the target of your TimerCallback delegate
can be any bit of information whatsoever (in the case of the e-mail example, this parameter might
represent the name of the Microsoft Exchange server to interact with during the process). Also note
that given that this parameter is indeed a System.Object, you are able to pass in multiple arguments
using a System.Array or custom class/structure.

The next step is to configure an instance of the TimerCallback delegate and pass it into the Timer
object. In addition to configuring a TimerCallback delegate, the Timer constructor allows you to spec-
ify the optional parameter information to pass into the delegate target (defined as a System.Object),
the interval to poll the method, and the amount of time to wait (in milliseconds) before making the
first call, for example:

Sub Main()

Console.WriteLine("***** Working with Timer type *****")

Console.WriteLine()

' Create the delegate for the Timer type.

Dim timeCB As TimerCallback = AddressOf PrintTime

' Pass in the delegate instance, data to send the

' method 'pointed to', time to wait before starting

' and interval of time between calls.

Dim t As Timer = New Timer(timeCB, Nothing, 0, 1000)

Console.WriteLine("Hit key to terminate...")

Console.ReadLine()

End Sub

5785ch16.qxd 3/31/06 1:56 PM Page 488

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 489

Figure 16-11. Timers at work

As you would guess, if you don’t need to use the TimerCallback delegate object directly, you can
simply create your Timer object as follows:

Dim t As Timer = New Timer(AddressOf PrintTime, Nothing, 0, 1000)

In any case, the PrintTime() method will be called roughly every second and will pass in no
additional information to said method. If you did wish to send in some information for use by the
delegate target, simply substitute the null value of the second constructor parameter with the
appropriate information:

Dim t As Timer = New Timer(AddressOf PrintTime, "Hi", 0, 1000)

We could now make use of this data within the PrintTime() method. Consider the following
updates:

Sub PrintTime(ByVal state As Object)

Console.WriteLine("Time is: {0}, Param is: {1}", _

DateTime.Now.ToLongTimeString, state.ToString())

End Sub

Figure 16-11 shows the output.

■Source Code The TimerApp application is included under the Chapter 16 subdirectory.

Understanding the CLR ThreadPool
The final thread-centric topic we will examine in this chapter is the CLR thread pool. When you
invoke a method asynchronously using delegate types (via the BeginInvoke() method), the CLR
does not literally create a brand-new thread. For purposes of efficiency, a delegate’s BeginInvoke()
method leverages a pool of worker threads that is maintained by the runtime. To allow you to inter-
act with this pool of waiting threads, the System.Threading namespace provides the ThreadPool
class type.

If you wish to queue a method call for processing by a worker thread in the pool, you can
make use of the ThreadPool.QueueUserWorkItem() method. This method has been overloaded to
allow you to specify an optional System.Object for custom state data in addition to an instance of
the WaitCallback delegate.

5785ch16.qxd 3/31/06 1:56 PM Page 489

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS490

The WaitCallback delegate can point to any subroutine that takes a System.Object as its sole
parameter (which represents the optional state data). Do note that if you do not provide a System.Object

when calling QueueUserWorkItem(), the CLR automatically passes the value Nothing. To illustrate
queuing methods for use by the CLR thread pool, consider the following program, which makes use
of the Printer type once again. In this case, however, you are not manually creating an array of Thread
types; rather, you are assigning members of the pool to the PrintNumbers() method:

Module Program

Sub Main()

Console.WriteLine("Main thread started. ThreadID = {0}", _

Thread.CurrentThread.GetHashCode)

Dim p As Printer = New Printer

Dim workItem As WaitCallback = AddressOf PrintTheNumbers

' Queue the method 10 times

For i As Integer = 0 To 9

ThreadPool.QueueUserWorkItem(workItem, p)

Next

Console.WriteLine("All tasks queued")

Console.ReadLine()

End Sub

Sub PrintTheNumbers(ByVal state As Object)

Dim task As Printer = CType(state, Printer)

task.PrintNumbers()

End Sub

End Module

At this point, you may be wondering whether it would be advantageous to make use of the
CLR-maintained thread pool rather than explicitly creating Thread objects. Consider these major
benefits of leveraging the thread pool:

• The thread pool manages threads efficiently by minimizing the number of threads that must
be created, started, and stopped.

• By using the thread pool, you can focus on your business problem rather than the application’s
threading infrastructure.

However, using manual thread management is preferred in some cases, for example:

• If you require foreground threads or must set the thread priority. Pooled threads are always
background threads with default priority (ThreadPriority.Normal).

• If you require a thread with a fixed identity in order to abort it, suspend it, or discover it by name.

■Source Code The ThreadPoolApp application is included under the Chapter 16 subdirectory.

That wraps up our examination of multithreaded programming under .NET. To be sure, the
System.Threading namespace defines numerous types beyond what I had the space to cover in this
chapter. Nevertheless, at this point you should have a solid foundation to build on.

5785ch16.qxd 3/31/06 1:56 PM Page 490

CHAPTER 16 ■ BUILDING MULTITHREADED APPLICATIONS 491

Summary
This chapter began by examining how .NET delegate types can be configured to execute a method
in an asynchronous manner. As you have seen, the BeginInvoke() and EndInvoke() methods allow
you to indirectly manipulate a background thread with minimum fuss and bother. During this dis-
cussion, you were also introduced to the IAsyncResult interface and AsyncResult class type. As you
learned, these types provide various ways to synchronize the calling thread and obtain possible
method return values.

The remainder of this chapter examined the role of the System.Threading namespace. As you
learned, when an application creates additional threads of execution, the result is that the program
in question is able to carry out numerous tasks at (what appears to be) the same time. You also
examined several manners in which you can protect thread-sensitive blocks of code to ensure that
shared resources do not become unusable units of bogus data. Last but not least, you learned that
the CLR maintains an internal pool of threads for the purposes of performance and convenience.

5785ch16.qxd 3/31/06 1:56 PM Page 491

5785ch16.qxd 3/31/06 1:56 PM Page 492

COM and .NET Interoperability

By now, you’ve gained a solid foundation in the VB 2005 language and the core services provided
by the .NET platform. I suspect that when you contrast the object model provided by .NET to that of
classic COM and VB 6.0, you’ll no doubt be convinced that these are two entirely unique systems.
Regardless of the fact that COM is now considered to be a legacy framework, few of us are in a position
to completely abandon the ways of COM and Visual Basic 6.0 (after all, we’ll always have legacy sys-
tems to maintain). The truth is that people have spent hundreds of thousands of hours building
systems that make substantial use of these legacy technologies.

Thankfully, the .NET platform provides various types, tools, and namespaces that make the
process of COM and .NET interoperability quite straightforward. The chapter begins by examining
the process of .NET to COM interoperability and the related Runtime Callable Wrapper (RCW). The
latter part of this chapter examines the opposite situation: a COM type communicating with a .NET
type using a COM Callable Wrapper (CCW).

■Note A full examination of the .NET interoperability layer would require a book unto itself. If you require more
details than presented in this introductory chapter, check out my book COM and .NET Interoperability (Apress, 2002).

The Scope of .NET Interoperability
Recall that when you build assemblies using a .NET-aware compiler, you are creating managed code
that can be hosted by the Common Language Runtime (CLR). Managed code offers a number of
benefits such as automatic memory management, a unified type system (the CTS), self-describing
assemblies, and so forth. As you have also seen, .NET assemblies have a particular internal compo-
sition. In addition to CIL instructions and type metadata, assemblies contain a manifest that fully
documents any required external assemblies as well as other file-related details (strong naming,
version, etc.).

On the other side of the spectrum are legacy COM servers (which are, of course, unmanaged
code). These binaries bear no relationship to .NET assemblies beyond a shared file extension (*.dll
or *.exe). First of all, COM servers contain platform-specific machine code, not platform-agnostic
CIL instructions, and work with a unique set of data types (often termed oleautomation or variant-
compliant data types), none of which are directly understood by the CLR. In addition to the necessary
COM-centric infrastructure required by all COM binaries (such as registry entries and support for
core COM interfaces like IUnknown) is the fact that COM types demand to be reference counted in
order to correctly control the lifetime of a COM object. This is in stark contrast, of course, to a .NET
object, which is allocated on a managed heap and handled by the CLR garbage collector.

Given that .NET types and COM types have so little in common, you may wonder how these
two architectures can make use of each others’ services. Unless you are lucky enough to work for

493

C H A P T E R 1 7

■ ■ ■

5785ch17.qxd 3/31/06 1:57 PM Page 493

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY494

a company dedicated to “100% Pure .NET” development, you will most likely need to build .NET
solutions that use legacy COM types. As well, you may find that a legacy COM server might like to
communicate with the types contained within a shiny new .NET assembly.

The bottom line is that for some time to come, COM and .NET must learn how to get along.
This chapter examines the process of managed and unmanaged types living together in harmony
using the .NET interoperability layer. In general, the .NET Framework supports two core flavors of
interoperability:

• .NET types using COM types

• COM types using .NET types

As you see throughout this chapter, the .NET Framework 2.0 SDK and Visual Studio 2005 sup-
ply a number of tools that help bridge the gap between these unique architectures. As well, the .NET
base class library defines a namespace (System.Runtime.InteropServices) dedicated solely to the
issue of interoperability. However, before diving in too far under the hood, let’s look at a very simple
example of .NET to COM interoperability.

■Note The .NET platform also makes it very simple for a .NET assembly to call into the underlying API of the
operating system (as well as any C-based unmanaged *.dll) using a technology termed platform invocation (or
simply PInvoke). From a VB 2005 point of view, working with PInvoke looks very similar to working with VB 6.0, as
we can simply use the Declare statement. As an alternative, the .NET platform provides the language-neutral
<DllImport> attribute, which performs the same function as the VB 2005–specific Declare statement. Although
PInvoke is not examined in this chapter, check out the Declare keyword (and <DllImport> attribute) using the
.NET Framework 2.0 SDK documentation for further details.

A Simple Example of .NET to COM Interop
To begin our exploration of interoperability services, let’s see just how simple things appear on the
surface. The goal of this section is to build a VB 6.0 ActiveX *.dll server, which is then consumed by
a VB 2005 application. Fire up VB 6.0, and create a new ActiveX *.dll project named SimpleComServer
and rename your initial class file to ComCalc.cs and name the class itself ComCalc. As you may know,
the name of your project and the names assigned to the contained classes will be used to define the
programmatic identifier (ProgID) of the COM types (SimpleComServer.ComCalc, in this case). Finally,
define the following methods within ComCalc.cls:

' The VB 6.0 COM object

Option Explicit

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Add = x + y

End Function

Public Function Subtract(ByVal x As Integer, ByVal y As Integer) As Integer

Subtract = x - y

End Function

At this point, compile your *.dll (via the File ➤ Make menu option) and, just to keep things
peaceful in the world of COM, establish binary compatibility (via the Component tab of the pro-
ject’s Property page) before you exit the VB 6.0 IDE. This will ensure that if you recompile the
application, VB 6.0 will preserve the assigned globally unique identifiers (GUIDs).

■Source Code The SimpleComServer is located under the Chapter 17 subdirectory.

5785ch17.qxd 3/31/06 1:57 PM Page 494

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 495

Figure 17-1. Referencing a COM server using Visual Studio 2005

Figure 17-2. The referenced interop assembly

Building the VB 2005 Client
Now open up Visual Studio 2005 and create a new VB 2005 console application named
VBNetSimpleComClient. When you are building a .NET application that needs to communicate
with a legacy COM application, the first step is to reference the COM server within your project
(much like you reference a .NET assembly).

To do so, simply access the Project ➤ Add Reference menu selection and select the COM tab
from the Add Reference dialog box. The name of your COM server will be listed alphabetically, as
the VB 6.0 compiler updated the system registry with the necessary listings when you compiled your
COM server. Go ahead and select the SimpleComServer.dll as shown in Figure 17-1 and close the
dialog box.

Now, if you click the Show All Files button on the Solution Explorer, you see what looks to be
a new .NET assembly reference added to your project, as illustrated in Figure 17-2. Formally speak-
ing, assemblies that are generated when referencing a COM server are termed interop assemblies.
Without getting too far ahead of ourselves at this point, simply understand that interop assemblies
contain .NET descriptions of COM types.

5785ch17.qxd 3/31/06 1:57 PM Page 495

Figure 17-4. Behold! .NET to COM interoperability

Although we have not added any code to our initial module, if you compile your application
and examine the project’s bin\Debug directory, you will find that a local copy of the generated
interop assembly has been placed in the application directory (see Figure 17-3). Notice that Visual
Studio 2005 automatically prefixes Interop. to interop assemblies generated when using the Add
Reference dialog box—however, this is only a convention; the CLR does not demand that interop
assemblies follow this particular naming convention.

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY496

To complete this initial example, update the Main() method of your module to invoke the Add()
method from a ComCalc object and display the result. For example:

Imports SimpleComServer

Module Program

Sub Main()

Console.WriteLine("***** The .NET COM Client App *****")

Dim comObj As New ComCalc()

Console.WriteLine("COM server says 10 + 832 is {0}", _

comObj.Add(10, 832))

Console.ReadLine()

End Sub

End Module

As you can see from the previous code example, the namespace that contains the ComCalc COM
object is named identically to the original VB 6.0 project (notice the Imports statement). The output
shown in Figure 17-4 is as you would expect.

Figure 17-3. The autogenerated interop assembly

5785ch17.qxd 3/31/06 1:57 PM Page 496

Figure 17-5. The guts of the Interop.SimpleComServer.dll interop assembly

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 497

As you can see, consuming a COM type from a .NET application can be a very transparent
operation indeed. As you might imagine, however, a number of details are occurring behind the
scenes to make this communication possible, the gory details of which you will explore throughout
this chapter, beginning with taking a deeper look into the interop assembly itself.

Investigating a .NET Interop Assembly
As you have just seen, when you reference a COM server using the Visual Studio 2005 Add Reference
dialog box, the IDE responds by generating a brand-new .NET assembly taking an Interop. prefix
(such as Interop.SimpleComServer.dll). Just like an assembly that you would create yourself, interop
assemblies contain type metadata, an assembly manifest, and under some circumstances may contain
CIL code. As well, just like a “normal” assembly, interop assemblies can be deployed privately (e.g.,
within the directory of the client assembly) or assigned a strong name to be deployed to the GAC.

Interop assemblies are little more than containers to hold .NET metadata descriptions of the
original COM types. In many cases, interop assemblies do not contain CIL instructions to implement
their methods, as the real work is taking place in the COM server itself. The only time an interop
assembly contains executable CIL instructions is if the COM server contains COM objects that have
the ability to fire events to the client. In this case, the CIL code within the interop assembly is used
by the CLR to manage the event handing logic.

At first glance, it may seem that interop assemblies are not entirely useful, given that they do not
contain any implementation logic. However, the metadata descriptions within an interop assembly
are extremely important, as it will be consumed by the CLR at runtime to build a runtime proxy (termed
the Runtime Callable Wrapper, or simply RCW) that forms a bridge between the .NET application
and the COM object it is communicating with.

You’ll examine the details of the RCW in the next several sections; however, for the time being,
open up the Interop.SimpleComServer.dll assembly using ildasm.exe, as you see in Figure 17-5.

As you can see, although the original VB6 project only defined a single COM class (ComCalc),
the interop assembly contains three types. To make things even more confusing, if you were to
examine the interop assembly using Visual Studio 2005, you only see a single type named ComCalc.
Rest assured that ComCalcClass and _ComCalc are within the interop assembly. To view them, you
simply need to elect to view hidden types with the VS 2005 Object Browser (see Figure 17-6).

5785ch17.qxd 3/31/06 1:57 PM Page 497

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY498

Simply put, each COM class is represented by three distinct .NET types. First, you have a .NET
type that is identically named to the original COM type (ComCalc, in this case). Next, you have a sec-
ond .NET type that takes a Class suffix (ComCalcClass). These types are very helpful when you have
a COM type that implements several custom interfaces, in that the Class-suffixed types expose all
members from each interface supported by the COM type. Thus, from a .NET programmer’s point of
view, there is no need to manually obtain a reference to a specific COM interface before invoking its
functionality. Although ComCalc did not implement multiple custom interfaces, we are able to invoke the
Add() and Subtract() methods from a ComCalcClass object (rather than a ComCalc object) as follows:

Module Program

Sub Main()

Console.WriteLine("***** The .NET COM Client App *****")

' Now using the Class-suffixed type.

Dim comObj As New ComCalcClass()

Console.WriteLine("COM server says 10 + 832 is {0}", _

comObj.Add(10, 832))

Console.ReadLine()

End Sub

End Module

Finally, interop assemblies define .NET equivalents of any original COM interfaces defined
within the COM server. In this case, we find a .NET interface named _ComCalc. Unless you are well
versed in the mechanics of VB 6.0 COM, this is certain to appear strange, given that we never directly
created an interface in our SimpleComServer project (let alone the oddly named _ComCalc interface).
The role of these underscore-prefixed interfaces will become clear as you move throughout this
chapter; for now, simply know that if you really wanted to, you could make use of interface-based
programming techniques to invoke Add() or Subtract():

Module Program

Sub Main()

Console.WriteLine("***** The .NET COM Client App *****")

' Now manually obtain the hidden interface.

Dim i As SimpleComServer._ComCalc

Figure 17-6. Viewing hidden types within our interop assembly

5785ch17.qxd 3/31/06 1:57 PM Page 498

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 499

Figure 17-7. RCWs sit between the .NET caller and the COM object.

Dim c As New ComCalc

i = CType(c, _ComCalc)

Console.WriteLine("COM server says 10 + 832 is {0}", _

i.Add(10, 832))

Console.ReadLine()

End Sub

End Module

Now, do understand that invoking a method using the Class-suffixed or underscore-prefixed
interface is seldom necessary (which is exactly why the Visual Studio 2005 Object Browser hides
these types by default). However, as you build more complex .NET applications that need to work
with COM types in more sophisticated manners, having knowledge of these types is critical.

■Source Code The VBNetSimpleComClient project is located under the Chapter 17 subdirectory.

Understanding the Runtime Callable Wrapper
As mentioned, at runtime the CLR will make use of the metadata contained within a .NET interop
assembly to build a proxy type that will manage the process of .NET to COM communication. The
proxy to which I am referring is the Runtime Callable Wrapper, which is little more than a bridge to
the real COM class (officially termed a coclass). Every coclass accessed by a .NET client requires
a corresponding RCW. Thus, if you have a single .NET application that uses three COM coclasses,
you end up with three distinct RCWs that map .NET calls into COM requests. Figure 17-7 illustrates
the big picture.

■Note There is always a single RCW per COM object, regardless of how many interfaces the .NET client has
obtained from the COM type (you’ll examine a multi-interfaced VB 6.0 COM object a bit later in this chapter). Using
this technique, the RCW can maintain the correct COM identity (and reference count) of the COM object.

5785ch17.qxd 3/31/06 1:57 PM Page 499

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY500

Again, the good news is that the RCW is created automatically when required by the CLR. The
other bit of good news is that legacy COM servers do not require any modifications to be consumed
by a .NET-aware language. The intervening RCW takes care of the internal work. To see how this is
achieved, let’s formalize some core responsibilities of the RCW.

The RCW: Exposing COM Types As .NET Types
The RCW is in charge of transforming COM data types into .NET equivalents (and vice versa). As
a simple example, assume you have a VB 6.0 COM subroutine defined as follows:

' VB 6.0 COM method definition.

Public Sub DisplayThisString(ByVal s as String)

The interop assembly defines the method parameter as a .NET System.String:

' VB 2005 mapping of COM method.

Public Sub DisplayThisString(ByVal s as System.String)

When this method is invoked by the .NET code base, the RCW automatically takes the incom-
ing System.String and transforms it into a VB 6.0 String data type (which, as you may know, is in fact
a COM BSTR). As you would guess, all VB 6.0 COM data types have a corresponding .NET equivalent.
To help you gain your bearings, Table 17-1 documents the mapping taking place between COM IDL
(interface definition language) data types, the related .NET System data types, and the corresponding
VB 2005 keyword.

Table 17-1. Mapping Intrinsic COM Types to .NET Types

COM IDL Data Type System Types Visual Basic 2005 Data Type

wchar_t, short System.Int16 Short

long, int System.Int32 Integer

Hyper System.Int64 Long

unsigned char, byte System.Byte Byte

single System.Single Single

double System.Double Double

VARIANT_BOOL System.Boolean Boolean

BSTR System.String String

VARIANT System.Object Object

DECIMAL System.Decimal Decimal

DATE System.DateTime DateTime

GUID System.Guid Guid

CURRENCY System.Decimal Decimal

IUnknown System.Object Object

IDispatch System.Object Object

■Note You will come to understand the importance of having some knowledge of IDL data types as you progress
through this chapter.

5785ch17.qxd 3/31/06 1:57 PM Page 500

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 501

The RCW: Managing a Coclass’s Reference Count
Another important duty of the RCW is to manage the reference count of the COM object. As you
may know from your experience with COM, the COM reference-counting scheme is a joint venture
between coclass and client and revolves around the proper use of AddRef() and Release() calls. COM
classes self-destruct when they detect that they have no outstanding references (thankfully, VB 6.0
would call these low-level COM methods behind the scenes).

However, .NET types do not use the COM reference-counting scheme, and therefore a .NET
client should not be forced to call Release() on the COM types it uses. To keep each participant
happy, the RCW caches all interface references internally and triggers the final release when the
type is no longer used by the .NET client. The bottom line is that similar to VB 6.0, .NET clients
never explicitly call AddRef(), Release(), or QueryInterface().

■Note If you wish to directly interact with a COM object’s reference count from a .NET application, the
System.Runtime.InteropServices namespace provides a type named Marshal. This class defines a number
of shared methods, many of which can be used to manually interact with a COM object’s lifetime. Although you will
typically not need to make use of Marshal in most of your applications, consult the .NET Framework 2.0 SDK doc-
umentation for further details.

The RCW: Hiding Low-level COM Interfaces
The final core service provided by the RCW is to consume a number of low-level COM interfaces.
Because the RCW tries to do everything it can to fool the .NET client into thinking it is communicat-
ing with a native .NET type, the RCW must hide various low-level COM interfaces from view.

For example, when you build a COM class that supports IConnectionPointContainer (and
maintains a subobject or two supporting IConnectionPoint), the coclass in question is able to fire
events back to the COM client. VB 6.0 hides this entire process from view using the Event and RaiseEvent
keywords. In the same vein, the RCW also hides such COM “goo” from the .NET client. Table 17-2
outlines the role of these hidden COM interfaces consumed by the RCW.

Table 17-2. Hidden COM Interfaces

Hidden COM Interface Meaning in Life

IConnectionPointContainer Enable a coclass to send events back to an interested client. VB 6.0
IConnectionPoint automatically provides a default implementation of each of these

interfaces.

IDispatch Facilitate “late binding” to a coclass. Again, when you are building
IProvideClassInfo VB 6.0 COM types, these interfaces are automatically supported by

a given COM type.

IErrorInfo These interfaces enable COM clients and COM objects to send and
ISupportErrorInfo respond to COM errors.
ICreateErrorInfo

IUnknown The granddaddy of COM. Manages the reference count of the COM
object and allows clients to obtain interfaces from the coclass.

5785ch17.qxd 3/31/06 1:57 PM Page 501

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY502

The Role of COM IDL
At this point you hopefully have a solid understanding of the role of the interop assembly and the
RCW. Before you go much further into the COM to .NET conversion process, it is necessary to review
some of the finer details of COM IDL. Understand, of course, that this chapter is not intended to
function as a complete COM IDL tutorial; however, to better understand the interop layer, you only
need to be aware of a few IDL constructs.

As you saw in Chapter 14, a .NET assembly contains metadata. Formally speaking, metadata is
used to describe each and every aspect of a .NET assembly, including the internal types (their mem-
bers, base class, and so on), assembly version, and optional assembly-level information (strong name,
culture, and so on).

In many ways, .NET metadata is the big brother of an earlier metadata format used to describe
classic COM servers. Classic ActiveX COM servers (*.dlls or *.exes) document their internal types
using a type library, which may be realized as a stand-alone *.tlb file or bundled into the COM server
as an internal resource (which is the default behavior of VB 6.0). COM type libraries are themselves
created using a metadata language called the Interface Definition Language and a special compiler
named midl.exe (the Microsoft IDL compiler).

VB 6.0 does a fantastic job of hiding type libraries and IDL from view. In fact, many skilled VB COM
programmers can live a happy and productive life ignoring the syntax of IDL altogether. Nevertheless,
whenever you compile ActiveX project workspace types, VB automatically generates and embeds
the type library within the physical *.dll or *.exe COM server. Furthermore, VB 6.0 ensures that the
type library is automatically registered under a very particular part of the system registry:
HKEY_CLASSES_ROOT\TypeLib (see Figure 17-8).

Type libraries are referenced all the time by numerous IDEs. For example, whenever you access
the Project ➤ References menu selection of VB 6.0, the IDE consults HKCR\TypeLib to determine
each and every registered type library, as shown in Figure 17-9.

■Note In reality, COM type library browser tools will only consult HKCR\TypeLib the first time the tool is acti-
vated, and cache the results for later use. This explains why the first time you load such tools, there is a noticeable
delay.

Figure 17-8. HKCR\TypeLib lists all registered type libraries on a given machine.

5785ch17.qxd 3/31/06 1:57 PM Page 502

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 503

Likewise, when you open the VB 6.0 Object Browser, the VB 6.0 IDE reads the type information
and displays the contents of the COM server using a friendly GUI, as shown in Figure 17-10.

Observing the Generated IDL for Your VB COM Server
Although the VB 6.0 Object Browser displays all COM types contained within a type library, the OLE
View utility (oleview.exe) allows you to view the underlying IDL syntax used to build the corresponding
type library. Again, few VB 6.0 developers need to know the gory details of the IDL language; however,
to better understand the interoperability layer, open OLE View (via Start ➤ All Programs ➤ Microsoft
Visual Studio 6.0 ➤ Microsoft Visual Studio 6.0 Tools) and locate the SimpleComServer server under
the Type Libraries node of the tree view control, as shown in Figure 17-11.

Figure 17-9. Referencing COM type information from VB 6.0

Figure 17-10. Viewing type libraries using the VB 6.0 Object Browser

5785ch17.qxd 3/31/06 1:57 PM Page 503

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY504

If you were to double-click the type library icon, you would open a new window that shows you
all of the IDL tokens that constitute the type library generated by the VB 6.0 compiler. Here is the
relevant—and slightly reformatted—IDL (your [uuid] values will differ):

[uuid(8AED93CB-7832-4699-A2FC-CAE08693E720), version(1.0)]

library SimpleComServer

{

importlib("stdole2.tlb");

interface _ComCalc;

[odl, uuid(5844CD28-2075-4E77-B619-9B65AA0761A3), version(1.0),

hidden, dual, nonextensible, oleautomation]

interface _ComCalc : IDispatch {

[id(0x60030000)]

HRESULT Add([in] short x, [in] short y,

[out, retval] short*);

[id(0x60030001)]

HRESULT Subtract([in] short x, [in] short y,

[out, retval] short*);

};

[uuid(012B1485-6834-47FF-8E53-3090FE85050C), version(1.0)]

coclass ComCalc {

[default] interface _ComCalc;

};

};

IDL Attributes
To begin parsing out this IDL, notice that IDL syntax contains blocks of code placed in square
brackets ([...]). Within these brackets is a comma-delimited set of IDL keywords, which are used
to disambiguate the “very next thing” (the item to the right of the block or the item directly below
the block). These blocks are IDL attributes that serve the same purpose as .NET attributes (i.e., they
describe something). One key IDL attribute is [uuid], which is used to assign the globally unique
identifier (GUID) of a given COM type. As you may already know, just about everything in COM is
assigned a GUID (interfaces, COM classes, type libraries, and so on), which is used to uniquely
identify a given item.

Figure 17-11. Hunting down SimpleComServer using the OLE/COM object viewer

5785ch17.qxd 3/31/06 1:57 PM Page 504

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 505

The IDL Library Statement
Starting at the top, you have the COM “library statement,” which is marked using the IDL library
keyword. Contained within the library statement are each and every interface and COM class, and
any enumeration (through the VB 6.0 Enum keyword) and user-defined type (through the VB 6.0 Type
keyword). In the case of SimpleComServer, the type library lists exactly one COM class, ComCalc,
which is marked using the coclass (i.e., COM class) keyword.

The Role of the [default] Interface
According to the laws of COM, the only possible way in which a COM client can communicate with
a COM class is to use an interface reference (not an object reference). If you have created C++-based
COM clients, you are well aware of the process of querying for a given interface, releasing the inter-
face when it is no longer used, and so forth. However, when you make use of VB 6.0 to build COM
clients, you receive a default interface on the COM class automatically.

When you build VB 6.0 COM servers, any public member on a *.cls file (such as your Add()
function) is placed onto the “default interface” of the COM class. Now, if you examine the class
definition of ComCalc, you can see that the name of the default interface is _ComCalc:

[uuid(012B1485-6834-47FF-8E53-3090FE85050C), version(1.0)]

coclass ComCalc {

[default] interface _ComCalc;

};

In case you are wondering, the name of the default interface VB 6.0 constructs in the back-
ground is always _NameOfTheClass (the underscore is a naming convention used to specify a hidden
interface, the very interface the VS 2005 Object Browser did not show by default). Thus, if you have
a class named Car, the default interface is _Car, a class named DataConnector has a default interface
named _DataConnector, and so forth.

Under VB 6.0, the default interface is completely hidden from view. However, when you write
the following VB 6.0 code:

' VB 6.0 COM client code.

Dim c As ComCalc

Set c = New ComCalc ' [default] _ComCalc interface returned automatically!

the VB runtime automatically queries the object for the default interface (as specified by the type
library) and returns it to the client. Because VB always returns the default interface on a COM class,
you can pretend that you have a true object reference. However, this is only a bit of syntactic sugar
provided by VB 6.0. In COM, there is no such thing as a direct object reference. You always have an
interface reference (even if it happens to be the default).

The Role of IDispatch
If you examine the IDL description of the default _ComCalc interface, you see that this interface
derives from a standard COM interface named IDispatch. While a full discussion concerning the
role of IDispatch is well outside of the scope of this chapter, simply understand that this is the
interface that makes it possible to interact with COM objects on the Web from within a classic
Active Server Page, as well as anywhere else where late binding is required.

When you use VB proper (as opposed to VBScript), 99 percent of the time you want to avoid
the use of IDispatch (it is slower, and errors are discovered at runtime rather than at compile time).
However, just to illustrate, say you call the VB 6.0 CreateObject() method as follows:

' VB 6.0 late binding.

Dim o As Object

Set o = CreateObject("SimpleComServer.ComCalc")

5785ch17.qxd 3/31/06 1:57 PM Page 505

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY506

You have actually instructed the VB runtime to query the COM type for the IDispatch interface.
Note that calling CreateObject() alone does not trigger a query for IDispatch. In addition, you must
store the return value in a VB 6.0 Object data type.

IDL Parameter Attributes
The final bit of IDL that you need to be aware of is how VB 6.0 parameters are expressed under the
hood. As you know, under VB 6.0 all parameters are passed by reference, unless the ByVal keyword is
used explicitly, which is represented using the IDL [in] attribute. Furthermore, a function’s return
value is marked using the [out, retval] attributes. Thus, the following VB 6.0 function:

' VB 6.0 function

Public Function Add(ByVal x as Integer, ByVal y as Integer) as Integer

Add = x + y

End Function

would be expressed in IDL like so:

HRESULT Add([in] short* x, [in] short* y, [out, retval] short*);

On the other hand, if you do not mark a parameter using the VB 6.0 ByVal keyword, ByRef is
assumed:

' These parameters are passed ByRef under VB 6.0!

Public Function Subtract(x As Integer, y As Integer) As Integer

Subtract = x - y

End Function

ByRef parameters are marked in IDL via the [in, out] attributes:

HRESULT Subtract([in, out] short x, [in, out] short y, [out, retval] short*);

Using a Type Library to Build an Interop Assembly
To be sure, the VB 6.0 compiler generates many other IDL attributes under the hood, and you see
additional bits and pieces where appropriate. However, at this point, I am sure you are wondering
exactly why I spent the last several pages describing the COM IDL. The reason is simple: when you
add a reference to a COM server using Visual Studio 2005, the IDE reads the type library to build the
corresponding interop assembly. While VS 2005 does a very good job of generating an interop assem-
bly, the Add Reference dialog box follows a default set of rules regarding how the interop assembly
will be constructed and does not allow you to fine-tune this construction.

If you require a greater level of flexibility, you have the option of generating interop assemblies
at the command prompt, using a .NET tool named tlbimp.exe (the type library importer utility).
Among other things, tlbimp.exe allows you to control the name of the .NET namespace that will
contain the types and the name of the output file. Furthermore, if you wish to assign a strong name
to your interop assembly in order to deploy it to the GAC, tlbimp.exe provides the /keyfile flag to
specify the *.snk file (see Chapter 13 for details regarding strong names). To view all of your options,
simply type tlbimp at a Visual Studio 2005 command prompt and hit the Enter key, as shown in
Figure 17-12.

5785ch17.qxd 3/31/06 1:57 PM Page 506

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 507

While this tool has numerous options, the following command could be used to generate
a strongly named interop assembly named CalcInteropAsm.dll:

tlbimp SimpleComServer.dll /keyfile:myKeyPair.snk /out:CalcInteropAsm.dll

Again, if you are happy with the interop assembly created by Visual Studio 2005, you are not
required to directly make use of tlbimp.exe.

Late Binding to the CoCalc Coclass
Once you have generated an interop assembly, your .NET applications are now able to make use of
their types using early binding or late binding techniques. Given that you have already seen how to
create a COM type using early binding at the opening of this chapter (via the VB 2005 New keyword),
let’s turn our attention to activating a COM object using late binding.

As you recall from Chapter 14, the System.Reflection namespace provides a way for you to
programmatically inspect the types contained in a given assembly at runtime. In COM, the same
sort of functionality is supported through the use of a set of standard interfaces (e.g., ITypeLib,
ITypeInfo, and so on). When a client binds to a member at runtime (rather than at compile time),
the client is said to exercise “late” binding.

By and large, you should always prefer the early binding technique using the VB 2005 New key-
word. There are times, however, when you must use late binding to a coclass. For example, some
legacy COM servers may have been constructed in such a way that they provide no type informa-
tion whatsoever. If this is the case, it should be clear that you cannot run the tlbimp.exe utility in
the first place. For these rare occurrences, you can access classic COM types using .NET reflection
services.

The process of late binding begins with a client obtaining the IDispatch interface from a given
coclass. This standard COM interface defines a total of four methods, only two of which you need to
concern yourself with at the moment. First, you have GetIDsOfNames(). This method allows a late
bound client to obtain the numerical value (called the dispatch ID, or DISPID) used to identify the
method it is attempting to invoke.

Figure 17-12. Options of tlbimp.exe

5785ch17.qxd 3/31/06 1:57 PM Page 507

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY508

In COM IDL, a member’s DISPID is assigned using the [id] attribute. If you examine the IDL
code generated by Visual Basic (using the OLE View tool), you will see that the DISPID of the Add()
method has been assigned a DISPID such as the following:

[id(0x60030000)] HRESULT Add([in] short x, [in] short y, [out, retval] short*);

This is the value that GetIDsOfNames() returns to the late bound client. Once the client obtains
this value, it makes a call to the next method of interest, Invoke(). This method of IDispatch takes
a number of arguments, one of which is the DISPID obtained using GetIDsOfNames(). In addition,
the Invoke() method takes an array of COM VARIANT types that represent the parameters passed to
the function. In the case of the Add() method, this array contains two shorts (of some value). The
final argument of Invoke() is another VARIANT that holds the return value of the method invocation
(again, a short).

Although a .NET client using late binding does not directly use the IDispatch interface, the
same general functionality comes through using the System.Reflection namespace. To illustrate,
the following is another VB 2005 client that uses late binding to trigger the Add() logic. Notice that
this application does not make reference to the assembly in any way and therefore does not require
the use of the tlbimp.exe utility.

Imports System.Reflection

Module Program

Sub Main()

Console.WriteLine("***** The Late Bound .NET Client *****")

' First get IDispatch reference from coclass.

Dim calcObj As Type = _

Type.GetTypeFromProgID("SimpleCOMServer.ComCalc")

Dim calcDisp As Object = Activator.CreateInstance(calcObj)

' Make the array of args.

Dim addArgs() As Object = {100, 24}

' Invoke the Add() method and obtain summation.

Dim sum As Object

sum = calcObj.InvokeMember("Add", BindingFlags.InvokeMethod, _

Nothing, calcDisp, addArgs)

' Display result.

Console.WriteLine("Late bound adding: 100 + 24 is: {0}", sum)

End Sub

End Module

Finally, be aware that VB 2005 does allow you to simplify your late binding code by making use
of the legacy CreateObject() method. However, the following VB 2005 late binding code would only
work if Option Strict is disabled:

' This will only compile if Option Strict is disabled.

Dim c As Object = CreateObject("SimpleCOMServer.ComCalc")

Console.WriteLine("10 + 10 = {0}", c.Add(10, 10))

■Source Code The VBNetComClientLateBinding application is included under the Chapter 17 subdirectory.

5785ch17.qxd 3/31/06 1:57 PM Page 508

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 509

Building a More Interesting VB 6.0 COM Server
So much for Math 101. It’s time to build a more exotic VB 6.0 ActiveX server that makes use of more
elaborate COM programming techniques. Create a brand-new ActiveX *.dll workspace named
Vb6ComCarServer. Rename your initial class to CoCar, which is implemented like so:

Option Explicit

' A COM enum.

Enum CarType

Viper

Colt

BMW

End Enum

' A COM Event.

Public Event BlewUp()

' Member variables.

Private currSp As Integer

Private maxSp As Integer

Private Make As CarType

' Remember! All Public members

' are exposed by the default interface!

Public Property Get CurrentSpeed() As Integer

CurrentSpeed = currSp

End Property

Public Property Get CarMake() As CarType

CarMake = Make

End Property

Public Sub SpeedUp()

currSp = currSp + 10

If currSp >= maxSp Then

RaiseEvent BlewUp ' Fire event If you max out the engine.

End If

End Sub

Private Sub Class_Initialize()

MsgBox "Init COM car"

End Sub

Public Sub Create(ByVal max As Integer, _

ByVal cur As Integer, ByVal t As CarType)

maxSp = max

currSp = cur

Make = t

End Sub

As you can see, this is a simple COM class that mimics the functionality of the VB 2005 Car class
used throughout this text. The only point of interest is the Create() subroutine, which allows the
caller to pass in the state data representing the Car object. (Remember, VB 6.0 has no support for
class constructors!)

5785ch17.qxd 3/31/06 1:57 PM Page 509

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY510

Supporting an Additional COM Interface
Now that you have fleshed out the details of building a COM class with a single (default) interface,
insert a new *.cls file that defines the following IDriverInfo interface:

Option Explicit

' Driver has a name

Public Property Let driverName(ByVal s As String)

End Property

Public Property Get driverName() As String

End Property

If you have created COM objects supporting multiple interfaces, you are aware that VB 6.0 pro-
vides the Implements keyword. Once you specify the interfaces implemented by a given COM class,
you are able to make use of the VB 6.0 code window to build the method stubs. Assume you have added
a private String variable (driverName) to the CoCar class type and implemented the IDriverInfo
interface as follows:

' Implemented interfaces

' [General][Declarations]

Implements IDriverInfo

...

' ***** IDriverInfo impl ***** '

Private Property Let IDriverInfo_driverName(ByVal RHS As String)

driverName = RHS

End Property

Private Property Get IDriverInfo_driverName() As String

IDriverInfo_driverName = driverName

End Property

To wrap up this interface implementation, set the Instancing property of IDriverInfo to
PublicNotCreatable (given that the outside world should not be able to “New” an interface reference).

Exposing an Inner Object
Under VB 6.0 (as well as COM itself), we do not have the luxury of classical implementation inheritance.
Rather, you are limited to the use of the containment/delegation model (the “has-a” relationship).
For testing purposes, add a final *.cls file to your current VB 6.0 project named Engine, and set its
instancing property to PublicNotCreatable (as you want to prevent the user from directly creating
an Engine object).

The default public interface of Engine is short and sweet. Define a single function that returns
an array of strings to the outside world representing pet names for each cylinder of the engine (okay,
no right-minded person gives friendly names to his or her cylinders, but hey . . .):

Option Explicit

Public Function GetCylinders() As String()

Dim c(3) As String

c(0) = "Grimey"

c(1) = "Thumper"

c(2) = "Oily"

c(3) = "Crusher"

GetCylinders = c

End Function

Finally, add a method to the default interface of CoCar named GetEngine(), which returns an
instance of the contained Engine (I assume you will create a Private member variable named eng of
type Engine for this purpose):

5785ch17.qxd 3/31/06 1:57 PM Page 510

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 511

Figure 17-13. The Interop.VbComCarServer.dll assembly

' Return the Engine to the world.

Public Function GetEngine() As Engine

Set GetEngine = eng

End Function

At this point you have an ActiveX server that contains a COM class supporting two interfaces.
As well, you are able to return an internal COM type using the [default] interface of the CoCar and
interact with some common programming constructs (enums and COM arrays). Go ahead and
compile your sever (setting binary compatibility, once finished), and then close down your current
VB 6.0 workspace.

■Source Code The Vb6ComCarServer project is included under the Chapter 17 subdirectory.

Examining the Interop Assembly
Rather than making use of the tlbimp.exe utility to generate our interop assembly, simply create
a new console project (named VbNetCarClient) using Visual Studio 2005 and set a reference to the
Vb6ComCarServer.dll using the COM tab of the Add Reference dialog box. Now, examine the interop
assembly using the VS 2005 Object Browser utility, as shown in Figure 17-13.

Assuming you have configured the Object Browser to show hidden types, you will find that
you once again have a number of Class-suffixed and underscore-prefixed interface types, as
well as a number of new items we have not yet examined, whose names suggest they may be
used to handle COM to .NET event notifications (__CoCar_Event, __CoCar_SinkHelper, and
__CoCarBlewUpEventHandler in particular). Recall from earlier in this chapter, I mentioned that
when a COM object exposes COM events, the interop assembly will contain additional CIL code
that is used by the CLR to map COM events to .NET events (you’ll see them in action in just a bit).

Building our VB 2005 Client Application
Given that the CLR will automatically create the necessary RCW at runtime, our VB 2005 application
can program directly against the CoCar, CarType, Engine, and IDriveInfo types as if they were all
implemented using managed code. Here is the complete module, with analysis to follow:

5785ch17.qxd 3/31/06 1:57 PM Page 511

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY512

Imports Vb6ComCarServer

Module Program

' Create the COM class using

' early binding.

Public WithEvents myCar As New CoCar()

Sub Main()

Console.WriteLine("***** CoCar Client App *****")

' Call the Create() method.

myCar.Create(50, 10, CarType.BMW)

' Set name of driver.

Dim itf As IDriverInfo

itf = CType(myCar, IDriverInfo)

itf.driverName = "Fred"

Console.WriteLine("Drive is named: {0}", itf.driverName)

' Print type of car.

Console.WriteLine("Your car is a {0}.", myCar.CarMake())

Console.WriteLine()

' Get the Engine and print name of a Cylinders.

Dim eng As Engine = myCar.GetEngine()

Console.WriteLine("Your Cylinders are named:")

Dim names() As String = CType(eng.GetCylinders(), String())

For Each s As String In names

Console.WriteLine(s)

Next

Console.WriteLine()

' Speed up car to trigger event.

For i As Integer = 0 To 3

myCar.SpeedUp()

Next

End Sub

Private Sub myCar_BlewUp() Handles myCar.BlewUp

Console.WriteLine("***** Ek! Car is doomed...! *****")

End Sub

End Module

Interacting with the CoCar Type
Recall that when we created the VB 6.0 CoCar, we defined and implemented a custom COM interface
named IDriverInfo, in addition to the automatically generated default interface (_CoCar) created by
the VB 6.0 compiler. When our Main() method creates an instance of CoCar, we only have direct access
to the members of the _CoCar interface, which as you recall will be composed by each public mem-
ber of the COM class:

' Here, you are really working with the [default] interface.

myCar.Create(50, 10, CarType.BMW)

Given this fact, in order to invoke the driverInfo property of the IDriverInfo interface, we
must explicitly cast the CoCar object to an IDriverInfo interface as follows:

5785ch17.qxd 3/31/06 1:57 PM Page 512

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 513

Figure 17-14. The composition of CoCarClass

' Set name of driver.

Dim itf As IDriverInfo

itf = CType(myCar, IDriverInfo)

itf.driverName = "Fred"

Console.WriteLine("Drive is named: {0}", itf.driverName)

Recall, however, that when a type library is converted into an interop assembly, it will contain
Class-suffixed types that expose every member of every interface. Therefore, if you so choose, you
could simplify your programming if you create and make use of a CoCarClass object, rather than
a CoCar object. For example, consider the following subroutine, which makes use of members of the
default interface of CoCar as well as members of IDriverInfo:

Sub UseCar()

Dim c As New CoCarClass()

' This property is a member of IDriverInfo.

c.driverName = "Mary"

' This method is a member of _CoCar.

c.SpeedUp()

End Sub

■Note Remember, because the Class-suffixed types are hidden by default, they will not appear in the Visual
Studio 2005 IntelliSense.

If you are wondering exactly how this single type is exposing members of each implemented
interface, check out the list of implemented interfaces and the base class of CoCarClass using the
Visual Studio 2005 Object Browser (see Figure 17-14).

As you can see, this type implements the hidden _CoCar and _IDriverInfo interfaces and
exposes them as “normal” public members.

5785ch17.qxd 3/31/06 1:57 PM Page 513

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY514

Intercepting COM Events
In Chapter 10, you learned about the .NET event model. Recall that this architecture is based on
delegating the flow of logic from one part of the application to another. The entity in charge of for-
warding a request is a type deriving from System.MulticastDelegate, which we create indirectly in
VB 2005 using the Delegate keyword.

When the tlbimp.exe utility encounters event definitions in the COM server’s type library, it
responds by creating a number of managed types that wrap the low-level COM connection point
architecture. Using these types, you can pretend to add a member to a System.MulticastDelegate’s
internal list of methods. Under the hood, of course, the proxy is mapping the incoming COM event
to their managed equivalents. Table 17-3 briefly describes these types.

Table 17-3. COM Event Helper Types

Generated Type (Based on the
_CarEvents [source] Interface) Meaning in Life

__CoCar_Event This is a managed interface that defines the add and remove
members used to add (or remove) a method to (or from) the
System.MulticastDelegate’s linked list.

__CoCar_BlewUpEventHandler This is the managed delegate (which derives from
System.MulticastDelegate).

__CoCar_SinkHelper This generated class implements the outbound interface in
a .NET-aware sink object.

As you would hope, the VB 2005 language does not require you to make direct use of these
types. Rather, you are able to handle the incoming COM events in the same way you handle events
based on the .NET delegation architecture. Simply declare the COM type WithEvents, and use the
Handles keyword to map the event to a given method (or make use of the AddHandler/RemoveHandler
statements).

Module Program

Public WithEvents myCar As New CoCar

...

Private Sub myCar_BlewUp() Handles myCar.BlewUp

Console.WriteLine("***** Ek! Car is doomed...! *****")

End Sub

End Module

■Source Code The VbNetCarClient project is included under the Chapter 17 subdirectory.

That wraps up our investigation of how a .NET application can communicate with a legacy COM
application. Now be aware that the techniques you have just learned would work for any COM server
at all. This is important to remember, given that many COM servers might never be rewritten as
native .NET applications. For example, the object models of Microsoft Outlook and Microsoft Office
products are currently exposed as COM types. Thus, if you needed to build a .NET program that
interacted with these products, the interoperability layer is (currently) mandatory.

5785ch17.qxd 3/31/06 1:57 PM Page 514

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 515

Understanding COM to .NET Interoperability
The next topic of this chapter is to examine the process of a COM application communicating with
a .NET type. This “direction” of interop allows legacy COM code bases (such as your existing VB 6.0
projects) to make use of functionality contained within newer .NET assemblies. As you might imag-
ine, this situation is less likely to occur than .NET to COM interop; however, it is still worth exploring.

For a COM application to make use of a .NET type, we somehow need to fool the COM program
into believing that the managed .NET type is in fact unmanaged. In essence, you need to allow the
COM application to interact with the .NET type using the functionality required by the COM archi-
tecture. For example, the COM type should be able to obtain new interfaces through
QueryInterface() calls, simulate unmanaged memory management using AddRef() and Release(),
make use of the COM connection point protocol, and so on. Again, although VB 6.0 does not expose
this level of COM infrastructure to the surface, it must exist nonetheless.

Beyond fooling the COM client, COM to .NET interoperability also involves fooling the COM
runtime. As you know, a COM server is activated using the COM runtime rather than the CLR. For
this to happen, the COM runtime must look up numerous bits of information in the system registry
(ProgIDs, CLSIDs, IIDs, and so forth). The problem, of course, is that .NET assemblies are not regis-
tered in the registry in the first place!

In a nutshell, to make your .NET assemblies available to COM clients, you must take the following
steps:

1. Register your .NET assembly in the system registry to allow the COM runtime to locate it.

2. Generate a COM type library (*.tlb) file (based on the .NET metadata) to allow the COM
client to interact with the public types.

3. Deploy the assembly in the same directory as the COM client or (more typically) install it
into the GAC.

As you will see, these steps can be performed using Visual Studio 2005 or at the command line
using various tools that ship with the .NET Framework 2.0 SDK.

The Attributes of System.Runtime.InteropServices
In addition to performing these steps, you will typically also need to decorate your VB 2005 types
with various .NET attributes, all of which are defined in the System.Runtime.InteropServices name-
space. These attributes ultimately control how the COM type library is created and therefore control
how the COM application is able to interact with your managed types. Table 17-4 documents some
(but not all) of the attributes you can use to control the generated COM type library.

Table 17-4. Select Attributes of System.Runtime.InteropServices

.NET Interop Attribute Meaning in Life

<ClassInterface> Used to create a default COM interface for a .NET class type.

<ComClass> This attribute is similar to <ClassInterface>, except it also provides the
ability to establish the GUIDs used for the class ID (CLSID) and
interface IDs of the COM types within the type library.

<DispId> Used to hard-code the DISPID values assigned to a member for
purposes of late binding.

<Guid> Used to hard-code a GUID value in the COM type library.

<In> Exposes a member parameter as an input parameter in COM IDL.

<InterfaceType> Used to control how a .NET interface should be exposed to COM
(IDispatch-only, dual, or IUnknown-only).

<Out> Exposes a member parameter as an output parameter in COM IDL.

5785ch17.qxd 3/31/06 1:57 PM Page 515

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY516

Now do be aware that for simple COM to .NET interop scenarios, you are not required to adorn
your .NET code with dozens of attributes in order to control how the underlying COM type library is
defined. However, when you need to be very specific regarding how your .NET types will be exposed
to COM, the more you understand COM IDL attributes the better, given that the attributes defined
in System.Runtime.InteropServices are little more than managed definitions of these IDL keywords.

The Role of the CCW
Before we walk through the steps of exposing a .NET type to COM, let’s take a look at exactly how
COM programs interact with .NET types using a COM Callable Wrapper, or CCW. As you have seen,
when a .NET program communicates with a COM type, the CLR creates a Runtime Callable Wrapper.
In a similar vein, when a COM client accesses a .NET type, the CLR makes use of an intervening proxy
termed the COM Callable Wrapper to negotiate the COM to .NET conversion (see Figure 17-15).

Like any COM object, the CCW is a reference-counted entity. This should make sense, given
that the COM client is assuming that the CCW is a real COM type and thus must abide by the rules
of AddRef() and Release(). When the COM client has issued the final release, the CCW releases its
reference to the real .NET type, at which point it is ready to be garbage collected.

The CCW implements a number of COM interfaces automatically to further the illusion that
the proxy represents a genuine coclass. In addition to the set of custom interfaces defined by the
.NET type (including an entity termed the class interface that you examine in just a moment), the
CCW provides support for the standard COM behaviors described in Table 17-5.

Table 17-5. The CCW Supports Many Core COM Interfaces

CCW-implemented Interface Meaning in Life

IConnectionPointContainer If the .NET type supports any events, they are represented as COM
IConnectionPoint connection points.

IEnumVariant If the .NET type supports the IEnumerable interface, it appears to
the COM client as a standard COM enumerator.

ISupportErrorInfo These interfaces allow coclasses to send COM error objects.
IErrorInfo

Figure 17-15. COM types talk to .NET types using a CCW.

5785ch17.qxd 3/31/06 1:57 PM Page 516

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 517

CCW-implemented Interface Meaning in Life

ITypeInfo These interfaces allow the COM client to pretend to manipulate an
IProvideClassInfo assembly’s COM type information. In reality, the COM client is

interacting with .NET metadata.

IUnknown These core COM interfaces provide support for early and late
IDispatch binding to the .NET type. IDispatchEx can be supported by the
IDispatchEx CCW if the .NET type implements the IExpando interface.

The Role of the .NET Class Interface
In classic COM, the only way a COM client can communicate with a COM object is to use an interface
reference. In contrast, .NET types do not need to support any interfaces whatsoever, which is clearly
a problem for a COM caller. Given that classic COM clients cannot work with object references,
another responsibility of the CCW is to expose a class interface to represent each member defined
by the type’s public sector. As you can see, the CCW is taking the same approach as Visual Basic 6.0!

Defining a Class Interface
To define a class interface for your .NET types, you will need to apply the <ClassInterface> attribute
on each public class you wish to expose to COM. Again, doing so will ensure that each public mem-
ber of the class is exposed to a default autogenerated interface that follows the same exact naming
convention as VB 6.0 (_NameOfTheClass). Technically speaking, applying this attribute is optional;
however, you will almost always wish to do so. If you do not, the only way the COM caller can commu-
nicate with the type is using late binding (which is far less type safe and typically results in slower
performance).

The <ClassInterface> attribute supports a named property (ClassInterfaceType) that controls
exactly how this default interface should appear in the COM type library. Table 17-6 defines the
possible settings.

Table 17-6. Values of the ClassInterfaceType Enumeration

ClassInterfaceType Member Name Meaning in Life

AutoDispatch Indicates the autogenerated default interface will only
support late binding, and is equivalent to not applying the
<ClassInterface> attribute at all.

AutoDual Indicates that the autogenerated default interface is a “dual
interface” and can therefore be interacted with using early
binding or late binding. This would be the same behavior
taken by VB 6.0 when it defines a default COM interface.

None Indicates that no interface will be generated for the class.
This can be helpful when you have defined your own strongly
typed .NET interfaces that will be exposed to COM, and do
not wish to have the “freebee” interface.

In the next example, you specify ClassInterfaceType.AutoDual as the class interface designation.
In this way, late binding clients such as VBScript can access the Add() and Subtract() methods using
IDispatch, while early bound clients (such as VB 6.0 or C++) can use the class interface (named
_VbDotNetCalc).

5785ch17.qxd 3/31/06 1:57 PM Page 517

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY518

Building Your .NET Types
To illustrate a COM type communicating with managed code, assume you have created a simple
VB 2005 Class Library project named ComUsableDotNetServer, which defines a class named DotNetCalc.
This class will define two simple methods named Add() and Subtract(). The implementation logic
is trivial; however, notice the use of the <ClassInterface> attribute:

' We need this to obtain the necessary

' interop attributes.

Imports System.Runtime.InteropServices

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class DotNetCalc

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

Public Function Subtract(ByVal x As Integer, ByVal y As Integer) As Integer

Return x - y

End Function

End Class

As mentioned earlier in this chapter, in the world of COM, just about everything is identified
using a 128-bit number termed a GUID. These values are recorded into the system registry in order
to define an identity of the COM type. Here, we have not specifically defined GUID values for our
DotNetCalc class, and therefore the type library exporter tool (tlbexp.exe) will generate GUIDs on
the fly. The problem with this approach, of course, is that each time you generate the type library
(which we will do shortly), you receive unique GUID values, which can break existing COM clients.

To define specific GUID values, you may make use of the guidgen.exe utility, which is accessi-
ble from the Tools ➤ Create Guid menu item of Visual Studio 2005. Although this tool provides four
GUID formats, the <Guid> attribute demands the GUID value be defined using the Registry Format
option, as shown in Figure 17-16.

Once you copy this value to your clipboard (via the Copy GUID button), you can then paste it
in as an argument to the <Guid> attribute. Be aware that you must remove the curly brackets from
the GUID value! This being said, here is our updated DotNetCalc class type:

Figure 17-16. Obtaining a GUID value

5785ch17.qxd 3/31/06 1:57 PM Page 518

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 519

<ClassInterface(ClassInterfaceType.AutoDual)> _

<Guid("88737214-2E55-4d1b-A354-7A538BD9AB2D")> _

Public Class DotNetCalc

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y

End Function

Public Function Subtract(ByVal x As Integer, ByVal y As Integer) As Integer

Return x - y

End Function

End Class

On a related note, click the Show All Files button on the Solution Explorer and open up the
assemblyInfo.vb file located under the My Project icon. By default, all Visual Studio 2005 project
workspaces are provided with an assembly-level <Guid> attribute used to identify the GUID of the
type library generated based on the .NET server (if exposed to COM).

' The following GUID is for the ID of the typelib if this project is exposed to COM

<Assembly: Guid("EB268C4F-EB36-464C-8A25-93212C00DC89")>

Inserting a COM Class Using Visual Studio 2005
While you are always able to manually add attributes to a .NET type for purposes of COM interop,
Visual Studio 2005 provides a project item named Com Class, which can be inserted using the
Project ➤ Add New Item dialog box. To illustrate, insert a new COM type named DotNetPerson, as
you see in Figure 17-17.

Although the name of this project item is termed Com Class, it should be clear that what you
are really inserting into your project is a .NET class type that is adorned with several attributes that
expose this type to COM. Here is the initial code definition of the DotNetPerson:

Figure 17-17. Inserting a Com Class using Visual Studio 2005

5785ch17.qxd 3/31/06 1:57 PM Page 519

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY520

<ComClass(DotNetPerson.ClassId, _

DotNetPerson.InterfaceId, DotNetPerson.EventsId)> _

Public Class DotNetPerson

#Region "COM GUIDs"

' These GUIDs provide the COM identity for this class

' and its COM interfaces. If you change them, existing

' clients will no longer be able to access the class.

Public Const ClassId As String = "ec2a6ec2-a681-41a1-a644-30c16c7409a9"

Public Const InterfaceId As String = "ea905f17-5f7f-4958-b8c6-a95f419063a8"

Public Const EventsId As String = "57c3d0e3-9e15-4b6a-a96e-b4c6736c7b6d"

#End Region

' A creatable COM class must have a Public Sub New()

' with no parameters; otherwise, the class will not be

' registered in the COM registry and cannot be created

' via CreateObject.

Public Sub New()

MyBase.New()

End Sub

End Class

As you can see, DotNetPerson has been attributed with the <ComClass> attribute, rather than the
<ClassInterface> attribute used previously. One benefit of <ComClass> is that it allows us to estab-
lish the necessary GUIDs as direct arguments, as opposed to making use of additional attributes
(such as <Guid>) individually. As well, notice that we have already been provided with a set of GUID
values, and thus have no need to manually run the guidgen.exe utility.

■Note As explained in the generated code comments, all .NET types exposed to COM must have a default con-
structor. Recall that when you define a custom constructor, the default is removed from the class definition. Here,
the Com Class template ensures this does not happen by explicitly defining the default constructor in the initial code.

For testing purposes, add a single method to your DotNetPerson type that returns a hard-coded
string.

Public Function GetMessage() As String

Return "I am alive..."

End Function

Defining a Strong Name
As a best practice, all .NET assemblies that are exposed to COM should be assigned a strong name
and installed into the global assembly cache (the GAC). Technically speaking, this is not required;
however, if you do not deploy the assembly to the GAC, you will need to copy this assembly into the
same folder as the COM application making use of it.

Given that Chapter 13 already walked you though the details of defining a strongly named
assembly, simply generate a new *.snk file for signing purposes using the Signing tab of the My Project
editor (see Figure 17-18).

5785ch17.qxd 3/31/06 1:57 PM Page 520

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 521

At this point, you can compile your assembly and install ComUsableDotNetServer.dll into the
GAC using gacutil.exe (again, see Chapter 13 for details).

gacutil -i ComUsableDotNetServer.dll

Generating the Type Library and Registering the
.NET Types
At this point, we are ready to generate the necessary COM type library and register our .NET assem-
bly into the system registry for use by COM. Do to so, you can take two possible approaches. Your first
approach is to use a command-line tool named regasm.exe, which ships with the .NET Framework 2.0
SDK. This tool will add several listings to the system registry, and when you specify the /tlb flag, it
will also generate the required type library, as shown here:

regasm DotNetCalc.dll /tlb:VbDotNetCalc.tlb

■Note The .NET Framework 2.0 SDK also provides a tool named tlbexp.exe. Like regasm.exe, this tool will
generate type libraries from a .NET assembly; however, it does not add the necessary registry entries. Given this, it
is more common to simply use regasm.exe to perform each required step.

While regasm.exe provides the greatest level of flexibility regarding how the COM type library is
to be generated, Visual Studio 2005 provides a handy alternative. Using the My Project editor, simply
check the Register for COM Interop option on the Compile tab, as shown in Figure 17-19, and recom-
pile your assembly.

Figure 17-18. Generating a strong name using Visual Studio 2005

5785ch17.qxd 3/31/06 1:57 PM Page 521

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY522

Once you have run regasm.exe or enabled the Register for COM Interop option, you will find
that your bin\Debug folder now contains a COM type library file (taking a *.tlb file extension).

■Source Code The ComUsableDotNetServer application is included under the Chapter 17 subdirectory.

Examining the Exported Type Information
Now that you have generated the corresponding COM type library, you can view its contents using
the OLE View utility by loading the *.tlb file. If you load ComUsableDotNetServer.tlb (via the File ➤

View Type Library menu option), you will find the COM type descriptions for each of your .NET class
types. For example, the DotNetCalc class has been defined to support the default _DotNetClass inter-
face (due to the <ClassInterface> attribute, as well as an interface named (surprise, surprise) _Object.
As you would guess, this is a unmanaged definition of the functionality defined by System.Object:

[uuid(88737214-2E55-4D1B-A354-7A538BD9AB2D),

version(1.0), custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"ComUsableDotNetServer.DotNetCalc")]

coclass DotNetCalc {

[default] interface _DotNetCalc;

interface _Object;

};

As specified by the <ClassInterface> attribute, the default interface has been configured as
a dual interface, and can therefore be accessed using early or late binding:

[odl, uuid(AC807681-8C59-39A2-AD49-3072994C1EB1), hidden,

dual, nonextensible, oleautomation,

custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},

"ComUsableDotNetServer.DotNetCalc")]

interface _DotNetCalc : IDispatch {

[id(00000000), propget,

custom({54FC8F55-38DE-4703-9C4E-250351302B1C}, "1")]

HRESULT ToString([out, retval] BSTR* pRetVal);

[id(0x60020001)]

HRESULT Equals([in] VARIANT obj,

[out, retval] VARIANT_BOOL* pRetVal);

Figure 17-19. Registering an assembly for COM interop using Visual Studio 2005

5785ch17.qxd 3/31/06 1:57 PM Page 522

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY 523

[id(0x60020002)]

HRESULT GetHashCode([out, retval] long* pRetVal);

[id(0x60020003)]

HRESULT GetType([out, retval] _Type** pRetVal);

[id(0x60020004)]

HRESULT Add([in] long x, [in] long y,

[out, retval] long* pRetVal);

[id(0x60020005)]

HRESULT Subtract([in] long x, [in] long y,

[out, retval] long* pRetVal);

};

Notice that the _DotNetCalc interface not only describes the Add() and Subtract() methods,
but also exposes the members inherited by System.Object! As a rule, when you expose a .NET class
type to COM, all public methods defined up the chain of inheritance are also exposed through the
autogenerated class interface.

Building a Visual Basic 6.0 Test Client
Now that the .NET assembly has been properly configured to interact with the COM runtime, you
can build some COM clients. You can create a simple VB 6.0 Standard *.exe project type (named
VB6_DotNetClient) and set a reference to the new generated type library (see Figure 17-20).

As for the GUI front end, keep things really simple. A single Button object will be used to
manipulate the DotNetCalc .NET type. Here is the code (notice that you are also invoking
ToString(), defined by the _Object interface):

Private Sub btnUseDotNetObject_Click()

' Create the .NET object.

Dim c As New DotNetCalc

MsgBox c.Add(10, 10), , "Adding with .NET"

Figure 17-20. Referencing your .NET server from VB 6.0

5785ch17.qxd 3/31/06 1:57 PM Page 523

CHAPTER 17 ■ COM AND .NET INTEROPERABIL ITY524

' Invoke some members of System.Object.

MsgBox c.ToString, , "ToString value"

End Sub

■Source Code The VB6_DotNetClient application is included under the Chapter 17 subdirectory.

So, at this point you have seen the process of building .NET applications that talk to COM types
and COM applications that talk to .NET types. Again, while there are many additional topics regard-
ing the role of interop services, you should be in a solid position for further exploration.

Summary
.NET is a wonderful thing. Nevertheless, managed and unmanaged code must learn to work together
for some time to come. Given this fact, the .NET platform provides various techniques that allow
you to blend the best of both worlds.

A major section of this chapter focused on the details of .NET types using legacy COM compo-
nents. As you have seen, the process begins by generating an assembly proxy for your COM types.
The RCW forwards calls to the underlying COM binary and takes care of the details of mapping
COM types to their .NET equivalents.

The chapter concluded by examining how COM types can call on the services of newer .NET
types. As you have seen, this requires that the creatable types in the .NET assembly are registered
for use by COM, and that the .NET types are described via a COM type library.

5785ch17.qxd 3/31/06 1:57 PM Page 524

Exploring the .NET Base
Class Libraries

P A R T 6

■ ■ ■

5785ch18.qxd 3/31/06 11:05 AM Page 525

5785ch18.qxd 3/31/06 11:05 AM Page 526

C H A P T E R 1 8

■ ■ ■

The System.IO Namespace

When you are creating full-blown desktop applications, the ability to save information between
user sessions is imperative. This chapter examines a number of I/O-related topics as seen through the
eyes of the .NET Framework. The first order of business is to explore the core types defined in
the System.IO namespace and come to understand how to programmatically modify a machine’s
directory and file structure. Once you can do so, the next task is to explore various ways to read from
and write to character-based, binary-based, string-based, and memory-based data stores.

Exploring the System.IO Namespace
In the framework of .NET, the System.IO namespace is the region of the base class libraries devoted
to file-based (and memory-based) input and output (I/O) services. Like any namespace, System.IO
defines a set of classes, interfaces, enumerations, structures, and delegates, most of which are contained
in mscorlib.dll. In addition to the types contained within mscorlib.dll, the System.dll assembly
defines additional types of the System.IO namespace (given that all Visual Studio 2005 projects auto-
matically set a reference to both assemblies, you should be ready to go).

Many of the types within the System.IO namespace focus on the programmatic manipulation
of physical directories and files. However, additional types provide support to read data from and
write data to string buffers as well as raw memory locations. To give you a road map of the function-
ality in System.IO, Table 18-1 outlines the core (nonabstract) classes.

Table 18-1. Key Members of the System.IO Namespace

Nonabstract I/O Class Type Meaning in Life

BinaryReader These types allow you to store and retrieve primitive data types
BinaryWriter (integers, Booleans, strings, and whatnot) as a binary value.

BufferedStream This type provides temporary storage for a stream of bytes that may
be committed to storage at a later time.

Directory These types are used to manipulate a machine’s directory structure.
DirectoryInfo The Directory type exposes functionality primarily as shared

methods. The DirectoryInfo type exposes similar functionality
from a valid object variable.

DriveInfo This type (new to .NET 2.0) provides detailed information regarding
the drives on a given machine.

File These types are used to manipulate a machine’s set of files. The type
FileInfo exposes functionality primarily as shared methods. The FileInfo

type exposes similar functionality from a valid object variable.

Continued

527

5785ch18.qxd 3/31/06 11:05 AM Page 527

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE528

Table 18-1. Continued

Nonabstract I/O Class Type Meaning in Life

FileStream This type allows for random file access (e.g., seeking capabilities)
with data represented as a stream of bytes.

FileSystemWatcher This type allows you to monitor the modification of a given external file.

MemoryStream This type provides random access to streamed data stored in memory
rather than a physical file.

Path This type performs operations on System.String types that contain
file or directory path information in a platform-neutral manner.

StreamWriter These types are used to store (and retrieve) textual information to (or
StreamReader from) a file. These types do not support random file access.

StringWriter Like the StreamReader/StreamWriter types, these classes also work
StringReader with textual information. However, the underlying storage is a string

buffer rather than a physical file.

In addition to these creatable class types, System.IO defines a number of enumerations, as well
as a set of abstract classes (Stream, TextReader, TextWriter, and so forth), that define a shared poly-
morphic interface to all descendents. You will read about many of these types in this chapter.

The Directory(Info) and File(Info) Types
System.IO provides four types that allow you to manipulate individual files, as well as interact with
a machine’s directory structure. The first two types, Directory and File, expose creation, deletion,
copying, and moving operations using various shared members. The closely related FileInfo and
DirectoryInfo types expose similar functionality as instance-level methods (and therefore these
types must be instantiated with the VB 2005 New keyword). In Figure 18-1, notice that the Directory
and File types directly extend System.Object, while DirectoryInfo and FileInfo derive from the
abstract FileSystemInfo type.

Generally speaking, FileInfo and DirectoryInfo are better choices for recursive operations (such
as enumerating all subdirectories under a given root), as the Directory and File class members tend
to return string values rather than strongly typed objects. However, as you will see, in many cases
File and FileInfo (as well as Directory and DirectoryInfo) offer similar functionality.

Figure 18-1. The File- and Directory-centric types

5785ch18.qxd 3/31/06 11:05 AM Page 528

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 529

The Abstract FileSystemInfo Base Class
The DirectoryInfo and FileInfo types receive many behaviors from the abstract FileSystemInfo
base class. For the most part, the members of the FileSystemInfo class are used to discover general
characteristics (such as time of creation, various attributes, and so forth) about a given file or direc-
tory. Table 18-2 lists some core properties of interest.

Table 18-2. FileSystemInfo Properties

Property Meaning in Life

Attributes Gets or sets the attributes associated with the current file that are represented
by the FileAttributes enumeration.

CreationTime Gets or sets the time of creation for the current file or directory.

Exists Can be used to determine whether a given file or directory exists.

Extension Retrieves a file’s extension.

FullName Gets the full path of the directory or file.

LastAccessTime Gets or sets the time the current file or directory was last accessed.

LastWriteTime Gets or sets the time when the current file or directory was last written to.

Name For files, gets the name of the file. For directories, gets the name of the last
directory in the hierarchy if a hierarchy exists. Otherwise, the Name property
gets the name of the directory.

The FileSystemInfo type also defines the Delete() method. This is implemented by derived
types to delete a given file or directory from the hard drive. As well, Refresh() can be called prior to
obtaining attribute information to ensure that the statistics regarding the current file (or directory)
are not outdated.

Working with the DirectoryInfo Type
The first creatable I/O-centric type you will examine is the DirectoryInfo class. This class contains
a set of members used for creating, moving, deleting, and enumerating over directories and subdi-
rectories. In addition to the functionality provided by its base class (FileSystemInfo), DirectoryInfo
offers the key members in Table 18-3.

Table 18-3. Key Members of the DirectoryInfo Type

Members Meaning in Life

Create() Create a directory (or set of subdirectories), given a path name
CreateSubdirectory()

Delete() Deletes a directory and all its contents

GetDirectories() Returns an array of strings that represent all subdirectories in the
current directory

GetFiles() Retrieves an array of FileInfo types that represent a set of files in the
given directory

MoveTo() Moves a directory and its contents to a new path

Parent Retrieves the parent directory of the specified path

Root Gets the root portion of a path

5785ch18.qxd 3/31/06 11:05 AM Page 529

You begin working with the DirectoryInfo type by specifying a particular directory path as
a constructor parameter. If you want to obtain access to the current application directory (i.e., the
directory of the executing application), use the "." notation. Here are some examples:

' Bind to the current application directory.

Dim dir1 As DirectoryInfo = New DirectoryInfo(".")

' Bind to C:\Windows.

Dim dir2 As DirectoryInfo = New DirectoryInfo("C:\Windows")

In the second example, you are making the assumption that the path passed into the constructor
(C:\Windows) already exists on the physical machine. However, if you attempt to interact with
a nonexistent directory, a System.IO.DirectoryNotFoundException is thrown. Thus, if you specify
a directory that is not yet created, you will need to call the Create() method before proceeding:

' Bind to a nonexistent directory, then create it.

Dim dir3 As DirectoryInfo = New DirectoryInfo("C:\Windows\Testing")

dir3.Create()

Once you have created a DirectoryInfo object, you can investigate the underlying directory
contents using any of the properties inherited from FileSystemInfo. To illustrate, the following class
creates a new DirectoryInfo object mapped to C:\Windows (adjust your path if need be) and displays
a number of interesting statistics (see Figure 18-2 for the corresponding output):

Imports System.IO

Module Program

Sub Main()

Console.WriteLine("***** Fun with Directory(Info) *****")

Console.WriteLine()

' Get basic info about C:\Windows

Dim dir As DirectoryInfo = New DirectoryInfo("C:\Windows")

Console.WriteLine("***** Directory Info *****")

Console.WriteLine("FullName: {0}", dir.FullName)

Console.WriteLine("Name: {0}", dir.Name)

Console.WriteLine("Parent: {0}", dir.Parent)

Console.WriteLine("Creation: {0}", dir.CreationTime)

Console.WriteLine("Attributes: {0}", dir.Attributes)

Console.WriteLine("Root: {0}", dir.Root)

Console.WriteLine("**************************")

Console.ReadLine()

End Sub

End Module

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE530

Figure 18-2. Information about your Windows directory

5785ch18.qxd 3/31/06 11:05 AM Page 530

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 531

The FileAttributes Enumeration
The Attributes property exposed by FileSystemInfo provides various traits for the current directory
or file, all of which are represented by the FileAttributes enumeration (enum). While the names of
this enum are fairly self-describing (e.g., Temporary, Encrypted, etc.), some of the less obvious names
are documented here (consult the .NET Framework 2.0 SDK documentation for full details):

Enum FileAttributes

ReadOnly

Hidden

' The file is part of the operating system or is used

' exclusively by the operating system.

System

Directory

Archive

' This name is reserved for future use.

Device

' The file is 'normal' as it has no other attributes set.

Normal

Temporary

' Sparse files are typically large files whose data are mostly zeros.

SparseFile

' A block of user-defined data associated with a file or a directory

ReparsePoint

Compressed

Offline

' The file will not be indexed by the operating system's

' content indexing service.

NotContentIndexed

Encrypted

End Enum

Enumerating Files with the DirectoryInfo Type
In addition to obtaining basic details of an existing directory, you can extend the current example to
use some methods of the DirectoryInfo type. First, let’s leverage the GetFiles() method to obtain
information about all *.bmp files located under the C:\Windows directory. This method returns an
array of FileInfo types, each of which exposes details of a particular file (full details of the FileInfo
type are explored later in this chapter):

Module Program

Sub Main()

Console.WriteLine("***** Fun with Directory(Info) *****")

Console.WriteLine()

' Get basic info about C:\Windows

Dim dir As DirectoryInfo = New DirectoryInfo("C:\Windows")

...

' Get info about all *.bmp files in the C:\Windows directory.

Dim bitmapFiles As FileInfo() = dir.GetFiles("*.bmp")

Console.WriteLine("Found {0} *.bmp files", bitmapFiles.Length)

For Each f As FileInfo In bitmapFiles

Console.WriteLine()

Console.WriteLine("File name: {0}", f.Name)

Console.WriteLine("File size: {0}", f.Length)

Console.WriteLine("Creation: {0}", f.CreationTime)

Console.WriteLine("Attributes: {0}", f.Attributes)

5785ch18.qxd 3/31/06 11:05 AM Page 531

Console.WriteLine()

Console.WriteLine("***************************")

Next

Console.ReadLine()

End Sub

End Module

Once you run the application, you see a listing something like the one shown in Figure 18-3.
(Your bitmaps may vary!)

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE532

Creating Subdirectories with the DirectoryInfo Type
You can programmatically extend a directory structure using the DirectoryInfo.CreateSubdirectory()
method. This method can create a single subdirectory, as well as multiple nested subdirectories, in
a single function call. To illustrate, here is a block of code that extends the directory structure of
C:\Windows with some custom subdirectories:

Module Program

Sub Main()

Console.WriteLine("***** Fun with Directory(Info) *****")

Dim dir as DirectoryInfo = New DirectoryInfo("C:\Windows")

...

' Create C:\Windows\MyFoo.

dir.CreateSubdirectory("MyFoo")

' Create C:\Windows\MyBar\MyQaaz.

dir.CreateSubdirectory("MyBar\MyQaaz")

End Sub

End Module

If you examine your Windows directory using Windows Explorer, you will see that the new
subdirectories are present and accounted for (see Figure 18-4).

Figure 18-3. Bitmap file information

5785ch18.qxd 3/31/06 11:05 AM Page 532

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 533

Although you are not required to capture the return value of the CreateSubdirectory()
method, be aware that a DirectoryInfo type representing the newly created item is passed back on
successful execution:

' CreateSubdirectory() returns a DirectoryInfo item representing the new item.

Dim d As DirectoryInfo = dir.CreateSubdirectory("MyFoo")

Console.WriteLine("Created: {0}", d.FullName);

d = dir. CreateSubdirectory("MyBar\MyQaaz")

Console.WriteLine("Created: {0}", d.FullName)

Working with the Directory Type
Now that you have seen the DirectoryInfo type in action, you can learn about the Directory type.
For the most part, the members of Directory mimic the functionality provided by the instance-level
members defined by DirectoryInfo. Recall, however, that the members of Directory typically return
String types rather than strongly typed FileInfo/DirectoryInfo types.

To illustrate some functionality of the Directory type, the final iteration of this example displays
the names of all drives mapped to the current computer (via the Directory.GetLogicalDrives()
method) and uses the shared Directory.Delete() method to remove the \MyFoo and \MyBar\MyQaaz
subdirectories previously created:

Module Program

Sub Main()

...

' Use Directory type.

Dim drives As String() = Directory.GetLogicalDrives()

Console.WriteLine("Here are your drives:")

For Each s As String In drives

Console.WriteLine("—> {0}", s)

Next

' Delete the directories we created.

Console.WriteLine("Press Enter to delete directories")

Console.ReadLine()

Try

Directory.Delete("C:\Windows\MyFoo")

Figure 18-4. Creating subdirectories

5785ch18.qxd 3/31/06 11:05 AM Page 533

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE534

Directory.Delete("C:\Windows\MyBar", True)

Catch e As IOException

Console.WriteLine(e.Message)

End Try

Console.ReadLine()

End Sub

End Module

■Source Code The MyDirectoryApp project is located under the Chapter 18 subdirectory.

Working with the DriveInfo Class Type
As of .NET 2.0, the System.IO namespace provides a class named DriveInfo. Like Directory.
GetLogicalDrives(), the shared DriveInfo.GetDrives() method allows you to discover the names
of a machine’s drives. Unlike Directory.GetLogicalDrives(), however, DriveInfo provides numer-
ous other details (such as the drive type, available free space, volume label, and whatnot). Consider
the following sample code:

Imports System.IO

Module Program

Sub Main()

Console.WriteLine("***** Fun with DriveInfo *****")

Dim myDrives As DriveInfo() = DriveInfo.GetDrives()

' Print stats about each drive.

For Each d As DriveInfo In myDrives

Console.WriteLine("******************************")

Console.WriteLine("-> Name: {0}", d.Name)

Console.WriteLine("-> Type: {0}", d.DriveType)

' Is the drive mounted?

If d.IsReady Then

Console.WriteLine("-> Free space: {0}", d.TotalFreeSpace)

Console.WriteLine("-> Format: {0}", d.DriveFormat)

Console.WriteLine("-> Label: {0}", d.VolumeLabel)

End If

Next

Console.ReadLine()

End Sub

End Module

Figure 18-5 shows the output based on my current machine.
At this point, you have investigated some core behaviors of the Directory, DirectoryInfo, and

DriveInfo classes. Next, you’ll learn how to create, open, close, and destroy the files that populate
a given directory.

■Source Code The DriveTypeApp project is located under the Chapter 18 subdirectory.

5785ch18.qxd 3/31/06 11:05 AM Page 534

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 535

Working with the FileInfo Class
As shown in the MyDirectoryApp example, the FileInfo class allows you to obtain details regarding
existing files on your hard drive (time created, size, file attributes, and so forth) and aids in the cre-
ation, copying, moving, and destruction of files. In addition to the set of functionality inherited by
FileSystemInfo are some core members unique to the FileInfo class, which are described in Table 18-4.

Table 18-4. FileInfo Core Members

Member Meaning in Life

AppendText() Creates a StreamWriter type (described later) that appends text to a file

CopyTo() Copies an existing file to a new file

Create() Creates a new file and returns a FileStream type (described later) to interact
with the newly created file

CreateText() Creates a StreamWriter type that writes a new text file

Delete() Deletes the file to which a FileInfo instance is bound

Directory Gets an instance of the parent directory

DirectoryName Gets the full path to the parent directory

Length Gets the size of the current file or directory

MoveTo() Moves a specified file to a new location, providing the option to specify a new
file name

Name Gets the name of the file

Open() Opens a file with various read/write and sharing privileges

OpenRead() Creates a read-only FileStream

OpenText() Creates a StreamReader type (described later) that reads from an existing text file

OpenWrite() Creates a write-only FileStream type

Figure 18-5. Gather drive details via DriveInfo.

5785ch18.qxd 3/31/06 11:05 AM Page 535

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE536

It is important to understand that a majority of the members of the FileInfo class return a specific
I/O-centric object (FileStream, StreamWriter, and so forth) that allows you to begin reading and
writing data to (or reading from) the associated file in a variety of formats. You will check out these
types in just a moment, but until then, let’s examine various ways to obtain a file handle using the
FileInfo class type.

The FileInfo.Create() Method
The first way you can create a file handle is to make use of the FileInfo.Create() method:

Imports System.IO

Module Program

Sub Main()

' Make a new file on the C drive.

Dim f As FileInfo = New FileInfo("C:\Test.dat")

Dim fs As FileStream = f.Create()

' Use the FileStream object...

' Close down file stream.

fs.Close()

End Sub

End Module

Notice that the FileInfo.Create() method returns a FileStream type, which exposes synchro-
nous and asynchronous write/read operations to/from the underlying file.

The FileInfo.Open() Method
You can use the FileInfo.Open() method to open existing files as well as create new files with far
more precision than FileInfo.Create(). Once the call to Open() completes, you are returned
a FileStream object. Ponder the following logic:

Imports System.IO

Module Program

Sub Main()

' Make a new file via FileInfo.Open().

Dim f2 As FileInfo = New FileInfo("C:\Test2.dat")

Dim fs2 As FileStream = f2.Open(FileMode.OpenOrCreate, _

FileAccess.ReadWrite, FileShare.None)

' Use the FileStream object...

' Close down file stream.

fs2.Close()

End Sub

End Module

This version of the overloaded Open() method requires three parameters. The first parameter
specifies the general flavor of the I/O request (e.g., make a new file, open an existing file, append to
a file, etc.), which is specified using the FileMode enumeration:

Enum FileMode

' Specifies that the operating system should create a new file.

' If the file already exists, a System.IO.IOException is thrown.

5785ch18.qxd 3/31/06 11:05 AM Page 536

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 537

CreateNew

' Specifies that the operating system should create a new file.

' If the file already exists, it will be overwritten.

Create

Open

' Specifies that the operating system should open a file if it exists;

' otherwise, a new file should be created.

OpenOrCreate

Truncate

Append

End Enum

The second parameter, a value from the FileAccess enumeration, is used to determine the
read/write behavior of the underlying stream:

Enum FileAccess

Read

Write

ReadWrite

End Enum

Finally, you have the third parameter, FileShare, which specifies how the file is to be shared
among other file handlers. Here are the core names:

Enum FileShare

None

Read

Write

ReadWrite

End Enum

The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods
While the FileInfo.Open() method allows you to obtain a file handle in a very flexible manner, the
FileInfo class also provides members named OpenRead() and OpenWrite(). As you might imagine,
these methods return a properly configured read-only or write-only FileStream type, without the
need to supply various enumeration values. Like FileInfo.Create() and FileInfo.Open(), OpenRead()
and OpenWrite() return a FileStream object:

Sub Main()

...

' Get a FileStream object with read-only permissions.

Dim f3 As FileInfo = New FileInfo("C:\Test3.dat")

Dim readOnlyStream As FileStream = f3.OpenRead()

' Use FileStream...

readOnlyStream.Close()

' Get a FileStream object with write-only permissions.

Dim f4 As FileInfo = New FileInfo("C:\Test4.dat")

Dim writeOnlyStream As FileStream = f4.OpenWrite()

' Use FileStream...

writeOnlyStream.Close()

End Sub

5785ch18.qxd 3/31/06 11:05 AM Page 537

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE538

The FileInfo.OpenText() Method
Another open-centric member of the FileInfo type is OpenText(). Unlike Create(), Open(), OpenRead(),
and OpenWrite(), the OpenText() method returns an instance of the StreamReader type, rather than
a FileStream type:

Sub Main()

...

' Get a StreamReader object.

Dim f5 As FileInfo = New FileInfo("C:\boot.ini")

Dim sreader As StreamReader = f5.OpenText()

' Use the StreamReader object...

sreader.Close()

End Sub

As you will see shortly, the StreamReader type provides a way to read character data from the
underlying file.

The FileInfo.CreateText() and FileInfo.AppendText() Methods
The final two methods of interest at this point are CreateText() and AppendText(), both of which
return a StreamWriter reference, as shown here:

Sub Main()

...

Dim f6 As FileInfo = New FileInfo("C:\Test5.txt")

Dim swriter As StreamWriter = f6.CreateText()

' Use the StreamWriter object...

swriter.Close()

Dim f7 As FileInfo = New FileInfo("C:\FinalTest.txt")

Dim swriterAppend As StreamWriter = f7.AppendText()

' Use the StreamWriter object...

swriterAppend.Close()

End Sub

As you would guess, the StreamWriter type provides a way to write character data to the under-
lying file.

Working with the File Type
The File type provides functionality almost identical to that of the FileInfo type, using a number
of shared members. Like FileInfo, File supplies the AppendText(), Create(), CreateText(), Open(),
OpenRead(), OpenWrite(), and OpenText() methods. In fact, in many cases, the File and FileStream
types may be used interchangeably. To illustrate, each of the previous FileStream examples can be
simplified by using the File type instead:

Sub Main()

' Obtain FileStream object via File.Create().

Dim fs As FileStream = File.Create("C:\Test.dat")

fs.Close()

5785ch18.qxd 3/31/06 11:05 AM Page 538

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 539

' Obtain FileStream object via File.Open().

Dim fs2 As FileStream = File.Open("C:\Test2.dat", _

FileMode.OpenOrCreate, _

FileAccess.ReadWrite, FileShare.None)

fs2.Close()

' Get a FileStream object with read-only permissions.

Dim readOnlyStream As FileStream = File.OpenRead("Test3.dat")

readOnlyStream.Close()

' Get a FileStream object with write-only permissions.

Dim writeOnlyStream As FileStream = File.OpenWrite("Test4.dat")

writeOnlyStream.Close()

' Get a StreamReader object.

Dim sreader As StreamReader = File.OpenText("C:\boot.ini")

sreader.Close()

' Get some StreamWriters.

Dim swriter As StreamWriter = File.CreateText("C:\Test3.txt")

swriter.Close()

Dim swriterAppend As StreamWriter = File.AppendText("C:\FinalTest.txt")

swriterAppend.Close()

End Sub

New .NET 2.0 File Members
Unlike FileInfo, the File type supports a few unique members (as of .NET 2.0) shown in Table 18-5,
which can greatly simplify the processes of reading and writing textual data.

Table 18-5. Methods of the File Type

Method Meaning in Life

ReadAllBytes() Opens the specified file, returns the binary data as an array of bytes, and then
closes the file

ReadAllLines() Opens a specified file, returns the character data as an array of strings, and
then closes the file

ReadAllText() Opens a specified file, returns the character data as a System.String, and
then closes the file

WriteAllBytes() Opens the specified file, writes out the byte array, and then closes the file

WriteAllLines() Opens a specified file, writes out an array of strings, and then closes the file

WriteAllText() Opens a specified file, writes the character data, and then closes the file

Using these new methods of the File type, you are able to read and write batches of data in just
a few lines of code. Even better, each of these new members automatically closes down the underly-
ing file handle, as in this example:

Imports System.IO

Module Program

Sub Main()

' Write these strings to a new file on the C drive.

Dim myTasks As String() = {"Fix bathroom sink", _

"Call Dave", "Call Mom and Dad", _

5785ch18.qxd 3/31/06 11:05 AM Page 539

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE540

"Play Xbox 360"}

File.WriteAllLines("C:\tasks.txt", myTasks)

' Now read in each one and print to the console.

For Each task As String In File.ReadAllLines("C:\tasks.txt")

Console.WriteLine("TODO: {0}.", task)

Next

End Sub

End Module

Clearly, when you wish to quickly obtain a file handle, the File type will save you some keystrokes.
However, one benefit of first creating a FileInfo object is that you are able to investigate the file using
the members of the abstract FileSystemInfo base class:

Imports System.IO

Module Program

Sub Main()

' Display info about boot.ini and then open

' for read-only access.

Dim bootFile As FileInfo = New FileInfo("C:\boot.ini")

Console.WriteLine(bootFile.CreationTime)

Console.WriteLine(bootFile.LastAccessTime)

Dim readOnlyStream As FileStream = bootFile.OpenRead()

readOnlyStream.Close()

End Sub

End Module

The Abstract Stream Class
At this point, you have seen numerous ways to obtain FileStream, StreamReader, and StreamWriter
objects, but you have yet to read data from, or write data to, a file using these types. To understand
how to do so, you’ll need to become familiar with the concept of a stream.

In the world of I/O manipulation, a stream represents a chunk of data. Streams provide a common
way to interact with a sequence of bytes, regardless of what kind of device (file, network connection,
printer, etc.) is storing or displaying the bytes in question.

The abstract System.IO.Stream class defines a number of members that provide support for
synchronous and asynchronous interactions with the storage medium (e.g., an underlying file or
memory location). Figure 18-6 shows a few descendents of the Stream type.

Figure 18-6. Stream-derived types

5785ch18.qxd 3/31/06 11:05 AM Page 540

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 541

■Note Be aware that the concept of a stream is not limited to files or memory locations. To be sure, the .NET
libraries provide stream access to networks and other stream-centric abstractions.

Again, Stream descendents represent data as a raw stream of bytes; therefore, working with raw
streams can be quite cryptic. Some Stream-derived types support seeking, which refers to the process
of obtaining and adjusting the current position in the stream. To begin understanding the function-
ality provided by the Stream class, take note of the core members described in Table 18-6.

Table 18-6. Abstract Stream Members

Members Meaning in Life

CanRead Determine whether the current stream supports reading, seeking, and/or writing.
CanSeek
CanWrite

Close() Closes the current stream and releases any resources (such as sockets and file
handles) associated with the current stream.

Flush() Updates the underlying data source or repository with the current state of the
buffer and then clears the buffer. If a stream does not implement a buffer, this
method does nothing.

Length Returns the length of the stream, in bytes.

Position Determines the position in the current stream.

Read() Read a sequence of bytes (or a single byte) from the current stream and advance
ReadByte() the current position in the stream by the number of bytes read.

Seek() Sets the position in the current stream.

SetLength() Sets the length of the current stream.

Write() Write a sequence of bytes (or a single byte) to the current stream and advance
WriteByte() the current position in this stream by the number of bytes written.

Working with FileStreams
The FileStream class provides an implementation for the abstract Stream members in a manner
appropriate for file-based streaming. It is a fairly primitive stream; it can read or write only a single
byte or an array of bytes. In reality, you will not often need to directly interact with the members of
the FileStream type. Rather, you will most likely make use of various stream wrappers, which make
it easier to work with textual data or .NET types. Nevertheless, for illustrative purposes, let’s experi-
ment with the synchronous read/write capabilities of the FileStream type.

Assume you have a new console application named FileStreamApp. Your goal is to write a simple
text message to a new file named myMessage.dat. However, given that FileStream can operate only
on raw bytes, you will be required to encode the System.String type into a corresponding byte array.
Luckily, the System.Text namespace defines a type named Encoding, which provides members that
encode and decode strings to (or from) an array of bytes (check out the .NET Framework 2.0 SDK
documentation for full details of the Encoding type).

Once encoded, the byte array is persisted to the file using the FileStream.Write() method. To
read the bytes back into memory, you must reset the internal position of the stream (via the Position
property) and call the ReadByte() method. Finally, you display the raw byte array and the decoded
string to the console. Here is the complete Main() method:

Imports System.IO

Imports System.Text

5785ch18.qxd 3/31/06 11:05 AM Page 541

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE542

Module Program

Sub Main()

Console.WriteLine("***** Fun with FileStreams *****")

Console.WriteLine()

' Obtain a FileStream object.

Dim fStream As FileStream = File.Open("C:\myMessage.dat", FileMode.Create)

' Encode a string as an array of bytes.

Dim msg As String = "Hello!"

Dim msgAsByteArray As Byte() = Encoding.Default.GetBytes(msg)

' Write array of bytes to file.

fStream.Write(msgAsByteArray, 0, msgAsByteArray.Length)

' Reset internal position of stream.

fStream.Position = 0

' Read the types from file and display to console.

Console.Write("Your message as an array of bytes: ")

Dim bytesFromFile(msgAsByteArray.Length) As Byte

Dim i As Integer = 0

While i < msgAsByteArray.Length

bytesFromFile(i) = CType(fStream.ReadByte, Byte)

Console.Write(bytesFromFile(i))

i = i + 1

End While

' Display decoded messages.

Console.WriteLine()

Console.Write("Decoded Message: ")

Console.WriteLine(Encoding.Default.GetString(bytesFromFile))

fStream.Close()

End Sub

End Module

While this example does indeed populate the file with data, it punctuates the major downfall of
working directly with the FileStream type: it demands to operate on raw bytes. Other Stream-derived
types operate in a similar manner. For example, if you wish to write a sequence of bytes to a region
of memory, you can allocate a MemoryStream. Likewise, if you wish to push an array of bytes through
a network connection, you can make use of the NetworkStream type.

Thankfully, the System.IO namespace provides a number of “reader” and “writer” types that
encapsulate the details of working with Stream-derived types.

■Source Code The FileStreamApp project is included under the Chapter 18 subdirectory.

Working with StreamWriters and StreamReaders
The StreamWriter and StreamReader classes are useful whenever you need to read or write character-
based data (e.g., strings). Both of these types work by default with Unicode characters; however, you
can change the underlying character encoding by supplying a properly configured System.Text.
Encoding object reference. To keep things simple, let’s assume that the default Unicode encoding fits
the bill (as will be the case for almost all of your .NET applications).

5785ch18.qxd 3/31/06 11:05 AM Page 542

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 543

StreamReader derives from an abstract type named TextReader, as does the related StringReader
type (discussed later in this chapter). The TextReader base class provides a very limited set of func-
tionality to each of these descendents, specifically the ability to read and peek into a character stream.

The StreamWriter type (as well as StringWriter, also examined later in this chapter) derives from
an abstract base class named TextWriter. This class defines members that allow derived types to write
textual data to a given character stream. The relationship between each of these new I/O-centric
types is shown in Figure 18-7.

To aid in your understanding of the core writing capabilities of the StreamWriter and StringWriter
classes, Table 18-7 describes the core members of the abstract TextWriter base class.

Table 18-7. Core Members of TextWriter

Member Meaning in Life

Close() Closes the writer and frees any associated resources. In the process, the buffer is
automatically flushed.

Flush() Clears all buffers for the current writer and causes any buffered data to be
written to the underlying device, but does not close the writer.

NewLine Indicates the newline constant for the derived writer class. The default line
terminator is a carriage return followed by a line feed (the equivalent to the VB
VbLf constant).

Write() Writes a line to the text stream without a newline constant.

WriteLine() Writes a line to the text stream with a newline constant.

■Note The last two members of the TextWriter class probably look familiar to you. If you recall, the
System.Console type has Write() and WriteLine() members that push textual data to the standard output
device. In fact, the Console.In property wraps a TextWriter, and the Console.Out property wraps a TextReader.

The derived StreamWriter class provides an appropriate implementation for the Write(), Close(),
and Flush() methods, and it defines the additional AutoFlush property. This property, when set to
true, forces StreamWriter to flush all data every time you perform a write operation. Be aware that
you can gain better performance by setting AutoFlush to false, provided you always call Close() when
you are done writing with a StreamWriter.

Figure 18-7. Readers and writers

5785ch18.qxd 3/31/06 11:05 AM Page 543

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE544

Writing to a Text File
Now for an example of working with the StreamWriter type. The following class creates a new file
named reminders.txt using the File.CreateText() method. Using the obtained StreamWriter object,
you add some textual data to the new file, as shown here:

Imports System.IO

Module Program

Sub Main()

Console.WriteLine("***** Fun with StreamWriter / StreamReader *****")

Console.WriteLine()

' Get a StreamWriter and write string data.

Dim writer As StreamWriter = File.CreateText("reminders.txt")

writer.WriteLine("Don't forget Mother's Day this year...")

writer.WriteLine("Don't forget Father's Day this year...")

writer.WriteLine("Don't forget these numbers:")

For i As Integer = 0 To 10

writer.Write(String.Format("{0},", i))

Next

' Insert a new line and close.

writer.Write(writer.NewLine)

writer.Close()

Console.WriteLine("Created file and wrote some thoughts...")

End Sub

End Module

Notice that the parameter to File.CreateTest() is the full path of the file you wish to create.
Here, however, I simply specified the file name itself, and therefore the file will be created in the
application directory of the assembly (which will be under your bin\Debug folder). In any case,
once you run this program, you can examine the contents of this new file, which should resemble
what you see in Figure 18-8.

Figure 18-8. The contents of your *.txt file

Reading from a Text File
Now you need to understand how to programmatically read data from a file using the corresponding
StreamReader type. As you recall, this class derives from TextReader, which offers the functionality
described in Table 18-8.

5785ch18.qxd 3/31/06 11:05 AM Page 544

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 545

Table 18-8. TextReader Core Members

Member Meaning in Life

Peek() Returns the next available character without actually changing the position of
the reader. A value of –1 indicates you are at the end of the stream.

Read() Reads data from an input stream.

ReadBlock() Reads a maximum of count characters from the current stream and writes the
data to a buffer, beginning at index.

ReadLine() Reads a line of characters from the current stream and returns the data as
a string (a null string indicates EOF).

ReadToEnd() Reads all characters from the current position to the end of the stream and
returns them as a single string.

If you now extend the current MyStreamWriterReader class to use a StreamReader, you can read
in the textual data from the reminders.txt file as shown here:

Sub Main()

Console.WriteLine("***** Fun with StreamWriter / StreamReader *****")

...

Console.WriteLine("Here are your thoughts:")

Dim sr As StreamReader = File.OpenText("reminders.txt")

Console.WriteLine(sr.ReadToEnd())

Console.ReadLine()

End Sub

Once you run the program, you will see the character data within Thoughts.txt displayed to
the console.

Directly Creating StreamWriter/StreamReader Types
One of the slightly confusing aspects of working with the types within System.IO is that you can
often achieve an identical result using numerous approaches. For example, you have already seen
that you can obtain a StreamWriter via the File or FileInfo type using the CreateText() method. In
reality, there is yet another way in which you can work with StreamWriters and StreamReaders: create
them directly. For example, the current application could be retrofitted as follows:

Sub Main()

Console.WriteLine("***** Fun with StreamWriter / StreamReader *****")

' Get a StreamWriter and write string data.

Dim writer As StreamWriter = New StreamWriter("reminders.txt")

...

' Now read data from file.

Dim sr As StreamReader = New StreamReader("reminders.txt")

...

End Sub

Although it can be a bit confusing to see so many seemingly identical approaches to file I/O,
keep in mind that the end result is greater flexibility. In any case, now that you have seen how to
move character data to and from a given file using the StreamWriter and StreamReader types, you
will next examine the role of the StringWriter and StringReader classes.

■Source Code The StreamWriterReaderApp project is included under the Chapter 18 subdirectory.

5785ch18.qxd 3/31/06 11:05 AM Page 545

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE546

Working with StringWriters and StringReaders
Using the StringWriter and StringReader types, you can treat textual information as a stream of in-
memory characters. This can prove helpful when you wish to append character-based information
to an existing buffer. To illustrate, the following example writes a block of string data to a StringWriter

object rather than a file on the local hard drive:

Module Program

Sub Main()

Console.WriteLine("***** Fun with StringWriter / StringReader *****")

Console.WriteLine()

' Create a StringWriter and emit character data

' to memory.

Dim strWriter As StringWriter = New StringWriter()

strWriter.Write("Don't forget Mother's Day this year...")

strWriter.Close()

' Get a copy of the contents (stored in a string) and pump

' to console.

Console.WriteLine("Contents of StringWriter: {0}", strWriter)

Console.ReadLine()

End Sub

End Module

Because StringWriter and StreamWriter both derive from the same base class (TextWriter),
the writing logic is more or less identical. However, given that nature of StringWriter, be aware that
this class allows you to extract a System.Text.StringBuilder object via the GetStringBuilder() method:

Module Program

Sub Main()

Console.WriteLine("***** Fun with StringWriter / StringReader *****")

Console.WriteLine()

' Create a StringWriter and emit character data

' to memory.

Dim strWriter As StringWriter = New StringWriter()

...

' Get the internal StringBuilder.

Dim sb As StringBuilder = strWriter.GetStringBuilder()

sb.Insert(0, "Hey!! ")

Console.WriteLine("-> {0}", sb.ToString())

' Remove the inserted string.

sb.Remove(0, "Hey!! ".Length)

Console.WriteLine("-> {0}", sb.ToString())

Console.ReadLine()

End Sub

End Module

When you wish to read from a stream of character data, make use of the corresponding
StringReader type, which (as you would expect) functions identically to the related StreamReader
class. In fact, the StringReader class does nothing more than override the inherited members to
read from a block of character data, rather than a file, as shown here:

Module Program

Sub Main()

Console.WriteLine("***** Fun with StringWriter / StringReader *****")

Console.WriteLine()

5785ch18.qxd 3/31/06 11:05 AM Page 546

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 547

' Create a StringWriter and emit character data

' to memory.

Dim strWriter As StringWriter = New StringWriter()

...

' Now dump using a StringReader.

Console.WriteLine("-> Here are your thoughts:")

Dim strReader As StringReader = New StringReader(strWriter.ToString())

Dim input As String = strReader.ReadToEnd()

Console.WriteLine(input)

strReader.Close()

Console.ReadLine()

End Sub

End Module

■Source Code The StringReaderWriterApp is included under the Chapter 18 subdirectory.

Working with BinaryWriters and BinaryReaders
The final writer/reader sets you will examine here are BinaryReader and BinaryWriter, both of which
derive directly from System.Object. These types allow you to read and write discrete data types to an
underlying stream in a compact binary format. The BinaryWriter class defines a highly overloaded
Write() method to place a data type in the underlying stream. In addition to Write(), BinaryWriter
provides additional members that allow you to get or set the Stream-derived type and offers support
for random access to the data (see Table 18-9).

Table 18-9. BinaryWriter Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryWriter object.

Close() This method closes the binary stream.

Flush() This method flushes the binary stream.

Seek() This method sets the position in the current stream.

Write() This method writes a value to the current stream.

The BinaryReader class complements the functionality offered by BinaryWriter with the members
described in Table 18-10.

Table 18-10. BinaryReader Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryReader object.

Close() This method closes the binary reader.

PeekChar() This method returns the next available character without actually advancing
the position in the stream.

Read() This method reads a given set of bytes or characters and stores them in the
incoming array.

ReadXXXX() The BinaryReader class defines numerous ReadXXXX() methods that grab the next
type from the stream (ReadBoolean(), ReadByte(), ReadInt32(), and so forth).

5785ch18.qxd 3/31/06 11:05 AM Page 547

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE548

The following example writes a number of data types to a new *.dat file in a binary format:

Module Program

Sub Main()

Console.WriteLine("***** Fun with BinaryWriter / BinaryReader *****")

Console.WriteLine()

' Open a binary writer for a file.

Dim f As FileInfo = New FileInfo("BinFile.dat")

Dim bw As BinaryWriter = New BinaryWriter(f.OpenWrite)

' Print out the type of BaseStream.

' (System.IO.FileStream in this case).

Console.WriteLine("Base stream is: {0}", bw.BaseStream)

' Create some data to save in the file

Dim aDouble As Double = 1234.67

Dim anInt As Integer = 34567

Dim aCharArray As Char() = {"A"c, "B"c, "C"c}

'Write the data

bw.Write(aDouble)

bw.Write(anInt)

bw.Write(aCharArray)

bw.Close()

Console.WriteLine()

End Sub

End Module

Notice how the FileStream object returned from FileInfo.OpenWrite() is passed to the con-
structor of the BinaryWriter type. Using this technique, it is very simple to “layer in” a stream before
writing out the data. Do understand that the constructor of BinaryWriter takes any Stream-derived
type (e.g., FileStream, MemoryStream, or BufferedStream). Thus, if you would rather write binary data
to memory, simply supply a valid MemoryStream object.

To read the data out of the BinFile.dat file, the BinaryReader type provides a number of options.
Here, you will make use of PeekChar() to determine whether the stream still has data to provide
and, if so, use ReadByte() to obtain the value. Note that you are formatting the bytes in hexadecimal
and inserting seven spaces between each:

Sub Main()

' Open a binary writer for a file.

Dim f As FileInfo = New FileInfo("BinFile.dat")

...

' Read the data as raw bytes

Dim br As BinaryReader = New BinaryReader(f.OpenRead)

Dim temp As Integer = 0

' Print out in a formatted manner.

While Not (br.PeekChar = -1)

Console.Write("{0,7:x} ", br.ReadByte)

temp = temp + 1

If temp = 4 Then

Console.WriteLine()

temp = 0

End If

End While

Console.WriteLine()

End Sub

5785ch18.qxd 3/31/06 11:05 AM Page 548

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 549

The output of this program appears in Figure 18-9.

■Source Code The BinaryWriterReader application is included under the Chapter 18 subdirectory.

Revising the VB 2005 Using Keyword
As you may recall from Chapter 8, VB 2005 provides a Using keyword, which ensures that objects
that implement IDisposable will automatically have their Dispose() method called when the mem-
ber drops out of scope. It is worth pointing out that this same construct can be used with Stream-derived
types (such as FileStream) to ensure that the underlying file handle is automatically released when
the “used” type falls out of scope. Therefore, the following code:

Using fs As New FileStream("MyFile.txt", FileMode.OpenOrCreate)

fs.WriteByte(20)

End Using ' Dispose() automatically called here.

is a more compact alternative to this functionally equivalent code:

Dim fs As New FileStream("MyFile.txt", FileMode.OpenOrCreate)

Try

fs.WriteByte(20)

Finally

fs.Dispose()

End Try

Although the code in this chapter explicitly called Close() on a Stream-derived type (which
frees the underlying file handle, just like the Dispose() method), making use of the Using keyword
can streamline your code, given that the compiler injects the Try/Finally logic into your assembly
on your behalf.

Programmatically “Watching” Files and
Directories
Now that you have a better handle on the use of various readers and writers, next you’ll look at the
role of the FileSystemWatcher class. This type can be quite helpful when you wish to programmatically
monitor (or “watch”) files on your system. Specifically, the FileSystemWatcher type can be instructed
to monitor files for any of the actions specified by the NotifyFilters enumeration (while many of
these members are self-explanatory, check the online help for further details):

Figure 18-9. Reading bytes from a binary file

5785ch18.qxd 3/31/06 11:05 AM Page 549

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE550

Enum NotifyFilters

Attributes

CreationTime

DirectoryName

FileName

LastAccess

LastWrite,

Security

Size

End Enum

The first step you will need to take to work with the FileSystemWatcher type is to set the Path
property to specify the name (and location) of the directory that contains the files to be monitored,
as well as the Filter property that defines the file extensions of the files to be monitored.

At this point, you may choose to handle the Changed, Created, and Deleted events, all of which
work in conjunction with the FileSystemEventHandler delegate. This delegate can call any method
matching the following pattern:

' The FileSystemEventHandler delegate must point

' to methods matching the following signature.

Sub MyNotificationHandler(ByVal source As Object, ByVal e As FileSystemEventArgs)

As well, the Renamed event may also be handled via the RenamedEventHandler delegate type,
which can call methods matching the following signature:

' The RenamedEventHandler delegate must point

' to methods matching the following signature.

Sub MyNotificationHandler(ByVal source As Object, ByVal e As RenamedEventArgs)

To illustrate the process of watching a file, assume you have created a new directory on your
C drive named MyFolder that contains various *.txt files (named whatever you wish). The following
console application will monitor the *.txt files within MyFolder and print out messages in the event
that the files are created, deleted, modified, or renamed:

Sub Main()

Console.WriteLine("***** The Amazing File Watcher App *****")

' Create and configure the watcher.

Dim watcher As FileSystemWatcher = New FileSystemWatcher()

Try

watcher.Path = "C:\MyFolder"

Catch ex As ArgumentException

Console.WriteLine(ex.Message)

Return

End Try

watcher.NotifyFilter = NotifyFilters.LastAccess Or _

NotifyFilters.LastWrite Or _

NotifyFilters.FileName Or _

NotifyFilters.DirectoryName

watcher.Filter = "*.txt"

' Establish event handlers.

AddHandler watcher.Changed, AddressOf OnFileModified

AddHandler watcher.Created, AddressOf OnFileModified

AddHandler watcher.Deleted, AddressOf OnFileModified

AddHandler watcher.Renamed, AddressOf OnRenamed

watcher.EnableRaisingEvents = True

5785ch18.qxd 3/31/06 11:05 AM Page 550

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 551

' Keep alive until user hits enter key.

Console.ReadLine()

End Sub

The two event handlers simply print out the current file modification:

' Event handlers.

Sub OnFileModified(ByVal source As Object, ByVal e As FileSystemEventArgs)

' Specify what is done when a file is changed, created, or deleted.

Console.WriteLine("File: {0} {1}!", e.FullPath, e.ChangeType)

End Sub

Sub OnRenamed(ByVal source As Object, ByVal e As RenamedEventArgs)

' Specify what is done when a file is renamed.

Console.WriteLine("File: {0} renamed to {1}.", e.OldFullPath, e.FullPath)

End Sub

To test this program, run the application and open Windows Explorer. Try renaming your files,
creating a *.txt file, deleting a *.txt file, or whatnot. You will see the console application print out
various bits of information regarding the state of the text files within MyFolder, as shown in Figure 18-10.

■Source Code The MyDirectoryWatcher application is included under the Chapter 18 subdirectory.

Performing Asynchronous File I/O
To conclude our examination of the System.IO namespace, let’s see how to interact with FileStream
types asynchronously. You have already seen the asynchronous support provided by the .NET Frame-
work during the examination of multithreading (see Chapter 16). Because I/O can be a lengthy task,
all types deriving from System.IO.Stream inherit a set of methods (BeginRead(), BeginWrite(), EndRead(),
and EndWrite(), specifically) that enable asynchronous processing of the data. As you would expect,
these methods work in conjunction with the IAsyncResult type (again, see Chapter 16). Here are the
prototypes of the members in question:

Public Class FileStream

Inherits Stream

...

Public Overrides Function BeginRead(ByVal array As Byte(), _

ByVal offset As Integer, ByVal numBytes As Integer,

ByVal userCallback As AsyncCallback,

ByVal stateObject As Object) As IAsyncResult

Figure 18-10. Watching some text files

5785ch18.qxd 3/31/06 11:05 AM Page 551

Public Overrides Function BeginWrite(ByVal array As Byte(), _

ByVal offset As Integer, ByVal numBytes As Integer, _

ByVal userCallback As AsyncCallback, _

ByVal stateObject As Object) As IAsyncResult

Public Overrides Function EndRead(ByVal asyncResult As IAsyncResult) _

As Integer

Public Overrides Sub EndWrite(ByVal asyncResult As IAsyncResult)

...

End Class

The process of working with the asynchronous behavior of Stream-derived types is identical to
working with asynchronous delegates and asynchronous remote method invocations. While it’s unlikely
that asynchronous behaviors will greatly improve file access, other streams (e.g., socket-based streams)
are much more likely to benefit from asynchronous handling. In any case, the following example
illustrates one manner in which you can asynchronously interact with a FileStream type:

Imports System.IO

Imports System.Text

Imports System.Threading

Module Program

Sub Main()

Console.WriteLine("**** Asynch File IO *****")

Console.WriteLine()

Console.WriteLine("Main thread started. ThreadID = {0}", _

Thread.CurrentThread.GetHashCode)

' Must use this ctor to get a FileStream with asynchronous

' read or write access.

Dim fs As FileStream = New FileStream("logfile.txt", FileMode.Append, _

FileAccess.Write, FileShare.None, 4096, True)

Dim msg As String = "this is a test"

Dim buffer As Byte() = Encoding.ASCII.GetBytes(msg)

' Start the asynchronous write. WriteDone invoked when finished.

' Note that the FileStream object is passed as state info to the

' callback method.

fs.BeginWrite(buffer, 0, buffer.Length, AddressOf WriteDone, fs)

End Sub

Private Sub WriteDone(ByVal ar As IAsyncResult)

Console.WriteLine("AsyncCallback method on ThreadID = {0}", _

Thread.CurrentThread.GetHashCode)

Dim s As Stream = CType(ar.AsyncState, Stream)

s.EndWrite(ar)

s.Close()

End Sub

End Module

The only point of interest in this example (assuming you recall the process of working with del-
egates!) is that in order to enable the asynchronous behavior of the FileStream type, you must make
use of a specific constructor (shown here). The final System.Boolean parameter (when set to True)
informs the FileStream object to perform its work on a secondary thread of execution.

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE552

5785ch18.qxd 3/31/06 11:05 AM Page 552

■Source Code The AsyncFileStream application is included under the Chapter 18 subdirectory.

Summary
This chapter began by examining the use of the Directory(Info) and File(Info) types. As you learned,
these classes allow you to manipulate a physical file or directory on your hard drive. Next, you examined
a number of types derived from the abstract Stream class, specifically FileStream. Given that Stream-
derived types operate on a raw stream of bytes, the System.IO namespace provides numerous reader/
writer types (StreamWriter, StringWriter, BinaryWriter, etc.) that simplify the process. Along the
way, you also checked out a new I/O-centric type provided by .NET 2.0 (DriveInfo), and you learned
how to monitor files using the FileSystemWatcher type and how to interact with streams in an asyn-
chronous manner.

CHAPTER 18 ■ THE SYSTEM.IO NAMESPACE 553

5785ch18.qxd 3/31/06 11:05 AM Page 553

5785ch18.qxd 3/31/06 11:05 AM Page 554

C H A P T E R 1 9

■ ■ ■

Understanding Object Serialization

In Chapter 18, you learned about the functionality provided by the System.IO namespace. As
shown, this namespace provides numerous reader/writer types that can be used to persist data to
a given location (in a given format). This chapter examines the related topic of object serialization.
Using object serialization, you are able to persist and retrieve the state of an object to (or from) any
System.IO.Stream-derived type.

As you might imagine, the ability to serialize types is critical when attempting to copy an object
to a remote machine (the subject of the next chapter). Understand, however, that serialization is quite
useful in its own right and will likely play a role in many of your .NET applications (distributed or not).
Over the course of this chapter, you will be exposed to numerous aspects of the .NET serialization
scheme, including a set of new attributes introduced with .NET 2.0 that allow you to customize the
process.

Understanding Object Serialization
The term serialization describes the process of persisting (and possibly transferring) the state of
an object to a stream. The persisted data sequence contains all necessary information needed to
reconstruct (or deserialize) the state of the object for use later. Using this technology, it is trivial to save
vast amounts of data (in various formats) with minimal fuss and bother. In fact, in many cases,
saving application data using serialization services is much less cumbersome than making direct use
of the readers/writers found within the System.IO namespace.

For example, assume you have created a GUI-based desktop application and wish to provide
a way for end users to save their preferences. To do so, you might define a class named UserPrefs
that encapsulates 20 or so pieces of field data. If you were to make use of a System.IO.BinaryWriter

type, you would need to manually save each field of the UserPrefs object. Likewise, when you wish to
load the data from the file back into memory, you would need to make use of a System.IO.BinaryReader

and (once again) manually read in each value to reconfigure a new UserPrefs object.
While this is certainly doable, you would save yourself a good amount of time simply by mark-

ing the UserPrefs class with the <Serializable> attribute. In this case, the entire state of the object
can be persisted out using a few lines of code:

Sub Main()

' Assume UserPrefs is marked with the <Serializable> attribute.

Dim userData As UserPrefs = New UserPrefs()

userData.WindowColor = "Yellow"

userData.FontSize = "50"

userData.IsPowerUser = False

555

5785ch19.qxd 3/31/06 11:09 AM Page 555

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION556

Figure 19-1. A simple object graph

' Create a new binary formatter to perform the persistence.

Dim binFormat As BinaryFormatter = New BinaryFormatter()

Dim fStream As Stream = New FileStream("user.dat", _

FileMode.Create, FileAccess.Write, FileShare.None)

binFormat.Serialize(fStream, userData)

fStream.Close()

Console.ReadLine()

End Sub

While it is quite simple to persist objects using .NET object serialization, the processes used
behind the scenes are quite sophisticated. For example, when an object is persisted to a stream, all
associated data (base classes, contained objects, etc.) are automatically serialized as well. Therefore,
if you are attempting to persist a derived class, all data up the chain of inheritance comes along for
the ride. As you will see, a set of interrelated objects is represented using an object graph.

.NET serialization services also allow you to persist an object graph in a variety of formats. The
previous code example made use of the BinaryFormatter type; therefore, the state of the UserPrefs
object was persisted as a compact binary format. You are also able to persist an object graph into
a Simple Object Access Protocol (SOAP) or XML format using other types. These formats can be quite
helpful when you wish to ensure that your persisted objects travel well across operating systems,
languages, and architectures.

Finally, do know that an object graph can be persisted into any System.IO.Stream-derived type.
In the previous example, you persisted a UserPrefs object into a local file via the FileStream type.
However, if you would rather persist an object to memory, you could make use of a MemoryStream

type instead. All that matters is the fact that the sequence of data correctly represents the state of
objects within the graph.

The Role of Object Graphs
As mentioned, when an object is serialized, the CLR will account for all related objects. The set of
related objects is collectively referred to as an object graph. Object graphs provide a simple way to
document how a set of objects refer to each other and do not necessarily map to classic OO relation-
ships (such as the “is-a” or “has-a” relationship), although they do model this paradigm quite well.

Each object in an object graph is assigned a unique numerical value. Keep in mind that the
numbers assigned to the members in an object graph are arbitrary and have no real meaning to the
outside world. Once all objects have been assigned a numerical value, the object graph can record
each object’s set of dependencies.

As a simple example, assume you have created a set of classes that model some automobiles
(of course). You have a base class named Car, which “has-a” Radio. Another class named JamesBondCar
extends the Car base type. Figure 19-1 shows a possible object graph that models these relationships.

5785ch19.qxd 3/31/06 11:09 AM Page 556

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 557

When reading object graphs, you can use the phrase “depends on” or “refers to” when connect-
ing the arrows. Thus, in Figure 19-1 you can see that the Car class refers to the Radio class (given the
“has-a” relationship). JamesBondCar refers to Car (given the “is-a” relationship) as well as Radio (as it
inherits this member variable).

Of course, the CLR does not paint pictures in memory to represent a graph of related objects.
Rather, the relationship documented in the previous diagram is represented by a flattened mathe-
matical formula that looks something like this:

[Car 3, ref 2], [Radio 2], [JamesBondCar 1, ref 3, ref 2]

If you parse this formula, you can again see that object 3 (the Car) has a dependency on object 2
(the Radio). Object 2, the Radio, is a lone wolf and requires nobody. Finally, object 1 (the JamesBondCar)
has a dependency on object 3 as well as object 2. In any case, when you serialize or deserialize an
instance of JamesBondCar, the object graph ensures that the Radio and Car types also participate in
the process.

The beautiful thing about the serialization process is that the graph representing the relation-
ships among your objects is established automatically behind the scenes. As you will see later in
this chapter, however, if you do wish to become more involved in the construction of a given object
graph, it is possible to do so.

Configuring Objects for Serialization
To make an object available to .NET serialization services, all you need to do is decorate each type
in the object graph with the <Serializable> attribute. That’s it (really). If you determine that a given
class has some member data that should not (or perhaps cannot) participate in the serialization
scheme, you can mark such fields with the <NonSerialized> attribute. This can be helpful if you have
member variables in a serializable class that do not need to be “remembered” (e.g., fixed values, random
values, transient data, etc.) and you wish to reduce the size of the persisted graph.

To get the ball rolling, here is the Radio class, which has been marked <Serializable>, excluding
a single member variable (radioID) that has been marked <NonSerialized> and will therefore not be
persisted into the specified data stream:

<Serializable> _

Public Class Radio

Public hasTweeters As Boolean

Public hasSubWoofers As Boolean

Public stationPresets As Double()

<NonSerialized()> _

Public radioID As String = "XF-552RR6"

End Class

The JamesBondCar class and Car base class are also marked <Serializable> and define the
following pieces of field data:

<Serializable()> _

Public Class Car

Public theRadio As Radio = New Radio

Public isHatchBack As Boolean

End Class

<Serializable()> _

Public Class JamesBondCar

Inherits Car

Public canFly As Boolean

Public canSubmerge As Boolean

End Class

5785ch19.qxd 3/31/06 11:09 AM Page 557

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION558

Be aware that the <Serializable> attribute cannot be inherited. Therefore, if you derive a class from
a type marked <Serializable>, the child class must be marked <Serializable> as well, or it cannot be
persisted. In fact, all objects in an object graph must be marked with the <Serializable> attribute. If
you attempt to serialize a nonserializable object using the BinaryFormatter or SoapFormatter, you
will receive a SerializationException at runtime.

Public Fields, Private Fields, and Public Properties
Notice that in each of these classes, I have defined the field data as public, just to simplify the exam-
ple. Of course, private data exposed using public properties would be preferable from an OO point
of view. Also, for the sake of simplicity, I have not defined any custom constructors on these types,
and therefore all unassigned field data will receive the expected default values.

OO design principles aside, you may wonder how the various formatters expect a type’s field
data to be defined in order to be serialized into a stream. The answer is, it depends. If you are persisting
an object using the BinaryFormatter, it makes absolutely no difference. This type is programmed to
serialize all serializable fields of a type, regardless of whether they are public fields, private fields, or
private fields exposed through public properties. The situation is quite different if you make use of
the XmlSerializer or SoapFormatter type, however. These types will only serialize public pieces of
field data or private data exposed through public properties.

Do recall, however, that if you have points of data that you do not want to be persisted into the
object graph, you can selectively mark public or private fields as <NonSerialized>, as done with the
string field of the Radio type.

Choosing a Serialization Formatter
Once you have configured your types to participate in the .NET serialization scheme, your next step
is to choose which format should be used when persisting your object graph. As of .NET 2.0, you have
three choices out of the box:

• BinaryFormatter

• SoapFormatter

• XmlSerializer

The BinaryFormatter type serializes your object graph to a stream using a compact binary for-
mat. This type is defined within the System.Runtime.Serialization.Formatters.Binary namespace
that is part of mscorlib.dll. Therefore, to serialize your objects using a binary format, all you need
to do is specify the following VB 2005 Imports directive:

' Gain access to the BinaryFormatter in mscorlib.dll.

Imports System.Runtime.Serialization.Formatters.Binary

The SoapFormatter type represents your graph as a SOAP message. This type is defined within
the System.Runtime.Serialization.Formatters.Soap namespace that is defined within a separate
assembly. Thus, to format your object graph into a SOAP message, you must set a reference to
System.Runtime.Serialization.Formatters.Soap.dll and specify the following VB 2005 Imports
directive:

' Must reference System.Runtime.Serialization.Formatters.Soap.dll!

Imports System.Runtime.Serialization.Formatters.Soap

Finally, if you wish to persist an object graph as an XML document, you will need to specify
that you are using the System.Xml.Serialization namespace, which is also defined in a separate
assembly: System.Xml.dll. As luck would have it, all Visual Studio 2005 project templates automati-
cally reference System.Xml.dll, therefore you will simply need to import the following namespace:

5785ch19.qxd 3/31/06 11:09 AM Page 558

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 559

' Defined within System.Xml.dll.

Imports System.Xml.Serialization

The IFormatter and IRemotingFormatting Interfaces
Regardless of which formatter you choose to make use of, be aware that each of them derives directly
from System.Object, and therefore they do not share a common set of members from a serialization-
centric base class. However, the BinaryFormatter and SoapFormatter types do support common
members through the implementation of the IFormatter and IRemotingFormatter interfaces (of which
XmlSerializer implements neither).

System.Runtime.Serialization.IFormatter defines the core Serialize() and Deserialize()
methods, which do the grunt work to move your object graphs into and out of a specific stream.
Beyond these members, IFormatter defines a few properties that are used behind the scenes by the
implementing type:

Public Interface IFormatter

Function Deserialize(ByVal serializationStream As Stream) As Object

Sub Serialize(ByVal serializationStream As Stream, ByVal graph As Object)

Property Binder As SerializationBinder

Property Context As StreamingContext

Property SurrogateSelector As ISurrogateSelector

End Interface

The System.Runtime.Remoting.Messaging.IRemotingFormatter interface (which is leveraged
internally by the .NET remoting layer) overloads the Serialize() and Deserialize() members into
a manner more appropriate for distributed persistence. Note that IRemotingFormatter derives from
the more general IFormatter interface:

Public Interface IRemotingFormatter

Inherits IFormatter

Function Deserialize(ByVal serializationStream As Stream, _

ByVal handler As HeaderHandler) As Object

Sub Serialize(ByVal serializationStream As Stream, _

ByVal graph As Object, ByVal headers As Header())

End Interface

Although you may not need to directly interact with these interfaces for most of your serialization
endeavors, recall that interface-based polymorphism allows you to hold an instance of BinaryFormatter
or SoapFormatterusing an IFormatter reference. Therefore, if you wish to build a method that can serialize
an object graph using either of these classes, you could write the following:

Sub SerializeObjectGraph(ByVal itfFormat As IFormatter, _

ByVal destStream As Stream, ByVal graph As Object)

' Serialize the object graph here!

itfFormat.Serialize(destStream, graph)

End Sub

Type Fidelity Among the Formatters
The most obvious difference among the three formatters is how the object graph is persisted to the
stream (binary, SOAP, or pure XML). You should be aware of a few more subtle points of distinction,
specifically how the formatters contend with type fidelity. When you make use of the BinaryFormatter
type, it will not only persist the serializable field data of the objects in the graph, but also each type’s
fully qualified name and the full name of the defining assembly. These extra points of data make the
BinaryFormatter an ideal choice when you wish to transport objects by value (e.g., as a full copy)
across machine boundaries using the .NET remoting layer (see Chapter 20). As noted, to achieve
this level of type fidelity, the BinaryFormatter will account for all field data of a type (public or private).

5785ch19.qxd 3/31/06 11:09 AM Page 559

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION560

The SoapFormatter and XmlSerializer, on the other hand, do not attempt to preserve full type
fidelity and therefore do not record the type’s fully qualified name or assembly of origin, and only
persist public field data/public properties. While this may seem like a limitation at first glance, the
reason has to do with the open-ended nature of XML data representation. If you wish to persist object
graphs that can be used by any operating system (Windows XP, Mac OS X, and Unix distributions),
application framework (.NET, J2EE, COM, etc.), or programming language, you do not want to main-
tain full type fidelity, as you cannot assume all possible recipients can understand .NET-specific data
types. Given this, SoapFormatter and XmlSerializer are ideal choices when you wish to ensure as
broad a reach as possible for the persisted object graph.

Serializing Objects Using the BinaryFormatter
To illustrate how easy it is to persist an instance of the JamesBondCar to a physical file, let’s make use
of the BinaryFormatter type. Again, the two key methods of the BinaryFormatter type to be aware of
are Serialize() and Deserialize():

• Serialize(): Persists an object graph to a specified stream as a sequence of bytes

• Deserialize(): Converts a persisted sequence of bytes to an object graph

Assume you have created an instance of JamesBondCar, modified some state data, and want to
persist your spy-mobile into a *.dat file. The first task is to create the *.dat file itself. This can be
achieved by creating an instance of the System.IO.FileStream type (see Chapter 18). At this point,
simply create an instance of the BinaryFormatter and pass in the FileStream and object graph to
persist:

Imports System.Runtime.Serialization.Formatters.Binary

Imports System.IO

Module Program

Sub Main()

Console.WriteLine("***** Fun with Object Serialization *****")

' Make a new object to persist.

Dim jbc As JamesBondCar = New JamesBondCar()

jbc.canFly = True

jbc.canSubmerge = False

jbc.theRadio.stationPresets = New Double() {89.3, 105.1, 97.1}

jbc.theRadio.hasTweeters = True

' Save the object in a binary format to

' a local file.

Dim binFormat As BinaryFormatter = New BinaryFormatter()

Dim fStream As Stream = New FileStream("CarData.dat", FileMode.Create, _

FileAccess.Write, FileShare.None)

binFormat.Serialize(fStream, jbc)

fStream.Close()

Console.ReadLine()

End Sub

End Module

As you can see, the BinaryFormatter.Serialize() method is the member responsible for com-
posing the object graph and moving the byte sequence to some Stream-derived type. In this case,
the stream happens to be a physical file. However, you could also serialize your object types to any
Stream-derived type such as a memory location, given that MemoryStream is a descendent of the Stream
type. At this point, you can open the CarData.dat file to view the binary data that represents this
instance of the JamesBondCar, as shown in Figure 19-2.

5785ch19.qxd 3/31/06 11:09 AM Page 560

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 561

Figure 19-2. JamesBondCar serialized using a BinaryFormatter

Deserializing Objects Using the BinaryFormatter
Now suppose you want to read the persisted JamesBondCar from the binary file back into an object
variable. Once you have programmatically opened CarData.dat (via the File.OpenRead() method),
simply call the Deserialize() method of the BinaryFormatter. Be aware that Deserialize() returns
a generic System.Object type, so you need to impose an explicit cast, as shown here:

Sub Main()

...

' Now read the JamesBondCar from the binary file.

fStream = File.OpenRead("CarData.dat")

Dim carFromDisk As JamesBondCar = _

CType(binFormat.Deserialize(fStream), JamesBondCar)

Console.WriteLine("Can this car fly? : {0}", carFromDisk.canFly)

fStream.Close()

Console.ReadLine()

End Sub

Notice that when you call Deserialize(), you pass the Stream-derived type that represents the
location of the persisted object graph (again, a file stream in this case). Now if that is not painfully
simple, I’m not sure what is. In a nutshell, mark each class you wish to persist to a stream with the
<Serializable> attribute. After this point, use the BinaryFormatter type to move your object graph
to and from a binary stream.

Serializing Objects Using the SoapFormatter
Your next choice of formatter is the SoapFormatter type. The SoapFormatter will persist an object
graph into a SOAP message, which makes this formatter a solid choice when you wish to distribute
objects remotely using HTTP. If you are unfamiliar with the SOAP specification, don’t sweat the
details right now. In a nutshell, SOAP defines a standard process in which methods may be invoked
in a platform- and OS-neutral manner (we’ll examine SOAP in a bit more detail in the final chapter
of this book during a discussion of XML web services).

5785ch19.qxd 3/31/06 11:09 AM Page 561

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION562

Assuming you have referenced the System.Runtime.Serialization.Formatters.Soap.dll assembly,
you could persist and retrieve a JamesBondCar as a SOAP message simply by replacing each occurrence
of BinaryFormatter with SoapFormatter. Consider the following code, which serializes an object to
a local file named CarData.soap:

Imports System.Runtime.Serialization.Formatters.Soap

...

Sub Main()

...

' Save object to a file named CarData.soap in SOAP format.

Dim soapForamt As SoapFormatter = New SoapFormatter

fStream = New FileStream("CarData.soap", _

FileMode.Create, FileAccess.Write, FileShare.None)

soapForamt.Serialize(fStream, jbc)

fStream.Close()

Console.ReadLine()

End Sub

As before, simply use Serialize() and Deserialize() to move the object graph in and out of the
stream. If you open the resulting *.soap file, you can locate the XML elements that mark the stateful
values of the current JamesBondCar as well as the relationship between the objects in the graph via
the #ref tokens. Consider the following end result (XML namespaces snipped for brevity):

<SOAP-ENV:Envelope xmlns:xsi="...">

<SOAP-ENV:Body>

<a1:JamesBondCar id="ref-1" xmlns:a1="...">

<canFly>true</canFly>

<canSubmerge>false</canSubmerge>

<theRadio href="#ref-3"/>

<isHatchBack>false</isHatchBack>

</a1:JamesBondCar>

<a1:Radio id="ref-3" xmlns:a1="...">

<hasTweeters>true</hasTweeters>

<hasSubWoofers>false</hasSubWoofers>

<stationPresets href="#ref-4"/>

</a1:Radio>

<SOAP-ENC:Array id="ref-4" SOAP-ENC:arrayType="xsd:double[3]">

<item>89.3</item>

<item>105.1</item>

<item>97.1</item>

</SOAP-ENC:Array>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Serializing Objects Using the XmlSerializer
In addition to the SOAP and binary formatters, the System.Xml.dll assembly provides a third formatter,
System.Xml.Serialization.XmlSerializer, which can be used to persist the state of a given object
as pure XML, as opposed to a SOAP message. Working with this type is a bit different from working
with the SoapFormatter or BinaryFormatter type. Consider the following code:

Imports System.Xml.Serialization

...

Sub Main()

...

' Save object to a file named CarData.xml in XML format.

5785ch19.qxd 3/31/06 11:09 AM Page 562

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 563

Dim xmlForamt As XmlSerializer = _

New XmlSerializer(GetType(JamesBondCar), _

New Type() {GetType(Radio), GetType(Car)})

fStream = New FileStream("CarData.xml", FileMode.Create, _

FileAccess.Write, FileShare.None)

xmlForamt.Serialize(fStream, jbc)

fStream.Close()

...

End Sub

The key difference is that the XmlSerializer type requires you to specify type information
(which can be obtained using GetType()) that represents the items in the object graph. Notice that
the first constructor argument of the XmlSerializer defines the root element of the XML file, while
the second argument is an array of System.Type types that hold metadata regarding the subele-
ments. If you were to look within the newly generated CarData.xml file, you would find the following
(abbreviated) XML data:

<?xml version="1.0" encoding="utf-8"?>

<JamesBondCar xmlns:xsi="...">

<theRadio>

<hasTweeters>true</hasTweeters>

<hasSubWoofers>false</hasSubWoofers>

<stationPresets>

<double>89.3</double>

<double>105.1</double>

<double>97.1</double>

</stationPresets>

</theRadio>

<isHatchBack>false</isHatchBack>

<canFly>true</canFly>

<canSubmerge>false</canSubmerge>

</JamesBondCar>

■Note The XmlSerializer demands that all serialized types in the object graph support a default con-
structor (so be sure to add it back if you define custom constructors). If this is not the case, you will receive an
InvalidOperationException at runtime.

Controlling the Generated XML Data
If you have a background in XML technologies, you are well aware that it is often critical to ensure
the elements within an XML document conform to a set of rules that establish the “validity” of the
data. Understand that a “valid” XML document does not have to do with the syntactic well-being of
the XML elements (e.g., all opening elements must have a closing element). Rather, valid docu-
ments conform to agreed-upon formatting rules (e.g., field x must be expressed as an attribute and
not a subelement), which are typically defined by an XML schema or document-type definition
(DTD) file.

By default, all field data of a <Serializable> type is formatted as elements rather than XML
attributes. If you wish to control how the XmlSerializer generates the resulting XML document, you
may decorate your <Serializable> types with any number of additional attributes from the System.
Xml.Serialization namespace. Table 19-1 documents some (but not all) of the attributes that influ-
ence how XML data is encoded to a stream.

5785ch19.qxd 3/31/06 11:09 AM Page 563

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION564

Table 19-1. Serialization-centric Attributes of the System.Xml.Serialization Namespace

Attribute Meaning in Life

<XmlAttribute> The member will be serialized as an XML attribute.

<XmlElement> The field or property will be serialized as an XML element.

<XmlEnum> The element name of an enumeration member.

<XmlRoot> This attribute controls how the root element will be constructed (namespace
and element name).

<XmlText> The property or field should be serialized as XML text.

<XmlType> The name and namespace of the XML type.

By way of a simple example, first consider how the field data of JamesBondCar is currently
persisted as XML:

<?xml version="1.0" encoding="utf-8"?>

<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

...

<canFly>true</canFly>

<canSubmerge>false</canSubmerge>

</JamesBondCar>

If you wished to specify a custom XML namespace that qualifies the JamesBondCar as well as
encodes the canFly and canSubmerge values as XML attributes, you can do so by modifying the
VB 2005 definition of JamesBondCar as follows (be sure to import the System.Xml.Serialization
namespace to gain access to these new attributes):

<Serializable(), XmlRoot(Namespace:="http://www.intertechtraining.com")> _

Public Class JamesBondCar

Inherits Car

<XmlAttribute()> _

Public canFly As Boolean

<XmlAttribute()> _

Public canSubmerge As Boolean

End Class

This would yield the following XML document (note the opening <JamesBondCar> element):

<?xml version="1.0" encoding="utf-8"?>

<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

canFly="true" canSubmerge="false"

xmlns="http://www.intertechtraining.com">

...

</JamesBondCar>

Of course, there are numerous other attributes that can be used to control how the
XmlSerializer generates the resulting XML document. If you wish to see all of your options, look
up the System.Xml.Serialization namespace using the .NET Framework 2.0 SDK documentation.

Persisting Collections of Objects
Now that you have seen how to persist a single object to a stream, let’s examine how to save a set of
objects. As you may have noticed, the Serialize() method of the IFormatter interface does not

5785ch19.qxd 3/31/06 11:09 AM Page 564

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 565

provide a way to specify an arbitrary number of objects (only a single System.Object). On a related
note, the return value of Deserialize() is, again, a single System.Object:

Public Interface IFormatter

Function Deserialize(ByVal serializationStream As Stream) As Object

Sub Serialize(ByVal serializationStream As Stream, ByVal graph As Object)

...

End Interface

Recall that the System.Object in fact represents a complete object graph. Given this, if you pass
in an object that has been marked as <Serializable> and contains other <Serializable> objects, the
entire set of objects is persisted right away. As luck would have it, most of the types found within the
System.Collections and System.Collections.Generic namespaces have already been marked as
<Serializable>. Therefore, if you wish to persist a set of objects, simply add the set to the container
(such as an ArrayList or generic List(Of T)) and serialize the object to your stream of choice.

Assume you have updated the JamesBondCar class with a two-argument constructor to set a few
pieces of state data (note that you add back the default constructor as required by the XmlSerializer):

<Serializable(), XmlRoot(Namespace:="http://www.intertechtraining.com")> _

Public Class JamesBondCar

Inherits Car

Public Sub New(ByVal SkyWorthy As Boolean, ByVal SeaWorthy As Boolean)

canFly = SkyWorthy

canSubmerge = SeaWorthy

End Sub

' The XmlSerializer demands a default constructor!

Public Sub New()

End Sub

<XmlAttribute()> _

Public canFly As Boolean

<XmlAttribute()> _

Public canSubmerge As Boolean

End Class

With this, you are now able to persist any number of JamesBondCars like so:

Sub Main()

...

' Now persist a List<> of JamesBondCars.

Dim myCars As List(Of JamesBondCar) = New List(Of JamesBondCar)

myCars.Add(New JamesBondCar(True, True))

myCars.Add(New JamesBondCar(True, False))

myCars.Add(New JamesBondCar(False, True))

myCars.Add(New JamesBondCar(False, False))

fStream = New FileStream("CarCollection.xml", _

FileMode.Create, FileAccess.Write, FileShare.None)

xmlForamt = New XmlSerializer(GetType(List(Of JamesBondCar)), _

New Type() {GetType(JamesBondCar), GetType(Car), GetType(Radio)})

xmlForamt.Serialize(fStream, myCars)

fStream.Close()

Console.ReadLine()

End Sub

5785ch19.qxd 3/31/06 11:09 AM Page 565

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION566

Again, because you made use of the XmlSerializer, you are required to specify type informa-
tion for each of the subobjects within the root object (which in this case is the ArrayList). Had you
made use of the BinaryFormatter or SoapFormatter type, the logic would be even more straightforward,
for example:

Sub Main()

...

' Save List object (myCars) as binary.

Dim myCars As List(Of JamesBondCar) = New List(Of JamesBondCar)

...

Dim binFormat As BinaryFormatter = New BinaryFormatter()

Dim fStream As Stream = New FileStream("CarData.dat", FileMode.Create, _

FileAccess.Write, FileShare.None)

binFormat.Serialize(fStream, myCars)

fStream.Close()

Console.ReadLine()

End Sub

Excellent! At this point, you should see how you can use object serialization services to simplify
the process of persisting and resurrecting your application’s data. Next up, allow me to illustrate how
you can customize the default serialization process.

■Source Code The SimpleSerialize application is located under the Chapter 19 subdirectory.

Customizing the Serialization Process
In a vast majority of cases, the default serialization scheme just examined will fit the bill. Simply apply
the <Serializable> attribute accordingly and pass the object graph to your formatter of choice. In
some cases, however, you may wish to become more involved with how an object graph is handled
during the serialization process in order to customize the formatting of the data (among other tasks).
For example, maybe you have a business rule that says all field data must be persisted in a given text
format, or perhaps you wish to add additional bits of data to the stream that do not directly map to
fields in the object being persisted (time stamps, unique identifiers, or whatnot) or interact with an
external log file.

When you wish to become more involved with the process of object serialization, the System.
Runtime.Serialization namespace provides several types that allow you to do so. Table 19-2 describes
some of the core types to be aware of.

Table 19-2. System.Runtime.Serialization Namespace Core Types

Type Meaning in Life

ISerializable Before the release of .NET 2.0, implementing this interface was the
preferred way to perform custom serialization. As of .NET 2.0, however,
the preferred way to customize the serialization process is to apply a new
set of serialization-centric attributes (described in just a bit).

<OnDeserialized> This .NET 2.0 attribute allows you to specify a method that will be called
immediately after the object has been deserialized.

<OnDeserializing> This .NET 2.0 attribute allows you to specify a method that will be called
during the deserialization process.

<OnSerialized> This .NET 2.0 attribute allows you to specify a method that will be called
immediately after the object has been serialized.

5785ch19.qxd 3/31/06 11:09 AM Page 566

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 567

Figure 19-3. The serialization process

Type Meaning in Life

<OnSerializing> This .NET 2.0 attribute allows you to specify a method that will be called
during the serialization process.

<OptionalField> This .NET 2.0 attribute allows you to define a field on a type that can be
missing from the specified stream.

SerializationInfo In essence, this class is a “property bag” that maintains name/value pairs
representing the state of an object during the serialization process.

A Deeper Look at Object Serialization
Before we examine various ways in which you can customize the serialization process, it will be
helpful to take a deeper look at what takes place behind the scenes. When the BinaryFormatter
serializes an object graph, it is in charge of transmitting the following information into the specified
stream:

• The fully qualified name of the objects in the graph (e.g., MyApp.JamesBondCar)

• The name of the assembly defining the object graph (e.g., MyApp.exe)

• An instance of the SerializationInfo class that contains all stateful data maintained by the
members in the object graph

During the deserialization process, the BinaryFormatter uses this same information to build an
identical copy of the object, using the information extracted from the underlying stream. The actual
state of the object graph itself is represented by an instance of the SerializationInfo type, which is
created and populated automatically by the formatter when required.

■Note Recall that the SoapFormatter and XmlSerializer do not persist a type’s fully qualified name or the
name of the defining assembly. These types are concerned only with persisting exposed field data.

The big picture can be visualized as shown in Figure 19-3.

5785ch19.qxd 3/31/06 11:09 AM Page 567

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION568

Beyond moving the required data into and out of a stream, formatters also analyze the members
in the object graph for the following pieces of infrastructure:

• A check is made to determine whether the object is marked with the <Serializable> attribute.
If the object is not, a SerializationException is thrown.

• If the object is marked <Serializable>, a check is made to determine whether the object
implements the ISerializable interface. If this is the case, ISerializable.GetObjectData()
is called on the object.

• If the object does not implement ISerializable, the default serialization process is used,
serializing all fields not marked as <NonSerialized>.

In addition to determining whether the type supports ISerializable, formatters (as of .NET 2.0)
are also responsible for discovering whether the types in question support members that have been
adorned with the <OnSerializing>, <OnSerialized>, <OnDeserializing>, or <OnDeserialized> attribute.
We’ll examine the role of these attributes in just a bit, but first let’s look at the role of ISerializable.

Customizing Serialization Using ISerializable
Objects that are marked <Serializable> have the option of implementing the ISerializable interface.
By doing so, you are able to “get involved” with the serialization process and perform any pre-data
formatting. This interface is quite simple, given that it defines only a single method, GetObjectData(),
which is called by the formatter when the object is being serialized into a stream:

' The formatter will call this method with serializing

' an object.

Public Interface ISerializable

Sub GetObjectData(ByVal info As SerializationInfo, _

ByVal context As StreamingContext)

End Interface

The implementation of this method populates the incoming SerializationInfo parameter
with a series of name/value pairs that (typically) map to the field data of the object being persisted.
SerializationInfo defines numerous variations on the overloaded AddValue() method, in addition
to a small set of properties that allow the type to get and set the type’s name, defining assembly, and
member count.

Types that implement the ISerializable interface must also define a special constructor taking
the following signature:

' You must supply a custom constructor with this signature

' to allow the runtime engine to set the state of your object.

<Serializable()> _

Class SomeClass

Implements ISerializable

Private Sub New(ByVal si As SerializationInfo, ByVal ctx As StreamingContext)

' Add custom deserialization logic here.

End Sub

Public Sub GetObjectData(ByVal info As SerializationInfo, _

ByVal context As StreamingContext) Implements ISerializable.GetObjectData

' Add custom serialization logic here.

End Sub

End Class

This special constructor is only intended to be called by a given formatter when the object is
being deserialized, and therefore best practice is to define the visibility of this constructor as private.
This is permissible given that the formatter will have access to this member regardless of its visibility.

5785ch19.qxd 3/31/06 11:09 AM Page 568

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 569

As you can see, the first parameter of this constructor must be an instance of the SerializationInfo
type (which again holds the state of the object’s members).

The second parameter of this special constructor is a StreamingContext type, which contains
information regarding the source or destination of the bits. The most informative member of this
type is the State property, which represents a value from the StreamingContextStates enumeration.
The values of this enumeration represent the basic composition of the current stream. To be honest,
unless you are implementing some low-level custom remoting services, you will seldom need to deal
with this enumeration directly. Nevertheless, here are the possible names of the StreamingContextStates
enum (consult the .NET Framework 2.0 SDK documentation for full details):

Enum StreamingContextStates

CrossProcess

CrossMachine

File

Persistence

Remoting

Other

Clone

CrossAppDomain

All

End Enum

To illustrate customizing the serialization process using ISerializable, assume you have a class
type that defines two points of string data. Furthermore, assume that you must ensure the string val-
ues are serialized to the stream in all uppercase and deserialized from the stream in all lowercase.
To account for such rules, you could implement ISerializable as follows (be sure to import the
System.Runtime.Serialization namespace):

<Serializable()> _

Class MyStringData

Implements ISerializable

Public dataItemOne As String

Public dataItemTwo As String

Public Sub New()

End Sub

' Called by formatter when object graph is being deseralized.

Private Sub New(ByVal si As SerializationInfo, ByVal ctx As StreamingContext)

dataItemOne = si.GetString("First_Item").ToLower()

dataItemTwo = si.GetString("dataItemTwo").ToLower()

End Sub

' Called by formatter when object is being serialized.

Public Sub GetObjectData(ByVal info As SerializationInfo, _

ByVal context As StreamingContext) Implements ISerializable.GetObjectData

info.AddValue("First_Item", dataItemOne.ToUpper())

info.AddValue("dataItemTwo", dataItemTwo.ToUpper())

End Sub

End Class

Notice that when you are filling the SerializationInfo type from within the GetObjectData()
method, you are not required to name the data points identically to the type’s internal member
variables. This can obviously be helpful if you need to further decouple the type’s data from the per-
sisted format. Do be aware, however, that you will need to obtain the values from within the private
constructor using the same names assigned within GetObjectData().

5785ch19.qxd 3/31/06 11:09 AM Page 569

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION570

To test your customization, assume you have persisted an instance of MyStringData using
a SoapFormatter. When you view the resulting *.soap file, you will note that the string fields have
indeed been persisted in uppercase:

<SOAP-ENV:Envelope xmlns:xsi="...">

<SOAP-ENV:Body>

<a1:MyStringData id="ref-1" xmlns:a1="...">

<First_Item id="ref-3">THIS IS SOME DATA.</First_Item>

<dataItemTwo id="ref-4">HERE IS SOME MORE DATA</dataItemTwo>

</a1:MyStringData>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

When deserializing these same values, they would be converted back into lowercase given the
custom code within the “special hidden” constructor. While this example was intended to be only
illustrative in nature, is does point out the fact that customizing how your object’s data is (de)serial-
ized involves support of the ISerializable interface and support for a specific hidden constructor
invoked behind the scenes by the formatter.

Customizing Serialization Using Attributes
Although the previously examined approach to customizing the object serialization process is still
possible under .NET 2.0, the preferred manner to do so is to define methods that are attributed with
any of the new serialization-centric attributes: <OnSerializing>, <OnSerialized>, <OnDeserializing>,
or <OnDeserialized>. The roles of each of these new attributes are documented in Table 19-3.

Table 19-3. Custom Serialization Attributes of .NET 2.0

Serialization Attribute Meaning in Life

<OnDeserializing> The method marked with this attribute will be called before the deserialization
process begins. Here you can initialize default values for optional fields (these
being fields marked with the <OptionalField> attribute).

<OnDeserialized> The method marked with this attribute will be called once the deserialization
process is complete. Here you are able to establish optional field values based
on the contents of other fields.

<OnSerializing> The method marked with this attribute will be called before the serialization
process begins. Here you can prep for the serialization process (e.g., create
optional data structures, write to event logs, etc.).

<OnSerialized> The method marked with this attribute will be called after the serialization
process is complete. Typically this method would be used to log serial-
ization events.

Using these attributes to control object serialization is typically less cumbersome than imple-
menting ISerializable (and the obligatory private “special constructor”), given that you do not
need to manually interact with an incoming SerializationInfo parameter. Instead, you are able to
directly modify your state data while the formatter is operating on the type. Also be aware that you
are not required to capture each step of the serialization/deserialization process. Thus, if you only
are interested in attributing methods with the <OnDeserialized> and <OnSerialized> attributes (to
account for when the object is fully serialized or deserialized), you are free to do so.

The subroutines that are decorated with any of the attributes described in Table 19-3 must be
defined to receive a StreamingContext parameter as their only parameter (otherwise, you will receive
a runtime exception). To illustrate, here is a new <Serializable> type that has the same requirements
as MyStringData, this time accounted for using the <OnSerializing> and <OnDeserialized> attributes:

5785ch19.qxd 3/31/06 11:09 AM Page 570

CHAPTER 19 ■ UNDERSTANDING OBJECT SERIALIZATION 571

<Serializable()> _

Class MoreStringData

Public dataItemOne As String

Public dataItemTwo As String

' This method is called by the formatter when the

' object is being serialized.

<OnSerializing()> _

Private Sub OnSerializing(ByVal context As StreamingContext)

dataItemOne = dataItemOne.ToUpper()

dataItemTwo = dataItemTwo.ToUpper()

End Sub

' This method is called by the formatter when the

' object is being deserialized.

<OnDeserialized()> _

Private Sub OnDeserialized(ByVal context As StreamingContext)

dataItemOne = dataItemOne.ToLower()

dataItemTwo = dataItemTwo.ToLower()

End Sub

End Class

If you were to serialize this new type, you would again find that the data has been persisted as
uppercase and deserialized as lowercase.

■Source Code The CustomSerialization project is included under the Chapter 19 subdirectory.

■Note The .NET platform provides another new serialization-centric attribute named <OptionalField>. This
attribute can be applied to new fields of a previously serializable type to help safely version an object (and prevent
the CLR from throwing runtime exceptions when incompatibilities are found). Look up the topic “Version Tolerant
Serialization” within the .NET 2.0 Framework SDK documentation for further information.

Summary
This chapter introduced the topic of object serialization services. As you have seen, the .NET platform
makes use of an object graph to correctly account for the full set of related objects that are to be
persisted to a stream. As long as each member in the object graph has been marked with the
<Serializable> attribute, the data is persisted using your format of choice (binary, SOAP, or XML).

You also learned that it is possible to customize the out-of-the-box serialization process using
two possible approaches. First, you learned how to implement the ISerializable interface (and support
a special private constructor) to become more involved with how formatters persist the supplied data.
Next, you came to know a set of new attributes introduced with .NET 2.0, which simplifies the process
of custom serialization. Just apply the <OnSerializing>, <OnSerialized>, <OnDeserializing>, or
<OnDeserialized> attribute on members taking a StreamingContext parameter, and the formatters
will invoke them accordingly.

5785ch19.qxd 3/31/06 11:09 AM Page 571

5785ch19.qxd 3/31/06 11:09 AM Page 572

The .NET Remoting Layer

Developers who are new to the .NET platform often assume that .NET is all about building Internet-
centric applications (given that the term “.NET” often conjures the notion of “interNET” software).
As you have already seen, however, this is simply not the case. In fact, the construction of web-based
programs is simply one small (but quite well-touted) aspect of the .NET platform. In this same vein
of misinformation, many new .NET developers tend to assume that XML web services are the only
way to interact with remote objects. Again, this is not true. Using the .NET remoting layer, you are
able to build peer-to-peer distributed applications that have nothing whatsoever to do with HTTP
or XML (if you so choose).

The first goal of this chapter is to examine the low-level grunge used by the CLR to move infor-
mation between application boundaries. Along the way, you will come to understand the numerous
terms used when discussing .NET remoting, such as proxies, channels, marshaling by reference (as
opposed to by value), server-activated (versus client-activated) objects, and so forth. After these
background elements are covered, the remainder of the chapter offers numerous code examples
that illustrate the process of building distributed systems using the .NET platform.

Defining .NET Remoting
As you recall from your reading in Chapter 15, an application domain (AppDomain) is a logical
boundary for a .NET assembly, which is itself housed within a Win32 process. Understanding this
concept is critical when discussing distributed computing under .NET, given that remoting is nothing
more than the act of two objects communicating across application domains. The two application
domains in question could be physically configured in any of the following manners:

• Two application domains in the same process (and thus on the same machine)

• Two application domains in separate processes on the same machine

• Two application domains in separate processes on different machines

Given these three possibilities, you can see that remoting does not necessarily need to involve
two networked computers. In fact, each of the examples presented in this chapter can be successfully
run on a single, stand-alone machine. Regardless of the distance between two objects, it is common
to refer to each agent using the terms “client” and “server.” Simply put, the client is the entity that
attempts to interact with remote objects. The server is the software agent that houses the remote
objects.

573

C H A P T E R 2 0

■ ■ ■

5785ch20.qxd 3/31/06 11:14 AM Page 573

The .NET Remoting Namespaces
Before we dive too deep into the details of the .NET remoting layer, we need to check out the func-
tionality provided by the remoting-centric namespaces. The .NET base class libraries provide numerous
namespaces that allow you to build distributed applications. The bulk of the types found within these
namespaces are contained within mscorlib.dll, but the System.Runtime.Remoting.dll assembly does
complement and extend the core namespaces. Table 20-1 briefly describes the role of the remoting-
centric namespaces as of .NET 2.0.

Table 20-1. .NET Remoting-centric Namespaces

Namespace Meaning in Life

System.Runtime.Remoting This is the core namespace you must use when
building any sort of distributed .NET application.

System.Runtime.Remoting.Activation This relatively small namespace defines a handful
of types that allow you to fine-tune the process
of activating a remote object.

System.Runtime.Remoting.Channels This namespace contains types that represent
channels and channel sinks.

System.Runtime.Remoting.Channels.Http This namespace contains types that use the
HTTP protocol to transport messages and
objects to and from remote locations.

System.Runtime.Remoting.Channels.Ipc This namespace (which is new to .NET 2.0)
contains types that leverage the Win32 inter-
process communication (IPC) architecture. As
you may know, IPC proves fast communications
between AppDomains on the same physical
machine.

System.Runtime.Remoting.Channels.Tcp This namespace contains types that use the TCP
protocol to transport messages and objects to
and from remote locations.

System.Runtime.Remoting.Contexts This namespace allows you to configure the
details of an object’s context.

System.Runtime.Remoting.Lifetime This namespace contains types that manage
the lifetime of remote objects.

System.Runtime.Remoting.Messaging This namespace contains types used to create
and transmit message objects.

System.Runtime.Remoting.Metadata This namespace contains types that can be used
to customize the generation and processing of
SOAP formatting.

System.Runtime.Remoting.Metadata.W3cXsd2001 Closely related to the previous namespace, this
namespace contains types that represent the
XML Schema Definition (XSD) defined by the
World Wide Web Consortium (W3C) in 2001.

System.Runtime.Remoting.MetadataServices This namespace contains the types used by the
soapsuds.exe command-line tool to convert
.NET metadata to and from an XML schema for
the remoting infrastructure.

System.Runtime.Remoting.Proxies This namespace contains types that provide
functionality for proxy objects.

System.Runtime.Remoting.Services This namespace defines a number of common
base classes (and interfaces) that are typically
only leveraged by other intrinsic remoting agents.

CHAPTER 20 ■ THE .NET REMOTING LAYER574

5785ch20.qxd 3/31/06 11:14 AM Page 574

CHAPTER 20 ■ THE .NET REMOTING LAYER 575

Understanding the .NET Remoting Framework
When clients and servers exchange information across application boundaries, the CLR makes use
of several low-level primitives to ensure the entities in question are able to communicate with each
other as transparently as possible. This means that as a .NET programmer, you are not required to
provide reams and reams of grungy networking code to invoke a method on a remote object. Likewise,
the server process is not required to manually pluck a network packet out of the queue and reformat
the message into terms the remote object can understand.

As you would hope, the CLR takes care of such details automatically using a default set of remot-
ing primitives (although you are certainly able to get involved with the process if you so choose).

In a nutshell, the .NET remoting layer revolves around a careful orchestration that takes place
between four key players:

• Proxies

• Messages

• Channels

• Formatters

Let’s check out each entity in turn and see how their combined functionality facilitates remote
method invocations.

Understanding Proxies and Messages
Clients and server objects do not communicate via a direct connection, but rather through the use
of an intermediary termed a proxy. The role of a .NET proxy is to fool the client into believing it is
communicating with the requested remote object in the same application domain. To facilitate this
illusion, a proxy has the identical members (i.e., methods, properties, fields, and whatnot) as the
remote type it represents. As far as the client is concerned, a given proxy is the remote object. Under
the hood, however, the proxy is forwarding calls to the remote object.

Formally speaking, the proxy invoked directly by the client is termed the transparent proxy.
This CLR-autogenerated entity is in charge of ensuring that the client has provided the correct number
of (and type of) parameters to invoke the remote method. Given this, you can regard the transparent
proxy as a fixed interception layer that cannot be modified or extended programmatically.

Assuming the transparent proxy is able to verify the validity of the incoming arguments, this
information is packaged up into another CLR-generated type termed the message object. By defini-
tion, all message objects implement the System.Runtime.Remoting.Messaging.IMessage interface:

Public Interface IMessage

ReadOnly Property Properties() As IDictionary

End Interface

As you can see, the IMessage interface defines a single read-only property (named Properties)
that provides access to a collection used to hold the client-supplied arguments. Once this message
object has been populated by the CLR, it is then passed into a closely related type termed the real
proxy.

The real proxy is the entity that actually passes the message object into the channel (described
momentarily). Unlike the transparent proxy, the real proxy can be extended by the programmer and
is represented by a base class type named (of course) RealProxy. Again, it is worth pointing out that
the CLR will always generate a default implementation of the client-side real proxy, which will serve
your needs most (if not all) of the time. If you are interested in the formal definition of the RealProxy
type, consult the .NET 2.0 Framework SDK documentation.

5785ch20.qxd 3/31/06 11:14 AM Page 575

CHAPTER 20 ■ THE .NET REMOTING LAYER576

Understanding Channels
Once the proxies have validated and formatted the client-supplied arguments into a message object,
this IMessage-compatible type is passed from the real proxy into a channel object. Channels are the
entities in charge of transporting a message to the remote object and, if necessary, ensuring that any
function return value is passed from the remote object back to the client. The .NET 2.0 base class
libraries provide three channel implementations out of the box:

• TCP channel

• HTTP channel

• IPC channel

The TCP channel is represented by the TcpChannel class type and is used to pass messages using
the TCP/IP network protocol. TcpChannel is helpful in that the formatted packets are quite lightweight,
given that the messages are converted into a tight binary format using a related BinaryFormatter
(yes, the same BinaryFormatter you saw in Chapter 19). Use of the TcpChannel type tends to result in
faster remote access. The downside is that TCP channels are not firewall friendly and may require the
services of a system administrator to allow messages to pass across machine boundaries.

In contrast, the HTTP channel is represented by the HttpChannel class type, which converts
message objects into a SOAP format using a related SOAP formatter. As you have seen, SOAP is XML
based and thus tends to result in beefier payloads than the payloads used by the TcpChannel type.
Given this, using the HttpChannel can result in slightly slower remote access. On the plus side, HTTP
is far more firewall friendly, given that most firewalls allow textual packets to be passed over port 80.

Finally, as of .NET 2.0, we have access to the IPC channel, represented by the IpcChannel type,
which defines a communication channel for remoting using the IPC system of the Windows operat-
ing system. Because IpcChannel bypasses traditional network communication to cross AppDomains,
the IpcChannel is much faster than the HTTP and TCP channels; however, it can be used only for
communication between application domains on the same physical computer. Given this, you could
never use IpcChannel to build a distributed application that spans multiple physical computers.
IpcChannel can be an ideal option, however, when you wish to have two local programs share infor-
mation in the fastest possible manner.

Regardless of which channel type you choose to use, understand that the HttpChannel, TcpChannel,
and IpcChannel types all implement the IChannel, IChannelSender, and IChannelReceiver interfaces.
The IChannel interface (as you will see in just a bit) defines a small set of members that provide
common functionality to all channel types. The role of IChannelSender is to define a common set of
members for channels that are able to send information to a specific receiver. On the other hand,
IChannelReceiver defines a set of members that allow a channel to receive information from a given
sender.

To allow the client and server applications to register their channel of choice, you will make use
of the ChannelServices.RegisterChannel() method, which takes a type implementing IChannel.
Just to preview things to come, the following code snippet illustrates how a server-side application
domain can register an HTTP channel on port 32469 (you’ll see the client’s role shortly):

' Create and register a server-side HttpChannel on port 32469.

Dim c As HttpChannel = New HttpChannel(32469)

ChannelServices.RegisterChannel(c)

Revisiting the Role of .NET Formatters
The final piece of the .NET remoting puzzle is the role of formatter objects. The TcpChannel and
HttpChannel types both leverage an internal formatter, whose job it is to translate the message object
into protocol-specific terms. As mentioned, the TcpChannel type makes use of the BinaryFormatter
type, while the HttpChannel type uses the functionality provided by the SoapFormatter type. Given

5785ch20.qxd 3/31/06 11:14 AM Page 576

CHAPTER 20 ■ THE .NET REMOTING LAYER 577

your work in the previous chapter, you should already have some insights as to how a given channel
will format the incoming messages.

Once the formatted message has been generated, it is passed into the channel, where it will
eventually reach its destination application domain, at which time the message is formatted from
protocol-specific terms back to .NET-specific terms, at which point an entity termed the dispatcher
invokes the correct method on the remote object.

All Together Now!
If your head is spinning from reading the previous sections, fear not! The transparent proxy, real
proxy, message object, and dispatcher can typically be completely ignored, provided you are happy
with the default remoting plumbing. To help solidify the sequence of events, ponder Figure 20-1,
which illustrates the basic process of two objects communicating across distinct application domains.

A Brief Word Regarding Extending the Default Plumbing
A key aspect of the .NET remoting API is the fact that most of the default layers can be extended or
completely replaced at the whim of the developer. Thus, if you truly want (or possibly need) to build
a custom message dispatcher, custom formatter, or custom real proxy, you are free to do so. You are
also able to inject additional levels of indirection by plugging in custom types that stand between
a given layer (e.g., a custom sink used to perform preprocessing or postprocessing of a given message).
Now, to be sure, you may never need to retrofit the core .NET remoting layer in such ways. However,
the fact remains that the .NET platform does provide the namespaces to allow you to do so.

■Note This chapter does not address the topic of extending the default .NET remoting layer. If you wish to learn how
to do so, check out Advanced .NET Remoting, Second Edition by Ingo Rammer and Mario Szpuszta (Apress, 2005).

Terms of the .NET Remoting Trade
Like any new paradigm, .NET remoting brings a number of TLAs (three-letter acronyms) into the
mix. Thus, before you see your first code example, we do need to define a few terms used when
describing the composition of a .NET remoting application. As you would guess, this terminology is

Figure 20-1. A high-level view of the default .NET remoting architecture

5785ch20.qxd 3/31/06 11:14 AM Page 577

used to describe a number of details regarding common questions that arise during the construction
of a distributed application: How do we pass a type across application domain boundaries? When
exactly is a remote type activated? How do we manage the lifetime of a remote object (and so forth)?
Once you have an understanding of the related terminology, the act of building a distributed .NET
application will be far less perplexing.

Object Marshaling Choices: MBR or MBV?
Under the .NET platform, you have two options regarding how a remote object is marshaled to the
client. Simply put, marshaling describes how a remote object is passed between application domains.
When you are designing a remotable object, you may choose to employ marshal-by-reference (MBR)
or marshal-by-value (MBV) semantics. The distinction is as follows:

• MBR objects: The caller communicates with the remote object via a proxy.

• MBV objects: The caller receives a full copy of the object in its own application domain.

If you configure an MBR object type, the CLR ensures that the transparent and real proxies are
created in the client’s application domain, while the MBR object itself remains in the server’s appli-
cation domain. As the client invokes methods on the remote type, the .NET remoting plumbing
(examined previously) takes over the show and will package, pass, and return information between
application domain boundaries. To be sure, MBR objects have a number of traits above and beyond
their physical location. As you will see, MBR objects have various configuration options regarding
their activation options and lifetime management.

MBV objects, on the other hand, are local copies of remote objects (which leverage the .NET
serialization protocol examined in Chapter 19). MBV objects have far fewer configuration settings,
given that their lifetime is directly controlled by the client code base. Like any .NET object, once
a client has released all references to an MBV type, it is a candidate for garbage collection. Given
that MBV types are local copies of remote objects, as a client invokes members on the type, no net-
work activity occurs during the process.

Now, understand that it will be quite common for a single server to provide access to numerous
MBR and MBV types. As you may also suspect, MBR types tend to support methods that return vari-
ous MBV types, which gives way to the familiar factory pattern (e.g., an object that creates and returns
other related objects). The next question is, How do you configure your custom class types as MBR
or MBV entities?

Configuring an MBV Object
The process of configuring an object as an MBV type is identical to the process of configuring an
object for serialization. Simply annotate the type with the <Serializable> attribute:

<Serializable> _

Public Class SportsCar

...

End Class

Configuring an MBR Object
MBR objects are not marked as such using a .NET attribute, but rather by deriving (directly or indirectly)
from the System.MarshalByRefObject base class:

Public Class SportsCarFactory

Inherits MarshalByRefObject

...

End Class

CHAPTER 20 ■ THE .NET REMOTING LAYER578

5785ch20.qxd 3/31/06 11:14 AM Page 578

CHAPTER 20 ■ THE .NET REMOTING LAYER 579

As you will see over the course of this chapter, MarshalByRefObject proves a handful of members
that can be used to control the lifetime of the remote object. Table 20-2 describes the role of the core
members of this type.

Table 20-2. Key Members of System.MarshalByRefObject

Member Meaning in Life

CreateObjRef() Creates an object that contains all the relevant information
required to generate a proxy used to communicate with
a remote object

GetLifetimeServices() Retrieves the current lifetime service object that controls the
lifetime policy for this instance

InitializeLifetimeServices() Obtains a lifetime service object to control the lifetime policy
for this instance

■Note Just because you have configured a type as an MBV or MBR entity does not mean it is only usable within
a remoting application, just that it may be used in a remoting application. For example, the System.Windows.
Forms.Form type is a descendent of MarshalByRefObject; thus, if accessed remotely, it is realized as an MBR
type. If not, it is just another local object in the client’s application domain.

Now that you understand the distinct traits of MBR and MBV types, let’s check out some issues
that are specific to MBR types (MBV types need not apply).

■Note As a corollary to the previous note, understand that if a .NET type is not serializable and does not include
MarshalByRefObject in its inheritance chain, the type in question can only be activated and used in the originat-
ing application domain (meaning, the type is context bound; see Chapter 15 for more details).

Activation Choices for MBR Types: WKO or CAO?
Another remoting-centric choice you face as a .NET programmer has to do with exactly when an
MBR object is activated and when it should be a candidate for garbage collection on the server. This
might seem like a strange choice to make, as you might naturally assume that MBR objects are created
when the client requests them and die when the client is done with them. While it is true that the
client is the entity in charge of instructing the remoting layer it wishes to communicate with a remote
type, the server application domain may (or may not) create the type at the exact moment the client’s
code base requests it.

The reason for this seemingly strange behavior has to do with the optimization. Specifically,
every MBR type may be configured to be activated using one of two techniques:

• As a well-known object (WKO)

• As a client-activated object (CAO)

■Note A potential point of confusion is that fact that the acronym WKO is also called a server-activated object
(SAO) in the .NET literature. In fact, you may see the SAO acronym in various .NET-centric articles and books. In
keeping with the current terminology, I will use WKO throughout this chapter.

5785ch20.qxd 3/31/06 11:14 AM Page 579

WKO objects are MBR types whose lifetimes are directly controlled by the server’s application
domain. The client-side application activates the remote type using a friendly, well-known string
name (hence the acronym WKO). The server’s application domain allocates WKO types when the
client makes the first method call on the object (via the transparent proxy), not when the client’s code
base makes use of the New keyword or via the shared Activator.GetObject() method, for example:

' Get a proxy to remote object. This line does NOT create the WKO type!

' (you'll see the parameters to GetObject() later in this chapter)

Dim remoteObj As Object = Activator.GetObject(...)

' Invoke a method on remote WKO type. This WILL create the WKO object

' and invoke the SomeFunction() method.

Dim simple As SomeRemoteObject = CType(remoteObj, SomeRemoteObject)

Console.WriteLine("Remote object says: {0}", simple.SomeFunction())

The rationale for this behavior? This approach saves a network round-trip solely for the pur-
pose of creating the object. As another interesting corollary, WKO types can be created only via the
type’s default constructor. This should make sense, given that the remote type’s constructor is trig-
gered only when the client makes the initial member invocation. Thus, the runtime has no other
option than to invoke the type’s default constructor.

■Note Always remember: all WKO types must define a default constructor! Thus, if you define custom construc-
tors for your WKO types, be sure to redefine the default.

If you wish to allow the client to create a remote MBR object using a custom constructor, the server
must configure the object as a CAO. CAO objects are entities whose lifetime is controlled by the client’s
application domain. When accessing a CAO type, a round-trip to the server occurs at the time the client
makes use of the New keyword (using any of the type’s constructors) or via the Activator type.

Stateful Configuration of WKO Types: Singleton or Single Call?
The final .NET design choice to consider with regard to MBR types has to do with how the server
should handle multiple requests to a WKO type. CAO types need not apply, given that there is always
a one-to-one correspondence between a client and a remote CAO type (because they are stateful).

Your first option is to configure a WKO type to function as a singleton type. The CLR will create
a single instance of the remote type that will take requests from any number of clients, and it is
a natural choice if you need to maintain stateful information among multiple remote callers. Given
the fact that multiple clients could invoke the same method at the same time, the CLR places each
client invocation on a new thread. It is your responsibility, however, to ensure that your objects are
thread-safe using the same techniques described in Chapter 16.

In contrast, a single call object is a WKO type that exists only during the context of a single method
invocation. Thus, if there are 20 clients making use of a WKO type configured with single-call seman-
tics, the server will create 20 distinct objects (one for each client), all of which are candidates for
garbage collection directly after the method invocation. As you can guess, single-call objects are far
more scalable than singleton types, given that they are invariably stateless entities.

The server is the entity in charge of determining the stateful configuration of a given WKO type.
Programmatically, these options are expressed via the System.Runtime.Remoting.WellKnownObjectMode
enumeration:

Enum WellKnownObjectMode

SingleCall

Singleton

End Enum

CHAPTER 20 ■ THE .NET REMOTING LAYER580

5785ch20.qxd 3/31/06 11:14 AM Page 580

CHAPTER 20 ■ THE .NET REMOTING LAYER 581

Summarizing the Traits of MBR Object Types
As you have seen, configuring an MBV object is a no-brainer: apply the <Serializable> attribute to
allow copies of the type to be returned to the client’s application domain. At this point, all interaction
with the MBV type takes place in the client’s locale. When the client is finished using the MBV type,
it is a candidate for garbage collection, and all is well with the world.

With MBR types, however, you have a number of possible configuration choices. As you have seen,
a given MBR type can be configured with regard to its time of activation, statefulness, and lifetime
management. To summarize the array of possibilities, Table 20-3 documents how WKO and CAO
types stack up against the traits you have just examined.

Table 20-3. Configuration Options for MBR Types

MBR Object Trait WKO Behavior CAO Behavior

Instantiation options WKO types can only be activated CAO types can be activated
using the default constructor of the using any constructor of the type.
type, which is triggered when the The remote object is created at
client makes the first method the point the caller makes use of
invocation. constructor semantics (or via the

Activator type).

State management WKO types can be configured as The lifetime of a CAO type is
singleton or single-call entities. dictated by the caller; therefore,
Singleton types can service multiple CAO types are stateful entities.
clients and are therefore stateful.
Single-call types are alive only
during a specific client-side
invocation and are therefore
stateless.

Lifetime management Singleton WKO types make use of CAO types make use of a lease-
a lease-based management scheme based management scheme
(described later in this chapter). (described later in this chapter).
Single-call WKO types are
candidates for garbage collection
after the current method invocation.

Basic Deployment of a .NET Remoting Project
Enough acronyms! At this point you are almost ready to build your first .NET remoting application
(finally). Before you do, however, I need to discuss one final detail: deployment. When you are build-
ing a .NET remoting application, you are almost certain to end up with three (yes, three, not two)
distinct .NET assemblies that will constitute the entirety of your remote application. I am sure you
can already account for the first two assemblies:

• The client: This assembly is the entity that is interested in obtaining access to a remote object
(such as a Windows Forms or console application).

• The server: This assembly is the entity that receives channel requests from the remote client
and hosts the remote objects.

So then, where does the third assembly fit in? In many cases, the server application is typically
a host to a third assembly that defines and implements the remote objects. For convenience, I’ll call
this assembly the general assembly. This decoupling of the assembly containing the remote objects
and server host is quite important, in that both the client and the server assemblies typically set
a reference to the general assembly to obtain the metadata definitions of the remotable types.

5785ch20.qxd 3/31/06 11:14 AM Page 581

In the simplest case, the general assembly is placed into the application directory of the client
and server. The only possible drawback to this approach is the fact that the client has a reference to
an assembly that contains CIL code that is never used (which may be a problem if you wish to ensure
that the end user cannot view proprietary code). Specifically, the only reason the client requires
a reference to the general assembly is to obtain the metadata descriptions of the remotable types.
You can overcome this glitch in several ways, for example:

• Construct your remote objects to make use of interface-based programming techniques.
Given this, the client is able to set a reference to a .NET binary that contains nothing but
interface definitions.

• Make use of the soapsuds.exe command-line application. Using this tool, you are able to
generate an assembly that contains nothing but metadata descriptions of the remote types.

• Manually build an assembly that contains nothing but metadata descriptions of the
remote types.

To keep things simple over the course of this chapter, you will build and deploy general assem-
blies that contain the required metadata as well as the CIL implementation.

■Note If you wish to examine how to implement general assemblies using each of these alternatives, check out
Distributed .NET Programming in VB .NET by Tom Barnaby (Apress, 2002).

Building Your First Distributed Application
There is nothing more satisfying than building a distributed application using a new platform. To
illustrate how quickly you’re able to get up and running with the .NET remoting layer, let’s build
a simple example. As mentioned, the entirety of this example consists of three .NET assemblies:

• A general assembly named SimpleRemotingAsm.dll

• A client assembly named SimpleRemoteObjectClient.exe

• A server assembly named SimpleRemoteObjectServer.exe

Building the General Assembly
First, let’s create the general assembly, SimpleRemotingAsm.dll, which will be referenced by both
the server and client applications. SimpleRemotingAsm.dll defines a single MBR type named
RemoteMessageObject, which supports two public members. The DisplayMessage() method prints
a client-supplied message on the server’s console window, while ReturnMessage() returns a message
to the client. Here is the complete code of this new VB 2005 class library:

' This is a type that will be

' marshaled by reference (MBR) if accessed remotely.

Public Class RemoteMessageObject

Inherits MarshalByRefObject

Public Sub New()

Console.WriteLine("Constructing RemoteMessageObject!")

End Sub

' This method takes an input string

' from the caller.

Public Sub DisplayMessage(ByVal msg As String)

CHAPTER 20 ■ THE .NET REMOTING LAYER582

5785ch20.qxd 3/31/06 11:14 AM Page 582

CHAPTER 20 ■ THE .NET REMOTING LAYER 583

Console.WriteLine("Message is: {0}", msg)

End Sub

' This method returns a value to the caller.

Public Function ReturnMessage() As String

Return "Hello from the remote object!"

End Function

End Class

The major point of interest is the fact that the type derives from the System.MarshalByRefObject
base class, which ensures that the derived class will be accessible via a client-side proxy. Also note
the custom default constructor that will print out a message when an instance of the type comes to
life. That’s it. Go ahead and build your new SimpleRemotingAsm.dll assembly.

Building the Server Assembly
Recall that server assemblies are essentially hosts for general assemblies that contain the remotable
objects. Create a console program named SimpleRemoteObjectServer. The role of this assembly is
to open a channel for the incoming requests and register RemoteMessageObject as a WKO. To begin,
reference the System.Runtime.Remoting.dll and SimpleRemotingAsm.dll assemblies, and update
Main() as follows:

' Be sure to reference SimpleRemotingAsm.dll

' and System.Runtime.Remoting.dll

Imports SimpleRemotingAsm

Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels

Imports System.Runtime.Remoting.Channels.Http

Module Program

Sub Main()

Console.WriteLine("***** SimpleRemoteObjectServer started! *****")

Console.WriteLine("Hit enter to end.")

' Register a new HttpChannel

Dim c As HttpChannel = New HttpChannel(32469)

' The second Boolean parameter controls if the

' channel is to be secured.

ChannelServices.RegisterChannel(c, False)

' Register a WKO type, using singleton activation.

RemotingConfiguration.RegisterWellKnownServiceType(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"RemoteMsgObj.soap", _

WellKnownObjectMode.Singleton)

Console.ReadLine()

End Sub

End Module

Main() begins by creating a new HttpChannel type using an arbitrary port ID. This port is opened
on registering the channel via the shared ChannelServices.RegisterChannel() method. Once the
channel as been registered, the remote server assembly is now equipped to process incoming mes-
sages via port number 32469.

5785ch20.qxd 3/31/06 11:14 AM Page 583

■Note The number you assign to a port is typically up to you (or your system administrator). Do be aware, however,
that port IDs below 1024 are reserved for system use.

Next, to register the SimpleRemotingAsm.RemoteMessageObject type as a WKO requires the
use of the RemotingConfiguration.RegisterWellKnownServiceType() method. The first argument
to this method is the type information of the type to be registered. The second parameter to
RegisterWellKnownServiceType() is a simple string (of your choosing) that will be used to identify
the object across application domain boundaries. Here, you are informing the CLR that this object
is to be realized by the client using the name RemoteMsgObj.soap.

The final parameter is a member of the WellKnownObjectMode enumeration, which you have
specified as WellKnownObjectMode.Singleton. Recall that singleton WKO types ensure that a single
instance of the RemoteMessageObject will service all incoming requests. Build your server assembly
and let’s move on to the client-side code.

Building the Client Assembly
Now that you have a listener that is hosting your remotable object, the final step is to build an
assembly that will request access to its services. Again, let’s use a simple console application
(named SimpleRemoteObjectClient). Set a reference to System.Runtime.Remoting.dll and
SimpleRemotingAsm.dll. Implement Main() as follows:

Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels

Imports System.Runtime.Remoting.Channels.Http

Imports SimpleRemotingAsm

Module Program

Sub Main()

Console.WriteLine("***** SimpleRemoteObjectClient started! *****")

Console.WriteLine("Hit enter to end.")

' Create a new HttpChannel.

Dim c As HttpChannel = New HttpChannel()

ChannelServices.RegisterChannel(c, False)

' Get a proxy to remote WKO type.

Dim remoteObj As Object = Activator.GetObject(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"http://localhost:32469/RemoteMsgObj.soap")

' Now use the remote object.

Dim simple As RemoteMessageObject = CType(remoteObj, RemoteMessageObject)

simple.DisplayMessage("Hello from the client!")

Console.WriteLine("Server says: {0}", simple.ReturnMessage())

Console.ReadLine()

End Sub

End Module

A few notes about this client application. First, notice that the client is also required to register
an HTTP channel, but the client does not specify a port ID, as the end point is specified by the client-
supplied activation URL. Given that the client is interacting with a registered WKO type, you are

CHAPTER 20 ■ THE .NET REMOTING LAYER584

5785ch20.qxd 3/31/06 11:14 AM Page 584

CHAPTER 20 ■ THE .NET REMOTING LAYER 585

limited to triggering the type’s default constructor. To do so, make use of the Activator.GetObject()
method, specifying two parameters. The first is the type information that describes the remote
object you are interested in interacting with. Read that last sentence again. Given that the
Activator.GetObject() method requires the object’s metadata description, it should make more
sense as to why the client is also required to reference the general assembly! Again, at the end of the
chapter you’ll examine various ways to clean up this aspect of your client-side assembly.

The second parameter to Activator.GetObject() is termed the activation URL. Activation URLs
that describe a WKO type can be generalized into the following format:

ProtocolScheme://ComputerName:Port/ObjectUri

Finally, note that the Activator.GetObject() method returns a generic System.Object type, and
thus you must make use of an explicit cast to gain access to the members of the RemoteMessageObject.

Testing the Remoting Application
To test your application, begin by launching the server application, which will open an HTTP channel
and register RemoteMessageObject for remote for access. Next, launch an instance of the client appli-
cation. If all is well, your server window should appear as shown in Figure 20-2, while the client
application displays what you see in Figure 20-3.

Understanding the ChannelServices Type
As you have seen, when a server application wishes to advertise the existence of a remote object, it
makes use of the System.Runtime.Remoting.Channels.ChannelServices type. ChannelServices provides
a small set of shared methods that aid in the process of remoting channel registration, resolution,
and URL discovery. Table 20-4 documents some of the core members.

Figure 20-2. The server’s output

Figure 20-3. The client’s output

5785ch20.qxd 3/31/06 11:14 AM Page 585

CHAPTER 20 ■ THE .NET REMOTING LAYER586

Figure 20-4. Enumerating client-side channels

Table 20-4. Select Members of the ChannelServices Type

Member Meaning in Life

RegisteredChannels This property gets or sets a list of currently registered channels, each of
which is represented by the IChannel interface.

DispatchMessage() This method dispatches incoming remote calls.

GetChannel() This method returns a registered channel with the specified name.

GetUrlsForObject() This method returns an array of all the URLs that can be used to reach
the specified object.

RegisterChannel() This method registers a channel with the channel services.

UnregisterChannel() This method unregisters a particular channel from the registered
channels list.

In addition to the aptly named RegisterChannel() and UnregisterChannel() methods,
ChannelServices defines the RegisteredChannels property. This member returns an array of
IChannel interfaces, each representing a handle to each channel registered in a given application
domain. The definition of the IChannel interface is quite straightforward:

Public Interface IChannel

ReadOnly Property ChannelName() As String

ReadOnly Property ChannelPriority() As Integer

Function Function Parse(ByVal url As String, _

ByRef objectURI As String) As String

End Interface

As you can see, each channel is given a friendly string name as well as a priority level. To illustrate,
if you were to update the Main() method of the SimpleRemoteObjectClient application with the fol-
lowing logic (just before you invoke ReturnMessage()):

' List all registered channels.

Dim channelObjs() As IChannel = ChannelServices.RegisteredChannels()

For Each i As IChannel In channelObjs

Console.WriteLine("Channel name: {0}", i.ChannelName)

Console.WriteLine("Channel Priority: {0}", i.ChannelPriority)

Next

you would find the client-side console now looks like Figure 20-4.

Understanding the RemotingConfiguration Type
Another key remoting-centric type is RemotingConfiguration, which as its name suggests is used to
configure various aspects of a remoting application. Currently, you have seen this type in use on the
server side (via the call to the RegisterWellKnownServiceType() method). Table 20-5 lists additional
shared members of interest, some of which you’ll see in action over the remainder of this chapter.

5785ch20.qxd 3/31/06 11:14 AM Page 586

CHAPTER 20 ■ THE .NET REMOTING LAYER 587

Table 20-5. Members of the RemotingConfiguration Type

Member Meaning in Life

ApplicationId Gets the ID of the currently executing application

ApplicationName Gets or sets the name of a remoting application

ProcessId Gets the ID of the currently executing process

Configure() Reads the configuration file and configures the
remoting infrastructure

GetRegisteredActivatedClientTypes() Retrieves an array of object types registered on the
client as types that will be activated remotely

GetRegisteredActivatedServiceTypes() Retrieves an array of object types registered on the service
end that can be activated on request from a client

GetRegisteredWellKnownClientTypes() Retrieves an array of object types registered on the
client end as well-known types

GetRegisteredWellKnownServiceTypes() Retrieves an array of object types registered on the
service end as well-known types

IsWellKnownClientType() Checks whether the specified object type is registered
as a well-known client type

RegisterActivatedClientType() Registers an object on the client end as a type that can
be activated on the server

RegisterWellKnownClientType() Registers an object on the client end as a well-known
type (single call or singleton)

RegisterWellKnownServiceType() Registers an object on the service end as a well-known
type (single call or singleton)

Recall that the .NET remoting layer distinguishes between two types of MBR objects: WKO
(server activated) and CAO (client activated). Furthermore, WKO types can be configured to make
use of singleton or single-call activations. Using the functionality of the RemotingConfiguration
type, you are able to dynamically obtain such information at runtime. For example, if you update
the Main() method of your SimpleRemoteObjectServer application with the following:

Sub Main()

Console.WriteLine("***** SimpleRemoteObjectServer started! *****")

Console.WriteLine("Hit enter to end.")

...

' Set a friendly name for this server app.

RemotingConfiguration.ApplicationName = "First server app!"

Console.WriteLine("App Name: {0}", _

RemotingConfiguration.ApplicationName)

' Get an array of WellKnownServiceTypeEntry types

' that represent all the registered WKOs.

Dim WKOs() As WellKnownServiceTypeEntry = _

RemotingConfiguration.GetRegisteredWellKnownServiceTypes()

' Now print their statistics.

For Each wko As WellKnownServiceTypeEntry In WKOs

Console.WriteLine("Asm name containing WKO: {0}", wko.AssemblyName)

Console.WriteLine("URL to WKO: {0}", wko.ObjectUri)

Console.WriteLine("Type of WKO: {0}", wko.ObjectType)

Console.WriteLine("Mode of WKO: {0}", wko.Mode)

Next

Console.ReadLine()

End Sub

5785ch20.qxd 3/31/06 11:14 AM Page 587

CHAPTER 20 ■ THE .NET REMOTING LAYER588

Figure 20-5. Server-side statistics

you would find a list of all WKO types registered by this server application domain. As you iterate
over the array of WellKnownServiceTypeEntry types, you are able to print out various points of
interest regarding each WKO. Given that your server’s application registered only a single type
(SimpleRemotingAsm.RemoteMessageObject), you’ll receive the output shown in Figure 20-5.

The other major method of the RemotingConfiguration type is Configure(). As you’ll see in just
a bit, this shared member allows the client- and server-side application domains to make use of
remoting configuration files.

Revisiting the Activation Mode of WKO Types
Recall that WKO types can be configured to function under singleton or single-call activation. Currently,
your server application has registered your WKO to employ singleton activation semantics:

' Singletons can service multiple clients.

RemotingConfiguration.RegisterWellKnownServiceType(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"RemoteMsgObj.soap", _

WellKnownObjectMode.Singleton)

Again, singleton WKOs are capable of receiving requests from multiple clients. Thus, singleton
objects maintain a one-to-many relationship between themselves and the remote clients. To test
this behavior for yourself, run the server application (if it is not currently running) and launch three
separate client applications. If you look at the output for the server, you will find a single call to the
RemoteMessageObject’s default constructor. Now to test the behavior of single-call objects, modify
the server to register the WKO to support single-call activation:

' Single-call types maintain a 1-to-1 relationship

' between client and WKO.

RemotingConfiguration.RegisterWellKnownServiceType(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"RemoteMsgObj.soap", _

WellKnownObjectMode.SingleCall)

Once you have recompiled and run the server application, again launch three clients. This time
you can see that a new RemoteMessageObject is created for each client request. As you might be able
to gather, if you wish to share stateful data between multiple remote clients, singleton activation
provides one possible alternative, as all clients are communicating with a single instance of the
remote object.

■Source Code The SimpleRemotingAsm, SimpleRemoteObjectServer, and SimpleRemoteObjectClient projects
are located under the Chapter 20 directory.

5785ch20.qxd 3/31/06 11:14 AM Page 588

CHAPTER 20 ■ THE .NET REMOTING LAYER 589

Deploying the Server to a Remote Machine
At this point, you have just crossed an application and process boundary on a single machine. If
you’re connected to an additional machine, let’s extend this example to allow the client to interact
with the RemoteMessageObject type across a machine boundary. To do so, follow these steps:

1. On your server machine, create and share a folder to hold your server-side assemblies.

2. Copy the SimpleRemoteObjectServer.exe and SimpleRemotingAsm.dll assemblies to this
server-side share point.

3. Open your SimpleRemoteObjectClient project workspace and retrofit the activation URL to
specify the name of the remote machine, for example:

' Get a proxy to remote object.

Dim remoteObj As Object = Activator.GetObject(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"http://YourRemoteBoxName:32469/RemoteMsgObj.soap")

4. Execute the SimpleRemoteObjectServer.exe application on the server machine.

5. Execute the SimpleRemoteObjectClient.exe application on the client machine.

6. Sit back and grin.

■Note Activation URLs may specify a machine’s IP address in place of its friendly name.

Leveraging the TCP Channel
Currently, your remote object is accessible via the HTTP network protocol. As mentioned, this pro-
tocol is quite firewall friendly, but the resulting SOAP packets are a bit on the bloated side (given the
nature of XML data representation). To lighten the payload, you can update the client and server
assemblies to make use of the TCP channel, and therefore make use of the BinaryFormatter type
behind the scenes. Here are the relevant updates to the server assembly:

■Note When you are defining an object to be URI accessible via a TCP endpoint, it is common (but not required)
to make use of the *.rem (i.e., remote) extension.

' Server-side code adjustments!

Imports System.Runtime.Remoting.Channels.Tcp

...

Sub Main()

...

' Create a new TcpChannel

Dim c As TcpChannel = New TcpChannel(32469)

ChannelServices.RegisterChannel(c, False)

' Register a 'well-known' object in single-call mode.

RemotingConfiguration.RegisterWellKnownServiceType(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"RemoteMsgObj.rem", _

5785ch20.qxd 3/31/06 11:14 AM Page 589

CHAPTER 20 ■ THE .NET REMOTING LAYER590

WellKnownObjectMode.SingleCall)

Console.ReadLine()

End Sub

Notice that you are now registering a System.Runtime.Remoting.Channels.Tcp.TcpChannel type
to the .NET remoting layer. Also note that the object URI has been altered to support a more generic
name (RemoteMsgObj.rem) rather than the SOAP-centric *.soap extension. The client-side updates
are equally as simple:

' Client adjustments!

Imports System.Runtime.Remoting.Channels.Tcp

...

Sub Main()

...

' Create a new TcpChannel

Dim c As TcpChannel = New TcpChannel()

ChannelServices.RegisterChannel(c, False)

' Get a proxy to remote object.

Dim remoteObj As Object = Activator.GetObject(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"tcp://localhost:32469/RemoteMsgObj.rem")

' Use object.

Dim simple As RemoteMessageObject = _

CType(remoteObj, RemoteMessageObject)

simple.DisplayMessage("Hello from the client!")

Console.WriteLine("Server says: {0}", simple.ReturnMessage())

Console.ReadLine()

End Sub

The only point to be aware of here is that the client’s activation URL now must specify the
tcp:// channel qualifier rather than http://. Beyond that, the bulk of the code base is identical to
the previous HttpChannel logic.

■Source Code The TCPSimpleRemoteObjectServer and TCPSimpleRemoteObjectClient projects are located
under the Chapter 20 directory (both projects reference the SimpleRemotingAsm.dll created previously).

A Brief Word Regarding the IpcChannel
Before moving on to an examination of remoting configuration files, recall that .NET 2.0 also provides
the IpcChannel type, which provides the fastest possible manner in which two applications on the
same machine can exchange information. Given that this chapter is geared toward covering distrib-
uted programs that involve two or more computers, interested readers should look up IpcChannel in
the .NET Framework 2.0 SDK documentation (as you might guess, the code is just about identical to
working with HttpChannel and TcpChannel).

5785ch20.qxd 3/31/06 11:14 AM Page 590

CHAPTER 20 ■ THE .NET REMOTING LAYER 591

Remoting Configuration Files
At this point you have successfully built a distributed application using the .NET remoting layer.
One issue you may have noticed in these first examples is the fact that the client and the server
applications have a good deal of hard-coded logic within their respective binaries. For example, the
server specifies a fixed port ID, fixed activation mode, and fixed channel type. The client, on the
other hand, hard-codes the name of the remote object it is attempting to interact with.

As you might agree, it is wishful thinking to assume that initial design notes remain unchanged
once an application is deployed. Ideally, details such as port ID and object activation mode (and
whatnot) could be altered on the fly without needing to recompile and redistribute the client or server
code bases. Under the .NET remoting scheme, all the aforementioned issues can be circumvented
using the remoting configuration file.

As you will recall from Chapter 13, *.config can be used to provide hints to the CLR regarding
the loading of externally referenced assemblies. The same *.config files can be used to inform the
CLR of a number of remoting-related details, on both the client side and the server side.

When you build a remoting *.config file, the <system.runtime.remoting> element is used to hold
various remoting-centric details. Do be aware that if you’re building an application that already has
a *.config file that specifies assembly resolution details, you’re free to add remoting elements within
the same file. Thus, a single *.config file that contains remoting and binding information would look
something like this:

<configuration>

<system.runtime.remoting>

<! -- configure client/server remoting settings here -- >

</system.runtime.remoting>

<runtime>

<! -- assembly binding settings here -- >

</runtime>

</configuration>

If your configuration file has no need to specify assembly binding logic, you can omit the
<runtime> element and make use of the following skeleton *.config file:

<configuration>

<system.runtime.remoting>

<! -- configure client/server remoting settings here -- >

</system.runtime.remoting>

</configuration>

Building Server-side *.config Files
Server-side configuration files allow you to declare the objects that are to be reached via remote
invocations as well as channel and port information. Basically, using the <service>, <wellknown>,
and <channels> elements, you are able to replace the following server-side logic:

' Hard-coded HTTP server logic.

Dim c As HttpChannel = New HttpChannel(32469)

ChannelServices.RegisterChannel(c, False)

RemotingConfiguration.RegisterWellKnownServiceType(_

GetType(SimpleRemotingAsm.RemoteMessageObject), _

"RemoteMsgObj.soap", _

WellKnownObjectMode.Singleton)

5785ch20.qxd 3/31/06 11:14 AM Page 591

CHAPTER 20 ■ THE .NET REMOTING LAYER592

with the following *.config file:

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown

mode="Singleton"

type="SimpleRemotingAsm.RemoteMessageObject, SimpleRemotingAsm"

objectUri="RemoteMsgObj.soap"/>

</service>

<channels>

<channel ref="http" port="32469"/>

</channels>

</application>

</system.runtime.remoting>

</configuration>

Notice that much of the relevant server-side remoting information is wrapped within the scope
of the <service> (not server) element. The child <wellknown> element makes use of three attributes
(mode, type, and objectUri) to specify the well-known object to register with the .NET remoting layer.
The child <channels> element contains any number of <channel> elements that allow you to define
the type of channel (in this case, HTTP) to open on the server. TCP channels would simply make use
of the tcp string token in place of http.

As the *.config file contains all the necessary information, the server-side Main() method cleans
up considerably. All you are required to do is make a single call to RemotingConfiguration.Configure()
and specify the name of your configuration file.

Imports System.Runtime.Remoting

Module Program

Sub Main()

Console.WriteLine("***** Server with *.config file *****")

Console.WriteLine()

' Register a 'well-known' object using a *.config file.

' Second parameter specifies if the connection is secure.

RemotingConfiguration.Configure(_

"SimpleRemoteObjectServerWithConfig.exe.config", False)

Console.WriteLine("Server started! Hit enter to end")

Console.ReadLine()

End Sub

End Module

Building Client-side *.config Files
Clients are also able to leverage remoting *.config files. Unlike a server-side configuration file,
client-side configuration files make use of the <client> element to identify the name of the well-
known object the caller wishes to interact with. In addition to providing the ability to dynamically
change the remoting information without the need to recompile the code base, client-side *.config
files allow you to create the proxy type directly using the VB 2005 New keyword, rather than the
Activator.GetObject() method. Thus, if you have the following client-side *.config file:

<configuration>

<system.runtime.remoting>

<application>

<client displayName = "SimpleRemoteObjectClientWithConfig">

5785ch20.qxd 3/31/06 11:14 AM Page 592

CHAPTER 20 ■ THE .NET REMOTING LAYER 593

<wellknown

type="SimpleRemotingAsm.RemoteMessageObject, SimpleRemotingAsm"

url="http://localhost:32469/RemoteMsgObj.soap"/>

</client>

<channels>

<channel ref="http"/>

</channels>

</application>

</system.runtime.remoting>

</configuration>

you are able to update the client’s Main() method as follows:

Imports System.Runtime.Remoting

Imports SimpleRemotingAsm

Module Program

Sub Main()

Console.WriteLine("***** Client with *.config *****")

Console.WriteLine()

RemotingConfiguration.Configure(_

"SimpleRemoteObjectClientWithConfig.exe.config", False)

' Using *.config file, the client is able to directly 'New' the type.

Dim simple As RemoteMessageObject = New RemoteMessageObject()

simple.DisplayMessage("Hello from the client!")

Console.WriteLine("Server says: {0}", simple.ReturnMessage())

Console.WriteLine("Client started! Hit enter to end")

Console.ReadLine()

End Sub

End Module

When you run the application, the output is identical to the previous assemblies that hard-
coded the remoting logic. If the client wishes to make use of the TCP channel, the url property of the
<wellknown> element and <channel> ref property must make use of the tcp token in place of http.

■Source Code The SimpleRemoteObjectServerWithConfig and SimpleRemoteObjectClientWithConfig projects
are located under the Chapter 20 subdirectory (both of which reference SimpleRemotingAsm.dll).

Working with MBV Objects
Our first remoting applications allowed client-side access to a single WKO type. Recall that WKO
types are (by definition) MBR types, and therefore client access takes place via an intervening proxy.
In contrast, MBV types are local copies of a server-side object, which (not surprisingly) are typically
returned from a public member of an MBR type. Although you already know how to configure an MBV
type (mark a class with the <Serializable> attribute), you have not yet seen an example of MBV types
in action (beyond passing String data between the two parties, as String types are indeed marked
with the <Serializable> attribute). To illustrate the interplay of MBR and MBV types, let’s see another
example involving three assemblies:

• The general assembly named CarGeneralAsm.dll

• The client assembly named CarProviderClient.exe

• The server assembly named CarProviderServer.exe

5785ch20.qxd 3/31/06 11:14 AM Page 593

CHAPTER 20 ■ THE .NET REMOTING LAYER594

As you might assume, the code behind the client and server applications is more or less identical
to the previous example, especially since these applications will again make use of *.config files.
Nevertheless, let’s step through the process of building each assembly one at a time.

Building the General Assembly
To begin, create a new VB 2005 Code Library project named CarGeneralAsm. During our examination
of object serialization in Chapter 19, you created a type named JamesBondCar (in addition to the
dependent Radio and Car classes). The CarGeneralAsm.dll code library will reuse these types, so
begin by using the Project ➤ Add Existing Item menu command and include these *.vb files in
this new Class Library project. Given that each of these types has already been marked with the
<Serializable> attribute, they are ready to be marshaled by value to a remote client. By way of
a quick reminder, here are the definitions of the types in question (note that I have removed the
XML-centric attributes from the definitions):

<Serializable()> _

Public Class Radio

Public hasTweeters As Boolean

Public hasSubWoofers As Boolean

Public stationPresets As Double()

<NonSerialized()> _

Public radioID As String = "XF-552RR6"

End Class

<Serializable()> _

Public Class Car

Public theRadio As Radio = New Radio

Public isHatchBack As Boolean

End Class

<Serializable()> _

Public Class JamesBondCar

Inherits Car

Public Sub New(ByVal SkyWorthy As Boolean, ByVal SeaWorthy As Boolean)

canFly = SkyWorthy

canSubmerge = SeaWorthy

End Sub

Public Sub New()

End Sub

Public canFly As Boolean

Public canSubmerge As Boolean

End Class

All you need now is an MBR type that provides access to the JamesBondCar type. To make things
a bit more interesting, however, your MBR object (CarProvider) will maintain a generic List(Of T)
of JamesBondCar types. CarProvider will also define two members that allow the caller to obtain a specific
JamesBondCar as well as receive the entire List(Of T) of types. Here is the complete code for the new
class type:

' This type is an MBR object that provides

' access to related MBV types.

Public Class CarProvider

Inherits MarshalByRefObject

Private theJBCars As List(Of JamesBondCar) = _

New List(Of JamesBondCar)()

5785ch20.qxd 3/31/06 11:14 AM Page 594

CHAPTER 20 ■ THE .NET REMOTING LAYER 595

' Add some cars to the list.

Public Sub New()

Console.WriteLine("Car provider created")

theJBCars.Add(New JamesBondCar(True, True))

theJBCars.Add(New JamesBondCar(True, False))

theJBCars.Add(New JamesBondCar(False, True))

theJBCars.Add(New JamesBondCar(False, False))

End Sub

' Get all the JamesBondCars.

Public Function GetAllAutos() As List(Of JamesBondCar)

Return theJBCars

End Function

' Get one JamesBondCar.

Public Function GetJBCByIndex(ByVal i As Integer) As JamesBondCar

Return CType(theJBCars(i), JamesBondCar)

End Function

End Class

Notice that the GetAllAutos() method returns the internal List(Of T) type. The obvious ques-
tion is how this member of the System.Collections.Generic namespace is marshaled back to the
caller. If you look up this type using the .NET Framework 2.0 SDK documentation, you will find that
List(Of T) has been decorated with the <Serializable> attribute:

<SerializableAttribute> _

Public Class List(Of T)

Implements IList(Of T), ICollection(Of T), _

IEnumerable(Of T), IList, ICollection, _

IEnumerable

...

End Class

Therefore, the entire contents of the List(Of T) type will be marshaled by value to the caller
(provided the contained types are also serializable)! This brings up a very good point regarding .NET
remoting and members of the base class libraries. In addition to the custom MBV and MBR types
you may create yourself, understand that any type in the base class libraries that is decorated with
the <Serializable> attribute is able to function as an MBV type in the .NET remoting architecture.
Likewise, any type that derives (directly or indirectly) from MarshalByRefObject will function as an
MBR type.

■Note Be aware that the SoapFormatter does not support serialization of generic types. If you build methods
that receive or return generic types (such as the List(Of T) type), you must make use of the BinaryFormatter
and the TcpChannel object.

Building the Server Assembly
Next, create a new console application named CarProviderServer and add a reference to
CarGeneralAsm.dll. The server host assembly (CarProviderServer.exe) has the following logic
within the Main() method:

Imports CarGeneralAsm

Imports System.Runtime.Remoting

Module Project

Sub Main()

5785ch20.qxd 3/31/06 11:14 AM Page 595

CHAPTER 20 ■ THE .NET REMOTING LAYER596

RemotingConfiguration.Configure("CarProviderServer.exe.config", False)

Console.WriteLine("Car server started! Hit enter to end")

Console.ReadLine()

End Sub

End Module

The related *.config file is just about identical to the server-side *.config file you created in
the previous example. The only point of interest is to define an object URI value that makes sense
for the CarProvider type:

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="Singleton"

type="CarGeneralAsm.CarProvider, CarGeneralAsm"

objectUri="carprovider.rem" />

</service>

<channels>

<channel ref="tcp" port="32469" />

</channels>

</application>

</system.runtime.remoting>

</configuration>

Building the Client Assembly
Last but not least, we have the client application (a console application named CarProviderClient)
that will make use of the MBR CarProvider type in order to obtain discrete JamesBondCars types as
well as the List(Of T) type. Once you obtain a type from the CarProvider, you’ll send it into the
UseCar() helper function from processing:

Imports CarGeneralAsm

Imports System.Runtime.Remoting

Module Program

Sub Main()

Console.WriteLine("Client started! Hit enter to end")

RemotingConfiguration.Configure("CarProviderClient.exe.config", False)

' Make the car provider.

Dim cp As CarProvider = New CarProvider()

' Get first JBC.

Dim jbCar As JamesBondCar = cp.GetJBCByIndex(0)

' Get all JBCs.

Dim JBCs As List(Of JamesBondCar) = cp.GetAllAutos()

' Use first car.

UseCar(jbCar)

' Use all cars in List.

For Each j As JamesBondCar In JBCs

UseCar(j)

Next

Console.ReadLine()

End Sub

5785ch20.qxd 3/31/06 11:14 AM Page 596

CHAPTER 20 ■ THE .NET REMOTING LAYER 597

Private Sub UseCar(ByVal c As JamesBondCar)

Console.WriteLine("-> Flight worthy? {0}", c.canFly)

Console.WriteLine("-> Seaworthy? {0}", c.canSubmerge)

Console.WriteLine("-> Has hatch back? {0}", c.isHatchBack)

Console.WriteLine("-> Radio has sub woofers? {0}", c.theRadio.hasSubWoofers)

Console.WriteLine()

End Sub

End Module

The client-side *.config file is also what you would expect. Simply update the activation URL:

<configuration>

<system.runtime.remoting>

<application>

<client displayName = "CarClient">

<wellknown

type="CarGeneralAsm.CarProvider, CarGeneralAsm"

url="tcp://localhost:32469/carprovider.rem"/>

</client>

<channels>

<channel ref="http"/>

</channels>

</application>

</system.runtime.remoting>

</configuration>

Now, run your server and client applications (in that order, of course) and observe the output.
Your client-side console window will whirl through the JamesBondCars and print out the statistics of
each type. Recall that as you interact with the List(Of T) and JamesBondCar types, you are operating
on their members within the client’s application domain, as they have both been marked with the
<Serializable> attribute.

■Source Code The CarGeneralAsm, CarProviderServer, and CarProviderClient projects are located under the
Chapter 20 subdirectory.

Understanding Client-activated Objects
All of these current remoting examples have made use of WKOs. Recall that WKOs have the following
characteristics:

• WKOs can be configured either as singleton or single call.

• WKOs can only be activated using the type’s default constructor.

• WKOs are instantiated on the server on the first client-side member invocation.

CAO types, on the other hand, can be instantiated using any constructor on the type and are
created at the point the client makes use of the VB 2005 New keyword or Activator type. Furthermore,
the lifetime of CAO types is monitored by the .NET leasing mechanism. Do be aware that when you
configure a CAO type, the .NET remoting layer will generate a specific CAO remote object to service
each client. Again, the big distinction is the fact that CAOs are always alive (and therefore stateful)
beyond a single method invocation.

To illustrate the construction, hosting, and consumption of CAO types, let’s retrofit the previous
CarGeneralAsm.dll general assembly. Assume that your MBR CarProvider class has defined an addi-
tional constructor that allows the client to pass in an array of JamesBondCar types that will be used to
populate the generic List(Of T):

5785ch20.qxd 3/31/06 11:14 AM Page 597

CHAPTER 20 ■ THE .NET REMOTING LAYER598

Public Class CarProvider

Inherits MarshalByRefObject

Private theJBCars As List(Of JamesBondCar) = _

New List(Of JamesBondCar)()

Public Sub New(ByVal theCars() As JamesBondCar)

Console.WriteLine("Car provider created with custom ctor")

theJBCars.AddRange(theCars)

End Sub

...

End Class

To allow the caller to activate the CarProvider using your new constructor syntax, you need
to build a server application (a console project named CAOCarProviderServer) that registers
CarProvider as a CAO type rather than a WKO type. This may be done programmatically (à la the
RemotingConfiguration.RegisterActivatedServiceType() method) or using a server-side *.config
file. If you wish to hard-code the name of the CAO object within the host server’s code base, all you
need to do is pass in the type information of the type(s) (after creating and registering a channel) as
follows:

' Hard-code the fact that CarProvider is a CAO type.

RemotingConfiguration.RegisterActivatedServiceType(_

GetType(CAOCarGeneralAsm.CarProvider))

If you would rather leverage the *.config file, replace the <wellknown> element with the <activated>
element as follows:

<configuration>

<system.runtime.remoting>

<application>

<service>

<activated type = "CAOCarGeneralAsm.CarProvider,

CAOCarGeneralAsm"/>

</service>

<channels>

<channel ref="tcp" port="32469" />

</channels>

</application>

</system.runtime.remoting>

</configuration>

Finally, you need to update the client application (or create a new console application named
CAOCarProviderClient), not only by way of the *.config file (or programmatically in the code base)
to request access to the remote CAO, but also to indeed trigger the custom constructor of the
CarProvider type. Here are the relevant updates to the client-side Main() method:

Sub Main()

Console.WriteLine("Client started! Hit enter to end")

RemotingConfiguration.Configure("CAOCarProviderClient.exe.config", False)

' Create array of types to pass to provider.

Dim cars() As JamesBondCar = {New JamesBondCar(False, False), _

New JamesBondCar(True, False), _

New JamesBondCar(True, False)}

' Now trigger the custom ctor.

Dim cp As CarProvider = New CarProvider(cars)

5785ch20.qxd 3/31/06 11:14 AM Page 598

CHAPTER 20 ■ THE .NET REMOTING LAYER 599

' Get first JBC.

Dim jbCar As JamesBondCar = cp.GetJBCByIndex(0)

' Use all cars in List.

UseCar(jbCar)

Console.ReadLine()

End Sub

The updated client-side *.config file also makes use of the <activated> element, as opposed to
<wellknown>. In addition, the <client> element now requires the url property to define the location
of the registered CAO. Recall that when the server registered the CarProvider as a WKO, the client
specified such information within the <wellknown> element.

<configuration>

<system.runtime.remoting>

<application>

<client displayName = "CarClient" url = "tcp://localhost:32469">

<activated type = "CAOCarGeneralAsm.CarProvider, CAOCarGeneralAsm" />

</client>

<channels>

<channel ref="tcp"/>

</channels>

</application>

</system.runtime.remoting>

</configuration>

If you would rather hard-code the client’s request to the CAO type, you can make use of the
RegistrationServices.RegisterActivatedClientType() method as follows:

Sub Main()

' Use hard-coded values.

RemotingConfiguration.RegisterActivatedClientType(_

GetType(CAOCarGeneralAsm.CarProvider), _

"tcp://localhost:32469")

...

End Sub

If you now execute the updated server and client assemblies, you will be pleased to find that
you are able to pass your custom array of JamesBondCar types to the remote CarProvider via the
overloaded constructor.

■Source Code The CAOCarGeneralAsm, CAOCarProviderServer, and CAOCarProviderClient projects are located
under the Chapter 20 subdirectory.

The Lease-based Lifetime of CAO/WKO-Singleton
Objects
As you have seen, WKO types configured with single-call activation are alive only for the duration of
the current method call. Given this fact, WKO single-call types are stateless entities. As soon as the
current invocation has completed, the WKO single-call type is a candidate for garbage collection.

On the other hand, CAO types and WKO types that have been configured to use singleton acti-
vation are both, by their nature, stateful entities. Given these two object configuration settings, the
question that must be asked is, How does the server process know when to destroy these MBR

5785ch20.qxd 3/31/06 11:14 AM Page 599

CHAPTER 20 ■ THE .NET REMOTING LAYER600

objects? Clearly, it would be a huge problem if the server machine garbage-collected MBR objects
that were currently in use by a remote client. If the server machine waits too long to release its set of
MBR types, this may place undue stress on the system, especially if the MBR object(s) in question
maintain valuable system resources (database connections, unmanaged types, and whatnot).

The lifetime of a CAO/WKO-singleton MBR type is governed by a “lease time” that is tightly
integrated with the .NET garbage collector. If the lease time of a CAO/WKO-singleton MBR type
expires, the object is ready to be garbage-collected on the next collection cycle. Like any .NET type, if
the remote object has overridden System.Object.Finalize(), the .NET runtime will indeed trigger
the finalization logic.

The Default Leasing Behavior
CAO and WKO-singleton MBR types have what is known as a default lease, which lasts for five min-
utes. If the runtime detects five minutes of inactivity have passed for a CAO/WKO-singleton MBR
type, the assumption is that the client is no longer making use of the object and therefore the remote
object may be garbage-collected. However, when the default lease expires, this does not imply that
the object is immediately marked for garbage collection. In reality, there are many ways to influence
the behavior of the default lease.

First and foremost, anytime the remote client invokes a member of the remote CAO/WKO-
singleton MBR type, the lease is renewed back to its five-minute limit. In addition to the automatic
client-invocation–centric renew policy, the .NET runtime provides three additional alternatives:

• *.config files can be authored that override the default lease settings for remote objects.

• Server-side lease sponsors can be used to act on behalf of a remote object whose lease time
has expired.

• Client-side lease sponsors can be used to act on behalf of a remote object whose lease time
has expired.

For the time being, let’s examine the default lease settings of a remote type. Recall that the
MarshalByRefObject base class defines a member named GetLifetimeService(). This method
returns a reference to an internally implemented object that supports the System.Runtime.
Remoting.Lifetime.ILease interface. As you would guess, the ILease interface can be used to
interact with the leasing behavior of a given CAO/WKO-singleton type. Here is the formal definition:

Public Interface ILease

ReadOnly Property CurrentLeaseTime() As TimeSpan

ReadOnly Property CurrentState() As LeaseState

Property InitialLeaseTime() As TimeSpan

Property RenewOnCallTime() As TimeSpan

Property SponsorshipTimeout() As TimeSpan

Sub Register(ByVal obj As ISponsor)

Sub Register(ByVal obj As ISponsor, ByVal renewalTime As TimeSpan)

Function Renew(ByVal renewalTime As TimeSpan) As TimeSpan

Sub Unregister(ByVal obj As ISponsor)

End Interface

The ILease interface not only allows you to obtain information regarding the current lease (via
CurrentLeaseTime, CurrentState, and InitialLeaseTime), but also provides the ability to build lease
“sponsors” (more details on this later). Table 20-6 documents the role of each ILease member.

5785ch20.qxd 3/31/06 11:14 AM Page 600

CHAPTER 20 ■ THE .NET REMOTING LAYER 601

Table 20-6. Members of the ILease Interface

Member Meaning in Life

CurrentLeaseTime Gets the amount of time remaining before the object deactivates, if it does
not receive further method invocations.

CurrentState Gets the current state of the lease, represented by the LeaseState
enumeration.

InitialLeaseTime Gets or sets the initial amount of time for a given lease. The initial lease
time of an object is the amount of time following the initial activation
before the lease expires if no other method calls occur.

RenewOnCallTime Gets or sets the amount of time by which a call to the remote object
increases the CurrentLeaseTime.

SponsorshipTimeout Gets or sets the amount of time to wait for a sponsor to return with a lease
renewal time.

Register() Overloaded. Registers a sponsor for the lease.

Renew() Renews a lease for the specified time.

Unregister() Removes a sponsor from the sponsor list.

To illustrate the characteristics of the default lease of a CAO/WKO-singleton remote object,
assume that your current CAOCarGeneralAsm project has defined a new internal class named
LeaseInfo. LeaseInfo supports a shared member named LeaseStats(), which dumps select statis-
tics regarding the current lease for the CarProvider type to the server-side console window (be sure
to import the System.Runtime.Remoting.Lifetime namespace to inform the compiler where the
ILease type is defined):

Imports System.Runtime.Remoting.Lifetime

Friend Class LeaseInfo

Public Shared Sub LeaseStats(ByVal itfLease As ILease)

Console.WriteLine("***** Lease Stats *****")

Console.WriteLine("Lease state: {0}", itfLease.CurrentState)

Console.WriteLine("Initial lease time: {0}:{1}", _

itfLease.InitialLeaseTime.Minutes, itfLease.InitialLeaseTime.Seconds)

Console.WriteLine("Current lease time: {0}:{1}", _

itfLease.CurrentLeaseTime.Minutes, itfLease.CurrentLeaseTime.Seconds)

Console.WriteLine("Renew on call time: {0}:{1}", _

itfLease.RenewOnCallTime.Minutes, itfLease.RenewOnCallTime.Seconds)

Console.WriteLine()

End Sub

End Class

Now that you have this helper type in place, assume LeaseInfo.LeaseStats() is called within
the GetJBCByIndex() and GetAllAutos() methods of the CarProvider type. To obtain the current
ILease-compatible object, you must explicitly cast the System.Object returned by the inherited
GetLifetimeServices() method:

Public Function GetAllAutos() As List(Of JamesBondCar)

LeaseInfo.LeaseStats(CType(GetLifetimeService(), ILease))

Return theJBCars

End Function

Public Function GetJBCByIndex(ByVal i As Integer) As JamesBondCar

LeaseInfo.LeaseStats(CType(GetLifetimeService(), ILease))

Return CType(theJBCars(i), JamesBondCar)

End Function

5785ch20.qxd 3/31/06 11:14 AM Page 601

CHAPTER 20 ■ THE .NET REMOTING LAYER602

Once you recompile the server and client assemblies (again, simply to ensure Visual Studio
2005 copies the latest and greatest version of the CarGeneralAsm.dll to the client and server appli-
cation directories), run the application once again. Your server’s console window should now look
something like Figure 20-6.

Altering the Default Lease Characteristics
Obviously, the default lease characteristics of a CAO/WKO-singleton type may not be appropriate
for each and every CAO/WKO-singleton remote object. If you wish to alter these default settings,
you have two approaches:

• You can adjust the default lease settings using a server-side *.config file.

• You can programmatically alter the settings of a MBR type’s default lease by overriding members
of the MarshalByRefObject base class.

While each of these options will indeed alter the default lease settings, there is a key difference.
When you make use of a server-side *.config file, the lease settings affect all objects hosted by the
server process. In contrast, when you override select members of the MarshalByRefObject type, you
are able to change lease settings on an object-by-object basis.

To illustrate changing the default lease settings via a remoting *.config file, assume you have
updated the server-side XML data with the following additional <lifetime> element:

<configuration>

<system.runtime.remoting>

<application>

<lifetime leaseTime = "15M" renewOnCallTime = "5M"/>

<service>

<activated type = "CAOCarGeneralAsmLease.CarProvider,

CAOCarGeneralAsmLease"/>

</service>

<channels>

<channel ref="tcp" port="32469" />

</channels>

</application>

</system.runtime.remoting>

</configuration>

Figure 20-6. The default lease information for CarProvider

5785ch20.qxd 3/31/06 11:14 AM Page 602

CHAPTER 20 ■ THE .NET REMOTING LAYER 603

Now recall that when you update the server’s *.config file, you have effectively changed the leas-
ing characteristics for each CAO/WKO-singleton object hosted by the server. As an alternative, you may
choose to programmatically override the InitializeLifetime() method in a specific remote type:

Public Class CarProvider

Inherits MarshalByRefObject

Public Overrides Function InitializeLifetimeService() As Object

' Obtain the current lease info.

Dim itfLeaseInfo As ILease = _

CType(MyBase.InitializeLifetimeService(), ILease)

' Adjust settings.

itfLeaseInfo.InitialLeaseTime = TimeSpan.FromMinutes(50)

itfLeaseInfo.RenewOnCallTime = TimeSpan.FromMinutes(10)

Return itfLeaseInfo

End Function

...

End Class

Here, the CarProvider has altered its InitialLeaseTime value to 50 minutes and its RenewOnCallTime
value to 10. Again, the benefit of overriding InitializeLifetimeServices() is the fact that you can
configure each remote type individually.

■Note If you wish to disable lease-based lifetime management for a given CAO/WKO-singleton object type, you
may override InitializeLifetimeServices() and simply return Nothing. If you do so, you have basically con-
figured an MBR type that will never die as long as the hosting server application is alive and kicking.

Figure 20-7. The lease information as specified by *.config

Notice how the leaseTime and renewOnCallTime properties have been marked with the M suffix,
which as you might guess stands for the number of minutes to set for each lease-centric unit of time.
If you wish, your <lifetime> element may also suffix the numerical values with MS (milliseconds),
S (seconds), H (hours), or even D (days). If you were to run the server and then run the client program,
you would now find the lease output shown in Figure 20-7.

5785ch20.qxd 3/31/06 11:14 AM Page 603

CHAPTER 20 ■ THE .NET REMOTING LAYER604

So at this point you should have a better idea how the lifetime of remote objects is handled by
the CLR. To be honest, there are additional techniques that can be used to manage the life of remote
types beyond what I have examined here (lease sponsors, etc.). If you require a deeper treatment of
the topic, I would again recommend checking out Advanced .NET Remoting, Second Edition by Ingo
Rammer and Mario Szpuszta (Apress, 2005). In any case, before we wrap things up, there are two final
topics that are worth addressing: object hosting options and asynchronous remote invocations.

■Source Code The CAOCarGeneralAsmLease, CAOCarProviderServerLease, and CAOCarProviderClientLease
projects are located under the Chapter 20 subdirectory.

Alternative Hosts for Remote Objects
Over the course of this chapter, you have constructed numerous console-based server hosts, which
provide access to some set of remote objects. If you have a background in the classic Distributed
Component Object Model (DCOM), this step may have seemed a bit odd. In the world of DCOM, it
was not unusual to build a single server-side COM server that contained the remote objects and was
also in charge of receiving incoming requests from some remote client. This single *.exe DCOM
application would quietly load in the background without presenting a looming command window.

When you are building a .NET server assembly, the chances are quite good that the remote machine
does not need to display any sort of UI. Rather, all you really wish to do is build a server-side entity
that opens the correct channel(s) and registers the remote object(s) for client-side access. Moreover,
when you build a simple console host, you are (or someone else is) required to manually run the server-
side *.exe assembly, due to the fact that .NET remoting will not automatically run a server-side *.exe
when called by a remote client.

Given these two issues, the question then becomes, How can you build an invisible listener
that loads automatically? .NET programmers have two major choices at their disposal when they
wish to build a transparent host for various remote objects:

• Build a .NET Windows service application to host the remote objects.

• Allow IIS to host the remote objects.

Hosting Remote Objects Using a Windows Service
Perhaps the ideal host for remote objects is a Windows service, given that it

• Can be configured to load automatically on system startup

• Runs as an invisible background process

• Can be run under specific user accounts

As luck would have it, building a custom Windows service using the .NET platform is extremely
simple. To illustrate, let’s create a Windows Service project named CarWinService (see Figure 20-8)
that will be in charge of hosting the remote types contained within the CarGeneralAsm.dll.

5785ch20.qxd 3/31/06 11:14 AM Page 604

CHAPTER 20 ■ THE .NET REMOTING LAYER 605

Visual Studio 2005 responds by generating a class (named Service1 by default) that defines two
overridden methods named OnStart() and OnEnd(). As you would guess, this is where you are able
to author code that will execute when your service starts and stops:

Public Class Service1

Protected Overrides Sub OnStart(ByVal args() As String)

' Add code here to start your service. This method should set things

' in motion so your service can do its work.

End Sub

Protected Overrides Sub OnStop()

' Add code here to perform any tear-down necessary to stop your service.

End Sub

End Class

Given that Service1 is a rather nondescript name for your custom service, the first order of
business is to change the values of the (Name) and ServiceName properties to CarService using the
IDE’s Properties window. The distinction between these two settings is that the (Name) value is used
to define the name used to refer to your type in the code base, while the ServiceName property marks
the name to display to Windows service–centric configuration tools.

Before moving on, be sure you set a reference to the CarGeneralAsm.dll and System.Remoting.dll
assemblies, and import the following namespaces in the initial *.vb file:

Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels.Http

Imports System.Runtime.Remoting.Channels

Imports CarGeneralAsm

Figure 20-8. Creating a new Windows Service project workspace

5785ch20.qxd 3/31/06 11:14 AM Page 605

CHAPTER 20 ■ THE .NET REMOTING LAYER606

Implementing CarService.OnStart()
You can likely already assume what sort of logic should happen when your custom service is started
on a given machine. Recall that the role of CarService is to perform the same tasks as your custom
console-based service. Thus, if you wish to register CarService as a WKO-singleton type that is avail-
able via HTTP, you could add the following code to the OnStart() method (of course, you could also
choose to dynamically read the remoting information from a *.config file):

Protected Overrides Sub OnStart(ByVal args() As String)

' Create a new HttpChannel.

Dim c As HttpChannel = New HttpChannel(32469)

ChannelServices.RegisterChannel(c, False)

' Register as single-call WKO.

RemotingConfiguration.RegisterWellKnownServiceType(_

GetType(CarGeneralAsm.CarProvider), _

"CarProvider.soap", _

WellKnownObjectMode.SingleCall)

End Sub

Technically speaking, the CarService does not demand any sort of shutdown logic. Therefore,
for this example, we can leave the OnStop() method implementation empty.

Now that the service is complete, the next task is to install this service on the target machine.

Adding a Service Installer
Before you can install your service on a given machine, you need to add an additional type into your
current CarWinService project. Specifically, any Windows service (written using .NET or the Win32 API)
requires a number of registry entries to be made to allow the OS to interact with the service itself.
Rather than making these entries manually, you can simply add an Installer type to a Windows
service project, which will configure your ServiceBase-derived type correctly when installed on the
target machine.

To add an installer for the CarService, open the design-time service editor (by double-clicking
the CarService.vb file from Solution Explorer), right-click anywhere within the designer, and select
Add Installer (see Figure 20-9).

Figure 20-9. Including an installer for the custom Windows service

5785ch20.qxd 3/31/06 11:14 AM Page 606

CHAPTER 20 ■ THE .NET REMOTING LAYER 607

This selection will add a new component that derives from the System.Configuration.Install.
Installer base class. On your designer will be two components. The ServiceInstaller1 type repre-
sents a specific service installer for a specific service in your project. If you select this icon and view
the Properties window, you will find that the ServiceName property has been set to the CarService
class type.

The second component (ServiceProcessInstaller1) allows you to establish the identity under
which the installed service will execute. By default, the Account property is set to User. Using the
Properties window of Visual Studio 2005, change this value to LocalService (see Figure 20-10).

That’s it! Now compile your project.

Installing the CarWinService
Installing CarService.exe on a given machine (local or remote) requires two steps:

1. Move the compiled service assembly (and any necessary external assemblies; CarGeneralAsm.dll
in this example) to the remote machine.

2. Run the installutil.exe command-line tool, specifying your service as an argument.

Assuming step 1 is complete, open a Visual Studio 2005 command window, navigate to the
location of the CarWinService.exe assembly, and issue the following command (note that this same
tool can be used to uninstall a service as well using the -u options):

installutil carwinservice.exe

Once this Windows service has been properly installed, you are now able to start and configure
it using the Services applet, which is located under the Administrative Tools folder of your system’s
Control Panel. Once you have located your CarService (see Figure 20-11), click the Start link to load
and run the binary.

Figure 20-10. Establishing the identity of the CarService

5785ch20.qxd 3/31/06 11:14 AM Page 607

CHAPTER 20 ■ THE .NET REMOTING LAYER608

At this point, you can build any number of clients that can communicate with the remote
objects hosted by the Windows service.

■Source Code The CarWinService project is located under the Chapter 20 subdirectory.

Hosting Remote Objects Using IIS
Hosting a remote assembly under IIS is even simpler than building a Windows service, as IIS is pre-
programmed to allow incoming HTTP requests via port 80. Now, given the fact that IIS is a web
server, it should stand to reason that IIS is only able to host remote objects using the HttpChannel
type (unlike a Windows service, which can also leverage the TcpChannel type). Assuming this is not
perceived as a limitation, follow these steps to leverage the remoting support of IIS:

1. On your hard drive, create a new folder to hold your CarGeneralAsm.dll. Within this folder,
create a subdirectory named \Bin. Now, copy the CarGeneralAsm.dll to this subdirectory
(e.g., C:\IISCarService\Bin).

2. Open the Internet Information Services applet on the host machine (located under the
Administrative Tools folder in your system’s Control Panel).

3. Right-click the Default Web Site node and select New ➤ Virtual Directory.

4. Create a virtual directory that maps to the root folder you just created (C:\IISCarService).
The remaining default settings presented by the New Virtual Directory Wizard are fine.

5. Finally, create a new configuration file named web.config to control how this virtual direc-
tory should register the remote type (see the following code). Make sure this file is saved
under the root folder (in this example, C:\IISCarService).

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="Singleton"

type="CarGeneralAsm.CarProvider, CarGeneralAsm"

objectUri="carprovider.soap" />

</service>

<channels>

<channel ref="http"/>

</channels>

Figure 20-11. The Windows Services applet

5785ch20.qxd 3/31/06 11:14 AM Page 608

CHAPTER 20 ■ THE .NET REMOTING LAYER 609

</application>

</system.runtime.remoting>

</configuration>

Now that your CarGeneralAsm.dll has been configured to be reachable via HTTP requests under
IIS, you can update your client-side *.config file as follows (using the name of your IIS host, of course):

<configuration>

<system.runtime.remoting>

<application>

<client displayName = "CarClient">

<wellknown

type="CarGeneralAsm.CarProvider, CarGeneralAsm"

url="http://NameTheRemoteIISHost/IISCarHost/carprovider.soap"/>

</client>

<channels>

<channel ref="http"/>

</channels>

</application>

</system.runtime.remoting>

</configuration>

At this point, you are able to build a client application that loads the *.config file to make use
of the remote objects now hosted under IIS.

Asynchronous Remoting
To wrap things up, let’s examine how to invoke members of a remote type asynchronously. In
Chapter 16, you were first introduced to the topic of asynchronous method invocations using dele-
gate types. As you would expect, if a client assembly wishes to call a remote object asynchronously,
the first step is to define a custom delegate to represent the remote method in question. At this
point, the caller can make use of any of the techniques seen in Chapter 16 to invoke and receive the
method return value.

By way of a simple illustration, create a new console application (AsyncWKOCarProviderClient)
and set a reference to the first iteration of the CarGeneralAsm.dll assembly. Now, update the Program
module as follows:

Imports CarGeneralAsm

Imports System.Runtime.Remoting

' The delegate for the GetAllAutos() method.

Public Delegate Function GetAllAutosDelegate() As List(Of JamesBondCar)

Module Program

Sub Main()

Console.WriteLine("Client started! Hit enter to end")

RemotingConfiguration.Configure(_

"AsyncWKOCarProviderClient.exe.config", False)

' Make the car provider.

Dim cp As CarProvider = New CarProvider()

' Make the delegate.

Dim getCarsDel As GetAllAutosDelegate = _

New GetAllAutosDelegate(AddressOf cp.GetAllAutos)

5785ch20.qxd 3/31/06 11:14 AM Page 609

CHAPTER 20 ■ THE .NET REMOTING LAYER610

' Call GetAllAutos() asynchronously.

Dim ar As IAsyncResult = getCarsDel.BeginInvoke(Nothing, Nothing)

' Simulate client-side activity.

While Not ar.IsCompleted

Console.WriteLine("Client working...")

End While

' All done! Get return value from delegate.

Dim allJBCs As List(Of JamesBondCar) = getCarsDel.EndInvoke(ar)

' Use all cars in List.

For Each j As JamesBondCar In allJBCs

UseCar(j)

Next

Console.ReadLine()

End Sub

Public Sub UseCar(ByVal j As JamesBondCar)

Console.WriteLine("Can car fly? {0}", j.canFly)

Console.WriteLine("Can car swim? {0}", j.canSubmerge)

End Sub

End Module

Notice how the client application first declares a delegate that matches the signature of the
GetAllAutos() method of the remote CarProvider type. When the delegate is created, you pass in
the name of the method to call (GetAllAutos), as always. Next, you trigger the BeginInvoke() method,
cache the resulting IAsyncResult interface, and simulate some work on the client side (recall that
the IAsyncResult.IsCompleted property allows you to monitor whether the associated method has
completed processing).

Finally, once the client’s work has completed, you obtain the List(Of T) returned from the
CarProvider.GetAllAutos() method by invoking the EndInvoke() member, and pass each JamesBondCar
into a shared helper function named UseCar(). Again, the beauty of the .NET delegate type is the
fact that the logic used to invoke remote methods asynchronously is identical to the process of local
method invocations.

■Source Code The AsyncWKOCarProviderClient project is located under the Chapter 20 subdirectory.

Summary
In this chapter, you examined how to configure distinct .NET assemblies to share types between
application boundaries. As you have seen, a remote object may be configured as an MBV or MBR
type. This choice ultimately controls how a remote type is realized in the client’s application domain
(a copy or transparent proxy).

If you have configured a type to function as an MBR entity, you are suddenly faced with a number
of related choices (WKO versus CAO, single call versus singleton, and so forth), each of which was
addressed during this chapter. As well, you examined the process of tracking the lifetime of a remote
object via the use of leases and lease sponsorship. Finally, you revisited the role of the .NET delegate
type to understand how to asynchronously invoke a remote method (which, as luck would have it, is
identical to the process of asynchronously invoking a local type).

5785ch20.qxd 3/31/06 11:14 AM Page 610

Building a Better Window with
System.Windows.Forms

If you have read through the previous 20 chapters, you should have a solid handle on the VB 2005
programming language as well as the foundation of the .NET architecture. While you could take
your newfound knowledge and begin building the next generation of console applications (boring!),
you are more likely to be interested in building an attractive graphical user interface (GUI) to allow
users to interact with your system.

This chapter is the first of three aimed at introducing you to the process of building traditional
form-based desktop applications. Here, you’ll learn how to build a highly stylized main window using
the Form and Application classes. This chapter also illustrates how to capture and respond to user
input (i.e., handle mouse and keyboard events) within the context of a GUI desktop environment.
Finally, you will learn to construct menu systems, toolbars, status bars, and multiple document inter-
face (MDI) applications, both by hand and using the designers incorporated into Visual Studio 2005.

Overview of the System.Windows.Forms
Namespace
Like any namespace, System.Windows.Forms is composed of various classes, structures, delegates,
interfaces, and enumerations. Although the difference in appearance between a console UI (CUI)
and graphical UI (GUI) seems at first glance like night and day, in reality the process of building
a Windows Forms application involves nothing more than learning how to manipulate a new set of
types using the VB 2005 syntax you already know. From a high level, the many types within the
System.Windows.Forms namespace can be grouped into the following broad categories:

• Core infrastructure: These are types that represent the core operations of a .NET Forms pro-
gram (Form, Application, etc.) and various types to facilitate interoperability with legacy
ActiveX controls.

• Controls: These are types used to create rich UIs (Button, MenuStrip, ProgressBar,
DataGridView, etc.), all of which derive from the Control base class. Controls are configurable
at design time and are visible (by default) at runtime.

• Components: These are types that do not derive from the Control base class but still provide
visual features to a .NET Forms program (ToolTip, ErrorProvider, etc.). Many components
(such as the Timer) are not visible at runtime, but can be configured visually at design time.

• Common dialog boxes: Windows Forms provides a number of canned dialog boxes for com-
mon operations (OpenFileDialog, PrintDialog, etc.). As you would hope, you can certainly
build your own custom dialog boxes if the standard dialog boxes do not suit your needs.

611

C H A P T E R 2 1

■ ■ ■

5785ch21.qxd 3/31/06 11:20 AM Page 611

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS612

Given that the total number of types within System.Windows.Forms is well over 100 strong, it
would be redundant (not to mention a terrible waste of paper) to list every member of the Windows
Forms family. To set the stage for the next several chapters, however, Table 21-1 lists some of the core
.NET 2.0 System.Windows.Forms types (consult the .NET Framework 2.0 SDK documentation for full
details).

Table 21-1. Core Types of the System.Windows.Forms Namespace

Classes Meaning in Life

Application This class encapsulates the runtime operation of
a Windows Forms application.

Button, CheckBox, ComboBox, These classes (in addition to many others) correspond to
DateTimePicker, ListBox, various GUI widgets. You’ll examine many of these items in
LinkLabel, MaskedTextBox, detail in Chapter 23.
MonthCalendar, PictureBox,
TreeView

FlowLayoutPanel, .NET 2.0 now supplies various layout managers that
TableLayoutPanel automatically arrange a Form’s controls during resizing.

Form This type represents a main window, dialog box, or MDI
child window of a Windows Forms application.

ColorDialog, OpenFileDialog, These are various standard dialog boxes for common GUI
SaveFileDialog, FontDialog, operations.
PrintPreviewDialog,
FolderBrowserDialog

Menu, MainMenu, MenuItem, These types are used to build topmost and context-
ContextMenu, MenuStrip, sensitive menu systems. These controls (new to .NET 2.0)
ContextMenuStrip allow you to build menus that may contain traditional

drop-down menu items as well as other controls (text
boxes, combo boxes, and so forth).

StatusBar, Splitter, ToolBar, These types are used to adorn a Form with common child
ScrollBar, StatusStrip, ToolStrip controls.

■Note In addition to System.Windows.Forms, the System.Windows.Forms.dll assembly defines additional
GUI-centric namespaces. For the most part, these additional types are used internally by the Forms engine and/or the
designer tools of Visual Studio 2005. Given this fact, we will keep focused on the core System.Windows.Forms
namespace.

Working with the Windows Forms Types
When you build a Windows Forms application, you may choose to write all the relevant code by
hand (using Notepad or TextPad, perhaps) and feed the resulting *.vb files into the VB 2005 com-
piler using the /target:winexe flag. Taking time to build some Windows Forms applications by hand
not only is a great learning experience, but also helps you understand the code generated by the
various graphics designers found within various .NET IDEs.

To make sure you truly understand the basic process of building a Windows Forms application,
the initial examples in this chapter will avoid the use of graphics designers. Once you feel comfort-
able with the process of building a Windows Forms application “wizard-free,” you will then leverage
the various designer tools provided by Visual Studio 2005.

5785ch21.qxd 3/31/06 11:20 AM Page 612

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 613

Building a Main Window by Hand
To begin learning about Windows Forms programming, you’ll build a minimal main window from
scratch. Create a new folder on your hard drive (e.g., C:\MyFirstWindow) and create a new file within
this directory named MainWindow.vb using your text editor of choice.

In the world of Windows Forms, the Form class is used to represent any window in your application.
This includes a topmost main window in a single-document interface (SDI) application, modeless
and modal dialog boxes, and the parent and child windows of a multiple-document interface (MDI)
application. When you are interested in creating and displaying the main window in your program,
you have two mandatory steps:

1. Derive a new class from System.Windows.Forms.Form.

2. Configure your application’s Main() method to invoke Application.Run(), passing an instance
of your Form-derived type as an argument.

Given this, update your MainWindow.vb file with the following class definition (note that because
our Main() subroutine is within a Class type (not a Module), we are required to define Main() using
the Shared keyword):

Imports System.Windows.Forms

Namespace MyWindowsApp

Public Class MainWindow

Inherits Form

' Run this application and identify the main window.

Shared Sub Main()

Application.Run(New MainWindow())

End Sub

End Class

End Namespace

In addition to the always present mscorlib.dll, a Windows Forms application needs to reference
the System.dll and System.Windows.Forms.dll assemblies. As you may recall from Chapter 2, the
default VB 2005 response file (vbc.rsp) instructs vbc.exe to automatically include these assemblies
during the compilation process, so you are good to go. Also recall that the /target:winexe option of
vbc.exe instructs the compiler to generate a Windows executable.

■Note Technically speaking, you can build a Windows application at the command line using the /target:exe
option; however, if you do, you will find that a command window will be looming in the background (and it will stay
there until you shut down the main window). When you specify /target:winexe, your executable runs as a native
Windows Forms application (without the looming command window).

To compile your VB 2005 code file, open a Visual Studio 2005 command prompt, change to the
directory containing your *.vb file, and issue the following command:

vbc /target:winexe *.vb

Figure 21-1 shows a test run.

5785ch21.qxd 3/31/06 11:20 AM Page 613

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS614

Figure 21-1. A simple main window à la Windows Forms

Granted, the Form is not altogether that interesting at this point. But simply by deriving from
Form, you have a minimizable, maximizable, resizable, and closable main window (with a default
system-supplied icon to boot!). Unlike other Microsoft GUI frameworks you may have used in the
past (Microsoft Foundation Classes, in particular), there is no need to bolt in hundreds of lines of
coding infrastructure. Unlike a C-based Win32 API Windows application, there is no need to manu-
ally implement WinProc() or WinMain() procedures. Under the .NET platform, those dirty details
have been encapsulated within the Form and Application types.

Honoring the Separation of Concerns
Currently, the MainWindow class defines the Main() method directly within its scope. If you prefer, you
may create a dedicated module (I named mine Program) that is responsible for the task of launching
the main window, leaving the Form-derived class responsible for representing the window itself:

Imports System.Windows.Forms

Namespace MyWindowsApp

Public Class MainWindow

Inherits Form

End Class

Public Module Program

' Run this application and identify the main window.

Sub Main()

Application.Run(New MainWindow())

End Sub

End Module

End Namespace

By doing so, you are abiding by an OO design principle termed the separation of concerns.
Simply put, this rule of OO design states that a class should be in charge of doing the least amount
of work possible. Given that you have refactored the initial class into two unique classes, you have
decoupled the Form from the class that creates it. The end result is a more portable window, as it
can be dropped into any project without carrying the extra baggage of a project-specific Main()
method.

5785ch21.qxd 3/31/06 11:20 AM Page 614

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 615

■Source Code The MyFirstWindow project can be found under the Chapter 21 subdirectory.

The Role of the Application Class
The Application class defines numerous shared members that allow you to control various low-
level behaviors of a Windows Forms application. For example, the Application class defines a set of
events that allow you to respond to events such as application shutdown and idle-time processing.
In addition to the Run() method, here are some other methods to be aware of:

• DoEvents(): Provides the ability for an application to process messages currently in the mes-
sage queue during a lengthy operation.

• Exit(): Terminates the Windows application and unloads the hosting AppDomain.

• EnableVisualStyles(): Configures your application to support Windows XP visual styles. Do
note that if you enable XP styles, this method must be called before loading your main win-
dow via Application.Run().

The Application class also defines a number of properties, many of which are read-only in
nature. As you examine Table 21-2, note that most of these properties represent an application-level
trait such as company name, version number, and so forth. In fact, given what you already know about
assembly-level attributes (see Chapter 14), many of these properties should look vaguely familiar.

Table 21-2. Core Properties of the Application Type

Property Meaning in Life

CompanyName Retrieves the value of the assembly-level <AssemblyCompany> attribute

ExecutablePath Gets the path for the executable file

ProductName Retrieves the value of the assembly-level <AssemblyProduct> attribute

ProductVersion Retrieves the value of the assembly-level <AssemblyVersion> attribute

StartupPath Retrieves the path for the executable file that started the application

Finally, the Application class defines various shared events, some of which are as follows:

• ApplicationExit: Occurs when the application is just about to shut down.

• Idle: Occurs when the application’s message loop has finished processing the current batch
of messages and is about to enter an idle state (as there are no messages to process at the
current time).

• ThreadExit: Occurs when a thread in the application is about to terminate. If the exiting thread
is the main thread of the application, ThreadExit is fired before the ApplicationExit event.

Fun with the Application Class
To illustrate some of the functionality of the Application class, let’s enhance your current MainWindow
to perform the following:

• Reflect over select assembly-level attributes.

• Handle the shared ApplicationExit event.

5785ch21.qxd 3/31/06 11:20 AM Page 615

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS616

Figure 21-2. Reading attributes via the Application type

The first task is to make use of select properties in the Application class to reflect over some
assembly-level attributes. To begin, add the following attributes to your MainWindow.vb file (note you
are now importing the System.Reflection namespace):

Imports System.Windows.Forms

Imports System.Reflection

' Assembly-level attributes.

<assembly:AssemblyCompany("Intertech Training")>

<assembly:AssemblyProduct("A Better Window")>

<assembly:AssemblyVersion("1.1.0.0")>

Namespace MyWindowsApp

...

End Namespace

Rather than manually reflecting over the <AssemblyCompany> and <AssemblyProduct> attributes
using the techniques illustrated in Chapter 14, the Application class will do so automatically using
various shared properties. To illustrate, implement the default constructor of MainForm as follows:

Public Class MainWindow

Inherits Form

' Reflect over attributes using Application type.

Public Sub New

MessageBox.Show(Application.ProductName, _

string.Format("This app brought to you by {0}", _

Application.CompanyName))

End Sub

End Class

When you recompile and run this application, you’ll see a message box that displays various
bits of information (see Figure 21-2).

Now, let’s equip this Form to respond to the ApplicationExit event. When you wish to respond
to events from within a Windows Forms application, you will be happy to find that the same event
syntax detailed in Chapter 10 is used to handle GUI-based events. Therefore, if you wish to intercept
the shared ApplicationExit event, simply register an event handler using the AddHandler statement:

Public Class MainWindow

Inherits Form

' Reflect over attributes using Application type.

Public Sub New

...

' Handle Application.Exit event.

AddHandler Application.ApplicationExit, AddressOf MainWindow_OnExit

End Sub

5785ch21.qxd 3/31/06 11:20 AM Page 616

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 617

Public Sub MainWindow_OnExit(ByVal sender As Object, ByVal args As EventArgs)

MessageBox.Show(string.Format("Form version {0} has terminated.", _

Application.ProductVersion))

End Sub

End Class

The System.EventHandler Delegate
Notice that the ApplicationExit event works in conjunction with the System.EventHandler delegate.
This delegate must point to subroutines that conform to the following signature:

Sub MyEventHandler(ByVal sender As Object, ByVal args As EventArgs)

System.EventHandler is the most primitive delegate used to handle events within Windows
Forms, but many variations do exist for other events. As far as EventHandler is concerned, the first
parameter of the assigned method is of type System.Object, which represents the object sending
the event. The second EventArgs parameter contains any relevant information regarding the cur-
rent event.

■Note EventArgs is the base class to numerous derived types that contain information for a family of related
events. For example, mouse events work with the MouseEventArgs parameter, which contains details such as the
(x, y) position of the cursor. Many keyboard events work with the KeyEventArgs type, which contains details
regarding the current keypress, and so forth.

In any case, if you now recompile and run the application, you will find your message box
appears upon the termination of the application.

■Source Code The AppClassExample project can be found under the Chapter 21 subdirectory.

The Anatomy of a Form
Now that you understand the role of the Application type, the next task is to examine the functionality
of the Form class itself. Not surprisingly, the Form class inherits a great deal of functionality from its
parent classes. Figure 21-3 shows the inheritance chain (including the set of implemented interfaces)
of a Form-derived type using the Visual Studio 2005 Object Browser.

5785ch21.qxd 3/31/06 11:20 AM Page 617

Figure 21-3. The derivation of the Form type

Although the complete derivation of a Form type involves numerous base classes and interfaces,
do understand that you are not required to learn the role of each and every member from each and
every parent class or implemented interface to be a proficient Windows Forms developer. In fact,
the majority of the members (properties and events in particular) you will use on a daily basis are
easily set using the Visual Studio 2005 IDE Properties window. Before we move on to examine some
specific members inherited from these parent classes, take a look at Table 21-3, which outlines the
basic role of each base class.

Table 21-3. Base Classes in the Form Inheritance Chain

Parent Class Meaning in Life

System.Object Like any class in .NET, a Form “is-a” object.

System.MarshalByRefObject Recall during our examination of .NET remoting (see
Chapter 20) that types deriving from this class are
accessed remotely via a reference (not a copy) of the
remote type.

System.ComponentModel.Component This class provides a default implementation of the
IComponent interface. In the .NET universe,
a component is a type that supports design-time
editing, but is not necessarily visible at runtime.

System.Windows.Forms.Control This class defines common UI members for all
Windows Forms UI controls, including the Form type
itself.

System.Windows.Forms.ScrollableControl This class defines support for auto-scrolling behaviors.

System.Windows.Forms.ContainerControl This class provides focus-management functionality
for controls that can function as a container for
other controls.

System.Windows.Forms.Form This class represents any custom Form, MDI child,
or dialog box.

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS618

5785ch21.qxd 3/31/06 11:20 AM Page 618

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 619

As you might guess, detailing each and every member of each class in the Form’s inheritance
chain would require a large book in itself. However, it is important to understand the behavior sup-
plied by the Control and Form types. I’ll assume that you will spend time examining the full details
behind each class at your leisure using the .NET Framework 2.0 SDK documentation.

The Functionality of the Control Class
The System.Windows.Forms.Control class establishes the common behaviors required by any GUI
type. The core members of Control allow you to configure the size and position of a control, capture
keyboard and mouse input, get or set the focus/visibility of a member, and so forth. Table 21-4
defines some (but not all) properties of interest, grouped by related functionality.

Table 21-4. Core Properties of the Control Type

Properties Meaning in Life

BackColor, ForeColor, These properties define the core UI of the control (colors, font for
BackgroundImage, Font, text, mouse cursor to display when the mouse is over the widget, etc.).
Cursor

Anchor, Dock, AutoSize These properties control how the control should be positioned within
the container.

Top, Left, Bottom, Right, These properties specify the current dimensions of the control.
Bounds, ClientRectangle,
Height, Width

Enabled, Focused, Visible These properties each return a Boolean that specifies the state of the
current control.

ModifierKeys This shared property checks the current state of the modifier keys
(Shift, Ctrl, and Alt) and returns the state in a Keys type.

MouseButtons This shared property checks the current state of the mouse buttons
(left, right, and middle mouse buttons) and returns this state in
a MouseButtons type.

TabIndex, TabStop These properties are used to configure the tab order of the control.

Opacity This property determines the opacity of the control, in fractions (0.0 is
completely transparent; 1.0 is completely opaque).

Text This property indicates the string data associated with this control.

Controls This property allows you to access a strongly typed collection
(ControlsCollection) that contains any child controls within the
current control.

As you would guess, the Control class also defines a number of events that allow you to inter-
cept mouse, keyboard, painting, and drag-and-drop activities (among other things). Table 21-5 lists
some (but not all) events of interest, grouped by related functionality.

Table 21-5. Events of the Control Type

Events Meaning in Life

Click, DoubleClick, MouseEnter, Various events that allow you to interact with the mouse
MouseLeave, MouseDown, MouseUp,
MouseMove, MouseHover, MouseWheel

KeyPress, KeyUp, KeyDown Various events that allow you to interact with the keyboard

DragDrop, DragEnter, Various events used to monitor drag-and-drop activity
DragLeave, DragOver

Paint An event that allows you to interact with GDI+ (see Chapter 22)

5785ch21.qxd 3/31/06 11:20 AM Page 619

Finally, the Control base class also defines a number of methods that allow you to interact with
any Control-derived type. As you examine the methods of the Control type, you will notice that
a good number of them have an On prefix followed by the name of a specific event (OnMouseMove,
OnKeyUp, OnPaint, etc.). Each of these On-prefixed virtual methods is the default event handler for its
respective event. If you override any of these virtual members, you gain the ability to perform any
necessary pre- or postprocessing of the event before (or after) invoking your parent’s default imple-
mentation:

Imports System.Windows.Forms

Public Class MainForm

Protected Overrides Sub OnMouseDown(ByVal e As MouseEventArgs)

' Add code for MouseDown event.

' Call parent implementation when finished.

MyBase.OnMouseDown(e)

End Sub

End Class

While this can be helpful in some circumstances (especially if you are building a custom con-
trol that derives from a standard control), you will often handle events using the VB 2005 Handles
keyword (in fact, this is the default behavior of the Visual Studio 2005 designers). When you do
so, the framework will call your custom event handler once the parent’s implementation has
completed:

Imports System.Windows.Forms

Public Class MainForm

Private Sub MainForm_MouseDown(ByVal sender As Object, _

ByVal e As MouseEventArgs) Handles Me.MouseDown

' Add code for MouseDown event.

End Sub

End Class

Beyond these OnXXX() methods, here are a few other methods provided by the Control class to
be aware of:

• Hide(): Hides the control and sets the Visible property to False

• Show(): Shows the control and sets the Visible property to True

• Invalidate(): Forces the control to redraw itself by sending a Paint event

To be sure, the Control class does define additional properties, methods, and events beyond
the subset you’ve just examined. You should, however, now have a solid understanding regarding
the overall functionality of this base class. Let’s see it in action.

Fun with the Control Class
To illustrate the usefulness of some members from the Control class, let’s build a new Form that is
capable of handling the following events:

• Respond to the MouseMove and MouseDown events.

• Capture and process keyboard input via the KeyUp event.

To begin, create a new class derived from Form. In the default constructor, you’ll make use of
various inherited properties to establish the initial look and feel. Note you’re now importing the

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS620

5785ch21.qxd 3/31/06 11:20 AM Page 620

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 621

System.Drawing namespace to gain access to the Color structure (you’ll examine this namespace in
detail in the next chapter):

Imports System.Windows.Forms

Imports System.Drawing

Namespace MyWindowsApp

Public Class MainWindow

Inherits Form

Public Sub New()

' Use inherited properties to set basic UI.

Text = "My Fantastic Form"

Height = 300

Width = 500

BackColor = Color.LemonChiffon

Cursor = Cursors.Hand

End Sub

End Class

Public Module Program

' Run this application and identify the main window.

Sub Main()

Application.Run(New MainWindow())

End Sub

End Module

End Namespace

Compile your application at this point, just to make sure you have not injected any typing
errors:

vbc /target:winexe *.vb

Responding to the MouseMove Event
Next, you need to handle the MouseMove event. The goal is to display the current (x, y) location within
the Form’s caption area. All mouse-centric events (MouseMove, MouseUp, etc.) work in conjunction
with the MouseEventHandler delegate, which can call any method matching the following signature:

Sub MyMouseHandler(ByVal sender As Object, ByVal e As MouseEventArgs)

The incoming MouseEventArgs structure extends the general EventArgs base class by adding
a number of members particular to the processing of mouse activity (see Table 21-6).

Table 21-6. Properties of the MouseEventArgs Type

Property Meaning in Life

Button Gets which mouse button was pressed, as defined by the MouseButtons enumeration

Clicks Gets the number of times the mouse button was pressed and released

Delta Gets a signed count of the number of detents the mouse wheel has rotated

X Gets the x-coordinate of a mouse click

Y Gets the y-coordinate of a mouse click

5785ch21.qxd 3/31/06 11:20 AM Page 621

Figure 21-4. Monitoring mouse movement

Here, then, is the updated MainForm class that handles the MouseMove event as intended:

Public Class MainWindow

Inherits Form

...

Public Sub MainForm_MouseMove(ByVal sender As Object, _

ByVal e As MouseEventArgs) Handles Me.MouseMove

Text = string.Format("Current Pos: ({0} , {1})", e.X, e.Y)

End Sub

End Class

If you now run your program and move the mouse over your Form, you will find the current
(x, y) value display on the caption area as shown in Figure 21-4.

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS622

Determining Which Mouse Button Was Clicked
One thing to be aware of is that the MouseUp (or MouseDown) event is sent whenever any mouse button
is clicked. If you wish to determine exactly which button was clicked (such as left, right, or middle),
you need to examine the Button property of the MouseEventArgs class. The value of the Button prop-
erty is constrained by the related MouseButtons enumeration defined in the System.Windows.Forms
namespace. The following MouseUp event handler displays which mouse button was clicked inside
a message box:

Public Sub MainForm_MouseUp(ByVal sender As Object, _

ByVal e As MouseEventArgs) Handles Me.MouseUp

If e.Button = System.Windows.Forms.MouseButtons.Left Then

MessageBox.Show("Left click!")

End If

If e.Button = System.Windows.Forms.MouseButtons.Right Then

MessageBox.Show("Right click!")

End If

If e.Button = System.Windows.Forms.MouseButtons.Middle Then

MessageBox.Show("Middle click!")

End If

End Sub

5785ch21.qxd 3/31/06 11:20 AM Page 622

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 623

Responding to Keyboard Events
Processing keyboard input is almost identical to responding to mouse activity. The KeyUp and KeyDown
events work in conjunction with the KeyEventHandler delegate, which can point to any method taking
an object as the first parameter and KeyEventArgs as the second:

Sub MyKeyboardHandler(ByVal sender As Object, ByVal e As KeyEventArgs)

KeyEventArgs has the members of interest shown in Table 21-7.

Table 21-7. Properties of the KeyEventArgs Type

Property Meaning in Life

Alt Gets a value indicating whether the Alt key was pressed

Control Gets a value indicating whether the Ctrl key was pressed

Handled Gets or sets a value indicating whether the event was fully handled in your handler

KeyCode Gets the keyboard code for a KeyDown or KeyUp event

Modifiers Indicates which modifier keys (Ctrl, Shift, and/or Alt) were pressed

Shift Gets a value indicating whether the Shift key was pressed

Update your MainForm to handle the KeyUp event. Once you do, display the name of the key that
was pressed inside a message box using the KeyCode property.

Public Sub MainForm_KeyUp(ByVal sender As Object, _

ByVal e As KeyEventArgs) Handles Me.KeyUp

MessageBox.Show(e.KeyCode.ToString(), "Key Pressed!")

End Sub

Now compile and run your program. You should be able to determine not only which mouse
button was clicked, but also which keyboard key was pressed.

That wraps up our look at the core functionality of the Control base class. Next up, let’s check
out the role of Form.

■Source Code The ControlBehaviors project is included under the Chapter 21 subdirectory.

The Functionality of the Form Class
The Form class is typically (but not necessarily) the direct base class for your custom Form types. In addi-
tion to the large set of members inherited from the Control, ScrollableControl, and ContainerControl
classes, the Form type adds additional functionality in particular to main windows, MDI child windows,
and dialog boxes. Let’s start with the core properties in Table 21-8.

5785ch21.qxd 3/31/06 11:20 AM Page 623

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS624

Table 21-8. Properties of the Form Type

Properties Meaning in Life

AcceptButton Gets or sets the button on the Form that is clicked when the user
presses the Enter key.

ActiveMDIChild Used within the context of an MDI application.
IsMDIChildIsMDIContainer

CancelButton Gets or sets the button control that will be clicked when the user
presses the Esc key.

ControlBox Gets or sets a value indicating whether the Form has a control box.

FormBorderStyle Gets or sets the border style of the Form. Used in conjunction with
the FormBorderStyle enumeration.

Menu Gets or sets the menu to dock on the Form.

MaximizeBox Used to determine whether this Form will enable the maximize and
MinimizeBox minimize boxes.

ShowInTaskbar Determines whether this Form will be seen on the Windows taskbar.

StartPosition Gets or sets the starting position of the Form at runtime, as specified
by the FormStartPosition enumeration.

WindowState Configures how the Form is to be displayed on startup. Used in
conjunction with the FormWindowState enumeration.

In addition to the expected On-prefixed default event handlers, the Form type defines several
core methods, as listed in Table 21-9.

Table 21-9. Key Methods of the Form Type

Method Meaning in Life

Activate() Activates a given Form and gives it focus.

Close() Closes a Form.

CenterToScreen() Places the Form in the dead-center of the screen.

LayoutMDI() Arranges each child Form (as specified by the LayoutMDI enumeration)
within the parent Form.

ShowDialog() Displays a Form as a modal dialog box. More on dialog box programming in
Chapter 23.

Finally, the Form class defines a number of events, many of which fire during the Form’s lifetime.
Table 21-10 hits the highlights.

Table 21-10. Select Events of the Form Type

Events Meaning in Life

Activated Occurs whenever the Form is activated, meaning the Form has been given the
current focus on the desktop

Closed, Closing Used to determine when the Form is about to close or has closed

Deactivate Occurs whenever the Form is deactivated, meaning the Form has lost current
focus on the desktop

Load Occurs after the Form has been allocated into memory, but is not yet visible
on the screen

MDIChildActive Sent when a child window is activated

5785ch21.qxd 3/31/06 11:20 AM Page 624

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 625

The Life Cycle of a Form Type
If you have programmed user interfaces using GUI toolkits such as Java Swing, Mac OS X Cocoa, or
the raw Win32 API, you are aware that window types have a number of events that fire during their
lifetime. The same holds true for Windows Forms. As you have seen, the life of a Form begins when
the type constructor is called prior to being passed into the Application.Run() method.

Once the object has been allocated on the managed heap, the framework fires the Load event.
Within a Load event handler, you are free to configure the look and feel of the Form, prepare any
contained child controls (such as ListBoxes, TreeViews, and whatnot), or simply allocate resources
used during the Form’s operation (database connections, proxies to remote objects, and whatnot).

Once the Load event has fired, the next event to fire is Activated. This event fires when the
Form receives focus as the active window on the desktop. The logical counterpart to the Activated
event is (of course) Deactivate, which fires when the Form loses focus as the active window. As you
can guess, the Activated and Deactivate events can fire numerous times over the life of a given Form
type as the user navigates between active applications.

When the user has chosen to close the Form in question, two close-centric events fire: Closing and
Closed. The Closing event is fired first and is an ideal place to prompt the end user with the much hated
(but useful) “Are you sure you wish to close this application?” message. This confirmational step is quite
helpful to ensure the user has a chance to save any application-centric data before terminating the
program.

The Closing event works in conjunction with the CancelEventHandler delegate defined in the
System.ComponentModel namespace. If you set the CancelEventArgs.Cancel property to True, you
prevent the Form from being destroyed and instruct it to return to normal operation. If you set
CancelEventArgs.Cancel to False, the Close event fires and the Windows Forms application termi-
nates, which unloads the AppDomain and terminates the process.

To solidify the sequence of events that take place during a Form’s lifetime, assume you have
a new MainWindow.vb file that handles the Load, Activated, Deactivate, Closing, and Close events
(be sure to add a using directive for the System.ComponentModel namespace to obtain the definition
of CancelEventArgs).

In the Load, Closed, Activated, and Deactivate event handlers, you are going to update the
value of a new Form-level System.String member variable (named lifeTimeInfo) with a simple
message that displays the name of the event that has just been intercepted. As well, notice that
within the Closed event handler, you will display the value of this string within a message box:

Public Class MainWindow

Inherits Form

Private lifeTimeInfo As String

' Handle the Load, Activated, Deactivate, and Closed events.

Public Sub MainForm_Load(ByVal sender As Object, _

ByVal e as EventArgs) Handles Me.Load

lifeTimeInfo = lifeTimeInfo & "Load event" & VbLf

End Sub

Public Sub MainForm_Activated(ByVal sender As Object, _

ByVal e as EventArgs) Handles Me.Activated

lifeTimeInfo = lifeTimeInfo & "Activated event" & VbLf

End Sub

Public Sub MainForm_Deactivate(ByVal sender As Object, _

ByVal e as EventArgs) Handles Me.Deactivate

lifeTimeInfo = lifeTimeInfo & "Deactivate event" & VbLf

End Sub

5785ch21.qxd 3/31/06 11:20 AM Page 625

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS626

Figure 21-5. The life and times of a Form-derived type

Public Sub MainForm_Closed(ByVal sender As Object, _

ByVal e as EventArgs) Handles Me.Closed

lifeTimeInfo = lifeTimeInfo & "Closed event" & VbLf

MessageBox.Show(lifeTimeInfo)

End Sub

End Class

Within the Closing event handler, you will prompt the user to ensure he or she wishes to termi-
nate the application using the incoming CancelEventArgs:

Private Sub MainForm_Closing(ByVal sender As Object, _

ByVal e As CancelEventArgs) Handles Me.Closing

Dim dr As System.Windows.Forms.DialogResult = _

MessageBox.Show("Do you REALLY want to close this app?", _

"Closing event!", MessageBoxButtons.YesNo)

If dr = System.Windows.Forms.DialogResult.No Then

e.Cancel = True

Else

e.Cancel = False

End If

End Sub

Notice that the MessageBox.Show() method returns a DialogResult type, which has been set to
a value representing the button clicked by the end user (Yes or No). Now, compile your code at the
command line:

vbc /target:winexe *.vb

Run your application and shift the Form into and out of focus a few times (to trigger the Activated
and Deactivate events). Once you shut down the Form, you will see a message box that looks some-
thing like Figure 21-5.

Now, most of the really interesting aspects of the Form type have to do with its ability to create
and host menu systems, toolbars, and status bars. While the code to do so is not complex, you will
be happy to know that Visual Studio 2005 defines a number of graphical designers that take care of
most of the mundane code on your behalf. Given this, let’s say goodbye to the command-line compiler
for the time being and turn our attention to the process of building Windows Forms applications
using Visual Studio 2005.

5785ch21.qxd 3/31/06 11:20 AM Page 626

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 627

Figure 21-6. The Visual Studio 2005 Windows Application project

■Source Code The FormLifeTime project can be found under the Chapter 21 subdirectory.

Building Windows Applications with
Visual Studio 2005
Visual Studio 2005 has a specific project type dedicated to the creation of Windows Forms applications.
When you select the Windows Application project type, you not only receive an initial Form-derived
type, but you also can make use of the VB 2005–specific startup object. As you may know, VB 2005
allows you to declaratively specify which Form to show upon application startup, thereby removing
the need to manually define a Main() method. However, if you do need to add additional startup logic,
you are able to define a dedicated Main() method that will be called when your program launches.

Better yet, the IDE provides a number of graphical designers that make the process of building
a UI child’s play. Just to learn the lay of the land, create a new Windows Application project work-
space, as shown in Figure 21-6. You are not going to build a working example just yet, so name this
project whatever you desire (for example, MyTesterWindowsApp).

Once the project has loaded, you will no doubt notice the Forms designer, which allows you to
build a UI by dragging controls/components from the Toolbox (see Figure 21-7) and configuring
their properties and events using the Properties window (see Figure 21-8).

5785ch21.qxd 3/31/06 11:20 AM Page 627

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS628

Figure 21-7. The Visual Studio 2005 Toolbox

Figure 21-8. The Visual Studio 2005 Properties window

5785ch21.qxd 3/31/06 11:20 AM Page 628

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 629

Figure 21-9. Adding additional controls to the Toolbox

As you can see, the Toolbox groups UI controls by various categories. While most are self-
explanatory (e.g., Printing contains printing controls, Menus & Toolbars contains recommended
menu/toolbar controls, etc.), a few categories deserve special mention:

• Common Controls: Members in this category are considered the “recommended set” of common
UI controls.

• All Windows Forms: Here you will find the full set of Windows Forms controls, including
various .NET 1.x controls that are considered deprecated.

The second bullet point is worth reiterating. If you have worked with Windows Forms using
.NET 1.x, be aware that many of your old friends (such as the DataGrid control) have been placed
under the All Windows Forms category. Furthermore, many common UI controls you may have
used under .NET 1.x (such as MainMenu, ToolBar, and StatusBar) are not shown in the Toolbox by
default.

Enabling the Deprecated Controls
The first bit of good news is that these (deprecated) UI elements are still completely usable under
.NET 2.0. The second bit of good news is that if you still wish to program with them, you can add
them back to the Toolbox by right-clicking anywhere in the Toolbox and selecting Choose Items.
From the resulting dialog box, check off the items of interest, as shown in Figure 21-9.

■Note At first glance, it might appear that there are redundant listings for a given control (such as the MainMenu).
In reality, each listing is unique, as a control may be versioned (1.0 versus 2.0) and/or may be a member of the
.NET Compact Framework. Be sure to examine the directory path to select the correct item.

5785ch21.qxd 3/31/06 11:20 AM Page 629

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS630

At this point, I am sure you are wondering why many of these old standbys have been hidden
from view. The reason is that .NET 2.0 provides a set of new menu-, toolbar-, and status bar–centric
controls that are now favored. For example, rather than using the legacy MainMenu control to build
a menu, you can use the MenuStrip control, which provides a number of new bells and whistles in
addition to the functionality found within MainMenu.

■Note In this chapter, I will favor the use of this new recommended set of UI elements. If you wish to work with
the legacy MainMenu, StatusBar, or ToolBar types, consult the .NET Framework 2.0 SDK documentation.

Dissecting a Visual Studio 2005 Windows Forms Project
Each Form in a Visual Studio 2005 Windows Application project is composed of two related VB 2005
files, which can be verified using Solution Explorer (note that I renamed this initial class from
Form1 to MainWindow). Be aware that the *.Designer.vb file is hidden until you click the Show All
Files button on the Solution Explorer, as shown in Figure 21-10.

Right-click the MainForm.vb icon and select View Code. Here you will see a class type that will
contain all of the Form’s event handlers, custom constructors, member overrides, and any additional
member you author yourself. Upon startup, the Form type is quite empty:

Public Class MainForm

End Class

The first point of interest is it does not appear that the MainForm class is extending the neces-
sary Form base class. Rest assured this is the case; however, this detail has been established in the
related *.Designer.vb file. If you open up the *.Designer.vb file, you will find that your MainForm
class is further defined via the Partial keyword examined in Chapter 5. Recall this keyword allows
a single type to be defined across multiple files. Visual Studio 2005 uses this technique to hide the
designer-generated code, allowing you to keep focused on the core logic of your Form-derived type.
Here is the initial definition of this Partial class:

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class MainForm

Inherits System.Windows.Forms.Form

Figure 21-10. Under Visual Studio 2005, each Form is composed of two *.vb files.

5785ch21.qxd 3/31/06 11:20 AM Page 630

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 631

'Form overrides dispose to clean up the component list.

<System.Diagnostics.DebuggerNonUserCode()> _

Protected Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing AndAlso components IsNot Nothing Then

components.Dispose()

End If

MyBase.Dispose(disposing)

End Sub

'Required by the Windows Forms designer

Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Windows Forms designer

'It can be modified using the Windows Forms designer.

'Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

components = New System.ComponentModel.Container()

Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

Me.Text = "Form1"

End Sub

End Class

Notice the InitializeComponent() method. This method is maintained on your behalf by Visual
Studio 2005, and it contains all of the code representing your design-time modifications. To illustrate,
switch back to the Forms designer and locate the Text property in the Properties window. Change
this value to something like My Test Window. Now open your MainForm.Designer.vb file and notice
that InitializeComponent() has been updated accordingly:

Private Sub InitializeComponent()

...

Me.Text = "My Test Window"

Me.ResumeLayout(False)

End Sub

In addition to maintaining InitializeComponent(), the *.Designer.vb file will define the mem-
ber variables that represent each control placed on the designer. Again, to illustrate, drag a Button

control onto the Forms designer. Now, using the Properties window, rename your member variable
from button1 to btnTestButton via the Name property.

■Note It is always a good idea to rename the controls you place on the designer before handling events. If you
fail to do so, you will most likely end up with a number of nondescript event handlers, such as button27_Click,
given that the default names simply suffix a numerical value to the variable name.

Once you do, you will find that the *.Designer.vb file now contains a new member variable
definition of type Button, which was defined using the WithEvents keyword:

Friend WithEvents btnTestButton As System.Windows.Forms.Button

Implementing Events at Design Time
Notice that the Properties window has a button depicting a lightning bolt. Although you are always
free to handle Form-level or widget-level events by authoring the necessary logic by hand (as done
in the previous examples), this event button allows you to visually handle an event for a given item.
Simply select the control you wish to interact with from the drop-down list box (mounted at the top

5785ch21.qxd 3/31/06 11:20 AM Page 631

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS632

of the Properties window), locate the event you are interested in handling, and type in the name to
be used as an event handler (or simply double-click the event to generate a default name of the
form ControlName_EventName).

■Note The “lighting bolt button” approach to handling events is new to Visual Basic 2005. If you would rather
make use of the drop-down list boxes supported by a *.vb code file to handle events, you are free to do so. Sim-
ply pick the item you wish to interact with in the left drop-down list box and the event you wish to handle from the
right drop-down list box.

Assuming you have handled the Click event for the Button control, you will find that the
MainForm.vb file contains the following event handler:

Public Class MainForm

Private Sub btnTestButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnTestButton.Click

' Add your code here!

End Sub

End Class

■Note Every control has a default event, which refers to the event that will be handled if you double-click the
item on the control using the Forms designer. For example, a Form’s default event is Load, and if you double-click
anywhere on a Form type, the IDE will automatically write code to handle this event.

The StartUp Object/Main() Sub Distinction
In the initial examples in this chapter, we were manually defining a Main() method that called
Application.Run() in order to specify the main window of the program. However, when you create
a new Windows Application project using Visual Studio 2005, you will not find similar code. The reason
is that VB 2005 honors the notion of a startup object that is automatically created upon application
launch. By default, the startup object will always be the initial Form-derived type in your applica-
tion, which can be viewed using the Application tab of the My Project dialog box, shown in Figure 21-11.

Figure 21-11. Viewing the startup object

5785ch21.qxd 3/31/06 11:20 AM Page 632

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 633

While this approach can simplify your project development, many times it is preferred to specify
a custom Main() method in order to perform custom startup logic before the main Form is shown
(such as showing a splash screen while your program loads into memory). To do so, you must man-
ually define a Class or Module that defines a proper Main() method. For example:

Module Program

Sub Main()

Application.EnableVisualStyles()

Application.Run(New MainForm())

End Sub

End Module

To instruct the IDE to invoke your custom Main() method (rather than create an instance of the
startup object automatically), uncheck the Enable application framework check box from the Appli-
cation tab of the My Project dialog box, and select Sub Main() from the Startup Object drop-down list,
as shown in Figure 21-12.

Autoreferenced Assemblies
To wrap up our initial look at the Visual Studio 2005 Windows Application project template, be
aware that you automatically receive references to a number of necessary assemblies, including
System.Windows.Forms.dll and System.Drawing.dll. Again, the details of System.Drawing.dll will
be examined in the next chapter.

Working with MenuStrips and ContextMenuStrips
As of .NET 2.0, the recommended control for building a menu system is MenuStrip. This control
allows you to create “normal” menu items such as File ➤ Exit, and you may also configure it to con-
tain any number of relevant controls within the menu area. Here are some common UI elements
that may be contained within a MenuStrip:

Figure 21-12. Specifying a custom Main() method

5785ch21.qxd 3/31/06 11:20 AM Page 633

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS634

• ToolStripMenuItem: A traditional menu item

• ToolStripComboBox: An embedded ComboBox

• ToolStripSeparator: A simple line that separates content

• ToolStripTextBox: An embedded TextBox

Programmatically speaking, the MenuStrip control contains a strongly typed collection named
ToolStripItemCollection. Like other collection types, this object supports members such as Add(),
AddRange(), Remove(), and the Count property. While this collection is typically populated indirectly
using various design-time tools, you are able to manually manipulate this collection if you so choose.

To illustrate the process of working with the MenuStrip control, create a new Windows Forms
application named MenuStripApp. Using the Forms designer, place a MenuStrip control named
mainFormMenuStrip onto your Form. When you do so, your *.Designer.vb file is updated with a new
MenuStrip member variable:

Friend WithEvents mainFormMenuStrip As System.Windows.Forms.MenuStrip

MenuStrips can be highly customized using the Visual Studio 2005 Forms designer. For example,
if you look at the extreme upper left of the control, you will notice a small arrow icon. After you select
this icon, you are presented with a context-sensitive inline editor, as shown in Figure 21-13.

Many Windows Forms controls support such context-sensitive inline editors. As far as MenuStrip
is concerned, the editor allows you to quickly do the following:

• Insert a “standard” menu system (File, Save, Tools, Help, etc.) using the Insert Standard
Items link.

• Change the docking and gripping behaviors of the MenuStrip.

• Edit each item in the MenuStrip (this is simply a shortcut to selecting a specific item in the
Properties window).

For this example, you’ll ignore the options of the inline editor and stay focused on the design of
the menu system. To begin, select the MenuStrip control on the designer and define a standard File
➤ Exit menu by typing in the names within the Type Here prompts, as shown in Figure 21-14.

Figure 21-13. The inline MenuStrip editor

5785ch21.qxd 3/31/06 11:20 AM Page 634

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 635

■Note As you may know, when the ampersand character (&) is placed before a letter in a menu item, it denotes
the item’s shortcut key. In this example, you are creating &File ➤ E&xit; therefore, the user may activate the Exit
menu by pressing Alt+F, and then X.

Each menu item you type into the designer is represented by the ToolStripMenuItem class type.
If you open your *.Designer.vb file, you will find two new member variables for each item:

Partial Class MainForm

Inherits Form

...

Friend WithEvents mainFormMenuStrip As System.Windows.Forms.MenuStrip

Friend WithEvents FileToolStripMenuItem As System.Windows.Forms.ToolStripMenuItem

Friend WithEvents ExitToolStripMenuItem As System.Windows.Forms.ToolStripMenuItem

End Class

To finish the initial code of this example, return to the designer and handle the Click event for
the Exit menu item using the events button of the Properties window. Within the generated event
handler, make a call to Application.Exit():

Public Class MainForm

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click

Application.Exit()

End Sub

End Class

At this point, you should be able to compile and run your program. Verify that you can terminate
the application via File ➤ Exit as well as pressing Alt+F and then X on the keyboard.

Adding a TextBox to the MenuStrip
Now, let’s create a new topmost menu item named Change Background Color. The subitem in this
case will not be a menu item, but a ToolStripTextBox (see Figure 21-15). Once you have added the
new control, rename this control to toolStripTextBoxColor using the Properties window.

Figure 21-14. Designing a menu system

5785ch21.qxd 3/31/06 11:20 AM Page 635

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS636

The goal here is to allow the user to enter the name of a color (red, green, pink, etc.) that will
be used to set the BackColor property of the Form. First, handle the LostFocus event for the new
ToolStripTextBox member variable (as you would guess, this event fires when the TextBox within
the ToolStrip is no longer the active UI element).

Within the event handler, you will extract the string data entered within the ToolStripTextBox
(via the Text property) and make use of the System.Drawing.Color.FromName() method. This shared
method will return a Color type based on a known string value. To account for the possibility that
the user enters an unknown color (or types bogus data), you will make use of some simple
Try/Catch logic:

Public Class MainForm

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click

Application.Exit()

End Sub

Private Sub toolStripTextBoxColor_LostFocus(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles toolStripTextBoxColor.LostFocus

Try

BackColor = Color.FromName(toolStripTextBoxColor.Text)

Catch ' Just do nothing if the user provides bad data

End Try

End Sub

End Class

Go ahead and take your updated application out for another test drive and try entering in the
names of various colors (red, green, blue, for example). Once you do, you should see your Form’s
background color change as soon as you press the Tab key. If you are interested in checking out some
valid color names, look up the System.Drawing.Color type using the Visual Studio 2005 Object Browser
or the .NET Framework 2.0 SDK documentation.

Creating a Context Menu
Let’s now examine the process of building a context-sensitive pop-up (i.e., right-click) menu.
Under .NET 1.1, the ContextMenu type was the class of choice for building context menus, but under
.NET 2.0 the preferred type is ContextMenuStrip. Like the MenuStrip type, ContextMenuStrip maintains

Figure 21-15. Adding TextBoxes to a MenuStrip

5785ch21.qxd 3/31/06 11:20 AM Page 636

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 637

a ToolStripItemCollection to represent the possible subitems (such as ToolStripMenuItem,
ToolStripComboBox, ToolStripSeperator, ToolStripTextBox, etc.).

Drag a new ContextMenuStrip control from the Toolbox onto the Forms designer and rename
the control to fontSizeContextStrip using the Properties window. Notice that you are able to popu-
late the subitems graphically in much the same way you would edit the Form’s main MenuStrip
(a welcome change from the method used in Visual Studio .NET 2003). For this example, add three
ToolStripMenuItems named Huge, Normal, and Tiny, as shown in Figure 21-16.

This context menu will be used to allow the user to select the size to render a message within the
Form’s client area. To facilitate this endeavor, create an Enum type named TextFontSize and declare a new
member variable of this type within your Form type (set to TextFontSize.FontSizeNormal):

Public Class MainForm

Private currFontSize As TextFontSize = TextFontSize.FontSizeNormal

...

End Class

' Helper enum for font size.

Enum TextFontSize

FontSizeHuge = 30

FontSizeNormal = 20

FontSizeTiny = 8

End Enum

The next step is to handle the Form’s Paint event using the Properties window. As described in
greater detail in the next chapter, the Paint event allows you to render graphical data (including
stylized text) onto a Form’s client area. Here, you are going to draw a textual message using a font of
user-specified size. Don’t sweat the details at this point, but do update your Paint event handler as
follows:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

g.DrawString("Right click on me...", _

New Font("Times New Roman", currFontSize), _

New SolidBrush(Color.Black), 50, 50)

End Sub

Figure 21-16. Designing a ContextMenuStrip

5785ch21.qxd 3/31/06 11:20 AM Page 637

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS638

Last but not least, you need to handle the Click events for each of the ToolStripMenuItem
types maintained by the ContextMenuStrip. While you could have a separate Click event handler
for each, you will simply specify a single event handler that will be called when any of the three
ToolStripMenuItems have been clicked, therefore you will have a single event handler with multiple
Handles statements. Using the Properties window, specify the name of the Click event handler as
ContextMenuItemSelection_Clicked for each of the three ToolStripMenuItems and implement this
method like so:

' This one event handler handles the Click event from each context menu item.

Private Sub ContextMenuItemSelection_Clicked(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles HugeToolStripMenuItem.Click, _

TinyToolStripMenuItem.Click, NormalToolStripMenuItem.Click

' Obtain the currently clicked ToolStripMenuItem.

Dim miClicked As ToolStripMenuItem = CType(sender, ToolStripMenuItem)

' Figure out which item was clicked using its Name.

If miClicked.Name = "HugeToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeHuge

End If

If miClicked.Name = "NormalToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeNormal

End If

If miClicked.Name = "TinyToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeTiny

End If

' Tell the Form to repaint itself.

Invalidate()

End Sub

Notice that using the “sender” argument, you are able to determine the name of the
ToolStripMenuItem member variable in order to set the current text size. Once you have done so,
the call to Invalidate() fires the Paint event, which will cause your Paint event handler to execute.

The final step is to inform the Form which ContextMenuStrip it should display when the right
mouse button is clicked in its client area. To do so, simply use the Properties window to set the
ContextMenuStrip property equal to the name of your context menu item. Once you have done so,
you will find the following line within InitializeComponent():

Me.ContextMenuStrip = Me.fontSizeContextStrip

■Note Be aware that any control can be assigned a context menu via the ContextMenuStrip property. For
example, you could create a Button object on a dialog box that responds to a particular context menu. In this way,
the menu would be displayed only if the mouse button were right-clicked within the bounding rectangle of the button.

If you now run the application, you should be able to change the size of the rendered text message
via a right-click of your mouse.

Checking Menu Items
ToolStripMenuItem defines a number of members that allow you to check, enable, and hide a given
item. Table 21-11 gives a rundown of some (but not all) of the interesting properties.

5785ch21.qxd 3/31/06 11:20 AM Page 638

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 639

Table 21-11. Members of the ToolStripMenuItem Type

Member Meaning in Life

Checked Gets or sets a value indicating whether a check mark appears beside the text
of the ToolStripMenuItem

CheckOnClick Gets or sets a value indicating whether the ToolStripMenuItem should
automatically appear checked/unchecked when clicked

Enabled Gets or sets a value indicating whether the ToolStripMenuItem is enabled

Let’s extend the previous pop-up menu to display a check mark next to the currently selected
menu item. Setting a check mark on a given menu item is not at all difficult (just set the Checked
property to True). However, tracking which menu item should be checked does require some addi-
tional logic. One possible approach is to define a distinct ToolStripMenuItem member variable that
represents the currently checked item:

Public Class MainForm

...

' Marks the item checked.

Private WithEvents currentCheckedItem As ToolStripMenuItem

End Form

Recall that the default text size is TextFontSize.FontSizeNormal. Given this, the initial item to
be checked is the normalToolStripMenuItem ToolStripMenuItem member variable. Add a default con-
structor to your Form-derived type, implemented like so:

Public Sub New()

' Call InitializeComponent() when defining your own constructor!

InitializeComponent()

' Inherited method to center the Form.

CenterToScreen()

' Now check the 'Normal' menu item.

currentCheckedItem = normalToolStripMenuItem

currentCheckedItem.Checked = True

End Sub

■Note When you redefine the default constructor for a Form-derived type, you must manually make a call to
InitializeComponent() within its scope, as this will no longer automatically be done on your behalf. Thankfully,
Visual Studio 2005 will automatically insert a call to InitializeComponent() when you press the Enter key after
typing Sub New().

Now that you have a way to programmatically identify the currently checked item, the last step
is to update the ContextMenuItemSelection_Clicked() event handler to uncheck the previous item
and check the new current ToolStripMenuItem object in response to the user selection:

' This one event handler handles the Click event from each context menu item.

Private Sub ContextMenuItemSelection_Clicked(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles HugeToolStripMenuItem.Click, _

TinyToolStripMenuItem.Click, NormalToolStripMenuItem.Click

' Obtain the currently clicked ToolStripMenuItem.

Dim miClicked As ToolStripMenuItem = CType(sender, ToolStripMenuItem)

5785ch21.qxd 3/31/06 11:20 AM Page 639

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS640

' Uncheck the currently checked item.

currentCheckedItem.Checked = False

' Figure out which item was clicked using its Name.

If miClicked.Name = "HugeToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeHuge

End If

If miClicked.Name = "NormalToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeNormal

End If

If miClicked.Name = "TinyToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeTiny

End If

' Tell the Form to repaint itself.

Invalidate()

' Establish which item to check.

If miClicked.Name = "HugeToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeHuge

currentCheckedItem = HugeToolStripMenuItem

End If

If miClicked.Name = "NormalToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeNormal

currentCheckedItem = NormalToolStripMenuItem

End If

If miClicked.Name = "TinyToolStripMenuItem" Then

currFontSize = TextFontSize.FontSizeTiny

currentCheckedItem = TinyToolStripMenuItem

End If

' Check new item.

currentCheckedItem.Checked = True

End Sub

Figure 21-17 shows the completed MenuStripApp project in action.

Figure 21-17. Checking/unchecking ToolStripMenuItems

5785ch21.qxd 3/31/06 11:20 AM Page 640

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 641

■Source Code The MenuStripApp application is located under the Chapter 21 subdirectory.

Working with StatusStrips
In addition to a menu system, many Forms also maintain a status bar that is typically mounted at
the bottom of the Form. A status bar may be divided into any number of “panes” that hold some
textual (or graphical) information such as menu help strings, the current time, or other application-
specific information.

Although status bars have been supported since the release of the .NET platform (via the
System.Windows.Forms.StatusBar type), as of .NET 2.0 the simple StatusBar has been ousted by the
new StatusStrip type. Like a status bar, a StatusStrip can consist of any number of panes to hold
textual/graphical data using a ToolStripStatusLabel type. However, status strips have the ability to
contain additional tool strip items such as the following:

• ToolStripProgressBar: An embedded progress bar.

• ToolStripDropDownButton: An embedded button that displays a drop-down list of choices
when clicked.

• ToolStripSplitButton: This is similar to the ToolStripDropDownButton, but the items of the
drop-down list are displayed only if the user clicks directly on the drop-down area of the
control. The ToolStripSplitButton also has normal buttonlike behavior and can thus sup-
port the Click event.

In this example, you will build a new MainWindow that supports a simple menu (File ➤ Exit and
Help ➤ About) as well as a StatusStrip. The leftmost pane of the status strip will be used to display
help string data regarding the currently selected menu subitem (e.g., if the user selects the Exit menu,
the pane will display “Exits the app”).

The far-right pane will display one of two dynamically created strings that will show either the
current time or the current date. Finally, the middle pane will be a ToolStripDropDownButton type
that allows the user to toggle the date/time display (with a happy face icon to boot!). Figure 21-18
shows the application in its completed form.

Designing the Menu System
To begin, create a new Windows Forms application project named StatusStripApp. Place a MenuStrip

control onto the Forms designer and build the two menu items (File ➤ Exit and Help ➤ About). Once
you have done so, handle the Click and MouseHover events for each subitem (Exit and About) using
the Properties window.

The implementation of the File ➤ Exit Click event handler will simply terminate the application,
while the Help ➤ About Click event handler shows a friendly MessageBox.

Figure 21-18. The StatusStrip application

5785ch21.qxd 3/31/06 11:20 AM Page 641

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS642

Public Class MainForm

Private Sub exitToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles exitToolStripMenuItem.Click

Application.Exit()

End Sub

Private Sub aboutToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles aboutToolStripMenuItem.Click

MessageBox.Show("My StatusStripApp!")

End Sub

Private Sub exitToolStripMenuItem_MouseHover(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles exitToolStripMenuItem.MouseHover

End Sub

Private Sub aboutToolStripMenuItem_MouseHover(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles aboutToolStripMenuItem.MouseHover

End Sub

End Class

You will update the MouseHover event handlers to display the correct prompt in the leftmost
pane of the StatusStrip in just a bit, so leave them empty for the time being.

Designing the StatusStrip
Next, place a StatusStrip control onto the designer and rename this control to mainStatusStrip.
Understand that by default a StatusStrip contains no panes whatsoever. To add the three panes,
you may take various approaches:

• Author the code by hand without designer support (perhaps using a helper method named
CreateStatusStrip() that is called in the Form’s constructor).

• Add the items via a dialog box activated through the Edit Items link using the StatusStrip
context-sensitive inline editor (see Figure 21-19).

Figure 21-19. The StatusStrip context editor

5785ch21.qxd 3/31/06 11:20 AM Page 642

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 643

• Add the items one by one via the new item drop-down editor mounted on the StatusStrip
(see Figure 21-20).

For this example, you will leverage the new item drop-down editor. Add two new
ToolStripStatusLabel types named toolStripStatusLabelMenuState and toolStripStatusLabelClock,
and a ToolStripDropDownButton named toolStripDropDownButtonDateTime. As you would expect, this
will add new member variables in the *.Designer.vb file and update InitializeComponent() accord-
ingly. Now, select the ToolStripDropDownButton on the designer and add two new menu items named
currentTimeToolStripMenuItem and dayoftheWeekToolStripMenuItem (see Figure 21-21).

Figure 21-20. Adding items via the StatusStrip new item drop-down editor

Figure 21-21. Adding menu items to the ToolStripDropDownButton

5785ch21.qxd 3/31/06 11:20 AM Page 643

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS644

To configure your panes to reflect the look and feel shown in Figure 21-21, you will need to set
several properties, which you do using the Visual Studio 2005 Properties window. Table 21-12 documents
the necessary properties to set and events to handle for each item on your StatusStrip (of course,
feel free to stylize the panes with additional settings as you see fit).

Table 21-12. StatusStrip Pane Configuration

Pane Member Variable Properties to Set Events to Handle

toolStripStatusLabelMenuState Spring = True None
Text = (empty)
TextAlign = TopLeft

toolStripStatusLabelClock BorderSides = All None
Text = (empty)

toolStripDropDownButtonDateTime Image = (see text that follows) None

dayoftheWeekToolStripMenuItem Text = “Day of the Week” MouseHoverClick

currentTimeToolStripMenuItem Text = “Current Time” MouseHoverClick

The Image property of the toolStripDropDownButtonDateTime member can be set to any image
file on your machine (of course, extremely large image files will be quite skewed). For this example,
you may wish to use the happyDude.bmp file included with this book’s downloadable source code
(please visit the Downloads section of the Apress website, http://www.apress.com).

So at this point, the GUI design is complete! Before you implement the remaining event handlers,
you need to get to know the role of the Timer component.

Working with the Timer Type
Recall that the second pane should display the current time or current date based on user preference.
The first step to take to achieve this design goal is to add a Timer member variable to the Form.
A Timer is a component that calls some method (specified using the Tick event) at a given interval
(specified by the Interval property).

Drag a Timer component onto your Forms designer and rename it to timerDateTimeUpdate.
Using the Properties window, set the Interval property to 1,000 (the value in milliseconds) and set
the Enabled property to True. Finally, handle the Tick event. Before implementing the Tick event
handler, define a new enum type in your project named DateTimeFormat. This enum will be used to
determine whether the second ToolStripStatusLabel should display the current time or the current
day of the week:

Enum DateTimeFormat

ShowClock

ShowDay

End Enum

With this enum in place, update your MainWindow with the following code:

Public Class MainForm

' Which format to display?

Private dtFormat As DateTimeFormat = DateTimeFormat.ShowClock

Private Sub timerDateTimeUpdate_Tick(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles timerDateTimeUpdate.Tick

Dim panelInfo As String = ""

5785ch21.qxd 3/31/06 11:20 AM Page 644

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 645

' Create current format.

If dtFormat = DateTimeFormat.ShowClock Then

panelInfo = DateTime.Now.ToLongTimeString

Else

panelInfo = DateTime.Now.ToLongDateString

End If

' Set text on pane.

toolStripStatusLabelClock.Text = panelInfo

End Sub

...

End Class

Notice that the Timer event handler makes use of the DateTime type. Here, you simply find the
current system time or date using the Now property and use it to set the Text property of the
toolStripStatusLabelClock member variable.

Toggling the Display
At this point, the Tick event handler should be displaying the current time within the
toolStripStatusLabelClock pane, given that the default value of your DateTimeFormat member
variable has been set to DateTimeFormat.ShowClock. To allow the user to toggle between the date and
time display, update your MainWindow as follows (note you are also toggling which of the two menu
items in the ToolStripDropDownButton should be checked):

Public Class MainForm

' Which format to display?

Private dtFormat As DateTimeFormat = DateTimeFormat.ShowClock

' Marks the item checked.

Private currentCheckedItem As ToolStripMenuItem

Public Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' These properties can also be set

' with the Properties window.

Text = "Status Strip Example"

CenterToScreen()

currentCheckedItem = currentTimeToolStripMenuItem

currentCheckedItem.Checked = True

End Sub

...

Private Sub currentTimeToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles currentTimeToolStripMenuItem.Click

' Toggle check mark and set pane format to time.

currentCheckedItem.Checked = False

dtFormat = DateTimeFormat.ShowClock

currentCheckedItem = currentTimeToolStripMenuItem

currentCheckedItem.Checked = True

End Sub

Private Sub dayoftheWeekToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles dayoftheWeekToolStripMenuItem.Click

5785ch21.qxd 3/31/06 11:20 AM Page 645

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS646

' Toggle check mark and set pane format to date.

currentCheckedItem.Checked = False

dtFormat = DateTimeFormat.ShowDay

currentCheckedItem = dayoftheWeekToolStripMenuItem

currentCheckedItem.Checked = True

End Sub

End Class

Displaying the Menu Selection Prompts
Finally, you need to configure the first pane to hold menu help strings. As you know, most applica-
tions send a small bit of text information to the first pane of a status bar whenever the end user
selects a menu item (e.g., “This terminates the application”). Given that you have already handled
the MouseHover events for each submenu on the MenuStrip and TooStripDropDownButton, all you
need to do is assign a proper value to the Text property for the toolStripStatusLabelMenuState
member variable, for example:

Private Sub exitToolStripMenuItem_MouseHover(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles exitToolStripMenuItem.MouseHover

toolStripStatusLabelMenuState.Text = "Exits the app."

End Sub

Private Sub aboutToolStripMenuItem_MouseHover(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles aboutToolStripMenuItem.MouseHover

toolStripStatusLabelMenuState.Text = "Shows about box."

End Sub

Private Sub dayoftheWeekToolStripMenuItem_MouseHover(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles dayoftheWeekToolStripMenuItem.MouseHover

toolStripStatusLabelMenuState.Text = "Shows the day of the week."

End Sub

Private Sub currentTimeToolStripMenuItem_MouseHover(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles currentTimeToolStripMenuItem.MouseHover

toolStripStatusLabelMenuState.Text = "Shows the current time."

End Sub

Take your updated project out for a test drive. You should now be able to find these informa-
tional help strings in the first pane of your StatusStrip as you select each menu item.

Establishing a “Ready” State
The final thing to do for this example is ensure that when the user deselects a menu item, the first
text pane is set to a default message (e.g., “Ready”). With the current design, the previously selected
menu prompt remains on the leftmost text pane, which is confusing at best. To rectify this issue,
handle the MouseLeave event for the Exit, About, Day of the Week, and Current Time menu items. To
simplify coding, we will make use of a single handler for each widget (note the multiple Handles
statements):

Private Sub Handle_MouseLeave(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles currentTimeToolStripMenuItem.MouseLeave, _

exitToolStripMenuItem.MouseLeave, _

dayoftheWeekToolStripMenuItem.MouseLeave, _

aboutToolStripMenuItem.MouseLeave

toolStripStatusLabelMenuState.Text = "Ready."

End Sub

5785ch21.qxd 3/31/06 11:20 AM Page 646

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 647

With this, you should find that the first pane resets to this default message as soon as the
mouse cursor leaves any of your four menu items.

■Source Code The StatusStripApp project is included under the Chapter 21 subdirectory.

Working with ToolStrips
The next Form-level GUI item to examine in this chapter is the .NET 2.0 ToolStrip type, which over-
shadows the functionality found within the deprecated .NET 1.x ToolBar class. As you know, toolbars
typically provide an alternate means to activate a given menu item. Thus, if the user clicks a Save
button, this has the same effect as selecting File ➤ Save. Much like MenuStrip and StatusStrip, the
ToolStrip type can contain numerous toolbar items, some of which you have already encountered
in previous examples:

• ToolStripButton

• ToolStripLabel

• ToolStripSplitButton

• ToolStripDropDownButton

• ToolStripSeparator

• ToolStripComboBox

• ToolStripTextBox

• ToolStripProgressBar

Like other Windows Forms controls, the ToolStrip supports an inline editor that allows you to
quickly add standard button types (File, Exit, Help, Copy, Paste, etc.) to a ToolStrip, change the
docking position, and embed the ToolStrip in a ToolStripContainer (more details in just a bit).
Figure 21-22 illustrates the designer support for ToolStrips.

Figure 21-22. Designing ToolStrips

5785ch21.qxd 3/31/06 11:21 AM Page 647

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS648

To illustrate working with ToolStrips, the following Windows Forms application creates
a ToolStrip containing two ToolStripButton types (named toolStripButtonGrowFont and
toolStripButtonShrinkFont), a ToolBarSeparator, and a ToolBarTextBox (named
toolStripTextBoxMessage). The end user is able to enter a message to be rendered on the Form via
the ToolBarTextBox, and the two ToolBarButton types will be used to increase or decrease the font
size. Figure 21-23 shows the end result of the project you will construct.

By now I’d guess you have a handle on working with the Visual Studio 2005 Forms designer, so
I won’t belabor the point of building the ToolStrip. Do note, however, that each ToolStripButton
has a custom (albeit poorly drawn by yours truly) icon that was created using the Visual Studio 2005
image editor. If you wish to create image files for your project, simply select the Project ➤ Add New
Item menu option, and from the resulting dialog box add a new icon file (see Figure 21-24).

Figure 21-23. ToolStripApp in action

Figure 21-24. Inserting new image files

5785ch21.qxd 3/31/06 11:21 AM Page 648

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 649

Once you have done so, you are able to edit your images using the Colors tab on the Toolbox
and the Image Editor toolbox. In any case, once you have designed your icons, you are able to asso-
ciate them with the ToolStripButton types via the Image property in the Properties window. Once
you are happy with the ToolStrip’s look and feel, handle the Click event for each ToolStripButton.

The necessary code is extremely straightforward. In the following updated MainWindow, notice
that the current font size is constrained between 12 and 70:

Public Class MainWindow

' The current, max, and min font sizes.

Private currFontSize As Integer = 12

Const MinFontSize As Integer = 12

Const MaxFontSize As Integer = 70

Public Sub New()

InitializeComponent()

CenterToScreen()

Text = String.Format("Your Font size is: {0}", currFontSize)

End Sub

Private Sub toolStripButtonShrinkFont_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles toolStripButtonShrinkFont.Click

' Reduce font size by 5 and refresh display.

currFontSize -= 5

If (currFontSize <= MinFontSize) Then

currFontSize = MinFontSize

End If

Text = String.Format("Your Font size is: {0}", currFontSize)

Invalidate()

End Sub

Private Sub toolStripButtonGrowFont_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles toolStripButtonGrowFont.Click

' Increase font size by 5 and refresh display.

currFontSize += 5

If (currFontSize >= MaxFontSize) Then

currFontSize = MaxFontSize

End If

Text = String.Format("Your Font size is: {0}", currFontSize)

Invalidate()

End Sub

Private Sub MainWindow_Paint(ByVal sender As Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

' Paint the user-defined message.

Dim g As Graphics = e.Graphics

g.DrawString(toolStripTextBoxMessage.Text, _

New Font("Times New Roman", currFontSize), _

Brushes.Black, 10, 60)

End Sub

End Class

Working with ToolStripContainers
A ToolStrip, if required, can be configured to be “dockable” against any or all sides of the Form that
contain it. To illustrate how you can accomplish this, right-click your current ToolStrip using the

5785ch21.qxd 3/31/06 11:21 AM Page 649

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS650

designer and select the Embed in ToolStripContainer menu option. Once you have done so, you will
find that the ToolStrip has been contained within a ToolStripContainer. For this example, select
the Dock Fill in Form option (see Figure 21-25).

If you run your current update, you will find that the ToolStrip can be moved and docked to
each side of the container. However, your custom message has now vanished. The reason for this is
that ToolStripContainers are actually child controls of the Form. Therefore, the graphical render is
still taking place, but the output is being hidden by the container that now sits on top of the Form’s
client area.

To fix this problem, you will need to handle the Paint event on the ToolStripContainer rather
than on the Form. First, handle the Paint event for the ToolStripContainer and move the rendering
code from the existing Form’s Paint event handler into the container’s Paint event handler (and
delete the Form’s Paint handler when finished). Finally, you will need to replace each occurrence of
the call to the Form’s Invalidate() method to the container’s Invalidate() method. Here are the
relevant code updates:

Public Class MainWindow

...

Private Sub ContentPanel_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles toolStripContainer1.ContentPanel.Paint

' Paint the user-defined message.

Dim g As Graphics = e.Graphics

g.DrawString(toolStripTextBoxMessage.Text, _

New Font("Times New Roman", currFontSize), _

Brushes.Black, 10, 60)

End Sub

Private Sub toolStripButtonShrinkFont_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles toolStripButtonShrinkFont.Click

...

toolStripContainer1.Invalidate(True)

End Sub

Figure 21-25. Docking the ToolStripContainer within the entire Form

5785ch21.qxd 3/31/06 11:21 AM Page 650

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 651

Private Sub toolStripButtonGrowFont_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles toolStripButtonGrowFont.Click

...

toolStripContainer1.Invalidate(True)

End Sub

End Class

Of course, the ToolStripContainer can be configured in various ways to tweak how it operates.
I leave it to you to check out the .NET Framework 2.0 SDK documentation for complete details.
Figure 21-26 shows the completed project.

■Source Code The ToolStripApp project is included under the Chapter 21 subdirectory.

Building an MDI Application
To wrap up our initial look at Windows Forms, I’ll close this chapter by discussing how to configure
a Form to function as a parent to any number of child windows (i.e., an MDI container). MDI appli-
cations allow users to have multiple child windows open at the same time within the same topmost
window. In the world of MDIs, each window represents a given “document” of the application. For
example, Visual Studio 2005 is an MDI application in that you are able to have multiple documents
open from within an instance of the application.

When you are building MDI applications using Windows Forms, your first task is to (of course)
create a brand-new Windows application. The initial Form of the application typically hosts a menu
system that allows you to create new documents (such as File ➤ New) as well as arrange existing
open windows (cascade, vertical tile, and horizontal tile).

Creating the child windows is interesting, as you typically define a prototypical Form that func-
tions as a basis for each child window. Given that Forms are class types, any private data defined in
the child Form will be unique to a particular instance. For example, if you were to create an MDI
word processing application, you might create a child Form that maintains a StringBuilder to represent
the text. If a user created five new child windows, each Form would maintain its own StringBuilder
instance, which could be individually manipulated.

Additionally, MDI applications allow you to merge menus. As mentioned previously, parent
windows typically have a menu system that allows the user to spawn and organize additional
child windows. However, what if the child window also maintains a menuing system? If the user
maximizes a particular child window, you need to merge the child’s menu system within the parent
Form to allow the user to activate items from each menu system. The Windows Forms namespace
defines a number of properties, methods, and events that allow you to programmatically merge menu
systems. In addition, there is a “default merge” system, which works in a good number of cases.

Figure 21-26. ToolStripApp, now with a dockable ToolStrip

5785ch21.qxd 3/31/06 11:21 AM Page 651

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS652

Building the Parent Form
To illustrate the basics of building an MDI application, begin by creating a brand-new Windows
application named SimpleMdiApp. Almost all of the MDI infrastructure can be assigned to your
initial Form using various design-time tools. To begin, locate the IsMdiContainer property in the
Properties window and set it to true. If you look at the design-time Form, you’ll see that the client
area has been modified to visually represent a container of child windows.

Next, place a new MenuStrip control on your main Form. This menu specifies three topmost
items named File, Window, and Arrange Windows. The File menu contains two subitems named
New and Exit. The Window menu does not contain any subitems, because you will programmatically
add new items as the user creates additional child windows. Finally, the Arrange Window menu
defines three subitems named Cascade, Vertical, and Horizontal.

Once you have created the menu UI, handle the Click event for the Exit, New, Cascade, Vertical,
and Horizontal menu items (remember, the Window menu does not have any subitems just yet).
You’ll implement the File ➤ New handler in the next section, but for now here is the code behind
the remaining menu selections:

' Handle File | Exit event and arrange all child windows.

Private Sub exitToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles exitToolStripMenuItem.Click

Application.Exit()

End Sub

Private Sub cascadeToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles cascadeToolStripMenuItem.Click

LayoutMdi(MdiLayout.Cascade)

End Sub

Private Sub verticalToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles verticalToolStripMenuItem.Click

LayoutMdi(MdiLayout.TileVertical)

End Sub

Private Sub horizontalToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles horizontalToolStripMenuItem.Click

LayoutMdi(MdiLayout.TileHorizontal)

End Sub

The main point of interest here is the use of the LayoutMdi() method and the corresponding
MdiLayout enumeration. The code behind each menu select handler should be quite clear. When the
user selects a given arrangement, you tell the parent Form to automatically reposition any and all
child windows.

Before you move on to the construction of the child Form, you need to set one additional
property of the MenuStrip. The MdiWindowListItem property is used to establish which topmost
menu item should be used to automatically list the name of each child window as a possible menu
selection. Set this property to the windowToolStripMenuItem member variable. By default, this list is
the value of the child’s Text property followed by a numerical suffix (i.e., Form1, Form2, Form3, etc.).

Building the Child Form
Now that you have the shell of an MDI container, you need to create an additional Form that func-
tions as the prototype for a given child window. Begin by inserting a new Form type into your current
project (using Project ➤ Add Windows Form) named ChildPrototypeForm and handle the Click event

5785ch21.qxd 3/31/06 11:21 AM Page 652

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 653

for this Form. In the generated event handler, randomly set the background color of the client area.
In addition, print out the “stringified” value of the new Color object into the child’s caption bar. The
following logic should do the trick:

Public Class ChildPrototypeForm

Private Sub ChildPrototypeForm_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Click

' Get three random numbers

Dim r, g, b As Integer

Dim ran As Random = New Random()

r = ran.Next(0, 255)

g = ran.Next(0, 255)

b = ran.Next(0, 255)

' Now create a color for the background.

Dim currColor As Color = Color.FromArgb(r, g, b)

Me.BackColor = currColor

Me.Text = currColor.ToString()

End Sub

End Class

Spawning Child Windows
Your final order of business is to flesh out the details behind the parent Form’s File ➤ New event
handler. Now that you have defined a child Form, the logic is simple: create and show a new instance
of the ChildPrototypeForm type. As well, you need to set the value of the child Form’s MdiParent
property to point to the containing Form (in this case, your main window). Here is the update:

Private Sub newToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles newToolStripMenuItem.Click

' Make a new child window.

Dim newChild As ChildPrototypeForm = New ChildPrototypeForm()

' Set the Parent Form of the Child window.

newChild.MdiParent = Me

' Display the new form.

newChild.Show()

End Sub

■Note A child Form may access the MdiParent property directly whenever it needs to manipulate (or communi-
cate with) its parent window.

To take this application out for a test drive, begin by creating a set of new child windows and click
each one to establish a unique background color. If you examine the subitems under the Windows
menu, you should see each child Form present and accounted for. As well, if you access the Arrange
Window menu items, you can instruct the parent Form to vertically tile, horizontally tile, or cascade
the child Forms. Figure 21-27 shows the completed application.

5785ch21.qxd 3/31/06 11:21 AM Page 653

CHAPTER 21 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS654

■Source Code The SimpleMdiApp project can be found under the Chapter 21 subdirectory.

Summary
This chapter introduced the fine art of building a UI with the types contained in the System.Windows.
Forms namespace. You began by building a number of applications by hand, and you learned along
the way that at a minimum, a GUI application needs a class that derives from Form and a Main()

method that invokes Application.Run().
During the course of this chapter, you learned how to build topmost menus (and pop-up menus)

and how to respond to a number of menu events. You also came to understand how to further
enhance your Form types using toolbars and status bars. As you have seen, .NET 2.0 prefers to build
such UI elements using MenuStrips, ToolStrips, and StatusStrips rather than the older .NET 1.x
MainMenu, ToolBar, and StatusBar types (although these deprecated types are still supported). Finally,
this chapter wrapped up by illustrating how to construct MDI applications using Windows Forms.

Figure 21-27. An MDI application

5785ch21.qxd 3/31/06 11:21 AM Page 654

Rendering Graphical Data with GDI+

The previous chapter introduced you to the process of building a GUI-based desktop application
using System.Windows.Forms. The point of this chapter is to examine the details of rendering graphics
(including stylized text and image data) onto a Form’s surface area. We’ll begin by taking a high-level
look at the numerous drawing-related namespaces, and we’ll examine the role of the Paint event and
the almighty Graphics object.

The remainder of this chapter covers how to manipulate colors, fonts, geometric shapes, and
graphical images. This chapter also explores a number of rendering-centric programming techniques,
such as nonrectangular hit testing, drag-and-drop logic, and the .NET resource format. While tech-
nically not part of GDI+ proper, resources often involve the manipulation of graphical data (which,
in my opinion, is “GDI+ enough” to be presented here).

■Note If you are a web programmer by trade, you may think that GDI+ is of no use to you. However, GDI+ is not
limited to traditional desktop applications and is extremely relevant for web applications.

A Survey of the GDI+ Namespaces
The .NET platform provides a number of namespaces devoted to two-dimensional graphical ren-
dering. In addition to the basic functionality you would expect to find in a graphics toolkit (colors,
fonts, pens, brushes, etc.), you also find types that enable geometric transformations, antialiasing,
palette blending, and document printing support. Collectively speaking, these namespaces make
up the .NET facility we call GDI+, which is a managed alternative to the Win32 Graphical Device
Interface (GDI) API. Table 22-1 gives a high-level view of the core GDI+ namespaces.

655

C H A P T E R 2 2

■ ■ ■

5785ch22.qxd 3/31/06 11:22 AM Page 655

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+656

Table 22-1. Core GDI+ Namespaces

Namespace Meaning in Life

System.Drawing This is the core GDI+ namespace that defines numerous types for
basic rendering (fonts, pens, basic brushes, etc.) as well as the almighty
Graphics type.

System.Drawing.Drawing2D This namespace provides types used for more advanced
two-dimensional/vector graphics functionality (e.g., gradient
brushes, pen caps, geometric transforms, etc.).

System.Drawing.Imaging This namespace defines types that allow you to manipulate graphical
images (e.g., change the palette, extract image metadata, manipulate
metafiles, etc.).

System.Drawing.Printing This namespace defines types that allow you to render images to the
printed page, interact with the printer itself, and format the overall
appearance of a given print job.

System.Drawing.Text This namespace allows you to manipulate collections of fonts.

■Note All of the GDI+ namespaces are defined within the System.Drawing.dll assembly. While many Visual
Studio 2005 project types automatically set a reference to this code library, you can manually reference
System.Drawing.dll using the Add References dialog box if necessary.

An Overview of the System.Drawing Namespace
The vast majority of the types you’ll use when programming GDI+ applications are found within the
System.Drawing namespace. As you would expect, there are classes that represent images, brushes,
pens, and fonts. Furthermore, System.Drawing defines a number of related utility types such as
Color, Point, and Rectangle. Table 22-2 lists some (but not all) of the core types.

Table 22-2. Core Types of the System.Drawing Namespace

Type Meaning in Life

Bitmap This type encapsulates image data (*.bmp or otherwise).

Brush Brush objects are used to fill the interiors of graphical shapes such as rectangles,
Brushes ellipses, and polygons.
SolidBrush
SystemBrushes
TextureBrush

BufferedGraphics This new .NET 2.0 type provides a graphics buffer for double buffering, which
is used to reduce or eliminate flicker caused by redrawing a display surface.

Color The Color and SystemColors types define a number of shared read-only
SystemColors properties used to obtain specific colors for the construction of various

pens/brushes.

Font The Font type encapsulates the characteristics of a given font (i.e., type name,
FontFamily bold, italic, point size, etc.). FontFamily provides an abstraction for a group of

fonts having a similar design but with certain variations in style.

Graphics This core class represents a valid drawing surface, as well as a number of
methods to render text, images, and geometric patterns.

Icon These classes represent custom icons, as well as the set of standard system-
SystemIcons supplied icons.

5785ch22.qxd 3/31/06 11:22 AM Page 656

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 657

Type Meaning in Life

Image Image is an abstract base class that provides functionality for the Bitmap, Icon,
ImageAnimator and Cursor types. ImageAnimator provides a way to iterate over a number of

Image-derived types at some specified interval.

Pen Pens are objects used to draw lines and curves. The Pens type defines a number
Pens of shared properties that return a new Pen of a given color.
SystemPens

Point These structures represent an (x, y) coordinate mapping to an underlying
PointF integer or float, respectively.

Rectangle These structures represent a rectangular dimension (again mapping to an
RectangleF underlying integer or float).

Size These structures represent a given height/width (again mapping to an
SizeF underlying integer or float).

StringFormat This type is used to encapsulate various features of textual layout (i.e., alignment,
line spacing, etc.).

Region This type describes the interior of a geometric image composed of rectangles
and paths.

The System.Drawing Utility Types
Many of the drawing methods defined by the System.Drawing.Graphics object require you to specify
the position or area in which you wish to render a given item. For example, the DrawString() method
requires you to specify the location to render the text string on the Control-derived type. Given that
DrawString() has been overloaded a number of times, this positional parameter may be specified
using an (x, y) coordinate or the dimensions of a “box” to draw within. Other GDI+ type methods may
require you to specify the width and height of a given item, or the internal bounds of a geometric
region.

To specify such information, the System.Drawing namespace defines the Point, Rectangle,
Region, and Size types. Obviously, a Point represents an (x, y) coordinate. Rectangle types capture
a pair of points representing the upper-left and bottom-right bounds of a rectangular region. Size
types are similar to Rectangles, but this structure represents a particular dimension using a given
length and width. Finally, Regions provide a way to represent and qualify nonrectangular surfaces.

The member variables used by the Point, Rectangle, and Size types are internally represented
as an integer data type. If you need a finer level of granularity, you are free to make use of the corre-
sponding PointF, RectangleF, and SizeF types, which (as you might guess) map to an underlying
float. Regardless of the underlying data representation, each type has an identical set of members,
including a number of overloaded operators.

The Point and PointF Types
The first utility types you should be aware of are Point and PointF, which define a number of helpful
members, including

• +, -, =, <>: The Point type overloads various VB 2005 operators.

• X, Y: These members provide access to the underlying (x, y) values of the Point.

• IsEmpty: This member returns true if x and y are both set to 0.

To illustrate working with the GDI+ utility types, here is a console application (named
DrawingUtilTypes) that makes use of the System.Drawing.Point type (be sure to set a reference to
System.Drawing.dll, as this is not done automatically when building console projects).

5785ch22.qxd 3/31/06 11:22 AM Page 657

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+658

Imports System.Drawing

Module Program

Sub Main()

Console.WriteLine("***** Working with Drawing-centric util types *****")

Console.WriteLine()

Console.WriteLine("***** Exercise Point type *****")

' Create and offset a point.

Dim pt As Point = New Point(100, 72)

Console.WriteLine(pt)

pt.Offset(20, 20)

Console.WriteLine(pt)

' Overloaded Point operators.

Dim pt2 As Point = pt

If pt = pt2 Then

Console.WriteLine("Points are the same")

Else

Console.WriteLine("Different points")

End If

' Change pt2's X value.

pt2.X = 4000

' Now show each point's value

Console.WriteLine("First point: {0}", pt)

Console.WriteLine("Second point: {0}", pt2)

Console.ReadLine()

End Sub

End Module

The Rectangle and RectangleF Types
Rectangles, like Points, are useful in many applications (GUI based or otherwise). One of the more
useful methods of the Rectangle type is Contains(). This method allows you to determine whether
a given Point or Rectangle is within the current bounds of another object. Later in this chapter,
you’ll see how to make use of this method to perform hit testing of GDI+ images. Until then, here is
a simple example:

Sub Main()

...

Console.WriteLine("***** Point in Rect? *****")

Dim r1 As Rectangle = New Rectangle(0, 0, 100, 100)

Dim pt3 As Point = New Point(101, 101)

If r1.Contains(pt3) Then

Console.WriteLine("Point is within the rect!")

Else

Console.WriteLine("Point is not within the rect!")

End If

' Now place point in rectangle's area.

pt3.X = 50

pt3.Y = 30

If r1.Contains(pt3) Then

Console.WriteLine("Point is within the rect!")

5785ch22.qxd 3/31/06 11:22 AM Page 658

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 659

Else

Console.WriteLine("Point is not within the rect!")

End If

Console.ReadLine()

End Sub

The Region Class
The Region type represents the interior of a geometric shape. Given this last statement, it should
make sense that the constructors of the Region class require you to send an instance of some exist-
ing geometric pattern. For example, assume you have created a 100×100-pixel rectangle. If you wish
to gain access to the rectangle’s interior region, you could write the following:

' Get the interior of this rectangle.

Dim r As Rectangle = New Rectangle(0, 0, 100, 100)

Dim rgn As Region = New Region(r)

Once you have the interior dimensions of a given shape, you may manipulate it using various
members such as the following:

• Complement(): Updates this Region to the portion of the specified graphics object that does
not intersect with this Region

• Exclude(): Updates this Region to the portion of its interior that does not intersect with the
specified graphics object

• GetBounds(): Returns a Rectangle that represents a rectangular region that bounds this Region

• Intersect(): Updates this Region to the intersection of itself with the specified graphics object

• Transform(): Transforms a Region by the specified Matrix object

• Union(): Updates this Region to the union of itself and the specified graphics object

• Translate(): Offsets the coordinates of this Region by a specified amount

I’m sure you get the general idea behind these coordinate primitives; please consult the .NET
Framework 2.0 SDK documentation if you require further details.

■Note The Size and SizeF types require little comment. These types each define Height and Width properties
and a handful of overloaded operators.

■Source Code The DrawingUtilTypes project is included under the Chapter 22 subdirectory.

Understanding the Graphics Class
The System.Drawing.Graphics class is the gateway to GDI+ rendering functionality. This class not
only represents the surface you wish to draw upon (such as a Form’s surface, a control’s surface, or
region of memory), but also defines dozens of members that allow you to render text, images (icons,
bitmaps, etc.), and numerous geometric patterns. Table 22-3 gives a partial list of members.

5785ch22.qxd 3/31/06 11:22 AM Page 659

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+660

Table 22-3. Members of the Graphics Class

Methods Meaning in Life

FromHdc() These shared methods provide a way to obtain a valid Graphics object from
FromHwnd() a given image (e.g., icon, bitmap, etc.) or GUI widget.
FromImage()

Clear() Fills a Graphics object with a specified color, erasing the current drawing
surface in the process.

DrawArc() These methods are used to render a given image or geometric pattern. As you
DrawBezier() will see, DrawXXX() methods require the use of GDI+ Pen objects.
DrawBeziers()
DrawCurve()
DrawEllipse()
DrawIcon()
DrawLine()
DrawLines()
DrawPie()
DrawPath()
DrawRectangle()
DrawRectangles()
DrawString()

FillEllipse() These methods are used to fill the interior of a given geometric shape. As you
FillPath() will see, FillXXX() methods require the use of GDI+ Brush objects.
FillPie()
FillPolygon()
FillRectangle()

As well as providing a number of rendering methods, the Graphics class defines additional
members that allow you to configure the “state” of the Graphics object. By assigning values to the
properties shown in Table 22-4, you are able to alter the current rendering operation.

Table 22-4. Stateful Properties of the Graphics Class

Properties Meaning in Life

Clip These properties allow you to set the clipping options used with the current
ClipBounds Graphics object.
VisibleClipBounds
IsClipEmpty
IsVisibleClipEmpty

Transform This property allows you to transform “world coordinates” (more details on
this later).

PageUnit These properties allow you to configure the point of origin for your rendering
PageScale operations, as well as the unit of measurement.
DpiX
DpiY

SmoothingMode These properties allow you to configure the smoothness of geometric
PixelOffsetMode objects and text.
TextRenderingHint

CompositingMode This property determines whether drawing overwrites the background or
is blended with the background.

InterpolationMode This property specifies how data is interpolated between end points.

5785ch22.qxd 3/31/06 11:22 AM Page 660

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 661

■Note As of .NET 2.0, the System.Drawing namespace provides a BufferedGraphics type that allows you to
render graphics using a double-buffering system to minimize or eliminate the flickering that can occur during
a rendering operation. Consult the .NET Framework 2.0 SDK documentation for full details.

Now, despite what you may be thinking, the Graphics class is not directly creatable via the New
keyword, as there are no publicly defined constructors. How, then, do you obtain a valid Graphics
object? Glad you asked.

Understanding Paint Sessions
The most common way to obtain a Graphics object is to interact with the Paint event. Recall from
the previous chapter that the Control class defines a virtual method named OnPaint(). When you
want a Form to render graphical data to its surface, you may override this method and extract
a Graphics object from the incoming PaintEventArgs parameter. To illustrate, create a new Windows
Forms application named BasicPaintForm, and update the Form-derived class as follows:

Public Class MainForm

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' Add any initialization after the InitializeComponent() call.

CenterToScreen()

End Sub

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)

' If overriding OnPaint(), be sure to call base class implementation.

MyBase.OnPaint(e)

' Obtain a Graphics object from the incoming

' PaintEventArgs.

Dim g As Graphics = e.Graphics

' Render a textual message in a given font and color.

g.DrawString("Hello GDI+", New Font("Times New Roman", 20), _

Brushes.Green, 0, 0)

End Sub

End Class

While overriding OnPaint() is permissible, it is more common to handle the Paint event using the
associated PaintEventHandler delegate (in fact, this is the default behavior taken by Visual Studio 2005
when handling events with the Properties window). This delegate can point to any method taking
a System.Object as the first parameter and a PaintEventArgs as the second. Assuming you have
handled the Paint event, you are once again able to extract a Graphics object from the incoming
PaintEventArgs. Here is the update:

Public Class MainForm

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

5785ch22.qxd 3/31/06 11:22 AM Page 661

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+662

' Add any initialization after the InitializeComponent() call.

CenterToScreen()

End Sub

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

' Obtain a Graphics object from the incoming

' PaintEventArgs.

Dim g As Graphics = e.Graphics

' Render a textual message in a given font and color.

g.DrawString("Hello GDI+", New Font("Times New Roman", 20), _

Brushes.Green, 0, 0)

End Sub

End Class

Regardless of how you respond to the Paint event, be aware that whenever a window becomes
“dirty,” the Paint event will fire. As you may be aware, a window is considered “dirty” whenever it is
resized, uncovered by another window (partially or completely), or minimized and then restored. In
all these cases, the .NET platform ensures that when your Form needs to be redrawn, the Paint event
handler (or overridden OnPaint() method) is called automatically.

Invalidating the Form’s Client Area
During the flow of a GDI+ application, you may need to explicitly fire the Paint event, rather than
waiting for the window to become “naturally dirty.” For example, you may be building a program
that allows the user to select from a number of bitmap images using a custom dialog box. Once
the dialog box is dismissed, you need to draw the newly selected image onto the Form’s client area.
Obviously, if you waited for the window to become “naturally dirty,” the user would not see the
change take place until the window was resized or uncovered by another window. To force a window
to repaint itself programmatically, simply call the inherited Invalidate() method:

Public Class MainForm

...

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Render a bitmap here...

End Sub

Private Sub RenderMyBitmap()

' Assume we have code here to load

' a bitmap from disk...

Invalidate() ' Fires Paint event!

End Sub

End Class

The Invalidate() method has been overloaded a number of times to allow you to specify
a specific rectangular region to repaint, rather than repainting the entire client area (which is the
default). If you wish to only update the extreme upper-left rectangle of the client area, you could
write the following:

' Repaint a given rectangular area of the Form.

Private Sub UpdateUpperArea()

Dim myRect As Rectangle = New Rectangle(0, 0, 75, 150)

Invalidate(myRect)

End Sub

5785ch22.qxd 3/31/06 11:22 AM Page 662

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 663

Obtaining a Graphics Object Outside of a Paint Event Handler
In some cases, you may need to access a Graphics object outside the scope of a Paint event handler.
For example, assume you wish to draw a small circle at the (x, y) position where the mouse has been
clicked. To obtain a valid Graphics object from within the scope of a MouseDown event handler, one
approach is to call the shared Graphics.FromHwnd() method. Based on your background in Win32
development, you may know that an HWND is a data structure that represents a given Win32 window.
Under the .NET platform, the inherited Handle property extracts the underlying HWND, which can be
used as a parameter to Graphics.FromHwnd():

Private Sub MainForm_MouseDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseDown

' Grab a Graphics object via Hwnd.

Dim g As Graphics = Graphics.FromHwnd(Me.Handle)

' Now draw a 10*10 circle at mouse click.

g.FillEllipse(Brushes.Firebrick, e.X, e.Y, 10, 10)

' Dispose of all Graphics objects you create directly.

g.Dispose()

End Sub

While this logic renders a circle outside an OnPaint() event handler, it is very important to
understand that when the form is invalidated (and thus redrawn), each of the circles is erased! This
should make sense, given that this rendering happens only within the context of a MouseDown event.
A far better approach is to have the MouseDown event handler create a new Point type, which is then
added to an internal collection (such as a generic List(Of T)), followed by a call to Invalidate(). At
this point, the Paint event handler can simply iterate over the collection and draw each Point:

Public Class MainForm

' Used to hold all the Points.

Private myPts As New List(Of Point)

...

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

g.DrawString("Hello GDI+", New Font("Times New Roman", 20), _

Brushes.Green, 0, 0)

' Now render all the Points.

For Each p As Point In myPts

g.FillEllipse(Brushes.DarkOrange, p.X, p.Y, 10, 10)

Next

End Sub

Private Sub MainForm_MouseDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseDown

' Add new point to list.

myPts.Add(New Point(e.X, e.Y))

Invalidate()

End Sub

End Class

Using this approach, the rendered circles are always present and accounted for, as the graphical
rendering has been handled within the Paint event. Figure 22-1 shows a test run of this initial GDI+
application.

5785ch22.qxd 3/31/06 11:22 AM Page 663

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+664

Figure 22-1. A simple painting application

■Source Code The BasicPaintForm project is included under the Chapter 22 subdirectory.

Regarding the Disposal of a Graphics Object
If you were reading closely over the last several pages, you may have noticed that some of the sam-
ple code directly called the Dispose() method of the Graphics object, while other sample code did
not. Given that a Graphics type is manipulating various underlying unmanaged resources, it should
make sense that it would be advantageous to release said resources via Dispose() as soon as possi-
ble (rather than via the garbage collector in the finalization process). The same can be said for any
type that supports the IDisposable interface. When working with GDI+ Graphics objects, remember
the following rules of thumb:

• If you directly create a Graphics object, dispose of it when you are finished.

• If you reference an existing Graphics object, do not dispose of it.

To clarify, consider the following Paint event handler:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

' Load a local *.jpg file.

Dim myImageFile As Image = Image.FromFile("landscape.jpg")

' Create new Graphics object based on the image.

Dim imgGraphics As Graphics = Graphics.FromImage(myImageFile)

' Render new data onto the image.

imgGraphics.FillEllipse(Brushes.DarkOrange, 50, 50, 150, 150)

' Draw image to Form.

Dim g As Graphics = e.Graphics

g.DrawImage(myImageFile, New Point(0, 0))

' Release Graphics object we created.

imgGraphics.Dispose()

End Sub

5785ch22.qxd 3/31/06 11:22 AM Page 664

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 665

Now at this point in the chapter, don’t become concerned if some of this GDI+ logic looks a bit
foreign. However, notice that you are obtaining a Graphics object from a *.jpg file loaded from the
local application directory (via the shared Graphics.FromImage() method). Because you have explicitly
created this Graphics object, best practice states that you should Dispose() of the object when you
have finished making use of it, to free up the internal resources for use by other parts of the system.

However, notice that you did not explicitly call Dispose() on the Graphics object you obtained
from the incoming PaintEventArgs. This is due to the fact that you did not directly create the object
and cannot ensure other parts of the program are making use of it. Clearly, it would be a problem if
you released a Graphics object used elsewhere!

On a related note, recall from our examination of the .NET garbage collector in Chapter 8 that if
you do forget to call Dispose() on a method implementing IDisposable, the internal resources will
eventually be freed when the object is garbage collected at a later time. In this light, the manual dis-
posal of the imgGraphics object is not technically necessary. Although explicitly disposing of GDI+
objects you directly created is smart programming, in order to keep the code examples in this chapter
crisp, I will not manually dispose of each GDI+ type and allow the garbage collector to reclaim the
underlying memory.

The GDI+ Coordinate Systems
Our next task is to examine the underlying coordinate system. GDI+ defines three distinct coordinate
systems, which are used by the runtime to determine the location and size of the content to be rendered.
First we have what are known as world coordinates. World coordinates represent an abstraction of
the size of a given GDI+ type, irrespective of the unit of measurement. For example, if you draw
a rectangle using the dimensions (0, 0, 100, 100), you have specified a rectangle 100×100 “things” in
size. As you may guess, the default “thing” is a pixel; however, it can be configured to be another unit
of measure (inch, centimeter, etc.).

Next, we have page coordinates. Page coordinates represent an offset applied to the original world
coordinates. This is helpful in that you are not the one in charge of manually applying offsets in your
code (should you need them). For example, if you have a Form that needs to maintain a 100×100-pixel
border, you can specify a (100*100) page coordinate to allow all rending to begin at point (100*100).
In your code base, however, you are able to specify simple world coordinates (thereby avoiding the
need to manually calculate the offset).

Finally, we have device coordinates. Device coordinates represent the result of applying page
coordinates to the original world coordinates. This coordinate system is used to determine exactly
where the GDI+ type will be rendered. When you are programming with GDI+, you will typically
think in terms of world coordinates, which are the baselines used to determine the size and location
of a GDI+ type. To render in world coordinates requires no special coding actions—simply pass in
the dimensions for the current rendering operation:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Render a rectangle in world coordinates.

g.DrawRectangle(Pens.Black, 10, 10, 100, 100)

End Sub

Under the hood, your world coordinates are automatically mapped in terms of page coordinates,
which are then mapped into device coordinates. In many cases, you will never directly make use of
page or device coordinates unless you wish to apply some sort of graphical transformation. Given
that the previous code did not specify any transformational logic, the world, page, and device coor-
dinates are identical.

5785ch22.qxd 3/31/06 11:22 AM Page 665

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+666

Figure 22-2. The default coordinate system of GDI+

If you do wish to apply various transformations before rendering your GDI+ logic, you will
make use of various members of the Graphics type (such as the TranslateTransform() method) to
specify various “page coordinates” to your existing world coordinate system before the rendering
operation. The result is the set of device coordinates that will be used to render the GDI+ type to the
target device:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Specify page coordinate offsets (10 * 10).

g.TranslateTransform(10, 10)

g.DrawRectangle(10, 10, 100, 100)

End Sub

In this case, the rectangle is actually rendered with a top-left point of (20, 20), given that the
world coordinates have been offset by the call to TranslateTransform().

The Default Unit of Measure
Under GDI+, the default unit of measure is pixel based. The origin begins in the upper-left corner
with the x-axis increasing to the right and the y-axis increasing downward (see Figure 22-2).

Thus, if you render a Rectangle using a 5-pixel thick red pen as follows:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Set up world coordinates using the default unit of measure.

g.DrawRectangle(New Pen(Color.Red, 5), 0, 0, 100, 100)

End Sub

you would see a square rendered starting on the top-left client edge of the Form, as shown in
Figure 22-3.

5785ch22.qxd 3/31/06 11:22 AM Page 666

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 667

Figure 22-3. Rendering via pixel units

Specifying an Alternative Unit of Measure
If you do not wish to render images using a pixel-based unit of measure, you are able to change this
default setting by setting the PageUnit property of the Graphics object to alter the units used by the
page coordinate system. The PageUnit property can be assigned any member of the GraphicsUnit
enumeration:

Enum GraphicsUnit

' Specifies world coordinates.

World

' Pixels for video displays and 1/100 inch for printers.

Display

' Specifies a pixel.

Pixel

' Specifies a printer's point (1/72 inch).

Point

' Specifies an inch.

Inch

' Specifies a document unit (1/300 inch).

Document

' Specifies a millimeter.

Millimeter

End Sub

To illustrate how to change the underlying GraphicsUnit, update the previous rendering code
as follows:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

' Draw a rectangle in inches...not pixels.

Dim g As Graphics = e.Graphics

g.PageUnit = GraphicsUnit.Inch

' Set up world coordinates using the default unit of measure.

g.DrawRectangle(New Pen(Color.Red, 5), 0, 0, 100, 100)

End Sub

5785ch22.qxd 3/31/06 11:22 AM Page 667

Figure 22-4. Rendering using inch units

You would find a radically different rectangle, as shown in Figure 22-4.

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+668

The reason that 95 percent (or so) of the Form’s client area is now filled with red is because you
have configured a Pen with a 5-inch nib! The rectangle itself is 100×100 inches in size. In fact, the
small gray box you see located in the lower-right corner is the upper-left interior of the rectangle.

Specifying an Alternative Point of Origin
Recall that when you make use of the default coordinate and measurement system, point (0, 0) is at
the extreme upper left of the surface area. While this is often what you desire, what if you wish to
alter the location where rendering begins? For example, let’s assume that your application always
needs to reserve a 100-pixel boundary around the Form’s client area (for whatever reason). You need
to ensure that all GDI+ operations take place somewhere within this internal region.

One approach you could take is to offset all your rendering code manually. This, of course, would
be bothersome, as you would need to constantly apply some offset value to each and every rendering
operation. It would be far better (and simpler) if you could set a property that says in effect, “Although
I might say render a rectangle with a point of origin at (0, 0), make sure you begin at point (100, 100).”
This would simplify your life a great deal, as you could continue to specify your plotting points with-
out modification.

In GDI+, you can adjust the point of origin by setting the transformation value using the
TranslateTransform() method of the Graphics class, which allows you to specify a page coordinate
system that will be applied to your original world coordinate specifications, for example:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Set page coordinate to (100, 100).

g.TranslateTransform(100, 100)

' World origin is still (0, 0, 100, 100),

' however, device origin is now (100, 100, 200, 200).

g.DrawRectangle(New Pen(Color.Red, 5), 0, 0, 100, 100)

End Sub

5785ch22.qxd 3/31/06 11:22 AM Page 668

Figure 22-5. The result of applying page offsets

Figure 22-6. Altering coordinate and measurement modes

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 669

Here, you have set the world coordinate values (0, 0, 100, 100). However, the page coordinate
values have specified an offset of (100, 100). Given this, the device coordinates map to (100, 100,
200, 200). Thus, although the call to DrawRectangle() looks as if you are rendering a rectangle on the
upper left of the Form, the rendering shown in Figure 22-5 has taken place.

To help you experiment with some of the ways to alter the GDI+ coordinate system, this book’s
downloadable source code (visit the Downloads section of the Apress website at www.apress.com)
provides a sample application named CoorSystem. Using two menu items, you are able to alter the
point of origin as well as the unit of measurement (see Figure 22-6).

Now that you have a better understanding of the underlying transformations used to determine
where to render a given GDI+ type onto a target device, the next order of business is to examine
details of color manipulation.

■Source Code The CoorSystem project is included under the Chapter 22 subdirectory.

Defining a Color Value
Many of the rendering methods defined by the Graphics class require you to specify the color that
should be used during the drawing process. The System.Drawing.Color structure represents an
alpha-red-green-blue (ARGB) color constant. Most of the Color type’s functionality comes by way of
a number of shared read-only properties, which return a specific Color type:

5785ch22.qxd 3/31/06 11:22 AM Page 669

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+670

Figure 22-7. The Windows Forms color dialog box

' One of many predefined colors...

Dim c As Color = Color.PapayaWhip

If the default color values do not fit the bill, you are also able to create a new Color type and
specify the A, R, G, and B values using the FromArgb() method:

' Specify ARGB manually.

Dim myColor As Color = Color.FromArgb(0, 255, 128, 64)

As well, using the FromName() method, you are able to generate a Color type given a string value.
The characters in the string parameter must match one of the members in the KnownColor enumera-
tion (which includes values for various Windows color elements such as KnownColor.WindowFrame
and KnownColor.WindowText):

' Get Color from a known name.

Dim myColor As Color = Color.FromName("Red")

Regardless of the method you use, the Color type can be interacted with using a variety of
members:

• GetBrightness(): Returns the brightness of the Color type based on hue-saturation-brightness
(HSB) measurements

• GetSaturation(): Returns the saturation of the Color type based on HSB measurements

• GetHue(): Returns the hue of the Color type based on HSB measurements

• IsSystemColor: Determines whether the Color type is a registered system color

• A, R, G, B: Returns the value assigned to the alpha, red, green, and blue aspects of a Color type

The ColorDialog Class
If you wish to provide a way for the end user of your application to configure a Color type, the
System.Windows.Forms namespace provides a predefined dialog box class named ColorDialog, as
shown in Figure 22-7.

5785ch22.qxd 3/31/06 11:22 AM Page 670

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 671

Working with this dialog box is quite simple. Using a valid instance of the ColorDialog type, call
ShowDialog() to display the dialog box modally. Once the user has closed the dialog box, you can
extract the corresponding Color object using the ColorDialog.Color property.

Assume you wish to allow the user to configure the background color of the Form’s client area
using the ColorDialog. To keep things simple, you will display the ColorDialog when the user clicks
anywhere on the client area:

Public Class MainForm

Private colorDlg As ColorDialog

Private currColor As Color = Color.DimGray

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' Add any initialization after the InitializeComponent() call.

CenterToScreen()

colorDlg = New ColorDialog()

Text = "Click on me to change the color"

End Sub

Private Sub MainForm_MouseDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) _

Handles MyBase.MouseDown

If colorDlg.ShowDialog() <> Windows.Forms.DialogResult.Cancel Then

currColor = colorDlg.Color

Me.BackColor = currColor

' Show current color.

Dim strARGB As String = colorDlg.Color.ToString()

MessageBox.Show(strARGB, "Color is:")

End If

End Sub

End Class

■Source Code The ColorDlg application is included under the Chapter 22 subdirectory.

Manipulating Fonts
Next, let’s examine how to programmatically manipulate fonts. The System.Drawing.Font type rep-
resents a given font installed on the user’s machine. Font types can be defined using any number of
overloaded constructors. Here are a few examples:

' Create a Font of a given type name and size.

Dim f As Font = New Font("Times New Roman", 12)

' Create a Font with a given name, size, and style set.

Dim f2 As Font = New Font("WingDings", 50, FontStyle.Bold Or FontStyle.Underline)

Here, f2 has been created by OR-ing together a set of values from the FontStyle enumeration:

Enum FontStyle

Regular

Bold

Italic

Underline

Strikeout

End Enum

5785ch22.qxd 3/31/06 11:22 AM Page 671

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+672

Once you have configured the look and feel of your Font object, the next task is to pass it as
a parameter to the Graphics.DrawString() method. Although DrawString() has also been over-
loaded a number of times, each variation typically requires the same basic information: the text to
draw, the font to draw it in, a brush used for rendering, and a location in which to place it.

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Specify (String, Font, Brush, Point) as args.

g.DrawString("My string", New Font("WingDings", 25), _

Brushes.Black, New Point(0, 0))

' Specify (String, Font, Brush, Integer, Integer)

g.DrawString("Another string", New Font("Times New Roman", 16), _

Brushes.Red, 40, 40)

End Sub

Working with Font Families
The System.Drawing namespace also defines the FontFamily type, which abstracts a group of typefaces
having a similar basic design but with certain style variations. A family of fonts, such as Verdana, can
include several fonts that differ in style and size. For example, Verdana 12-point bold and Verdana
24-point italic are different fonts within the Verdana font family.

The constructor of the FontFamily type takes a string representing the name of the font family
you are attempting to capture. Once you create the “generic family,” you are then able to create
a more specific Font object:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Make a family of fonts.

Dim myFamily As FontFamily = New FontFamily("Verdana")

' Pass family into ctor of Font.

Dim myFont As Font = New Font(myFamily, 12)

g.DrawString("Hello!", myFont, Brushes.Blue, 10, 10)

End Sub

Of greater interest is the ability to gather statistics regarding a given family of fonts. For example, say
you are building a text-processing application and wish to determine the average width of a character in
a particular FontFamily. What if you wish to know the ascending and descending values for a given char-
acter? To answer such questions, the FontFamily type defines the key members shown in Table 22-5.

Table 22-5. Members of the FontFamily Type

Member Meaning in Life

GetCellAscent() Returns the ascender metric for the members in this family

GetCellDescent() Returns the descender metric for members in this family

GetLineSpacing() Returns the distance between two consecutive lines of text for this
FontFamily with the specified FontStyle

GetName() Returns the name of this FontFamily in the specified language

IsStyleAvailable() Indicates whether the specified FontStyle is available

5785ch22.qxd 3/31/06 11:22 AM Page 672

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 673

Figure 22-8. Gathering statistics of the Verdana font family

To illustrate, here is a Paint event handler that prints a number of characteristics of the Verdana
font family:

Public Class MainForm

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim myFamily As FontFamily = New FontFamily("Verdana")

Dim myFont As Font = New Font(myFamily, 12)

Dim y As Integer = 0

Dim fontHeight As Integer = myFont.Height

' Show units of measurement for FontFamily members.

Me.Text = "Measurements are in GraphicsUnit." & myFont.Unit.ToString()

g.DrawString("The Verdana family.", myFont, Brushes.Blue, 10, y)

y += 20

' Print our family ties...

g.DrawString("Ascent for bold Verdana: " _

& myFamily.GetCellAscent(FontStyle.Bold), _

myFont, Brushes.Black, 10, y + fontHeight)

y += 20

g.DrawString("Descent for bold Verdana: " _

& myFamily.GetCellDescent(FontStyle.Bold), _

myFont, Brushes.Black, 10, y + fontHeight)

y += 20

g.DrawString("Line spacing for bold Verdana: " _

& myFamily.GetLineSpacing(FontStyle.Bold), _

myFont, Brushes.Black, 10, y + fontHeight)

y += 20

g.DrawString("Height for bold Verdana: " & _

myFamily.GetEmHeight(FontStyle.Bold), _

myFont, Brushes.Black, 10, y + fontHeight)

y += 20

End Sub

End Class

Figure 22-8 shows the result.

Note that these members of the FontFamily type return values using GraphicsUnit.Point (not
Pixel) as the unit of measure, which corresponds to 1/72 inch. You are free to transform these val-
ues to other units of measure as you see fit.

5785ch22.qxd 3/31/06 11:22 AM Page 673

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+674

■Source Code The FontFamilyApp application is included under the Chapter 22 subdirectory.

Working with Font Faces and Font Sizes
Next, you’ll build a more complex application that allows the user to manipulate a Font object main-
tained by a Form. The application will allow the user to select the current font face from a predefined
set using the Configure ➤ Font Face menu selection. You’ll also allow the user to indirectly control the
size of the Font object using a Windows Forms Timer object. If the user activates the Timer using the
Configure ➤ Swell? menu item, the size of the Font object increases at a regular interval (to a maximum
upper limit). In this way, the text appears to swell and thus provides an animation of “breathing” text.
Finally, you’ll use a final menu item under the Configure menu named List All Fonts, which will be
used to list all fonts installed on the end user’s machine. Figure 22-9 shows the menu UI logic (notice
that this Form maintains a Timer member variable that has been named swellTimer).

To begin implementing the application, update the Form with a Timer member variable (named
swellTimer), a string (strFontFace) to represent the current font face, and an Integer (swellValue)
to represent the amount to adjust the font size. Within the Form’s constructor, configure the Timer to
emit a Tick event every 100 milliseconds:

Public Class MainForm

Private swellValue As Integer

Private strFontFace As String = "WingDings"

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' Add any initialization after the InitializeComponent() call.

BackColor = Color.Honeydew

CenterToScreen()

' Configure the Timer.

swellTimer.Enabled = True

Figure 22-9. Menu layout (and Timer) of the FontApp project

5785ch22.qxd 3/31/06 11:22 AM Page 674

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 675

swellTimer.Interval = 100

End Sub

End Class

Now, handle the Tick event, and within the generated handler, increase the value of the
swellValue data member by 5. Recall that the swellValue integer will be added to the current font
size to provide a simple animation (assume swellValue has a maximum upper limit of 50). To help
reduce the flicker that can occur when redrawing the entire client area, notice how the call to
Invalidate() is only refreshing the upper rectangular area of the Form:

Private Sub swellTimer_Tick(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles swellTimer.Tick

' Increase current swellValue by 5.

swellValue += 5

' If this value is greater than or equal to 50, reset to zero.

If swellValue >= 50 Then

swellValue = 0

End If

' Just invalidate the 'minimal dirty rectangle' to help reduce flicker.

Invalidate(New Rectangle(0, 0, ClientRectangle.Width, 100))

End Sub

Now that the upper 100 pixels of your client area are refreshed with each tick of the Timer, you
had better have something to render! In the Form’s Paint handler, create a Font object based on the
user-defined font face (as selected from the appropriate menu item) and current swellValue (as
dictated by the Timer). Once you have your Font object fully configured, render a message into the
center of the dirty rectangle:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim theFont As Font = New Font(strFontFace, 12 + swellValue)

Dim message As String = "Hello GDI+"

' Display message in the center of the window!

Dim windowCenter As Single = CSng(Me.DisplayRectangle.Width / 2)

Dim stringSize As SizeF = e.Graphics.MeasureString(message, theFont)

Dim startPos As Single = windowCenter - (stringSize.Width / 2)

g.DrawString(message, theFont, Brushes.Blue, startPos, 10)

End Sub

As you would guess, if a user selects a specific font face, the Clicked handler for each menu
selection is in charge of updating the fontFace string variable and invalidating the client area, for
example:

Private Sub arialToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles arialToolStripMenuItem.Click

strFontFace = "Arial"

Invalidate()

End Sub

The Click menu handler for the Swell menu item will be used to allow the user to stop or start
the swelling of the text (i.e., enable or disable the animation). To do so, toggle the Enabled property
of the Timer as follows:

Private Sub swellToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles swellToolStripMenuItem.Click

swellTimer.Enabled = Not swellTimer.Enabled

End Sub

5785ch22.qxd 3/31/06 11:22 AM Page 675

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+676

Enumerating Installed Fonts
Next, let’s expand this program to display the set of installed fonts on the target machine using
types within System.Drawing.Text. This namespace contains a handful of types that can be used to
discover and manipulate the set of fonts installed on the target machine. For our purposes, we are
only concerned with the InstalledFontCollection class.

When the user selects the Configure ➤ List Installed Fonts menu item, the corresponding Clicked
handler creates an instance of the InstalledFontCollection class. This class maintains an array named
FontFamily, which represents the set of all fonts on the target machine and may be obtained using
the InstalledFontCollection.Families property. Using the FontFamily.Name property, you are able
to extract the font face (e.g., Times New Roman, Arial, etc.) for each font.

Add a private String data member to your Form named installedFonts to hold each font face.
The logic in the List Installed Fonts menu handler creates an instance of the InstalledFontCollection
type, reads the name of each string, and adds the new font face to the private installedFonts data
member:

' Need this!

Imports System.Drawing.Text

Class MainForm

' Holds the list of fonts.

Private installedFonts As String

' Menu handler to get the list of installed fonts.

Private Sub listInstalledFontsToolStripMenuItem_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles listInstalledFontsToolStripMenuItem.Click

Dim fonts As InstalledFontCollection = New InstalledFontCollection()

For i As Integer = 0 To fonts.Families.Length - 1

installedFonts &= fonts.Families(i).Name & " "

Next

' This time, we need to invalidate the entire client area,

' as we will paint the installedFonts string on the lower half

' of the client rectangle.

Invalidate()

End Sub

...

End Class

The final task is to render the installedFonts string to the client area, directly below the screen
real estate that is used for your swelling text:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim theFont As Font = New Font(strFontFace, 12 + swellValue)

Dim message As String = "Hello GDI+"

' Display message in the center of the window!

Dim windowCenter As Single = CSng(Me.DisplayRectangle.Width / 2)

Dim stringSize As SizeF = e.Graphics.MeasureString(message, theFont)

Dim startPos As Single = windowCenter - (stringSize.Width / 2)

g.DrawString(message, theFont, Brushes.Blue, startPos, 10)

5785ch22.qxd 3/31/06 11:22 AM Page 676

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 677

Figure 22-10. The FontApp application in action

' Show installed fonts in the rectangle below the swell area.

Dim myRect As Rectangle = _

New Rectangle(0, 100, ClientRectangle.Width, ClientRectangle.Height)

' Paint this area of the Form black.

g.FillRectangle(New SolidBrush(Color.Black), myRect)

g.DrawString(installedFonts, New Font("Arial", 12), Brushes.White, myRect)

End Sub

Recall that the size of the “dirty rectangle” has been mapped to the upper 100 pixels of the client
rectangle. Because your Tick handler invalidates only a portion of the Form, the remaining area is
not redrawn when the Tick event has been sent (to help optimize the rendering of the client area).

As a final touch to ensure proper redrawing, let’s handle the Form’s Resize event to ensure that
if the user resizes the Form, the lower part of client rectangle is redrawn correctly:

Private Sub MainForm_Resize(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Resize

Dim myRect As Rectangle = New Rectangle(0, 100, _

ClientRectangle.Width, ClientRectangle.Height)

Invalidate(myRect)

End Sub

Figure 22-10 shows the result (with the text rendered in Wingdings!).

■Source Code The SwellingFontApp project is included under the Chapter 22 subdirectory.

5785ch22.qxd 3/31/06 11:22 AM Page 677

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+678

The FontDialog Class
As you might assume, there is an existing font dialog box (FontDialog), as shown in Figure 22-11.

Like the ColorDialog type examined earlier in this chapter, when you wish to work with the
FontDialog, simply call the ShowDialog() method. Using the Font property, you may extract the char-
acteristics of the current selection for use in the application. To illustrate, here is a Form that mimics
the logic of the previous ColorDlg project. When the user clicks anywhere on the Form, the Font
dialog box displays and renders a message with the current selection:

Public Class MainForm

Private fontDlg As New FontDialog()

Private currFont As New Font("Times New Roman", 12)

Private Sub MainForm_MouseDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseDown

If fontDlg.ShowDialog() <> Windows.Forms.DialogResult.Cancel Then

currFont = fontDlg.Font

Me.Text = String.Format("Selected Font: {0} ", currFont)

Invalidate()

End If

End Sub

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

g.DrawString("Testing...", currFont, Brushes.Black, 0, 0)

End Sub

End Class

■Source Code The FontDlgForm application is included under the Chapter 22 subdirectory.

Figure 22-11. The Windows Forms Font dialog box

5785ch22.qxd 3/31/06 11:22 AM Page 678

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 679

Survey of the System.Drawing.Drawing2D
Namespace
Now that you have manipulated Font types, the next task is to examine how to manipulate Pen and
Brush objects to render geometric patterns. While you could do so making use of nothing more than
Brushes and Pens helper types to obtain preconfigured types in a solid color, you should be aware
that many of the more “exotic” pens and brushes are found within the System.Drawing.Drawing2D
namespace.

This additional GDI+ namespace provides a number of classes that allow you to modify the
end cap (triangle, diamond, etc.) used for a given pen, build textured brushes, and work with vector
graphic manipulations. Some core types to be aware of (grouped by related functionality) are shown
in Table 22-6.

Table 22-6. Classes of System.Drawing.Drawing2D

Classes Meaning in Life

AdjustableArrowCap Pen caps are used to paint the beginning and end points of a given line.
CustomLineCap These types represent an adjustable arrow-shaped and user-defined cap.

Blend These classes are used to define a blend pattern (and colors) used in
ColorBlend conjunction with a LinearGradientBrush.

GraphicsPath A GraphicsPath object represents a series of lines and curves. This class
GraphicsPathIterator allows you to insert just about any type of geometrical pattern (arcs,
PathData rectangles, lines, strings, polygons, etc.) into the path. PathData holds

the graphical data that makes up a path.

HatchBrush These are exotic brush types.
LinearGradientBrush
PathGradientBrush

Also be aware that the System.Drawing.Drawing2D namespace defines another set of enumerations
(DashStyle, FillMode, HatchStyle, LineCap, and so forth) that are used in conjunction with these
core types.

Working with Pens
GDI+ Pen types are used to draw lines between two end points. However, a Pen in and of itself is of
little value. When you need to render a geometric shape onto a Control-derived type, you send a valid
Pen type to any number of render methods defined by the Graphics class. In general, the DrawXXX()
methods are used to render some set of lines to a graphics surface and are typically used with Pen
objects.

The Pen type defines a small set of constructors that allow you to determine the initial color
and width of the pen nib. Most of a Pen’s functionality comes by way of its supported properties.
Table 22-7 gives a partial list.

5785ch22.qxd 3/31/06 11:22 AM Page 679

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+680

Table 22-7. Pen Properties

Properties Meaning in Life

Brush Determines the Brush used by this Pen.

Color Determines the Color type used by this Pen.

CustomStartCap Gets or sets a custom cap style to use at the beginning or end of lines drawn
CustomEndCap with this Pen. Cap style is simply the term used to describe how the initial and

final stroke of the Pen should look and feel. These properties allow you to build
custom caps for your Pen types.

DashCap Gets or sets the cap style used at the beginning or end of dashed lines drawn
with this Pen.

DashPattern Gets or sets an array of custom dashes and spaces. The dashes are made up of
line segments.

DashStyle Gets or sets the style used for dashed lines drawn with this Pen.

StartCap Gets or sets the predefined cap style used at the beginning or end of lines
EndCap drawn with this Pen. Set the cap of your Pen using the LineCap enumeration

defined in the System.Drawing.Drawing2D namespace.

Width Gets or sets the width of this Pen.

DashOffset Gets or sets the distance from the start of a line to the beginning of a dash pattern.

Remember that in addition to the Pen type, GDI+ provides a Pens collection. Using a number of
shared properties, you are able to retrieve a Pen (or a given color) on the fly, rather than creating
a custom Pen by hand. Be aware, however, that the Pen types returned will always have a width of 1. If
you require a more exotic pen, you will need to build a Pen type by hand. This being said, let’s render
some geometric images using simple Pen types. Assume you have a main Form object that is capable
of responding to paint requests. The implementation is as follows:

Imports System.Drawing.Drawing2D

Public Class MainForm

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Make a big blue pen.

Dim bluePen As Pen = New Pen(Color.Blue, 20)

' Get a stock pen from the Pens type.

Dim pen2 As Pen = Pens.Firebrick

' Render some shapes with the pens.

g.DrawEllipse(bluePen, 10, 10, 100, 100)

g.DrawLine(pen2, 10, 130, 110, 130)

g.DrawPie(Pens.Black, 150, 10, 120, 150, 90, 80)

' Draw a purple dashed polygon as well...

Dim pen3 As Pen = New Pen(Color.Purple, 5)

pen3.DashStyle = DashStyle.DashDotDot

g.DrawPolygon(pen3, New Point() {New Point(30, 140), _

New Point(265, 200), New Point(100, 225), _

New Point(190, 190), New Point(50, 330), _

New Point(20, 180)})

' And a rectangle containing some text...

Dim r As Rectangle = New Rectangle(150, 10, 130, 60)

5785ch22.qxd 3/31/06 11:22 AM Page 680

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 681

Figure 22-12. Working with Pen types

g.DrawRectangle(Pens.Blue, r)

g.DrawString("Hello out there...How are ya?", _

New Font("Arial", 12), Brushes.Black, r)

End Sub

Private Sub MainForm_Resize(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Resize

Invalidate()

End Sub

End Class

Notice that the Pen used to render your polygon makes use of the DashStyle enumeration
(defined in System.Drawing.Drawing2D):

Enum DashStyle

Solid

Dash

Dot

DashDot

DashDotDot

Custom

End Enum

In addition to the preconfigured DashStyles, you are able to define custom patterns using the
DashPattern property of the Pen type:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

...

' Draw custom dash pattern all around the border of the form.

Dim customDashPen As Pen = New Pen(Color.BlueViolet, 10)

Dim myDashes As Single() = {5.0F, 2.0F, 1.0F, 3.0F}

customDashPen.DashPattern = myDashes

g.DrawRectangle(customDashPen, ClientRectangle)

End Sub

Figure 22-12 shows the final output of this Paint event handler.

5785ch22.qxd 3/31/06 11:22 AM Page 681

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+682

■Source Code The CustomPenApp project is included under the Chapter 22 subdirectory.

Working with Pen Caps
If you examine the output of the previous pen example, you should notice that the beginning and end
of each line was rendered using a standard pen protocol (an end cap composed of 90 degree angles).
Using the LineCap enumeration, however, you are able to build Pens that exhibit a bit more flair:

Enum LineCap

Flat

Square

Round

Triangle

NoAnchor

SquareAnchor

RoundAnchor

DiamondAnchor

ArrowAnchor

AnchorMask

Custom

End Enum

To illustrate, the following Pens application draws a series of lines using each of the LineCap
styles. The end result can be seen in Figure 22-13.

Figure 22-13. Working with pen caps

The code simply loops through each member of the LineCap enumeration and prints out the
name of the item (e.g., ArrowAnchor). It then configures and draws a line with the current cap:

5785ch22.qxd 3/31/06 11:22 AM Page 682

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 683

Imports System.Drawing.Drawing2D

Public Class MainForm

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim thePen As Pen = New Pen(Color.Black, 10)

Dim yOffSet As Integer = 10

' Get all members of the LineCap enum.

Dim obj As Array = [Enum].GetValues(GetType(LineCap))

For x As Integer = 0 To obj.Length - 1

' Draw a line with a LineCap member.

' Get next cap and configure pen.

Dim temp As LineCap = CType(obj.GetValue(x), LineCap)

thePen.StartCap = temp

thePen.EndCap = temp

' Print name of LineCap enum.

g.DrawString(temp.ToString(), New Font("Times New Roman", 10), _

New SolidBrush(Color.Black), 0, yOffSet)

' Draw a line with the correct cap.

g.DrawLine(thePen, 100, yOffSet, Width - 50, yOffSet)

yOffSet += 40

Next

End Sub

Private Sub MainForm_Resize(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Resize

Invalidate()

End Sub

End Class

■Source Code The PenCapApp project is included under the Chapter 22 subdirectory.

Working with Brushes
System.Drawing.Brush-derived types are used to fill a region with a given color, pattern, or image.
The Brush class itself is an abstract type and cannot be directly created. However, Brush serves as
a base class to the other related brush types (e.g., SolidBrush, HatchBrush, LinearGradientBrush, and
so forth). In addition to specific Brush-derived types, the System.Drawing namespace also defines two
helper classes that return a configured brush using a number of shared properties: Brushes and
SystemBrushes. In any case, once you obtain a brush, you are able to call any number of the FillXXX()
methods of the Graphics type.

Interestingly enough, you are also able to build a custom Pen type based on a given brush. In
this way, you are able to build some brush of interest (e.g., a brush that paints a bitmap image) and
render geometric patterns with configured Pen. To illustrate, here is a small sample program that
makes use of various Brush types:

Public Class MainForm

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

5785ch22.qxd 3/31/06 11:22 AM Page 683

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+684

' Make a blue SolidBrush.

Dim blueBrush As SolidBrush = New SolidBrush(Color.Blue)

' Get a stock brush from the Brushes type.

Dim pen2 As SolidBrush = CType(Brushes.Firebrick, SolidBrush)

' Render some shapes with the brushes.

g.FillEllipse(blueBrush, 10, 10, 100, 100)

g.FillPie(Brushes.Black, 150, 10, 120, 150, 90, 80)

' Draw a purple polygon as well...

Dim brush3 As SolidBrush = New SolidBrush(Color.Purple)

g.FillPolygon(brush3, New Point() {New Point(30, 140), _

New Point(265, 200), New Point(100, 225), _

New Point(190, 190), New Point(50, 330), _

New Point(20, 180)})

' And a rectangle with some text...

Dim r As Rectangle = New Rectangle(150, 10, 130, 60)

g.FillRectangle(Brushes.Blue, r)

g.DrawString("Hello out there...How are ya?", _

New Font("Arial", 12), Brushes.White, r)

End Sub

End Class

If you can’t tell, this application is little more than the CustomPenApp program, this time mak-
ing use of the FillXXX() methods and SolidBrush types, rather than pens and the related DrawXXX()
methods. Figure 22-14 shows the output.

■Source Code The SolidBrushApp project is included under the Chapter 22 subdirectory.

Figure 22-14. Working with Brush types

5785ch22.qxd 3/31/06 11:22 AM Page 684

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 685

Working with HatchBrushes
The System.Drawing.Drawing2D namespace defines a Brush-derived type named HatchBrush. This
type allows you to fill a region using a (very large) number of predefined patterns, represented by
the HatchStyle enumeration. Here is a partial list of names:

Enum HatchStyle

Horizontal

Vertical

ForwardDiagonal,

BackwardDiagonal

Cross

DiagonalCross

LightUpwardDiagonal

...

End Enum

When constructing a HatchBrush, you need to specify the foreground and background colors to
use during the fill operation. To illustrate, let’s rework the logic seen previously in the PenCapApp
example:

Imports System.Drawing.Drawing2D

Public Class MainForm

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim yOffSet As Integer = 10

' Get all members of the HatchStyle enum.

Dim obj As Array = [Enum].GetValues(GetType(HatchStyle))

For x As Integer = 0 To 4

' Draw an oval with first 5 HatchStyle values.

' Configure Brush.

Dim temp As HatchStyle = CType(obj.GetValue(x), HatchStyle)

Dim theBrush As HatchBrush = New HatchBrush(temp, Color.White, Color.Black)

' Print name of HatchStyle enum.

g.DrawString(temp.ToString(), New Font("Times New Roman", 10), _

Brushes.Black, 0, yOffSet)

' Fill a rectangle with the correct brush.

g.FillEllipse(theBrush, 150, yOffSet, 200, 25)

yOffSet += 40

Next

End Sub

End Class

The output renders a filled oval for the first five hatch values (see Figure 22-15).

5785ch22.qxd 3/31/06 11:22 AM Page 685

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+686

■Source Code The BrushStyles application is included under the Chapter 22 subdirectory.

Working with TextureBrushes
The TextureBrush type allows you to attach a bitmap image to a brush, which can then be used in
conjunction with a fill operation. In just a few pages, you will learn about the details of the GDI+
Image class. For the time being, understand that a TextureBrush is assigned an Image reference for
use during its lifetime. The image itself is typically found stored in some local file (*.bmp, *.gif,
*.jpg) or embedded into a .NET assembly.

Let’s build a sample application that makes use of the TextureBrush type. One brush is used to
paint the entire client area with the image found in a file named clouds.bmp, while the other brush
is used to paint text with the image found within soap bubbles.bmp. The output is shown in Fig-
ure 22-16.

Figure 22-15. Select hatch styles

Figure 22-16. Bitmaps as brushes

5785ch22.qxd 3/31/06 11:22 AM Page 686

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 687

To begin, your Form-derived class maintains two Brush member variables, which are assigned
to a new TextureBrush in the constructor. Notice that the constructor of the TextureBrush type
requires a type derived from Image. With these two TextureBrush types to use for rendering, the
Paint event handler is quite straightforward:

■Note The *.bmp files used in this example must be in the same folder as the application (or specified using
hard-coded paths). We’ll address this limitation later in this chapter.

Public Class MainForm

Private texturedTextBrush As Brush

Private texturedBGroundBrush As Brush

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' Add any initialization after the InitializeComponent() call.

CenterToScreen()

' Load images brushes.

Try

Dim bGroundBrushImage As Image = New Bitmap("Clouds.bmp")

texturedBGroundBrush = New TextureBrush(bGroundBrushImage)

Dim textBrushImage As Image = New Bitmap("Soap Bubbles.bmp")

texturedTextBrush = New TextureBrush(textBrushImage)

Catch

MessageBox.Show("Can't find bitmap files!")

End Try

End Sub

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim r As Rectangle = ClientRectangle

' Paint the clouds on the client area.

g.FillRectangle(texturedBGroundBrush, r)

' Some big bold text with a textured brush.

g.DrawString("Bitmaps as brushes! Way cool...", _

New Font("Arial", 50, FontStyle.Bold Or FontStyle.Italic), _

texturedTextBrush, r)

End Sub

End Class

■Source Code The TexturedBrushes application is included under the Chapter 22 subdirectory.

5785ch22.qxd 3/31/06 11:22 AM Page 687

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+688

Working with LinearGradientBrushes
Last but not least is the LinearGradientBrush type, which you can use whenever you want to blend
two colors together in a gradient pattern. Working with this type is just as simple as working with
the other brush types. The only point of interest is that when you build a LinearGradientBrush, you
need to specify a pair of Color types and the direction of the blend via the LinearGradientMode

enumeration:

Enum LinearGradientMode

Horizontal

Vertical

ForwardDiagonal

BackwardDiagonal

End Enum

To test each value, let’s render a series of rectangles using a LinearGradientBrush:

Imports System.Drawing.Drawing2D

Public Class MainForm

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim r As Rectangle = New Rectangle(10, 10, 100, 100)

' A gradient brush.

Dim theBrush As LinearGradientBrush = Nothing

Dim yOffSet As Integer = 10

' Get all members of the LinearGradientMode enum.

Dim obj As Array = [Enum].GetValues(GetType(LinearGradientMode))

For x As Integer = 0 To obj.Length - 1

' Draw an oval with a LinearGradientMode member.

' Configure Brush.

Dim temp As LinearGradientMode = CType(obj.GetValue(x), LinearGradientMode)

theBrush = New LinearGradientBrush(r, Color.GreenYellow, Color.Blue, temp)

' Print name of LinearGradientMode enum.

g.DrawString(temp.ToString(), _

New Font("Times New Roman", 10), _

New SolidBrush(Color.Black), 0, yOffSet)

' Fill a rectangle with the correct brush.

g.FillRectangle(theBrush, 150, yOffSet, 200, 50)

yOffSet += 80

Next

End Sub

End Class

Figure 22-17 shows the end result.

5785ch22.qxd 3/31/06 11:22 AM Page 688

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 689

■Source Code The GradientBrushes application is included under the Chapter 22 subdirectory.

Rendering Images
At this point, you have examined how to manipulate three of the four major GDI+ types: fonts, pens,
and brushes. The final type you’ll examine in this chapter is the Image class and related subtypes.
The abstract System.Drawing.Image type defines a number of methods and properties that hold var-
ious bits of information regarding the underlying image data it represents. For example, the Image
class supplies the Width, Height, and Size properties to retrieve the dimensions of the image. Other
properties allow you to gain access to the underlying palette. The Image class defines the core mem-
bers shown in Table 22-8.

Table 22-8. Members of the Image Type

Members Meaning in Life

FromFile() This shared method creates an Image from the specified file.

FromStream() This shared method creates an Image from the specified data stream.

Height These properties return information regarding the dimensions of this Image.
Width
Size
HorizontalResolution
VerticalResolution

Palette This property returns a ColorPalette data type that represents the
underlying palette used for this Image.

GetBounds() This method returns a Rectangle that represents the current size of this Image.

Save() This method saves the data held in an Image-derived type to file.

Figure 22-17. Gradient brushes at work

5785ch22.qxd 3/31/06 11:22 AM Page 689

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+690

Given that the abstract Image class cannot be directly created, you typically make a direct
instance of the Bitmap type. Assume you have some Form-derived class that renders three bitmaps
into the client area. Once you fill the Bitmap types with the correct image file, simply render each
one within your Paint event handler using the Graphics.DrawImage() method:

Public Class MainForm

' To hold the *.bmp data.

Private myImages As Bitmap() = New Bitmap(2) {}

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' Add any initialization after the InitializeComponent() call.

myImages(0) = New Bitmap("imageA.bmp")

myImages(1) = New Bitmap("imageB.bmp")

myImages(2) = New Bitmap("imageC.bmp")

CenterToScreen()

End Sub

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

' Render all three images.

Dim yOffset As Integer = 10

For Each b As Bitmap In myImages

g.DrawImage(b, 10, yOffset, 90, 90)

yOffset += 100

Next

End Sub

End Class

Figure 22-18 shows the output.

■Note The *.bmp files used in this example must be in the same folder as the application (or specified using
hard-coded paths). We’ll resolve this limitation later in this chapter.

Finally, be aware that regardless of its name, the Bitmap class can contain image data stored in
any number of file formats (*.tif, *.gif, *.bmp, etc.).

■Source Code The BasicImages application is included under the Chapter 22 subdirectory.

5785ch22.qxd 3/31/06 11:22 AM Page 690

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 691

Dragging and Hit Testing the PictureBox Control
While you are free to render Bitmap images directly onto any Control-derived class, you will find
that you gain far greater control and functionality if you instead choose to make use of a PictureBox

type to contain your image. For example, because the PictureBox type “is-a” Control, you inherit
a great deal of functionality, such as the ability to handle various events, assign a tool tip or context
menu, and so forth. While you could achieve similar behaviors using a raw Bitmap, you would be
required to author a fair amount of boilerplate code.

To showcase the usefulness of the PictureBox type, let’s create a simple “game” that illustrates
the ability to capture mouse activity over a graphical image. If the user clicks the mouse somewhere
within the bounds of the image, he is in “dragging” mode and can move the image around the Form.
To make things more interesting, let’s monitor where the user releases the image. If it is within the
bounds of a GDI+-rendered rectangle, you’ll take some additional course of action (seen shortly). As
you may know, the process of testing for mouse click events within a specific region is termed hit
testing.

The PictureBox type gains most of its functionality from the Control base class. You’ve already
explored a number of Control’s members in the previous chapter, so let’s quickly turn our attention
to the process of assigning an image to the PictureBox member variable using the Image property
(again, the happyDude.bmp file must be in the application directory):

Public Class MainForm

Private happyBox As PictureBox = New PictureBox()

Private oldX As Integer, oldY As Integer

Figure 22-18. Rendering images

5785ch22.qxd 3/31/06 11:22 AM Page 691

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+692

Private isDragging As Boolean

Private dropRect As Rectangle = New Rectangle(100, 100, 140, 170)

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' Add any initialization after the InitializeComponent() call.

' Configure the PictureBox and add to

' the Form's Controls collection.

happyBox.SizeMode = PictureBoxSizeMode.StretchImage

happyBox.Location = New System.Drawing.Point(64, 32)

happyBox.Size = New System.Drawing.Size(50, 50)

happyBox.Cursor = Cursors.Hand

happyBox.Image = New Bitmap("happyDude.bmp")

' Add handlers for the following events.

AddHandler happyBox.MouseDown, AddressOf happyBox_MouseDown

AddHandler happyBox.MouseUp, AddressOf happyBox_MouseUp

AddHandler happyBox.MouseMove, AddressOf happyBox_MouseMove

Controls.Add(happyBox)

End Sub

End Class

Beyond the Image property, the only other property of interest is SizeMode, which makes use of
the PictureBoxSizeMode enumeration. This type is used to control how the associated image should
be rendered within the bounding rectangle of the PictureBox. Here, you assigned PictureBoxSizeMode.
StretchImage, indicating that you wish to skew the image over the entire area of the PictureBox type
(which is set to 50×50 pixels).

The next task is to handle the MouseMove, MouseUp, and MouseDown events for the PictureBox
member variable using the expected VB 2005 event syntax:

' Add handlers for the following events.

AddHandler happyBox.MouseDown, AddressOf happyBox_MouseDown

AddHandler happyBox.MouseUp, AddressOf happyBox_MouseUp

AddHandler happyBox.MouseMove, AddressOf happyBox_MouseMove

The MouseDown event handler is in charge of storing the incoming (x, y) location of the cursor within
two Integer member variables (oldX and oldY) for later use, as well as setting a System.Boolean mem-
ber variable (isDragging) to True, to indicate that a drag operation is in process. Add these member
variables to your Form and implement the MouseDown event handler as follows:

Private Sub happyBox_MouseDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs)

isDragging = True

' Save the (x, y) of the mouse down click,

' because we need it as an offset when dragging the image.

oldX = e.X

oldY = e.Y

End Sub

The MouseMove event handler simply relocates the position of the PictureBox (using the Top and
Left properties) by offsetting the current cursor location with the integer data captured during the
MouseDown event:

Private Sub happyBox_MouseMove(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs)

If isDragging Then

' Need to figure new Y value based on where the mouse

5785ch22.qxd 3/31/06 11:22 AM Page 692

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 693

' down click happened.

happyBox.Top = happyBox.Top + (e.Y - oldY)

' Same deal for X (use oldX as a base line).

happyBox.Left = happyBox.Left + (e.X - oldX)

End If

End Sub

The MouseUp event handler sets the isDragging Boolean to False, to signal the end of the drag
operation. As well, if the MouseUp event occurs when the PictureBox is contained within our GDI+-
rendered Rectangle image, you can assume the user has won the (albeit rather simplistic) game.
Given the Rectangle member variable (named dropRect) we added to the Form class, the MouseUp
event handler can now be implemented like so:

Private Sub happyBox_MouseUp(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs)

isDragging = False

' Is the mouse within the area of the drop rect?

If dropRect.Contains(happyBox.Bounds) Then

MessageBox.Show("You win!", "What an amazing test of skill...")

End If

End Sub

Finally, you need to render the rectangular area (maintained by the dropRect member variable)
on the Form within a Paint event handler:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

' Draw the drop box.

Dim g As Graphics = e.Graphics

g.FillRectangle(Brushes.BlueViolet, dropRect)

' Display instructions.

g.DrawString("Drag the happy guy in here...", _

New Font("Times New Roman", 25), Brushes.WhiteSmoke, dropRect)

End Sub

When you run the application, you are presented with what appears in Figure 22-19.

Figure 22-19. The amazing happy-dude game

5785ch22.qxd 3/31/06 11:22 AM Page 693

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+694

If you have what it takes to win the game, you are rewarded with the kudos shown in Figure 22-20.

■Source Code The DraggingImages application is included under the Chapter 22 subdirectory.

Hit Testing Rendered Images
Validating a hit test against a Control-derived type (such as the PictureBox) is very simple, as it can
respond directly to mouse events. However, what if you wish to perform a hit test on a geometric
shape rendered directly on the surface of a Form?

To illustrate the process, let’s revisit the previous BasicImages application and add some new
functionality. The goal is to determine when the user clicks one of the three images. Once you dis-
cover which image was clicked, you’ll adjust the Text property of the Form and highlight the image
with a 5-pixel outline.

The first step is to define a new set of member variables in the Form type that represents the
Rectangles you will be testing against in the MouseDown event. When this event occurs, you need to
programmatically figure out whether the incoming (x, y) coordinate is somewhere within the bounds
of the Rectangles used to represent the dimension of each Image. If the user does click a given image,
you set a private Boolean member variable (isImageClicked) to true and indicate which image was
selected via another member variable of a custom enumeration named ClickedImage, defined as
follows:

Enum ClickedImage

ImageA

ImageB

ImageC

End Enum

With this, here is the initial update to the Form-derived class:

Public Class MainForm

...

Private imageRects As Rectangle() = New Rectangle(2) {}

Private isImageClicked As Boolean = False

Private imageClicked As ClickedImage = ClickedImage.ImageA

Sub New()

...

' Set up the rectangles.

imageRects(0) = New Rectangle(10, 10, 90, 90)

imageRects(1) = New Rectangle(10, 110, 90, 90)

imageRects(2) = New Rectangle(10, 210, 90, 90)

CenterToScreen()

End Sub

...

Figure 22-20. You have nerves of steel!

5785ch22.qxd 3/31/06 11:22 AM Page 694

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 695

Private Sub MainForm_MouseDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseDown

' Get (x, y) of mouse click.

Dim mousePt As Point = New Point(e.X, e.Y)

' See if the mouse is anywhere in the 3 Rectangles.

If imageRects(0).Contains(mousePt) Then

isImageClicked = True

imageClicked = ClickedImage.ImageA

Me.Text = "You clicked image A"

ElseIf imageRects(1).Contains(mousePt) Then

isImageClicked = True

imageClicked = ClickedImage.ImageB

Me.Text = "You clicked image B"

ElseIf imageRects(2).Contains(mousePt) Then

isImageClicked = True

imageClicked = ClickedImage.ImageC

Me.Text = "You clicked image C"

Else

' Not in any shape, set defaults.

isImageClicked = False

Me.Text = "Hit Testing Images"

End If

' Redraw the client area.

Invalidate()

End Sub

End Class

Notice that the final conditional check sets the isImageClicked member variable to False, indi-
cating that the user did not click one of the three images. This is important, as you want to erase the
outline of the previously selected image. Once all items have been checked, invalidate the client
area. Here is the updated Paint handler:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

...

' Draw outline (if clicked)

If isImageClicked = True Then

Dim outline As Pen = New Pen(Color.Red, 5)

Select Case imageClicked

Case ClickedImage.ImageA

g.DrawRectangle(outline, imageRects(0))

Exit Select

Case ClickedImage.ImageB

g.DrawRectangle(outline, imageRects(1))

Exit Select

Case ClickedImage.ImageC

g.DrawRectangle(outline, imageRects(2))

Exit Select

Case Else

Exit Select

End Select

End If

End Sub

5785ch22.qxd 3/31/06 11:22 AM Page 695

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+696

At this point, you should be able to run your application and validate that an outline appears
around each image that has been clicked (and that no outline is present when you click outside the
bounds of said images).

Hit Testing Nonrectangular Images
Now, what if you wish to perform a hit test in a nonrectangular region, rather than a simple square?
Assume you updated your application to render an oddball geometric shape that will also sport an
outline when clicked (see Figure 22-21).

This geometric image was rendered on the Form using the FillPath() method of the Graphics
type. This method takes an instance of a GraphicsPath object, which encapsulates a series of connected
lines, curves, and strings. Adding new items to a GraphicsPath instance is achieved using a number
of related Add methods, as described in Table 22-9.

Table 22-9. Add-Centric Methods of the GraphicsPath Class

Methods Meaning in Life

AddArc() Appends an elliptical arc to the current figure

AddBezier() Adds a cubic Bezier curve (or set of Bezier curves) to the current figure
AddBeziers()

AddClosedCurve() Adds a closed curve to the current figure

AddCurve() Adds a curve to the current figure

AddEllipse() Adds an ellipse to the current figure

AddLine() Appends a line segment (or a set of lines) to the current figure
AddLines()

Figure 22-21. Hit-testing polygons

5785ch22.qxd 3/31/06 11:22 AM Page 696

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 697

Methods Meaning in Life

AddPath() Appends the specified GraphicsPath to the current figure

AddPie() Adds the outline of a pie shape to the current figure

AddPolygon() Adds a polygon to the current figure

AddRectangle() Adds one rectangle (or more) to the current figure
AddRectangles()

AddString() Adds a text string to the current figure

Assuming you have imported the System.Drawing.Drawing2D namespace, add a new GraphicsPath
member variable to your Form-derived class. In the Form’s constructor, build the set of items that
represent your path as follows:

Imports System.Drawing.Drawing2D

Public Class MainForm

...

Private myPath As GraphicsPath = New GraphicsPath()

Sub New()

...

' Create an interesting path.

myPath.StartFigure()

myPath.AddLine(New Point(150, 10), New Point(120, 150))

myPath.AddArc(200, 200, 100, 100, 0, 90)

Dim point1 As Point = New Point(250, 250)

Dim point2 As Point = New Point(350, 275)

Dim point3 As Point = New Point(350, 325)

Dim point4 As Point = New Point(250, 350)

Dim points As Point() = {point1, point2, point3, point4}

myPath.AddCurve(points)

myPath.CloseFigure()

End Sub

...

End Class

Notice the calls to StartFigure() and CloseFigure(). When you call StartFigure(), you are
able to insert a new item into the current path you are building. A call to CloseFigure() closes the
current figure and begins a new figure (if you require one). Also know that if the figure contains
a sequence of connected lines and curves (as in the case of the myPath instance), the loop is closed
by connecting a line from the end point to the starting point. First, add an additional name to the
ImageClicked enumeration named StrangePath:

Enum ClickedImage

ImageA

ImageB

ImageC

StrangePath

End Enum

Next, update your existing MouseDown event handler to test for the presence of the cursor’s (x, y)
position within the bounds of the GraphicsPath. Like a Region type, this can be discovered using the
IsVisible() member:

5785ch22.qxd 3/31/06 11:22 AM Page 697

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+698

Private Sub MainForm_MouseDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseDown

' Get (x, y) of mouse click.

Dim mousePt As Point = New Point(e.X, e.Y)

If imageRects(0).Contains(mousePt) Then

isImageClicked = True

imageClicked = ClickedImage.ImageA

Me.Text = "You clicked image A"

ElseIf imageRects(1).Contains(mousePt) Then

isImageClicked = True

imageClicked = ClickedImage.ImageB

Me.Text = "You clicked image B"

ElseIf imageRects(2).Contains(mousePt) Then

isImageClicked = True

imageClicked = ClickedImage.ImageC

Me.Text = "You clicked image C"

ElseIf myPath.IsVisible(mousePt) Then

isImageClicked = True

imageClicked = ClickedImage.StrangePath

Me.Text = "You clicked the strange shape..."

Else

' Not in any shape, set defaults.

isImageClicked = False

Me.Text = "Hit Testing Images"

End If

' Redraw the client area.

Invalidate()

End Sub

Finally, update the Paint handler as follows:

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

...

' Draw the graphics path.

g.FillPath(Brushes.Sienna, myPath)

' Draw outline (if clicked)

If isImageClicked = True Then

Dim outline As Pen = New Pen(Color.Red, 5)

Select Case imageClicked

...

Case ClickedImage.StrangePath

g.DrawPath(outline, myPath)

Exit Select

Case Else

Exit Select

End Select

End If

End Sub

■Source Code The HitTestingImages project is included under the Chapter 22 subdirectory.

5785ch22.qxd 3/31/06 11:22 AM Page 698

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 699

Understanding the .NET Resource Format
Up to this point in the chapter, each application that made use of external resources (such as
bitmap files) demanded that the image files be within the client’s application directory. Given this,
you loaded your *.bmp files using an absolute name:

' Fill the images with bitmaps.

bMapImageA = New Bitmap("imageA.bmp")

bMapImageB = New Bitmap("imageB.bmp")

bMapImageC = New Bitmap("imageC.bmp")

This logic, of course, demands that the application directory does indeed contain three files
named imageA.bmp, imageB.bmp, and imageC.bmp; otherwise, you will receive a runtime exception.

As you may recall from Chapter 13, an assembly is a collection of types and optional resources.
Given this, your final task of the chapter is to learn how to bundle external resources (such as image
files and strings) into the assembly itself. In this way, your .NET binary is truly self-contained. At the
lowest level, bundling external resources into a .NET assembly involves the following steps:

1. Create a *.resx file that establishes name/value pairs for each resource in your application
via XML data representation.

2. Use the resgen.exe command-line utility to convert your XML-based *.resx file into
a binary equivalent (a *.resources file).

3. Using the /resource flag of the VB 2005 compiler, embed the binary *.resources file into
your assembly.

As you might suspect, these steps are automated when using Visual Studio 2005. You’ll examine
how this IDE can assist you in just a moment. For the time being, let’s check out how to generate and
embed .NET resources at the command line.

The System.Resources Namespace
The key to understanding the .NET resource format is to know the types defined within the
System.Resources namespace. This set of types provides the programmatic means to read and write
*.resx (XML-based) and *.resources (binary) files, as well as obtain resources embedded in a given
assembly. Table 22-10 provides a rundown of the core types.

Table 22-10. Members of the System.Resources Namespace

Members Meaning in Life

ResourceReader These types allow you to read from and write to binary *.resources files.
ResourceWriter

ResXResourceReader These types allow you to read from and write to XML-based *.resx files.
ResXResourceWriter

ResourceManager This type allows you to programmatically obtain embedded resources from
a given assembly.

Programmatically Creating a *.resx File
As mentioned, a *.resx file is a block of XML data that assigns name/value pairs for each resource
in your application. The ResXResourceWriter class provides a set of members that allow you to create
the *.resx file, add binary and string-based resources, and commit them to storage. To illustrate,
let’s create a simple application (ResXWriter) that will generate a *.resx file containing an entry for
the happyDude.bmp file (first seen in the DraggingImages example) and a single string resource. The
GUI consists of a single Button type as shown in Figure 22-22.

5785ch22.qxd 3/31/06 11:22 AM Page 699

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+700

The Click event handler for the Button adds the happyDude.bmp and string resource to the
*.resx file, which is saved on the local C drive:

Imports System.Resources

Public Class MainForm

Private Sub btnGenResX_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGenResX.Click

' Make an resx writer & specify the file to write to.

Dim w As ResXResourceWriter = New ResXResourceWriter("C:\ResXForm.resx")

' Add happy dude & string.

Dim bMap As Bitmap = New Bitmap("happyDude.bmp")

w.AddResource("happyDude", bMap)

w.AddResource("welcomeString", "Hello new resource format!")

' Commit it.

w.Generate()

w.Close()

End Sub

End Class

The member of interest is ResXResourceWriter.AddResource(). This method has been overloaded
a few times to allow you to insert binary data (as you did with the happyDude.bmp image), as well as
textual data (as you have done for your test string). Notice that each version takes two parameters: the
name of a given resource in the *.resx file and the data itself. The Generate() method commits
the information to file. At this point, you have an XML description of the image and string resources.
To verify, open the new ResXForm.resx file using a text editor (see Figure 22-23).

Figure 22-22. The ResX application

Figure 22-23. *.resx expressed as XML

5785ch22.qxd 3/31/06 11:22 AM Page 700

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 701

Building the *.resources File
Now that you have a *.resx file, you can make use of the resgen.exe utility to produce the binary
equivalent. To do so, open a Visual Studio 2005 command prompt, navigate to your C drive, and
issue the following command:

resgen resxform.resx resxform.resources

You can now open the new *.resources file using Visual Studio 2005 and view the binary format,
as shown in Figure 22-24.

Binding the *.resources File into a .NET Assembly
At this point, you are able to embed the *.resources file into a .NET assembly using the /resources
command-line argument of the VB 2005 compiler. As you would hope, Visual Studio 2005 will auto-
mate this process; however, for the sake of illustration, assume you have copied all the necessary
*.vb files to the folder containing your *.resources file. The following command set could then be
used to embed the binary data directly into the assembly:

vbc /resource:resxform.resources *.vb

Working with ResourceWriters
The previous example made use of the ResXResourceWriter types to generate an XML file that con-
tains name/value pairs for each application resource. The resulting *.resx file was then run through
the resgen.exe utility. Finally, you saw how you could manually embed the *.resources file into the
assembly using the /resource flag of the VB 2005 compiler. The truth of the matter is that you do not
need to build a *.resx file (although having an XML representation of your resources can come in
handy and is easily readable). If you do not require a *.resx file, you can make use of the ResourceWriter
type to directly create a binary *.resources file:

Private Sub GenerateResourceFile()

' Make a new *.resources file.

Dim rw As ResourceWriter

rw = New ResourceWriter("C:\myResources.resources")

Figure 22-24. The binary *.resources file

5785ch22.qxd 3/31/06 11:22 AM Page 701

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+702

' Add 1 image and 1 string.

rw.AddResource("happyDude", New Bitmap("happyDude.bmp"))

rw.AddResource("welcomeString", "Hello new resource format!")

rw.Generate()

rw.Close()

End Sub

At this point, the *.resources file can be bundled into an assembly using the /resources option:

vbc /resource:myresources.resources *.vb

■Source Code The ResXWriter project is included under the Chapter 22 subdirectory.

Generating Resources using Visual Studio 2005
Although it is possible to work with *.resx/*.resources files manually at the command line, the
good news is that Visual Studio 2005 automates the creation and embedding of your project’s
resources. To illustrate, create a new Windows Forms application named MyResourcesWinApp.
Next, place a PictureBox component onto your main Form using the Toolbox, and assign its Image
property to the happyDude.bmp image used earlier in this chapter. Now, if you open Solution Explorer
(and select the Show All Files button), you will notice that each Form in your application has an
associated *.resx file in place automatically, as shown in Figure 22-25.

Figure 22-25. The autogenerated *.resx files of Visual Studio 2005

This *.resx file will be maintained automatically while you naturally add resources (such as an
image in a PictureBox widget) using the visual designers. Now, despite what you may be thinking,
you should not manually update this file to specify your custom resources, as Visual Studio 2005
regenerates this file with each compilation. To be sure, you will do well if you allow the IDE to manage
a Form’s *.resx file on your behalf.

When you want to maintain a custom set of resources that are not directly mapped to a given Form,
simply insert a new *.resx file (named MyResources.resx in this example) using the Project ➤ Add
New Item menu item (see Figure 22-26).

5785ch22.qxd 3/31/06 11:22 AM Page 702

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 703

If you open your new *.resx file, a friendly GUI editor appears that allows you to insert string
data, image files, sound clips, and other resources. The leftmost drop-down menu item allows you
to select the type of resource you wish to add. First, add a new string resource named WelcomeString
that is set to a message of your liking, as shown in Figure 22-27.

Figure 22-26. Inserting a new *.resx file

Figure 22-27. Inserting new string resources with the *.resx editor

Next, add the happyDude.bmp image file by selecting Images from the leftmost drop-down, choos-
ing the Add Existing File option, as shown in Figure 22-28, and navigating to the happyDude.bmp file.

5785ch22.qxd 3/31/06 11:22 AM Page 703

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+704

At this point, you will find that the *.bmp file has been copied into your application directory. If
you select the happyDude icon from the *.resx editor, you can now specify that this image should
be embedded directly into the assembly (rather than linked as an external stand-alone file) by adjusting
the Persistence property, as you see in Figure 22-29.

Furthermore, Solution Explorer now has a new folder named Resources that contains each item
to be embedded into the assembly. As you would guess, if you open a given resource, Visual Studio
2005 launches an associated editor. In any case, if you were to now compile your application, the
string and image data will be embedded within your assembly.

Programmatically Reading Resources
Now that you understand the process of embedding resources into your assembly (using vbc.exe or
Visual Studio 2005), you’ll need to learn how to programmatically read them for use in your program
using the ResourceManager type. To illustrate, add a new Button and an additional PictureBox widget
on your Form type, as shown in Figure 22-30.

Figure 22-28. Inserting new *.bmp resources with the *.resx editor

Figure 22-29. Embedding specified resources

5785ch22.qxd 3/31/06 11:22 AM Page 704

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+ 705

Next, handle the Button’s Click event. Update the event handler with the following code:

Imports System.Resources

Imports System.Reflection

Public Class MainForm

Private Sub btnLoadResources_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnLoadResources.Click

' Make a resource manager.

Dim rm As ResourceManager = _

New ResourceManager("MyResourcesWinApp.MyResources", _

Assembly.GetExecutingAssembly())

' Get the embedded string (case sensitive!)

MessageBox.Show(rm.GetString("WelcomeString"))

' Get the embedded bitmap (case sensitive!)

myPictureBox.Image = CType(rm.GetObject("HappyDude"), Bitmap)

' Clean up.

rm.ReleaseAllResources()

End Sub

End Class

Notice that the first constructor argument to the ResourceManager is the fully qualified name of
your *.resx file (minus the file extension). The second parameter is a reference to the assembly that
contains the embedded resource (which is the current assembly in this case). Once you have created
the ResourceManager, you can call GetString() or GetObject() to extract the embedded data. If you
were to run the application and click the button, you would find that the string data is displayed in
the MessageBox and the image data has been extracted from the assembly and placed into the
PictureBox.

Figure 22-30. The updated UI

5785ch22.qxd 3/31/06 11:22 AM Page 705

CHAPTER 22 ■ RENDERING GRAPHICAL DATA WITH GDI+706

■Source Code The MyResourcesWinApp project is included under the Chapter 22 subdirectory.

Well, that wraps up our examination of GDI+ and the System.Drawing namespaces. If you are
interested in exploring GDI+ further (including printing support), be sure to check out GDI+
Programming in C# and VB .NET by Nick Symmonds (Apress, 2002).

Summary
GDI+ is the name given to a number of related .NET namespaces, each of which is used to render
graphic images to a Control-derived type. The bulk of this chapter was spent examining how to
work with core GDI+ object types such as colors, fonts, graphics images, pens, and brushes in con-
junction with the almighty Graphics type. Along the way, you examined some GDI+-centric details
such as hit testing and how to drag and drop images.

This chapter wrapped up by examining the new .NET resource format. As shown, a *.resx

denotes resources using a set of name/value pairs describes as XML. This file can be fed into the
resgen.exe utility, resulting in a binary format (*.resources) that can then be embedded into
a related assembly. Finally, the ResourceManager type provides a simple way to programmatically
retrieve embedded resources at runtime.

5785ch22.qxd 3/31/06 11:22 AM Page 706

C H A P T E R 2 3

■ ■ ■

Programming with Windows Forms
Controls

This chapter is concerned with providing a road map of the controls defined in the
System.Windows.Forms namespace. Chapter 21 already gave you a chance to work with some
controls mounted onto a main Form such as MenuStrip, ToolStrip, and StatusStrip. In this chapter,
however, you will examine various types that tend to exist within the boundaries of a Form’s client
area (e.g., Button, MaskedTextBox, WebBrowser, MonthCalendar, TreeView, and the like). Once you
look at the core UI widgets, you will then cover the process of building custom Windows Forms
controls that integrate into the Visual Studio 2005 IDE.

The chapter then investigates the process of building custom dialog boxes and the role of form
inheritance, which allows you to build hierarchies of related Form types. The chapter wraps up with
a discussion of how to establish the docking and anchoring behaviors for your family of GUI types,
and the role of the FlowControlPanel and TableControlPanel types supplied by .NET 2.0.

The World of Windows Forms Controls
The System.Windows.Forms namespace contains a number of types that represent common GUI
widgets typically used to allow you to respond to user input in a Windows Forms application. Many
of the controls you will work with on a day-to-day basis (such as Button, TextBox, and Label) are quite
intuitive to work with. Other, more exotic controls and components (such as TreeView, ErrorProvider,
and TabControl) require a bit more explanation.

As you learned in Chapter 21, the System.Windows.Forms.Control type is the base class for all
derived widgets. Recall that Control provides the ability to process mouse and keyboard events,
establish the physical dimensions and position of the widget using various properties (Height, Width,
Left, Right, Location, etc.), manipulate background and foreground colors, establish the active
font/cursor, and so forth. As well, the Control base type defines members that control a widget’s
anchoring and docking behaviors (explained at the conclusion of this chapter).

As you read through this chapter, remember that the widgets you examine here gain a good deal
of their functionality from the Control base class. Thus, we’ll focus (more or less) on the unique
members of a given widget. Do understand that this chapter does not attempt to fully describe each
and every member of each and every control (that is a task for the .NET Framework 2.0 SDK docu-
mentation). Rest assured, though, that once you complete this chapter, you will have no problem
understanding the widgets I have not directly described.

■Note Windows Forms provide a number of controls that allow you to display relational data (DataGridView,
BindingSource, etc.). Some of these data-centric controls are examined in Chapter 24 during our discussion of ADO.NET.

707

5785ch23.qxd 3/31/06 11:26 AM Page 707

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS708

Adding Controls to Forms by Hand
Regardless of which type of control you choose to place on a Form, you will follow an identical set of
steps to do so. First of all, you must define member variables that represent the controls themselves.
Next, inside the Form’s constructor (or within a helper method called by the constructor), you’ll con-
figure the look and feel of each control using the exposed properties, methods, and events. Finally
(and most important), once you’ve set the control to its initial state, you must add it into the Form’s
internal controls collection using the inherited Controls property. If you forget this final step, your
widgets will not be visible at runtime.

To illustrate the process of adding controls to a Form, let’s begin by building a Form type
“wizard-free” using your text editor of choice and the VB 2005 command-line compiler. Create
a new VB 2005 file named ControlsByHand.vb and code a new MainWindow class as follows:

Imports System.Windows.Forms

Imports System.Drawing

Class MainWindow

Inherits Form

' Form widget member variables.

Private firstNameBox As TextBox = New TextBox()

Private WithEvents btnShowControls As Button = New Button()

Public Sub New()

' Configure Form.

Me.Text = "Simple Controls"

Me.Width = 300

Me.Height = 200

CenterToScreen()

' Add a new textbox to the Form.

firstNameBox.Text = "Hello"

firstNameBox.Size = New Size(150, 50)

firstNameBox.Location = New Point(10, 10)

Me.Controls.Add(firstNameBox)

' Add a new button to the Form.

btnShowControls.Text = "Click Me"

btnShowControls.Size = New Size(90, 30)

btnShowControls.Location = New Point(10, 70)

btnShowControls.BackColor = Color.DodgerBlue

Me.Controls.Add(btnShowControls)

End Sub

' Handle Button's Click event.

Private Sub btnShowControls_Clicked(ByVal sender As Object, _

ByVal e As EventArgs) Handles btnShowControls.Click

' Call ToString() on each control in the

' Form's Controls collection

Dim ctrlInfo As String = ""

For Each c As Control In Me.Controls

ctrlInfo += String.Format("Control: {0}" & Chr(10), c.ToString())

Next

MessageBox.Show(ctrlInfo, "Controls on Form")

End Sub

End Class

5785ch23.qxd 3/31/06 11:26 AM Page 708

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 709

Figure 23-1. Interacting with the Form’s controls collection

Now, add a second class to the ControlsByHand.vb file that implements the program’s Main()
method:

Class Program

Public Shared Sub Main()

Application.Run(New MainWindow())

End Sub

End Class

At this point, compile your VB 2005 file at the command line using the following command:

vbc/target:winexe *.vb

When you run your program and click the Form’s button, you will find a message box that lists
each item on the Form, as you see in Figure 23-1.

The Control.ControlCollection Type
While the process of adding a new widget to a Form is quite simple, I’d like to discuss the Controls prop-
erty in a bit more detail. This property returns a reference to a nested class named ControlCollection
defined within the Control class. The nested ControlCollection type maintains an entry for each widget
placed on the Form. You can obtain a reference to this collection anytime you wish to “walk the list” of
child widgets:

' Get access to the nested ControlCollection for this Form.

Dim coll As Control.ControlCollection = Me.Controls

Once you have a reference to this collection, you can manipulate its contents using the mem-
bers shown in Table 23-1.

Table 23-1. ControlCollection Members

Member Meaning in Life

Add() Used to insert a new Control-derived type (or array of types) in the collection
AddRange()

Clear() Removes all entries in the collection

Count Returns the number of items in the collection

GetEnumerator() Returns the IEnumerator interface for this collection

Remove() Used to remove a control from the collection
RemoveAt()

Given that a Form maintains a collection of its controls, it is very simple under Windows Forms
to dynamically create, remove, or otherwise manipulate visual elements. For example, assume you

5785ch23.qxd 3/31/06 11:26 AM Page 709

Figure 23-2. Alignment and spacing hints

wish to disable all Button types on a given Form (or some such similar operation, such as change
the background color of all TextBoxes). To do so, you can leverage the VB 2005 TypeOf/Is construct
to determine who’s who and change the state of the widgets accordingly:

Private Sub DisableAllButtons()

For Each c As Control In Me.Controls

If TypeOf c Is Button Then

CType(c, Button).Enabled = False

End If

Next

End Sub

■Source Code The ControlsByHand project is included under the Chapter 23 subdirectory.

Adding Controls to Forms Using Visual Studio 2005
Now that you understand the process of adding controls to a Form by hand, let’s see how Visual
Studio 2005 can automate the process. Create a new Windows Application project for testing pur-
poses named whatever you choose. Similar to the process of designing with menu, toolbar, or status
bar controls, when you drop a control from the Toolbox onto the Forms designer, the IDE responds
by automatically adding the correct member variable to the *.Designer.vb file. As well, when you
design the look and feel of the widget using the IDE’s Properties window, the related code changes
are added to the InitializeComponent() member function (also located within the *.Designer.vb

file).

■Note Recall that the Properties window also allows you to handle events for a given control when you click the
lightning bolt icon. Simply select the widget from the drop-down list and type in the name of the method to be
called for the events you are interested in responding to (or just double-click the event to generate a default event
handler name, which always takes the form NameOfControl_NameOfEvent()).

Assume you have added a TextBox and Button type to the Forms designer. Notice that when
you reposition a control on the designer, the Visual Studio 2005 IDE provides visual hints regarding
the spacing and alignment of the current widget (see Figure 23-2).

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS710

5785ch23.qxd 3/31/06 11:26 AM Page 710

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 711

Once you have placed the Button and TextBox on the designer, examine the code generated in
the InitializeComponent() method. Here you will find that the types have been allocated and
inserted into the Form’s ControlCollection automatically (in addition to any settings you may have
made using the Properties window):

Private Sub InitializeComponent()

Me.Button1 = New System.Windows.Forms.Button

Me.TextBox1 = New System.Windows.Forms.TextBox

...

Me.Controls.Add(Me.TextBox1)

Me.Controls.Add(Me.Button1)

End Sub

As you can see, a tool such as Visual Studio 2005 simply saves you some typing time (and helps
you avoid hand cramps). Although InitializeComponent() is maintained on your behalf, do under-
stand that you are free to configure a given control directly in code anywhere you see necessary
(constructors, event handlers, helper functions, etc.). The role of InitializeComponent() is simply
to establish the initial state of your UI elements. If you want to keep your life simple, I suggest allow-
ing Visual Studio 2005 to maintain InitializeComponent() on your behalf, given that the designers
may ignore or overwrite edits you make within this method.

Working with the Basic Controls
The System.Windows.Forms namespace defines numerous “basic controls” that are commonplace to
any windowing framework (buttons, labels, text boxes, check boxes, etc.). Although I would guess
you are familiar with the basic operations of such types, let’s examine some of the more interesting
aspects of the following basic UI elements:

• Label, TextBox, and MaskedTextBox

• Button

• CheckBox, RadioButton, and GroupBox

• CheckedListBox, ListBox, and ComboBox

Once you have become comfortable with these basic Control-derived types, we will turn our
attention to more exotic widgets such as MonthCalendar, TabControl, TrackBar, WebBrowser, and so
forth.

Fun with Labels
The Label control is capable of holding read-only information (text or image based) that explains
the role of the other controls to help the user along. Assume you have created a new Visual Studio 2005
Windows Forms project named LabelsAndTextBoxes. Define a method called CreateLabelControl in
your Form-derived type that creates and configures a Label type, and then adds it to the Form’s controls
collection:

Private Sub CreateLabelControl()

' Create and configure a Label.

Dim lblInstructions As Label = New Label()

lblInstructions.Name = "lblInstructions"

lblInstructions.Text = "Please enter values in all the text boxes"

lblInstructions.Font = New Font("Times New Roman", 10, FontStyle.Bold)

lblInstructions.AutoSize = True

5785ch23.qxd 3/31/06 11:26 AM Page 711

Figure 23-3. Assigning mnemonics to Label controls

lblInstructions.Location = New System.Drawing.Point(16, 13)

lblInstructions.Size = New System.Drawing.Size(240, 16)

' Add to Form's controls collection.

Me.Controls.Add(lblInstructions)

End Sub

If you were to call this helper function within your Form’s constructor, you would find your
prompt displayed in the upper portion of the main window:

Sub New()

' This call is required by the Windows Form Designer.

InitializeComponent()

' Add any initialization after the InitializeComponent() call.

CreateLabelControl()

' Inherited method to center form on the screen.

CenterToScreen()

End Sub

Unlike most other widgets, Label controls cannot receive focus via a Tab keypress. However,
under .NET 2.0, it is now possible to create mnemonic keys for any Label by setting the UseMnemonic
property to True (which happens to be the default setting). Once you have done so, a Label’s Text prop-
erty can define a shortcut key (via the ampersand symbol, &), which is used to tab to the control
that follows it in the tab order.

■Note You’ll learn more about configuring tab order later in this chapter, but for the time being, understand that
a control’s tab order is established via the TabIndex property. By default, a control’s TabIndex is set based on the
order in which it was added to the Forms designer. Thus, if you add a Label followed by a TextBox, the Label is
set to TabIndex 0 while the TextBox is set to TabIndex 1.

To illustrate, let’s now leverage the Forms designer to build a UI containing a set of three Labels
and three TextBoxes (be sure to leave room on the upper part of the Form to display the Label dynami-
cally created in the CreateLabelControl() method). In Figure 23-3, note that each label has an
underlined letter that was identified using the & character in the value assigned to the Text property
(as you might know, &-specified characters allow the user to activate an item using the
Alt+<assigned key> keystroke).

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS712

5785ch23.qxd 3/31/06 11:26 AM Page 712

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 713

If you now run your project, you will be able to tab between each TextBox using the Alt+P,
Alt+M, or Alt+U keystrokes.

Fun with TextBoxes
Unlike the Label control, the TextBox control is typically not read-only (although it could be if you
set the ReadOnly property to True), and it is commonly used to allow the user to enter textual data
for processing. The TextBox type can be configured to hold a single line or multiple lines of text, it
can be configured with a password character (such as an asterisk, *), and it may support scroll bars
in the case of multiline text boxes. In addition to the behavior inherited by its base classes, TextBox
defines a few particular properties of interest (see Table 23-2).

Table 23-2. TextBox Properties

Property Meaning in Life

AcceptsReturn Gets or sets a value indicating whether pressing Enter in a multiline TextBox
control creates a new line of text in the control or activates the “default
button” for the Form

CharacterCasing Gets or sets whether the TextBox control modifies the case of characters as
they are typed

PasswordChar Gets or sets the character used to mask characters in a single-line TextBox
control used to enter passwords

ScrollBars Gets or sets which scroll bars should appear in a multiline TextBox control

TextAlign Gets or sets how text is aligned in a TextBox control, using the
HorizontalAlignment enumeration

To illustrate some aspects of the TextBox, let’s configure the three TextBox controls on the cur-
rent Form. The first TextBox (named txtPassword) should be configured as a password text box,
meaning the characters typed into the TextBox should not be directly visible, but are instead
masked with a predefined password character via the PasswordChar property.

■Note Be aware that the PasswordChar property does not encrypt the password data! It simply prevents the
password data from being viewed within the TextBox.

The second TextBox (named txtMultiline) will be a multiline text area that has been config-
ured to accept Enter key processing and displays a vertical scroll bar when the text entered exceeds
the space of the TextBox area. Finally, the third TextBox (named txtUppercase) will be configured to
translate the entered character data into uppercase.

Configure each TextBox accordingly via the Properties window and use the following (partial)
InitializeComponent() implementation as a guide:

Private Sub InitializeComponent()

...

' txtPassword

'

Me.txtPassword.PasswordChar = '*'

...

' txtMultiline

'

Me.txtMultiline.Multiline = True

5785ch23.qxd 3/31/06 11:26 AM Page 713

Me.txtMultiline.ScrollBars = System.Windows.Forms.ScrollBars.Vertical

...

' txtUpperCase

'

Me.txtUpperCase.CharacterCasing = _

System.Windows.Forms.CharacterCasing.Upper

...

End Sub

Notice that the ScrollBars property is assigned a value from the ScrollBars enumeration,
which defines the following values:

Enum ScrollBars

Both

Horizontal

None

Vertical

End Enum

The CharacterCasing property works in conjunction with the CharacterCasing enum, which is
defined like so:

Enum CharacterCasing

Normal

Upper

Lower

End Enum

Now assume you have placed a Button on the Form (named btnDisplayData) and added an
event handler for the Button’s Click event. The implementation of this method simply displays the
value in each TextBox within a message box:

Private Sub btnDisplayData_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnDisplayData.Click

' Get data from all the text boxes.

Dim textBoxData As String = ""

textBoxData &= String.Format("MultiLine: {0}" & Chr(10), txtMultiline.Text)

textBoxData &= String.Format("Password: {0}" & Chr(10), _

txtPassword.Text)

textBoxData &= String.Format("Uppercase: {0}" & Chr(10), txtUpperCase.Text)

' Display all the data.

MessageBox.Show(textBoxData, "Here is the data in your TextBoxes")

End Sub

Figure 23-4 shows one possible input session (note that you need to hold down the Alt key to
see the label mnemonics).

Figure 23-5 shows the result of clicking the Button type.

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS714

5785ch23.qxd 3/31/06 11:26 AM Page 714

Figure 23-4. The many faces of the TextBox type

Figure 23-5. Extracting values from TextBox types

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 715

Fun with MaskedTextBoxes
As of .NET 2.0, we now have a masked text box that allows us to specify a valid sequence of charac-
ters that will be accepted by the input area (Social Security number, phone number with area code,
zip code, or whatnot). The mask to test against (termed a mask expression) is established using spe-
cific tokens embedded into a string literal. Once you have created a mask expression, this value is
assigned to the Mask property. Table 23-3 documents some (but not all) valid masking tokens.

Table 23-3. Mask Tokens of MaskedTextBox

Mask Token Meaning in Life

0 Represents a mandatory digit with the value 0–9

9 Represents an optional digit or a space

L Required letter (in uppercase or lowercase), A–Z

? Optional letter (in uppercase or lowercase), A–Z

, Represents a thousands separator placeholder

: Represents a time placeholder

/ Represents a date placeholder

$ Represents a currency symbol

5785ch23.qxd 3/31/06 11:26 AM Page 715

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS716

■Note The characters understood by the MaskedTextBox do not directly map to the syntax of regular expressions.
Although .NET provides namespaces to work with proper regular expressions (System.Text.RegularExpressions
and System.Web.RegularExpressions), the MaskedTextBox uses syntax based on the legacy MaskedEdit VB6
COM control.

In addition to the Mask property, the MaskedTextBox has additional members that determine
how this control should respond if the user enters incorrect data. For example, BeepOnError will
cause the control to (obviously) issue a beep when the mask is not honored, and it prevents the ille-
gal character from being processed.

To illustrate the use of the MaskedTextBox, add an additional Label and MaskedTextBox to your
current Form. Although you are free to build a mask pattern directly in code, the Properties window
provides an ellipsis button for the Mask property that will launch a dialog box with a number of pre-
defined masks, as shown in Figure 23-6.

Find a masking pattern (such as Phone number), enable the BeepOnError property, and take
your program out for another test run. You should find that you are unable to enter any alphabetic
characters (in the case of the Phone number mask).

As you would expect, the MaskedTextBox will send out various events during its lifetime, one of
which is MaskInputRejected, which is fired when the end user enters erroneous input. Handle this
event using the Properties window and notice that the second incoming argument of the generated
event handler is of type MaskInputRejectedEventArgs. This type has a property named RejectionHint
that contains a brief description of the input error. For testing purposes, simply display the error on
the Form’s caption.

Private Sub txtMaskedTextBox_MaskInputRejected(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.MaskInputRejectedEventArgs) _

Handles txtMaskedTextBox.MaskInputRejected

Me.Text = String.Format("Error: {0}", e.RejectionHint)

End Sub

Figure 23-6. Predefined mask values of the Mask property

5785ch23.qxd 3/31/06 11:26 AM Page 716

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 717

■Source Code The LabelsAndTextBoxes project is included under the Chapter 23 subdirectory.

Fun with Buttons
The role of the System.Windows.Forms.Button type is to provide a vehicle for user confirmation,
typically in response to a mouse click or keypress. The Button class immediately derives from an
abstract type named ButtonBase, which provides a number of key behaviors for all derived types
(such as CheckBox, RadioButton, and Button). Table 23-4 describes some (but by no means all) of the
core properties of ButtonBase.

Table 23-4. ButtonBase Properties

Property Meaning in Life

FlatStyle Gets or sets the flat style appearance of the Button control, using members of the
FlatStyle enumeration.

Image Configures which (optional) image is displayed somewhere within the bounds of
a ButtonBase-derived type. Recall that the Control class also defines a BackgroundImage
property, which is used to render an image over the entire surface area of a widget.

ImageAlign Sets the alignment of the image on the Button control, using the ContentAlignment
enumeration.

TextAlign Gets or sets the alignment of the text on the Button control, using the ContentAlignment
enumeration.

The TextAlign property of ButtonBase makes it extremely simple to position text at just about
any location. To set the position of your Button’s caption, use the ContentAlignment enumeration
(defined in the System.Drawing namespace). As you will see, this same enumeration can be used to
place an optional image on the Button type:

Enum ContentAlignment

BottomCenter

BottomLeft

BottomRight

MiddleCenter

MiddleLeft

MiddleRight

TopCenter

TopLeft

TopRight

End Enum

FlatStyle is another property of interest. It is used to control the general look and feel of the
Button control, and it can be assigned any value from the FlatStyle enumeration (defined in the
System.Windows.Forms namespace):

Enum FlatStyle

Flat

Popup

Standard

System

End Enum

5785ch23.qxd 3/31/06 11:26 AM Page 717

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS718

To illustrate working with the Button type, create a new Windows Forms application named
Buttons. On the Forms designer, add three Button types (named btnFlat, btnPopup, and
btnStandard) and set each Button’s FlatStyle property value accordingly (e.g., FlatStyle.Flat,
FlatStyle.Popup, or FlatStyle.Standard). As well, set the Text value of each Button to a fitting value
and handle the Click event for the btnStandard Button. As you will see in just a moment, when the
user clicks this button, you will reposition the button’s text using the TextAlign property.

Now, add a final fourth Button (named btnImage) that supports a background image (set via the
BackgroundImage property) and a small bull’s-eye icon (set via the Image property), which will also be
dynamically relocated when the btnStandard Button is clicked. Feel free to use any image files to
assign to the BackgroundImage and Image properties, but do note that the downloadable source code
contains the images used here.

Given that the designer has authored all the necessary UI prep code within InitializeComponent(),
the remaining code makes use of the ContentAlignment enumeration to reposition the location of the
text on btnStandard and the icon on btnImage. In the following code, notice that you are calling
the shared Enum.GetValues() method to obtain the list of names from the ContentAlignment
enumeration:

Public Class MainForm

' Hold the current text alignment

Private currAlignment As ContentAlignment = ContentAlignment.MiddleCenter

Private currEnumPos As Integer = 0

Private Sub btnStandard_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnStandard.Click

' Get all possible values

' of the ContentAlignment enum.

Dim values As Array = [Enum].GetValues(currAlignment.GetType())

' Bump the current position in the enum.

' & check for wrap around.

currEnumPos += 1

If currEnumPos >= values.Length Then

currEnumPos = 0

End If

' Bump the current enum value.

currAlignment = CType([Enum].Parse(currAlignment.GetType(), _

values.GetValue(currEnumPos).ToString()), ContentAlignment)

btnStandard.TextAlign = currAlignment

' Paint enum value name on button.

btnStandard.Text = currAlignment.ToString()

' Now assign the location of the icon on

' btnImage...

btnImage.ImageAlign = currAlignment

End Sub

End Class

Now run your program. As you click the middle button, you will see its text is set to the current
name and position of the currAlignment member variable. As well, the icon within the btnImage is
repositioned based on the same value. Figure 23-7 shows the output.

5785ch23.qxd 3/31/06 11:26 AM Page 718

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 719

Figure 23-7. The many faces of the Button type

■Source Code The Buttons project is included under the Chapter 23 directory.

Fun with CheckBoxes, RadioButtons, and GroupBoxes
The System.Windows.Forms namespace defines a number of other types that extend ButtonBase,
specifically CheckBox (which can support up to three possible states) and RadioButton (which can be
either selected or not selected). Like the Button, these types also receive most of their functionality
from the Control base class. However, each class defines some additional functionality. First, con-
sider the core properties of the CheckBox widget described in Table 23-5.

Table 23-5. CheckBox Properties

Property Meaning in Life

Appearance Configures the appearance of a CheckBox control, using the Appearance enumeration.

AutoCheck Gets or sets a value indicating if the Checked or CheckState value and the CheckBox’s
appearance are automatically changed when it is clicked.

CheckAlign Gets or sets the horizontal and vertical alignment of a CheckBox on a CheckBox
control, using the ContentAlignment enumeration (much like the Button type).

Checked Returns a Boolean value representing the state of the CheckBox (checked or
unchecked). If the ThreeState property is set to true, the Checked property returns
true for either checked or indeterminately checked values.

CheckState Gets or sets a value indicating whether the CheckBox is checked, using a CheckState
enumeration rather than a Boolean value.

ThreeState Configures whether the CheckBox supports three states of selection (as specified
by the CheckState enumeration) rather than two.

5785ch23.qxd 3/31/06 11:26 AM Page 719

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS720

The RadioButton type requires little comment, given that it is (more or less) just a slightly
redesigned CheckBox. In fact, the members of a RadioButton are almost identical to those of the
CheckBox type. The only notable difference is the CheckedChanged event, which (not surprisingly) is
fired when the Checked value changes. Also, the RadioButton type does not support the ThreeState
property, as a RadioButton must be on or off.

Typically, multiple RadioButton objects are logically and physically grouped together to function
as a whole. For example, if you have a set of four RadioButton types representing the color choice of
a given automobile, you may wish to ensure that only one of the four types can be checked at a time.
Rather than writing code programmatically to do so, simply use the GroupBox control to ensure all
RadioButtons are mutually exclusive.

To illustrate working with the CheckBox, RadioButton, and GroupBox types, let’s create a new
Windows Forms application named CarConfig, which you will extend over the next few sections.
The main Form allows users to enter (and confirm) information about a new vehicle they intend to
purchase. The order summary is displayed in a Label type once the Confirm Order button has been
clicked. Figure 23-8 shows the initial UI.

Assuming you have leveraged the Forms designer to build your UI, you will now have numer-
ous member variables representing each GUI widget. As well, the InitializeComponent() method
will be updated accordingly. The first point of interest is the construction of the CheckBox type. As
with any Control-derived type, once the look and feel has been established, it must be inserted into
the Form’s internal collection of controls:

Private Sub InitializeComponent()

...

' checkFloorMats

'

Me.checkFloorMats.Name = "checkFloorMats"

Me.checkFloorMats.TabIndex = 0

Me.checkFloorMats.Text = "Extra Floor Mats"

...

Me.Controls.Add(Me.checkFloorMats)

End Sub

Next, you have the configuration of the GroupBox and its contained RadioButton types. When
you wish to place a control under the ownership of a GroupBox, you want to add each item to the
GroupBox’s Controls collection (in the same way you add widgets to the Form’s Controls collection).

Figure 23-8. The initial UI of the CarConfig Form

5785ch23.qxd 3/31/06 11:26 AM Page 720

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 721

Private Sub InitializeComponent()

...

' radioRed

'

Me.radioRed.Name = "radioRed"

Me.radioRed.Size = new System.Drawing.Size(64, 23)

Me.radioRed.Text = "Red"

'

' groupBoxColor

'

...

Me.groupBoxColor.Controls.Add(Me.radioRed)

Me.groupBoxColor.Text = "Exterior Color"

...

End Sub

To make things a bit more interesting, use the Properties window to handle the Enter and Leave
events sent by the GroupBox object. Understand, of course, that you do not need to capture the Enter
or Leave event for a GroupBox. However, to illustrate, the event handlers update the caption text of
the GroupBox as shown here:

Public Class MainForm

Private Sub groupBoxColor_Enter(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles groupBoxColor.Enter

groupBoxColor.Text = "Exterior Color: You are in the group..."

End Sub

Private Sub groupBoxColor_Leave(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles groupBoxColor.Leave

groupBoxColor.Text = "Exterior Color: Thanks for visiting the group..."

End Sub

End Class

The final GUI widgets on this Form (the Label and Button types) will also be configured and
inserted in the Form’s Controls collection via InitializeComponent(). The Label is used to display
the order confirmation, which is formatted in the Click event handler of the order Button, as
shown here:

Private Sub btnOrder_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnOrder.Click

' Build a string to display information.

Dim orderInfo As String = ""

If checkFloorMats.Checked Then

orderInfo += "You want floor mats." & Chr(10) & ""

End If

If radioRed.Checked Then

orderInfo += "You want a red exterior." & Chr(10) & ""

End If

If radioYellow.Checked Then

orderInfo += "You want a yellow exterior." & Chr(10) & ""

End If

If radioGreen.Checked Then

orderInfo += "You want a green exterior." & Chr(10) & ""

End If

If radioPink.Checked Then

orderInfo += "Why do you want a PINK exterior?" & Chr(10) & ""

End If

5785ch23.qxd 3/31/06 11:26 AM Page 721

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS722

' Send this string to the Label.

infoLabel.Text = orderInfo

End Sub

Notice that both the CheckBox and RadioButton support the Checked property, which allows you
to investigate the state of the widget. Finally, recall that if you have configured a tri-state CheckBox,
you will need to check the state of the widget using the CheckState property.

Fun with CheckedListBoxes
Now that you have explored the basic Button-centric widgets, let’s move on to the set of list selection–
centric types, specifically CheckedListBox, ListBox, and ComboBox. The CheckedListBox widget allows
you to group related CheckBox options in a scrollable list control. Assume you have added such
a control to your CarConfig Form that allows users to configure a number of options regarding an
automobile’s sound system (see Figure 23-9).

To insert new items in a CheckedListBox, call Add() for each item, or use the AddRange() method
and send in an array of objects (strings, to be exact) that represent the full set of checkable items.
Be aware that you can fill any of the list types at design time using the Items property located on the
Properties window (just click the ellipsis button and type the string values). Here is the relevant code
within InitializeComponent() that configures the CheckedListBox:

Private Sub InitializeComponent()

...

' checkedBoxRadioOptions

'

Me.checkedBoxRadioOptions.Items.AddRange(New Object() _

{"Front Speakers", "8-Track Tape Player", _

"CD Player", "Cassette Player", "Rear Speakers", "Ultra Base Thumper"})

...

Figure 23-9. The CheckedListBox type

5785ch23.qxd 3/31/06 11:26 AM Page 722

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 723

Me.Controls.Add (Me.checkedBoxRadioOptions)

End Sub

Now update the logic behind the Click event for the Confirm Order button. Ask the CheckedListBox
which of its items are currently selected and add them to the orderInfo string. Here are the relevant
code updates:

Private Sub btnOrder_Click(ByVal sender As Object, _

ByVal e As EventArgs) Handles btnOrder.Click

' Build a string to display information.

Dim orderInfo As String = ""

...

orderInfo += "--------------------------------" & Chr(10) & ""

For i As Integer = 0 To checkedBoxRadioOptions.Items.Count - 1

' For each item in the CheckedListBox:

' Is the current item checked?

If checkedBoxRadioOptions.GetItemChecked(i) Then

' Get text of checked item and append to orderinfo string.

orderInfo &= "Radio Item: "

orderInfo &= checkedBoxRadioOptions.Items(i).ToString()

orderInfo &= "" & Chr(10) & ""

End If

...

Next

End Sub

The final note regarding the CheckedListBox type is that it supports the use of multiple columns
through the inherited MultiColumn property. Thus, if you make the following update:

checkedBoxRadioOptions.MultiColumn = True

you see the multicolumn CheckedListBox shown in Figure 23-10.

Figure 23-10. Multicolumn CheckedListBox type

5785ch23.qxd 3/31/06 11:26 AM Page 723

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS724

Fun with ListBoxes
As mentioned earlier, the CheckedListBox type inherits most of its functionality from the ListBox type.
To illustrate using the ListBox type, let’s add another feature to the current CarConfig application: the
ability to select the make (BMW, Yugo, etc.) of the automobile. Figure 23-11 shows the desired UI.

As always, begin by creating a member variable to manipulate your type (in this case, a ListBox

type). Next, configure the look and feel using the following snapshot from InitializeComponent():

Private Sub InitializeComponent()

...

' carMakeList

'

Me.carMakeList.Items.AddRange(New Object() {"BMW", "Caravan", "Ford", _

"Grand Am", "Jeep", "Jetta", _

"Saab", "Viper", "Yugo"})

...

Me.Controls.Add (Me.carMakeList)

End Sub

The update to the btnOrder_Click() event handler is also simple:

Private Sub btnOrder_Click(ByVal sender As Object, _

ByVal e As EventArgs) Handles btnOrder.Click

' Build a string to display information.

Dim orderInfo As String = ""

...

' Get the currently selected item (not index of the item).

If carMakeList.SelectedItem IsNot Nothing Then

orderInfo += "Make: " + carMakeList.SelectedItem + "" & Chr(10) & ""

...

End If

End Sub

Figure 23-11. The ListBox type

5785ch23.qxd 3/31/06 11:26 AM Page 724

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 725

Fun with ComboBoxes
Like a ListBox, a ComboBox allows users to make a selection from a well-defined set of possibilities.
However, the ComboBox type is unique in that users can also insert additional items. Recall that
ComboBox derives from ListBox (which then derives from Control). To illustrate its use, add yet another
GUI widget to the CarConfig Form that allows a user to enter the name of a preferred salesperson. If
the salesperson in question is not on the list, the user can enter a custom name. One possible UI
update is shown in Figure 23-12 (feel free to add your own salesperson monikers).

This modification begins with configuring the ComboBox itself. As you can see here, the logic
looks identical to that for the ListBox:

Private Sub InitializeComponent()

...

' comboSalesPerson

'

Me.comboSalesPerson.Items.AddRange(New Object() _

{"Baby Ry-Ry", "Dan 'the Machine'", _

"Cowboy Dan", "Tom 'the Style' "})

...

Me.Controls.Add (Me.comboSalesPerson)

End Sub

The update to the btnOrder_Click() event handler is again simple, as shown here:

Private Sub btnOrder_Click(ByVal sender As Object, _

ByVal e As EventArgs) Handles btnOrder.Click

' Build a string to display information.

Dim orderInfo As String = ""

...

' Use the Text property to figure out the user's salesperson.

If comboSalesPerson.Text <> "" Then

orderInfo += "Sales Person: " + comboSalesPerson.Text & "" & Chr(10) & ""

Figure 23-12. The ComboBox type

5785ch23.qxd 3/31/06 11:26 AM Page 725

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS726

Else

orderInfo += "You did not select a sales person!" & "" & Chr(10) & ""

...

End If

End Sub

Configuring the Tab Order
Now that you have created a somewhat interesting Form, let’s formalize the issue of tab order. As
you may know, when a Form contains multiple GUI widgets, users expect to be able to shift focus
using the Tab key. Configuring the tab order for your set of controls requires that you understand
two key properties: TabStop and TabIndex.

The TabStop property can be set to true or false, based on whether or not you wish this GUI
item to be reachable using the Tab key. Assuming the TabStop property has been set to true for
a given widget, the TabOrder property is then set to establish its order of activation in the tabbing
sequence (which is zero based). Consider this example:

' Configure tabbing properties.

radioRed.TabIndex = 2

radioRed.TabStop = True

The Tab Order Wizard
The Visual Studio 2005 IDE supplies a Tab Order Wizard, which you access by choosing View ➤ Tab
Order (be aware that you will not find this menu option unless the Forms designer is active). Once
activated, your design-time Form displays the current TabIndex value for each widget. To change
these values, click each item in the order you choose (see Figure 23-13).

To exit the Tab Order Wizard, simply press the Esc key.

Figure 23-13. The Tab Order Wizard

5785ch23.qxd 3/31/06 11:26 AM Page 726

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 727

Setting the Form’s Default Input Button
Many user-input forms (especially dialog boxes) have a particular Button that will automatically
respond to the user pressing the Enter key. For the current Form, if you wish to ensure that when the
user presses the Enter key, the Click event handler for btnOrder is invoked, simply set the Form’s
AcceptButton property as follows:

' When the Enter key is pressed, it is as if

' the user clicked the btnOrder button.

Me.AcceptButton = btnOrder

■Note Some Forms require the ability to simulate clicking the Form’s Cancel button when the user presses the
Esc key. This can be done by assigning the CancelButton property to the Button object representing the Cancel
button.

Working with More Exotic Controls
At this point, you have seen how to work most of the basic Windows Forms controls (Labels,
TextBoxes, and the like). The next task is to examine some GUI widgets, which are a bit more high-
powered in their functionality. Thankfully, just because a control may seem “more exotic” does not
mean it is hard to work with, only that it requires a bit more elaboration from the outset. Over the
next several pages, we will examine the following GUI elements:

• MonthCalendar

• ToolTip

• TabControl

• TrackBar

• Panel

• The UpDown controls

• ErrorProvider

• TreeView

• WebBrower

To begin, let’s wrap up the CarConfig project by examining the MonthCalendar and ToolTip controls.

Fun with MonthCalendars
The System.Windows.Forms namespace provides an extremely useful widget, the MonthCalendar con-
trol, that allows the user to select a date (or range of dates) using a friendly UI. To showcase this new
control, update the existing CarConfig application to allow the user to enter in the new vehicle’s
delivery date. Figure 23-14 shows the updated (and slightly rearranged) Form.

5785ch23.qxd 3/31/06 11:26 AM Page 727

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS728

Although the MonthCalendar control offers a fair bit of functionality, it is very simple to program-
matically capture the range of dates selected by the user. The default behavior of this type is to always
select (and mark) today’s date automatically. To obtain the currently selected date programmatically,
you can update the Click event handler for the order Button, as shown here:

Private Sub btnOrder_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnOrder.Click

' Build a string to display information.

Dim orderInfo As String = ""

...

' Get ship date.

Dim d As DateTime = monthCalendar.SelectionStart

Dim dateStr As String = _

String.Format("{0}/{1}/{2} ", d.Month, d.Day, d.Year)

orderInfo &= "Car will be sent: " & dateStr

...

End Sub

Notice that you can ask the MonthCalendar control for the currently selected date by using the
SelectionStart property. This property returns a DateTime reference, which you store in a local
variable. Using a handful of properties of the DateTime type, you can extract the information you
need in a custom format.

At this point, I assume the user will specify exactly one day on which to deliver the new auto-
mobile. However, what if you want to allow the user to select a range of possible shipping dates? In
that case, all the user needs to do is drag the cursor across the range of possible shipping dates. You
already have seen that you can obtain the start of the selection using the SelectionStart property.
The end of the selection can be determined using the SelectionEnd property. Here is the code update:

Figure 23-14. The MonthCalendar type

5785ch23.qxd 3/31/06 11:26 AM Page 728

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 729

Private Sub btnOrder_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnOrder.Click

' Build a string to display information.

Dim orderInfo As String = ""

...

' Get ship date range....

Dim startD As DateTime = monthCalendar.SelectionStart

Dim endD As DateTime = monthCalendar.SelectionEnd

Dim dateStartStr As string = _

String.Format("{0}/{1}/{2} ", startD.Month, startD.Day, startD.Year)

Dim dateEndStr As string = _

String.Format("{0}/{1}/{2} ", endD.Month, endD.Day, endD.Year)

' The DateTime type supports overloaded operators!

If dateStartStr <> dateEndStr Then

orderInfo &= "Car will be sent between " & _

dateStartStr & " and" & Chr(10) & "" & dateEndStr

Else

orderInfo &= "Car will be sent on " & dateStartStr

' They picked a single date.

...

End If

End Sub

■Note The Windows Forms toolkit also provides the DateTimePicker control, which exposes a MonthCalendar

from a DropDown control.

Fun with ToolTips
As far as the CarConfig Form is concerned, we have one final point of interest. Most modern UIs
support tool tips. In the System.Windows.Forms namespace, the ToolTip type represents this func-
tionality. These widgets are simply small floating windows that display a helpful message when the
cursor hovers over a given item.

To illustrate, add a tool tip to the CarConfig’s Calendar type. Begin by dragging a new ToolTip
control from the Toolbox onto your Forms designer, and rename it to calendarTip. Using the Prop-
erties window, you are able to establish the overall look and feel of the ToolTip widget, for example:

Private Sub InitializeComponent()

...

' calendarTip

'

Me.calendarTip.IsBalloon = True

Me.calendarTip.ShowAlways = True

Me.calendarTip.ToolTipIcon = System.Windows.Forms.ToolTipIcon.Info

...

End Sub

To associate a ToolTip with a given control, select the control that should activate the ToolTip
and set the “ToolTip on controlName” property (see Figure 23-15).

5785ch23.qxd 3/31/06 11:26 AM Page 729

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS730

Figure 23-16. The ToolTip in action

At this point, the CarConfig project is complete. Figure 23-16 shows the ToolTip in action.

■Source Code The CarConfig project is included under the Chapter 23 directory.

Fun with TabControls
To illustrate the remaining “exotic” controls, you will build a new Form that maintains a TabControl.
As you may know, TabControls allow you to selectively hide or show pages of related GUI content
via clicking a given tab. To begin, create a new Windows Forms application named ExoticControls
and rename your initial Form to MainWindow.

Figure 23-15. Associating a ToolTip to a given widget

5785ch23.qxd 3/31/06 11:26 AM Page 730

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 731

As you are designing your TabControl, be aware that each page is represented by a TabPage

object, which is inserted into the TabControl’s internal collection of pages. Once the TabControl has
been configured, this object (like any other GUI widget within a Form) is inserted into the Form’s
Controls collection. Consider the following partial InitializeComponent() method:

Private Sub InitializeComponent()

...

'

'tabControlExoticControls

'

Me.tabControlExoticControls.Controls.Add(Me.pageTrackBars)

Me.tabControlExoticControls.Controls.Add(Me.pagePanels)

Me.tabControlExoticControls.Controls.Add(Me.pageUpDown)

Me.tabControlExoticControls.Controls.Add(Me.pageErrorProvider)

Me.tabControlExoticControls.Controls.Add(Me.pageTreeView)

Me.tabControlExoticControls.Controls.Add(Me.pageWebBrowser)

Me.tabControlExoticControls.Location = New System.Drawing.Point(11, 16)

Me.tabControlExoticControls.Name = "tabControlExoticControls"

Me.tabControlExoticControls.SelectedIndex = 0

Me.tabControlExoticControls.Size = New System.Drawing.Size(644, 367)

Me.tabControlExoticControls.TabIndex = 1

...

Me.Controls.Add(Me.tabControlExoticControls)

End Sub

Now that you have a basic Form supporting multiple tabs, you can build each page to illustrate
the remaining exotic controls. First up, let’s check out the role of the TrackBar.

■Note The TabControl widget supports Selected, Selecting, Deselected, and Deselecting events. These
can prove helpful when you need to dynamically generate the elements within a given page.

Figure 23-17. A multipage TabControl

Next, add a TabControl onto the Forms designer and, using the Properties window, open the
page editor via the TabPages collection (just click the ellipsis button on the Properties window).
A dialog configuration tool displays. Add a total of six pages, setting each page’s Text and Name prop-
erties based on the completed TabControl shown in Figure 23-17.

5785ch23.qxd 3/31/06 11:26 AM Page 731

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS732

Fun with TrackBars
The TrackBar control allows users to select from a range of values, using a scroll bar–like input
mechanism. When working with this type, you need to set the minimum and maximum range, the
minimum and maximum change increments, and the starting location of the slider’s thumb. Each
of these aspects can be set using the properties described in Table 23-6.

Table 23-6. TrackBar Properties

Properties Meaning in Life

LargeChange The number of ticks by which the TrackBar changes when an event considered
a large change occurs (e.g., clicking the mouse button while the cursor is on the
sliding range and using the Page Up or Page Down key).

Maximum Configure the upper and lower bounds of the TrackBar’s range.
Minimum

Orientation The orientation for this TrackBar. Valid values are from the Orientation
enumeration (i.e., horizontally or vertically).

SmallChange The number of ticks by which the TrackBar changes when an event considered
a small change occurs (e.g., using the arrow keys).

TickFrequency Indicates how many ticks are drawn. For a TrackBar with an upper limit of 200,
it is impractical to draw all 200 ticks on a control 2 inches long. If you set the
TickFrequency property to 5, the TrackBar draws 20 total ticks (each tick
represents 5 units).

TickStyle Indicates how the TrackBar control draws itself. This affects both where the
ticks are drawn in relation to the movable thumb and how the thumb itself is
drawn (using the TickStyle enumeration).

Value Gets or sets the current location of the TrackBar. Use this property to obtain the
numeric value contained by the TrackBar for use in your application.

To illustrate, you’ll update the first tab of your TabControl with three TrackBars, each of which
has an upper range of 255 and a lower range of 0. As the user slides each thumb, the application
intercepts the Scroll event and dynamically builds a new System.Drawing.Color type based on the
value of each slider. This Color type will be used to display the color within a PictureBox widget (named
colorBox) and the RGB values within a Label type (named lblCurrColor). Figure 23-18 shows the
(completed) first page in action.

Figure 23-18. The TrackBar page

5785ch23.qxd 3/31/06 11:26 AM Page 732

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 733

First, place three TrackBars onto the first tab using the Forms designer and rename your member vari-
ables with an appropriate value (redTrackBar, greenTrackBar, and blueTrackBar). Next, handle the
Scroll event for each of your TrackBar controls. Here is the relevant code within InitializeComponent()
for blueTrackBar (the remaining bars look almost identical):

Private Sub InitializeComponent()

...

'

'blueTrackBar

'

Me.blueTrackBar.Location = New System.Drawing.Point(132, 151)

Me.blueTrackBar.Maximum = 255

Me.blueTrackBar.Name = "blueTrackBar"

Me.blueTrackBar.Size = New System.Drawing.Size(310, 45)

Me.blueTrackBar.TabIndex = 18

Me.blueTrackBar.TickFrequency = 5

Me.blueTrackBar.TickStyle = System.Windows.Forms.TickStyle.TopLeft

...

End Sub

Note that the default minimum value of the TrackBar is 0 and thus does not need to be explicitly
set. Now, to handle the Scroll event handlers for each TrackBar, you make a call to a yet-to-be-written
helper function named UpdateColor():

Private Sub blueTrackBar_Scroll(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles blueTrackBar.Scroll

UpdateColor()

End Sub

UpdateColor() is responsible for two major tasks. First, you read the current value of each TrackBar
and use this data to build a new Color variable using Color.FromArgb(). Once you have the newly con-
figured color, update the PictureBox member variable (again, named colorBox) with the current
background color. Finally, UpdateColor() formats the thumb values in a string placed on the Label
(lblCurrColor), as shown here:

Private Sub UpdateColor()

' Get the new color based on track bars.

Dim c As Color = Color.FromArgb(redTrackBar.Value, _

greenTrackBar.Value, blueTrackBar.Value)

' Change the color in the PictureBox.

colorBox.BackColor = c

' Set color label.

lblCurrColor.Text = _

String.Format("Current color is: (R:{0}, G:{1}, B:{2})", _

redTrackBar.Value, greenTrackBar.Value, blueTrackBar.Value)

End Sub

The final detail is to set the initial values of each slider when the Form comes to life and render
the current color, within a custom default constructor:

Sub New()

' This call is required by the Windows Form Designer.

InitializeComponent()

CenterToScreen()

' Set initial position of each slider.

redTrackBar.Value = 100

greenTrackBar.Value = 255

blueTrackBar.Value = 0

5785ch23.qxd 3/31/06 11:26 AM Page 733

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS734

UpdateColor()

End Sub

Fun with Panels
As you saw earlier in this chapter, the GroupBox control can be used to logically bind a number of
controls (such as RadioButtons) to function as a collective. Closely related to the GroupBox is the
Panel control. Panels are also used to group related controls in a logical unit. One difference is that
the Panel type derives from the ScrollableControl class, thus it can support scroll bars, which is not
possible with a GroupBox.

Panels can also be used to conserve screen real estate. For example, if you have a group of con-
trols that takes up the entire bottom half of a Form, you can contain the group in a Panel that is half
the size and set the AutoScroll property to true. In this way, the user can use the scroll bar(s) to view
the full set of items. Furthermore, if a Panel’s BorderStyle property is set to None, you can use this
type to simply group a set of elements that can be easily shown or hidden from view in a manner
transparent to the end user.

To illustrate, let’s update the second page of the TabControl with two Button types (btnShowPanel
and btnHidePanel) and a single Panel that contains a pair of text boxes (txtNormalText and txtUpperText)
and an instructional Label. (Mind you, the widgets on the Panel are not terribly important for this
example.) Figure 23-19 shows the final GUI.

Figure 23-19. The TrackBar page

Using the Properties window, handle the TextChanged event for the first TextBox, and within the
generated event handler, place an uppercase version of the text entered within txtNormalText into
txtUpperText:

Private Sub txtNormalText_TextChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles txtNormalText.TextChanged

txtUpperText.Text = txtNormalText.Text.ToUpper()

End Sub

5785ch23.qxd 3/31/06 11:26 AM Page 734

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 735

Now, handle the Click event for each button. As you might suspect, you will simply hide or
show the Panel (and all of its contained UI elements):

Private Sub btnShowPanel_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnShowPanel.Click

panelTextBoxes.Visible = True

End Sub

Private Sub btnHidePanel_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnHidePanel.Click

panelTextBoxes.Visible = False

End Sub

If you now run your program and click either button, you will find that the Panel’s contents are
shown and hidden accordingly. While this example is hardly fascinating, I am sure you can see the
possibilities. For example, you may have a menu option (or security setting) that allows the user to
see a “simple” or “complex” view. Rather than having to manually set the Visible property to false
for multiple widgets, you can group them all within a Panel and set its Visible property accordingly.

Fun with the UpDown Controls
Windows Forms provide two widgets that function as spin controls (also known as up/down controls).
Like the ComboBox and ListBox types, these new items also allow the user to choose an item from a range
of possible selections. The difference is that when you’re using a DomainUpDown or NumericUpDown control,
the information is selected using a pair of small up and down arrows. For example, check out
Figure 23-20.

Figure 23-20. Working with UpDown types

Given your work with similar types, you should find working with the UpDown widgets painless.
The DomainUpDown widget allows the user to select from a set of string data. NumericUpDown allows
selections from a range of numeric data points. Each widget derives from a common direct base
class, UpDownBase. Table 23-7 describes some important properties of this class.

5785ch23.qxd 3/31/06 11:26 AM Page 735

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS736

Table 23-7. UpDownBase Properties

Property Meaning in Life

InterceptArrowKeys Gets or sets a value indicating whether the user can use the up arrow and
down arrow keys to select values

ReadOnly Gets or sets a value indicating whether the text can only be changed by the
use of the up and down arrows and not by typing in the control to locate
a given string

Text Gets or sets the current text displayed in the spin control

TextAlign Gets or sets the alignment of the text in the spin control

UpDownAlign Gets or sets the alignment of the up and down arrows on the spin control,
using the LeftRightAlignment enumeration

The DomainUpDown control adds a small set of properties (see Table 23-8) that allow you to con-
figure and manipulate the textual data in the widget.

Table 23-8. DomainUpDown Properties

Property Meaning in Life

Items Allows you to gain access to the set of items stored in the widget

SelectedIndex Returns the zero-based index of the currently selected item (a value of –1
indicates no selection)

SelectedItem Returns the selected item itself (not its index)

Sorted Configures whether or not the strings should be alphabetized

Wrap Controls whether the collection of items continues to the first or last item if the
user continues past the end of the list

The NumericUpDown type is just as simple (see Table 23-9).

Table 23-9. NumericUpDown Properties

Property Meaning in Life

DecimalPlaces Used to configure how the numerical data is to be displayed.
ThousandsSeparatorHexadecimal

Increment Sets the numerical value to increment the value in the control
when the up or down arrow is clicked. The default is to
advance the value by 1.

Minimum Set the upper and lower limits of the value in the control.
Maximum

Value Returns the current value in the control.

The Click event handler for this page’s Button type simply asks each type for its current value
and places it in the appropriate Label (lblCurrSel) as a formatted string, as shown here:

Private Sub btnGetSelections_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGetSelections.Click

' Get info from updowns...

lblCurrSel.Text = _

String.Format("String: {0}" & Chr(13) & "Number: {1}", _

domainUpDown.Text, numericUpDown.Value)

End Sub

5785ch23.qxd 3/31/06 11:26 AM Page 736

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 737

Fun with ErrorProviders
Most Windows Forms applications will need to validate user input in one way or another. This is
especially true with dialog boxes, as you should inform users if they make a processing error before
continuing forward. The ErrorProvider type can be used to provide a visual cue of user input error.
For example, assume you have a Form containing a TextBox and Button widget. If the user enters
more than five characters in the TextBox and the TextBox loses focus, the error information shown
in Figure 23-21 could be displayed.

Figure 23-21. The ErrorProvider in action

Here, you have detected that the user entered more than five characters and responded by
placing a small error icon (!) next to the TextBox object. When the user places his cursor over this
icon, the descriptive error text appears as a pop-up. Also, this ErrorProvider is configured to cause
the icon to blink a number of times to strengthen the visual cue (which, of course, you can’t see
without running the application).

If you wish to support this type of input validation, the first step is to understand the properties
of the Control class shown in Table 23-10.

Table 23-10. Control Properties

Property Meaning in Life

CausesValidation Indicates whether selecting this control causes validation on the controls
requiring validation

Validated Occurs when the control is finished performing its validation logic

Validating Occurs when the control is validating user input (e.g., when the control
loses focus)

Every GUI widget can set the CausesValidation property to true or false (the default is true).
If you set this bit of state data to true, the control forces the other controls on the Form to validate
themselves when it receives focus. Once a validating control has received focus, the Validating
and Validated events are fired for each control. In the scope of the Validating event handler, you

5785ch23.qxd 3/31/06 11:26 AM Page 737

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS738

configure a corresponding ErrorProvider. Optionally, the Validated event can be handled to determine
when the control has finished its validation cycle.

The ErrorProvider type has a small set of members. The most important item for your purposes
is the BlinkStyle property, which can be set to any of the values of the ErrorBlinkStyle enumeration
described in Table 23-11.

Table 23-11. ErrorBlinkStyle Properties

Property Meaning in Life

AlwaysBlink Causes the error icon to blink when the error is first displayed or when
a new error description string is set for the control and the error icon is
already displayed

BlinkIfDifferentError Causes the error icon to blink only if the error icon is already displayed,
but a new error string is set for the control

NeverBlink Indicates the error icon never blinks

To illustrate, update the UI of the Error Provider page with a Button, TextBox, and Label as
shown in Figure 23-21. Next, drag an ErrorProvider widget named tooManyCharactersErrorProvider

onto the designer. Here is the configuration code within InitializeComponent():

Private Sub InitializeComponent()

...

'

'tooManyCharactersErrorProvider

'

Me.tooManyCharactersErrorProvider.BlinkRate = 500

Me.tooManyCharactersErrorProvider.BlinkStyle = _

System.Windows.Forms.ErrorBlinkStyle.AlwaysBlink

Me.tooManyCharactersErrorProvider.ContainerControl = Me

...

End Sub

Once you have configured how the ErrorProvider looks and feels, you bind the error to the
TextBox within the scope of its Validating event handler, as shown here:

Private Sub txtInput_Validating(ByVal sender As System.Object, _

ByVal e As System.ComponentModel.CancelEventArgs) Handles txtInput.Validating

' Check if the text length is greater than 5.

If txtInput.Text.Length > 5 Then

tooManyCharactersErrorProvider.SetError(txtInput, "Can't be greater than 5!")

Else

tooManyCharactersErrorProvider.SetError(txtInput, "")

' Things are OK, don't show anything.

End If

End Sub

Fun with TreeViews
TreeView controls are very helpful types in that they allow you to visually display hierarchical data
(such as a directory structure or any other type of parent/child relationship). As you would expect,
the Window Forms TreeView control can be highly customized. If you wish, you can add custom
images, node colors, node subcontrols, and other visual enhancements. (I’ll assume interested
readers will consult the .NET Framework 2.0 SDK documentation for full details of this widget.)

5785ch23.qxd 3/31/06 11:26 AM Page 738

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 739

To illustrate the basic use of the TreeView, the next page of your TabControl will programmati-
cally construct a TreeView defining a series of topmost nodes that represent a set of Car types. Each
Car node has two subnodes that represent the selected car’s current speed and favorite radio sta-
tion. In Figure 23-22, notice that the selected item will be highlighted. Also note that if the selected
node has a parent (and/or sibling), its name is presented in a Label widget.

Figure 23-22. The TreeView in action

Assuming your Tree View UI is composed of a TreeView control (named treeViewCars) and
a Label (named lblNodeInfo), insert a new VB 2005 file into your ExoticControls project that models
a trivial Car that “has-a” Radio:

Class Car

Public Sub New(ByVal pn As String, ByVal cs As Integer)

petName = pn

currSp = cs

End Sub

' Public to keep the example simple.

Public petName As String

Public currSp As Integer

Public r As Radio

End Class

Class Radio

Public favoriteStation As Double

Public Sub New(ByVal station As Double)

favoriteStation = station

End Sub

End Class

The Form-derived type will maintain a generic List(Of T) (named listCars) of 100 Car types,
which will be populated in the default constructor of the MainForm type. As well, the constructor will
call a new subroutine named BuildCarTreeView() which takes no arguments. Here is the initial
update:

5785ch23.qxd 3/31/06 11:26 AM Page 739

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS740

Public Class MainForm

' Create a new generic List to hold the Car objects.

Private listCars As List(Of Car) = New List(Of Car)()

Sub New()

...

' Fill List(Of T) and build TreeView.

Dim offset As Double = 0.5

For x As Integer = 0 To 99

listCars.Add(New Car(String.Format("Car {0}", x), 10 + x))

offset += 0.5

listCars(x).r = New Radio(89 + offset)

Next

BuildCarTreeView()

End Sub

...

End Class

Note that the petName of each car is based on the current value of x (Car 0, Car 1, Car 2, etc.). As
well, the current speed is set by offsetting x by 10 (10 mph to 109 mph), while the favorite radio sta-
tion is established by offsetting the value 89.0 by 0.5 (90, 90.5, 91, 91.5, etc.).

Now that you have a list of Cars, you need to map these values to nodes of the TreeView control.
The most important aspect to understand when working with the TreeView widget is that each top-
most node and subnode is represented by a System.Windows.Forms.TreeNode object. As you would
expect, TreeNode has numerous members of interest that allow you to control the UI of a given node
(IsExpanded, IsVisible, BackColor, ForeColor, NodeFont). As well, the TreeNode provides members to
navigate to the next (or previous) TreeNode. Given this, consider the initial implementation of
BuildCarTreeView():

Sub BuildCarTreeView()

' Don't paint the TreeView until all the nodes have been created.

treeViewCars.BeginUpdate()

' Clear the TreeView of any current nodes.

treeViewCars.Nodes.Clear()

' Add a TreeNode for each Car object in the List(Of T).

For Each c As Car In listCars

' Add the current Car as a topmost node.

treeViewCars.Nodes.Add(New TreeNode(c.petName))

' Now, get the Car you just added to build

' two subnodes based on the speed and

' internal Radio object.

treeViewCars.Nodes(listCars.IndexOf(c)).Nodes.Add(New _

TreeNode(String.Format("Speed: {0}", c.currSp.ToString())))

treeViewCars.Nodes(listCars.IndexOf(c)).Nodes.Add(New _

TreeNode(String.Format("Favorite Station: {0} FM", _

c.r.favoriteStation)))

Next

' Now paint the TreeView.

treeViewCars.EndUpdate()

End Sub

5785ch23.qxd 3/31/06 11:26 AM Page 740

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 741

As you can see, the construction of the TreeView nodes are sandwiched between a call to
BeginUpdate() and EndUpdate(). This can be helpful when you are populating a massive TreeView
with a great many nodes, given that the widget will wait to display the items until you have finished
filling the Nodes collection. In this way, the end user does not see the gradual rendering of the TreeView’s
elements.

The topmost nodes are added to the TreeView simply by iterating over the generic List(Of T)
type and inserting a new TreeNode object into the TreeView’s Nodes collection. Once a topmost node
has been added, you pluck it from the Nodes collection (via the type indexer) to add its subnodes
(which are also represented by TreeNode objects). As you might guess, if you wish to add subnodes
to a current subnode, simply populate its internal collection of nodes via the Nodes property.

The next task for this page of the TabControl is to highlight the currently selected node (via the
BackColor property) and display the selected item (as well as any parent or subnodes) within the
Label widget. All of this can be accomplished by handling the TreeView control’s AfterSelect event
via the Properties window. This event fires after the user has selected a node via a mouse click or
keyboard navigation. Here is the complete implementation of the AfterSelect event handler:

Private Sub treeViewCars_AfterSelect(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.TreeViewEventArgs) _

Handles treeViewCars.AfterSelect

Dim nodeInfo As String = ""

' Build info about selected node.

nodeInfo = String.Format("You selected: {0}" & Chr(10) & "", e.Node.Text)

If e.Node.Parent IsNot Nothing Then

nodeInfo &= String.Format("Parent Node: {0}" & Chr(10) & "", _

e.Node.Parent.Text)

End If

If e.Node.NextNode IsNot Nothing Then

nodeInfo &= String.Format("Next Node: {0}", e.Node.NextNode.Text)

End If

' Show info and highlight node.

lblNodeInfo.Text = nodeInfo

e.Node.BackColor = Color.AliceBlue

End Sub

The incoming TreeViewEventArgs object contains a property named Node, which returns
a TreeNode object representing the current selection. From here, you are able to extract the node’s
name (via the Text property) as well as the parent and next node (via the Parent/NextNode properties).
Note you are explicitly checking the TreeNode objects returned from Parent/NextNode for Nothing, in
case the user has selected the topmost node or the very last subnode (if you did not do this, you might
trigger a NullReferenceException).

Adding Node Images
To wrap up our examination of the TreeView type, let’s spruce up the current example by defining
three new *.bmp images that will be assigned to each node type. To do so, add a new ImageList
component (named imageListTreeView) to the designer of the MainForm type. Next, add three new
bitmap images to your project via the Project ➤ Add New Item menu selection (or make use of the
supplied *.bmp files within this book’s downloadable code) that represent (or at least closely approx-
imate) a car, radio, and “speed” image. Do note that each of these *.bmp files is 16×16 pixels (set via
the Properties window) so that they have a decent appearance within the TreeView.

Once you have created these image files, select the ImageList on your designer and populate
the Images property with each of these three images, ordered as shown in Figure 23-23, to ensure
you can assign the correct ImageIndex (0, 1, or 2) to each node.

5785ch23.qxd 3/31/06 11:26 AM Page 741

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS742

As you recall from Chapter 22, when you incorporate resources (such as bitmaps) into your
Visual Studio 2005 solutions, the underlying *.resx file is automatically updated. Therefore, these
images will be embedded into your assembly with no extra work on your part. Now, using the Prop-
erties window, set the TreeView control’s ImageList property to your ImageList member variable
(see Figure 23-24).

Last but not least, update your BuildCarTreeView() method to specify the correct ImageIndex
(via constructor arguments) when creating each TreeNode:

Sub BuildCarTreeView()

...

' Add a root TreeNode for each Car object in the List(Of T).

For Each c As Car In listCars

' Add the current Car as a topmost node.

treeViewCars.Nodes.Add(New TreeNode(c.petName, 0, 0))

' Now, get the Car you just added to build

' two subnodes based on the speed and

' internal Radio object.

Figure 23-23. Populating the ImageList

Figure 23-24. Associating the ImageList to the TreeView

5785ch23.qxd 3/31/06 11:26 AM Page 742

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 743

treeViewCars.Nodes(listCars.IndexOf(c)).Nodes.Add(New _

TreeNode(String.Format("Speed: {0}", c.currSp.ToString()), 1, 1))

treeViewCars.Nodes(listCars.IndexOf(c)).Nodes.Add(New _

TreeNode(String.Format("Favorite Station: {0} FM", _

c.r.favoriteStation), 2, 2))

Next

...

End Sub

Notice that you are specifying each ImageIndex twice. The reason for this is that a given TreeNode
can have two unique images assigned to it: one to display when unselected and another to display
when selected. To keep things simple, you are specifying the same image for both possibilities. In
any case, Figure 23-25 shows the updated TreeView type.

Figure 23-25. The TreeView with images

Fun with WebBrowsers
The final page of this example will make use of the System.Windows.Forms.WebBrowser widget, which
is new to .NET 2.0. This widget is a highly configurable mini web browser that may be embedded
into any Form-derived type. As you would expect, this control defines a Url property that can be set
to any valid URI, formally represented by the System.Uri type. On the Web Browser page, add
a WebBrowser (configured to your liking), a TextBox (to enter the URL), and a Button (to perform
the HTTP request). Figure 23-26 shows the runtime behavior of assigning the Url property to http://

www.intertechtraining.com (yes, a shameless promotion for the company I am employed with).

5785ch23.qxd 3/31/06 11:26 AM Page 743

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS744

The only necessary code to instruct the WebBrowser to display the incoming HTTP request form
data is to assign the Url property, as shown in the following Button Click event handler:

Private Sub btnGO_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGO.Click

' Set URL based on value within page's TextBox control.

myWebBrowser.Url = New System.Uri(txtUrl.Text)

End Sub

That wraps up our examination of the widgets of the System.Windows.Forms namespace.
Although I have not commented on each possible UI element, you should have no problem investi-
gating the others further on your own time. Next up, let’s look at the process of building custom
Windows Forms controls.

■Source Code The ExoticControls project is included under the Chapter 23 directory.

Building Custom Windows Forms Controls
The .NET platform provides a very simple way for developers to build custom UI elements. Unlike
(the now legacy) ActiveX controls, Windows Forms controls do not require vast amounts of COM
infrastructure or complex memory management. Rather, .NET developers simply build a new class
deriving from UserControl and populate the type with any number of properties, methods, and
events. To demonstrate this process, during the next several pages you’ll construct a custom control
named CarControl using Visual Studio 2005.

Figure 23-26. The WebBrowser showing the homepage of Intertech Training

5785ch23.qxd 3/31/06 11:26 AM Page 744

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 745

■Note As with any .NET application, you are always free to build a custom Windows Forms control using nothing
more than the command-line compiler and a simple text editor. As you will see, custom controls reside in a *.dll

assembly; therefore, you may specify the /target:dll option of vbc.exe.

To begin, fire up Visual Studio 2005 and select a new Windows Control Library workspace named
CarControlLibrary (see Figure 23-27).

Figure 23-27. Creating a new Windows Control Library workspace

When you are finished, rename the initial VB 2005 class to CarControl. Like a Windows Application
project workspace, your custom control is composed of two partial classes. The *.Designer.vb file
contains all of the designer-generated code, and derives your type from System.Windows.Forms.
UserControl:

Partial Class CarControl

Inherits System.Windows.Forms.UserControl

...

End Class

Before we get too far along, let’s establish the big picture of where you are going with this example.
The CarControl type is responsible for animating through a series of bitmaps that will change based
on the internal state of the automobile. If the car’s current speed is safely under the car’s maximum
speed limit, the CarControl loops through three bitmap images that render an automobile driving
safely along. If the current speed is 10 mph below the maximum speed, the CarControl loops through
four images, with the fourth image showing the car slowly breaking down. Finally, if the car has sur-
passed its maximum speed, the CarControl loops over five images, where the fifth image represents
a doomed automobile.

5785ch23.qxd 3/31/06 11:26 AM Page 745

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS746

Creating the Images
Given the preceding design notes, the first order of business is to create a set of five *.bmp files for
use by the animation loop. If you wish to create custom images, begin by activating the Project ➤
Add New Item menu selection and insert five new bitmap files. If you would rather not showcase
your artistic abilities, feel free to use the images that accompany this sample application (keep in
mind that I in no way consider myself a graphic artist!). The first of these three images (Lemon1.bmp,
Lemon2.bmp, and Lemon3.bmp) illustrates a car navigating down the road in a safe and orderly fashion.
The final two bitmap images (AboutToBlow.bmp and EngineBlown.bmp) represent a car approaching
its maximum upper limit and its ultimate demise.

Building the Design-Time UI
The next step is to leverage the design-time editor for the CarControl type. As you can see, you are
presented with a Form-like designer that represents the client area of the control under construc-
tion. Using the Toolbox window, add an ImageList type to hold each of the bitmaps (named carImages),
a Timer type to control the animation cycle (named imageTimer), and a PictureBox to hold the cur-
rent image (named currentImage). Don’t worry about configuring the size or location of the PictureBox
type, as you will programmatically position this widget within the bounds of the CarControl. However,
be sure to set the SizeMode property of the PictureBox to StretchImage via the Properties window.
Figure 23-28 shows the story thus far.

Now, using the Properties window, configure the ImageList’s Images collection by adding
each bitmap to the list. Be aware that you will want to add these items sequentially (Lemon1.bmp,
Lemon2.bmp, Lemon3.bmp, AboutToBlow.bmp, and EngineBlown.bmp) to ensure a linear animation cycle.
Also be aware that the default width and height of *.bmp files inserted by Visual Studio 2005 is 47×47
pixels. Thus, the ImageSize of the ImageList should also be set to 47×47 (or else you will have with
some skewed rendering). Finally, configure the state of your Timer type such that the Interval property
is set to 200 and is initially disabled.

Figure 23-28. Creating the design-time GUI

5785ch23.qxd 3/31/06 11:26 AM Page 746

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 747

Implementing the Core CarControl
With this UI prep work out of the way, you can now turn to implementation of the type members. To
begin, create a new public enumeration named AnimFrames, which has a member representing each
item maintained by the ImageList. You will make use of this enumeration to determine the current
frame to render into the PictureBox:

' Helper enum for images.

Public Enum AnimFrames

Lemon1

Lemon2

Lemon3

AboutToBlow

EngineBlown

End Enum

The CarControl type maintains a good number of private data points to represent the animation
logic. Here is the rundown of each member:

Public Class CarControl

' State data.

Private currFrame As AnimFrames = AnimFrames.Lemon1

Private currMaxFrame As AnimFrames = AnimFrames.Lemon3

Private IsAnim As Boolean

Private currSp As Integer = 50

Private maxSp As Integer = 100

Private carPetName As String = "Lemon"

Private bottomRect As Rectangle = New Rectangle()

End Class

As you can see, you have data points that represent the current and maximum speed, the pet
name of the automobile, and two members of type AnimFrames. The currFrame variable is used to
specify which member of the ImageList is to be rendered. The currMaxFrame variable is used to mark
the current upper limit in the ImageList (recall that the CarControl loops through three to five
images based on the current speed). The IsAnim data point is used to determine whether the car is
currently in animation mode. Finally, you have a Rectangle member (bottomRect), which is used to
represent the bottom region of the CarControl type. Later, you render the pet name of the automo-
bile into this piece of control real estate.

To divide the CarControl into two rectangular regions, create a private helper function named
StretchBox(). The role of this member is to calculate the correct size of the bottomRect member and
to ensure that the PictureBox widget is stretched out over the upper two-thirds (or so) of the CarControl
type.

Private Sub StretchBox()

' Configure picture box.

currentImage.Top = 0

currentImage.Left = 0

currentImage.Height = Me.Height - 50

currentImage.Width = Me.Width

currentImage.Image = carImages.Images(CType(AnimFrames.Lemon1, Integer))

' Figure out size of bottom rect.

bottomRect.X = 0

bottomRect.Y = Me.Height - 50

bottomRect.Height = Me.Height - currentImage.Height

bottomRect.Width = Me.Width

End Sub

5785ch23.qxd 3/31/06 11:26 AM Page 747

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS748

Once you have carved out the dimensions of each rectangle, call StretchBox() from the default
constructor:

Sub New()

' This call is required by the Windows Form Designer.

InitializeComponent()

StretchBox()

End Sub

Defining the Custom Events
The CarControl type supports two events that are fired back to the host Form based on the current
speed of the automobile. The first event, AboutToBlow, is sent out when the CarControl’s speed
approaches the upper limit. BlewUp is sent to the container when the current speed is greater than
the allowed maximum. Each of these events send out a single System.String as its parameter. You’ll
fire these events in just a moment, but for the time being, add the following members to the public
sector of the CarControl:

' Car events.

Public Event AboutToBlow(ByVal msg As String)

Public Event BlewUp(ByVal msg As String)

Defining the Custom Properties
Like any class type, custom controls may define a set of properties to allow the outside world to
interact with the state of the widget. For your current purposes, you are interested only in defining
three properties. First, you have Animate. This property enables or disables the Timer type:

' Used to configure the internal Timer type.

Public Property Animate() As Boolean

Get

Return IsAnim

End Get

Set

IsAnim = value

imageTimer.Enabled = IsAnim

End Set

End Property

The PetName property is what you would expect and requires little comment. Do notice, how-
ever, that when the user sets the pet name, you make a call to Invalidate() to render the name of
the CarControl into the bottom rectangular area of the widget (you’ll do this step in just a moment):

' Configure pet name.

Public Property PetName() As String

Get

Return carPetName

End Get

Set

carPetName = value

Invalidate()

End Set

End Property

Next, you have the Speed property. In addition to simply modifying the currSp data member,
Speed is the entity that fires the AboutToBlow and BlewUp events based on the current speed of the
CarControl. Here is the complete logic:

5785ch23.qxd 3/31/06 11:26 AM Page 748

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 749

' Adjust currSp and currMaxFrame, and fire our events.

Public Property Speed() As Integer

Get

Return currSp

End Get

Set(ByVal value As Integer)

' Within safe speed?

If currSp <= maxSp Then

currSp = value

currMaxFrame = AnimFrames.Lemon3

End If

' About to explode?

If (maxSp - currSp) <= 10 Then

RaiseEvent AboutToBlow("Slow down dude!")

currMaxFrame = AnimFrames.AboutToBlow

End If

' Maxed out?

If currSp >= maxSp Then

currSp = maxSp

RaiseEvent BlewUp("Ug...you're toast...")

currMaxFrame = AnimFrames.EngineBlown

End If

End Set

End Property

As you can see, if the current speed is 10 mph below the maximum upper speed, you fire the
AboutToBlow event and adjust the upper frame limit to AnimFrames.AboutToBlow. If the user has
pushed the limits of your automobile, you fire the BlewUp event and set the upper frame limit to
AnimFrames.EngineBlown. If the speed is below the maximum speed, the upper frame limit remains
as AnimFrames.Lemon3.

Controlling the Animation
The next detail to attend to is ensuring that the Timer type advances the current frame to render
within the PictureBox. Again, recall that the number of frames to loop through depends on the cur-
rent speed of the automobile. You only want to bother adjusting the image in the PictureBox if the
Animate property has been set to true. Begin by handling the Tick event for the Timer type, and flesh
out the details as follows:

Private Sub imageTimer_Tick(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles imageTimer.Tick

If IsAnim Then

currentImage.Image = carImages.Images(CType(currFrame, Integer))

End If

' Bump frame.

Dim nextFrame As Integer = (CType(currFrame, Integer)) + 1

currFrame = CType(nextFrame, AnimFrames)

If currFrame > currMaxFrame Then

currFrame = AnimFrames.Lemon1

End If

End Sub

Rendering the Pet Name
Before you can take your control out for a spin, you have one final detail to attend to: rendering the
car’s moniker. To do this, handle the Paint event for your CarControl, and within the handler, render
the CarControl’s pet name into the bottom rectangular region of the client area:

5785ch23.qxd 3/31/06 11:26 AM Page 749

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS750

Private Sub CarControl_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) _

Handles MyBase.Paint

' Render the pet name on the bottom of the control.

Dim g As Graphics = e.Graphics

g.FillRectangle(Brushes.GreenYellow, bottomRect)

g.DrawString(PetName, _

New Font("Times New Roman", 15), _

Brushes.Black, bottomRect)

End Sub

At this point, your initial crack at the CarControl is complete. Go ahead and build your project.

Testing the CarControl Type
When you run or debug a Windows Control Library project within Visual Studio 2005, the UserControl
Test Container (a managed replacement for the now legacy ActiveX Control Test Container) automati-
cally loads your control into its designer test bed. As you can see from Figure 23-29, this tool allows
you to set each custom property (as well as all inherited properties) for testing purposes.

Figure 23-29. Testing the CarControl with the UserControl Test Container

5785ch23.qxd 3/31/06 11:26 AM Page 750

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 751

If you set the Animate property to true, you should see the CarControl cycle through the first
three *.bmp files. What you are unable to do with this testing utility, however, is handle events. To
test this aspect of your UI widget, you need to build a custom Form.

Building a Custom CarControl Form Host
As with all .NET types, you are now able to make use of your custom control from any language tar-
geting the CLR. Begin by closing down the current workspace and creating a new VB 2005 Windows
Application project named CarControlTestForm. To reference your custom controls from within the
Visual Studio 2005 IDE, right-click anywhere within the Toolbox window and select the Choose Item
menu selection. Using the Browse button on the .NET Framework Components tab, navigate to your
CarControlLibrary.dll library. Once you click OK, you will find a new icon on the Toolbox named, of
course, CarControl.

Next, place a new CarControl widget onto the Forms designer. Notice that the Animate, PetName,
and Speed properties are all exposed through the Properties window. Again, like the UserControl
Test Container, the control is “alive” at design time. Thus, if you set the Animate property to true, you
will find your car is animating on the Forms designer.

Once you have configured the initial state of your CarControl, add additional GUI widgets that
allow the user to increase and decrease the speed of the automobile, and view the string data sent
by the incoming events as well as the car’s current speed (Label controls will do nicely for these pur-
poses). One possible GUI design is shown in Figure 23-30.

Provided you have created a GUI identical to mine, the code within the Form-derived type is
quite straightforward (here I am assuming you have handled each of the CarControl events using
the Properties window):

Public Class MainForm

Sub New()

' This call is required by the Windows Form Designer.

InitializeComponent()

lblCurrentSpeed.Text = String.Format("Current Speed: {0}", _

Me.myCarControl.Speed.ToString())

numericUpDownCarSpeed.Value = myCarControl.Speed

Figure 23-30. The client-side GUI

5785ch23.qxd 3/31/06 11:26 AM Page 751

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS752

' Configure the car control.

myCarControl.Animate = True

myCarControl.PetName = "Zippy"

End Sub

Private Sub myCarControl_AboutToBlow(ByVal msg As System.String) _

Handles myCarControl.AboutToBlow

lblEventData.Text = String.Format("Event Data: {0}", msg)

End Sub

Private Sub myCarControl_BlewUp(ByVal msg As System.String) _

Handles myCarControl.BlewUp

lblEventData.Text = String.Format("Event Data: {0}", msg)

End Sub

Private Sub numericUpDownCarSpeed_ValueChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles numericUpDownCarSpeed.ValueChanged

' Assume the min of this NumericUpDown is 0 and max is 300.

Me.myCarControl.Speed = CType(numericUpDownCarSpeed.Value, Integer)

lblCurrentSpeed.Text = String.Format("Current Speed: {0}", _

Me.myCarControl.Speed.ToString())

End Sub

End Class

At this point, you are able to run your client application and interact with the CarControl. As you
can see, building and using custom controls is a fairly straightforward task, given what you already
know about OOP, the .NET type system, GDI+ (aka System.Drawing.dll), and Windows Forms.

While you now have enough information to continue exploring the process of .NET Windows
controls development, there is one additional programmatic aspect you have to contend with:
design-time functionality. Before I describe exactly what this boils down to, you’ll need to under-
stand the role of the System.ComponentModel namespace.

The Role of the System.ComponentModel
Namespace
The System.ComponentModel namespace defines a number of attributes (among other types) that
allow you to describe how your custom controls should behave at design time. For example, you
can opt to supply a textual description of each property, define a default event, or group related
properties or events into a custom category for display purposes within the Visual Studio 2005
Properties window. When you are interested in making the sorts of modifications previously men-
tioned, you will want to make use of the core attributes shown in Table 23-12.

Table 23-12. Select Members of System.ComponentModel

Attribute Applied To Meaning in Life

Browsable Properties and events Specifies whether a property or an event should
be displayed in the property browser. By default,
all custom properties and events can be browsed.

Category Properties and events Specifies the name of the category in which to
group a property or event.

Description Properties and events Defines a small block of text to be displayed at the
bottom of the property browser when the user
selects a property or event.

5785ch23.qxd 3/31/06 11:26 AM Page 752

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 753

Attribute Applied To Meaning in Life

DefaultProperty Properties Specifies the default property for the component.
This property is selected in the property browser
when a user selects the control.

DefaultValue Properties Defines a default value for a property that will be
applied when the control is “reset” within the IDE.

DefaultEvent Events Specifies the default event for the component.
When a programmer double-clicks the control,
stub code is automatically written for the
default event.

Enhancing the Design-Time Appearance of CarControl
To illustrate the use of some of these new attributes, close down the CarControlTestForm project
and reopen your CarControlLibrary project. Let’s create a custom category called “Car Configuration”
to which each property and event of the CarControl belongs. Also, let’s supply a friendly description
for each member and default value for each property. To do so, simply update each of the properties
and events of the CarControl type to support the <Category>, <DefaultValue>, and <Description>
attributes as required:

Public Class CarControl

...

' Car events.

<Category("Car Configuration"), _

Description("Sent when the car is approaching terminal speed.")> _

Public Event AboutToBlow(ByVal msg As String)

...

' Configure pet name.

<Category("Car Configuration"), _

Description("Name your car!"), _

DefaultValue("Lemon")> _

Public Property PetName() As String

...

End Property

...

End Class

Now, let me make a comment on what it means to assign a default value to a property, because
I can almost guarantee you it is not what you would (naturally) assume. Simply put, the <DefaultValue>
attribute does not ensure that the underlying value of the data point wrapped by a given property
will be automatically initialized to the default value. Thus, although you specified a default value of
“No Name” for the PetName property, the carPetName member variable will not be set to “Lemon”
unless you do so via the type’s constructor or via member initialization syntax (as you have already
done):

Private carPetName As String = "Lemon"

Rather, the <DefaultValue> attribute comes into play when the programmer “resets” the value
of a given property using the Properties window. To reset a property using Visual Studio 2005, select
the property of interest, right-click it, and select Reset. In Figure 23-31, notice that the <Description>
value appears in the bottom pane of the Properties window.

5785ch23.qxd 3/31/06 11:26 AM Page 753

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS754

The <Category> attribute will be realized only if the programmer selects the categorized view of
the Properties window (as opposed to the default alphabetical view) as shown in Figure 23-32.

Figure 23-31. Resetting a property to the default value

Figure 23-32. The custom category

Defining a Default Property and Default Event
In addition to describing and grouping like members into a common category, you may want to
configure your controls to support default behaviors. A given control may support a default property.
When you define the default property for a class using the <DefaultProperty> attribute as follows:

' Mark the default property for this control.

<DefaultProperty("Animate")> _

Public Class CarControl

...

End Class

you ensure that when the user selects this control at design time, the Animate property is automati-
cally highlighted in the Properties window. Likewise, if you configure your control to have a default
event as follows:

5785ch23.qxd 3/31/06 11:26 AM Page 754

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 755

' Mark the default event and property for this control.

<DefaultEvent("AboutToBlow"), _

DefaultProperty("Animate")> _

Public Class CarControl

...

End Class

you ensure that when the user double-clicks the widget at design time, stub code is automatically
written for the default event (which explains why when you double-click a Button, the Click event is
automatically handled; when you double-click a Form, the Load event is automatically handled; and
so on).

Specifying a Custom Toolbox Bitmap
A final design-time bell-and-whistle any polished custom control should sport is a custom toolbox
bitmap image. Currently, when the user selects the CarControl, the IDE will show this type within
the Toolbox using the default “gear” icon. If you wish to specify a custom image, your first step is to
insert a new *.bmp file into your project (CarControl.bmp) that is configured to be 16×16 pixels in
size (established via the Width and Height properties). Here, I simply reused the Car image used in
the TreeView example.

Once you have created the image as you see fit, use the <ToolboxBitmap> attribute (which is
applied at the type level) to assign this image to your control. The first argument to the attribute’s
constructor is the type information for the control itself, while the second argument is the friendly
name of the *.bmp file.

<DefaultEvent("AboutToBlow"), _

DefaultProperty("Animate"), _

ToolboxBitmap(GetType(CarControl), "CarControl")> _

Public Class CarControl

...

End Class

The final step is to make sure you set the Build Action value of the control’s icon image to
Embedded Resource (via the Properties window) to ensure the image data is embedded within your
assembly, as shown in Figure 23-33.

Figure 23-33. Embedding the image resource

5785ch23.qxd 3/31/06 11:26 AM Page 755

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS756

■Note The reason you are manually embedding the *.bmp file (in contrast to when you make use of the
ImageList type) is that you are not assigning the CarControl.bmp file to a UI element at design time, therefore
the underlying *.resx file will not automatically update.

Once you recompile your Windows Controls library, you can now load your previous
CarControlTestForm project. Right-click the current CarControl icon within the Toolbox and select
Delete. Next, re-add the CarControl widget to the Toolbox (by right-clicking and selecting Choose
Items). This time, you should see your custom toolbox bitmap (see Figure 23-34).

So, that wraps up our examination of the process of building custom Windows Forms controls.
I hope this example sparked your interest in custom control development. Here, I stuck with the
book’s automobile theme. Imagine, though, the usefulness of a custom control that will render a pie
chart based on the current inventory of a given table in a given database, or a control that extends
the functionality of standard UI widgets.

■Source Code The CarControlLibrary and CarControlTestForm projects are included under the Chapter 23
directory.

Building Custom Dialog Boxes
Now that you have a solid understanding of the core Windows Forms controls and the process of
building custom controls, let’s examine the construction of custom dialog boxes. The good news is
that everything you have already learned about Windows Forms applies directly to dialog box pro-
gramming. By and large, creating (and showing) a dialog box is no more difficult than inserting
a new Form into your current project.

There is no “Dialog” base class in the System.Windows.Forms namespace. Rather, a dialog box is
simply a stylized Form. For example, many dialog boxes are intended to be nonsizable, therefore
you will typically want to set the FormBorderStyle property to FormBorderStyle.FixedDialog. As
well, dialog boxes typically set the MinimizeBox and MaximizeBox properties to false. In this way, the

Figure 23-34. The custom toolbox bitmap

5785ch23.qxd 3/31/06 11:26 AM Page 756

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 757

dialog box is configured to be a fixed constant. Finally, if you set the ShowInTaskbar property to false,
you will prevent the Form from being visible in the Windows XP task bar.

To illustrate the process of working with dialog boxes, create a new Windows application named
SimpleModalDialog. The main Form type supports a MenuStrip that contains a File ➤ Exit menu item
as well as Tools ➤ Configure. Build this UI now, and handle the Click event for the Exit and Enter
Message menu items. As well, define a string member variable in your main Form type (named
userMessage), and render this data within a Paint event handler of your main Form. Here is the cur-
rent code within the MainForm.vb file:

Public Class MainForm

Private userMessage As String = "Default Message"

' We will implement this method in just a bit...

Private Sub configureToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles configureToolStripMenuItem.Click

End Sub

Private Sub exitToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles exitToolStripMenuItem.Click

Application.Exit()

End Sub

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

g.DrawString(userMessage, New Font("Times New Roman", 24), _

Brushes.DarkBlue, 50, 50)

End Sub

End Class

Now add a new Form to your current project using the Project ➤ Add Windows Form menu
item named UserMessageDialog.vb. Set the ShowInTaskbar, MinimizeBox, and MaximizeBox properties
to False. Next, build a UI that consists of two Button types (for the OK and Cancel buttons), a single
TextBox (to allow the user to enter her message), and an instructive Label. Figure 23-35 shows one
possible UI.

Figure 23-35. A custom dialog box

5785ch23.qxd 3/31/06 11:26 AM Page 757

Finally, expose the Text value of the Form’s TextBox using a custom property named Message:

Public Class UserMessageDialog

Public Property Message() As String

Get

Return txtUserInput.Text

End Get

Set(ByVal value As String)

txtUserInput.Text = value

End Set

End Property

End Class

The DialogResult Property
As a final UI task, select the OK button on the Forms designer and find the DialogResult property.
Assign DialogResult.OK to your OK button and DialogResult.Cancel to your Cancel button. Formally,
you can assign the DialogResult property to any value from the DialogResult enumeration:

Public Enum DialogResult

Abort

Cancel

Ignore

No

None

OK

Retry

Yes

End Enum

So, what exactly does it mean to assign a Button’s DialogResult value? This property can be
assigned to any Button type (as well as the Form itself) and allows the parent Form to determine
which button the end user selected. To illustrate, update the Tools ➤ Configure menu handler on
the MainForm type as follows:

Private Sub configureToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles configureToolStripMenuItem.Click

' Create an instance of UserMessageDialog.

Dim dlg As UserMessageDialog = New UserMessageDialog()

' Place the current message in the TextBox.

dlg.Message = userMessage

' If user clicked OK button, render his message.

If Windows.Forms.DialogResult.OK = dlg.ShowDialog() Then

userMessage = dlg.Message

Invalidate()

End If

' Have dialog clean up internal widgets now, rather

' than when the GC destroys the object.

dlg.Dispose()

End Sub

Here, you are showing the UserMessageDialog via a call to ShowDialog(). This method will
launch the Form as a modal dialog box which, as you may know, means the user is unable to acti-
vate the main form until she dismisses the dialog box. Once the user does dismiss the dialog box (by
clicking the OK or Cancel button), the Form is no longer visible, but it is still in memory. Therefore,

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS758

5785ch23.qxd 3/31/06 11:26 AM Page 758

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 759

you are able to ask the UserMessageDialog instance (dlg) for its new Message value in the event the
user has clicked the OK button. If so, you render the new message. If not, you do nothing.

■Note If you wish to show a modeless dialog box (which allows the user to navigate between the parent and
dialog Forms), call Show() rather than ShowDialog().

Understanding Form Inheritance
One very appealing aspect of building dialog boxes under Windows Forms is form inheritance. As
you are no doubt aware, inheritance is the pillar of OOP that allows one class to extend the func-
tionality of another class. Typically, when you speak of inheritance, you envision one non-GUI type
(e.g., SportsCar) deriving from another non-GUI type (e.g., Car). However, in the world of Windows
Forms, it is possible for one Form to derive from another Form and in the process inherit the base
class’s widgets and implementation.

Form-level inheritance is a very powerful technique, as it allows you to build a base Form that
provides core-level functionality for a family of related dialog boxes. If you were to bundle these
base-level Forms into a .NET assembly, other members of your team could extend these types using
the .NET language of their choice.

For the sake of illustration, assume you wish to subclass the UserMessageDialog to build a new
dialog box that also allows the user to specify whether the message should be rendered in italics. To
do so, active the Project ➤ Add Windows Form menu item, but this time add a new Inherited Form
named ItalicUserMessageDialog.vb, as shown in Figure 23-36.

Figure 23-36. A derived Form

Once you select Add, you will be shown the Inheritance Picker utility, which allows you to choose
from a Form in your current project or select a Form in an external assembly via the Browse button.
For this example, select your existing UserMessageDialog type.

5785ch23.qxd 3/31/06 11:26 AM Page 759

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS760

■Note If you cannot find your Form listed in the Inheritance Picker, you have not yet built your project! This dia-
log box is using reflection to find all Form derived types in your assembly, therefore if your build is out of date, the
metadata has not been refreshed.

If you look in your *.designer.vb file, you will find that your new Form type extends your current
dialog type rather than directly from Form. At this point, you are free to extend this derived Form
any way you choose. For test purposes, simply add a new CheckBox control (named checkBoxItalic)
that is exposed through a property named Italic:

Public Class ItalicUserMessageDialog

Public Property Italic() As Boolean

Get

Return checkBoxItalic.Checked

End Get

Set(ByVal value As Boolean)

checkBoxItalic.Checked = value

End Set

End Property

End Class

Now that you have subclassed the basic UserMessageDialog type, update your MainForm to
leverage the new Italic property. Simply add a new Boolean member variable that will be used to
build an italic Font object, and update your Tools ➤ Configure Click menu handler to make use of
ItalicUserMessageDialog. Here is the complete update:

Public Class MainForm

Private userMessage As String = "Default Message"

Private textIsItalic As Boolean = False

Private Sub configureToolStripMenuItem_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles configureToolStripMenuItem.Click

Dim dlg As ItalicUserMessageDialog = New ItalicUserMessageDialog()

dlg.Message = userMessage

dlg.Italic = textIsItalic

' If user clicked OK button, render his message.

If Windows.Forms.DialogResult.OK = dlg.ShowDialog() Then

userMessage = dlg.Message

textIsItalic = dlg.Italic

Invalidate()

End If

' Have dialog clean up internal widgets now, rather

' than when the GC destroys the object.

dlg.Dispose()

End Sub

...

Private Sub MainForm_Paint(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

Dim g As Graphics = e.Graphics

Dim f As Font = Nothing

If textIsItalic Then

f = New Font("Times New Roman", 24, FontStyle.Italic)

Else

f = New Font("Times New Roman", 24)

5785ch23.qxd 3/31/06 11:26 AM Page 760

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 761

End If

g.DrawString(userMessage, f, Brushes.DarkBlue, 50, 50)

End Sub

End Class

■Source Code The SimpleModalDialog application is included under the Chapter 23 directory.

Dynamically Positioning Windows Forms Controls
To wrap up this chapter, let’s examine a few techniques you can use to control the layout of widgets
on a Form. By and large, when you build a Form type, the assumption is that the controls are rendered
using absolute position, meaning that if you placed a Button on your Forms designer 10 pixels down
and 10 pixels over from the upper left portion of the Form, you expect the Button to stay put during
its lifetime.

On a related note, when you are creating a Form that contains UI controls, you need to decide
whether the Form should be resizable. Typically speaking, main windows are resizable, whereas dia-
log boxes are not. Recall that the resizability of a Form is controlled by the FormBorderStyle property,
which can be set to any value of the FormBorderStyle enum.

Public Enum FormBorderStyle

None

FixedSingle

Fixed3D

FixedDialog

Sizable

FixedToolWindow

SizableToolWindow

End Enum

Assume that you have allowed your Form to be resizable. This brings up some interesting
questions regarding the contained controls. For example, if the user makes the Form smaller than
the rectangle needed to display each control, should the controls adjust their size (and possibly
location) to morph correctly with the Form?

The Anchor Property
In Windows Forms, the Anchor property is used to define a relative fixed position in which the con-
trol should always be rendered. Every Control-derived type has an Anchor property, which can be
set to any of the values from the AnchorStyles enumeration described in Table 23-13.

Table 23-13. AnchorStylesValues

Value Meaning in Life

Bottom The control’s bottom edge is anchored to the bottom edge of its container.

Left The control’s left edge is anchored to the left edge of its container.

None The control is not anchored to any edges of its container.

Right The control’s right edge is anchored to the right edge of its container.

Top The control’s top edge is anchored to the top edge of its container.

5785ch23.qxd 3/31/06 11:26 AM Page 761

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS762

To anchor a widget at the upper-left corner, you are free to OR styles together (e.g.,
AnchorStyles.Top ➤ AnchorStyles.Left). Again, the idea behind the Anchor property is to config-
ure which edges of the control are anchored to the edges of its container. For example, if you
configure a Button with the following Anchor value:

' Anchor this widget relative to the right position.

myButton.Anchor = AnchorStyles.Right

you are ensured that as the Form is resized, this Button maintains its position relative to the right
side of the Form.

The Dock Property
Another aspect of Windows Forms programming is establishing the docking behavior of your controls.
If you so choose, you can set a widget’s Dock property to configure which side (or sides) of a Form
the widget should be attached to. The value you assign to a control’s Dock property is honored,
regardless of the Form’s current dimensions. Table 23-14 describes possible options.

Table 23-14. DockStyleValues

Value Meaning in Life

Bottom The control’s bottom edge is docked to the bottom of its containing control.

Fill All the control’s edges are docked to all the edges of its containing control and sized
appropriately.

Left The control’s left edge is docked to the left edge of its containing control.

None The control is not docked.

Right The control’s right edge is docked to the right edge of its containing control.

Top The control’s top edge is docked to the top of its containing control.

So, for example, if you want to ensure that a given widget is always docked on the left side of
a Form, you would write the following:

' This item is always located on the left of the Form, regardless

' of the Form's current size.

myButton.Dock = DockStyle.Left

To help you understand the implications of setting the Anchor and Dock properties, the down-
loadable code for this book contains a project named AnchoringControls. Once you build and run
this application, you can make use of the Form’s menu system to set various AnchorStyles and
DockStyle values and observe the change in behavior of the Button type (see Figure 23-37).

Be sure to resize the Form when changing the Anchor property to observe how the Button
responds.

■Source Code The AnchoringControls application is included under the Chapter 23 directory.

5785ch23.qxd 3/31/06 11:26 AM Page 762

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 763

Table and Flow Layout
.NET 2.0 offers an additional way to control the layout of a Form’s widgets using one of two layout
managers. The TableLayoutPanel and FlowLayoutPanel types can be docked into a Form’s client area
to arrange the internal controls. For example, assume you place a new FlowLayoutPanel widget onto
the Forms designer and configure it to dock fully within the parent Form, as you see in Figure 23-38.

Now, add ten new Button types within the FlowLayoutPanel using the Forms designer. If you
now run your application, you will notice that the ten Buttons automatically rearrange themselves
in a manner very close to standard HTML.

On the other hand, if you create a Form that contains a TableLayoutPanel, you are able to build
a UI that is partitioned into various “cells,” as shown in Figure 23-39.

Figure 23-37. The AnchoringControls application

Figure 23-38. Docking a FlowLayoutPanel into a Form

5785ch23.qxd 3/31/06 11:26 AM Page 763

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS764

If you select the Edit Rows and Columns inline menu option using the Forms designer (as shown
in Figure 23-39), you are able to control the overall format of the TableLayoutPanel on a cell-by-cell
basis (see Figure 23-40).

Truth be told, the only way to see the effects of the TableLayoutPanel type is to do so in a hands-on
manner. I’ll let interested readers handle that task.

Figure 23-39. The TableLayoutPanel type

Figure 23-40. Configuring the cells of the TableLayoutPanel type

5785ch23.qxd 3/31/06 11:26 AM Page 764

CHAPTER 23 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 765

Summary
This chapter rounded off your understanding of the Windows Forms namespace by examining the
programming of numerous GUI widgets, from the simple (e.g., Label) to the more exotic (e.g.,
TreeView). After examining numerous control types, you moved on to cover the construction of
custom controls, including the topic of design-time integration.

In the latter half of this chapter, you learned how to build custom dialog boxes and how to derive
a new Form from an existing Form type using form inheritance. This chapter concluded by briefly
exploring the various anchoring and docking behaviors you can use to enforce a specific layout of
your GUI types, as well as the new .NET 2.0 layout managers.

5785ch23.qxd 3/31/06 11:26 AM Page 765

5785ch23.qxd 3/31/06 11:26 AM Page 766

Database Access with ADO.NET

Unless you are a video game developer by trade, you are probably interested in the topic of data-
base access. As you would expect, the .NET platform defines a number of namespaces that allow
you to interact with local and remote data stores. Collectively speaking, these namespaces are known
as ADO.NET.

In this chapter, once I frame the overall role of ADO.NET, I’ll move on to discuss the topic of
ADO.NET data providers. The .NET platform supports numerous data providers, each of which is
optimized to communicate with a specific database management system (Microsoft SQL Server,
Oracle, MySQL, etc.). After you understand how to manipulate a specific data provider, you will then
examine the new data provider factory pattern offered by .NET 2.0. Using types within the System.
Data.Common namespace (and a related app.config file), you are able to build a single code base that
can dynamically pick and choose the underlying data provider without the need to recompile or
redeploy the application’s code base.

The remaining part of this chapter examines how to programmatically interact with relational
databases using your data provider of choice. As you will see, ADO.NET provides two distinct ways
to interface with a data source, often termed the connected layer and the disconnected layer. You
will come to know the role of connection objects, command objects, data readers, data adapters,
and numerous types within the System.Data namespace (specifically, DataSet, DataTable, DataRow,
DataColumn, DataView, and DataRelation). I’ll wrap up by showing you several tools of Visual Studio 2005
that allow you to rapidly build Windows Forms applications that interact with external data stores.

A High-level Definition of ADO.NET
If you have a background in Microsoft’s previous COM-based data access model (Active Data Objects,
or ADO), understand that ADO.NET has very little to do with ADO beyond the letters “A,” “D,” and
“O.” While it is true that there is some relationship between the two systems (e.g., each has the con-
cept of connection and command objects), some familiar ADO types (e.g., the Recordset) no longer
exist. Furthermore, there are a number of new ADO.NET types that have no direct equivalent under
classic ADO (e.g., the data adapter).

Unlike classic ADO, which was primarily designed for tightly coupled client/server systems,
ADO.NET was built with the disconnected world in mind, using DataSets. This type represents a local
copy of any number of related tables. Using the DataSet, the client tier is able to manipulate and
update its contents while disconnected from the data source, and it can submit the modified data
back for processing using a related data adapter.

Another major difference between classic ADO and ADO.NET is that ADO.NET has deep support
for XML data representation. In fact, the data obtained from a data store is serialized (by default) as
XML. Given that XML is often transported between layers using standard HTTP, ADO.NET is not lim-
ited by firewall constraints.

767

C H A P T E R 2 4

■ ■ ■

5785ch24.qxd 3/31/06 11:32 AM Page 767

■Note As of .NET 2.0, DataSets (and DataTables) can now be serialized in a binary format via the
RemotingFormat property. This can be helpful when building distributed systems using the .NET remoting
layer (see Chapter 20), as binary data is much more compact than XML data.

Perhaps the most fundamental difference between classic ADO and ADO.NET is that ADO.NET
is a managed library of code, therefore it plays by the same rules as any managed library. The types
that make up ADO.NET use the CLR memory management protocol, adhere to the same type system
(classes, interfaces, enums, structures, and delegates), and can be accessed by any .NET language.

The Two Faces of ADO.NET
The ADO.NET libraries can be used in two conceptually unique manners: connected or disconnected.
When you are making use of the connected layer, your code base will explicitly connect to and dis-
connect from the underlying data store. When you are using ADO.NET in this manner, you typically
interact with the data store using connection objects, command objects, and data reader objects. As
you will see later in this chapter, data readers provide a way to pull records from a data store using
a forward-only, read-only approach (much like a fire-hose cursor).

The disconnected layer, on the other hand, allows you to obtain a set of DataTable objects
(contained within a DataSet) that functions as a client-side copy of the external data. When you
obtain a DataSet using a related data adapter object, the connection is automatically opened and
closed on your behalf. As you would guess, this approach helps quickly free up connections for other
callers. Once the client receives a DataSet, it is able to traverse and manipulate the contents without
incurring the cost of network traffic. As well, if the client wishes to submit the changes back to the
data store, the data adapter (in conjunction with a set of SQL statements) is used once again to update
the data source, at which point the connection is closed immediately.

Understanding ADO.NET Data Providers
Unlike classic ADO, ADO.NET does not provide a single set of types that communicate with multiple
database management systems (DBMSs). Rather, ADO.NET supports multiple data providers, each
of which is optimized to interact with a specific DBMS. The first benefit of this approach is that a specific
data provider can be programmed to access any unique features of the DBMS. Another benefit is
that a specific data provider is able to directly connect to the underlying engine of the DBMS with-
out an intermediate mapping layer standing between the tiers.

Simply put, a data provider is a set of types defined in a given namespace that understand how
to communicate with a specific data source. Regardless of which data provider you make use of, each
defines a set of class types that provide core functionality. Table 24-1 documents some (but not all)
of the core common objects, their base class (all defined in the System.Data.Common namespace), and
their implemented data-centric interfaces (each defined in the System.Data namespace).

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET768

5785ch24.qxd 3/31/06 11:32 AM Page 768

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 769

Table 24-1. Core Objects of an ADO.NET Data Provider

Object Base Class Implemented Interfaces Meaning in Life

Connection DbConnection IDbConnection Provides the ability to connect to
and disconnect from the data store.
Connection objects also provide
access to a related transaction object.

Command DbCommand IDbCommand Represents a SQL query or name of
a stored procedure. Command
objects also provide access to the
provider’s data reader object.

DataReader DbDataReader IDataReader, Provides forward-only, read-only
IDataRecord access to data.

DataAdapter DbDataAdapter IDataAdapter, Transfers DataSets between the
IDbDataAdapter caller and the data store. Data

adapters contain a set of four
internal command objects used to
select, insert, update, and delete
information from the data store.

Parameter DbParameter IDataParameter, Represents a named parameter
IDbDataParameter within a parameterized query.

Transaction DbTransaction IDbTransaction Performs a database transaction.

Although the names of these types will differ among data providers (e.g., SqlConnection versus
OracleConnection versus OdbcConnection versus MySqlConnection), each object derives from the same
base class that implements identical interfaces. Given this, you are correct to assume that once you
learn how to work with one data provider, the remaining providers are quite straightforward.

■Note As a naming convention, the objects in a specific data provider are prefixed with the name of the related
DBMS (for example, SqlDataReader, OracleCommand, MySqlParameter, etc.).

Figure 24-1 illustrates the big picture behind ADO.NET data providers. Note that in the diagram,
the “Client Assembly” can literally be any type of .NET application: console program, Windows Forms
application, ASP.NET web page, XML web service, .NET code library, and so on.

5785ch24.qxd 3/31/06 11:32 AM Page 769

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET770

Now, to be sure, a data provider will supply you with other types beyond the objects shown in
Figure 24-1. However, these core objects define a common baseline across all data providers.

Microsoft-supplied Data Providers
As of version 2.0, Microsoft’s .NET distribution ships with numerous data providers, including
a provider for Oracle, SQL Server, and ODBC-style connectivity. Table 24-2 documents the name-
space and containing assembly for each Microsoft ADO.NET data provider.

Table 24-2. Microsoft ADO.NET Data Providers

Data Provider Namespace Assembly

OLE DB System.Data.OleDb System.Data.dll

Microsoft SQL Server System.Data.SqlClient System.Data.dll

Microsoft SQL Server Mobile System.Data.SqlServerCe System.Data.SqlServerCe.dll

ODBC System.Data.Odbc System.Data.dll

Oracle System.Data.OracleClient System.Data.OracleClient.dll

■Note There is no specific data provider that maps directly to the Jet engine (and therefore Microsoft Access). If
you wish to interact with an Access data file, you can do so using the OLE DB or ODBC data provider.

The OLE DB data provider, which is composed of the types defined in the System.Data.OleDb
namespace, allows you to access data located in any data store that supports the classic COM-based
OLE DB protocol. Using this provider, you may communicate with any OLE DB–compliant database
simply by tweaking the Provider segment of your connection string. Be aware, however, that the OLE DB

Figure 24-1. ADO.NET data providers provide access to a given DBMS.

5785ch24.qxd 3/31/06 11:32 AM Page 770

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 771

provider interacts with various COM objects behind the scenes, which can affect the performance
of your application. By and large, the OLE DB data provider is only useful if you are interacting with
a DBMS that does not define a specific .NET data provider.

The Microsoft SQL Server data provider offers direct access to Microsoft SQL Server data stores,
and only SQL Server data stores (version 7.0 and greater). The System.Data.SqlClient namespace
contains the types used by the SQL Server provider and offers the same basic functionality as the
OLE DB provider. The key difference is that the SQL Server provider bypasses the OLE DB layer and
thus gives numerous performance benefits. As well, the Microsoft SQL Server data provider allows
you to gain access to the unique features of this particular DBMS.

■Note If you are interested in making use of the System.Data.SqlServerCe, System.Data.Odbc, or
System.Data.Oracle namespaces, check out the details as you see fit using the .NET Framework 2.0 SDK
documentation.

Select Third-party Data Providers
In addition to the data providers that ship from Microsoft, numerous third-party data providers
exist for various open source and commercial databases. Table 24-3 documents where to obtain
managed providers for several popular databases that do not directly ship with Microsoft .NET 2.0
(please note that the provided URLs are subject to change).

Table 24-3. Third-party ADO.NET Data Providers

Data Provider Website

Firebird Interbase http://www.mono-project.com/Firebird_Interbase

IBM DB2 Universal Database http://www-306.ibm.com/software/data/db2

MySQL http://dev.mysql.com/downloads/connector/net/1.0.html

PostgreSQL http://www.mono-project.com/PostgreSQL

Sybase http://www.mono-project.com/Sybase

■Note There are many websites that catalog known ADO.NET data providers. Check out http://www.sqlsummit.
com/DataProv.htm to view a very inclusive listing.

Additional ADO.NET Namespaces
In addition to the .NET namespaces that define the types of a specific data provider, the base class
libraries provide a number of additional ADO.NET-centric namespaces, as shown in Table 24-4.

Table 24-4. Additional ADO.NET-centric Namespaces

Namespace Meaning in Life

Microsoft.SqlServer.Server This new .NET 2.0 namespace provides types that allow you to author
stored procedures via managed languages for SQL Server 2005.

System.Data This namespace defines the core ADO.NET types used by all data
providers.

System.Data.Common This namespace contains types shared between data providers,
including the .NET 2.0 data provider factory types.

Continued

5785ch24.qxd 3/31/06 11:32 AM Page 771

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET772

Table 24-4. Continued

Namespace Meaning in Life

System.Data.Design This new .NET 2.0 namespace contains various types used to
construct a design-time appearance for custom data components.

System.Data.Sql This new .NET 2.0 namespace contains types that allow you to
discover Microsoft SQL Server instances installed on the current
local network.

System.Data.SqlTypes This namespace contains native data types used by Microsoft SQL
Server. Although you are always free to use the corresponding CLR
data types, the SqlTypes are optimized to work with SQL Server.

Do understand that this chapter will not examine each and every type within each and every
ADO.NET namespace (that task would require a large book in and of itself). However, it is quite
important for you to understand the types within the System.Data namespace.

The System.Data Types
Of all the ADO.NET namespaces, System.Data is the lowest common denominator. You simply
cannot build ADO.NET applications without specifying this namespace in your data access
applications. This namespace contains types that are shared among all ADO.NET data providers,
regardless of the underlying data store. In addition to a number of database-centric exceptions
(NoNullAllowedException, RowNotInTableException, MissingPrimaryKeyException, and the like),
System.Data contains types that represent various database primitives (tables, rows, columns, con-
straints, etc.), as well as the common interfaces implemented by data provider objects. Table 24-5
lists some of the core types to be aware of.

Table 24-5. Core Members of the System.Data Namespace

Type Meaning in Life

Constraint Represents a constraint for a given DataColumn object.

DataColumn Represents a single column within a DataTable object.

DataRelation Represents a parent/child relationship between two DataTable objects.

DataRow Represents a single row within a DataTable object.

DataSet Represents an in-memory cache of data consisting of any number of
interrelated DataTable objects.

DataTable Represents a tabular block of in-memory data.

DataTableReader Allows you to treat a DataTable as a fire-hose cursor (forward only, read-only
data access). New in .NET 2.0.

DataView Represents a customized view of a DataTable for sorting, filtering, searching,
editing, and navigation.

IDataAdapter Defines the core behavior of a data adapter object.

IDataParameter Defines the core behavior of a parameter object.

IDataReader Defines the core behavior of a data reader object.

IDbCommand Defines the core behavior of a command object.

IDbDataAdapter Extends IDataAdapter to provide additional functionality of a data adapter object.

IDbTransaction Defines the core behavior of a transaction object.

5785ch24.qxd 3/31/06 11:32 AM Page 772

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 773

Later in this chapter, you will get to know the role of the DataSet and its related cohorts
(DataTable, DataRelation, DataRow, etc.). However, your next task is to examine the core interfaces
of System.Data at a high level, to better understand the common functionality offered by any data
provider. You will learn specific details throughout this chapter, so for the time being let’s simply
focus on the overall behavior of each interface type.

The Role of the IDbConnection Interface
First up is the IDbConnection type, which is implemented by a data provider’s connection object. This
interface defines a set of members used to configure a connection to a specific data store, and it
also allows you to obtain the data provider’s transactional object. Here is the formal definition of
IDbConnection:

Public Interface IDbConnection

Inherits IDisposable

Property ConnectionString() As String

ReadOnly Property ConnectionTimeout() As Integer

ReadOnly Property Database() As String

ReadOnly Property State() As ConnectionState

Function BeginTransaction() As IDbTransaction

Function BeginTransaction(ByVal il As IsolationLevel) As IDbTransaction

Sub ChangeDatabase(ByVal databaseName As String)

Sub Close()

Function CreateCommand() As IDbCommand

Sub Open()

End Interface

The Role of the IDbTransaction Interface
As you can see, the overloaded BeginTransaction() method defined by IDbConnection provides
access to the provider’s transaction object. Using the members defined by IDbTransaction, you are
able to programmatically interact with a transactional session and the underlying data store:

Public Interface IDbTransaction

Inherits IDisposable

ReadOnly Property Connection() As IDbConnection

ReadOnly Property IsolationLevel() As IsolationLevel

Sub Commit()

Sub Rollback()

End Interface

The Role of the IDbCommand Interface
Next, we have the IDbCommand interface, which will be implemented by a data provider’s command
object. Like other data access object models, command objects allow programmatic manipulation
of SQL statements, stored procedures, and parameterized queries. In addition, command objects
provide access to the data provider’s data reader type via the overloaded ExecuteReader() method:

Public Interface IDbCommand

Inherits IDisposable

Property CommandText() As String

Property CommandTimeout() As Integer

Property CommandType() As CommandType

Property Connection() As IDbConnection

ReadOnly Property Parameters() As IDataParameterCollection

Property Transaction() As IDbTransaction

5785ch24.qxd 3/31/06 11:32 AM Page 773

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET774

Property UpdatedRowSource() As UpdateRowSource

Sub Cancel()

Function CreateParameter() As IDbDataParameter

Function ExecuteNonQuery() As Integer

Function ExecuteReader() As IDataReader

Function ExecuteReader(ByVal behavior As CommandBehavior) As IDataReader

Function ExecuteScalar() As Object

Sub Prepare()

End Interface

The Role of the IDbDataParameter and IDataParameter
Interfaces
Notice that the Parameters property of IDbCommand returns a strongly typed collection that implements
IDataParameterCollection. This interface provides access to a set of IDbDataParameter-compliant
class types (e.g., parameter objects):

Public Interface IDbDataParameter

Inherits IDataParameter

Property Precision() As Byte

Property Scale() As Byte

Property Size() As Integer

End Interface

IDbDataParameter extends the IDataParameter interface to obtain the following additional
behaviors:

Public Interface IDataParameter

Property DbType() As DbType

Property Direction() As ParameterDirection

ReadOnly Property IsNullable() As Boolean

Property ParameterName() As String

Property SourceColumn() As String

Property SourceVersion() As DataRowVersion

Property Value() As Object

End Interface

As you will see, the functionality of the IDbDataParameter and IDataParameter interfaces allows
you to represent parameters within a SQL command (including stored procedures) via specific
ADO.NET parameter objects rather than hard-coded string literals.

The Role of the IDbDataAdapter and IDataAdapter Interfaces
Data adapters are used to push and pull DataSets to and from a given data store. Given this, the
IDbDataAdapter interface defines a set of properties that are used to maintain the SQL statements
for the related select, insert, update, and delete operations:

Public Interface IDbDataAdapter

Inherits IDataAdapter

Property DeleteCommand() As IDbCommand

Property InsertCommand() As IDbCommand

Property SelectCommand() As IDbCommand

Property UpdateCommand() As IDbCommand

End Interface

In addition to these four properties, an ADO.NET data adapter also picks up the behavior defined
in the base interface, IDataAdapter. This interface defines the key function of a data adapter type:

5785ch24.qxd 3/31/06 11:32 AM Page 774

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 775

the ability to transfer DataSets between the caller and underlying data store using the Fill() and
Update() methods.

As well, the IDataAdapter interface allows you to map database column names to more user-friendly
display names via the TableMappings property:

Public Interface IDataAdapter

Property MissingMappingAction() As MissingMappingAction

Property MissingSchemaAction() As MissingSchemaAction

ReadOnly Property TableMappings() As ITableMappingCollection

Function Fill(ByVal dataSet As System.Data.DataSet) As Integer

Function FillSchema(ByVal dataSet As DataSet, _

ByVal schemaType As SchemaType) As DataTable()

Function GetFillParameters() As IDataParameter()

Function Update(ByVal dataSet As DataSet) As Integer

End Interface

The Role of the IDataReader and IDataRecord Interfaces
The next key interface to be aware of is IDataReader, which represents the common behaviors
supported by a given data reader object. When you obtain an IDataReader-compatible type from
an ADO.NET data provider, you are able to iterate over the result set in a forward-only, read-only
manner.

Public Interface IDataReader

Inherits IDisposable

Inherits IDataRecord

ReadOnly Property Depth() As Integer

ReadOnly Property IsClosed() As Boolean

ReadOnly Property RecordsAffected() As Integer

Sub Close()

Function GetSchemaTable() As DataTable

Function NextResult() As Boolean

Function Read() As Boolean

End Interface

Finally, as you can see, IDataReader extends IDataRecord, which defines a good number of
members that allow you to extract a strongly typed value from the stream, rather than casting the
generic System.Object retrieved from the data reader’s overloaded indexer method. Here is a partial
listing of the various GetXXX() methods defined by IDataRecord (see the .NET Framework 2.0 SDK
documentation for a complete listing):

Public Interface IDataRecord

ReadOnly Property FieldCount() As Integer

Function GetBoolean(ByVal i As Integer) As Boolean

Function GetByte(ByVal i As Integer) As Byte

Function GetChar(ByVal i As Integer) As Char

Function GetDateTime(ByVal i As Integer) As DateTime

Function GetDecimal(ByVal i As Integer) As Decimal

Function GetFloat(ByVal i As Integer) As Single

Function GetInt16(ByVal i As Integer) As Short

Function GetInt32(ByVal i As Integer) As Integer

Function GetInt64(ByVal i As Integer) As Long

Function IsDBNull(ByVal i As Integer) As Boolean

...

End Interface

5785ch24.qxd 3/31/06 11:32 AM Page 775

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET776

■Note The IDataReader.IsDBNull() method can be used to programmatically discover whether a specified
field is set to Nothing before obtaining a value from the data reader (to avoid triggering a runtime exception).

Abstracting Data Providers Using Interfaces
At this point, you should have a better idea of the common functionality found among all .NET data
providers, based on the core interfaces you just examined. Recall that even though the exact names
of the implementing types will differ among data providers, you are able to program against these
types in a similar manner—that’s the beauty of interface-based polymorphism. Therefore, if you
define a method that takes an IDbConnection parameter, you can pass in any ADO.NET connection
object:

Public Sub OpenConnection(ByVal cn As IDbConnection)

' Open the incoming connection for the caller.

cn.Open()

End Sub

The same holds true for a member return value. For example, consider the following example
VB 2005 program, which allows the caller to obtain a specific connection object using the value of
a custom enumeration and a custom function named GetConnection():

Enum DataProvider

SqlServer

OleDb

Odbc

Oracle

End Enum

Module Program

Sub Main()

' Get a specific connection via GetConnection() helper function.

Dim myCn As IDbConnection = GetConnection(DataProvider.SqlServer)

' Assume we wish to connect to the SQL Server Pubs database.

myCn.ConnectionString = _

"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"

' Now open connection via our other helper function.

OpenConnection(myCn)

' Use connection and close when finished.

...

myCn.Close()

End Sub

Function GetConnection(ByVal dp As DataProvider) As IDbConnection

Dim conn As IDbConnection = Nothing

Select dp

Case DataProvider.SqlServer

conn = New SqlConnection()

Exit Select

Case DataProvider.OleDb

conn = New OleDbConnection()

Exit Select

Case DataProvider.Odbc

5785ch24.qxd 3/31/06 11:32 AM Page 776

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 777

conn = New OdbcConnection()

Exit Select

Case DataProvider.Oracle

conn = New OracleConnection()

Exit Select

End Select

Return conn

End Function

End Module

The benefit of working with the general interfaces of System.Data is that you have a much better
chance of building a flexible code base that can evolve over time. For example, perhaps today you
are building an application targeting Microsoft SQL Server, but what if your company switches to
Oracle months down the road? If you hard-code the types of System.Data.SqlClient, you will obviously
need to edit, recompile, and redeploy the assembly.

Increasing Flexibility Using Application
Configuration Files
To further increase the flexibility of your ADO.NET applications, you could incorporate a client-side
*.config file that makes use of custom key/value pairs within the <appSettings> element. Recall
from Chapter 13 that custom data can be programmatically obtained using types within the
System.Configuration namespace. For example, assume you have specified the connection string
and data provider values within a configuration file as follows:

<configuration>

<appSettings>

<add key="provider" value="SqlServer" />

<add key="cnStr" value=

"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

</appSettings>

</configuration>

With this, you could update Main() to programmatically read these values. By doing so, you
essentially build a data provider factory. Here are the relevant updates:

Sub Main()

' Read the provider key from *.config file.

Dim dpStr As String = ConfigurationManager.AppSettings("provider")

Dim dp As DataProvider = _

CType([Enum].Parse(GetType(DataProvider), dpStr), DataProvider)

Console.WriteLine("You specified the {0} provider.", dp)

' Read the cnStr.

Dim cnStr As String = ConfigurationManager.AppSettings("cnStr")

Console.WriteLine("Cn string: {0}", cnStr)

' Get a specific connection.

Dim myCn As IDbConnection = GetConnection(dp)

myCn.ConnectionString = cnStr

...

End Sub

5785ch24.qxd 3/31/06 11:32 AM Page 777

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET778

■Note The ConfigurationManager type is new to .NET 2.0. Be sure to set a reference to the System.
Configuration.dll assembly and import the System.Configuration namespace.

If the previous example were reworked into a .NET code library (rather than a console application),
you would be able to build any number of clients that could obtain specific connections using various
layers of abstraction. However, to make a worthwhile data provider factory library, you would also
have to account for command objects, data readers, data adapters, and other data-centric types.
While building such a code library would not necessarily be difficult, it would require a good amount
of code. Thankfully, as of .NET 2.0, the kind folks in Redmond have built this very thing into the base
class libraries.

■Source Code The MyConnectionFactory project is included under the Chapter 24 subdirectory.

The .NET 2.0 Provider Factory Model
Under .NET 2.0, we are now offered a data provider factory pattern that allows us to build a single
code base using generalized data access types. Furthermore, using application configuration files
(and the spiffy new <connectionStrings> section), we are able to obtain providers and connection
strings declaratively without the need to recompile or redeploy the client software.

To understand the data provider factory implementation, recall from Table 24-1 that the objects
within a data provider each derive from the same base classes defined within the System.Data.Common
namespace:

• DbCommand: Abstract base class for all command objects

• DbConnection: Abstract base class for all connection objects

• DbDataAdapter: Abstract base class for all data adapter objects

• DbDataReader: Abstract base class for all data reader objects

• DbParameter: Abstract base class for all parameter objects

• DbTransaction: Abstract base class for all transaction objects

In addition, as of .NET 2.0, each of the Microsoft-supplied data providers now provides a spe-
cific class deriving from System.Data.Common.DbProviderFactory. This base class defines a number
of methods that retrieve provider-specific data objects. Here is a snapshot of the relevant members
of DbProviderFactory:

Public MustOverride Class DbProviderFactory

...

Public Overridable Function CreateCommand() As DbCommand

End Function

Public Overridable Function CreateCommandBuilder() As DbCommandBuilder

End Function

Public Overridable Function CreateConnection() As DbConnection

End Function

Public Overridable Function CreateConnectionStringBuilder() _

As DbConnectionStringBuilder

End Function

Public Overridable Function CreateDataAdapter() As DbDataAdapter

End Function

5785ch24.qxd 3/31/06 11:32 AM Page 778

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 779

Public Overridable Function CreateDataSourceEnumerator() _

As DbDataSourceEnumerator

End Function

Public Overridable Function CreateParameter() As DbParameter

End Function

End Class

To obtain the DbProviderFactory-derived type for your data provider, the System.Data.Common
namespace provides a class type named DbProviderFactories (note the plural in this type’s name).
Using the shared GetFactory() method, you are able to obtain the specific (which is to say, singular)
DbProviderFactory of the specified data provider, for example:

Sub Main()

' Get the factory for the SQL data provider.

Dim sqlFactory As DbProviderFactory = _

DbProviderFactories.GetFactory("System.Data.SqlClient")

...

' Get the factory for the Oracle data provider.

Dim oracleFactory As DbProviderFactory = _

DbProviderFactories.GetFactory("System.Data.OracleClient")

...

End Sub

As you might be thinking, rather than obtaining a factory using a hard-coded string literal,
you could read in this information from a client-side *.config file (much like the previous
MyConnectionFactory example). You will do so in just a bit. However, in any case, once you have
obtained the factory for your data provider, you are able to obtain the associated provider-specific
data objects (connections, commands, etc.).

Registered Data Provider Factories
Before you look at a full example of working with ADO.NET data provider factories, it is important
to point out that the DbProviderFactories type (as of .NET 2.0) is able to fetch factories for only
a subset of all possible data providers. The list of valid provider factories is recorded within the
<DbProviderFactories> element within the machine.config file for your .NET 2.0 installation (note that
the value of the invariant attribute is identical to the value passed into the DbProviderFactories.
GetFactory() method):

<system.data>

<DbProviderFactories>

<add name="Odbc Data Provider" invariant="System.Data.Odbc"

description=".Net Framework Data Provider for Odbc"

type="System.Data.Odbc.OdbcFactory,

System.Data, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089" />

<add name="OleDb Data Provider" invariant="System.Data.OleDb"

description=".Net Framework Data Provider for OleDb"

type="System.Data.OleDb.OleDbFactory,

System.Data, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089" />

<add name="OracleClient Data Provider" invariant="System.Data.OracleClient"

description=".Net Framework Data Provider for Oracle"

type="System.Data.OracleClient.OracleClientFactory, System.Data.OracleClient,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="SqlClient Data Provider" invariant="System.Data.SqlClient"

description=".Net Framework Data Provider for SqlServer"

type="System.Data.SqlClient.SqlClientFactory, System.Data,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

5785ch24.qxd 3/31/06 11:32 AM Page 779

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET780

</DbProviderFactories>

</system.data>

■Note If you wish to leverage a similar data provider factory pattern for DMBSs not accounted for in the
machine.config file, note that the Mono distribution of .NET (see Chapter 1) provides a similar data factory that
accounts for numerous open source and commercial data providers.

A Complete Data Provider Factory Example
For a complete example, let’s build a console application (named DataProviderFactory) that prints
out the first and last names of individuals in the Authors table of a database named Pubs residing
within Microsoft SQL Server (as you may know, Pubs is a sample database modeling a fictitious
book publishing company).

First, add a reference to the System.Configuration.dll assembly, insert an app.config file to the
current project, and define an <appSettings> element. Remember that the format of the “official”
provider value is the full namespace name for the data provider, rather than the string name of the
ad hoc DataProvider enumeration used in the MyConnectionFactory example:

<configuration>

<appSettings>

<!-- Which provider? -->

<add key="provider" value="System.Data.SqlClient" />

<!-- Which connection string? -->

<add key="cnStr" value=

"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

</appSettings>

</configuration>

Now that you have a proper *.config file, you can read in the provider and cnStr values
using the ConfigurationManager.AppSettings() method. The provider value will be passed to
DbProviderFactories.GetFactory() to obtain the data provider–specific factory type. The cnStr
value will be used to set the ConnectionString property of the DbConnection-derived type. To illus-
trate, update your initial Module as follows:

Imports System.Configuration

Imports System.Data.Common

Module Project

Sub Main()

Console.WriteLine("***** Fun with Data Provider Factories *****")

Console.WriteLine()

' Get Connection string/provider from *.config.

Dim dp As String = ConfigurationManager.AppSettings("provider")

Dim cnStr As String = ConfigurationManager.AppSettings("cnStr")

' Make the factory provider.

Dim df As DbProviderFactory = DbProviderFactories.GetFactory(dp)

' Now make connection object.

Dim cn As DbConnection = df.CreateConnection()

Console.WriteLine("Your connection object is a: {0}", _

cn.GetType().FullName)

cn.ConnectionString = cnStr

cn.Open()

5785ch24.qxd 3/31/06 11:32 AM Page 780

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 781

' Make command object.

Dim cmd As DbCommand = df.CreateCommand()

Console.WriteLine("Your command object is a: {0}", cmd.GetType().FullName)

cmd.Connection = cn

cmd.CommandText = "Select * From Authors"

' Print out data with data reader.

Dim dr As DbDataReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

Console.WriteLine("Your data reader object is a: {0}", _

dr.GetType().FullName)

Console.WriteLine()

Console.WriteLine("***** Authors in Pubs *****")

While dr.Read()

Console.WriteLine("-> {0} , {1}", dr("au_lname"), dr("au_fname"))

End While

dr.Close()

End Sub

End Module

Notice that for diagnostic purposes, you are printing out the fully qualified name of the under-
lying connection, command, and data reader using reflection services. If you run this application,
you will find that the Microsoft SQL Server provider has been used to read data from the Authors
table of the Pubs database, as shown in Figure 24-2.

Now, if you change the *.config file to specify System.Data.OleDb as the data provider (and
update your connection string) as follows:

<configuration>

<appSettings>

<!-- Which provider? -->

<add key="provider" value="System.Data.OleDb" />

<!-- Which connection string? -->

<add key="cnStr" value=

"Provider=SQLOLEDB.1;Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

</appSettings>

</configuration>

you will find the System.Data.OleDb types are used behind the scenes (see Figure 24-3).

Figure 24-2. Obtaining the SQL Server data provider via the .NET 2.0 data provider factory

5785ch24.qxd 3/31/06 11:32 AM Page 781

Figure 24-3. Obtaining the OLE DB data provider via the .NET 2.0 data provider factory

Of course, based on your experience with ADO.NET, you may be a bit unsure exactly what the
connection, command, and data reader objects are actually doing. Don’t sweat the details for the
time being (quite a few pages remain in this chapter, after all!). At this point, just understand that
under .NET 2.0, it is possible to build a single code base that can consume various data providers in
a declarative manner.

Although this is a very powerful model, you must make sure that the code base does indeed
make use only of types and methods that are common to all providers. Therefore, when authoring
your code base, you will be limited to the members exposed by DbConnection, DbCommand, and the
other types of the System.Data.Common namespace. Given this, you may find that this “generalized”
approach will prevent you from directly accessing some of the bells and whistles of a particular
DBMS (so be sure to test your code!).

The <connectionStrings> Element
As of .NET 2.0, application configuration files may define a new element named <connectionStrings>.
Within this element, you are able to define any number of name/value pairs that can be pro-
grammatically read into memory using the ConfigurationManager.ConnectionStrings indexer.
The chief advantage of this approach (rather than using the <appSettings> element and the
ConfigurationManager.AppSettings indexer) is that you can define multiple connection strings for
a single application in a consistent manner.

To illustrate, update your current app.config file as follows (note that each connection string is
documented using the name and connectionString attributes rather than the key and value attributes
as found in <appSettings>):

<configuration>

<appSettings>

<!-- Which provider? -->

<add key="provider" value="System.Data.SqlClient" />

</appSettings>

<connectionStrings>

<add name ="SqlProviderPubs" connectionString =

"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

<add name ="OleDbProviderPubs" connectionString =

" Provider=SQLOLEDB.1;Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

</connectionStrings>

</configuration>

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET782

5785ch24.qxd 3/31/06 11:32 AM Page 782

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 783

With this, you can now update your Main() method as follows:

Sub Main()

Console.WriteLine("***** Fun with Data Provider Factories *****")

Console.WriteLine()

' Get Connection string/provider from *.config.

Dim dp As String = ConfigurationManager.AppSettings("provider")

Dim cnStr As String = _

ConfigurationManager.ConnectionStrings("SqlProviderPubs").ConnectionString

...

End Sub

At this point, you should be clear on how to interact with the .NET 2.0 data provider factory
(and the new <connectionStrings> element).

■Note Now that you understand the role of ADO.NET data provider factories, the remaining examples in this
chapter will make explicit use of the types within System.Data.SqlClient and hard-coded connection strings,
just to keep focused on the task at hand.

■Source Code The DataProviderFactory project is included under the Chapter 24 subdirectory.

Installing the Cars Database
Now that you understand the basic properties of a .NET data provider, you can begin to dive into
the specifics of coding with ADO.NET. As mentioned earlier, the examples in this chapter will make
use of Microsoft SQL Server. In keeping with the automotive theme used throughout this text, I have
included a sample Cars database that contains three interrelated tables named Inventory, Orders,
and Customers.

■Note If you do not have a copy of Microsoft SQL Server, you can download a (free) copy of Microsoft SQL
Server 2005 Express Edition (http://lab.msdn.microsoft.com/express). While this tool does not have all the
bells and whistles of the full version of Microsoft SQL Server, it will allow you to host the provided Cars database.
Do be aware, however, that this chapter was written with Microsoft SQL Server in mind, so be sure to consult the
provided SQL Server 2005 Express Edition documentation.

To install the Cars database on your machine, begin by opening the Query Analyzer utility that
ships with SQL Server. Next, connect to your machine and open the provided Cars.sql file. Before you
run the script, make sure that the path listed in the SQL file points to your installation of Microsoft
SQL Server. Edit the following lines (in bold) as necessary:

CREATE DATABASE [Cars] ON (NAME = N'Cars_Data', FILENAME = N

'C:\Program Files\Microsoft SQL Server\MSSQL\Data\Cars_Data.MDF',

SIZE = 2, FILEGROWTH = 10%)

LOG ON (NAME = N'Cars_Log', FILENAME = N

'C:\Program Files\Microsoft SQL Server\MSSQL\Data\Cars_Log.LDF',

SIZE = 1, FILEGROWTH = 10%)

GO

5785ch24.qxd 3/31/06 11:32 AM Page 783

Figure 24-4. The sample Cars database

Connecting to the Cars Database from Visual Studio 2005
Now that you have the Cars database installed, you may wish to create a data connection to the
database from within Visual Studio 2005. This will allow you to view and edit the various database
objects from within the IDE. To do so, open the Server Explorer window using the View menu. Next,
right-click the Data Connections node and select Add Connection from the context menu. From the
resulting dialog box, select Microsoft SQL Server as the data source. As well, select your machine name
(or simply localhost) from the Server name drop-down list and specify the correct logon information.
Finally, choose the Cars database from the Select or enter a database name drop-down list, as shown
in Figure 24-5.

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET784

Now run the script. Once you do, open up SQL Server Enterprise Manager. You should see three
interrelated tables (with some sample data to boot) and a single stored procedure. Figure 24-4
shows the tables that populate the Cars database.

5785ch24.qxd 3/31/06 11:32 AM Page 784

Figure 24-5. Connecting to the Cars database from Visual Studio 2005

Figure 24-6. Viewing table data

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 785

Once you’ve finished, you should now see a node for Cars under Data Connections. Notice that
you can pull up the records for a given data table simply by right-clicking and selecting Show Table
Data, as you see in Figure 24-6.

5785ch24.qxd 3/31/06 11:32 AM Page 785

Understanding the Connected Layer of ADO.NET
Recall that the connected layer of ADO.NET allows you to interact with a database using the connec-
tion, command, and data reader objects of your data provider. Although you have already made use
of these objects in the previous DataProviderFactory example, let’s walk through the process once
again in detail. When you wish to connect to a database and read the records using a data reader
object, you need to perform the following steps:

1. Create, configure, and open your connection object.

2. Allocate and configure a command object, specifying the connection object as a constructor
argument or via the Connection property.

3. Call ExecuteReader() on the configured command object.

4. Process each record using the Read() method of the data reader.

To get the ball rolling, create a brand-new console application named CarsDataReader. The
goal is to open a connection (via the SqlConnection object) and submit a SQL query (via the
SqlCommand object) to obtain all records within the Inventory table of the Cars database. At this point,
you will use a SqlDataReader to print out the results using the type indexer. Here is the complete
code within Main(), with analysis to follow:

Imports System.Data.SqlClient

Module Program

Sub Main()

Console.WriteLine("***** Fun with Data Readers *****")

Console.WriteLine()

' Create an open a connection.

Dim cn As SqlConnection = New SqlConnection()

cn.ConnectionString = _

"uid=sa;pwd=;Initial Catalog=Cars; Data Source=(local)"

cn.Open()

' Create a SQL command object.

Dim strSQL As String = "Select * From Inventory"

Dim myCommand As SqlCommand = New SqlCommand(strSQL, cn)

' Obtain a data reader a la ExecuteReader().

Dim myDataReader As SqlDataReader

myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection)

' Loop over the results.

While myDataReader.Read()

Console.WriteLine("-> Make: {0} , PetName: {1} , Color: {2}.", _

myDataReader("Make").ToString().Trim(), _

myDataReader("PetName").ToString().Trim(), _

myDataReader("Color").ToString().Trim())

End While

' Because we specified CommandBehavior.CloseConnection, we

' don't need to explicitly call Close() on the connection; however,

' it is safe to do so.

myDataReader.Close()

Console.WriteLine()

Console.ReadLine()

End Sub

End Module

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET786

5785ch24.qxd 3/31/06 11:32 AM Page 786

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 787

Working with Connection Objects
The first step to take when working with a data provider is to establish a session with the data source
using the connection object (which, as you recall, derives from DbConnection). .NET connection types
are provided with a formatted connection string, which contains a number of name/value pairs
separated by semicolons. This information is used to identify the name of the machine you wish to
connect to, required security settings, the name of the database on that machine, and other data
provider–specific information.

As you can infer from the preceding code, the Initial Catalog name refers to the database you
are attempting to establish a session with (Pubs, Northwind, Cars, etc.). The Data Source name
identifies the name of the machine that maintains the database (for simplicity, I have assumed no
specific password is required for local system administrators).

■Note Look up the ConnectionString property of your data provider’s connection object in the .NET Framework
2.0 SDK documentation to learn about each name/value pair for your specific DBMS. Also, keep in mind that some
providers support multiple versions of a single connection string segment (for example, localhost and (local)
both can be used to establish the server machine accessed by the SqlConnection type).

Once your construction string has been established, a call to Open() establishes your connection
with the DBMS. In addition to the ConnectionString, Open(), and Close() members, a connection object
provides a number of members that let you configure attritional settings regarding your connection,
such as timeout settings and transactional information. Table 24-6 lists some (but not all) members
of the DbConnection base class.

Table 24-6. Members of the DbConnection Type

Member Meaning in Life

BeginTransaction() This method is used to begin a database transaction.

ChangeDatabase() This method changes the database on an open connection.

ConnectionTimeout This read-only property returns the amount of time to wait while
establishing a connection before terminating and generating an error (the
default value is 15 seconds). If you wish to change the default, specify
a Connect Timeout segment in the connection string (e.g., Connect
Timeout=30).

Database This property gets the name of the database maintained by the connection
object.

DataSource This property gets the location of the database maintained by the connection
object.

GetSchema() This method returns a DataSet that contains schema information from the
data source.

State This property sets the current state of the connection, represented by the
ConnectionState enumeration.

Many of the properties of the DbConnection type are read-only in nature and are only useful
when you wish to obtain the characteristics of a connection at runtime. When you wish to override
default settings, you typically alter the construction string itself. For example, the connection string
sets the connection timeout setting from 15 seconds to 30 seconds (via the Connect Timeout segment
of the connection string):

5785ch24.qxd 3/31/06 11:32 AM Page 787

Sub Main()

Console.WriteLine("***** Fun with Data Readers *****")

Console.WriteLine()

' Create an open a connection.

Dim cn As SqlConnection = New SqlConnection()

cn.ConnectionString = _

"uid=sa;pwd=;Initial Catalog=Cars; Data Source=(local);Connect Timeout=30"

cn.Open()

...

End Sub

In the preceding code, notice you have now passed your connection object as a parameter to
a new helper method in the Program module named ShowConnectionStatus(), implemented as
follows:

' Be sure to import the System.Data.Common namespace!

Sub ShowConnectionStatus(ByVal cn As DbConnection)

' Show various stats about current connection object.

Console.WriteLine("***** Info about your connection *****")

Console.WriteLine("Database location: {0}", cn.DataSource)

Console.WriteLine("Database name: {0}", cn.Database)

Console.WriteLine("Timeout: {0}", cn.ConnectionTimeout)

Console.WriteLine("Connection state: {0}", cn.State.ToString())

Console.WriteLine()

End Sub

While most of these properties are self-explanatory, the State property is worth special men-
tion. Although this property may be assigned any value of the ConnectionState enumeration:

Enum ConnectionState

Broken

Closed

Connecting

Executing

Fetching

Open

End Enum

the only valid ConnectionState values are ConnectionState.Open and ConnectionState.Closed (the
remaining members of this enum are reserved for future use). Also, understand that it is always safe
to close a connection whose connection state is currently ConnectionState.Closed.

Working with .NET 2.0 ConnectionStringBuilders
Working with connection strings programmatically can be a bit clunky, given that they are often
represented as string literals, which are difficult to maintain and error prone at best. Under .NET 2.0,
the Microsoft-supplied ADO.NET data providers now support connection string builder objects, which
allow you to establish the name/value pairs using strongly typed properties. Consider the following
update to the current Main() method:

Sub Main()

Console.WriteLine("***** Fun with Data Readers *****")

Console.WriteLine()

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET788

5785ch24.qxd 3/31/06 11:32 AM Page 788

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 789

' Create a connection string via the builder object.

Dim cnStrBuilder As SqlConnectionStringBuilder = _

New SqlConnectionStringBuilder()

cnStrBuilder.UserID = "sa"

cnStrBuilder.Password = ""

cnStrBuilder.InitialCatalog = "Cars"

cnStrBuilder.DataSource = "(local)"

cnStrBuilder.ConnectTimeout = 30

Dim cn As SqlConnection = New SqlConnection()

cn.ConnectionString = cnStrBuilder.ConnectionString

cn.Open()

ShowConnectionStatus(cn)

...

End Sub

In this iteration, you create an instance of SqlConnectionStringBuilder, set the properties
accordingly, and obtain the internal string via the ConnectionString property. Also note that you
make use of the default constructor of the type. If you so choose, you can also create an instance of
your data provider’s connection string builder object by passing in an existing connection string as
a starting point (which can be helpful when you are reading these values dynamically from an
app.config file). Once you have hydrated the object with the initial string data, you can change
specific name/value pairs using the related properties, for example:

Sub Main()

Console.WriteLine("***** Fun with Data Readers *****")

Console.WriteLine()

' Assume you really obtained cnStr from a *.config file.

Dim cnStr As String = "uid=sa;pwd=;Initial Catalog=Cars;" & _

"Data Source=(local);Connect Timeout=30"

Dim cnStrBuilder As SqlConnectionStringBuilder = _

New SqlConnectionStringBuilder(cnStr)

' Change timeout value.

cnStrBuilder.ConnectTimeout = 5

...

End Sub

Working with Command Objects
Now that you better understand the role of the connection object, the next order of business is to
check out how to submit SQL queries to the database in question. The SqlCommand type (which
derives from DbCommand) is an OO representation of a SQL query, table name, or stored procedure.
The type of command is specified using the CommandType property, which may take any value from
the CommandType enum:

Enum CommandType

StoredProcedure

TableDirect

Text ' Default value.

End Enum

5785ch24.qxd 3/31/06 11:32 AM Page 789

When creating a command object, you may establish the SQL query as a constructor parameter
or via the CommandText property. Also when you are creating a command object, you need to specify
the connection to be used. Again, you may do so as a constructor parameter or via the Connection
property:

Sub Main()

Dim cn As SqlConnection = New SqlConnection()

...

' Create command object via ctor args.

Dim strSQL As String = "Select * From Inventory"

Dim myCommand As SqlCommand = New SqlCommand(strSQL, cn)

' Create another command object via properties.

Dim testCommand As SqlCommand = New SqlCommand()

testCommand.Connection = cn

testCommand.CommandText = strSQL

...

End Sub

Realize that at this point, you have not literally submitted the SQL query to the Cars database,
but rather prepped the state of the command type for future use. Table 24-7 highlights some additional
members of the DbCommand type.

Table 24-7. Members of the DbCommand Type

Member Meaning in Life

CommandTimeout Gets or sets the time to wait while executing the command before termi-
nating the attempt and generating an error. The default is 30 seconds.

Connection Gets or sets the DbConnection used by this instance of the DbCommand.

Parameters Gets the collection of DbParameter types used for a parameterized query.

Cancel() Cancels the execution of a command.

ExecuteReader() Returns the data provider’s DbDataReader object, which provides forward-
only, read-only access to the underlying data.

ExecuteNonQuery() Issues the command text to the data store.

ExecuteScalar() A lightweight version of the ExecuteNonQuery() method, designed
specifically for singleton queries (such as obtaining a record count).

ExecuteXmlReader() Microsoft SQL Server (2000 and higher) is capable of returning result sets as
XML. As you might suspect, this method returns a System.Xml.XmlReader
that allows you to process the incoming stream of XML.

Prepare() Creates a prepared (or compiled) version of the command on the data
source. As you may know, a prepared query executes slightly faster and is
useful when you wish to execute the same query multiple times.

■Note As illustrated later in this chapter, as of .NET 2.0, the SqlCommand object has been updated with additional
members that facilitate asynchronous database interactions.

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET790

5785ch24.qxd 3/31/06 11:32 AM Page 790

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 791

Working with Data Readers
Once you have established the active connection and SQL command, the next step is to submit the
query to the data source. As you might guess, you have a number of ways to do so. The DbDataReader
type (which implements IDataReader) is the simplest and fastest way to obtain information from
a data store. Recall that data readers represent a read-only, forward-only stream of data returned
one record at a time. Given this, it should stand to reason that data readers are useful only when
submitting SQL selection statements to the underlying data store.

Data readers are useful when you need to iterate over large amounts of data very quickly and
have no need to maintain an in-memory representation. For example, if you request 20,000 records
from a table to store in a text file, it would be rather memory-intensive to hold this information in
a DataSet. A better approach is to create a data reader that spins over each record as rapidly as possible.
Be aware, however, that data reader objects (unlike data adapter objects, which you’ll examine later)
maintain an open connection to their data source until you explicitly close the session.

Data reader objects are obtained from the command object via a call to ExecuteReader(). When
invoking this method, you may optionally instruct the reader to automatically close down the related
connection object by specifying CommandBehavior.CloseConnection.

The following use of the data reader leverages the Read() method to determine when you have
reached the end of your records (via a false return value). For each incoming record, you are making
use of the type indexer to print out the make, pet name, and color of each automobile. Also note that
you call Close() as soon as you are finished processing the records, to free up the connection object:

Sub Main()

...

' Obtain a data reader a la ExecuteReader().

Dim myDataReader As SqlDataReader

myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection)

' Loop over the results.

While myDataReader.Read()

Console.WriteLine("-> Make: {0} , PetName: {1} , Color: {2}.", _

myDataReader("Make").ToString().Trim(), _

myDataReader("PetName").ToString().Trim(), _

myDataReader("Color").ToString().Trim())

End While

myDataReader.Close()

ShowConnectionStatus(cn)

End Sub

■Note The trimming of the string data shown here is only used to remove trailing blank spaces in the database
entries; it is not directly related to ADO.NET!

The indexer of a data reader object has been overloaded to take either a string (representing
the name of the column) or an integer (representing the column’s ordinal position). Thus, you could
clean up the current reader logic (and avoid hard-coded string names) with the following update
(note the use of the FieldCount property):

5785ch24.qxd 3/31/06 11:32 AM Page 791

While myDataReader.Read()

Console.WriteLine("***** Record *****")

For i As Integer = 0 To myDataReader.FieldCount - 1

Console.WriteLine("{0} = {1}", _

myDataReader.GetName(i), _

myDataReader.GetValue(i).ToString().Trim())

Next

Console.WriteLine()

End While

If you compile and run your project, you should be presented with a list of all automobiles in
the Inventory table of the Cars database like the one in Figure 24-7.

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET792

Obtaining Multiple Result Sets Using a Data Reader
Data reader objects are able to obtain multiple result sets from a single command object. For exam-
ple, if you are interested in obtaining all rows from the Inventory table as well as all rows from the
Customers table, you are able to specify both SQL Select statements using a semicolon delimiter:

Dim theSQL As String = "Select * From Inventory;Select * from Customers"

Once you obtain the data reader, you are able to iterate over each result set via the NextResult()
method. Do be aware that you are always returned the first result set automatically. Thus, if you wish
to read over the rows of each table, you will be able to build the following iteration construct:

Figure 24-7. Fun with data reader objects

5785ch24.qxd 3/31/06 11:32 AM Page 792

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 793

Do

While myDataReader.Read()

Console.WriteLine("***** Record *****")

For i As Integer = 0 To myDataReader.FieldCount - 1

Console.WriteLine("{0} = {1}", _

myDataReader.GetName(i), _

myDataReader.GetValue(i).ToString().Trim())

Next

Console.WriteLine()

End While

Loop While myDataReader.NextResult()

So, at this point, you should be more aware of the functionality data reader objects bring to the
table. While these objects provide additional bits of functionality than I have shown here (such as
the ability to execute scalars and single-row queries), I’ll leave it to interested readers to consult the
.NET Framework 2.0 SDK documentation for complete details.

■Source Code The CarsDataReader project is included under the Chapter 24 subdirectory.

Modifying Tables Using Command Objects
As you have just seen, the ExecuteReader() method extracts a data reader object that allows you to
examine the results of a SQL Select statement using a forward-only, read-only flow of information.
However, when you wish to submit SQL commands that result in the modification of a given table,
you will call the ExecuteNonQuery() method of your command object. This single method will per-
form inserts, updates, and deletes based on the format of your command text.

To illustrate how to modify an existing database using nothing more than a call to
ExecuteNonQuery(), you will now build a new console application (CarsInventoryUpdater) that
allows the caller to modify the Inventory table of the Cars database. Like in other examples in this
text, the Main() method is responsible for prompting the user for a specific course of action and
executing that request via a Select Case statement. This program will allow the user to enter the
following commands:

• I: Inserts a new record into the Inventory table

• U: Updates an existing record in the Inventory table

• D: Deletes an existing record from the Inventory table

• L: Displays the current inventory using a data reader

• S: Shows these options to the user

• C: Clears the console and shows these options to the user

• Q: Quits the program

Each possible option is handled by a unique method within the Program module (each of which
is seen momentarily). Here is the implementation of Main(), which I assume requires no further
comment:

Sub Main()

' Display options to user.

ShowInstructions()

Dim userDone As Boolean = False

Dim userCommand As String = ""

5785ch24.qxd 3/31/06 11:32 AM Page 793

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET794

Dim cn As SqlConnection = New SqlConnection()

cn.ConnectionString = _

"uid=sa;pwd=;Initial Catalog=Cars;Data Source=(local)"

cn.Open()

' Keep looping until user enters 'q'.

Do

Console.Write("Please enter your command: ")

userCommand = Console.ReadLine()

Console.WriteLine()

Select Case userCommand.ToUpper()

Case "I"

InsertNewCar(cn)

Exit Select

Case "U"

UpdateCarPetName(cn)

Exit Select

Case "D"

DeleteCar(cn)

Exit Select

Case "L"

ListInventory(cn)

Exit Select

Case "S"

ShowInstructions()

Exit Select

Case "P"

LookUpPetName(cn)

Exit Select

Case "Q"

userDone = True

Exit Select

Case "C"

Console.Clear()

ShowInstructions()

Exit Select

Case Else

Console.WriteLine("Bad data! Try again")

Exit Select

End Select

Loop While Not userDone

cn.Close()

End Sub

The ShowInstructions() method does what you would expect:

Sub ShowInstructions()

Console.WriteLine("***** Car Inventory Updater *****")

Console.WriteLine()

Console.WriteLine("I: Inserts a new car.")

Console.WriteLine("U: Updated an existing car.")

Console.WriteLine("D: Deletes an existing car.")

Console.WriteLine("L: List current inventory.")

Console.WriteLine("S: Show these instructions.")

Console.WriteLine("C: Clear console and show instructions.")

Console.WriteLine("P: Look up pet name for existing car.")

Console.WriteLine("Q: Quits program.")

End Sub

5785ch24.qxd 3/31/06 11:32 AM Page 794

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 795

As mentioned, ListInventory() prints out the current rows of the Inventory table using a data
reader object (the code is identical to the previous CarsDataReader example):

Sub ListInventory(ByVal cn As SqlConnection)

Dim strSQL As String = "Select * From Inventory"

Dim myCommand As SqlCommand = New SqlCommand(strSQL, cn)

Dim myDataReader As SqlDataReader

myDataReader = myCommand.ExecuteReader()

While myDataReader.Read()

For i As Integer = 0 To myDataReader.FieldCount - 1

Console.Write("{0} = {1} ", _

myDataReader.GetName(i).Trim(), _

myDataReader.GetValue(i).ToString().Trim())

Next

Console.WriteLine()

End While

myDataReader.Close()

End Sub

Now that the basic console user interface (CUI) is in place, let’s move on to the good stuff.

Inserting New Records
Inserting a new record into the Inventory table is as simple as formatting the SQL insert statement
(based on user input) and calling ExecuteNonQuery():

Sub InsertNewCar(ByVal cn As SqlConnection)

' Gather info about new car.

Console.Write("Enter CarID: ")

Dim newCarID As Integer = 0

Try

newCarID = Integer.Parse(Console.ReadLine())

Catch

Console.WriteLine("Bad input! Canceling request")

Return

End Try

Console.Write("Enter Make: ")

Dim newCarMake As String = Console.ReadLine()

Console.Write("Enter Color: ")

Dim newCarColor As String = Console.ReadLine()

Console.Write("Enter PetName: ")

Dim newCarPetName As String = Console.ReadLine()

' Format and execute SQL statement.

Dim sql As String = String.Format("Insert Into Inventory" & _

"(CarID, Make, Color, PetName) Values" & _

"('{0}', '{1}', '{2}', '{3}')", _

newCarID, newCarMake, newCarColor, newCarPetName)

Dim cmd As SqlCommand = New SqlCommand(sql, cn)

Try

cmd.ExecuteNonQuery()

Catch

Console.WriteLine("Bad input! Canceling request")

Return

End Try

End Sub

5785ch24.qxd 3/31/06 11:32 AM Page 795

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET796

■Note As you may know, building a SQL statement using string concatenation can be risky from a security point
of view (think SQL injection attacks). While I use this approach during this chapter for purposes of brevity, the pre-
ferred way to build command text is using a parameterized query, which I describe shortly.

Deleting Existing Records
Deleting an existing record is just as simple as inserting a new record. Simply build the SQL query
and call ExecuteNonQuery():

Sub DeleteCar(ByVal cn As SqlConnection)

' Get ID of car to delete, then do so.

Dim carToDelete As Integer = 0

Console.Write("Enter CarID of car to delete: ")

Try

carToDelete = Integer.Parse(Console.ReadLine())

Catch ex As FormatException

Console.WriteLine(ex.Message)

Return

End Try

Dim sql As String = _

String.Format("Delete from Inventory where CarID = '{0}'", carToDelete)

Dim cmd As SqlCommand = New SqlCommand(sql, cn)

Try

cmd.ExecuteNonQuery()

Catch

Console.WriteLine("Sorry! That car is on order! Terminating request...")

End Try

End Sub

Updating Existing Records
If you followed the code behind DeleteCar() and InsertNewCar(), then UpdateCarPetName() is
a no-brainer:

Sub UpdateCarPetName(ByVal cn As SqlConnection)

Dim carToUpdate As Integer = 0

Dim newPetName As String = ""

Console.Write("Enter CarID of car to modify: ")

Try

carToUpdate = Integer.Parse(Console.ReadLine())

Catch ex As FormatException

Console.WriteLine(ex.Message)

Return

End Try

Console.Write("Enter new pet name: ")

newPetName = Console.ReadLine()

Dim sql As String = _

String.Format("Update Inventory Set PetName = '{0}' Where CarID = '{1}'", _

newPetName, carToUpdate)

Dim cmd As SqlCommand = New SqlCommand(sql, cn)

cmd.ExecuteNonQuery()

End Sub

With this, our application is feature complete! Figure 24-8 shows a test run (notice the deletion
of the car with the ID of 99).

5785ch24.qxd 3/31/06 11:32 AM Page 796

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 797

Figure 24-8. Inserting, updating, and deleting records via command objects

Working with Parameterized Command Objects
The previous insert, update, and delete logic works as expected; however, note that each of your SQL
queries is represented using hard-coded string literals. As you may know, a parameterized query can
be used to treat SQL parameters as objects, rather than simple blobs of text. Typically, parameterized
queries execute much faster than a literal SQL string, in that they are parsed exactly once (rather than
each time the SQL string is assigned to the CommandText property). As well, parameterized queries
also help protect against SQL injection attacks (a well-known data access security issue).

ADO.NET command objects maintain a collection of discrete parameter types. By default
this collection is empty, but you are free to insert any number of parameter objects that map to
a “placeholder parameter” in the SQL query. When you wish to associate a parameter within a SQL
query to a member in the command object’s parameters collection, prefix the SQL text parameter
with an at (@) symbol (at least when using Microsoft SQL Server; not all DBMSs support this notation
so be sure to consult the documentation for your .NET data provider).

Specifying Parameters Using the DbParameter Type
Before you build a parameterized query, let’s get to know the DbParameter type (which is the base
class to a provider’s specific parameter object). This class maintains a number of properties that
allow you to configure the name, size, and data type of the parameter, as well as other characteris-
tics such as the parameter’s direction of travel. Table 24-8 describes some key properties of the
DbParameter type.

5785ch24.qxd 3/31/06 11:32 AM Page 797

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET798

Table 24-8. Key Members of the DbParameter Type

Property Meaning in Life

DbType Gets or sets the native data type from the data source, represented as a CLR data type

Direction Gets or sets whether the parameter is input-only, output-only, bidirectional, or
a return value parameter

IsNullable Gets or sets whether the parameter accepts null values

ParameterName Gets or sets the name of the DbParameter

Size Gets or sets the maximum parameter size of the data

Value Gets or sets the value of the parameter

To illustrate, let’s rework the previous InsertNewCar() method to make use of parameter
objects. Here is the code update:

Sub InsertNewCar(ByVal cn As SqlConnection)

' Gather info about new car.

Console.Write("Enter CarID: ")

Dim newCarID As Integer = 0

Try

newCarID = Integer.Parse(Console.ReadLine())

Catch

Console.WriteLine("Bad input! Canceling request")

Return

End Try

Console.Write("Enter Make: ")

Dim newCarMake As String = Console.ReadLine()

Console.Write("Enter Color: ")

Dim newCarColor As String = Console.ReadLine()

Console.Write("Enter PetName: ")

Dim newCarPetName As String = Console.ReadLine()

' Format and execute SQL statement.

Dim sql As String = String.Format("Insert Into Inventory" & _

"(CarID, Make, Color, PetName) Values" & _

"(@CarID, @Make, @Color, @PetName)")

Dim cmd As SqlCommand = New SqlCommand(sql, cn)

' Fill params collection.

Dim param As SqlParameter = New SqlParameter()

param.ParameterName = "@CarID"

param.Value = newCarID

param.SqlDbType = SqlDbType.Int

cmd.Parameters.Add(param)

param = New SqlParameter()

param.ParameterName = "@Make"

param.Value = newCarMake

param.SqlDbType = SqlDbType.Char

param.Size = 20

cmd.Parameters.Add(param)

5785ch24.qxd 3/31/06 11:32 AM Page 798

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 799

param = New SqlParameter()

param.ParameterName = "@Color"

param.Value = newCarColor

param.SqlDbType = SqlDbType.Char

param.Size = 20

cmd.Parameters.Add(param)

param = New SqlParameter()

param.ParameterName = "@PetName"

param.Value = newCarPetName

param.SqlDbType = SqlDbType.Char

param.Size = 20

cmd.Parameters.Add(param)

Try

cmd.ExecuteNonQuery()

Catch

Console.WriteLine("Bad input! Canceling request")

Return

End Try

End Sub

While building a parameterized query requires a larger amount of code, the end result is a more
convenient way to tweak SQL statements programmatically as well as better overall performance.
While you are free to make use of this technique whenever a SQL query is involved, parameterized
queries are most helpful when you wish to trigger a stored procedure.

■Note Here, I made use of various properties to establish a parameter object. Do know, however, that parameter
objects support a number of overloaded constructors that allow you to set the values of various properties (which
will result in a more compact code base). Furthermore, be aware that the Visual Studio 2005 IDE will autogenerate
most (if not all) of this ADO.NET code when you make use of various visual designers (as we will do at the conclu-
sion of this chapter).

Executing a Stored Procedure Using DbCommand
A stored procedure is a named block of SQL code stored in the database. Stored procedures can be
constructed to return a set of rows or scalar data types and may take any number of optional
parameters. The end result is a unit of work that behaves like a typical function, with the obvious
difference of being located on a data store rather than a binary business object.

■Note Although I don’t cover this topic in this chapter, it is worth pointing out that the newest version of Microsoft
SQL Server (2005) is a CLR host! Therefore, stored procedures (and other database atoms) can be authored using
managed languages (such as VB 2005) rather than traditional SQL. Consult http://www.microsoft.com/sql/2005
for further details.

5785ch24.qxd 3/31/06 11:32 AM Page 799

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET800

To illustrate the process, let’s add a new option to the CarInventoryUpdate program that allows
the caller to look up a car’s pet name via the GetPetName stored procedure. This database object was
established when you installed the Cars database and looks like this:

CREATE PROCEDURE GetPetName

@carID int,

@petName char(20) output

AS

SELECT @petName = PetName from Inventory where CarID = @carID

First, update the current switch statement in Main() to handle a new case for “P” that calls
a new helper function named LookUpPetName() that takes a SqlConnection parameter and returns
void. Update your ShowInstructions() method to account for this new option.

When you wish to execute a stored procedure, you begin as always by creating a new connection
object, configuring your connection string, and opening the session. However, when you create your
command object, the CommandText property is set to the name of the stored procedure (rather than a SQL
query). As well, you must be sure to set the CommandType property to CommandType.StoredProcedure
(the default is CommandType.Text).

Given that this stored procedure has one input and one output parameter, your goal is to build
a command object that contains two SqlParameter objects within its parameter collection:

Sub LookUpPetName(ByVal cn As SqlConnection)

' Get the CarID.

Console.Write("Enter CarID: ")

Dim carID As Integer = Integer.Parse(Console.ReadLine())

' Establish name of stored proc.

Dim cmd As SqlCommand = New SqlCommand("GetPetName", cn)

cmd.CommandType = CommandType.StoredProcedure

' Input param.

Dim param As SqlParameter = New SqlParameter()

param.ParameterName = "@carID"

param.SqlDbType = SqlDbType.Int

param.Value = carID

param.Direction = ParameterDirection.Input

cmd.Parameters.Add(param)

' Output param.

param = New SqlParameter()

param.ParameterName = "@petName"

param.SqlDbType = SqlDbType.Char

param.Size = 20

param.Direction = ParameterDirection.Output

cmd.Parameters.Add(param)

' Execute the stored proc.

cmd.ExecuteNonQuery()

' Print output param.

Console.WriteLine("Pet name for car {0} is {1}", carID, _

cmd.Parameters("@petName").Value)

End Sub

Notice that the Direction property of the parameter object allows you to specify input and output
parameters. Once the stored procedure completes via a call to ExecuteNonQuery(), you are able to
obtain the value of the output parameter by investigating the command object’s parameter collection.
Figure 24-9 shows one possible test run.

5785ch24.qxd 3/31/06 11:32 AM Page 800

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 801

Figure 24-9. Triggering a stored procedure

■Source Code The CarsInventoryUpdater application is included under the Chapter 24 subdirectory.

Asynchronous Data Access Under .NET 2.0
As of .NET 2.0, the SQL data provider (represented by the System.Data.SqlClient namespace) has
been enhanced to support asynchronous database interactions via the following new members of
SqlCommand:

• BeginExecuteReader()/EndExecuteReader()

• BeginExecuteNonQuery()/EndExecuteNonQuery()

• BeginExecuteXmlReader()/EndExecuteXmlReader()

Given your work in Chapter 16, the naming convention of these method pairs may ring a bell.
Recall that the .NET asynchronous delegate pattern makes use of a “begin” method to execute a task
on a secondary thread, whereas the “end” method can be used to obtain the result of the asynchronous
invocation using the members of IAsyncResult and the optional AsyncCallback delegate. Because the
process of working with asynchronous commands is modeled after the standard delegate patterns,
a simple example should suffice (so be sure to consult Chapter 16 for full details of asynchronous
delegates).

Assume you wish to select the records from the Inventory table on a secondary thread of
execution using a data reader object. Here is the complete Main() method, with analysis to follow:

' Note we need to import the threading

' namespace!

Imports System.Data

Imports System.Data.SqlClient

Imports System.Threading

5785ch24.qxd 3/31/06 11:32 AM Page 801

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET802

Module Program

Sub Main()

Console.WriteLine("***** Fun with ASNYC Data Readers *****")

Console.WriteLine()

' Create an open a connection that is async-aware.

Dim cn As SqlConnection = New SqlConnection()

cn.ConnectionString = "uid=sa;pwd=;Initial Catalog=Cars;" & _

"Asynchronous Processing=true;Data Source=(local)"

cn.Open()

' Create a SQL command object.

Dim strSQL As String = "WaitFor Delay '00:00:02';Select * From Inventory"

Dim myCommand As SqlCommand = New SqlCommand(strSQL, cn)

' Execute the reader on a second thread.

Dim itfAsynch As IAsyncResult

itfAsynch = myCommand.BeginExecuteReader(CommandBehavior.CloseConnection)

' Do something while other thread works.

While Not itfAsynch.IsCompleted

Console.WriteLine("Working on main thread...")

Thread.Sleep(1000)

End While

Console.WriteLine()

' Loop over the results.

Dim myDataReader As SqlDataReader = myCommand.EndExecuteReader(itfAsynch)

While myDataReader.Read()

Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.", _

myDataReader("Make").ToString().Trim(), _

myDataReader("PetName").ToString().Trim(), _

myDataReader("Color").ToString().Trim())

End While

myDataReader.Close()

End Sub

End Module

The first point of interest is the fact that you need to enable asynchronous activity using the
new Asynchronous Processing segment of the connection string. Also note that you have padded
into the command text of your SqlCommand object a new WaitFor Delay segment simply to simulate
a long-running database interaction.

Beyond these points, notice that the call to BeginExecuteDataReader() returns the expected
IasyncResult-compatible type, which is used to synchronize the calling thread (via the IsCompleted
property) as well as obtain the SqlDataReader once the query has finished executing.

■Source Code The AsyncCmdObject application is included under the Chapter 24 subdirectory.

Understanding the Disconnected Layer of ADO.NET
As you have seen, working with the connected layer allows you to interact with a database using
connection, command, and data reader objects. With this small handful of types, you are able to
select, insert, update, and delete records to your heart’s content (as well as trigger stored procedures).

5785ch24.qxd 3/31/06 11:32 AM Page 802

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 803

Figure 24-10. Data adapter objects move DataSets to and from the client tier.

Figure 24-11. The anatomy of a DataSet

In reality, however, you have seen only half of the ADO.NET story. Recall that the ADO.NET object
model can be used in a disconnected manner.

When you work with the disconnected layer of ADO.NET, you will still make use of connection
and command objects. In addition, you will leverage a specific object named a data adapter (which
extends the abstract DbDataAdapter) to fetch and update data. Unlike the connected layer, data
obtained via a data adapter is not processed using data reader objects. Rather, data adapter objects
make use of DataSet objects to move data between the caller and data source. The DataSet type is
a container for any number of DataTable objects, each of which contains a collection of DataRow and
DataColumn objects.

The data adapter object of your data provider handles the database connection automatically.
In an attempt to increase scalability, data adapters keep the connection open for the shortest possi-
ble amount of time. Once the caller receives the DataSet object, he is completely disconnected from
the DBMS and left with a local copy of the remote data. The caller is free to insert, delete, or update
rows from a given DataTable, but the physical database is not updated until the caller explicitly passes
the DataSet to the data adapter for updating. In a nutshell, DataSets allow the clients to pretend
they are indeed always connected, when in fact they are operating on an in-memory database, as
Figure 24-10 illustrates.

Given that the centerpiece of the disconnected layer is the DataSet type, your next task is to
learn how to manipulate a DataSet manually. Once you understand how to do so, you will have no
problem manipulating the contents of a DataSet retrieved from a data adapter object.

Understanding the Role of the DataSet
Simply put, a DataSet is an in-memory representation of data. More specifically, a DataSet is a class
type that maintains three internal strongly typed collections, as Figure 24-11 demonstrates.

5785ch24.qxd 3/31/06 11:32 AM Page 803

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET804

The Tables property of the DataSet allows you to access the DataTableCollection that contains the
individual DataTables. Another important collection used by the DataSet is the DataRelationCollection.
Given that a DataSet is a disconnected version of a database schema, it can programmatically repre-
sent the parent/child relationships between its tables. For example, a relation can be created between
two tables to model a foreign key constraint using the DataRelation type. This object can then be
added to the DataRelationCollection through the Relations property. At this point, you can navigate
between the connected tables as you search for data. You will see how this is done a bit later in the
chapter.

The ExtendedProperties property provides access to the PropertyCollection object, which
allows you to associate any extra information to the DataSet as name/value pairs. This information
can literally be anything at all, even if it has no bearing on the data itself. For example, you can associ-
ate your company’s name to a DataSet, which can then function as in-memory metadata. Other
examples of extended properties might include timestamps, an encrypted password that must be
supplied to access the contents of the DataSet, a number representing a data refresh rate, and so
forth.

■Note Like the DataSet, the DataTable class also supports extended properties via the ExtendedProperties
property.

Members of the DataSet
Before exploring too many other programmatic details, take a look at some core members of the
DataSet. Beyond the Tables, Relations, and ExtendedProperties properties, Table 24-9 describes
some additional properties of interest.

Table 24-9. Properties of the Mighty DataSet

Property Meaning in Life

CaseSensitive Indicates whether string comparisons in DataTable objects are case sensitive
(or not).

DataSetName Represents the friendly name of this DataSet. Typically this value is established
as a constructor parameter.

EnforceConstraints Gets or sets a value indicating whether constraint rules are followed when
attempting any update operation.

HasErrors Gets a value indicating whether there are errors in any of the rows in any of
the DataTables of the DataSet.

RemotingFormat This new .NET 2.0 property allows you to define how the DataSet should
serialize its content (binary or XML) for the .NET remoting layer.

The methods of the DataSet mimic some of the functionality provided by the aforementioned
properties. In addition to interacting with XML streams, the DataSet provides methods that allow
you to copy/clone the contents of your DataSet, as well as establish the beginning and ending points
of a batch of updates. Table 24-10 describes some core methods.

5785ch24.qxd 3/31/06 11:32 AM Page 804

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 805

Table 24-10. Methods of the Mighty DataSet

Methods Meaning in Life

AcceptChanges() Commits all the changes made to this DataSet since it was loaded or the
last time AcceptChanges() was called.

Clear() Completely clears the DataSetdata by removing every row in each DataTable.

Clone() Clones the structure of the DataSet, including all DataTables, as well as
all relations and any constraints.

Copy() Copies both the structure and data for this DataSet.

GetChanges() Returns a copy of the DataSet containing all changes made to it since it
was last loaded or since AcceptChanges() was called.

GetChildRelations() Returns the collection of child relations that belong to a specified table.

GetParentRelations() Gets the collection of parent relations that belong to a specified table.

HasChanges() Overloaded. Gets a value indicating whether the DataSet has changes,
including new, deleted, or modified rows.

Merge() Overloaded. Merges this DataSet with a specified DataSet.

ReadXml() Allow you to read XML data from a valid stream (file based, memory
ReadXmlSchema() based, or network based) into the DataSet.

RejectChanges() Rolls back all the changes made to this DataSet since it was created or
the last time DataSet.AcceptChanges was called.

WriteXml() Allow you to write out the contents of a DataSet into a valid stream.
WriteXmlSchema()

Now that you have a better understanding of the role of the DataSet (and some idea of what
you can do with one), create a new console application named SimpleDataSet. Within the Main()
method, define a new DataSet object that contains two extended properties representing your
company name and timestamp (don’t forget to import System.Data):

Sub Main()

Console.WriteLine("***** Fun with DataSets *****")

Console.WriteLine()

' Create the DataSet object.

Dim carsInventoryDS As DataSet = New DataSet("Car Inventory")

carsInventoryDS.ExtendedProperties("TimeStamp") = DateTime.Now

carsInventoryDS.ExtendedProperties("Company") = "Intertech Training"

End Sub

A DataSet without DataTables is a bit like a workweek without a weekend. Therefore, the next
task is to examine the internal composition of the DataTable, beginning with the DataColumn type.

Working with DataColumns
The DataColumn type represents a single column within a DataTable. Collectively speaking, the set of
all DataColumn types bound to a given DataTable represents the foundation of a table’s schema informa-
tion. For example, if you were to model the Inventory table of the Cars database, you would create
four DataColumns, one for each column (CarID, Make, Color, and PetName). Once you have created
your DataColumn objects, they are typically added into the columns collection of the DataTable type
(via the Columns property).

5785ch24.qxd 3/31/06 11:32 AM Page 805

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET806

If you have a background in relational database theory, you know that a given column in a data
table can be assigned a set of constraints (e.g., configured as a primary key, assigned a default value,
configured to contain read-only information, etc.). Also, every column in a table must map to an
underlying data type. For example, the Inventory table’s schema requires that the CarID column
map to an integer, while Make, Color, and PetName map to an array of characters. The DataColumn
class has numerous properties that allow you to configure these very things. Table 24-11 provides
a rundown of some core properties.

Table 24-11. Properties of the DataColumn

Properties Meaning in Life

AllowDBNull This property is used to indicate whether a row can specify null values in
this column. The default value is true.

AutoIncrement These properties are used to configure the autoincrement behavior for
AutoIncrementSeed a given column. This can be helpful when you wish to ensure unique values
AutoIncrementStep in a given DataColumn (such as a primary key). By default, a DataColumn does

not support autoincrement behavior.

Caption This property gets or sets the caption to be displayed for this column (e.g.,
what the end user sees in a DataGridView).

ColumnMapping This property determines how a DataColumn is represented when a DataSet
is saved as an XML document using the DataSet.WriteXml() method.

ColumnName This property gets or sets the name of the column in the Columns collection
(meaning how it is represented internally by the DataTable). If you do not
set the ColumnName explicitly, the default values are Column with (n+1) numerical
suffixes (i.e., Column1, Column2, Column3, etc.).

DataType This property defines the data type (Boolean, string, float, etc.) stored in
the column.

DefaultValue This property gets or sets the default value assigned to this column when
inserting new rows. This is used if not otherwise specified.

Expression This property gets or sets the expression used to filter rows, calculate
a column’s value, or create an aggregate column.

Ordinal This property gets the numerical position of the column in the Columns
collection maintained by the DataTable.

ReadOnly This property determines whether this column can be modified once a row
has been added to the table. The default is false.

Table This property gets the DataTable that contains this DataColumn.

Unique This property gets or sets a value indicating whether the values in each row
of the column must be unique or whether repeating values are permissible.
If a column is assigned a primary key constraint, the Unique property should
be set to true.

Building a DataColumn
To continue with the SimpleDataSet project (and illustrate the use of the DataColumn), assume you
wish to model the columns of the Inventory table. Given that the CarID column will be the table’s
primary key, you will configure the DataColumn object as read-only, unique, and non-null (using the
ReadOnly, Unique, and AllowDBNull properties). Update the Main() method to build four DataColumn
objects:

5785ch24.qxd 3/31/06 11:32 AM Page 806

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 807

Sub Main()

...

' Create data columns that map to the

' 'real' columns in the Inventory table

' of the Cars database.

Dim carIDColumn As DataColumn = _

New DataColumn("CarID", GetType(Integer))

carIDColumn.ReadOnly = True

carIDColumn.Caption = "Car ID"

carIDColumn.AllowDBNull = False

carIDColumn.Unique = True

Dim carMakeColumn As DataColumn = _

New DataColumn("Make", GetType(String))

Dim carColorColumn As DataColumn = _

New DataColumn("Color", GetType(String))

Dim carPetNameColumn As DataColumn = _

New DataColumn("PetName", GetType(String))

carPetNameColumn.Caption = "Pet Name"

End Sub

Enabling Autoincrementing Fields
One aspect of the DataColumn you may choose to configure is its ability to autoincrement. Simply
put, autoincrementing columns are used to ensure that when a new row is added to a given table,
the value of this column is assigned automatically, based on the current step of the incrementation.
This can be helpful when you wish to ensure that a column has no repeating values (such as
a primary key).

This behavior is controlled using the AutoIncrement, AutoIncrementSeed, and AutoIncrementStep
properties. The seed value is used to mark the starting value of the column, whereas the step value
identifies the number to add to the seed when incrementing. Consider the following update to the
construction of the carIDColumn DataColumn:

Sub Main()

...

Dim carIDColumn As DataColumn = New DataColumn("CarID", GetType(Integer))

carIDColumn.ReadOnly = True

carIDColumn.Caption = "Car ID"

carIDColumn.AllowDBNull = False

carIDColumn.Unique = True

carIDColumn.AutoIncrement = True

carIDColumn.AutoIncrementSeed = 0

carIDColumn.AutoIncrementStep = 1

End Sub

Here, the carIDColumn object has been configured to ensure that as rows are added to the
respective table, the value for this column is incremented by 1. Because the seed has been set at 0,
this column would be numbered 0, 1, 2, 3, and so forth.

5785ch24.qxd 3/31/06 11:32 AM Page 807

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET808

Adding a DataColumn to a DataTable
The DataColumn type does not typically exist as a stand-alone entity, but is instead inserted into
a related DataTable. To illustrate, create a new DataTable type (fully detailed in just a moment) and
insert each DataColumn object in the columns collection using the Columns property:

Sub Main()

...

' Now add DataColumns to a DataTable.

Dim inventoryTable As DataTable = New DataTable("Inventory")

inventoryTable.Columns.AddRange(New DataColumn() _

{carIDColumn, carMakeColumn, carColorColumn, carPetNameColumn})

End Sub

Working with DataRows
As you have seen, a collection of DataColumn objects represents the schema of a DataTable. In contrast,
a collection of DataRow types represents the actual data in the table. Thus, if you have 20 listings in
the Inventory table of the Cars database, you can represent these records using 20 DataRow types.
Using the members of the DataRow class, you are able to insert, remove, evaluate, and manipulate
the values in the table. Table 24-12 documents some (but not all) of the members of the DataRow type.

Table 24-12. Key Members of the DataRow Type

Members Meaning in Life

HasErrors The HasErrors property returns a Boolean value indicating whether there
GetColumnsInError() are errors.
GetColumnError() If so, the GetColumnsInError() method can be used to obtain the offending
ClearErrors() members, and GetColumnError() can be used to obtain the error description,
RowError while the ClearErrors() method removes each error listing for the row.

The RowError property allows you to configure a textual description of the
error for a given row.

ItemArray This property gets or sets all of the values for this row using an array of objects.

RowState This property is used to pinpoint the current “state” of the DataRow using
values of the RowState enumeration.

Table This property is used to obtain a reference to the DataTable containing
this DataRow.

AcceptChanges() These methods commit or reject all changes made to this row since the
RejectChanges() last time AcceptChanges() was called.

BeginEdit() These methods begin, end, or cancel an edit operation on a DataRow object.
EndEdit()
CancelEdit()

Delete() This method marks this row to be removed when the AcceptChanges()
method is called.

IsNull() This method gets a value indicating whether the specified column contains
a null value.

Working with a DataRow is a bit different from working with a DataColumn, because you cannot
create a direct instance of this type; rather, you obtain a reference from a given DataTable. For example,
assume you wish to insert two rows in the Inventory table. The DataTable.NewRow() method allows
you to obtain the next slot in the table, at which point you can fill each column with new data via
the type indexer, as shown here:

5785ch24.qxd 3/31/06 11:32 AM Page 808

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 809

Sub Main()

...

' Now add some rows to the Inventory Table.

Dim carRow As DataRow = inventoryTable.NewRow()

carRow("Make") = "BMW"

carRow("Color") = "Black"

carRow("PetName") = "Hamlet"

inventoryTable.Rows.Add(carRow)

carRow = inventoryTable.NewRow()

carRow("Make") = "Saab"

carRow("Color") = "Red"

carRow("PetName") = "Sea Breeze"

inventoryTable.Rows.Add(carRow)

End Sub

Notice how the DataRow class defines an indexer that can be used to gain access to a given
DataColumn by numerical position as well as column name. At this point, you have a single DataTable
containing two rows.

Understanding the DataRow.RowState Property
The RowState property is useful when you need to programmatically identify the set of all rows in
a table that have changed, have been newly inserted, and so forth. This property may be assigned
any value from the DataRowState enumeration, as shown in Table 24-13.

Table 24-13. Values of the DataRowState Enumeration

Value Meaning in Life

Added The row has been added to a DataRowCollection, and AcceptChanges() has not been
called.

Deleted The row has been deleted via the Delete() method of the DataRow.

Detached The row has been created but is not part of any DataRowCollection. A DataRow is in
this state immediately after it has been created and before it is added to a collection,
or if it has been removed from a collection.

Modified The row has been modified, and AcceptChanges() has not been called.

Unchanged The row has not changed since AcceptChanges() was last called.

While you are programmatically manipulating the rows of a given DataTable, the RowState
property is set automatically:

Sub Main()

...

Dim carRow As DataRow = inventoryTable.NewRow()

' Prints out: Row State is: Detached.

Console.WriteLine("Row State is: {0} .", carRow.RowState)

carRow("Make") = "BMW"

carRow("Color") = "Black"

carRow("PetName") = "Hamlet"

inventoryTable.Rows.Add(carRow)

' Prints out: Row State is: Added.

Console.WriteLine("Row State is: {0} .", inventoryTable.Rows(0).RowState);

...

End Sub

5785ch24.qxd 3/31/06 11:32 AM Page 809

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET810

As you can see, the ADO.NET DataRow is smart enough to remember its current state of affairs.
Given this, the owning DataTable is able to identify which rows have been modified. This is a key
feature of the DataSet, as when it comes time to send updated information to the data store, only
the modified data is submitted.

Working with DataTables
The DataTable defines a good number of members, many of which are identical in name and func-
tionality to those of the DataSet. Table 24-14 describes some core properties of the DataTable type
beyond Rows and Columns.

Table 24-14. Key Members of the DataTable Type

Property Meaning in Life

CaseSensitive Indicates whether string comparisons within the table are case sensitive (or
not). The default value is false.

ChildRelations Returns the collection of child relations for this DataTable (if any).

Constraints Gets the collection of constraints maintained by the table.

DataSet Gets the DataSet that contains this table (if any).

DefaultView Gets a customized view of the table that may include a filtered view or
a cursor position.

MinimumCapacity Gets or sets the initial number of rows in this table (the default is 25).

ParentRelations Gets the collection of parent relations for this DataTable.

PrimaryKey Gets or sets an array of columns that function as primary keys for the data table.

RemotingFormat Allows you to define how the DataSet should serialize its content (binary or
XML) for the .NET remoting layer. This property is new in .NET 2.0.

TableName Gets or sets the name of the table. This same property may also be specified
as a constructor parameter.

For the current example, let’s set the PrimaryKey property of the DataTable to the carIDColumn
DataColumn object:

Sub Main()

...

' Mark the primary key of this table.

inventoryTable.PrimaryKey = New DataColumn() _

{inventoryTable.Columns(0)}

End Sub

Once you do this, the DataTable example is complete. The final step is to insert your DataTable
into the carsInventoryDS DataSet object. Then you’ll pass your DataSet to a (yet to be written)
helper method named PrintDataSet():

Sub Main()

...

' Finally, add our table to the DataSet.

carsInventoryDS.Tables.Add(inventoryTable)

' Now print the DataSet.

PrintDataSet(carsInventoryDS)

End Sub

5785ch24.qxd 3/31/06 11:32 AM Page 810

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 811

Figure 24-12. Contents of the example’s DataSet object

The PrintDataSet() method simply iterates over each DataTable in the DataSet, printing out
the column names and row values using the type indexers:

Sub PrintDataSet(ByVal ds As DataSet)

Console.WriteLine("Tables in '{0}' DataSet." _

& Chr(10) & "", ds.DataSetName)

For Each dt As DataTable In ds.Tables

Console.WriteLine("{0} Table." & Chr(10) & "", dt.TableName)

For curCol As Integer = 0 To dt.Columns.Count - 1

' Print out the column names.

Console.Write(dt.Columns(curCol).ColumnName.Trim() _

& "" & Chr(9) & "")

Next

Console.WriteLine("" & Chr(10) & "----------------------------------")

For curRow As Integer = 0 To dt.Rows.Count - 1

' Print the DataTable.

For curCol As Integer = 0 To dt.Columns.Count - 1

Console.Write(dt.Rows(curRow)(curCol).ToString().Trim() & "" & Chr(9) & "")

Next

Console.WriteLine()

Next

Next

End Sub

Figure 24-12 shows the program’s output.

Working with .NET 2.0 DataTableReaders
DataTables provide a number of methods beyond what we’ve examined thus far. For example, like
DataSets, DataTables support AcceptChanges(), GetChanges(), Copy(), and ReadXml()/WriteXml()
methods. As of .NET 2.0, DataTables also now support a method named CreateDataReader(). This
method allows you to obtain the data within a DataTable using a data reader–like navigation scheme
(forward-only, read-only). To illustrate, create a new helper function named PrintTable(), imple-
mented as follows:

Private Sub PrintTable(ByVal dt As DataTable)

Console.WriteLine("" & Chr(10) & "***** Rows in DataTable *****")

' Now, get the new .NET 2.0 DataTableReader type.

Dim dtReader As DataTableReader = dt.CreateDataReader()

5785ch24.qxd 3/31/06 11:32 AM Page 811

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET812

' The DataTableReader works just like the DataReader.

While dtReader.Read()

For i As Integer = 0 To dtReader.FieldCount - 1

Console.Write("{0} = {1}", dtReader.GetName(i).Trim(), _

dtReader.GetValue(i).ToString().Trim())

Next

Console.WriteLine()

End While

dtReader.Close()

End Sub

Notice that the DataTableReader works identically to the data reader object of your data provider.
Using a DataTableReader can be an ideal choice when you wish to quickly pump out the data within
a DataTable without needing to traverse the internal row and column collections. To call this method,
simply pass in the correct table:

Sub Main()

...

' Print out the DataTable via 'table reader'.

PrintTable(carsInventoryDS.Tables("Inventory"))

End Sub

Persisting DataSets (and DataTables) As XML
To wrap up the current example, recall that DataSets and DataTables both support WriteXml() and
ReadXml() methods. WriteXml() allows you to persist the object’s content to a local file (as well as
into any System.IO.Stream-derived type) as an XML document. ReadXml() allows you to hydrate the
state of a DataSet (or DataTable) from a given XML document. In addition, DataSets and DataTables
both support WriteXmlSchema() and ReadXmlSchema() to save or load an *.xsd file. To test this out for
yourself, update your Main() method with the final set of code statements:

Sub Main()

...

' Save this DataSet as XML.

carsInventoryDS.WriteXml("carsDataSet.xml")

carsInventoryDS.WriteXmlSchema("carsDataSet.xsd")

' Clear out the DataSet and reload from XML.

carsInventoryDS.Clear()

' Print the DataSet (will be empty)

PrintDataSet(carsInventoryDS)

carsInventoryDS.ReadXml("carsDataSet.xml")

PrintDataSet(carsInventoryDS)

Console.WriteLine()

End Sub

If you open the carsDataSet.xml file, you will find that each column in the table has been
encoded as an XML element:

<?xml version="1.0" standalone="yes"?>

<Car_x0020_Inventory>

<Inventory>

<CarID>0</CarID>

<Make>BMW</Make>

<Color>Black</Color>

<PetName>Hamlet</PetName>

</Inventory>

5785ch24.qxd 3/31/06 11:32 AM Page 812

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 813

<Inventory>

<CarID>1</CarID>

<Make>Saab</Make>

<Color>Red</Color>

<PetName>Sea Breeze</PetName>

</Inventory>

</Car_x0020_Inventory>

Finally, recall that the DataColumn type supports a property named ColumnMapping, which can be
used to control how a column should be represented in XML. The default setting is MappingType.Element.
However, if you establish the CarID column as an XML attribute as follows by updating your existing
carIDColumn DataColumn object:

Sub Main()

...

Dim carIDColumn As DataColumn = New DataColumn("CarID", GetType(Integer))

...

carIDColumn.ColumnMapping = MappingType.Attribute

End Sub

you will find the following XML:

<?xml version="1.0" standalone="yes"?>

<Car_x0020_Inventory>

<Inventory CarID="0">

<Make>BMW</Make>

<Color>Black</Color>

<PetName>Hamlet</PetName>

</Inventory>

<Inventory CarID="1">

<Make>Saab</Make>

<Color>Red</Color>

<PetName>Sea Breeze</PetName>

</Inventory>

</Car_x0020_Inventory>

■Source Code The SimpleDataSet application is included under the Chapter 24 subdirectory.

Binding DataTables to User Interfaces
Now that you have been exposed to the process of interacting with DataSets in the raw, let’s see
a Windows Forms example. Your goal is to build a Form that displays the contents of a DataTable

within a DataGridView widget. Figure 24-13 shows the final UI design (which is implemented in the
next several sections).

5785ch24.qxd 3/31/06 11:32 AM Page 813

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET814

■Note As of .NET 2.0, the DataGridView widget is the preferred UI control used to bind relational data. Do be
aware, however, that the legacy .NET 1.x DataGrid control is still available.

To begin, create a new Windows Forms application named CarDataTableViewer. Add
a DataGridView widget (named carInventoryGridView) and descriptive Label to your designer.
Next, insert a new VB 2005 class into your project (named Car), which is defined as follows:

Public Class Car

' Made public for ease of use.

Public carPetName As String, carMake As String, carColor As String

Public Sub New(ByVal petName As String, _

ByVal make As String, ByVal color As String)

carPetName = petName

carColor = color

carMake = make

End Sub

End Class

Now, implement the Form’s default constructor to populate a generic List(Of Car) member
variable:

Public Class MainForm

' A generic list of cars.

Private arTheCars As New List(Of Car)

Figure 24-13. The Windows Forms CarDataTableViewer GUI

5785ch24.qxd 3/31/06 11:32 AM Page 814

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 815

Public Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

' Inherited member to center the form.

CenterToScreen()

' Fill the list with some cars.

arTheCars.Add(New Car("Chucky", "BMW", "Green"))

arTheCars.Add(New Car("Tiny", "Yugo", "White"))

arTheCars.Add(New Car("", "Jeep", "Tan"))

arTheCars.Add(New Car("Pain Inducer", "Caravan", "Pink"))

arTheCars.Add(New Car("Fred", "BMW", "Pea Soup Green"))

arTheCars.Add(New Car("Buddha", "BMW", "Black"))

arTheCars.Add(New Car("Mel", "Firebird", "Red"))

arTheCars.Add(New Car("Sarah", "Colt", "Black"))

End Sub

End Class

Like the previous SimpleDataSet example, the CarDataTableViewer application will construct
a DataTable that contains four DataColumns to represent the columns of the Inventory table within
the Cars database. As well, this DataTable will contain a set of DataRows to represent a list of automo-
biles. This time, however, you will fill the rows using your generic List(Of T) member variable.

First, add a new member variable named inventoryTable of type DataTable to your Form. Next,
add a new helper function to your Form class named CreateDataTable(), and call this method within
the Form’s default constructor. The code required to add the DataColumns to the DataTable object is
identical to that in the previous example, so I’ll omit it here (consult this book’s code download for
complete details). Do note, though, that you are iterating over each member of the List(Of T) to
build your row set:

Private Sub CreateDataTable()

' Create DataColumns and add to DataTable.

...

' Now add DataColumns to a DataTable.

inventoryTable.Columns.AddRange(New DataColumn() _

{carIDColumn, carMakeColumn, carColorColumn, carPetNameColumn})

' Mark the primary key of this table.

inventoryTable.PrimaryKey = New DataColumn() {inventoryTable.Columns(0)}

' Iterate over the array list to make rows.

For Each c As Car In arTheCars

Dim newRow As DataRow = inventoryTable.NewRow()

newRow("Make") = c.carMake

newRow("Color") = c.carColor

newRow("PetName") = c.carPetName

inventoryTable.Rows.Add(newRow)

Next

' Bind the DataTable to the carInventoryGridView.

carInventoryGridView.DataSource = inventoryTable

End Sub

Notice that the final line of code within the CreateDataTable() method assigns the inventoryTable
to the DataSource property. This single property is all you need to set to bind a DataTable to
a DataGridView object. As you might guess, this GUI widget is reading the rows and column collec-
tions internally to establish the UI. At this point, you should be able to run your application and see
the DataTable within the topmost DataGridView control.

5785ch24.qxd 3/31/06 11:32 AM Page 815

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET816

Programmatically Deleting Rows
Now, what if you wish to remove a row from a DataTable? One approach is to call the Delete()
method of the DataRow object that represents the row to terminate. Simply specify the index (or
DataRow object) representing the row to remove. The following logic behind the Remove Row #
Button’s Click event handler removes the specified row from your in-memory DataTable:

' Remove this row from the DataRowCollection.

Private Sub btnRemoveRow_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnRemoveRow.Click

Try

inventoryTable.Rows((Integer.Parse(txtRowToRemove.Text))).Delete()

inventoryTable.AcceptChanges()

Catch ex As Exception

MessageBox.Show(ex.Message)

End Try

End Sub

The Delete() method might have been better named MarkedAsDeletable(), as the row is not
literally removed until the DataTable.AcceptChanges() method is called. In effect, the Delete() method
simply sets a flag that says, “I am ready to die when my table tells me to.” Also understand that if a row
has been marked for deletion, a DataTable may reject the delete operation via RejectChanges(), as
shown here:

' Mark a row as deleted, but reject the changes.

Private Sub btnRemoveRow_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnRemoveRow.Click

...

inventoryTable.Rows((Integer.Parse(txtRowToRemove.Text))).Delete()

' Do more work

...

inventoryTable.RejectChanges() ' Restore previous RowState value.

End Sub

Applying Filters and Sort Orders
You may wish to see a small subset of a DataTable’s data, as specified by some sort of filtering criteria.
For example, what if you wish to see only a certain make of automobile from the in-memory Inven-
tory table? The Select() method of the DataTable class provides this very functionality. Update your
GUI once again, this time allowing users to specify a string that represents the make of the automobile
they are interested in viewing. The result will be placed into a Windows Forms message box.

The Select() method has been overloaded a number of times to provide different selection
semantics. At its most basic level, the parameter sent to Select() is a string that contains some con-
ditional operation. To begin, observe the following logic for the Click event handler of the Get These
Makes Button:

Private Sub btnGetMakes_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGetMakes.Click

' Build a filter based on user input.

Dim filterStr As String = String.Format("Make= '{0}'", txtMakeToGet.Text)

' Find all rows matching the filter.

Dim makes As DataRow() = inventoryTable.Select(filterStr, "PetName DESC")

' Show what we got!

If makes.Length = 0 Then

MessageBox.Show("Sorry, no cars...", "Selection error!")

5785ch24.qxd 3/31/06 11:32 AM Page 816

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 817

Figure 24-14. Displaying filtered data

Else

Dim strMake As String = Nothing

For i As Integer = 0 To makes.Length - 1

Dim temp As DataRow = makes(i)

strMake &= temp("PetName").ToString() & "" & Chr(10) & ""

Next

MessageBox.Show(strMake, txtMakeToGet.Text & " type(s):")

End If

End Sub

Here, you first build a simple filter based on the value in the associated TextBox. If you specify
BMW, your filter is Make = 'BMW'. When you send this filter to the Select() method, you get back an
array of DataRow types that represent each row that matches the filter (see Figure 24-14).

As you can see, filtering logic is standard SQL syntax. To prove the point, assume you wish to
obtain the results of the previous Select() invocation alphabetically based on pet name. In terms of
SQL, this translates into a sort based on the PetName column. Luckily, the Select() method has been
overloaded to send in a sort criterion, as shown here:

' Sort by PetName.

makes = inventoryTable.Select(filterStr, "PetName")

If you want the results in descending order, call Select(), as shown here:

' Return results in descending order.

makes = inventoryTable.Select(filterStr, "PetName DESC")

In general, the sort string contains the column name followed by “ASC” (ascending, which is
the default) or “DESC” (descending). If need be, multiple columns can be separated by commas.
Finally, understand that a filter string can be composed of any number of relational operators. For
example, what if you want to find all cars with an ID greater than 5? Here is a helper function that
does this very thing:

Private Sub ShowCarsWithIdLessThanFive()

' Now show the pet names of all cars with ID greater than 5.

Dim properIDs As DataRow()

Dim newFilterStr As String = "ID > '5'"

properIDs = inventoryTable.Select(newFilterStr)

Dim strIDs As String = Nothing

For i As Integer = 0 To properIDs.Length - 1

Dim temp As DataRow = properIDs(i)

strIDs &= temp("PetName").ToString() & " is ID " _

& temp("ID").ToString() & "" & Chr(10) & ""

Next

MessageBox.Show(strIDs, "Pet names of cars where ID > 5")

End Sub

5785ch24.qxd 3/31/06 11:32 AM Page 817

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET818

Updating Rows
The final aspect of the DataTable you should be aware of is the process of updating an existing row
with new values. One approach is to first obtain the row(s) that match a given filter criterion using
the Select() method. Once you have the DataRow(s) in question, modify them accordingly. For
example, assume you have a new Button that (when clicked) searches the DataTable for all rows
where Make is equal to BMW. Once you identify these items, you change the Make from BMW to Colt:

Private Sub btnChangeBeemersToColts_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnChangeBeemersToColts.Click

' Make sure user has not lost their mind.

If Windows.Forms.DialogResult.Yes = _

MessageBox.Show("Are you sure?? BMWs are much nicer than Colts!", _

"Please Confirm!", MessageBoxButtons.YesNo) Then

' Build a filter.

Dim filterStr As String = "Make='BMW'"

' Find all rows matching the filter.

For Each r As DataRow In inventoryTable.Select(filterStr)

' Change all Beemers to Colts!

r("Make") = "Colt"

Next

End If

End Sub

The DataRow class also provides the BeginEdit(), EndEdit(), and CancelEdit() methods, which
allow you to edit the content of a row while temporarily suspending any associated validation rules.
In the previous logic, each row was validated with each assignment. (Also, if you capture any events
from the DataRow, they fire with each modification.) When you call BeginEdit() on a given DataRow,
the row is placed in edit mode. At this point you can make your changes as necessary and call either
EndEdit() to commit these changes or CancelEdit() to roll back the changes to the original version,
for example:

Private Sub UpdateSomeRow()

' Assume you have obtained a row to edit.

' Now place this row in edit mode.

rowToUpdate.BeginEdit()

' Send the row to a helper function, which returns a Boolean.

If ChangeValuesForThisRow(rowToUpdate) Then

rowToUpdate.EndEdit()

Else

rowToUpdate.CancelEdit()

' OK!

End If

' Forget it.

End Sub

Although you are free to manually call these methods on a given DataRow, these members are
automatically called when you edit a DataGridView widget that has been bound to a DataTable. For
example, when you select a row to edit from a DataGridView, that row is automatically placed in edit
mode. When you shift focus to a new row, EndEdit() is called automatically.

5785ch24.qxd 3/31/06 11:32 AM Page 818

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 819

Working with the DataView Type
In database nomenclature, a view object is a stylized representation of a table (or set of tables). For
example, using Microsoft SQL Server, you could create a view for your current Inventory table that
returns a new table containing automobiles only of a given color. In ADO.NET, the DataView type
allows you to programmatically extract a subset of data from the DataTable into a stand-alone object.

One great advantage of holding multiple views of the same table is that you can bind these
views to various GUI widgets (such as the DataGridView). For example, one DataGridView might be
bound to a DataView showing all autos in the Inventory, while another might be configured to display
only green automobiles.

To illustrate, update the current UI with an additional DataGridView type named dataGridColtsView
and a descriptive Label. Next, define a member variable named coltsOnlyView of type DataView:

Public Class MainForm

' I only show red colts.

Private coltsOnlyView As DataView

...

End Class

Now, create a new helper function named CreateDataView(), and call this method within the
Form’s default constructor directly after the DataTable has been fully constructed, as shown here:

Public Sub New()

...

CreateDataTable()

' Make View.

CreateDataView()

End Sub

Here is the implementation of this new helper function. Notice that the constructor of each
DataView has been passed the DataTable that will be used to build the custom set of data rows.

Private Sub CreateDataView()

' Set the table that is used to construct this view.

coltsOnlyView = New DataView(inventoryTable)

' Now configure the views using a filter.

coltsOnlyView.RowFilter = "Make = 'Colt'"

' Bind to grid.

dataGridColtsView.DataSource = coltsOnlyView

End Sub

As you can see, the DataView class supports a property named RowFilter, which contains the
string representing the filtering criteria used to extract matching rows. Once you have your view
established, set the grid’s DataSource property accordingly. Figure 24-15 shows the completed appli-
cation in action.

5785ch24.qxd 3/31/06 11:32 AM Page 819

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET820

■Source Code The CarDataTableViewer project is included under the Chapter 24 subdirectory.

Working with Data Adapters
Now that you understand the ins and outs of manipulating ADO.NET DataSets by hand, let’s turn
our attention to the topic of data adapters. Recall that data adapter objects are used to fill a DataSet

with DataTable objects and send modified DataTables back to the database for processing. Table 24-15
documents the core members of the DbDataAdapter base class.

Table 24-15. Core Members of the DbDataAdapter Class

Members Meaning in Life

SelectCommand Establish SQL commands that will be issued to the data store when the Fill()
InsertCommand and Update() methods are called.
UpdateCommand
DeleteCommand

Fill() Fills a given table in the DataSet with some number of records based on the
command object–specified SelectCommand.

Update() Updates a DataTable using command objects within the InsertCommand,
UpdateCommand, or DeleteCommand property. The exact command that is
executed is based on the RowState value for a given DataRow in a given
DataTable (of a given DataSet).

Figure 24-15. Viewing filtered data with DataViews

5785ch24.qxd 3/31/06 11:32 AM Page 820

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 821

In the examples that follow, remember that data adapter objects manage the underlying con-
nection to the database on your behalf; therefore, you will not need to explicitly open or close your
session with the DBMS. However, you will still need to supply the data adapter with a valid connec-
tion object or a connection string (which will be used to build a connection object internally) as
a constructor argument.

Filling a DataSet Using a Data Adapter
Create a new console application named FillDataSetWithSqlDataAdapter and import the System.
Data.Common and System.Data.SqlClient namespaces. Update your Main() method as follows:

Sub Main()

Console.WriteLine("***** Fun with Data Adapters *****")

Console.WriteLine()

' Ideally we'd read this from a *.config file.

Dim cnStr As String = "uid=sa;pwd=;Initial Catalog=Cars;Data Source=(local)"

' Fill the DataSet with a new DataTable.

Dim myDS As DataSet = New DataSet("Cars")

Dim dAdapt As SqlDataAdapter = _

New SqlDataAdapter("Select * From Inventory", cnStr)

Try

dAdapt.Fill(myDS, "Inventory")

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

' Display contents.

PrintDataSet(myDS)

End Sub

Notice that the data adapter has been constructed by specifying a SQL Select statement. This value
will be used to build a command object internally, which can be later obtained via the SelectCommand
property. Next, notice that the Fill() method takes an instance of the DataSet type and optionally
a string name that will be used to set the TableName property of the new DataTable (if you do not
specify a table name, the data adapter will simply name the table “Table”).

■Note The Fill() method returns an Integer that represents the number of rows affected by the SQL query.

As you would expect, when you pass the DataSet to the PrintDataSet() method (implemented
earlier in this chapter), you are presented with a list of all rows in the Inventory table of the Cars
database, as shown in Figure 24-16.

5785ch24.qxd 3/31/06 11:32 AM Page 821

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET822

Mapping Database Names to Friendly Names
As you most certainly know, database administrators (DBAs) tend to create table and column names that
can be less than friendly to end users. The good news is that data adapter objects maintain an internal
strongly named collection (DataTableMappingCollection) of System.Data.Common.DataTableMapping
types, accessed via the TableMappings property.

If you so choose, you may manipulate this collection to inform a DataTable about which “display
names” it should use when asked to print its contents. For example, assume that you wish to map
the DBMS table name Inventory to “Current Inventory” for display purposes. Furthermore, say you
wish to display the CarID column name as “Car ID” (note the extra space) and the PetName column
name as “Name of Car.” To do so, add the following code before calling the Fill() method of your
data adapter object (and be sure to “use” the System.Data.Common namespace):

Sub Main()

...

' Create table mappings.

Dim custMap As DataTableMapping = _

dAdapt.TableMappings.Add("Inventory", "Current Inventory")

custMap.ColumnMappings.Add("CarID", "Car ID")

custMap.ColumnMappings.Add("PetName", "Name of Car")

...

End Sub

If you were to run this program once again, you would find that the PrintDataSet() method
now displays the “friendly names” of the DataTable and DataRow objects, rather than the names
established by the database schema.

■Source Code The FillDataSetWithSqlDataAdapter project is included under the Chapter 24 subdirectory.

Updating a Database Using Data Adapter Objects
Not only do data adapters fill the tables of a DataSet on your behalf, but they are also in charge of
maintaining a set of core SQL command objects used to push updates back to the data store. When
you call the Update() method of a given data adapter, it will examine the RowState property for each
row in the DataTable and use the correct SQL commands assigned to the DeleteCommand, InsertCommand,
and UpdateCommand properties to push the changes within a given DataTable back to the data source.

Figure 24-16. Filling a DataSet with a data adapter object

5785ch24.qxd 3/31/06 11:32 AM Page 822

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 823

To illustrate the process of using a data adapter to push back modifications in a DataTable, the
next example will reengineer the CarsInvertoryUpdater example developed earlier in the chapter to
now make use of DataSet and data adapter objects. Given that you have already created a bulk of the
application, let’s focus on the changes to the DeleteCar(), UpdateCarPetName(), and InsertNewCar()
methods (check out the downloadable code for full details).

The first basic adjustment to make to the application is to define two new member variables of
the Program Module to represent your DataSet and connection object. As well, the Main() method will
be modified to fill the DataSet with the initial data upon startup:

Module Program

' The applicaion-wide DataSet.

Public dsCarInventory As DataSet = New DataSet("CarsDatabase")

' The application-wide connection object.

Public cnObj As SqlConnection = _

New SqlConnection("uid=sa;pwd=;Initial Catalog=Cars;Data Source=(local)")

Sub Main()

Console.WriteLine("***** Car Inventory Updater (with DataSets) *****")

Dim userDone As Boolean = False

Dim userCommand As String = ""

' Create the adapter.

Dim dAdapter As SqlDataAdapter = _

New SqlDataAdapter("Select * From Inventory", cnObj)

' Fill the DataSet.

dAdapter.Fill(dsCarInventory, "Inventory")

ShowInstructions()

' Keep looping until user enters 'q'.

...

End Sub

Also note in the code that follows that the ListInventory(), DeleteCar(), UpdateCarPetName(),
and InsertNewCar() methods have all been updated to take a SqlDataAdapter as the sole parameter
(so be sure to update the calls to these functions within your Do/While loop!).

Setting the InsertCommand Property
When you are using a data adapter to update a DataSet, the first order of business is to assign the
UpdateCommand, DeleteCommand, and InsertCommand properties with valid command objects (until
you do so, these properties return null!). By “valid” command objects, I am referring to the fact that
the set of command objects you plug into a data adapter will change based on the table you are
attempting to update. In this example, the table in question is Inventory. Here is the modified
InsertNewCar() method:

Private Sub InsertNewCar(ByVal dAdpater As SqlDataAdapter)

' Gather info about new car.

...

' Format SQL Insert and plug into DataAdapter.

Dim sql As String = String.Format("Insert Into Inventory" & _

"(CarID, Make, Color, PetName) Values" & _

"('{0}', '{1}', '{2}', '{3}')", _

newCarID, newCarMake, newCarColor, newCarPetName)

dAdpater.InsertCommand = New SqlCommand(sql)

dAdpater.InsertCommand.Connection = cnObj

5785ch24.qxd 3/31/06 11:32 AM Page 823

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET824

' Update Inventory Table with new row.

Dim newCar As DataRow = dsCarInventory.Tables("Inventory").NewRow()

newCar("CarID") = newCarID

newCar("Make") = newCarMake

newCar("Color") = newCarColor

newCar("PetName") = newCarPetName

dsCarInventory.Tables("Inventory").Rows.Add(newCar)

Try

dAdpater.Update(dsCarInventory.Tables("Inventory"))

Catch

Console.WriteLine("Sorry! Error! Canceling request")

End Try

End Sub

Once you have created your command object, you plug it into the adapter via the InsertCommand
property. Next, you add a new row to the Inventory DataTable maintained by the dsCarInventory
object. Once you have added this DataRow back into the DataTable, the adapter will execute the SQL
found within the InsertCommand property, given that the RowState of this new row is DataRowState.Added.

Setting the UpdateCommand Property
The modification of the UpdateCarPetName() method is more or less identical. Simply build a new
command object and plug it into the UpdateCommand property.

Private Sub UpdateCarPetName(ByVal dAdpater As SqlDataAdapter)

Dim carToUpdate As Integer = 0

Dim newPetName As String = ""

Console.Write("Enter CarID of car to modify: ")

Try

carToUpdate = Integer.Parse(Console.ReadLine())

Catch ex As FormatException

Console.WriteLine(ex.Message)

Return

End Try

Console.Write("Enter new pet name: ")

newPetName = Console.ReadLine()

Dim sql As String = _

String.Format("Update Inventory Set PetName = '{0}' Where CarID = '{1}'", _

newPetName, carToUpdate)

Dim cmd As SqlCommand = New SqlCommand(sql, cnObj)

dAdpater.UpdateCommand = cmd

Dim carRowToUpdate As DataRow() = _

dsCarInventory.Tables("Inventory").Select(String.Format("CarID = '{0}'", _

carToUpdate))

carRowToUpdate(0)("PetName") = newPetName

Try

dAdpater.Update(dsCarInventory.Tables("Inventory"))

Catch

Console.WriteLine("Sorry! Error! Canceling request")

End Try

End Sub

In this case, when you select a specific row (via the Select() method), the RowState value of
said row is automatically set to DataRowState.Modified. The only other point of interest here is that
the Select() method returns an array of DataRow objects; therefore, you must specify the exact row
you wish to modify.

5785ch24.qxd 3/31/06 11:32 AM Page 824

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 825

Setting the DeleteCommand Property
Last but not least, you have the following update to the DeleteCar() method:

Private Sub DeleteCar(ByVal dAdpater As SqlDataAdapter)

' Get ID of car to delete, then do so.

...

Dim sql As String = _

String.Format("Delete from Inventory where CarID = '{0}'", carToDelete)

Dim cmd As SqlCommand = New SqlCommand(sql, cnObj)

dAdpater.DeleteCommand = cmd

Dim carRowToDelete As DataRow() = _

dsCarInventory.Tables("Inventory").Select(String.Format("CarID = '{0}'", _

carToDelete))

carRowToDelete(0).Delete()

Try

dAdpater.Update(dsCarInventory.Tables("Inventory"))

Catch

Console.WriteLine("Sorry! Error! Canceling request")

End Try

End Sub

In this case, you find the row you wish to delete (again using the Select() method) and then set
the RowState property to DataRowState.Deleted by calling Delete().

■Source Code The CarsInvertoryUpdaterDS project is included under the Chapter 24 subdirectory.

Autogenerating SQL Commands Using
CommandBuilder Types
You might agree that working with data adapters can entail a fair amount of code, given the need
to build each of the four command objects and the associated connection string (or DbConnection-
derived object). To help simplify matters, each of the ADO.NET data providers that ships with .NET 2.0
provides a command builder type. Using this type, you are able to automatically obtain command
objects that contain the correct Insert, Delete, and Update command types based on the initial
Select statement.

The SqlCommandBuilder automatically generates the values contained within the SqlDataAdapter’s
InsertCommand, UpdateCommand, and DeleteCommand properties based on the initial SelectCommand.
Clearly, the benefit is that you have no need to build all the SqlCommand and SqlParameter types by
hand.

An obvious question at this point is how a command builder is able to build these SQL command
objects on the fly. The short answer is metadata. At runtime, when you call the Update() method of
a data adapter, the related command builder will read the database’s schema data to autogenerate
the underlying insert, delete, and update command objects.

Consider the following example, which deletes a row in a DataSet using the autogenerated SQL
statements.

Sub Main()

Dim theCarsInventory As DataSet = New DataSet("CarsDS")

' Make connection.

Dim cn As SqlConnection = _

New SqlConnection("server=(local);User ID=sa;Pwd=;database=Cars")

5785ch24.qxd 3/31/06 11:32 AM Page 825

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET826

' Autogenerate INSERT, UPDATE, and DELETE commands

' based on exiting SELECT command.

Dim da As SqlDataAdapter = New SqlDataAdapter("SELECT * FROM Inventory", cn)

Dim invBuilder As SqlCommandBuilder = New SqlCommandBuilder(da)

' Fill data set.

da.Fill(theCarsInventory, "Inventory")

PrintDataSet(theCarsInventory)

' Delete row based on user input and update database.

Try

Console.Write("Row # to delete: ")

Dim rowToDelete As Integer = Integer.Parse(Console.ReadLine())

theCarsInventory.Tables("Inventory").Rows(rowToDelete).Delete()

da.Update(theCarsInventory, "Inventory")

Catch e As Exception

Console.WriteLine(e.Message)

End Try

' Refill and reprint Inventory table.

theCarsInventory = New DataSet()

da.Fill(theCarsInventory, "Inventory")

PrintDataSet(theCarsInventory)

End Sub

In the previous code, notice that you made no use of the command builder object
(SqlCommandBuilder in this case) beyond passing in the data adapter object as a constructor
parameter. As odd as this may seem, this is all you are required to do (at a minimum). Under the
hood, this type will configure the data adapter with the remaining command objects.

Now, while you may love the idea of getting something for nothing, do understand that com-
mand builders come with some critical restrictions. Specifically, a command builder is only able to
autogenerate SQL commands for use by a data adapter if all of the following conditions are true:

• The Select command interacts with only a single table (e.g., no joins).

• The single table has been attributed with a primary key.

• The column(s) representing the primary key is accounted for in your SQL Select statement.

If these restrictions are unacceptable, rest assured that much of the ADO.NET “grunge” code
will be autogenerated by the Visual Studio 2005 Windows Forms and ASP.NET designer surfaces and
integrated wizards. You’ll see the Windows Forms ADO.NET wizards in action at the conclusion of
this chapter (and their ASP.NET counterparts in Part 7).

■Source Code The MySqlCommandBuilder project is found under the Chapter 24 subdirectory.

Multitabled DataSets and DataRelation Objects
Currently, all of this chapter’s examples involved DataSets that contained a single DataTable object.
However, the power of the disconnected layer really comes to light when a DataSet object contains
numerous interrelated DataTables. In this case, you are able to insert any number of DataRelation
objects into the DataSet’s DataRelation collection to account for the interdependencies of the tables.
Using these objects, the client tier is able to navigate between the table data without incurring
network round-trips.

5785ch24.qxd 3/31/06 11:32 AM Page 826

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 827

Figure 24-17. Viewing related DataTables

To illustrate the use of data relation objects, create a new Windows Forms project called Multi-
tabledDataSet. The GUI is simple enough. In Figure 24-17 you can see three DataGridView widgets
that hold the data retrieved from the Inventory, Orders, and Customers tables of the Cars database.
In addition, the single Button pushes any and all changes back to the data store.

To keep things simple, the MainForm will make use of command builders to autogenerate the
SQL commands for each of the three SqlDataAdapters (one for each table). Here is the initial update
to the Form-derived type:

Public Class MainForm

' Formwide DataSet.

Private carsDS As DataSet = New DataSet("CarsDataSet")

' Make use of command builders to simplify data adapter configuration.

Private sqlCBInventory As SqlCommandBuilder

Private sqlCBCustomers As SqlCommandBuilder

Private sqlCBOrders As SqlCommandBuilder

' Our data adapters (for each table).

Private invTableAdapter As SqlDataAdapter

Private custTableAdapter As SqlDataAdapter

Private ordersTableAdapter As SqlDataAdapter

' Formwide connection object.

Private cn As SqlConnection = _

New SqlConnection("server=(local);uid=sa;pwd=;database=Cars")

...

End Class

5785ch24.qxd 3/31/06 11:32 AM Page 827

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET828

The Form’s constructor does the grunge work of creating your data-centric member variables and
filling the DataSet. Also note that there is a call to a private helper function, BuildTableRelationship(),
as shown here:

Sub New()

' This call is required by the Windows Forms designer.

InitializeComponent()

CenterToScreen()

' Create adapters.

invTableAdapter = New SqlDataAdapter("Select * from Inventory", cn)

custTableAdapter = New SqlDataAdapter("Select * from Customers", cn)

ordersTableAdapter = New SqlDataAdapter("Select * from Orders", cn)

' Autogenerate commands.

sqlCBInventory = New SqlCommandBuilder(invTableAdapter)

sqlCBOrders = New SqlCommandBuilder(ordersTableAdapter)

sqlCBCustomers = New SqlCommandBuilder(custTableAdapter)

' Add tables to DS.

invTableAdapter.Fill(carsDS, "Inventory")

custTableAdapter.Fill(carsDS, "Customers")

ordersTableAdapter.Fill(carsDS, "Orders")

' Build relations between tables.

BuildTableRelationship()

' Bind to grids

dataGridViewInventory.DataSource = carsDS.Tables("Inventory")

dataGridViewCustomers.DataSource = carsDS.Tables("Customers")

dataGridViewOrders.DataSource = carsDS.Tables("Orders")

End Sub

The BuildTableRelationship() helper function does just what you would expect. Recall
that the Cars database expresses a number of parent/child relationships, accounted for with the
following code:

Private Sub BuildTableRelationship()

' Create CustomerOrder data relation object.

Dim dr As DataRelation = New DataRelation("CustomerOrder", _

carsDS.Tables("Customers").Columns("CustID"), _

carsDS.Tables("Orders").Columns("CustID")) _

carsDS.Relations.Add(dr)

' Create InventoryOrder data relation object.

dr = New DataRelation("InventoryOrder", _

carsDS.Tables("Inventory").Columns("CarID"), _

carsDS.Tables("Orders").Columns("CarID")) _

carsDS.Relations.Add(dr)

End Sub

Now that the DataSet has been filled and disconnected from the data source, you can manipulate
each table locally. To do so, simply insert, update, or delete values from any of the three DataGridViews.
When you are ready to submit the data back for processing, click the Form’s Update button. The
code behind the Click event should be clear at this point:

Private Sub btnUpdate_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnUpdate.Click

5785ch24.qxd 3/31/06 11:32 AM Page 828

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 829

Try

invTableAdapter.Update(carsDS, "Inventory")

custTableAdapter.Update(carsDS, "Customers")

ordersTableAdapter.Update(carsDS, "Orders")

Catch ex As Exception

MessageBox.Show(ex.Message)

End Try

End Sub

Once you update, you will find that each table in the Cars database has been correctly altered.

Navigating Between Related Tables
To illustrate how a DataRelation allows you to move between related tables programmatically,
extend your GUI to include a new Button type and a related TextBox. The end user is able to enter
the ID of a customer and obtain all the information about that customer’s order, which is placed in
a simple message box. The Button’s Click event handler is implemented as follows:

Private Sub btnGetInfo_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGetInfo.Click

Dim strInfo As String = ""

Dim drCust As DataRow = Nothing

Dim drsOrder As DataRow() = Nothing

' Get the specified CustID from the TextBox.

Dim theCust As Integer = Integer.Parse(Me.txtCustID.Text)

' Now based on CustID, get the correct row in Customers table.

drCust = carsDS.Tables("Customers").Rows(theCust)

strInfo &= "Cust #" & drCust("CustID").ToString() & "" & Chr(10) & ""

' Navigate from customer table to order table.

drsOrder = drCust.GetChildRows(carsDS.Relations("CustomerOrder"))

' Get order number.

For Each r As DataRow In drsOrder

strInfo &= "Order Number: " & r("OrderID").ToString() & "" & Chr(10) & ""

Next

' Now navigate from order table to inventory table.

Dim drsInv As DataRow() = _

drsOrder(0).GetParentRows(carsDS.Relations("InventoryOrder"))

' Get Car info.

For Each r As DataRow In drsInv

strInfo &= "Make: " & r("Make").ToString() & "" & Chr(10) & ""

strInfo &= "Color: " & r("Color").ToString() & "" & Chr(10) & ""

strInfo &= "Pet Name: " & r("PetName").ToString() & "" & Chr(10) & ""

Next

MessageBox.Show(strInfo, "Info based on cust ID")

End Sub

As you can see, the key to moving between data tables is to use a handful of methods defined
by the DataRow type. Let’s break this code down step by step. First, you obtain the correct customer
ID from the text box and use it to grab the correct row in the Customers table (using the Rows property,
of course). Next, you navigate from the Customers table to the Orders table, using the CustomerOrder
data relation. Notice that the DataRow.GetChildRows() method allows you to grab rows from your child
table. Once you do, you can read information out of the table.

Your final step is to navigate from the Orders table to its parent table (Inventory) using the
GetParentRows() method. At this point, you can read information from the Inventory table using the
Make, PetName, and Color columns. Figure 24-18 shows one possible output.

5785ch24.qxd 3/31/06 11:32 AM Page 829

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET830

Hopefully, this last example has you convinced of the usefulness of the DataSet type. Given that
a DataSet is completely disconnected from the underlying data source, you can work with an in-
memory copy of data and navigate around each table to make any necessary updates, deletes, or
inserts. Once you’ve finished, you can then submit your changes to the data store for processing.

■Source Code The MultitabledDataSetApp project is included under the Chapter 24 subdirectory.

We’re Off to See the (Data) Wizard
At this point in the chapter, you have seen numerous ways to interact with the types of ADO.NET in
a “wizard-free” manner. While it is (most definitely) true that understanding the ins and outs of work-
ing with your data provider is quite important, it is also true that this can lead to hand cramps from
typing the large amount of boilerplate code. To wrap things up, therefore, I’d like to point out a few
data-centric wizards you may wish to make use of when building Windows Forms applications.

Be aware that space does not allow me to comment on all of the UI-centric data wizards pro-
vided by Visual Studio 2005, but to illustrate the basics, let’s examine some additional configuration
options of the DataGridView widget. Assume you have created a new Windows Forms application
(named EasyDataAccessForm) that has a single Form containing a DataGridView control named
inventoryDataGridView. Using the designer, activate the inline editor for this widget, and from the
Choose Data Source drop-down listbox, click the Add Project Data Source link (see Figure 24-19).

This will launch the Data Source Configuration Wizard. On the first step, simply select the
Database icon and click Next. On the second step, click New Connection and establish a connection
to the Cars database (using the same set of steps described earlier in this chapter within the “Connect-
ing to the Cars Database from Visual Studio 2005” section). The third step allows you to inform the
wizard to store the connection string within an external app.config file (which is generally a good
idea) within a properly configured <connectionStrings> element. As the final step, you are able to
select which database objects you wish to account for within the generated DataSet, which for your
purposes here will simply be the Inventory table, as shown in Figure 24-20.

Figure 24-18. Navigating data relations

5785ch24.qxd 3/31/06 11:32 AM Page 830

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 831

Once you complete the wizard, you will notice that the DataGridView automatically displays the
column names within the designer. In fact, if you run your application as is, you will find the contents
of the Inventory table displayed within the grid’s UI!

As you might be suspecting, this wizard updated your Form with numerous lines of code;
however, if you examine the code behind the Forms designer, you find little else than the following
implementation of the Form’s Load event:

Figure 24-19. Adding a data source

Figure 24-20. Selecting the Inventory table

5785ch24.qxd 3/31/06 11:32 AM Page 831

Public Class MainForm

Private Sub MainForm_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'TODO: This line of code loads data into the 'CarsDataSet.Inventory' table.

'You can move, or remove it, as needed.

Me.InventoryTableAdapter.Fill(Me.CarsDataSet.Inventory)

End Sub

End Class

To understand what this code is in fact doing, you need to first understand the role of strongly
typed DataSet objects.

Strongly Typed DataSets
Strongly typed DataSets (as the name implies) allow you to interact with a DataSet’s internal tables
using database-specific properties, methods, and events, rather than via the generalized Tables
property. If you activate the View ➤ Class View menu option of Visual Studio 2005, you will find that
the wizard has created a new type deriving from DataSet named CarsDataSet. As you can see in
Figure 24-21, this class type defines a number of members that allow you to select, modify, and
update its contents.

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET832

Figure 24-21. The strongly typed DataSet

Once the wizard completes its task, it places a member variable of type CarDataSet within your
Form’s *.Designer.vb file (which is the same member variable manipulated in the Load event of
your Form):

Partial Class MainForm

Inherits System.Windows.Forms.Form

...

Friend WithEvents CarsDataSet As EasyDataAccessForm.CarsDataSet

End Class

5785ch24.qxd 3/31/06 11:32 AM Page 832

The Autogenerated Data Component
In addition to the strongly typed DataSet, the wizard generated a data component (named
InventoryTableAdapter in this example) that encapsulates the underlying data connection, data
adapter, and command objects used to interact with the Inventory table, as you see in Figure 24-22.

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET 833

Figure 24-22. The autogenerated table adapter data component

As well, this component defines custom Fill() and Update() methods that are tailor-made to
operate on your CarsDataSet, in addition to a set of members used to insert, update, or delete row
data from the internal Inventory table. I’ll leave it up to interested readers to dive into the implemen-
tation details of each member. The good news is that after all your work in this chapter, the code
behind each member should look quite familiar.

■Source Code The EasyDataAccessForm project is included under the Chapter 24 subdirectory.

■Note If you are interested in taking a deeper look at the ADO.NET object model, including the numerous Visual
Studio 2005 designers, check out Pro ADO.NET 2.0 by Sahil Malik (Apress, 2005).

Summary
ADO.NET is a new data access technology developed with the disconnected n-tier application
firmly in mind. The System.Data namespace contains most of the core types you need to program-
matically interact with rows, columns, tables, and views. As you have seen, the .NET platform ships
with numerous data providers that allow you to leverage the connected and disconnected layers of
ADO.NET.

5785ch24.qxd 3/31/06 11:32 AM Page 833

CHAPTER 24 ■ DATABASE ACCESS WITH ADO.NET834

Using connection objects, command objects, and data reader objects of the connected layer,
you are able to select, update, insert, and delete records. As you have seen, command objects support
an internal parameter collection, which can be used to add some type safety to your SQL queries
and is quite helpful when triggering stored procedures.

The centerpiece of the disconnected layer is the DataSet. This type is an in-memory representation
of any number of tables and any number of optional interrelationships, constraints, and expressions.
The beauty of establishing relations on your local tables is that you are able to programmatically
navigate between them while disconnected from the remote data store.

You also examined the role of the data adapter in this chapter. Using this type (and the related
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand properties), the adapter can
resolve changes in the DataSet with the original data store. Also, you learned about the connected
layer of ADO.NET and came to understand the role of data reader types.

5785ch24.qxd 3/31/06 11:32 AM Page 834

Web Applications and XML
Web Services

P A R T 7

■ ■ ■

5785ch25.qxd 3/31/06 11:39 AM Page 835

5785ch25.qxd 3/31/06 11:39 AM Page 836

837

C H A P T E R 2 5

■ ■ ■

Building ASP.NET 2.0 Web Pages

Until now, all of the example applications in this text have focused on console-based and Windows
Forms front ends. In the next three chapters, you’ll explore how the .NET platform facilitates the
construction of browser-based presentation layers using a technology named ASP.NET. To begin, you’ll
quickly review a number of key web-centric concepts (HTTP, HTML, client-side, and server-side script)
and examine the role of the Microsoft’s commercial web server (IIS) as well as the ASP.NET 2.0 devel-
opment server, WebDev.WebServer.exe.

With this web primer out of the way, the remainder of this chapter concentrates on the structure
of ASP.NET web pages (including the single-page and enhanced code-behind model) as well as the
composition of a Page type. This chapter will also define the role of the web.config file, which will be
used throughout the remainder of this text. Do be aware that the information presented here will
serve as a foundation for the next two chapters, when we examine web controls, themes, master pages,
and numerous state management techniques.

The Role of HTTP
Web applications are very different animals from traditional desktop applications (to say the least).
The first obvious difference is that a production-level web application will always involve at least two
networked machines (of course, during development it is entirely possible to have a single machine
play the role of both client and server). Given this fact, the machines in question must agree upon
a particular wire protocol to determine how to send and receive data. The wire protocol that connects
the computers in question is the Hypertext Transfer Protocol (HTTP).

When a client machine launches a web browser (such as Netscape Navigator, Mozilla Firefox, or
Microsoft Internet Explorer), an HTTP request is made to access a particular resource (such as an *.aspx
or *.htm file) on the remote server machine. HTTP is a text-based protocol that is built upon a standard
request/response paradigm. For example, if you navigate to http://www.IntertechTraining.com, the
browser software leverages a web technology termed Domain Name Service (DNS) that converts the reg-
istered URL into a four-part, 32-bit numerical value, termed an IP address. At this point, the browser
opens a socket connection (typically via port 80) and sends the HTTP request for the default page at the
http://www.IntertechTraining.com website, at which point the browser displays the site’s default page.

Once the user posts back to the web server, it is then able to process the incoming HTTP request
and may scrape out any client-supplied input values (such as values within a text box) in order to
format a proper HTTP response. Web programmers may leverage any number of technologies (CGI,
ASP, ASP.NET, Java servlets, etc.) to dynamically generate the content to be emitted into the HTTP
response. At this point, the client-side browser renders the HTML sent from the web server. Figure 25-1
illustrates the basic HTTP request/response cycle.

5785ch25.qxd 3/31/06 11:39 AM Page 837

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES838

Another aspect of web development that is markedly different from traditional desktop program-
ming is the fact that HTTP is an essentially stateless wire protocol. As soon as the web server emits
a response to the client, everything about the previous interaction is forgotten. Therefore, as a web
developer, it is up to you take specific steps to “remember” information (such as items in a shopping
cart) about the users who are currently logged on to your site. As you will see in Chapter 27, ASP.NET
provides numerous ways to handle state, many of which are commonplace to any web platform (ses-
sion variables, cookies, and application variables) as well as some new techniques such as view state,
the cache object, and the ASP.NET 2.0 profile management API.

Understanding Web Applications and Web Servers
A web application can be understood as a collection of files (*.htm, *.asp, *.aspx, image files, etc.)
and related components (such as a .NET code library or legacy COM server) stored within a particu-
lar set of directories on a given web server. As shown in Chapter 27, ASP.NET web applications have
a specific life cycle and provide numerous events (such as initial startup or final shutdown) that you
can hook into to perform specialized processing.

A web server is a software product in charge of hosting your web applications, and it typically
provides a number of related services such as integrated security, File Transfer Protocol (FTP) support,
mail exchange services, and so forth. Internet Information Server (IIS) is Microsoft’s enterprise-level
web server product, and as you would guess, it has intrinsic support for classic ASP as well as ASP.NET
web applications.

When you build ASP.NET web applications, you will often need to interact with IIS. Be aware,
however, that IIS is not automatically selected when you install the Windows Server 2003 or Windows
XP Professional Edition. Sadly, you can’t install IIS on the Home editions of the Windows operating
system, but hang tight! ASP.NET does provide an alternative server for testing and development,
which I’ll comment on shortly.

Depending on the configuration of your development machine, you may be required to manually
install IIS before proceeding through this chapter. To do so, simply access the Add/Remove Program
applet from the Control Panel folder and select Add/Remove Windows Components.

■Note Ideally, your development machine will have IIS installed before you install the .NET Framework. If you
install IIS after you install the .NET Framework, none of your ASP.NET web applications will execute correctly (you
will simply get back a blank page). Luckily, you can reconfigure IIS to host .NET applications by running the
aspnet_regiis.exe command-line tool and specifying the /i option.

Figure 25-1. The HTTP request-and-response cycle

5785ch25.qxd 3/31/06 11:39 AM Page 838

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 839

Assuming you have IIS properly installed on your workstation, you can interact with IIS from
the Administrative Tools folder (located in the Control Panel folder) by double-clicking the Internet
Information Services applet. For the purposes of this chapter, you are concerned only with the
Default Web Site node (see Figure 25-2).

Working with IIS Virtual Directories
A single IIS installation is able to host numerous web applications, each of which resides in a virtual
directory. Each virtual directory is mapped to a physical directory on the local hard drive. Therefore,
if you create a new virtual directory named CarsRUs, the outside world can navigate to this site
using a URL such as http://www.CarsRUs.com (assuming your site’s IP address has been registered
with the world at large). Under the hood, the virtual directory maps to a physical root directory such
as C:\inetpub\wwwroot\AspNetCarsSite, which contains the content of the web application.

When you create ASP.NET web applications using Visual Studio 2005, you have the option of
generating a new virtual directory for the current website. However, you are also able to manually
create a virtual directory by hand. For the sake of illustration, assume you wish to create a simple
web application named Cars. The first step is to create a new folder on your machine to hold the
collection of files that constitute this new site (which I will assume during this example is C:\CodeTests\
CarsWebSite).

Next, you need to create a new virtual directory to host the Cars site. Simply right-click the
Default Web Site node of IIS and select New ➤ Virtual Directory from the context menu. This menu
selection launches an integrated wizard. Skip past the welcome screen and give your website a name
(Cars). Next, you are asked to specify the physical folder on your hard drive that contains the various
files and images that represent this site (in this case, C:\CodeTests\CarsWebSite).

The final step of the wizard prompts you for some basic traits about your new virtual directory
(such as read/write access to the files it contains, the ability to view these files from a web browser,
the ability to launch executables [e.g., CGI applications], etc.). For this example, the default selections
are just fine (be aware that you can always modify your selections after running this tool using various
right-click-activated Property dialog boxes integrated within IIS). When you are finished, you will
see that your new virtual directory has been registered with IIS (see Figure 25-3).

Figure 25-2. The IIS applet

5785ch25.qxd 3/31/06 11:39 AM Page 839

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES840

We’ll add some web content to this virtual directory in just a moment; however, before we do,
allow me to introduce a new web server, which is the programmer’s alternative to IIS.

The ASP.NET 2.0 Development Server
Prior to .NET 2.0, ASP.NET developers were required to make use of IIS virtual directories during the
development and testing of their web content. In many cases, this tight dependency to IIS made team
development more complex than necessary (not to mention that many IT professionals frowned
upon installing IIS on every developer’s machine). Thankfully, as of ASP.NET 2.0, we are provided
with a lightweight web server named WebDev.WebServer.exe. This utility allows developers to host
an ASP.NET 2.0 web application outside the bounds of IIS. Using this tool, you can build and test
your web pages from any directory on your machine (which is quite helpful for team development
scenarios and for building ASP.NET 2.0 web programs on Windows XP Home Edition, which does
not support IIS installations).

■Note WebDev.WebServer.exe cannot be used to test or host classic (COM-based) ASP web applications. This
web server can only host ASP.NET web applications and/or .NET-based XML web services.

When building a website with Visual Studio 2005, you have the option of using WebDev.

WebServer.exe to host your pages (as you will see a bit later in this chapter). However, you are also
able to manually interact with this tool from a .NET command prompt. If you enter the following
command:

WebDev.WebServer.exe -?

you will be presented with a message box that describes the valid command-line options. In a nutshell,
you will need to specify an unused port (via the /port: option), the root directory of the web appli-
cation (via the /path: option), and an optional virtual path using the /vpath: option (if you do not
supply a /vpath: option, the default is simply /). Consider the following usage:

WebDev.WebServer.exe /port:12345 /path:"C:\CodeTests\CarsWebSite"

Once you have entered this command, you can launch your web browser of choice to request pages.
Thus, if the CarsWebSite folder had a file named Default.aspx, you could enter the following URL:

http://localhost:12345/CarsWebSite/Default.aspx

Figure 25-3. The Cars virtual directory

5785ch25.qxd 3/31/06 11:39 AM Page 840

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 841

Many of the examples in this chapter and the next will make use of WebDev.WebServer.exe via
Visual Studio 2005, rather than manually constructing a virtual directory under IIS. While this approach
can simplify the development of your web application, do be very aware that this web server is not
intended to host production-level web applications. It is purely intended for development and test-
ing purposes. Once a web application is ready for prime time, your site will need to be copied to an
IIS virtual directory.

■Note As yet another alternative web server, be aware that the Mono project (see Chapter 1) provides a free ASP.NET
plug-in for the Apache web server. This makes it possible to build and host ASP.NET web applications on operating sys-
tems other than MS Windows. If you are interested, check out http://www.mono-project.com/ASP.NET for details.

The Role of HTML
Now that you have configured a directory to host your web application, and have chosen a web server
to serve as the host, you need to create the content itself. Recall that web application is simply the
term given to the set of files that constitute the functionality of the site. To be sure, a vast number of
these files will contain syntactic tokens defined by the Hypertext Markup Language (HTML). HTML
is a standard markup language used to describe how literal text, images, external links, and various
HTML-based UI widgets are to be rendered within the client-side browser.

This particular aspect of web development is one of the major reasons why many programmers
dislike building web-based programs. While it is true that modern IDEs (including Visual Studio 2005)
and web development platforms (such as ASP.NET) generate much of the HTML automatically, you
will do well to have a working knowledge of HTML as you work with ASP.NET.

While this section will most certainly not cover all aspects of HTML (by any means), let’s check
out some basics and build a simple web application using HTML, classic (COM-based) ASP, and IIS.
This will serve as a roadmap for those of you who are coming to ASP.NET from a traditional desktop
application development background.

■Note If you are already comfortable with the overall process of web development, feel free to skip ahead to the
section “Problems with Classic ASP.”

HTML Document Structure
An HTML file consists of a set of tags that describe the look and feel of a given web page. As you would
expect, the basic structure of an HTML document tends to remain the same. For example, *.htm files
(or, alternatively, *.html files) open and close with <html> and </html> tags, typically define a <body>

section, and so forth. Keep in mind that HTML is not case sensitive. Therefore, in the eyes of the host-
ing browser, <HTML>, <html>, and <Html> are identical.

To illustrate some HTML basics, open Visual Studio 2005, insert an empty HTML file using the
File ➤ New ➤ File menu selection, and save this file under your C:\CodeTests\CarsWebSite directory
as default.htm. As you can see, the initial markup is rather uneventful:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Untitled Page</title>

</head>

<body>

5785ch25.qxd 3/31/06 11:39 AM Page 841

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES842

</body>

</html>

First of all, notice that this HTML file opens with a DOCTYPE processing instruction (at least
when you use Visual Studio 2005). This informs the IDE that the contained HTML tags should be
validated against the XHTML standard. As you may know, traditional HTML was very “loose” in its
syntax. For example, it was permissible to define an opening element (such as
, for a line break)
that did not have a corresponding closing break (</br> in this case). The XHTML standard is a W3C
specification that adds some much needed rigor to the HTML markup language.

■Note By default, Visual Studio 2005 validates all HTML documents against the XHTML 1.0 Transitional validation
scheme. Simply put, HTML validation schemes are used to ensure the markup is in sync with specific standards. If
you wish to specify an alternative validation scheme, activate the Tools ➤ Options dialog box, then select the
Validation node under HTML. If you would rather not see validation errors, simply uncheck the Show Errors check
box (which I will assume you have done during the remainder of this chapter).

The <html> and </html> tags are used to mark the beginning and end of your document. Notice
that the opening <html> tag is further qualified with an xmlns (XML namespace) attribute that quali-
fies the various tags that may appear within this document (again, by default these tags are based
on the XHTML standard). Web browsers use these particular tags to understand where to begin
applying the rendering formats specified in the body of the document. The <body> scope is where
the vast majority of the actual content is defined. To spruce things up just a bit, update the title of
your page as follows:

<head>

<title>This is the Cars web site</title>

</head>

Not surprisingly, the <title> tags are used to specify the text string that should be placed in the
title bar of the calling web browser.

HTML Form Development
The real meat of an *.htm file occurs within the scope of the <form> elements. An HTML form is
simply a named group of related UI elements used to gather user input, which is then transmitted
to the web application via HTTP. Do not confuse an HTML form with the entire display area shown
by a given browser. In reality, an HTML form is more of a logical grouping of widgets placed in the
<form> and </form> tag set:

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>This Is the Cars Web site</title>

</head>

<body>

<form id="defaultPage">

<!-- Insert web UI content here ->

</form>

</body>

</html>

This form has been assigned the ID and name of “defaultPage”. Typically, the opening <form>
tag supplies an action attribute that specifies the URL to which to submit the form data, as well as
the method of transmitting that data itself (POST or GET). You will examine this aspect of the <form>

5785ch25.qxd 3/31/06 11:39 AM Page 842

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 843

tag in just a bit. For the time being, let’s look at the sorts of items that can be placed in an HTML
form (in addition to simple literal text). Visual Studio 2005 provides an HTML tab on the Toolbox
that allows you to select each HTML-based UI widget, as shown in Figure 25-4.

Building an HTML-based User Interface
Before you add the HTML widgets to the HTML <form>, it is worth pointing out that Visual Studio
2005 allows you to edit the overall look and feel of the *.htm file itself using the integrated HTML
designer and the Properties window. If you select DOCUMENT from the Properties window, as
shown in Figure 25-5, you are able to configure various aspects of the HTML page, such as the back-
ground color.

Figure 25-4. The HTML tab of the Toolbox

Figure 25-5. Editing an HTML document via the VS 2005 Properties window

5785ch25.qxd 3/31/06 11:39 AM Page 843

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES844

Update the <body> of the default.htm file to display some literal text that prompts the user to
enter a user name and password, and choose a background color of your liking (be aware that you
can enter and format textual content by typing directly on the HTML designer):

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>This is the Cars Web Site</title>

</head>

<body bgcolor="NavajoWhite">

<!-- Prompt for user input-->

<h1 align="center"> The Cars Login Page</h1>

<p align="center">

Please enter your <i>user name</i> and <i>password</i>.

</p>

<form id="defaultPage">

</form>

</body>

</html>

Now let’s build the HTML form itself. In general, each HTML widget is described using a name

attribute (used to identify the item programmatically) and a type attribute (used to specify which UI
element you are interested in placing in the <form> declaration). Depending on which UI widget you
manipulate, you will find additional attributes specific to that particular item that can be modified
using the Properties window.

The UI you will build here will contain two text fields (one of which is a Password widget) and
two button types (one to submit the form data and the other to reset the form data to the default
values):

<!-- Build a form to get user info -->

<form id="defaultPage">

<p align="center">

User Name:

<input id="txtUserName" type="text" name="txtUserName"></p>

<p align="center">

Password:

<input name="txtPassword" type="password" id="txtPassword"></p>

<p align="center">

<input name="btnSubmit" type="submit" value="Submit" id="btnSubmit">

<input name="btnReset" type="reset" value="Reset" id="btnReset">

</p>

</form>

Notice that you have assigned relevant names and IDs to each widget (txtUserName, txtPassword,
btnSubmit, and btnReset). Of greater importance, note that each input item has an extra attribute
named type that marks these buttons as UI items that automatically clear all fields to their initial
values (type = "reset"), mask the input as a password (type="password"), or send the form data to
the recipient (type = "submit"). Figure 25-6 displays the page thus far.

5785ch25.qxd 3/31/06 11:39 AM Page 844

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 845

The Role of Client-side Scripting
In addition to HTML UI elements, a given *.htm file may contain blocks of script code that will be
emitted into the response stream and processed by the requesting browser. There are two major
reasons why client-side scripting is used:

• To validate user input before posting back to the web server

• To interact with the Document Object Model (DOM) of the target browser

Regarding the first point, understand that the inherent evil of a web application is the need to
make frequent round-trips (termed postbacks) to the server machine to update the HTML rendered
into the browser. While postbacks are unavoidable, you should always be mindful of ways to mini-
mize travel across the wire. One technique that saves round-trips is to use client-side scripting to
validate user input before submitting the form data to the web server. If an error is found (such as
not supplying data within a required field), you can prompt the user of the error without incurring
the cost of posting back to the web server (after all, nothing is more annoying to users than posting
back on a slow connection, only to receive instructions to address input errors!).

In addition to validating user input, client-side scripts can also be used to interact with the
underlying object model (the DOM) of the web browser itself. Most commercial browsers expose
a set of objects that can be leveraged to control how the browser should behave. One major annoyance
is the fact that different browsers tend to expose similar, but not identical, object models. Thus, if
you emit a block of client-side script code that interacts with the DOM, it may not work identically
on all browsers.

■Note ASP.NET provides the HttpRequest.Browser property, which allows you to determine at runtime the
capacities of the browser that sent the current request.

There are many scripting languages that can be used to author client-side script code. Two of
the more popular are VBScript and JavaScript. VBScript is a subset of the Visual Basic 6.0 programming
language. Be aware that Microsoft Internet Explorer (IE) is the only web browser that has built-in
support for client-side VBScript support (other browsers may or may not provide optional plug-ins).
Thus, if you wish your HTML pages to work correctly in any commercial web browser, do not use
VBScript for your client-side scripting logic.

Figure 25-6. The initial crack at the default.htm page

5785ch25.qxd 3/31/06 11:39 AM Page 845

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES846

The other popular scripting language is JavaScript. Be very aware that JavaScript is in no way,
shape, or form a subset of the Java language. While JavaScript and Java have a somewhat similar
syntax, JavaScript is not a full-fledged OOP language, and thus is far less powerful than Java. The
good news is that all modern-day web browsers support JavaScript, which makes it a natural candi-
date for client-side scripting logic.

■Note To further confuse the issue, recall that JScript .NET is a managed language that can be used to build
valid .NET assemblies using a scripting-like syntax.

A Client-side Scripting Example
To illustrate the role of client-side scripting, let’s first examine how to intercept events sent from
client-side HTML GUI widgets. Assume you have added an additional HTML button (btnHelp) to
your default.htm page that allows the user to view help information. To capture the Click event for
this button, activate the HTML view and select your button from the left drop-down list. Using the
right drop-down list, select the onclick event. This will add an onclick attribute to the definition of
the new Button type:

<input id="btnHelp" type="button" value="Help" language="javascript"

onclick="return btnHelp_onclick()" />

Visual Studio 2005 will also create an empty JavaScript function that will be called when the
user clicks the button. Within this stub, simply make use of the alert() method to display a client-
side message box:

<script language="javascript" type="text/javascript">

<!--

function btnHelp_onclick() {

alert("Dude, it is not that hard. Click the Submit button!");

}

// -->

</script>

Note that the scripting block has been wrapped within HTML comments (<!-- -->). The rea-
son is simple. If your page ends up on a browser that does not support JavaScript, the code will be
treated as a comment block and ignored. Of course, your page may be less functional, but the
upside is that your page will not blow up when rendered by the browser.

Validating the default.htm Form Data
Now, let’s update the default.htm page to support some client-side validation logic. The goal is to
ensure that when the user clicks the Submit button, you call a JavaScript function that checks each
text box for empty values. If this is the case, you pop up an alert that instructs the user to enter the
required data. First, handle an onclick event for the Submit button:

<input name="btnSubmit" type="submit" value="Submit" id="btnSubmit"

language="javascript" onclick="return btnSubmit_onclick()">

Implement this handler like so:

function btnSubmit_onclick(){

// If they forget either item, pop up a message box.

if((defaultPage.txtUserName.value == "") ||

(defaultPage.txtPassword.value == ""))

{

5785ch25.qxd 3/31/06 11:39 AM Page 846

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 847

alert("You must supply a user name and password!");

return false;

}

return true;

}

At this point, you can open your browser of choice and navigate to the default.htm page
hosted by your Cars virtual directory and test out your client-side script logic:

http://localhost/Cars/default.htm

Submitting the Form Data (GET and POST)
Now that you have a simple HTML page, you need to examine how to transmit the form data back
to the web server for processing. When you build an HTML form, you typically supply an action
attribute on the opening <form> tag to specify the recipient of the incoming form data. Possible
receivers include mail servers, other HTML files, an Active Server Page file, and so forth. For this
example, you’ll use a classic ASP file named ClassicAspPage.asp. Update your default.htm file by
specifying the following attribute in the opening <form> tag:

<form name="defaultPage" id="defaultPage"

action="http://localhost/Cars/ClassicAspPage.asp" method = "GET">

...

</form>

These extra attributes ensure that when the Submit button for this form is clicked, the form
data will be sent to the ClassicAspPage.asp at the specified URL. When you specify method = "GET"
as the mode of transmission, the form data is appended to the query string as a set of name/value
pairs separated by ampersands:

http://localhost/Cars/ClassicAspPage.asp?txtUserName=

Andrew&txtPassword=Foo$&btnSubmit=Submit

The other method of transmitting form data to the web server is to specify method = "POST":

<form name="defaultPage" id="defaultPage"

action="http://localhost/Cars/ClassicAspPage.asp" method = "POST">

...

</form>

In this case, the form data is not appended to the query string, but instead is written to a sepa-
rate line within the HTTP header. Using POST, the form data is not directly visible to the outside
world. More important, POST data does not have a character-length limitation (many browsers
have a limit for GET queries). For the time being, make use of HTTP GET to send the form data to
the receiving *.asp page.

Building a Classic ASP Page
A classic ASP page is a hodgepodge of HTML and server-side script code. If you have never worked
with classic ASP, understand that the goal of ASP is to dynamically build HTML on the fly using
server-side script and a small set of COM objects. For example, you may have a server-side VBScript
(or JavaScript) block that reads a table from a data source using classic ADO and returns the rows as
a generic HTML table.

5785ch25.qxd 3/31/06 11:39 AM Page 847

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES848

For this example, the ASP page uses the intrinsic ASP Request COM object to read the values of
the incoming form data (appended to the query string) and echo them back to the caller (not terri-
bly exciting, but it illustrates the point of the request/response cycle). The server-side script logic will
make use of VBScript (as denoted by the language directive).

To do so, create a new HTML file using Visual Studio 2005 and save this file under the name
ClassicAspPage.asp into the folder to which your virtual directory has been mapped (e.g., C:\
CodeTests\CarsWebSite). Implement this page as follows:

<%@ language="VBScript" %>

<html>

<head>

<title>The Cars Page</title>

</head>

<body>

<h1 align="center">Here is what you sent me:</h1>

<P align="center"> User Name:

<%= Request.QueryString("txtUserName") %>

Password:

<%= Request.QueryString("txtPassword") %>

</P>

</body>

</html>

Here, you use the classic ASP Request COM object to call the QueryString() method to examine
the values contained in each HTML widget submitted via method = "GET". The <%= ...%> notation is
a shorthand way of saying, “Insert the following directly into the outbound HTTP response.” To gain
a finer level of flexibility, you could interact with the ASP Response COM object within a full server-
side script block (denoted by the <%, %> notation). You have no need to do so here; however, the
following is a simple example:

<%

Dim pwd

pwd = Request.QueryString("txtPassword")

Response.Write(pwd)

%>

Obviously, the Request and Response objects of classic ASP provide a number of additional
members beyond those shown here. Furthermore, classic ASP also defines a small number of addi-
tional COM objects (Session, Server, Application, and so on) that you can use while constructing
your web application.

■Note Under ASP.NET, these COM objects are officially dead. However, you will see that the System.Web.UI.Page
base class defines identically named properties that expose objects with similar functionality.

To test the ASP logic, simply load the default.htm page from a browser and submit the form
data. Once the script is processed on the web server, you are returned a brand new (dynamically
generated) HTML display, as you see in Figure 25-7.

5785ch25.qxd 3/31/06 11:39 AM Page 848

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 849

Responding to POST Submissions
Currently, your default.htm file specifies HTTP GET as the method of sending the form data to the
target *.asp file. Using this approach, the values contained in the various GUI widgets are appended
to the end of the query string. It is important to note that the ASP Request.QueryString() method is
only able to extract data submitted via the GET method.

If you would rather submit form data to the web resource using HTTP POST, you can use the
Request.Form collection to read the values on the server, for example:

<body>

<h1 align="center">Here is what you sent me:</h1>

<P align="center">

User Name:

<%= Request.Form("txtUserName") %>

Password:

<%= Request.Form("txtPassword") %>

</P>

</body>

That wraps up our web-centric primer. Hopefully, if you’re new to web development you now
have a better understanding of the basic building blocks of a web-based application. However, before
we check out how the ASP.NET web platform improves upon the current state of affairs, let’s take
a brief moment to critique classic ASP and understand its core limitations.

■Source Code The ClassicAspCars example is included under the Chapter 25 subdirectory.

Problems with Classic ASP
While many successful websites have been created using classic ASP, this architecture is not without
its downsides. Perhaps the biggest downfall of classic ASP is the same thing that makes it a powerful
platform: server-side scripting languages. Scripting languages such as VBScript and JavaScript are
interpreted, typeless entities that do not lend themselves to robust OO programming techniques.

Another problem with classic ASP is the fact that an *.asp page does not yield very modularized
code. Given that ASP is a blend of HTML and script in a single page, most ASP web applications are

Figure 25-7. The dynamically generated HTML

5785ch25.qxd 3/31/06 11:39 AM Page 849

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES850

a confused mix of two very different programming techniques. While it is true that classic ASP allows
you to partition reusable code into distinct include files, the underlying object model does not sup-
port true separation of concerns. In an ideal world, a web framework would allow the presentation
logic (i.e., HTML tags) to exist independently from the business logic (i.e., functional code).

A final issue to consider here is the fact that classic ASP demands a good deal of boilerplate,
redundant script code that tends to repeat between projects. Almost all web applications need to
validate user input, repopulate the state of HTML widgets before emitting the HTTP response, gen-
erate an HTML table of data, and so forth.

Major Benefits of ASP.NET 1.x
The first major release of ASP.NET (version 1.x) did a fantastic job of addressing each of the limita-
tions found with classic ASP. In a nutshell, the .NET platform brought about the following
techniques to the web paradigm:

• ASP.NET 1.x provides a model termed code-behind, which allows you to separate presentation
logic from business logic.

• ASP.NET 1.x pages are coded using .NET programming languages, rather than interpreted
scripting languages. The code files are compiled into valid .NET assemblies (which translates
into much faster execution).

• Web controls allow programmers to build the GUI of a web application in a manner similar
to building a Windows Forms application.

• ASP.NET web controls automatically maintain their state during postbacks using a hidden
form field named __VIEWSTATE.

• ASP.NET web applications are completely object-oriented and make use of the Common
Type System (CTS).

• ASP.NET web applications can be easily configured using standard IIS settings or using a web
application configuration file (web.config).

While ASP.NET 1.x was a major step in the right direction, ASP.NET 2.0 provides even more bells
and whistles. The good news is that (just about) everything you may already know about ASP.NET 1.x
still applies to ASP.NET 2.0. In fact, it is perfectly fine to have a single IIS installation host .NET 1.x and
.NET 2.0–based web content.

Major Enhancements of ASP.NET 2.0
ASP.NET 2.0 provides a number of new namespaces, types, utilities, and technologies to the .NET
web development landscape. Consider this partial list:

• As you have seen, ASP.NET 2.0 no longer requires websites to be hosted under IIS during the
testing and development of your site. You are now able to host your site from any directory
on the hard drive using the WebDev.WebServer.exe utility.

• ASP.NET 2.0 ships with a large number of new web controls (navigation controls, security
controls, new data controls, new UI controls, etc.) that complement the existing ASP.NET 1.x
control set.

• ASP.NET 2.0 supports the use of master pages, which allow you to attach a common UI frame
to a set of related pages.

5785ch25.qxd 3/31/06 11:39 AM Page 850

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 851

• ASP.NET 2.0 supports themes, which offer a declarative manner to change the look and feel
of the entire web application.

• ASP.NET 2.0 supports web parts, which can be used to allow end users to customize the look
and feel of a web page.

• ASP.NET 2.0 supports a web-based configuration and management utility that maintains
your web.config files.

Given that this book is not focused exclusively on web development, be sure to consult the
.NET Framework 2.0 documentation for details of topics not covered here. The truth of the matter is
that if I were to truly do justice to every aspect of ASP.NET 2.0, this book would easily double in size.
Rest assured that by the time you complete this text, you will have a solid ASP.NET foundation to
build upon.

The ASP.NET 2.0 Namespaces
As of .NET 2.0, there are no fewer than 34 web-centric namespaces in the base class libraries. From
a high level, these namespaces can be grouped into four major categories:

• Core functionality (e.g., types that allow you to interact with the HTTP request and response,
Web Form infrastructure, theme and profiling support, web parts, security, etc.)

• Web Form and HTML controls

• Mobile web development

• XML web services

This text will not examine the topic of mobile .NET development (web-based or otherwise);
however, the role of XML web services will be examined in Chapter 28. Table 25-1 describes several
of the core ASP.NET 2.0 namespaces.

Table 25-1. The Core ASP.NET Web-centric Namespaces

Namespaces Meaning in Life

System.Web Defines types that enable browser/web server communication
(such as request and response capabilities, cookie manipulation,
and file transfer)

System.Web.Caching Defines types that facilitate caching support for a web application

System.Web.Hosting Defines types that allow you to build custom hosts for the ASP.NET
runtime

System.Web.Management Defines types for managing and monitoring the health of an
ASP.NET web application

System.Web.Profile Defines types that are used to implement ASP.NET user profiles

System.Web.Security Defines types that allow you to programmatically secure your site

System.Web.SessionState Defines types that allow you to maintain stateful information on
a per-user basis (e.g., session state variables)

System.Web.UI Define a number of types that allow you to build a GUI front end for
System.Web.UI.WebControls your web application
System.Web.UI.HtmlControls

5785ch25.qxd 3/31/06 11:39 AM Page 851

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES852

The ASP.NET Web Page Code Model
ASP.NET web pages can be constructed using one of two approaches. You are free to create a single
*.aspx file that contains a blend of server-side code and HTML (much like classic ASP). Using the
single-file page model, server-side code is placed within a <script> scope, but the code itself is not
script code proper (e.g., VBScript/JavaScript). Rather, the code statements within a <script> block
are written in your .NET language of choice (VB 2005, C#, etc.).

If you are building a page that contains very little code (but a good deal of HTML), a single-file
page model may be easier to work with, as you can see the code and the markup in one unified
*.aspx file. In addition, crunching your code and HTML into a single *.aspx file provides a few
other advantages:

• Pages written using the single-file model are slightly easier to deploy or to send to another
developer.

• Because there is no dependency between files, a single-file page is easier to rename.

• Managing files in a source code control system is slightly easier, as all the action is taking
place in a single file.

The default approach taken by Visual Studio 2005 (when creating a new website solution) is to
make use of a technique known as code-behind, which allows you to separate your programming
code from your HTML presentation logic using two distinct files. This model works quite well when
your pages contain significant amounts of code or when multiple developers are working on the
same website. The code-behind model offers several benefits as well:

• Because code-behind pages offer a clean separation of HTML markup and code, it is possi-
ble to have designers working on the markup while programmers author the VB 2005 code.

• Code is not exposed to page designers or others who are working only with the page markup
(as you might guess, HTML folks are not always interested in viewing reams of VB 2005 code).

• Code files can be used across multiple *.aspx files.

Regardless of which approach you take, do know that there is no difference in terms of per-
formance. Also be aware that the single-file *.aspx model is no longer frowned upon as it was under
.NET 1.x. In fact, many ASP.NET 2.0 web applications will benefit by building sites that make use of
both approaches.

Working with the Single-file Page Model
First up, let’s examine the single-file page model. Our goal is to build an *.aspx file (named
Default.aspx) that displays the Inventory table of the Cars database (created in Chapter 24). While
you could build this page using nothing but Notepad, Visual Studio 2005 can simplify matters via
IntelliSense, code completion, and a visual page designer. To begin, open Visual Studio 2005 and
create a new Web Form using the File ➤ New ➤ File menu option (see Figure 25-8).

5785ch25.qxd 3/31/06 11:39 AM Page 852

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 853

Once the page loads into the IDE, notice that the bottom area of the page designer allows you
to view the *.aspx file in two distinct manners. If you select the Design button, you are shown a visual
designer surface that allows you to build the UI of your page much like you would build a Windows
Form (drag widgets to the surface, configure them via the Properties window, etc.). If you select the
Source button, you can view the HTML and <script> blocks that compose the *.aspx file itself.

■Note Unlike earlier versions of Visual Studio, the Source view of Visual Studio 2005 has full-blown IntelliSense
support for *.aspx files, and allows you to drag and drop UI elements directly from the Toolbox into the HTML
document!

Using the Visual Studio 2005 Toolbox, select the Standard tab and drag and drop a Button, Label,
and GridView control onto the page designer (the GridView widget can be found under the Data tab
of the Toolbox). Feel free to make use of the Properties window (or the HTML IntelliSense) to set vari-
ous UI properties and give each web widget a proper name via the ID property. Figure 25-9 shows
one possible design (I kept my look and feel intentionally bland to minimize the amount of generated
control markup, but feel free to use the Properties window to spruce things up to your liking).

Figure 25-8. Creating a new *.aspx file

5785ch25.qxd 3/31/06 11:39 AM Page 853

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES854

Now, click the Source button at the bottom of your code window and locate the <form> section
of your page. Notice how each web control has been defined using an <asp:> tag. Before the closing tag,
you will find a series of name/value pairs that correspond to the settings you made in the Properties
window:

<form id="form1" runat="server">

<div>

<asp:Label ID="lblInfo" runat="server"

Text="Click on the Button to Fill the Grid">

</asp:Label>

<asp:GridView ID="carsGridView" runat="server">

</asp:GridView>

<asp:Button ID="btnFillData" runat="server" Text="Fill Grid" />

</div>

</form>

You will dig into the full details of ASP.NET web controls later in Chapter 26. Until then, understand
that web controls are objects processed on the web server that emit back their HTML representation into
the outgoing HTTP response automatically (that’s right—you don’t author the HTML!) Beyond this
major benefit, ASP.NET web controls support a Windows Forms–like programming model, given that
the names of the properties, methods, and events mimic their Windows Forms equivalents.

To illustrate, handle the Click event for the Button type using either the Visual Studio Properties
window (via the lightning-bolt icon) or using the drop-down boxes mounted at the top of the Source
view window. Once you do, you will find your Button’s definition has been updated with an OnClick
attribute that is assigned to the name of your Click event handler:

<asp:Button ID="btnFillData" runat="server"

Text="Fill Grid" OnClick="btnFillData_Click" />

Figure 25-9. The Default.aspx UI

5785ch25.qxd 3/31/06 11:39 AM Page 854

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 855

As well, your <script> block has been updated with a server-side Click event handler (notice that
the incoming parameters are a dead-on match for the target of the System.EventHandler delegate):

<script runat="server">

Protected Sub btnFillData_Click(ByVal sender As Object, ByVal e As EventArgs)

End Sub

</script>

Implement your server-side event handler to make use of an ADO.NET data reader to fill the
GridView. Also add an Import directive (more details on this in just a moment) that specifies you are
using the System.Data.SqlClient namespace. Here is the remaining relevant page logic of the
Default.aspx file:

<%@ Page Language="VB" %>

<%@ Import Namespace = "System.Data.SqlClient" %>

...

<script runat="server">

Protected Sub btnFillData_Click(ByVal sender As Object, ByVal e As EventArgs)

Dim sqlConn As New SqlConnection("Data Source=.;Initial Catalog=Cars;UID=sa;PWD=")

sqlConn.Open()

Dim cmd As New SqlCommand("Select * From Inventory", sqlConn)

carsGridView.DataSource = cmd.ExecuteReader()

carsGridView.DataBind()

sqlConn.Close()

End Sub

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

...

</html>

Before we dive into the details behind the format of this *.aspx file, let’s try a test run. First, save
your *.aspx file to your local hard drive under a folder of your choosing. If you wish to make use of
WebDev.WebServer.exe manually, open a .NET command prompt and run the WebDev.WebServer.exe
utility, making sure you specify the path where you saved your Default.aspx file, for example:

webdev.webserver.exe /port:12345 /path:"C:\CodeTests\SinglePageModel"

Now, using your browser of choice, enter the following URL:

http://localhost:12345/

When the page is served, you will initially see your Label and Button types. However, when you
click the button, a postback occurs to the web server, at which point the web controls render back
their corresponding HTML tags.

As a shortcut, you can indirectly launch WebDev.WebServer.exe from Visual Studio 2005. Simply
right-click the page you wish to browse and select the View In Browser menu option. In either case,
Figure 25-10 shows the output.

5785ch25.qxd 3/31/06 11:39 AM Page 855

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES856

That was simple, yes? Of course, as they say, the devil is in the details, so let’s dig a bit deeper
into the composition of this *.aspx file, beginning by examining the role of the page directive.

The <%@Page%> Directive
The first thing to be aware of is that a given *.aspx file will typically open with a set of directives.
ASP.NET directives are always denoted with <%@ XXX %> markers and may be qualified with various
attributes to inform the ASP.NET runtime how to process the attribute in question.

Every *.aspx file must have at minimum a <%@Page%> directive that is used to define the managed
language used within the page (via the language attribute). Also, the <%@Page%> directive may define
the name of the related code-behind file (if any), enable tracing support, and so forth. Table 25-2 doc-
uments some of the more interesting <%@Page%>-centric attributes.

Table 25-2. Select Attributes of the <%@Page%> Directive

Attribute Meaning in Life

CompilerOptions Allows you to define any command-line flags (represented as a single string)
passed into the compiler when this page is processed

CodePage Specifies the name of the related code-behind file

EnableTheming Establishes whether the controls on the *.aspx page support ASP.NET 2.0
themes

EnableViewState Indicates whether view state is maintained across page requests (more
details on this property in Chapter 27)

Inherits Defines a class in the code-behind page the *.aspx file derives from, which
can be any class derived from System.Web.UI.Page

MasterPageFile Sets the master page used in conjunction with the current *.aspx page

Trace Indicates whether tracing is enabled

Figure 25-10. Web-based data access

5785ch25.qxd 3/31/06 11:39 AM Page 856

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 857

The <%Import%> Directive
In addition to the <%@Page%> directive, a given *.aspx file may specify various <%@Import%> directives
to explicitly state the namespaces required by the current page. Here, you specified you were mak-
ing use of the types within the System.Data.SqlClient namespace. As you would guess, if you need
to make use of additional .NET namespaces, you simply specify multiple <%@Import%> directives.

■Note The <%@Import%> directive is not necessary if you are making use of the code-behind page model
described next. When you do make use of code-behind, you will specify external namespaces using the VB 2005
Imports keyword.

Given your current knowledge of .NET, you may wonder how this *.aspx file avoided specifying
the System namespace in order to gain access to the System.Object and System.EventHandler types
(among others). The reason is that all *.aspx pages automatically have access to a set of key name-
spaces that are defined within the machine.config file under your installation path of the .NET 2.0
platform. Within this XML-based file you would find the following auto-imported namespaces:

<pages>

<namespaces>

<add namespace="System"/>

<add namespace="System.Collections"/>

<add namespace="System.Collections.Specialized"/>

<add namespace="System.Configuration"/>

<add namespace="System.Text"/>

<add namespace="System.Text.RegularExpressions"/>

<add namespace="System.Web"/>

<add namespace="System.Web.Caching"/>

<add namespace="System.Web.SessionState"/>

<add namespace="System.Web.Security"/>

<add namespace="System.Web.Profile"/>

<add namespace="System.Web.UI"/>

<add namespace="System.Web.UI.WebControls"/>

<add namespace="System.Web.UI.WebControls.WebParts"/>

<add namespace="System.Web.UI.HtmlControls"/>

</namespaces>

</pages>

When you wish to access types within any other namespaces beyond the set shown here, you
will be required to make use of the <%Import%> directive, or if you are making use of the code-behind
model, the VB 2005 Imports keyword (as you have been doing throughout this text).

To be sure, ASP.NET does define a number of other directives that may appear in an *.aspx file
above and beyond <%@Page%> and <%@Import%>; however, I’ll reserve commenting on those for the
time being.

5785ch25.qxd 3/31/06 11:39 AM Page 857

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES858

The “Script” Block
Under the single-file page model, an *.aspx file may contain server-side scripting logic that executes
on the web server. Given this, it is critical that all of your server-side code blocks are defined to execute
at the server, using the runat="server" attribute. If the runat="server" attribute is not supplied, the
runtime assumes you have authored a block of client-side script to be emitted into the outgoing
HTTP response:

<script runat="server">

Protected Sub btnFillData_Click(ByVal sender As Object, ByVal e As EventArgs)

End Sub

</script>

The signature of this helper method should look strangely familiar. Recall from our examina-
tion of Windows Forms that a given event handler must match the pattern defined by a related .NET
delegate. And, just like Windows Forms, when you wish to handle a server-side button click, the del-
egate in question is System.EventHandler which, as you recall, can only call methods that take
a System.Object as the first parameter and a System.EventArgs as the second.

The ASP.NET Widget Declarations
The final point of interest is the declaration of the Button, Label, and GridViewWeb Form controls. Like
classic ASP and raw HTML, ASP.NET web widgets are scoped within <form> elements. This time, how-
ever, the opening <form> element is marked with the runat="server" attribute. This again is critical,
as this tag informs the ASP.NET runtime that before the HTML is emitted into the response stream,
the contained ASP.NET widgets have a chance to render their HTML appearance:

<form id="form1" runat="server">

...

</form>

ASP.NET web controls are declared with <asp> and </asp> tags, and they are also marked with
the runat="server" attribute. Within the opening tag, you will specify the name of the Web Form
control and any number of name/value pairs that will be used at runtime to render the correct HTML.

■Source Code The SinglePageModel example is included under the Chapter 25 subdirectory.

Working with the Code-behind Page Model
To illustrate the code-behind page model, let’s re-create the previous example using the Visual Studio
2005 Web Site template. (Do know that Visual Studio 2005 is not required to build pages using code-
behind; however, this is the out-of-the-box behavior for new websites.) Activate the File ➤ New ➤ Web
Site menu option, and select the ASP.NET Web Site template, as shown in Figure 25-11.

5785ch25.qxd 3/31/06 11:39 AM Page 858

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 859

Notice in Figure 25-11 that you are able to select the location of your new site. If you select
File System, your content files will be placed within a local directory and pages will be served via
WebDev.WebServer.exe. If you select FTP or HTTP, your site will be hosted within a virtual directory
maintained by IIS. For this example, it makes no difference which option you select, but for simplic-
ity I’d suggest the File System option.

■Note When you wish to open an existing website into Visual Studio 2005, select the File ➤ Open ➤ Web Site
menu option and select the folder (or IIS virtual directory) containing the web content.

Once again, make use of the designer to build a UI consisting of a Label, Button, and GridView,
and make use of the Properties window to build a UI of your liking. Now, click the Source button at
the bottom of your code window, and you will see the expected <asp> and </asp> tags. Also note that
the <%@Page%> directive has been updated with a few new attributes:

<%@ Page Language="VB" AutoEventWireup="true"

CodeFile="Default.aspx.vb" Inherits="_Default" %>

The CodeFile attribute is used to specify the related external file that contains this page’s cod-
ing logic. By default, these code-behind files are named by suffixing .vb to the name of the *.aspx
file (Default.aspx.vb in this example). If you examine the Solution Explorer, you will see this code-
behind file is visible via a subnode on the Web Form icon (see Figure 25-12).

Figure 25-11. The Visual Studio 2005 ASP.NET Web Site template

5785ch25.qxd 3/31/06 11:39 AM Page 859

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES860

■Note The ASP.NET 1.x Codebehind attribute is no longer supported within the <%@Page%> directive! However,
the good news is that if you were to open an ASP.NET 1.x *.sln file using Visual Studio 2005, the IDE will auto-
matically convert your project to the ASP.NET 2.0 format and change all Codebehind attributes to CodeFile. As
well, this conversion tool will prompt you to preserve a copy of the original web application.

If you were to open your code-behind file, you would find a partial class deriving from
System.Web.UI.Page. Notice that the name of this class (Default) is identical to the Inherits attribute
within the <%@Page%> directive:

Partial Class _Default

Inherits System.Web.UI.Page

End Class

Handle the Click event for the Button type (again, just like you would for a Windows Forms
application). As before, the Button definition has been updated with an OnClick attribute. However,
the server-side event handler is no longer placed within a <script> scope of the *.aspx file, but as
a method of the _Default class type. To complete this example, add an Imports statement for
System.Data.SqlClient inside your code-behind file and implement the handler using the previous
ADO.NET logic:

Imports System.Data.SqlClient

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub btnFillGrid_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnFillGrid.Click

Dim sqlConn As New _

SqlConnection("Data Source=.;Initial Catalog=Cars;UID=sa;PWD=")

sqlConn.Open()

Dim cmd As New SqlCommand("Select * From Inventory", sqlConn)

carsGridView.DataSource = cmd.ExecuteReader()

carsGridView.DataBind()

sqlConn.Close()

End Sub

End Class

Figure 25-12. The associated code-behind file for a given *.aspx file

5785ch25.qxd 3/31/06 11:39 AM Page 860

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 861

If you selected the File System option, WebDev.WebServer.exe starts up automatically when you
run your web application (if you selected IIS, this obviously does not occur). In either case, the
default browser should now display the page’s content.

Debugging and Tracing ASP.NET Pages
By and large, when you are building ASP.NET web projects, you can use the same debugging techniques
as you would with any other sort of Visual Studio 2005 project type. Thus, you can set breakpoints in
your code-behind file (as well as embedded “script” blocks in an *.aspx file), start a debug session
(the F5 key; by default), and step through your code.

However, to debug your ASP.NET web applications, your site must contain a properly config-
ured web.config file. The conclusion of this chapter will examine various details behind web.config
files, but in a nutshell these XML files provide the same general purpose as an executable assembly’s
app.config file. By default, all Visual Studio 2005 web applications created with the Visual Basic 2005
programming language will automatically have a web.config file. However, debugging support is
initially disabled (as this will degrade performance). When you start a debugging session, the IDE
will prompt you for permissions to enable debugging. Once you have opted to do so, the
<compilation> element of the web.config file is updated like so:

<compilation debug="true" strict="false" explicit="true"/>

On a related note, you are also able to enable tracing support for an *.aspx file by setting the
Trace attribute to true within the <%@Page%> directive (it is also possible to enable tracing for your
entire site by modifying the web.config file):

<%@ Page Language="VB" AutoEventWireup="true"

CodeFile="Default.aspx.vb" Inherits="_Default" Trace="true" %>

Once you do, the emitted HTML now contains numerous details regarding the previous HTTP
request/response (server variables, session and application variables, request/response, etc.). To insert
your own trace messages into the mix, you can use the Trace property of the System.Web.UI.Page type.
Any time you wish to log a custom message (from a script block or VB 2005 source code file), simply call
the Write() method:

Protected Sub btnFillGrid_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnFillGrid.Click

' Emit a custom trace message.

Trace.Write("My Category", "Filling the grid!")

...

End Sub

If you run your project once again and post back to the web server, you will find your custom
category and custom message are present and accounted for. In Figure 25-13, take note of the high-
lighted message, which displays your trace information.

5785ch25.qxd 3/31/06 11:39 AM Page 861

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES862

■Source Code The CodeBehindPageModel example is included under the Chapter 25 subdirectory.

Details of an ASP.NET Website Directory Structure
If you have created web applications using ASP.NET 1.x, you may be quite surprised to see that some
familiar files (such as Global.asax) are not included when creating a new website. Furthermore, the
Web Site template contains a folder named App_Data and does not appear to have References folder
within Solution Explorer.

First of all, do know that *.asax files are most certainly supported under ASP.NET 2.0, but you
will need to explicitly add them to your project using the Web Site ➤ Add New Item menu option.
Chapter 27 will examine the role of Global.asax, so don’t sweat the details for now. Next, be aware

Figure 25-13. Logging custom trace messages

5785ch25.qxd 3/31/06 11:39 AM Page 862

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 863

that your websites are still able to add references to any number of external .NET assemblies via
the Web Site ➤ Add Reference menu option (the end result is a bit different, however, as you will
soon see).

Another significant difference is that under Visual Studio 2005, websites may contain any
number of specifically named subdirectories, each of which has a special meaning to the ASP.NET
runtime. Table 25-3 documents these “special subdirectories.”

Table 25-3. Special ASP.NET 2.0 Subdirectories

Subfolder Meaning in Life

App_Browsers Folder for browser definition files that are used to identify individual
browsers and determine their capabilities.

App_Code Folder for source code for components or classes that you want to
compile as part of your application. ASP.NET compiles the code in this
folder when pages are requested. Code in the App_Code folder is
automatically accessible by your application.

App_Data Folder for storing Access *.mdb files, SQL Express *.mdf files, XML files, or
other data stores.

App_GlobalResources Folder for *.resx files that are accessed programmatically from
application code.

App_LocalResources Folder for *.resx files that are bound to a specific page.

App_Themes Folder that contains a collection of files that define the appearance of
ASP.NET web pages and controls.

App_WebReferences Folder for proxy classes, schemas, and other files associated with using
a web service in your application.

Bin Folder for compiled private assemblies (*.dll files). Assemblies in the
Bin folder are automatically referenced by your application.

If you are interested in adding any of these known subfolders to your current web application,
you may do so explicitly using the Web Site ➤ Add Folder menu option. However, in many cases, the
IDE will automatically do so as you “naturally” insert related files into your site (e.g., inserting a new
VB 2005 class file into your project will automatically add an App_Code folder to your directory
structure if one does not currently exist).

Assembly References and the Bin Folder
As described in a few pages, ASP.NET web pages are eventually compiled into a .NET assembly. Given
this, it should come as no surprise that your websites can reference any number of private or shared
assemblies. Under ASP.NET 2.0, the manner in which your site’s externally required assemblies are
recorded is quite different from ASP.NET 1.x. The reason for this fundamental shift is that Visual Studio
2005 now treats websites in a projectless manner.

Although the Web Site template does generate a *.sln file to load your *.aspx files into the IDE,
there is no longer a related *.vbproj file. As you may know, ASP.NET 1.x Web Application projects
recorded all external assemblies within *.vbproj. This fact brings up the obvious question, Where
are the external assemblies recorded under ASP.NET 2.0?

When you reference a private assembly, Visual Studio 2005 will automatically create a Bin
directory within your directory structure to store a local copy of the binary. When your code base
makes use of types within these code libraries, they are automatically loaded on demand. By way of
a simple test, if you activate the Web Site ➤ Add Reference menu option and select any of the previ-
ous (non–strongly named) *.dlls you created over the course of this text, you will find a Bin folder
is displayed within Solution Explorer, as shown in Figure 25-14.

5785ch25.qxd 3/31/06 11:39 AM Page 863

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES864

If you reference a shared assembly, Visual Studio 2005 will automatically insert a web.config file
into your current web solution (if one is not currently in place) and record the external reference within
the <assemblies> element. For example, if you again activate the Web Site ➤ Add Reference menu
option and this time select a shared assembly (such as System.Data.OracleClient.dll), you will
find that your web.config file has been updated as follows:

<assemblies>

<add assembly="System.Data.OracleClient, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=B77A5C561934E089"/>

</assemblies>

As you can see, each assembly is described using the same information required for a dynamic
load via the Assembly.Load() method (see Chapter 14).

The Role of the App_Code Folder
The App_Code folder is used to place source code files that are not directly tied to a specific web
page (such as a code-behind file) but are to be compiled for use by your website. Code within the
App_Code folder will be automatically compiled on the fly on an as-needed basis. After this point,
the assembly is accessible to any other code in the website. To this end, the App_Code folder is
much like the Bin folder, except that you can store source code in it instead of compiled code. The
major benefit of this approach is that it is possible to define custom types for your web application
without having to compile them independently.

A single App_Code folder can contain code files from multiple languages. At runtime, the
appropriate compiler kicks in to generate the assembly in question. If you would rather partition
your code, however, you can define multiple subdirectories that are used to hold any number of
managed code files (*.vb, *.cs [for C#], etc.).

For example, assume you have added an App_Code folder to the root directory of a website applica-
tion that has two subfolders (MyCSharpCode and MyVbNetCode) that contain language-specific files.
Once you do, you are able to update your web.config file to specify these subdirectories using
a <codeSubDirectories> element nested within the <configuration> element:

<compilation debug="true" strict="false" explicit="true">

<codeSubDirectories>

<add directoryName="MyVbNetCode" />

<add directoryName="MyCSharpCode" />

</codeSubDirectories>

</compilation>

Figure 25-14. The Bin folder contains copies of all referenced private assemblies.

5785ch25.qxd 3/31/06 11:39 AM Page 864

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 865

■Note The App_Code directory will also be used to contain files that are not language files, but are useful
nonetheless (*.xsd files, *.wsdl files, etc.).

Beyond Bin and App_Code, the App_Data and App_Themes folders are two additional “special
subdirectories” that you should be familiar with, both of which will be detailed in the next two
chapters. As always, consult the .NET Framework 2.0 SDK documentation for full details of the
remaining ASP.NET subdirectories if you require further information.

The ASP.NET 2.0 Page Compilation Cycle
Regardless of which page model you make use of (single-file or code-behind), your *.aspx files (and
any related code-behind file) are compiled on the fly into a valid .NET assembly. This assembly is
then hosted by the ASP.NET worker process (aspnet_wp.exe) within its own application domain
boundary (see Chapter 14 for details on AppDomains). The manner in which your website’s assem-
bly is compiled under ASP.NET 2.0, however, is quite different.

Compilation Cycle for Single-file Pages
If you are making use of the single-file page model, the HTML markup, <script> blocks, and web
control definitions are dynamically compiled into a class type deriving from System.Web.UI.Page.
The name of this class is based on the name of the *.aspx file and takes an _aspx suffix (e.g., a page
named MyPage.aspx becomes a class type named MyPage_aspx). Figure 25-15 illustrates the basic
process.

Figure 25-15. The compilation model for single-file pages

5785ch25.qxd 3/31/06 11:39 AM Page 865

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES866

■Note Because these autogenerated assemblies are true-blue .NET binaries, if you were to open your web
applications–related *.dll using ildasm.exe, you would indeed find CIL code, metadata, and an assembly-level
manifest.

Compilation Cycle for Multifile Pages
The compilation process of a page making use of the code-behind model is similar to that of the
single-file model. However, the type deriving from System.Web.UI.Page is composed from three (yes,
three) files rather than the expected two.

Looking back at the previous CodeBehindPageModel example, recall that the Default.aspx file
was connected to a partial class named _Default within the code-behind file. If you have a background
in ASP.NET 1.x, you may wonder what happened to the member variable declarations for the various
web controls as well as the code within InitializeComponent(), such as event handling logic. Under
ASP.NET 2.0, these details are accounted for by a third “file” generated in memory. In reality, of course,
this is not a literal file, but an in-memory representation of the partial class. Consider Figure 25-17.

Figure 25-16. The ASP.NET autogenerated assembly

This dynamically compiled assembly is deployed to a runtime-defined subdirectory under the
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files root directory. The
path beneath this root will differ based on a number of factors (hash codes, etc.), but eventually you
will find the *.dll (and supporting files) in question. Figure 25-16 shows the generated assembly for
the SinglePageModel example shown earlier in this chapter.

5785ch25.qxd 3/31/06 11:39 AM Page 866

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 867

In this model, the web controls declared in the *.aspx file are used to build the additional par-
tial class that defines each UI member variable and the configuration logic that used to be found
within the InitializeComponent() method of ASP.NET 1.x (we just never directly see it). This partial
class is combined at compile time with the code-behind file to result in the base class of the gener-
ated _aspx class type (in the single-file page compilation model, the generated _aspx file derived
directly from System.Web.UI.Page).

In either case, once the assembly has been created upon the initial HTTP request, it will be
reused for all subsequent requests, and thus will not have to be recompiled. Understanding this fac-
toid should help explain why the first request of an *.aspx page takes the longest, and subsequent
hits to the same page are extremely efficient.

■Note Under ASP.NET 2.0, it is now possible to precompile all pages (or a subset of pages) of a website using
a command-line tool named aspnet_compiler.exe. Check out the .NET Framework 2.0 SDK documentation for
details.

The Inheritance Chain of the Page Type
As you have just seen, the final generated class that represents your *.aspx file eventually derives
from System.Web.UI.Page. Like any base class, this type provides a polymorphic interface to all derived
types. However, the Page type is not the only member in your inheritance hierarchy. If you were to
locate the Page type (within the System.Web.dll assembly) using the Visual Studio 2005 object browser,
you would find that Page “is-a” TemplateControl, which “is-a” Control, which “is-a” Object (see
Figure 25-18).

Figure 25-17. The compilation model for multifile pages

5785ch25.qxd 3/31/06 11:39 AM Page 867

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES868

As you would guess, each of these base classes brings a good deal of functionality to each and
every *.aspx file. For the majority of your projects, you will make use of the members defined
within the Page and Control parent classes. By and large, the functionality gained from the
System.Web.UI.TemplateControl class is only of interest to you if you are building custom Web
Form controls or interacting with the rendering process. This being said, let’s get to know the overall
role of the Page type.

The System.Web.UI.Page Type
The first parent class of interest is Page itself. Here you will find numerous properties that enable
you to interact with various web primitives such as application and session variables, the HTTP
request/response, theme support, and so forth. Table 25-4 describes some (but by no means all) of
the core properties.

Table 25-4. Properties of the Page Type

Property Meaning in Life

Application Allows you to interact with application variables for the current website

Cache Allows you to interact with the cache object for the current website

ClientTarget Allows you to specify how this page should render itself based on the requesting
browser

IsPostBack Gets a value indicating whether the page is being loaded in response to a client
postback or whether it is being loaded and accessed for the first time

MasterPageFile Establishes the master page for the current page

Request Provides access to the current HTTP request

Response Allows you to interact with the outgoing HTTP response

Server Provides access to the HttpServerUtility object, which contains various
server-side helper functions

Session Allows you to interact with the session data for the current caller

Theme Gets or sets the name of the theme used for the current page

Trace Provides access to a TraceContext object, which allows you to log custom
messages during debugging sessions

Figure 25-18. The derivation of an ASP.NET page

5785ch25.qxd 3/31/06 11:39 AM Page 868

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 869

Interacting with the Incoming HTTP Request
As you saw earlier in this chapter, the basic flow of a web session begins with a client logging on to
a site, filling in user information, and clicking a Submit button to post back the HTML form data to
a given web page for processing. In most cases, the opening tag of the form statement specifies an
action attribute and a method attribute that indicates the file on the web server that will be sent the
data in the various HTML widgets, as well as the method of sending this data (GET or POST):

<form name="defaultPage" id="defaultPage"

action="http://localhost/Cars/ClassicAspPage.asp" method = "GET">

...

</form>

Unlike classic ASP, ASP.NET does not support an object named Request. However, all ASP.NET
pages do inherit the System.Web.UI.Page.Request property, which provides access to an instance of
the HttpRequest class type. Table 25-5 lists some core members that, not surprisingly, mimic the
same members found within the legacy classic ASP Request object.

Table 25-5. Members of the HttpRequest Type

Member Meaning in Life

ApplicationPath Gets the ASP.NET application’s virtual application root path on the server

Browser Provides information about the capabilities of the client browser

Cookies Gets a collection of cookies sent by the client browser

FilePath Indicates the virtual path of the current request

Form Gets a collection of Form variables

Headers Gets a collection of HTTP headers

HttpMethod Indicates the HTTP data transfer method used by the client (GET, POST)

IsSecureConnection Indicates whether the HTTP connection is secure (i.e., HTTPS)

QueryString Gets the collection of HTTP query string variables

RawUrl Gets the current request’s raw URL

RequestType Indicates the HTTP data transfer method used by the client (GET, POST)

ServerVariables Gets a collection of web server variables

UserHostAddress Gets the IP host address of the remote client

UserHostName Gets the DNS name of the remote client

In addition to these properties, the HttpRequest type has a number of useful methods, includ-
ing the following:

• MapPath(): Maps the virtual path in the requested URL to a physical path on the server for
the current request.

• SaveAs(): Saves details of the current HTTP request to a file on the web server (which can
prove helpful for debugging purposes).

• ValidateInput(): If the validation feature is enabled via the Validate attribute of the page
directive, this method can be called to check all user input data (including cookie data)
against a predefined list of potentially dangerous input data.

5785ch25.qxd 3/31/06 11:39 AM Page 869

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES870

Obtaining Brower Statistics
The first interesting aspect of the HttpRequest type is the Browser property, which provides access to
an underlying HttpBrowserCapabilities object. HttpBrowserCapabilities in turn exposes numer-
ous members that allow you to programmatically investigate statistics regarding the browser that
sent the incoming HTTP request.

Create a new ASP.NET website named FunWithPageMembers. Your first task is to build a UI that
allows users to click a Button web control to view various statistics about the calling browser. These
statistics will be generated dynamically and attached to a Label type (named lblOutput). The Button
Click event handler is as follows:

Protected Sub btnGetBrowserStats_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetBrowserStats.Click

Dim theInfo As String = ""

theInfo &= String.Format("Is the client AOL? {0}", _

Request.Browser.AOL)

theInfo &= _

String.Format("Does the client support ActiveX? {0}", _

Request.Browser.ActiveXControls)

theInfo &= String.Format("Is the client a Beta? {0}", _

Request.Browser.Beta)

theInfo &= _

String.Format("Does the client support Java Applets? {0}", _

Request.Browser.JavaApplets)

theInfo &= _

String.Format("Does the client support Cookies? {0}", _

Request.Browser.Cookies)

theInfo &= _

String.Format("Does the client support VBScript? {0}", _

Request.Browser.VBScript)

lblOutput.Text = theInfo

End Sub

Here you are testing for a number of browser capabilities. As you would guess, it is (very) help-
ful to discover a browser’s support for ActiveX controls, Java applets, and client-side VBScript code.
If the calling browser does not support a given web technology, your *.aspx page would be able to
take an alternative course of action.

Access to Incoming Form Data
Other aspects of the HttpResponse type are the Form and QueryString properties. These two properties
allow you to examine the incoming form data using name/value pairs, and they function identically
to classic ASP. Recall from our earlier discussion of classic ASP that if the data is submitted using
HTTP GET, the form data is accessed using the QueryString property, whereas data submitted
via HTTP POST is obtained using the Form property.

While you could most certainly make use of the HttpRequest.Form and HttpRequest.QueryString
properties to access client-supplied form data on the web server, these old-school techniques are
(for the most part) unnecessary. Given that ASP.NET supplies you with server-side web controls, you
are able to treat HTML UI elements as true objects. Therefore, rather than obtaining the value within
a text box as follows:

Protected Sub btnGetFormData_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetFormData.Click

' Get value for a widget with ID txtFirstName.

Dim firstName As String = Request.Form("txtFirstName")

5785ch25.qxd 3/31/06 11:39 AM Page 870

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 871

' Use this value in your page...

End Sub

you can simply ask the server-side widget directly via the Text property for use in your program:

Protected Sub btnGetFormData_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetFormData.Click

' Get value for a widget with ID txtFirstName.

Dim firstName As String = txtFirstName.Text

' Use this value in your page...

End Sub

Not only does this approach lend itself to solid OO principles, but also you do not need to concern
yourself with how the form data was submitted (GET or POST) before obtaining the values. Further-
more, working with the widget directly is much more type-safe, given that typing errors are discovered
at compile time rather than runtime. Of course, this is not to say that you will never need to make
use of the Form or QueryString property in ASP.NET; rather, the need to do so has greatly diminished
and is usually optional.

The IsPostBack Property
Another very important member of HttpRequest is the IsPostBack property. Recall that “postback”
refers to the act of returning to a particular web page while still in session with the server. Given this
definition, understand that the IsPostBack property will return true if the current HTTP request has
been sent by a currently logged on user and false if this is the user’s first interaction with the page.

Typically, the need to determine whether the current HTTP request is indeed a postback is
most helpful when you wish to perform a block of code only the first time the user accesses a given
page. For example, you may wish to populate an ADO.NET DataSet when the user first accesses an
*.aspx file and cache the object for later use. When the caller returns to the page, you can avoid the
need to hit the database unnecessarily (of course, some pages may require that the DataSet always
be updated upon each request, but that is another issue). Assuming your *.aspx file has handled
the page’s Load event (described in detail later in this chapter), you could programmatically test for
postback conditions as follows:

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

' Only fill DataSet the very first time

' the user comes to this page.

If Not IsPostBack Then

' Populate DataSet and cache it!

End If

' Use cached DataSet.

End Sub

Interacting with the Outgoing HTTP Response
Now that you have a better understanding how the Page type allows you to interact with the incoming
HTTP request, the next step is to see how to interact with the outgoing HTTP response. In ASP.NET,
the Response property of the Page class provides access to an instance of the HttpResponse type. This
type defines a number of properties that allow you to format the HTTP response sent back to the
client browser. Table 25-6 lists some core properties.

5785ch25.qxd 3/31/06 11:39 AM Page 871

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES872

Table 25-6. Properties of the HttpResponse Type

Property Meaning in Life

Cache Returns the caching semantics of the web page (e.g., expiration time,
privacy, vary clauses)

ContentEncoding Gets or sets the HTTP character set of the output stream

ContentType Gets or sets the HTTP MIME type of the output stream

Cookies Gets the HttpCookie collection sent by the current request

IsClientConnected Gets a value indicating whether the client is still connected to the server

Output Enables custom output to the outgoing HTTP content body

OutputStream Enables binary output to the outgoing HTTP content body

StatusCode Gets or sets the HTTP status code of output returned to the client

StatusDescription Gets or sets the HTTP status string of output returned to the client

SuppressContent Gets or sets a value indicating that HTTP content will not be sent to
the client

Also, consider the partial list of methods supported by the HttpResponse type described in
Table 25-7.

Table 25-7. Methods of the HttpResponse Type

Method Meaning in Life

AddCacheDependency() Adds an object to the application catch (see Chapter 27)

Clear() Clears all headers and content output from the buffer stream

End() Sends all currently buffered output to the client, and then closes the
socket connection

Flush() Sends all currently buffered output to the client

Redirect() Redirects a client to a new URL

Write() Writes values to an HTTP output content stream

WriteFile() Writes a file directly to an HTTP content output stream

Emitting HTML Content
Perhaps the most well-known aspect of the HttpResponse type is the ability to write content directly
to the HTTP output stream. The HttpResponse.Write() method allows you to pass in any HTML tags
and/or text literals. The HttpResponse.WriteFile() method takes this functionality one step further,
in that you can specify the name of a physical file on the web server whose contents should be rendered
to the output stream (this is quite helpful to quickly emit the contents of an existing *.htm file).

To illustrate, assume you have added another Button type to your current *.aspx file that
implements the server-side Click event handler like so:

Protected Sub btnHttpResponse_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnHttpResponse.Click

Response.Write("My name is:
")

Response.Write(Me.ToString())

Response.Write("

Here was your last request:
")

' This assumes that you have a file of this name

' in your web directory!

Response.WriteFile("MyHTMLPage.htm")

End Sub

5785ch25.qxd 3/31/06 11:39 AM Page 872

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 873

The role of this helper function (which you can assume is called by some server-side event han-
dler) is quite simple. The only point of interest is the fact that the HttpResponse.WriteFile() method
is now emitting the contents of a server-side *.htm file within the root directory of the website.

Again, while you can always take this old-school approach and render HTML tags and content
using the Write() method, this approach is far less common under ASP.NET than with classic ASP.
The reason is (once again) due to the advent of server-side web controls. Thus, if you wish to render
a block of textual data to the browser, your task is as simple as assigning a string to the Text property
of a Label widget.

Redirecting Users
Another aspect of the HttpResponse type is the ability to redirect the user to a new URL:

Protected Sub btnSomeTraining_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnSomeTraining.Click

Response.Redirect("http://www.IntertechTraining.com")

End Sub

If this event handler was invoked via a client-side postback, the user will automatically be
redirected to the specified URL.

■Note The HttpResponse.Redirect() method will always entail a trip back to the client browser. If you simply
wish to transfer control to an *.aspx file in the same virtual directory, the HttpServerUtility.Transfer()
method (accessed via the inherited Server property) will be more efficient.

So much for investigating the functionality of System.Web.UI.Page. We will examine the role of
the System.Web.UI.Control base class in the next chapter. Next up, let’s examine the life and times
of a Page-derived object.

■Source Code The FunWithPageMembers files are included under the Chapter 25 subdirectory.

The Life Cycle of an ASP.NET Web Page
Every ASP.NET web page has a fixed life cycle. When the ASP.NET runtime receives an incoming
request for a given *.aspx file, the associated System.Web.UI.Page-derived type is allocated into
memory using the type’s default constructor. After this point, the framework will automatically fire
a series of events. By default, Visual Basic 2005 web pages do not handle any events for a Page-derived
type; however, when you wish to do so, simply select Page Events from the left-hand drop-down listbox
of your *.vb code file and select the specific event you wish to handle from the right-hand drop-down
listbox (see Figure 25-19).

5785ch25.qxd 3/31/06 11:39 AM Page 873

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES874

For example, if you select the Load event, the Visual Studio 2005 IDE generates a proper event
handler to which you can add your custom code:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

' Perform load logic here...

End Sub

End Class

Again, much like a Windows Forms application, notice that the Handles keyword is used to
associate the event that is responsible for handling the event in question. If you were to run this
page, you would find the message “In Load Event!” is emitted back into the requesting browser.

Beyond the Load event, a given Page is able to intercept any of the core events in Table 25-8,
which are listed in the order in which they are encountered (consult the .NET Framework 2.0 SDK
documentation for details on all possible events that may fire during a page’s lifetime).

Table 25-8. Select Events of the Page Type

Event Meaning in Life

PreInit The framework uses this event to allocate any web controls,
apply themes, establish the master page, and set user profiles.
You may intercept this event to customize the process.

Init The framework uses this event to set the properties of web
controls to their previous values via postback or view state data.

Load When this event fires, the page and its controls are fully
initialized, and their previous values are restored. At this
point, it is safe to interact with each web widget.

“Event that triggered the postback” There is of course, no event of this name. This “event” simply
refers to whichever event caused the browser to perform the
postback to the web server (such as a Button click).

PreRender All control data binding and UI configuration has occurred and
the controls are ready to render their data into the outbound
HTTP response.

Figure 25-19. Handling page-level events

5785ch25.qxd 3/31/06 11:39 AM Page 874

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 875

Event Meaning in Life

Unload The page and its controls have finished the rendering process,
and the page object is about to be destroyed. At this point, it is
a runtime error to interact with the outgoing HTTP response.
You may, however, capture this event to perform any page-level
cleanup (close file or database connections, perform any form
of logging activity, dispose of objects, etc.).

■Note Each event of the Page type works in conjunction with the System.EventHandler delegate, and there-
fore the subroutines that handle these events always take an Object as the first parameter and an EventArgs as
the second.

The Role of the AutoEventWireup Attribute
When you wish to handle events for your page, you will need to update your <script> block or
code-behind file with an appropriate event handler. As you have just seen, by default VB 2005 pages
make use of the Handles keyword for this purpose. However, if you examine the <%@Page%> directive,
you will notice a specific attribute named AutoEventWireUp, which by default is set to false:

<%@ Page Language="VB" AutoEventWireup="false"

CodeFile="Default.aspx.vb" Inherits="_Default" %>

With this default behavior, each page-level event handler must make use of the Handles keyword
to inform the runtime you are interested in capturing the event in question. By way of a simple test,
if you were to comment out the Handles clause of your Load event as follows:

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) ' Handles Me.Load

' Perform load logic here...

End Sub

you would now find that the page no longer emits the “In Load Event!” message. However, if you
were to enable AutoPageWireUp by setting this attribute to true:

<%@ Page Language="VB" AutoEventWireup="true"

CodeFile="Default.aspx.vb" Inherits="_Default" %>

the Load event handler is still invoked, even though the Handles keyword has been omitted. As its
name suggests, this attribute (when enabled) will generate the necessary event riggings within the
autogenerated partial class described in earlier in this chapter. By and large, you will seldom (if ever)
need to enable the AutoEventWireup attribute, as the IDE will always add the necessary Handles clause
to your page-level events.

The Error Event
Another event that may occur during your page’s life cycle is Error, which also works in conjunction
with the System.EventHandler delegate. This event will be fired if a method on the Page-derived type
triggered an exception that was not explicitly handled. Assume that you have handled the Click event
for a given Button on your page, and within the event handler (which I named btnGetFile_Click), you
attempt to write out the contents of a local file to the HTTP response.

5785ch25.qxd 3/31/06 11:39 AM Page 875

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES876

Also assume you have failed to test for the presence of this file via standard structured excep-
tion handling. If you have rigged up the page’s Error event, you have one final chance to deal with
the problem on this page before the end user finds an ugly error. Consider the following code:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

' Perform load logic here...

End Sub

Protected Sub Page_Error(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Error

' Gut the current response, issue an error,

' and tell the runtime the error has been processed.

Response.Clear()

Response.Write("I am sorry...I can't find a required file.")

Server.ClearError()

End Sub

Protected Sub btnPostback_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnPostback.Click

' This is just here to allow a postback.

End Sub

Protected Sub btnTriggerError_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnTriggerError.Click

' Try to open a nonexistent file on the web server.

' This will fire the Error event for this page.

System.IO.File.ReadAllText("C:\IDontExist.txt")

End Sub

End Class

Notice that your Error event handler begins by clearing out any content currently within the
HTTP response and emits a generic error message. If you wish to gain access to the specific
System.Exception object, you may do so using the HttpServerUtility.GetLastError() method
exposed by the inherited Server property:

Protected Sub Page_Error(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Error

Response.Clear()

Response.Write(String.Format("The error was: {0}", _

Server.GetLastError().Message))

Server.ClearError()

End Sub

Finally, note that before exiting this generic error handler, you are explicitly calling the
HttpServerUtility.ClearError() method via the Server property. This is required, as it informs the
runtime that you have dealt with the issue at hand and require no further processing. If you forget
to do so, you the end user will be presented with the runtime’s error page. Figure 25-20 shows the
result of this error-trapping logic.

5785ch25.qxd 3/31/06 11:39 AM Page 876

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 877

At this point, you should hopefully feel confident with the composition of an ASP.NET Page
type. Now that you have such a foundation, you can turn your attention to the role of ASP.NET web
controls, themes, and master pages, all of which are the subject of the next chapter. To wrap up this
chapter, however, let’s examine the role of the web.config file.

■Source Code The PageLifeCycle files are included under the Chapter 25 subdirectory.

The Role of the web.config File
By default, all ASP.NET web applications created with Visual Basic 2005 are automatically provided
with a web.config file. This is not the case with other .NET languages, however. Thus, if you ever needed
to manually insert a web.config file to your site (for example, when you are working with the single-page
model and have not created a web solution), you may do so using the using the Web Site ➤ Add New
Item menu option. In either case, within this scope of a web.config file you are able to add settings
that control how your web application will function at runtime.

■Note It is not mandatory for your web applications to include a web.config file. If you do not have such a file,
your website will be granted the web-centric settings recorded in the machine.config file for your .NET installation.

Recall during your examination of .NET assemblies (in Chapter 13) that you learned client
applications can leverage a XML-based configuration file to instruct the CLR how it should handle
binding requests, assembly probing, and other runtime details. The same holds true for ASP.NET
web applications, with the notable exception that web-centric configuration files are always named
web.config (unlike *.exe configuration files, which are named based on the related client executable).
The default structure of a web.config file looks something like the following (various comments
removed for clarity):

Figure 25-20. Page-level error handling

5785ch25.qxd 3/31/06 11:39 AM Page 877

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES878

<?xml version="1.0"?>

<configuration>

<appSettings/>

<connectionStrings/>

<system.web>

<compilation debug="false" strict="false" explicit="true" />

<pages>

<namespaces>

<clear />

<add namespace="System" />

<add namespace="System.Collections" />

<add namespace="System.Collections.Specialized" />

<add namespace="System.Configuration" />

<add namespace="System.Text" />

<add namespace="System.Text.RegularExpressions" />

<add namespace="System.Web" />

<add namespace="System.Web.Caching" />

<add namespace="System.Web.SessionState" />

<add namespace="System.Web.Security" />

<add namespace="System.Web.Profile" />

<add namespace="System.Web.UI" />

<add namespace="System.Web.UI.WebControls" />

<add namespace="System.Web.UI.WebControls.WebParts" />

<add namespace="System.Web.UI.HtmlControls" />

</namespaces>

</pages>

<authentication mode="Windows" />

<!--

The <customErrors> section enables configuration

of what to do if/when an unhandled error occurs

during the execution of a request. Specifically,

it enables developers to configure html error pages

to be displayed in place of a error stack trace.

<customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">

<error statusCode="403" redirect="NoAccess.htm" />

<error statusCode="404" redirect="FileNotFound.htm" />

</customErrors>

-->

</system.web>

</configuration>

Like any *.config file, web.config defines the root-level <configuration> element. Nested
within the root is the <system.web> element, which can contain numerous subelements used to
control how your web application should behave at runtime. Under ASP.NET, the web.config file
can be modified using any text editor. Table 25-9 outlines some of the more interesting subelements
that can be found within a web.config file.

5785ch25.qxd 3/31/06 11:39 AM Page 878

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 879

Table 25-9. Select Elements of a web.config File

Element Meaning in Life

<appSettings> This element is used to establish custom name/value pairs that can be
programmatically read in memory for use by your pages using the
ConfigurationManager type.

<authentication> This security-related element is used to define the authentication mode for
this web application.

<authorization> This is another security-centric element used to define which users can
access which resources on the web server.

<compilation> This element is used to enable (or disable) debugging as well the VB-centric
Option Strict and Option Explicit settings.

<connectionStrings> This element is used to hold external connection strings used within this
website.

<customErrors> This element is used to tell the runtime exactly how to display errors that
occur during the functioning of the web application.

<globalization> This element is used to configure the globalization settings for this web
application.

<namespaces> This element documents all of the namespaces to include if your web
application has been precompiled using the new aspnet_compiler.exe
command-line tool.

<sessionState> This element is used to control how and where session state data will be
stored by the .NET runtime.

<trace> This element is used to enable (or disable) tracing support for this web
application.

A web.config file may contain additional subelements above and beyond the set presented in
Table 25-9. The vast majority of these items are security related, while the remaining items are use-
ful only during advanced ASP.NET scenarios such as creating with custom HTTP headers or custom
HTTP modules (topics that are not covered here). If you wish to see the complete set of elements
(and the related attributes) that can appear in a web.config file, you may do so using the .NET 2.0
Framework SDK documentation. Simply navigate to .NET Development ➤ General Reference ➤
ASP.NET Reference ➤ Configuration File Syntax, as shown in Figure 25-21, and dive in.

5785ch25.qxd 3/31/06 11:39 AM Page 879

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES880

You will come to know various aspects of the web.config over the remainder of this text.

Configuration File Inheritance
One interesting aspect of ASP.NET is that it is possible for a single website to contain multiple
copies of a web.config file, provided that they are all within a unique subdirectory of the main root.
Recall that a web application can be defined as the set of all files contained within a root directory
and any optional subdirectories. In addition to the “special” subdirectories recognized by ASP.NET
(App_Data, App_Themes, Bin, and so forth), large-scale web applications tend to define numerous
subdirectories off the root, each of which contains some set of related files. Like a traditional desk-
top application, this is typically done for the benefit of us mere humans, as a hierarchical structure
can make a massive set of files more understandable.

When you have an ASP.NET web application that consists of optional subdirectories off the
root, you may be surprised to discover that each subdirectory may have its own web.config file. By
doing so, you allow each subdirectory to effectively override the settings of a parent directory. If the
subdirectory in question does not supply a custom web.config file, it will inherit the settings of the
next available web.config file up the directory structure. Figure 25-22 illustrates the concept.

Of course, although ASP.NET does allow you to define numerous web.config files for a single web
application, you are not required to do so. In a great many cases, your web applications function just
fine using nothing other than the web.config file located in the root directory of the web application.

■Note Recall from Chapter 13 that the machine.config file defines numerous machinewide settings, many of
which are ASP.NET-centric. This file is the ultimate parent in the configuration inheritance hierarchy.

Figure 25-21. Page-level error handling

5785ch25.qxd 3/31/06 11:39 AM Page 880

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES 881

The ASP.NET 2.0 Website Administration Utility
Although you are always free to modify the content of a web.config file directly using Visual Studio 2005,
ASP.NET 2.0 now provides a handy web-based editor that will allow you to graphically edit numerous
elements and attributes of your project’s web.config file. To launch this tool, shown in Figure 25-23,
simply activate the Web Site ➤ ASP.NET Configuration menu option.

Figure 25-22. Configuration file inheritance

Figure 25-23. The ASP.NET Web Site Administration tool

5785ch25.qxd 3/31/06 11:39 AM Page 881

CHAPTER 25 ■ BUILDING ASP.NET 2.0 WEB PAGES882

If you were to click the tabs located on the top of the page, you would quickly notice that most
of this tool’s functionality is used to establish security settings for your website. However, this tool
also makes it possible to add settings to your <appSettings> element, define debugging and tracing
settings, and establish a default error page. You’ll see more of this tool in action where necessary;
however, do be aware that this utility will not allow you to add all possible settings to a web.config

file. There will most certainly be times when you will need to manually update this file using your
text editor of choice.

Summary
Building web applications requires a different frame of mind than is used to assemble traditional
desktop applications. In this chapter, you began with a quick and painless review of some core web
atoms, including HTML, HTTP, the role of client-side scripting, and server-side scripts using classic
ASP. The bulk of this chapter was spent examining the architecture of an ASP.NET page. As you have
seen, each *.aspx file in your project has an associated System.Web.UI.Page-derived class. Using
this OO approach, ASP.NET allows you to build more reusable and OO-aware systems. After exam-
ining some of the core functionality of a page’s inheritance chain, this chapter then discussed how
your pages are ultimately compiled into a valid .NET assembly. We wrapped up by exploring the role
of the web.config file and overviewing the ASP.NET 2.0 Web Site Administration tool.

5785ch25.qxd 3/31/06 11:39 AM Page 882

ASP.NET 2.0 Web Controls, Themes,
and Master Pages

The previous chapter concentrated on the composition and behavior of ASP.NET 2.0 page objects.
This chapter will dive into the details of the “web controls” that make up a page’s user interface.
After examining the overall nature of an ASP.NET web control, you will come to understand how to
make use of several UI elements including the validation controls and data-centric controls.

The later half of this chapter will examine the role of “master pages” and see how they provide
a simplified manner to define a common UI skeleton that will be replicated across the pages in your
website. I wrap up by showing you how to apply “themes” to your pages, in order to define a consistent
look and feel for your page’s controls. As you will see, the ASP.NET theme engine provides a server-side
alternative to client-side style sheets.

Understanding the Nature of Web Controls
Perhaps the major benefit of ASP.NET is the ability to assemble the UI of your pages using the types
defined in the System.Web.UI.WebControls namespace. As you have seen, these controls (which go
by the names server controls, web controls, or Web Form controls) are extremely helpful in that they
automatically generate the necessary HTML for the requesting browser and expose a set of events
that may be processed on the web server. Furthermore, because each ASP.NET control has a corre-
sponding class in the System.Web.UI.WebControls namespace, it can be manipulated in an OO manner
from your *.aspx file (within a <script> block) as well as within the associated class defined in the
code-behind file.

As you have seen, when you configure the properties of a web control using the Visual Studio 2005
Properties window, your edits are recorded in the open declaration of a given widget in the *.aspx
file as a series of name/value pairs. Thus, if you add a new TextBox to the designer of a given *.aspx file
and change the ID, BorderStyle, BorderWidth, BackColor, Text, and BorderColor properties using the
IDE, the opening <asp:TextBox> tag is modified as follows:

<asp:TextBox ID="txtNameTextBox" runat="server"

BackColor="#C0FFC0" BorderStyle="Dotted"BorderWidth="5px">

Enter Your Name

</asp:TextBox>

Given that the HTML declaration of a web control eventually becomes a member variable from
the System.Web.UI.WebControls namespace (via the dynamic compilation cycle), you are able to inter-
act with the members of this type within a server-side <script> block or the page’s code-behind file.
For example, if you handled the Click event for a given Button type, you could change the background
color of the TextBox as follows:

883

C H A P T E R 2 6

■ ■ ■

5785ch26.qxd 3/31/06 12:41 PM Page 883

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub btnChangeTextBoxColor_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnChangeTextBoxColor.Click

Me.txtNameTextBox.BackColor = Drawing.Color.DarkBlue

End Sub

End Class

All ASP.NET web controls ultimately derive from a common base class named System.Web.
UI.WebControls.WebControl. WebControl in turn derives from System.Web.UI.Control (which derives
from System.Object). Control and WebControl each define a number of properties common to all
server-side controls. Before we examine the inherited functionality, let’s formalize what it means to
handle a server-side event.

Qualifying Server-side Event Handling
Given the current state of the World Wide Web, it is impossible to avoid the fundamental nature of
browser/web server interaction. Whenever these two entities communicate, there is always an
underlying, stateless, HTTP request-and-response cycle. While ASP.NET server controls do a great
deal to shield you from the details of the raw HTTP protocol, always remember that treating the
Web as an event-driven entity is just a magnificent smoke-and-mirrors show provided by the CLR,
and it is not identical to the event-driven model of a Windows-based UI.

Thus, although the System.Windows.Forms and System.Web.UI.WebControls namespaces define
types with the same simple names (Button, TextBox, Calendar, Label, and so on), they do not expose
an identical set of events. For example, there is no way to handle a server-side MouseMove event when
the user moves the cursor over a Web Form Button type. Obviously, this is a good thing. (Who wants
to post back to the server each time the mouse moves?)

The bottom line is that a given ASP.NET web control will expose a limited set of events, all of
which ultimately result in a postback to the web server. Any necessary client-side event processing
will require you to author blurbs of client-side JavaScript/VBScript script code to be processed by
the requesting browser’s scripting engine. Given that ASP.NET is primarily a server-side technology,
I will not be addressing the topic of authoring client-side scripts in this text.

■Note Handling an event for a given web control using Visual Studio 2005 can be done in an identical manner to
a Windows Forms control. Simply select the widget from the designer and click the lightening bolt icon on the
Properties window.

The AutoPostBack Property
It is also worth pointing out that many of the ASP.NET web controls support a property named
AutoPostBack (most notably, the CheckBox, RadioButton, and TextBox controls, as well as any widget
that derives from the abstract ListControl type). By default, this property is set to False, which dis-
ables the automatic processing of server-side events (even if you have indeed rigged up the event in
the code-behind file). In many cases, this is the exact behavior you require, given that UI elements
such as check boxes typically don’t require postback functionality (as the page object can obtain the
state of the widget within a more natural Button Click event handler).

However, if you wish to cause any of these widgets to post back to a server-side event handler,
simply set the value of AutoPostBack to True. This technique can be helpful if you wish to have the
state of one widget automatically populate another value within another widget on the same page.
To illustrate, create a tester website that contains a single TextBox (named txtAutoPostback) and
a single ListBox control (named lstTextBoxData). Here is the relevant markup generated by the designer:

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES884

5785ch26.qxd 3/31/06 12:41 PM Page 884

<form id="form1" runat="server">

<asp:TextBox ID="txtAutoPostback" runat="server"></asp:TextBox>

<asp:ListBox ID="lstTextBoxData" runat="server"></asp:ListBox>

</form>

Now, handle the TextChanged event of the TextBox, and within the server-side event handler,
populate the ListBox with the current value in the TextBox:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub txtAutoPostback_TextChanged(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles txtAutoPostback.TextChanged

lstTextBoxData.Items.Add(txtAutoPostback.Text)

End Sub

End Class

If you run the application as is, you will find that as you type in the TextBox, nothing happens. Fur-
thermore, if you type in the TextBox and tab to the next control, nothing happens. The reason is that the
AutoPostBack property of the TextBox is set to False by default. However, if you set this property to True:

<asp:TextBox ID="txtAutoPostback"

runat="server" AutoPostBack="True">

</asp:TextBox>

you will find that when you tab off the TextBox (or press the Enter key), the ListBox is automatically
populated with the current value in the TextBox. To be sure, beyond the need to populate the items
of one widget based on the value of another widget, you will typically not need to alter the state of
a widget’s AutoPostBack property.

The System.Web.UI.Control Type
The System.Web.UI.Control base class defines various properties, methods, and events that allow
the ability to interact with core (typically non-GUI) aspects of a web control. Table 26-1 documents
some, but not all, members of interest.

Table 26-1. Select Members of System.Web.UI.Control

Member Meaning in Life

Controls This property gets a ControlCollection object that represents the child
controls within the current control.

DataBind() This method binds a data source to the invoked server control and all its child
controls.

EnableThemeing This property establishes whether the control supports theme functionality.

HasControls() This method determines whether the server control contains any child controls.

ID This property gets or sets the programmatic identifier assigned to the server
control.

Page This property gets a reference to the Page instance that contains the server control.

Parent This property gets a reference to the server control’s parent control in the page
control hierarchy.

SkinID This property gets or sets the “skin” to apply to the control. Under ASP.NET 2.0,
it is now possible to establish a control’s overall look and feel on the fly via skins.

Visible This property gets or sets a value that indicates whether a server control is
rendered as UI element on the page.

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 885

5785ch26.qxd 3/31/06 12:41 PM Page 885

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES886

Enumerating Contained Controls
The first aspect of System.Web.UI.Control we will examine is the fact that all web controls (includ-
ing Page itself) inherit a custom controls collection (accessed via the Controls property). Much like
in a Windows Forms application, the Controls property provides access to a strongly typed collec-
tion of WebControl-derived types. Like any .NET collection, you have the ability to add, insert, and
remove items dynamically at runtime.

While it is technically possible to directly add web controls directly to a Page-derived type, it is
easier (and a wee bit safer) to make use of a Panel widget. The System.Web.UI.WebControls.Panel
class represents a container of widgets that may or may not be visible to the end user (based on the
value of its Visible and BorderStyle properties).

To illustrate, create a new website named DynamicCtrls. Using the Visual Studio 2005 page designer,
add a Panel type (named myPanel) that contains a TextBox, Button, and HyperLinkwidget named whatever
you choose (be aware that the designer requires that you drag internal items within the UI of the Panel
type). Once you have done so, the <form> element of your *.aspx file will have been updated as follows:

<asp:Panel ID="myPanel" runat="server" Height="50px" Width="125px">

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Button"/>

<asp:HyperLink ID="HyperLink1" runat="server">HyperLink

</asp:HyperLink>

</asp:Panel>

Next, place a Label widget outside the scope of the Panel (named lblControlInfo) to hold the
rendered output. Assume in the Page_Load() event you wish to obtain a list of all the controls con-
tained within the Panel and assign the results to the Label type (named lblControlInfo):

Partial Class _Default

Inherits System.Web.UI.Page

Private Sub ListControlsInPanel()

Dim theInfo As String

theInfo = String.Format("Has controls? {0}
", myPanel.HasControls())

For Each c As Control In myPanel.Controls

If c.GetType() IsNot GetType(System.Web.UI.LiteralControl) Then

theInfo += "***************************
"

theInfo += String.Format("Control Name? {0}
", c.ToString())

theInfo += String.Format("ID? {0}
", c.ID)

theInfo += String.Format("Control Visible? {0}
", c.Visible)

theInfo += String.Format("ViewState? {0}
", c.EnableViewState)

End If

Next

lblControlInfo.Text = theInfo

End Sub

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

ListControlsInPanel()

End Sub

End Class

Here, you iterate over each WebControl maintained on the Panel and perform a check to see
whether the current type is of type System.Web.UI.LiteralControl. This type is used to represent
literal HTML tags and content (such as
, text literals, etc.). If you do not do this sanity check,
you might be surprised to find a total of seven types in the scope of the Panel (given the *.aspx
declaration seen previously). Assuming the type is not literal HTML content, you then print out
some various statistics about the widget. Figure 26-1 shows the output.

5785ch26.qxd 3/31/06 12:41 PM Page 886

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 887

Figure 26-1. Enumerating contained widgets

Dynamically Adding (and Removing) Controls
Now, what if you wish to modify the contents of a Panel at runtime? The process should look very
familiar to you, given your work with Windows Forms earlier in this text. Let’s update the current
page to support an additional Button (named btnAddWidgets) that dynamically adds five new TextBox
types to the Panel, and another Button (named btnRemovePanelItems) that clears the Panel widget of
all controls. The Click event handlers for each are shown here:

Protected Sub btnRemovePanelItems_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnRemovePanelItems.Click

myPanel.Controls.Clear()

ListControlsInPanel()

End Sub

5785ch26.qxd 3/31/06 12:41 PM Page 887

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES888

Protected Sub btnAddWidgets_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnAddWidgets.Click

For i As Integer = 0 To 4

' Assign a name so we can get

' the text value out later

' using the HttpRequest.Form()

' method.

Dim t As TextBox = New TextBox()

t.ID = String.Format("newTextBox{0}", i)

myPanel.Controls.Add(t)

ListControlsInPanel()

Next

End Sub

Notice that you assign a unique ID to each TextBox (e.g., newTextBox1, newTextBox2, and so on)
to obtain its contained text programmatically using the HttpRequest.Form collection.

To obtain the values within these dynamically generated TextBoxes, update your UI with one
additional Button and Label type. Within the Click event handler for the Button, loop over each item
contained within the HttpRequest.NameValueCollection type (accessed via HttpRequest.Form) and
concatenate the textual information to a locally scoped System.String. Once you have exhausted the
collection, assign this string to the Text property of the new Label widget named lblTextBoxText:

Protected Sub btnGetTextBoxValues_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetTextBoxValues.Click

Dim textBoxValues As String = ""

For i As Integer = 0 To Request.Form.Count - 1

textBoxValues += String.Format("{0}
", Request.Form(i))

Next

lblTextBoxText.Text = textBoxValues

End Sub

When you run the application, you will find that you are able to view the content of each text
box, including some rather long (unreadable) string data. This string contains the view state for
each widget on the page and will be examined later in the next chapter. Also, you will notice that
once the request has been processed, the text boxes disappear. Again, the reason has to do with the
stateless nature of HTTP. If you wish to maintain these dynamically created TextBoxes between
postbacks, you need to persist these objects using ASP.NET state programming techniques (also
examined in the next chapter).

■Source Code The DynamicCtrls files are included under the Chapter 26 subdirectory.

Key Members of the
System.Web.UI.WebControls.WebControl Type
As you can tell, the Control type provides a number of non-GUI-related behaviors (the controls
collection, autopostback support, etc.). On the other hand, the WebControl base class provides
a graphical polymorphic interface to all web widgets, as suggested in Table 26-2.

5785ch26.qxd 3/31/06 12:41 PM Page 888

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 889

Table 26-2. Properties of the WebControl Base Class

Properties Meaning in Life

BackColor Gets or sets the background color of the web control

BorderColor Gets or sets the border color of the web control

BorderStyle Gets or sets the border style of the web control

BorderWidth Gets or sets the border width of the web control

Enabled Gets or sets a value indicating whether the web control is enabled

CssClass Allows you to assign a class defined within a Cascading Style Sheet to a web widget

Font Gets font information for the web control

ForeColor Gets or sets the foreground color (typically the color of the text) of the web control

Height Get or set the height and width of the web control
Width

TabIndex Gets or sets the tab index of the web control

ToolTip Gets or sets the tool tip for the web control to be displayed when the cursor is over
the control

I’d bet that almost all of these properties are self-explanatory, so rather than drill through the
use of all these properties, let’s shift gears a bit and check out a number of ASP.NET Web Form con-
trols in action.

Categories of ASP.NET Web Controls
The types in System.Web.UI.WebControls can be broken down into several broad categories:

• Simple controls

• (Feature) Rich controls

• Data-centric controls

• Input validation controls

• Web part controls

• Login controls

The simple controls are so named because they are ASP.NET web controls that map to standard
HTML widgets (buttons, lists, hyperlinks, image holders, tables, etc.). Next, we have a small set of
controls named the rich controls for which there is no direct HTML equivalent (such as the Calendar,
TreeView, Menu, Wizard, etc.). The data-centric controls are widgets that are typically populated via
a given data connection. The best (and most exotic) example of such a control would be the ASP.NET
GridView. Other members of this category include “repeater” controls and the lightweight DataList.

The validation controls are server-side widgets that automatically emit client-side JavaScript,
for the purpose of form field validation. Finally, as of ASP.NET 2.0, the base class libraries ship with
a number of security-centric controls. These UI elements completely encapsulate the details of log-
ging into a site, providing password-retrieval services and managing user roles. The full set of ASP.NET
web controls can be seen using the Visual Studio 2005 Toolbox. Notice in Figure 26-2, related controls
are grouped together under a specific tab.

5785ch26.qxd 3/31/06 12:41 PM Page 889

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES890

Figure 26-2. The ASP.NET web controls

■Note This text will not address the topic of web parts or the ASP.NET security controls. If you are interested in
learning about these technologies, I’d recommend obtaining a copy of Pro ASP.NET 2005 (MacDonald, Apress, 2005)
to complete your understanding of ASP.NET.

A Brief Word Regarding System.Web.UI.HtmlControls
Truth be told, there are two distinct web control toolkits that ship with ASP.NET 2.0. In addition to
the ASP.NET web controls (within the System.Web.UI.WebControls namespace), the base class libraries
also provide the System.Web.UI.HtmlControls widgets.

The HTML controls are a collection of types that allow you to make use of traditional HTML
controls on a Web Forms page. However, unlike raw HTML tags, HTML controls are OO entities that
can be configured to run on the server and thus support server-side event handling. Unlike ASP.NET
web controls, HTML controls are quite simplistic in nature and offer little functionality beyond stan-
dard HTML tags (HtmlButton, HtmlInputControl, HtmlTable, etc.). As you would expect, Visual Studio
2005 provides a specific section of the Toolbox to contain the HTML control types (see Figure 26-3).

5785ch26.qxd 3/31/06 12:41 PM Page 890

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 891

Figure 26-3. The HTML controls

The HTML controls provide a public interface that mimics standard HTML attributes. For exam-
ple, to obtain the information within an input area, you make use of the Value property, rather than
the web control–centric Text property. Given that the HTML controls are not as feature-rich as the
ASP.NET web controls, I won’t make further mention of them in this text. If you wish to investigate
these types, consult the .NET Framework 2.0 SDK documentation for further details.

■Note The HTML controls can be useful if your team has a clear division between those who build HTML UIs and
.NET developers. HTML folks can make use of their web editor of choice using familiar markup tags and pass the
HTML files to the development team. At this point, developers can configure these HTML controls to run as server
controls (by right-clicking an HTML widget within Visual Studio 2005). This will allow developers to handle server-
side events and work with the HTML widget programmatically.

Building an ASP.NET 2.0 Website
Given that many of the “simple” controls look and feel so close to their Windows Forms counterparts,
I won’t bother to enumerate the details of the basic widgets (Buttons, Labels, TextBoxes, etc.). Rather,
let’s build a new website that illustrates working with several of the more exotic controls as well as
the new ASP.NET 2.0 master page model and enhanced data binding engine. Specifically, this next
example will illustrate the following techniques:

5785ch26.qxd 3/31/06 12:41 PM Page 891

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES892

Figure 26-4. Inserting a new *.master file

• Working with master pages

• Working with the Menu control

• Working with the GridView control

• Working with the Wizard control

To begin, create a new ASP.NET web application named AspNetCarsSite.

Working with Master Pages
As I am sure you are aware, many websites provide a consistent look and feel across multiple pages
(a common menu navigation system, common header and footer content, company logo, etc.).
Under ASP.NET 1.x, developers made extensive use of UserControls and custom web controls to
define web content that was to be used across multiple pages. While UserControls and custom web
controls are still a very valid option under ASP.NET 2.0, we are now provided with the concept of
master pages, which complements these existing technologies.

Simply put, a master page is little more than an ASP.NET page that takes a *.master file extension.
On their own, master pages are not viewable from a client-side browser (in fact, the ASP.NET runtime
will not serve this flavor of web content). Rather, master pages define a common UI frame shared by
all pages (or a subset of pages) in your site.

As well, a *.master page will define various content placeholder areas that define a region of
UI real estate other *.aspx files may plug into. As you will see, *.aspx files that plug their content
into a master file look and feel a bit different from the *.aspx files we have been examining. Specifi-
cally, this flavor of an *.aspx file is termed a content page. Content pages are *.aspx files that do not
define an HTML <form> element (that is the job of the master page).

However, as far as the end user is concerned, a request is made to a given *.aspx file. On the web
server, the related *.master file and any related *.aspx content pages are blended into a single unified
page. To illustrate the use of master pages and content pages, begin by inserting a new master page into
your website via the Web Site ➤ Add New Item menu selection (Figure 26-4 shows the resulting dialog box).

5785ch26.qxd 3/31/06 12:41 PM Page 892

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 893

The initial markup of the MasterPage.master file looks like the following:

<%@ Master Language="VB" CodeFile="MasterPage.master.vb"

Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

<div>

<asp:contentplaceholder id="ContentPlaceHolder1" runat="server">

</asp:contentplaceholder>

</div>

</form>

</body>

</html>

The first point of interest is the new <%@Master%> directive. For the most part, this directive sup-
ports the same attributes as the <%@Page%> directive described in the previous chapter. For example,
notice how by default a master page makes use of a code-behind file (which is technically optional).
Like Page types, a master page derives from a specific base class, which in this case is MasterPage. If
you were to open up your related code file, you would find the following class definition:

Partial Class MasterPage

Inherits System.Web.UI.MasterPage

End Class

The other point of interest within the markup of the master is the <asp:contentplaceholder> type.
This region of a master page represents the area of the master that the UI widgets of the related
*.aspx content file may plug into, not the content defined by the master page itself. If you flip to the
designer surface of the *.master page, you will find that each <asp:contentplaceholder> element is
accounted for, as shown in Figure 26-5.

Figure 26-5. The design-time view of a *.master file’s <asp:contentplaceholder> tags

5785ch26.qxd 3/31/06 12:41 PM Page 893

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES894

If you do intend to blend an *.aspx file within this region, the scope within the
<asp:contentplaceholder> and </asp:contentplaceholder> tags will be empty. However, if you so
choose, you are able to populate this area with various web controls that function as a default UI to
use in the event that a given *.aspx file in the site does not supply specific content. For this example,
assume that each *.aspx page in your site will indeed supply custom content, and therefore our
<asp:contentplaceholder> elements will be empty.

■Note A *.master page may define as many content placeholders as necessary. As well, a single *.master
page may nest additional *.master pages.

As you would hope, you are able to build a common UI of a *.master file using the same Visual
Studio 2005 designers used to build *.aspx files. For your site, you will add a descriptive Label (to
serve as a common welcome message), an AdRotator control (which will randomly display one of
two images), and a Menu control (to allow the user to navigate to other areas of the site). Figure 26-6
shows one possible UI of the master page that we will be constructing (again notice that the content
placeholder is empty). Also notice that the AdRotator widget is simply displaying a red “X” right now,
as we have not specified an image for it to display.

Figure 26-6. The *.master file’s shared UI

Working with the Menu Control and *.sitemap Files
ASP.NET 2.0 ships with several new web controls that allow you to handle site navigation: SiteMapPath,
TreeView, and Menu. As you would expect, these web widgets can be configured in multiple ways. For
example, each of these controls can dynamically generate its nodes via an external XML file (or an
XML-based *.sitemap file), programmatically in code, or through markup using the designers of
Visual Studio 2005. Our menu type will be dynamically populated using a *.sitemap file. The benefit
of this approach is that we can define the overall structure of our website in an external file, and then
bind it to a Menu (or TreeView) widget on the fly. This way, if the navigational structure of our website
changes, we simply need to modify the *.sitemap file and reload the page. To begin, insert a new
Web.sitemap file into your project using the Web Site ➤ Add New Item menu option, as shown in
Figure 26-7.

5785ch26.qxd 3/31/06 12:41 PM Page 894

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 895

As you can see, the initial Web.sitemap file defines a topmost item with two subnodes:

<?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

<siteMapNode url="" title="" description="">

<siteMapNode url="" title="" description="" />

<siteMapNode url="" title="" description="" />

</siteMapNode>

</siteMap>

If we were to bind this structure to a Menu control (using a SiteMapDataProvider, described in
just a moment), we would find a topmost menu item with two submenus. Therefore, when you
wish to define subitems, simply define new <siteMapNode> elements within the scope of an existing
<siteMapNode>. In any case, the goal is to define the overall structure of your website within a Web.sitemap

file using various <siteMapNode> elements. Each one of these elements can define a title and URL
attribute. The URL attribute represents which *.aspx file to navigate to when the user clicks a given
menu item (or node of a TreeView). Our site contains three subelements, which are set up as follows:

• Home: Default.aspx

• Build a Car: BuildCar.aspx

• View Inventory: Inventory.aspx

Our menu system has a single topmost “Welcome” item with three subelements. Therefore, we
can update the Web.sitemap file as follows. (Be aware that each url value must be unique! If not, you
receive a runtime error.)

<?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

<siteMapNode url="" title="Welcome!" description="">

<siteMapNode url="~/Default.aspx" title="Home"

Figure 26-7. Inserting a new Web.sitemap file

5785ch26.qxd 3/31/06 12:41 PM Page 895

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES896

Figure 26-8. The ASP.NET sitemap navigation model

description="The Home Page" />

<siteMapNode url="~/BuildCar.aspx" title="Build a car"

description="Create your dream car" />

<siteMapNode url="~/Inventory.aspx" title="View Inventory"

description="See what is in stock" />

</siteMapNode>

</siteMap>

■Note The ~/ prefix before each page in the url attribute is a notation that represents the root of the website.

Now, despite what you may be thinking, you do not associate a Web.sitemap file directly to a Menu

or TreeView control using a given property. Rather, the *.master or *.aspx file that contains the UI
widget that will display the Web.sitemap file must contain a SiteMapDataSource component. This type
will automatically load the Web.sitemap file into its object model when the page is requested. The Menu
and TreeView types then set their DataSourceID property to point to the SiteMapProvider. The reason
for this level of indirection is that it makes it possible for us to build a custom provider to fetch the
website’s structure from another source (such as a table in a database). Figure 26-8 illustrates
the interplay between a Web.sitemap, SiteMapDataSource, and various UI elements.

To add a new SiteMapDataSource to your *.master file and automatically set the DataSourceID
property, you can make use of the Visual Studio 2005 designer. Activate the inline editor of the Menu
widget and select New Data Source, as shown in Figure 26-9.

5785ch26.qxd 3/31/06 12:41 PM Page 896

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 897

From the resulting dialog box, select the SiteMap icon. This will set the DataSourceID property
of the Menu item as well as add a new SiteMapDataSource component to your page. This is all you need
to do to configure your Menu widget to navigate to the additional pages on your site. If you wish to
perform additional processing when the user selects a given menu item, you may do so by handling
the MenuItemClick event. There is no need to do so for this example, but be aware that you are able
to determine which menu item was selected using the incoming MenuEventArgs parameter.

Establishing Bread Crumbs with the SiteMapNavigation Type
Before moving on to the AdRotator control, add a SiteMapNavigation type onto your *.master file,
beneath the content placeholder element. This widget will automatically adjust its content based
on the current selection of the menu system. As you may know, this can provide a helpful visual cue
for the end user (formally, this UI technique is termed bread crumbs). Once you complete this example,
you will notice that when you select the Welcome ➤ Build a Car menu item, the SiteMapNavigation
widget updates accordingly automatically.

Working with the AdRotator
The role of the ASP.NET AdRotator widget is to randomly display a given image at some position in
the browser. When you first place an AdRotator widget on the designer, it is displayed as an empty
placeholder. Functionally, this control cannot do its magic until you assign the AdvertisementFile
property to point to the source file that describes each image. For this example, the data source will
be a simple XML file named Ads.xml.

Once you have inserted this new XML file to your site, specify a unique <Ad> element for each
image you wish to display. At minimum, each <Ad> element specifies the image to display (ImageUrl),
the URL to navigate to if the image is selected (TargetUrl), mouseover text (AlternateText), and the
weight of the ad (Impressions):

<Advertisements>

<Ad>

<ImageUrl>SlugBug.jpg</ImageUrl>

Figure 26-9. Adding a new SiteMapProvider

5785ch26.qxd 3/31/06 12:41 PM Page 897

Figure 26-10. The AdRotator control at work

<TargetUrl>http://www.Cars.com</TargetUrl>

<AlternateText>Your new Car?</AlternateText>

<Impressions>80</Impressions>

</Ad>

<Ad>

<ImageUrl>car.gif</ImageUrl>

<TargetUrl>http://www.CarSuperSite.com</TargetUrl>

<AlternateText>Like this Car?</AlternateText>

<Impressions>80</Impressions>

</Ad>

</Advertisements>

Here you have specified two image files (car.gif and slugbug.jpg), and therefore you will need
to ensure that these files are in the root of your website (these files have been included with this book’s
code download). To add them to your current project, simply select the Web Site ➤ Add Existing
Item menu option. At this point, you can associate your XML file to the AdRotator controls via the
AdvertisementFile property (in the Properties window):

<asp:AdRotator ID="myAdRotator" runat="server"

AdvertisementFile="~/Ads.xml"/>

Later when you run this application and post back to the page, you will be randomly presented
with one of two image files. Figure 26-10 illustrates the initial UI of the master page.

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES898

Defining the Default.aspx Content Page
Now that you have a master page established, you can begin designing the individual *.aspx pages
that will define the UI content to merge within the <asp:contentplaceholder> tag of the master
page. When you created this new website, Visual Studio 2005 automatically provided you with an
initial *.aspx file, but as the file now stands, it cannot be merged within the master page.

5785ch26.qxd 3/31/06 12:41 PM Page 898

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 899

The reason is that it is the *.master file that defines the <form> section of the final HTML page.
Therefore, the existing <form> area within the *.aspx file will need to be replaced with an <asp:content>
scope. While you could update the markup of your initial *.aspx file by hand, go ahead and delete
Default.aspx from your project. When you wish to automatically insert a new content page to your
project, simply right-click the content placeholder region of the *.master file in the designer and
select the Add Content Page menu option. This will generate a new *.aspx file with the following
initial markup:

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master"

AutoEventWireup="false" CodeFile="Default.aspx.vb"

Inherits="_Default" title="Untitled Page" %>

<asp:Content ID="Content1"

ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

</asp:Content>

First, notice that the <%@Page%> directive has been updated with a new MasterPageFile attribute
that is assigned to your *.master file. Also note that rather than having a <form> element, we have
a <asp:Content> scope (currently empty) that has set the ContentPlaceHolderID value identical to
the <asp:contentplaceholder> widget in the master file.

Given these associations, you will now find that when you switch back to the design view, the
master’s UI is now visible. The content area is visible as well, although it is currently empty. There is
no need to build a complex UI for your Default.aspx content area, so for this example, simply add
some literal text that provides some basic site instructions, as you see in Figure 26-11.

Figure 26-11. Content pages merge with their master page at design time.

5785ch26.qxd 3/31/06 12:41 PM Page 899

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES900

Figure 26-12. At runtime, master files and content pages render back a single <form>.

Now, if you run your project, you will find that the UI content of the *.master and Default.aspx
files have been merged into a single stream of HTML. As you can see from Figure 26-12, the end
user is unaware that the master page even exists.

■Note Master pages can be assigned programmatically within the PreInit event using the Master property.
Furthermore, it is possible for a content page to communicate with its master via the Master property.

Designing the Inventory Content Page
To insert the Inventory.aspx content page into your current project, open the *.master page in the
IDE, select Web Site ➤ Add Content Page (if a *.master file is not the active item in the designer, this
menu option is not present), and rename this file to Inventory.aspx. The role of the Inventory content
page is to display the contents of the Inventory table of the Cars database within a GridView control.

This control is the intended replacement for the legacy DataGrid control used with ASP.NET 1.x.
Although this control behaves in many ways identically to the DataGrid, it has support for the new
data binding engine of ASP.NET 2.0. Under the new model, it is now possible to represent connection
string data and SQL Select, Insert, Update, and Delete statements (or alternatively stored proce-
dures) in markup. Therefore, rather than authoring all of the necessary ADO.NET code by hand, you
can make use of the new SqlDataSource type. Using the visual designers, you are able to declaratively
create the necessary markup, and then assign the DataSourceID property of the GridView to the
SqlDataSource component.

5785ch26.qxd 3/31/06 12:41 PM Page 900

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 901

■Note Despite the name, the SqlDataSource provider can be configured to communicate with any ADO.NET
data provide (ODBC, Oracle, etc.) that ships with the Microsoft .NET platform, and is not limited to Microsoft SQL
server. You may set the underlying DBMS with via the Provider property.

With a few simple mouse clicks, you can configure the GridView to automatically select, update,
and delete records of the underlying data store. While this zero-code mindset greatly simplifies the
amount of boilerplate code, understand that this simplicity comes with a loss of control and may
not be the best approach for an enterprise-level application. This model can be wonderful for low-
trafficked pages, prototyping a website, or smaller in-house applications.

To illustrate how to work with the GridView (and the new data binding engine) in a declarative
manner, update the Inventory.aspx content page with a descriptive label. Next, open the Server
Explorer tool (via the View menu) and make sure you have added a data connection to the Cars
database created during our examination of ADO.NET (see Chapter 24 for a walkthrough of the process
of adding a data connection). Now, select the Inventory icon and drag it onto the content area of the
Inventory.aspx file. Once you have done so, the IDE responds by performing the following steps:

1. Your web.config file was updated with a new <connectionStrings> element.

2. A SqlDataSource component was configured with the necessary Select, Insert, Update, and
Delete logic.

3. The DataSourceID property of the GridView has been set to the new SqlDataSource component.

■Note As an alternative, you can configure a GridView widget using the inline editor. Select New Data Source
from the Choose Data Source drop-down box. This will activate a wizard that walks you through a series of steps
to connect this component to the required data source.

If you examine the opening declaration of the GridView control, you will see that the
DataSourceID property has been set to the SqlDataSource you just defined:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"

CellPadding="4" DataKeyNames="CarID" DataSourceID="CarsDataSource"

ForeColor="#333333" GridLines="None">

...

</asp:GridView>

The SqlDataSource type is where a majority of the action is taking place. In the markup that fol-
lows, notice that this type has recorded the necessary SQL statements (with parameterized queries
no less) to interact with the Inventory table of the Cars database. As well, using the new “$” syntax
of the ConnectionString property, this component will automatically read the <connectionString>
value from web.config:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConnectionString="<%$ ConnectionStrings:CarsConnectionString1 %>"

DeleteCommand="DELETE FROM [Inventory] WHERE [CarID] = @CarID"

InsertCommand="INSERT INTO [Inventory] ([CarID], [Make], [Color], [PetName])

VALUES (@CarID, @Make, @Color, @PetName)"

ProviderName="<%$ ConnectionStrings:CarsConnectionString1.ProviderName %>"

SelectCommand="SELECT [CarID], [Make], [Color], [PetName] FROM [Inventory]"

UpdateCommand="UPDATE [Inventory] SET [Make] = @Make,

[Color] = @Color, [PetName] = @PetName WHERE [CarID] = @CarID">

<DeleteParameters>

<asp:Parameter Name="CarID" Type="Int32" />

5785ch26.qxd 3/31/06 12:41 PM Page 901

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES902

Figure 26-13. The “zero-code” model of the SqlDataSource component

</DeleteParameters>

<UpdateParameters>

<asp:Parameter Name="Make" Type="String" />

<asp:Parameter Name="Color" Type="String" />

<asp:Parameter Name="PetName" Type="String" />

<asp:Parameter Name="CarID" Type="Int32" />

</UpdateParameters>

<InsertParameters>

<asp:Parameter Name="CarID" Type="Int32" />

<asp:Parameter Name="Make" Type="String" />

<asp:Parameter Name="Color" Type="String" />

<asp:Parameter Name="PetName" Type="String" />

</InsertParameters>

</asp:SqlDataSource>

At this point, you are able to run your web program, click the View Inventory menu item, and
view your data, as shown in Figure 26-13. Also notice that the “bread crumbs” provided by the
SiteMapPath widget have updated automatically.

5785ch26.qxd 3/31/06 12:41 PM Page 902

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 903

Enabling Sorting and Paging
The GridView control can easily be configured for sorting (via column name hyperlinks) and paging
(via numeric or next/previous hyperlinks). To do so, activate the inline editor and check the appro-
priate options, as shown in Figure 26-14.

When you run your page again, you will be able to sort your data by clicking the column names
and scrolling through your data via the paging links (provided you have enough records in the
Inventory table!).

Enabling In-place Editing
The final detail of this page is to enable the GridView control’s support for in-place activation. Given
that your SqlDataSource already has the necessary Delete and Update logic, all you need to do is check
the Enable Deleting and Enable Editing check boxes of the GridView (see Figure 26-14). Sure enough,
when you navigate back to the Inventory.aspx page, you are able to edit and delete records, as shown
in Figure 26-15, and update the underlying Inventory table of the Cars database.

Figure 26-14. Enabling sorting and paging

5785ch26.qxd 3/31/06 12:41 PM Page 903

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES904

Figure 26-15. Editing and deleting functionality

Designing the Build-a-Car Content Page
The final task for this example is to design the BuildCar.aspx content page. Insert this file into the
current project (via the Web Site ➤ Add Content Page menu option). This new page will make use of
the ASP.NET 2.0 Wizard web control, which provides a simple way to walk the end user through
a series of related steps. Here, the steps in question will simulate the act of building an automobile
for purchase.

Place a descriptive Label and Wizard control onto the content area. Next, activate the inline
editor for the Wizard and click the Add/Remove WizardSteps link. Add a total of four steps, as shown
in Figure 26-16.

5785ch26.qxd 3/31/06 12:41 PM Page 904

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 905

Once you have defined these steps, you will notice that the Wizard defines an empty content
area where you can now drag and drop controls for the currently selected step. For this example,
update each step with the following UI elements (be sure to provide a descent ID value for each
item using the Properties window):

• Pick Your Model: A single TextBox control

• Pick Your Color: A single ListBox control

• Name Your Car: A single TextBox control

• Delivery Date: A Calendar control

The ListBox control is the only UI element of the Wizard that requires additional steps. Select
this item on the designer (making sure you first select the Pick Your Color link) and fill this widget
with a set of colors using the Items property of the Properties window. Once you do, you will find
markup much like the following within the scope of the Wizard definition:

<asp:ListBox ID="ListBoxColors" runat="server" Width="237px">

<asp:ListItem>Purple</asp:ListItem>

<asp:ListItem>Green</asp:ListItem>

<asp:ListItem>Red</asp:ListItem>

<asp:ListItem>Yellow</asp:ListItem>

<asp:ListItem>Pea Soup Green</asp:ListItem>

<asp:ListItem>Black</asp:ListItem>

<asp:ListItem>Lime Green</asp:ListItem>

</asp:ListBox>

Now that you have defined each of the steps, you can handle the FinishButtonClick event for
the autogenerated Finish button. Within the server-side event handler, obtain the selections from
each UI element and build a description string that is assigned to the Text property of an additional
Label type named lblOrder:

Partial Class _Default

Inherits System.Web.UI.Page

Figure 26-16. Configurng our wizard

5785ch26.qxd 3/31/06 12:41 PM Page 905

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES906

Figure 26-17. The Wizard widget in action

Protected Sub carWizard_FinishButtonClick(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _

Handles carWizard.FinishButtonClick

' Get each value.

Dim order As String = String.Format("{0}, your {1} {2} will arrive on {3}.", _

txtCarPetName.Text, ListBoxColors.SelectedValue, _

txtCarModel.Text, carCalendar.SelectedDate.ToShortDateString())

' Assign to label

lblOrder.Text = order

End Sub

End Class

At this point your AspNetCarSite is complete! Figure 26-17 shows the Wizard in action.

That wraps up our examination of various core UI web controls. To be sure, there are many other
widgets we haven’t covered here. You should feel comfortable, though, with the basic programming
model and be able to dig into the other widgets on your own terms. Next up, let’s look at the validation
controls.

5785ch26.qxd 3/31/06 12:41 PM Page 906

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 907

■Source Code The AspNetCarsSite files are included under the Chapter 26 subdirectory.

The Role of the Validation Controls
The next Web Form controls we will examine are known collectively as validation controls. Unlike
the other Web Form controls we’ve examined, validation controls are not used to emit HTML, but
are used to emit client-side JavaScript (and possibly server-side operations) for the purpose of form
validation. As illustrated at the beginning of this chapter, client-side form validation is quite useful
in that you can ensure that various constraints are in place before posting back to the web server,
thereby avoiding expensive round-trips. Table 26-3 gives a rundown of the ASP.NET validation controls.

Table 26-3. ASP.NET Validation Controls

Control Meaning in Life

CompareValidator Validates that the value of an input control is equal to a given
value of another input control or a fixed constant.

CustomValidator Allows you to build a custom validation function that validates
a given control.

RangeValidator Determines that a given value is in a predetermined range.

RegularExpressionValidator Checks whether the value of the associated input control
matches the pattern of a regular expression.

RequiredFieldValidator Ensures that a given input control contains a value (i.e., is not
empty).

ValidationSummary Displays a summary of all validation errors of a page in a list,
bulleted list, or single-paragraph format. The errors can be
displayed inline and/or in a pop-up message box.

All of the validation controls ultimately derive from a common base class named System.Web.
UI.WebControls.BaseValidator, and therefore they have a set of common features. Table 26-4 docu-
ments the key members.

Table 26-4. Common Properties of the ASP.NET Validators

Member Meaning in Life

ControlToValidate Gets or sets the input control to validate

Display Gets or sets the display behavior of the error message in a validation control

EnableClientScript Gets or sets a value indicating whether client-side validation is enabled

ErrorMessage Gets or sets the text for the error message

ForeColor Gets or sets the color of the message displayed when validation fails

While we could update the previous example with several validation controls (within the
wizard steps, for example), let’s create a new Web Site project named ValidatorCtrls. To begin, place
four TextBox types (with four corresponding and descriptive Labels) onto your page. Next, place
a RequiredFieldValidator, RangeValidator, RegularExpressionValidator, and CompareValidator
type adjacent to each respective field. Finally, add a single Button and final Label (see Figure 26-18).

5785ch26.qxd 3/31/06 12:41 PM Page 907

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES908

Figure 26-18. Various validators

Now that you have a UI, let’s walk though the process of configuring each member.

The RequiredFieldValidator
Configuring the RequiredFieldValidator is straightforward. Simply set the ErrorMessage and
ControlToValidate properties accordingly using the Visual Studio 2005 Properties window. The
resulting *.aspx definition is as follows:

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"

runat="server" ControlToValidate="txtRequiredField"

ErrorMessage="Oops! Need to enter data.">

</asp:RequiredFieldValidator>

One nice thing about the RequiredFieldValidator is that it supports an InitialValue property.
You can use this property to ensure that the user enters any value other than the initial value in the
related TextBox. For example, when the user first posts to a page, you may wish to configure a TextBox

to contain the value “Please enter your name”. Now, if you did not set the InitialValue property of
the RequiredFieldValidator, the runtime would assume that the string “Please enter your name” is
valid. Thus, to ensure a required TextBox is valid only when the user enters anything other than
“Please enter your name”, configure your widgets as follows:

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"

runat="server" ControlToValidate="txtRequiredField"

ErrorMessage="Oops! Need to enter data."

InitialValue="Please enter your name">

</asp:RequiredFieldValidator>

5785ch26.qxd 3/31/06 12:41 PM Page 908

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 909

The RegularExpressionValidator
The RegularExpressionValidator can be used when you wish to apply a pattern against the characters
entered within a given input field. To ensure that a given TextBox contains a valid US Social Security
number, you could define the widget as follows:

<asp:RegularExpressionValidator ID="RegularExpressionValidator1"

runat="server" ControlToValidate="txtRegExp"

ErrorMessage="Please enter a valid US SSN."

ValidationExpression="\d{3}-\d{2}-\d{4}">

</asp:RegularExpressionValidator>

Notice how the RegularExpressionValidator defines a ValidationExpression property. If you
have never worked with regular expressions before, all you need to be aware of for this example is
that they are used to match a given string pattern. Here, the expression "\d{3}-\d{2}\d{4}" is cap-
turing a standard US Social Security number of the form xxx-xx-xxxx (where x is any digit).

This particular regular expression is fairly self-explanatory; however, assume you wish to
test for a valid Japanese phone number. The correct expression now becomes much more com-
plex: "(0\d{1,4}-|\(0\d{1,4}\)?)?\d{1,4}-\d{4}". The good news is that when you select the
ValidationExpression property using the Properties window, you can pick from a predefined set of
common regular expressions by clicking the Ellipse button.

■Note If you are interested in regular expressions, you will be happy to know that the .NET platform supplies two
namespaces (System.Text.RegularExpressions and System.Web.RegularExpressions) devoted to the
programmatic manipulation of such patterns.

The RangeValidator
In addition to a MinimumValue and MaximumValue property, RangeValidators have a property named
Type. Because you are interested in testing the user-supplied input against a range of whole numbers,
you need to specify Integer (which is not the default!):

<asp:RangeValidator ID="RangeValidator1"

runat="server" ControlToValidate="txtRange"

ErrorMessage="Please enter value between 0 and 100."

MaximumValue="100" MinimumValue="0" Type="Integer">

</asp:RangeValidator>

The RangeValidator can also be used to test whether a given value is between a currency value,
date, floating-point number, or string data (the default setting).

The CompareValidator
Finally, notice that the CompareValidator supports an Operator property:

<asp:CompareValidator ID="CompareValidator1" runat="server"

ControlToValidate="txtComparison"

ErrorMessage="Enter a value less than 20." Operator="LessThan"

ValueToCompare="20">

</asp:CompareValidator>

Given that the role of this validator is to compare the value in the text box against another value
using a binary operator, it should be no surprise that the Operator property may be set to values such
as LessThan, GreaterThan, Equal, and NotEqual. Also note that the ValueToCompare is used to establish
a value to compare against.

5785ch26.qxd 3/31/06 12:41 PM Page 909

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES910

■Note The CompareValidator can also be configured to compare a value within another Web Form control
(rather than a hard-coded value) using the ControlToValidate property.

To finish up the code for this page, handle the Click event for the Button type and inform the
user he has succeeded in the validation logic:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub btnPostback_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnPostback.Click

lblValidationComplete.Text = "You passed validation!"

End Sub

End Class

Now, navigate to this page using your browser of choice. At this point, you should not see any
noticeable changes. However, when you attempt to click the Submit button after entering bogus data,
your error message is suddenly visible. Once you enter valid data, the error messages are removed
and postback occurs.

If you look at the HTML rendered by the browser, you see that the validation controls generate
a client-side JavaScript function that makes use of a specific library of JavaScript functions (contained
in the WebUIValidation.js file) that is automatically downloaded to the user’s machine. Once the
validation has occurred, the form data is posted back to the server, where the ASP.NET runtime will
perform the same validation tests on the web server (just to ensure that no along-the-wire tampering
has taken place).

On a related note, if the HTTP request was sent by a browser that does not support client-side
JavaScript, all validation will occur on the server. In this way, you can program against the validation
controls without being concerned with the target browser; the returned HTML page redirects the
error processing back to the web server.

Creating Validation Summaries
The final validation-centric topic we will examine here is the use of the ValidationSummary widget.
Currently, each of your validators displays its error message at the exact place in which it was posi-
tioned at design time. In many cases, this may be exactly what you are looking for. However, on
a complex form with numerous input widgets, you may not want to have random blobs of red text
pop up. Using the ValidationSummary type, you can instruct all of your validation types to display
their error messages at a specific location on the page.

The first step is to simply place a ValidationSummary on your *.aspx file. You may optionally set
the HeaderText property of this type as well as the DisplayMode, which by default will list all error
messages as a bulleted list.

<asp:ValidationSummary id="ValidationSummary1"

style="Z-INDEX: 123; LEFT: 152px; POSITION: absolute; TOP: 320px"

runat="server" Width="353px"

HeaderText="Here are the things you must correct.">

</asp:ValidationSummary>

Next, you need to set the Display property to None for each of the individual validators
(e.g., RequiredFieldValidator, RangeValidator, etc.) on the page. This will ensure that you do not
see duplicate error messages for a given validation failure (one in the summary pane and another at
the validator’s location).

5785ch26.qxd 3/31/06 12:41 PM Page 910

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 911

Last but not least, if you would rather have the error messages displayed using a client-side
MessageBox, set the ShowMessageBox property to True and the ShowSummary property to False.

■Source Code The ValidatorCtrls project is included under the Chapter 26 subdirectory.

Working with Themes
At this point, you have had the chance to work with numerous ASP.NET web controls. As you have
seen, each control exposes a set of properties (many of which are inherited by System.Web.UI.
WebControls.WebControl) that allow you to establish a given UI look and feel (background color, font
size, border style, and whatnot). Of course, on a multipaged website it is quite common for the site
as a whole to define a common look and feel for various types of widgets. For example, all TextBoxes
might be configured to support a given font, all Buttons have a custom image, and all Calendars are
light blue.

Obviously it would be very labor intensive (and error prone) to establish the same property set-
tings for every widget on every page within your website. Even if you were able to manually update
the properties of each UI widget on each page, imagine how painful it would be when you now need
to change the background color for each TextBox yet again. Clearly there must be a better way to
apply sitewide UI settings.

One approach that can be taken to simplify applying a common UI look and feel is to define
style sheets. If you have a background in web development, you are aware that style sheets define
a common set of UI-centric settings that are applied on the browser. As you would hope, ASP.NET
web controls can be assigned a given style by assigning the CssStyle property.

However, ASP.NET 2.0 ships with an alternative technology to define a common UI termed
themes. Unlike a style sheet, themes are applied on the web server (rather than the browser), and
can be done so programmatically or declaratively. Given that a theme is applied on the web server,
it has access to all the server-side resources on the website. Furthermore, themes are defined by
authoring the same markup you would find within any *.aspx file (as you may agree, the syntax of
a style sheet is a bit on the terse side).

Recall from Chapter 25 that ASP.NET 2.0 web applications may define any number of “special”
subdirectories, one of which is App_Theme. This single subdirectory may be further partitioned
with additional subdirectories, each of which represents a possible theme on your site. For example,
consider Figure 26-19, which illustrates a single App_Theme folder containing three subdirectories,
each of which has a set of files that make up the theme itself.

Figure 26-19. A single App_Theme folder may define numerous themes

5785ch26.qxd 3/31/06 12:41 PM Page 911

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES912

Figure 26-20. Inserting *.skin files

Understanding *.skin Files
The one file that every theme subdirectory is sure to have is a *.skin file. These files define the look
and feel for various web controls. To illustrate, create a new website named FunWithThemes. Next,
insert a new *.skin file (using the Web Site ➤ Add New Item menu option) named BasicGreen.skin,
as shown in Figure 26-20.

Visual Studio 2005 will prompt you to confirm this file can be added into an App_Theme folder
(which is exactly what we want). If you were now to look in your Solution Explorer, you will indeed find
your App_Theme folder has a subfolder named BasicGreen containing your new BasicGreen.skin file.

Recall that a *.skin file is where you are able to define the look and feel for various widgets using
ASP.NET control declaration syntax. Sadly, the IDE does not currently provide designer support for
*.skin files. One way to reduce the amount of typing time is to insert a temporary *.aspx file into
your program (temp.aspx, for example) that can be used to build up the UI of the widgets using the
VS 2005 page designer. The resulting markup can then be copied and pasted into your *.skin file.
When you do so, however, you must delete the ID attribute for each web control! This should make
sense, given that we are not trying to define a UI look and feel for a particular Button (for example)
but all Buttons. This being said, here is the markup for BasicGreen.skin, which defines a default
look and feel for the Button, TextBox and Calendar types:

<asp:Label runat="server" Font-Size="XX-Large"/>

<asp:Button runat="server" BackColor="#80FF80"/>

<asp:TextBox runat="server" BackColor="#80FF80"/>

<asp:Calendar runat="server" BackColor="#80FF80"/>

Notice that each widget still has the runat="server" attribute (which is mandatory) and none
of the widgets have been assigned an ID attribute.

5785ch26.qxd 3/31/06 12:41 PM Page 912

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 913

Now, let’s define a second theme named CrazyOrange. Using the Solution Explorer, right-click
your App_Theme folder and add a new theme named CrazyOrange. This will create a new subdirec-
tory under your site’s App_Theme folder. Next, right-click the new CrazyOrange folder within the
Solution Explorer and select Add New Item. From the resulting dialog box, add a new *.skin file.
Update the CrazyOrange.skin file to define a very obnoxious UI look and feel for the same four web
controls. For example:

<asp:Button runat="server" BackColor="#FF8000"/>

<asp:TextBox runat="server" BackColor="#FF8000"/>

<asp:Calendar BackColor="White" BorderColor="Black"

BorderStyle="Solid" CellSpacing="1"

Font-Names="Verdana" Font-Size="9pt" ForeColor="Black" Height="250px"

NextPrevFormat="ShortMonth" Width="330px" runat="server">

<SelectedDayStyle BackColor="#333399" ForeColor="White" />

<OtherMonthDayStyle ForeColor="#999999" />

<TodayDayStyle BackColor="#999999" ForeColor="White" />

<DayStyle BackColor="#CCCCCC" />

<NextPrevStyle Font-Bold="True" Font-Size="8pt" ForeColor="White" />

<DayHeaderStyle Font-Bold="True" Font-Size="8pt"

ForeColor="#333333" Height="8pt" />

<TitleStyle BackColor="#333399" BorderStyle="Solid"

Font-Bold="True" Font-Size="12pt"

ForeColor="White" Height="12pt" />

</asp:Calendar>

So now that your site has a few themes defined, the next logic question is how to apply them to
your pages. As you might guess, there are many ways to do so.

Applying Sitewide Themes
If you wish to make sure that every page in your site adheres to the same theme, the simplest way to
do so is to update your web.config file. Open your current web.config file and locate the <pages> ele-
ment within the scope of your <system.web> root element. If you add a theme attribute to the <pages>
element, this will ensure that every page in your website is assigned the selected theme (which is, of
course, the name of one of the subdirectories under App_Theme). Here is the core update:

<configuration>

<system.web>

...

<pages theme="BasicGreen">

...

</pages>

</system.web>

</configuration>

If you were to now place various Buttons, Calendars, and TextBoxes onto your Default.aspx file
and run the application, you would find each widget has the UI of BasicGreen. If you were to update
the theme attribute to CrazyOrange and run the page again, you would find the UI defined by this
theme is used instead.

Applying Themes at the Page Level
It is also possible to assign themes on a page-by-page level. This can be helpful in a variety of circum-
stances. For example, perhaps your web.config file defines a sitewide theme (as described in the
previous section); however, you wish to assign a different theme to a specific page. To do so, you can
simply update the <%@Page%> directive. If you are using Visual Studio 2005 to do so, you will be happy to
find that IntelliSense will display each defined theme within your App_Theme folder (see Figure 26-21).

5785ch26.qxd 3/31/06 12:41 PM Page 913

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES914

Figure 26-21. Assigning themes on the page level

If we did assign the CrazyOrange to this page, but the web.config file specified the BasicGreen
theme, then all pages but this page will be rendered using BasicGreen.

The SkinID Property
Sometimes you wish to define a set of possible UI look and feels for a single widget. For example,
assume you want to define two possible UIs for the Button type within the CrazyOrange theme.
When you wish do so, you may differentiate each look and feel using the SkinID property:

<asp:Button runat="server" BackColor="#FF8000"/>

<asp:Button runat="server" SkinID = "BigFontButton"

Font-Size="30pt" BackColor="#FF8000"/>

Now, if you have a page that makes use of the CrazyOrange theme, each Button will by default
be assigned the unnamed Button skin. If you wish to have various buttons within the *.aspx file
make use of the BigFontButton skin, simply specific the SkinID property within the markup:

<asp:Button ID="Button2" runat="server"

SkinID="BigFontButton" Text="Button" />

As an example, Figure 26-22 shows a page that is making use of the CrazyOrange theme. The
topmost Button is assigned the unnamed Button skin, while the Button on the bottom of the page
has been assigned the SkinID of BigFontButton.

5785ch26.qxd 3/31/06 12:41 PM Page 914

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 915

Assigning Themes Programmatically
Last but not least, it is possible to assign a theme in code. This can be helpful when you wish to
provide a way for end users to select a theme for their current session. Of course, we have not yet
examined how to build stateful web applications, so the current theme selection will be forgot-
ten between postbacks. In a production-level site, you may wish to store the user’s current theme
selection within a session variable, or persist the theme selection to a database.

Although we really have not examined the use of session variables at this point in the text, to
illustrate how to assign a theme programmatically, update the UI of your Default.aspx file with three
new Button types as shown in Figure 26-23. Once you have done so, handle the Click event for each
Button type.

Figure 26-22. Fun with SkinIDs

5785ch26.qxd 3/31/06 12:41 PM Page 915

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES916

Figure 26-23. The updated UI

Now be aware that you can only assign a theme programmatically during specific phases of
your page’s life cycle. Typically this will be done within the Page_PreInit event. This being said,
update your code file as follows:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub btnNoTheme_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnNoTheme.Click

' Empty strings result in no theme being applied.

Session("UserTheme") = ""

' Trigger the PreInit event again.

Server.Transfer(Request.FilePath)

End Sub

Protected Sub btnGreenTheme_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGreenTheme.Click

Session("UserTheme") = "BasicGreen"

' Trigger the PreInit event again.

Server.Transfer(Request.FilePath)

End Sub

Protected Sub btnOrangeTheme_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnOrangeTheme.Click

Session("UserTheme") = "CrazyOrange"

' Trigger the PreInit event again.

Server.Transfer(Request.FilePath)

End Sub

Protected Sub Page_PreInit(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.PreInit

Try

Theme = Session("UserTheme").ToString()

Catch

' Empty strings result in no theme being applied.

Theme = ""

End Try

5785ch26.qxd 3/31/06 12:41 PM Page 916

CHAPTER 26 ■ ASP.NET 2.0 WEB CONTROLS, THEMES, AND MASTER PAGES 917

End Sub

End Class

Without getting too hung up on the notion of a session variable (see Chapter 27 for details),
simply notice that we are storing a given theme within a session variable named UserTheme, which is
formally assigned within the Page_PreInit() event handler. Also note that when the user clicks
a given Button, we programmatically force the PreInit event to fire by calling Server.Transfer()
and requesting the current page once again. If you were to run this page, you would now find that
you can establish your theme via various Button clicks.

■Source Code The FunWithThemes project is included under the Chapter 26 subdirectory.

Summary
This chapter examined how to make use of various ASP.NET web controls. We began by examining the
role of the Control and WebControl base classes, and you came to learn how to dynamically interact
with a panel’s internal controls collection. Along the way, you were exposed to the new site navigation
model (*.sitemap files and the SiteMapDataSource component), the new data binding engine (via the
SqlDataSource component and the new GridView type), and various validation controls.

The latter half of this chapter examined the role of master pages and themes. Recall that
master pages can be used to define a common frame for a set of pages on your site. Also recall that
the *.master file defines any number of “content placeholders” to which content pages plug in their
custom UI content. Finally, as you were shown, the ASP.NET theme engine allows you to declara-
tively or programmatically apply a common UI look and feel to your widgets on the web server.

5785ch26.qxd 3/31/06 12:41 PM Page 917

5785ch26.qxd 3/31/06 12:41 PM Page 918

ASP.NET 2.0 State Management
Techniques

The previous two chapters concentrated on the composition and behavior of ASP.NET pages and
the web controls they contain. This chapter builds on that information by examining the role of the
Global.asax file and the underlying HttpApplication type. As you will see, the functionality of
HttpApplication allows you to intercept numerous events that enable you to treat your web appli-
cations as a cohesive unit, rather than a set of stand-alone *.aspx files.

In addition to investigating the HttpApplication type, this chapter also addresses the all-important
topic of state management. Here you will learn the role of view state, session and application variables
(including the application cache) as well as the new ASP.NET 2.0 profiles API. Once you have a solid
understanding of the state management techniques offered by the .NET platform, the chapter wraps
up with a discussion of the role of the web.config file and shows various configuration-centric
techniques.

The Issue of State
At the beginning of the Chapter 25, I pointed out that HTTP on the Web results in a stateless wire
protocol. This very fact makes web development extremely different from the process of building an
executable assembly. For example, when you are building a Windows Forms application, you can
rest assured that any member variables defined in the Form-derived class will typically exist in memory
until the user explicitly shuts down the executable:

Public Class MainWindow

' State data!

Private userFavoriteCar As String

End Class

In the world of the World Wide Web, however, you are not afforded the same luxurious assumption.
To prove the point, create a new ASP.NET website (named SimpleStateExample). Within the code-
behind file of your initial *.aspx file, define a page-level string variable named userFavoriteCar:

Partial Class _Default

Inherits System.Web.UI.Page

' State data?

Private userFavoriteCar As String

End Class

919

C H A P T E R 2 7

■ ■ ■

5785ch27.qxd 3/31/06 12:44 PM Page 919

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES920

Figure 27-1. The UI for the simple state page

Next, construct the web UI as shown in Figure 27-1.

The server-side Click event handler for the Set button (named btnSetCar) will allow the user to
assign the string member variable to the value within the TextBox (named txtFavCar):

Protected Sub btnSetCar_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnSetCar.Click

' Store favorite car in member variable.

userFavoriteCar = txtFavCar.Text

End Sub

while the Click event handler for the Get button (btnGetCar) will display the current value of the
member variable within the page’s Label widget (lblFavCar):

Protected Sub btnGetCar_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetCar.Click

' Set label text to value of member variable.

lblFavCar.Text = userFavoriteCar

End Sub

Now, if you were building a Windows Forms application, you would be right to assume that
once the user sets the initial value, it would be remembered throughout the life of the desktop
application. Sadly, when you run this web application, you will find that each time you post back to
the web server, the value of the userFavoriteCar string variable is set back to the initial empty value;
therefore, the Label’s text is continuously empty.

Again, given that HTTP has no clue how to automatically remember data once the HTTP
response has been sent, it stands to reason that the Page object is destroyed almost instantly. There-
fore, when the client posts back to the *.aspx file, a new Page object is constructed that will reset any
page-level member variables. This is clearly a major dilemma. Imagine how painful online shopping
would be if every time you posted back to the web server, any and all information you previously entered
(such as the items you wish to purchase) were discarded. When you wish to remember information
regarding the users who are logged on to your site, you need to make use of various state management
techniques.

■Note This issue is in no way limited to ASP.NET. Java servlets, CGI applications, classic ASP, and PHP applications
all must contend with the thorny issue of state management.

5785ch27.qxd 3/31/06 12:44 PM Page 920

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 921

To remember the value of the userFavoriteCar string type between postbacks, you are required
to store the value of this string type within a session variable. You will examine the exact details of
session state in the pages that follow. For the sake of completion, however, here are the necessary
updates for the current page (note that you are no longer using the private String member variable,
therefore feel free to comment out or remove the definition altogether):

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub btnSetCar_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnSetCar.Click

' Store favorite car in session variable.

Session("UserFavCar") = txtFavCar.Text

End Sub

Protected Sub btnGetCar_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetCar.Click

' Set label text to value of session variable.

lblFavCar.Text = CType(Session("UserFavCar"), String)

End Sub

End Class

If you now run the application, the value of your favorite automobile will be preserved across
postbacks, thanks to the HttpSessionState object manipulated indirectly by the inherited Session
property. Of course, once the user terminates her session with your web application, session data is
discarded. If you wish to persist user information beyond the current session, you can roll your own
infrastructure to do so, or make use of the ASP.NET 2.0 profiles API (explained at the conclusion of
this chapter).

■Source Code The SimpleStateExample files are included under the Chapter 27 subdirectory.

ASP.NET State Management Techniques
ASP.NET provides several mechanisms that you can use to maintain stateful information in your
web applications. Specifically, you have the following options:

• Make use of ASP.NET view state.

• Make use of ASP.NET control state.

• Define application-level variables.

• Make use of the cache object.

• Define session-level variables.

• Define cookie data.

The one thing each of these approaches has in common is that they each demand that a given
user is in session and that the web application is loaded into memory. As soon as a user logs off your
site (or your website is shut down), your site is once again stateless. If you wish to persist user data
in a permanent manner, ASP.NET 2.0 provides an out-of-the-box profile API. We’ll examine the details
of each approach in turn, beginning with the topic of ASP.NET view state.

5785ch27.qxd 3/31/06 12:44 PM Page 921

Understanding the Role of ASP.NET View State
The term view state has been thrown out numerous times here and in the previous two chapters
without a formal definition, so let’s demystify this term once and for all. Under classic (COM-based)
ASP, web developers were required to manually repopulate the values of the incoming form widgets
during the process of constructing the outgoing HTTP response. For example, if the incoming HTTP
request contained five text boxes with specific values, the *.asp file required script code to extract
the current values (via the Form or QueryString collections of the Request object) and manually
place them back into the HTTP response stream (needless to say, this was a drag). If the developer
failed to do so, the caller was presented with a set of five empty text boxes!

Under ASP.NET, we are no longer required to manually scrape out and repopulate the values
contained within the HTML widgets because the ASP.NET runtime will automatically embed a hid-
den form field (named __VIEWSTATE), which will flow between the browser and a specific page. The
data assigned to this field is a Base64-encoded string that contains a set of name/value pairs that
represent the values of each GUI widget on the page at hand.

The System.Web.UI.Page base class’s Init event handler is the entity in charge of reading the
incoming values found within the __VIEWSTATE field to populate the appropriate member variables
in the derived class (which is why it is risky at best to access the state of a web widget within the
scope of a page’s Init event handler).

Also, just before the outgoing response is emitted back to the requesting browser, the __VIEWSTATE
data is used to repopulate the form’s widgets, to ensure that the current values of the HTML widgets
appear as they did prior to the previous postback.

Clearly, the best thing about this aspect of ASP.NET is that it just happens without any work on
your part. Of course, you are always able to interact with, alter, or disable this default functionality if
you so choose. To understand how to do this, let’s see a concrete view state example.

Demonstrating View State
First, create a new ASP.NET web application called ViewStateApp. On your initial *.aspx page, add
a single ASP.NET ListBox web control (named myListBox) and a single Button type (named btnPostback).
Handle the Click event for the Button to provide a way for the user to post back to the web server:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub btnPostback_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnPostback.Click

' This is just here to allow a postback.

' No code required.

End Sub

End Class

Now, using the Visual Studio 2005 Properties window, access the Items property and add four
ListItems to the ListBox. The resulting markup looks like this:

<asp:ListBox ID="myListBox" runat="server">

<asp:ListItem>Item One</asp:ListItem>

<asp:ListItem>Item Two</asp:ListItem>

<asp:ListItem>Item Three</asp:ListItem>

<asp:ListItem>Item Four</asp:ListItem>

</asp:ListBox>

Note that you are hard-coding the items in the ListBox directly within the *.aspx file. As you
already know, all <asp:> definitions found within an HTML form will automatically render back
their HTML representation before the final HTTP response (provided they have the runat="server"
attribute).

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES922

5785ch27.qxd 3/31/06 12:44 PM Page 922

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 923

The <%@Page%> directive has an optional attribute called EnableViewState that by default is set
to true. To disable this behavior, simply update the <%@Page%> directive as follows:

<%@ Page Language="VB" AutoEventWireup="false"

CodeFile="Default.aspx.vb" Inherits="_Default"

EnableViewState ="false" %>

So, what exactly does it mean to disable view state? The answer is, it depends. Given the previous
definition of the term, you would think that if you disable view state for an *.aspx file, the values
within your ListBox would not be remembered between postbacks to the web server. However, if
you were to run this application as is, you might be surprised to find that the information in the ListBox
is retained regardless of how many times you post back to the page. In fact, if you examine the source
HTML returned to the browser, you may be further surprised to see that the hidden __VIEWSTATE
field is still present:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

value="/wEPDwUKLTM4MTM2MDM4NGRkqGC6gjEV25JnddkJiRmoIc10SIA=" />

The reason why the view state string is still visible is the fact that the *.aspx file has explicitly
defined the ListBox items within the scope of the HTML <form> tags. Thus, the ListBox items will be
autogenerated each time the web server responds to the client.

However, assume that your ListBox is dynamically populated within the code-behind file rather
than within the HTML <form> definition. First, remove the <asp:ListItem> declarations from the
current *.aspx file:

<asp:ListBox ID="myListBox" runat="server">

</asp:ListBox>

Next, fill the list items within the Load event handler within your code-behind file:

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

If Not IsPostBack Then

' Fill ListBox dynamically!

myListBox.Items.Add("Item One")

myListBox.Items.Add("Item Two")

myListBox.Items.Add("Item Three")

myListBox.Items.Add("Item Four")

End If

End Sub

If you post to this updated page, you will find that the first time the browser requests the page,
the values in the ListBox are present and accounted for. However, on postback, the ListBox is sud-
denly empty. The first rule of ASP.NET view state is that its effect is only realized when you have
widgets whose values are dynamically generated through code. If you hard-code values within the
*.aspx file’s <form> tags, the state of these items is always remembered across postbacks (even when
you set EnableViewState to false for a given page).

Furthermore, view state is most useful when you have a dynamically populated web widget
that always needs to be repopulated for each and every postback (such as an ASP.NET GridView,
which is always filled using a database hit). If you did not disable view state for pages that contain
such widgets, the entire state of the grid is represented within the hidden __VIEWSTATE field. Given
that complex pages may contain numerous ASP.NET web controls, you can imagine how large this
string would become. As the payload of the HTTP request/response cycle could become quite
heavy, this may become a problem for the dial-up web surfers of the world. In cases such as these,
you may find faster throughput if you disable view state for the page.

If the idea of disabling view state for the entire *.aspx file seems a bit too aggressive, do know
that every descendent of the System.Web.UI.Control base class inherits the EnableViewState prop-
erty, which makes it very simple to disable view state on a control-by-control basis:

5785ch27.qxd 3/31/06 12:44 PM Page 923

<asp:GridView id="myHugeDynamicallyFilledDataGrid" runat="server"

EnableViewState="false">

</asp:GridView>

■Note ASP.NET pages reserve a small part of the __VIEWSTATE string for internal use. Given this, you will find
that the __VIEWSTATE field will still appear in the client-side source even when the entire page (and all the controls)
have disabled view state.

Adding Custom View State Data
In addition to the EnableViewState property, the System.Web.UI.Control base class also provides an
inherited property named ViewState. Under the hood, this property provides access to a System.

Web.UI.StateBag type, which represents all the data contained within the __VIEWSTATE field. Using
the indexer of the StateBag type, you can embed custom information within the hidden __VIEWSTATE
form field using a set of name/value pairs. Here’s a simple example:

Protected Sub btnAddToVS_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnAddToVS.Click

ViewState("CustomViewStateItem") = "Some user data"

lblVSValue.Text = CType(ViewState("CustomViewStateItem"), String)

End Sub

Because the System.Web.UI.StateBag type has been designed to operate on any type-derived
System.Object, when you wish to access the value of a given key, you should explicitly cast it into
the correct underlying data type (in this case, a System.String). Be aware, however, that values
placed within the __VIEWSTATE field cannot literally be any object. Specifically, the only valid types
are Strings, Integers, Booleans, ArrayLists, Hashtables, or an array of these types.

So, given that *.aspx pages may insert custom bits of information into the __VIEWSTATE string,
the next logical question is when you would want to do so. Most of the time, custom view state data
is best suited for user-specific preferences. For example, you may establish a point of view state data
that specifies how a user wishes to view the UI of a GridView (such as a sort order). View state data is
not well suited for full-blown user data, such as items in a shopping cart, cached DataSets, or what-
not. When you need to store this sort of complex information, you are required to work with session
or application data. Before we get to that point, you need to understand the role of the Global.asax file.

■Source Code The ViewStateApp files are included under the Chapter 27 subdirectory.

A Brief Word Regarding Control State
As of ASP.NET 2.0, a control’s state data can now be persisted via control state rather than view state.
This technique is most helpful if you have written a custom ASP.NET web control that must remember
data between round-trips. While the ViewState property can be used for this purpose, if view state is
disabled at a page level, the custom control is effectively broken. For this very reason, web controls
now support a ControlState property.

Control state works identically to view state; however, it will not be disabled if view state is
disabled at the page level. As mentioned, this feature is most useful for those who are developing
custom web controls (a topic not covered in this text). Consult the .NET Framework 2.0 SDK docu-
mentation for further details.

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES924

5785ch27.qxd 3/31/06 12:44 PM Page 924

Figure 27-2. The Global.asax file

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 925

The Role of the Global.asax File
At this point, an ASP.NET application may seem to be little more than a set of *.aspx files and their
respective web controls. While you could build a web application by simply linking a set of related
web pages, you will most likely need a way to interact with the web application as a whole. To this
end, your ASP.NET web applications may choose to include an optional Global.asax file via the Web
Site ➤ Add New Item menu option, as shown in Figure 27-2.

Simply put, Global.asax is just about as close to a traditional double-clickable *.exe that we
can get in the world of ASP.NET, meaning this type represents the runtime behavior of the website
itself. Once you insert a Global.asax file into a web project, you will notice it is little more than
a <script> block containing a set of event handlers:

<%@ Application Language="VB" %>

<script runat="server">

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)

End Sub

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)

End Sub

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

End Sub

5785ch27.qxd 3/31/06 12:44 PM Page 925

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES926

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)

End Sub

</script>

Looks can be deceiving, however. At runtime, the code within this <script> block is assembled
into a class type deriving from System.Web.HttpApplication. If you have a background in ASP.NET 1.x,
you may recall that the Global.asax code-behind file literally did define a class deriving from
HttpApplication.

As mentioned, the members defined inside Global.asax are in event handlers that allow you to
interact with application-level (and session-level) events. Table 27-1 documents the role of each
member.

Table 27-1. Core Types of the System.Web Namespace

Event Handler Meaning in Life

Application_Start() This event handler is called the very first time the web application is
launched. Thus, this event will fire exactly once over the lifetime of a web
application. This is an ideal place to define application-level data used
throughout your web application.

Application_End() This event handler is called when the application is shutting down. This
will occur when the last user times out or if you manually shut down the
application via IIS.

Session_Start() This event handler is fired when a new user logs on to your application.
Here you may establish any user-specific data points.

Session_End() This event handler is fired when a user’s session has terminated (typically
through a predefined timeout).

Application_Error() This is a global error handler that will be called when an unhandled
exception is thrown by the web application.

The Global Last Chance Exception Event Handler
First, let me point out the role of the Application_Error() event handler. Recall that a specific page
may handle the Error event to process any unhandled exception that occurred within the scope of
the page itself. In a similar light, the Application_Error() event handler is the final place to handle
an exception that was not handled by a given page. As with the page-level Error event, you are able
to access the specific System.Exception using the inherited Server property:

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)

' Obtain the unhandled error.

Dim ex As Exception = Server.GetLastError()

' Process error here...

' Clear error when finished.

Server.ClearError()

End Sub

Given that the Application_Error() event handler is the last-chance exception handler for
your web application, it is quite common to implement this method in such a way that the user is
transferred to a predefined error page on the server. Other common duties may include sending an
e-mail to the web administrator (via the types within the System.Web.Mail namespace), writing to
an external error log, or what have you.

5785ch27.qxd 3/31/06 12:44 PM Page 926

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 927

Figure 27-3. Remember that HttpApplication is the parent of the type lurking within Global.asax.

The HttpApplication Base Class
As mentioned, the Global.asax script is dynamically generated into a class deriving from the
System.Web.HttpApplication base class, which supplies the same sort of functionality as the
System.Web.UI.Page type. Table 27-2 documents the key members of interest.

Table 27-2. Key Members Defined by the System.Web.HttpApplication Type

Property Meaning in Life

Application This property allows you to interact with application-level variables, using the
exposed HttpApplicationState type.

Request This property allows you to interact with the incoming HTTP request (via HttpRequest).

Response This property allows you to interact with the incoming HTTP response (via
HttpResponse).

Server This property gets the intrinsic server object for the current request (via
HttpServerUtility).

Session This property allows you to interact with session-level variables, using the exposed
HttpSessionState type.

Again, given that the Global.asax file does not explicitly document that HttpApplication is the
underlying base class, it is important to remember that all of the rules of the “is-a” relationship do
indeed apply. For example, if you were to apply the dot operator to the MyBase keyword within any
of the members within Global.asax, you would find you have immediate access to all members of
the chain of inheritance, as you see in Figure 27-3.

Understanding the Application/Session Distinction
Under ASP.NET, application state is maintained by an instance of the HttpApplicationState type.
This class enables you to share global information across all users (and all pages) who are logged on
to your ASP.NET application. Not only can application data be shared by all users on your site, but
also if the value of an application-level data point changes, the new value is seen by all users on
their next postback.

5785ch27.qxd 3/31/06 12:44 PM Page 927

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES928

Figure 27-4. The application/session state distinction

On the other hand, session state is used to remember information for a specific user (again, such
as items in a shopping cart). Physically, a user’s session state is represented by the HttpSessionState
class type. When a new user logs on to an ASP.NET web application, the runtime will automatically
assign that user a new session ID, which by default will expire after 20 minutes of inactivity. Thus, if
20,000 users are logged on to your site, you have 20,000 distinct HttpSessionState objects, each of
which is automatically assigned a unique session ID. The relationship between a web application
and web sessions is shown in Figure 27-4.

As you may know, under classic ASP, application-and session-state data is represented using
distinct COM objects (e.g., Application and Session). Under ASP.NET, Page-derived types as well as
the HttpApplication type make use of identically named properties (i.e., Application and Session),
which expose the underlying HttpApplicationState and HttpSessionState types.

Maintaining Application-level State Data
The HttpApplicationState type enables developers to share global information across multiple sessions
in an ASP.NET application. For example, you may wish to maintain an application-wide connection
string that can be used by all pages, a common DataSet used by multiple pages, or any other piece
of data that needs to be accessed on an application-wide scale. Table 27-3 describes some core
members of this type.

Table 27-3. Members of the HttpApplicationState Type

Members Meaning in Life

AllKeys This property returns an array of System.String types that represent all the names in
the HttpApplicationState type.

Count This property gets the number of item objects in the HttpApplicationState type.

Add() This method allows you to add a new name/value pair into the
HttpApplicationState type. Do note that this method is typically not used in favor of
the indexer of the HttpApplicationState class.

5785ch27.qxd 3/31/06 12:44 PM Page 928

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 929

Members Meaning in Life

Clear() This method deletes all items in the HttpApplicationState type. This is functionally
equivalent to the RemoveAll() method.

Lock() These two methods are used when you wish to alter a set of application variables in
Unlock() a thread-safe manner.

RemoveAll() These methods remove a specific item (by string name) within the
Remove() HttpApplicationState type. RemoveAt() removes the item via a numerical indexer.
RemoveAt()

To illustrate working with application state, create a new ASP.NET web application named
AppState and insert a new Global.asax file. When you create data members that can be shared
among all active sessions, you need to establish a set of name/value pairs. In most cases, the most
natural place to do so is within the Application_Start() event handler of the HttpApplication-derived
type, for example:

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

' Set up some application variables.

Application("SalesPersonOfTheMonth") = "Chucky"

Application("CurrentCarOnSale") = "Colt"

Application("MostPopularColorOnLot") = "Black"

End Sub

During the lifetime of your web application (which is to say, until the web application is manu-
ally shut down or until the final user times out), any user (on any page) may access these values as
necessary. Assume you have a page that will display the current discount car within a Label via
a button Click event handler:

Protected Sub btnShowCarOnSale_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnShowCarDiscount.Click

lblCurrCarOnSale.Text = String.Format("Sale on {0}'s today!", _

CType(Application("CurrentCarOnSale"), String))

End Sub

Like the ViewState property, notice how you should cast the value returned from the
HttpApplicationState type into the correct underlying type as the Application property operates
on general System.Object types.

Now, given that the HttpApplicationState type can hold any type, it should stand to reason
that you can place custom types (or any .NET type) within your site’s application state. Assume you
would rather maintain the three current application variables within a strongly typed class named
CarLotInfo:

Public Class CarLotInfo

Public Sub New(ByVal sPerson As String, _

ByVal saleCar As String, ByVal popularColor As String)

salesPersonOfTheMonth = sPerson

currentCarOnSale = saleCar

mostPopularColorOnLot = popularColor

End Sub

' Public for easy access.

Public salesPersonOfTheMonth As String

Public currentCarOnSale As String

Public mostPopularColorOnLot As String

End Class

With this helper class in place, you could modify the Application_Start() event handler as
follows:

5785ch27.qxd 3/31/06 12:44 PM Page 929

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES930

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

' Place a custom object in the application data sector.

Application("CarSiteInfo") = _

New CarLotInfo("Chucky", "Colt", "Black")

End Sub

and then access the information using the public field data within a server-side Click event handler
for a Button type named btnShowAppVariables:

Protected Sub btnShowAppVariables_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnShowAppVariables.Click

' Get object from application variable.

Dim appVars As CarLotInfo = _

CType(Application("CarSiteInfo"), CarLotInfo)

Dim appState As String = _

String.Format("Car on sale: {0}", _

appVars.currentCarOnSale)

appState &= _

String.Format("Most popular color: {0}", _

appVars.mostPopularColorOnLot)

appState &= _

String.Format("Big shot SalesPerson: {0}", _

appVars.salesPersonOfTheMonth)

lblAppVariables.Text = appState

End Sub

Given that the current car-on-sale data is now exposed from a custom class type, your
btnShowCarOnSale Click event handler would also need to be updated like so:

Protected Sub btnShowCarOnSale_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnShowCarOnSale.Click

lblCurrCarOnSale.Text = String.Format("Sale on {0}'s today!", _

CType(Application("CarSiteInfo"), CarLotInfo).currentCarOnSale)

End Sub

If you were now to run this page, you would find that a list of each application variable is dis-
played on the page’s Label types, as displayed in Figure 27-5.

5785ch27.qxd 3/31/06 12:44 PM Page 930

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 931

Figure 27-5. Displaying application data

Modifying Application Data
You may programmatically update or delete any or all members using members of the
HttpApplicationState type during the execution of your web application. For example, to delete
a specific item, simply call the Remove() method. If you wish to destroy all application-level data,
call RemoveAll():

Private Sub CleanAppData()

' Remove a single item via string name.

Application.Remove("SomeItemIDontNeed")

' Destroy all application data!

Application.RemoveAll()

End Sub

If you wish to simply change the value of an existing application-level variable, you only need
to make a new assignment to the data item in question. Assume your page now supports a new Button
type that allows your user to change the current hotshot salesperson by reading in a value from
a TextBox named txtNewSP. The Click event handler is as you would expect:

Protected Sub btnSetNewSP_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnSetNewSP.Click

' Set the new Salesperson.

CType(Application("CarSiteInfo"), CarLotInfo).salesPersonOfTheMonth _

= txtNewSP.Text

End Sub

If you run the web application, you will find that the application-level variable has been updated.
Furthermore, given that application variables are accessible from all user sessions, if you were to
launch three or four instances of your web browser, you would find that if one instance changes the
current hotshot salesperson, each of the other browsers displays the new value on postback.

5785ch27.qxd 3/31/06 12:44 PM Page 931

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES932

Understand that if you have a situation where a set of application-level variables must be updated
as a unit, you risk the possibility of data corruption (given that it is technically possible that an
application-level data point may be changed while another user is attempting to access it!). While
you could take the long road and manually lock down the logic using threading primitives of the
System.Threading namespace, the HttpApplicationState type has two methods, Lock() and Unlock(),
that automatically ensure thread safety:

' Safely access related application data.

Application.Lock()

Application("SalesPersonOfTheMonth") = "Maxine"

Application("CurrentBonusedEmployee") = Application("SalesPersonOfTheMonth")

Application.Unlock()

■Note Much like the VB 2005 SyncLock statement, if an exception occurs after the call to Lock() but before
the call to Unlock(), the lock will automatically be released.

Handling Web Application Shutdown
The HttpApplicationState type is designed to maintain the values of the items it contains until one of
two situations occurs: the last user on your site times out (or manually logs out) or someone manually
shuts down the website via IIS. In each case, the Application_End() method of the HttpApplication-
derived type will automatically be called. Within this event handler, you are able to perform whatever
sort of cleanup code is necessary:

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)

' Write current application variables

' to a database or whatever else you need to do...

End Sub

■Source Code The AppState files are included under the Chapter 27 subdirectory.

Working with the Application Cache
ASP.NET provides a second and more flexible manner to handle application-wide data. As you recall,
the values within the HttpApplicationState object remain in memory as long as your web application
is alive and kicking. Sometimes, however, you may wish to maintain a piece of application data only
for a specific period of time. For example, you may wish to obtain an ADO.NET DataSet that is valid
for only five minutes. After that time, you may want to obtain a fresh DataSet to account for possible
database updates. While it is technically possible to build this infrastructure using HttpApplicationState
and some sort of handcrafted monitor, your task is greatly simplified using the ASP.NET application
cache.

As suggested by its name, the ASP.NET System.Web.Caching.Cache object (which is accessible
via the Context.Cache property) allows you to define an object that is accessible by all users (from all
pages) for a fixed amount of time. In its simplest form, interacting with the cache looks identical to
interacting with the HttpApplicationState type:

' Add an item to the cache.

' This item will *not* expire.

Context.Cache("SomeStringItem") = "This is the string item"

' Get item from the cache.

Dim s As String = CType(Context.Cache("SomeStringItem"), String)

5785ch27.qxd 3/31/06 12:44 PM Page 932

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 933

■Note If you wish to access the Cache from within Global.asax, you are required to use the Context property.
However, if you are within the scope of a System.Web.UI.Page-derived type, you can make use of the Cache
object directly.

Now, understand that if you have no interest in automatically updating (or removing) an
application-level data point (as seen here), the Cache object is of little benefit, as you can directly use
the HttpApplicationState type. However, when you do wish to have a data point destroyed after a fixed
point of time—and optionally be informed when this occurs—the Cache type is extremely helpful.

The System.Web.Caching.Cache class defines only a small number of members beyond the
type’s indexer. For example, the Add() method can be used to insert a new item into the cache that is
not currently defined (if the specified item is already present, Add() does nothing). The Insert() method
will also place a member into the cache. If, however, the item is currently defined, Insert() will replace
the current item with the new type. Given that this is most often the behavior you will desire, I’ll focus
on the Insert() method exclusively.

Fun with Data Caching
Let’s see an example. To begin, create a new ASP.NET web application named CacheState and insert
a Global.asax file. Like an application-level variable maintained by the HttpApplicationState type,
the Cache may hold any System.Object-derived type and is often populated within the Application_
Start() event handler. For this example, the goal is to automatically update the contents of a DataSet

every 15 seconds. The DataSet in question will contain the current set of records from the Inventory
table of the Cars database created during our discussion of ADO.NET. Given these stats, update your
Global class type like so (code analysis to follow):

<%@ Application Language="VB" %>

<%@ Import Namespace = "System.Data.SqlClient" %>

<%@ Import Namespace = "System.Data" %>

<script runat="server">

' Define a shared Cache member variable.

Shared theCache As Cache

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

' First assign the shared 'theCache' variable.

theCache = Context.Cache

' Add a DataSet to the cache via a helper function.

AddDataSetToCache()

End Sub

Shared Sub AddDataSetToCache()

' When the application starts up,

' read the current records in the

' Inventory table of the Cars DB.

Dim cn As SqlConnection = New SqlConnection _

("data source=localhost;initial catalog=Cars; user id ='sa';pwd=''")

Dim dAdapt As SqlDataAdapter = _

New SqlDataAdapter("Select * From Inventory", cn)

Dim theCars As DataSet = New DataSet()

dAdapt.Fill(theCars, "Inventory")

5785ch27.qxd 3/31/06 12:44 PM Page 933

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES934

' Now store DataSet in the cache.

theCache.Insert("AppDataSet", _

theCars, Nothing, _

DateTime.Now.AddSeconds(15), _

Cache.NoSlidingExpiration, _

CacheItemPriority.Default, _

New CacheItemRemovedCallback(AddressOf UpdateCarInventory))

End Sub

' The target for the CacheItemRemovedCallback delegate.

Shared Sub UpdateCarInventory(ByVal key As String, ByVal item As Object, _

ByVal reason As CacheItemRemovedReason)

Dim cn As SqlConnection = New SqlConnection _

("data source=localhost;initial catalog=Cars; user id ='sa';pwd=''")

Dim dAdapt As SqlDataAdapter = _

New SqlDataAdapter("Select * From Inventory", cn)

Dim theCars As DataSet = New DataSet()

dAdapt.Fill(theCars, "Inventory")

' Now store DataSet in the cache.

theCache.Insert("AppDataSet", _

theCars, Nothing, _

DateTime.Now.AddSeconds(15), _

Cache.NoSlidingExpiration, _

CacheItemPriority.Default, _

New CacheItemRemovedCallback(AddressOf UpdateCarInventory))

End Sub

...

</script>

First, notice that the Global type has defined a shared Cache member variable. The reason is that
you have defined two shared members (UpdateCarInventory() and AddDataSetToCache()) is that each
method needs access the Cache (recall that shared members do not have access to inherited members,
therefore you can’t use the Context property!).

Inside the Application_Start() event handler, you fill a DataSet and place the object within the
application cache. As you would guess, the Context.Cache.Insert() method has been overloaded
a number of times. Here, you supply a value for each possible parameter. Consider the following
commented call to Add():

' Note! It is a syntax error to have comments after a line

' continuation character, but this is the cleanest way to show each param.

theCache.Add("AppDataSet", _ ' Name used to identify item in the cache.

theCars, _ ' Object to put in the cache.

Nothing, _ ' Any dependencies for this object?

DateTime.Now.AddSeconds(15), _ ' How long item will be in cache.

Cache.NoSlidingExpiration, _ ' Fixed or sliding time?

CacheItemPriority.Default, _ ' Priority level of cache item.

' Delegate for CacheItemRemove event

New CacheItemRemovedCallback(UpdateCarInventory))

The first two parameters simply make up the name/value pair of the item. The third parameter
allows you to define a CacheDependency type (which is Nothing in this case, as you do not have any
other entities in the cache that are dependent on the DataSet).

5785ch27.qxd 3/31/06 12:44 PM Page 934

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 935

■Note The ability to define a CacheDependency type is quite interesting. For example, you could establish
a dependency between a member and an external file. If the contents of the file were to change, the type can be
automatically updated. Check out the .NET Framework 2.0 documentation for further details.

The next three parameters are used to define the amount of time the item will be allowed to
remain in the application cache and its level of priority. Here, you specify the read-only Cache.
NoSlidingExpiration field, which informs the cache that the specified time limit (15 seconds) is
absolute. Finally, and most important for this example, you create a new CacheItemRemovedCallback
delegate type, and pass in the name of the method to call when the DataSet is purged. As you can see
from the signature of the UpdateCarInventory() method, the CacheItemRemovedCallback delegate can
only call methods that match the following signature:

Sub UpdateCarInventory(ByVal key As String, ByVal item As Object, _

ByVal reason As CacheItemRemovedReason)

...

End Sub

So, at this point, when the application starts up, the DataSet is populated and cached. Every 15
seconds, the DataSet is purged, updated, and reinserted into the cache. To see the effects of doing
this, you need to create a Page that allows for some degree of user interaction.

Modifying the *.aspx File
Update the UI of your initial *.aspx file as shown in Figure 27-6.

Figure 27-6. The cache application GUI

5785ch27.qxd 3/31/06 12:44 PM Page 935

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES936

In the page’s Load event handler, configure your GridView to display the current contents of the
cached DataSet the first time the user posts to the page (be sure to import the System.Data and
System.Data.SqlClient namespaces within your *.vb code file):

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

If Not IsPostBack Then

carsGridView.DataSource = CType(Cache("AppDataSet"), DataSet)

carsGridView.DataBind()

End If

End Sub

In the Click event handler of the Add This Car button, insert the new record into the Cars database
using an ADO.NET SqlCommand object. Once the record has been inserted, call a helper function
named RefreshGrid(), which will update the UI via an ADO.NET SqlDataReader (so don’t forget to
“use” the System.Data.SqlClient namespace). Here are the methods in question:

Protected Sub btnAddCar_Click(ByVal sender As Object, ByVal e As EventArgs)

' Update the Inventory table

' and call RefreshGrid().

Dim cn As SqlConnection = New SqlConnection()

cn.ConnectionString = "User ID=sa;Pwd=;Initial Catalog=Cars;Data Source=(local)"

cn.Open()

Dim sql As String

Dim cmd As SqlCommand

' Insert new Car.

sql = String.Format(_

"Insert Into Inventory(CarID, Make, Color, PetName) Values" & _

"('{0}', '{1}', '{2}', '{3}')", _

txtCarID.Text, txtCarMake.Text, txtCarColor.Text, txtCarPetName.Text)

cmd = New SqlCommand(sql, cn)

cmd.ExecuteNonQuery()

cn.Close()

RefreshGrid()

End Sub

Private Sub RefreshGrid()

' Populate grid.

Dim cn As SqlConnection = New SqlConnection()

cn.ConnectionString = "User ID=sa;Pwd=;Initial Catalog=Cars;Data Source=(local)"

cn.Open()

Dim cmd As SqlCommand = New SqlCommand("Select * from Inventory", cn)

carsGridView.DataSource = cmd.ExecuteReader()

carsGridView.DataBind()

cn.Close()

End Sub

Now, to test the use of the cache, launch two instances of your web browser and navigate to
this *.aspx page. At this point, you should see that both DataGrids display identical information.
From one instance of the browser, add a new Car. Obviously, this results in an updated GridView
viewable from the browser that initiated the postback.

In the second browser instance, click the Refresh button. You should not see the new item,
given that the Page_Load event handler is reading directly from the cache. (If you did see the value,
the 15 seconds had already expired. Either type faster or increase the amount of time the DataSet
will remain in the cache.) Wait a few seconds and click the Refresh button from the second browser
instance one more time. Now you should see the new item, given that the DataSet in the cache has
expired and the CacheItemRemovedCallback delegate target method has automatically updated the
cached DataSet.

5785ch27.qxd 3/31/06 12:44 PM Page 936

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 937

As you can see, the major benefit of the Cache type is that you can ensure that when a member
is removed, you have a chance to respond. In this example, you certainly could avoid using the Cache
and simply have the Page_Load() event handler always read directly from the Cars database. Never-
theless, the point should be clear: the cache allows you to automatically refresh data using the cache
mechanism.

■Note Unlike the HttpApplicationState type, the Cache class does not support Lock() and Unlock()
methods. If you need to update interrelated items, you will need to directly make use of the types within the
System.Threading namespace or the VB 2005 lock keyword.

■Source Code The CacheState files are included under the Chapter 27 subdirectory.

Maintaining Session Data
So much for our examination of application-level and cached data. Next, let’s check out the role of
per-user data stores. As mentioned earlier, a session is little more than a given user’s interaction with
a web application, which is represented via a unique HttpSessionState object. To maintain stateful
information for a particular user, the HttpApplication-derived type and any System.Web.UI.Page-
derived types may access the Session property. The classic example of the need to maintain per-user
data would be an online shopping cart. Again, if ten people all log on to an online store, each indi-
vidual will maintain a unique set of items that she (may) intend to purchase.

When a new user logs on to your web application, the .NET runtime will automatically assign
the user a unique session ID, which is used to identify the user in question. Each session ID is
assigned a custom instance of the HttpSessionState type to hold on to user-specific data. Inserting
or retrieving session data is syntactically identical to manipulating application data, for example:

' Add/retrieve a session variable for current user.

Session("DesiredCarColor") = "Green"

Dim color As String = CType(Session("DesiredCarColor"), String)

The HttpApplication-derived type allows you to intercept the beginning and end of a session
via the Session_Start() and Session_End() event handlers. Within Session_Start(), you can freely
create any per-user data items, while Session_End() allows you to perform any work you may need
to do when the user’s session has terminated:

<%@ Application Language="VB" %>

<script runat="server">

...

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

' Code that runs when a new session is started

End Sub

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)

' Code that runs when a session ends.

' Note: The Session_End event is raised

' only when the sessionstate mode

' is set to InProc in the Web.config file.

' If session mode is set to StateServer

' or SQLServer, the event is not raised.

End Sub

</script>

5785ch27.qxd 3/31/06 12:44 PM Page 937

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES938

■Note The code comments that are placed within the Session_End() event handler will make much more
sense when we examine the role of the ASP.NET session state server later in this chapter.

Like the HttpApplicationState type, the HttpSessionState may hold any System.Object-derived
type, including your custom classes. For example, assume you have a new web application (SessionState)
that defines a class named UserShoppingCart:

Public Class UserShoppingCart

Public desiredCar As String

Public desiredCarColor As String

Public downPayment As Single

Public isLeasing As Boolean

Public dateOfPickUp As DateTime

Public Overrides Function ToString() As String

Return String.Format("Car: {0}
Color: {1}
" & _

"$ Down: {2}
Lease: {3}
Pick-up Date: {4}", _

desiredCar, desiredCarColor, downPayment, _

isLeasing, dateOfPickUp.ToShortDateString())

End Function

End Class

Within the Session_Start() event handler, you can now assign each user a new instance of the
UserShoppingCart class:

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

Session("UserShoppingCartInfo") = New UserShoppingCart()

End Sub

As the user traverses your web pages, you are able to pluck out the UserShoppingCart instance
and fill the fields with user-specific data. For example, assume you have a simple *.aspx page that
defines a set of input widgets that correspond to each field of the UserShoppingCart type and a Button

used to set the values and two Labels that will be used to display the user’s session ID and session
information (see Figure 27-7).

5785ch27.qxd 3/31/06 12:44 PM Page 938

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 939

Figure 27-7. The session application GUI

The server-side Click event handler is straightforward (scrape out values from TextBoxes and
display the shopping cart data on a Label type):

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub btnSubmit_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnSubmit.Click

' Set current user prefs.

Try

Dim u As UserShoppingCart = _

CType(Session("UserShoppingCartInfo"), UserShoppingCart)

u.dateOfPickUp = myCalendar.SelectedDate

u.desiredCar = txtCarMake.Text

u.desiredCarColor = txtCarColor.Text

u.downPayment = Single.Parse(txtDownPayment.Text)

u.isLeasing = chkIsLeasing.Checked

lblUserInfo.Text = u.ToString()

Session("UserShoppingCartInfo") = u

Catch ex As Exception

lblUserInfo.Text = ex.Message

End Try

End Sub

End Class

5785ch27.qxd 3/31/06 12:44 PM Page 939

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES940

Within Session_End(), you may wish to persist the fields of the UserShoppingCart to a database
or whatnot (however, as you will see at the conclusion of this chapter, the ASP.NET 2.0 profiles API
will do so automatically). In any case, if you were to launch two or three instances of your browser
of choice, you would find that each user is able to build a custom shopping cart that maps to his
unique instance of HttpSessionState.

Additional Members of HttpSessionState
The HttpSessionState class defines a number of other members of interest beyond the type indexer.
First, the SessionID property will return the current user’s unique ID. If you wish to view the automati-
cally assigned session ID for this example, handle your Load event of your page as follows:

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

If Not IsPostBack Then

lblUserID.Text = String.Format("Here is your ID: {0}", _

Session.SessionID)

End If

End Sub

The Remove() and RemoveAll() methods may be used to clear items out of the user’s instance of
HttpSessionState:

Session.Remove("SomeItemWeDontNeedAnymore")

The HttpSessionState type also defines a set of members that control the expiration policy of the
current session. Again, by default each user has 20 minutes of inactivity before the HttpSessionState
object is destroyed. Thus, if a user enters your web application (and therefore obtains a unique
session ID), but does not return to the site within 20 minutes, the runtime assumes the user is no
longer interested and destroys all session data for that user. You are free to change this default
20-minute expiration value on a user-by-user basis using the Timeout property. The most common
place to do so is within the scope of your Global.Session_Start() method:

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

' Each user has 5 minutes of inactivity.

Session.Timeout = 5

Session("UserShoppingCartInfo") _

= New UserShoppingCart()

End Sub

■Note If you do not need to tweak each user’s Timeout value, you are able to alter the 20-minute default for all
users via the Timeout attribute of the <sessionState> element within the web.config file (examined at the end
of this chapter).

The benefit of the Timeout property is that you have the ability to assign specific timeout values
discretely for each user. For example, imagine you have created a web application that allows users
to pay cash for a given membership level. You may say that Gold members should time out within
one hour, while Wood members should get only 30 seconds. This possibility begs the question, how
can you remember user-specific information (such as the current membership level) across web visits?
One possible answer is through the user of the HttpCookie type. (And speaking of cookies . . .)

■Source Code The SessionState files are included under the Chapter 27 subdirectory.

5785ch27.qxd 3/31/06 12:44 PM Page 940

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 941

Figure 27-8. Cookie data as persisted under Microsoft Internet Explorer

Understanding Cookies
The next state management technique examined here is the act of persisting data within a cookie,
which is often realized as a text file (or set of files) on the user’s machine. When a user logs on to
a given site, the browser checks to see whether the user’s machine has a cookie file for the URL in
question and, if so, appends this data to the HTTP request.

The receiving server-side web page could then read the cookie data to create a GUI that may be
based on the current user preferences. I am sure you’ve noticed that when you visit one of your
favorite websites, it somehow “just knows” the sort of content you wish to see. The reason (in part)
may have to do with a cookie stored on your computer that contains information relevant to a given
website.

The exact location of your cookie files will depend on which browser you happen to be using.
For those using Microsoft Internet Explorer, cookies are stored by default under C:\ Documents and
Settings\ <loggedOnUser>\Cookies, as shown in Figure 27-8.

The contents of a given cookie file will obviously vary among URLs, but keep in mind that they
are ultimately text files. Thus, cookies are a horrible choice when you wish to maintain sensitive
information about the current user (such as a credit card number, password, or whatnot). Even if
you take the time to encrypt the data, a crafty hacker could decrypt the value and use it for purely
evil pursuits. In any case, cookies do play a role in the development of web applications, so let’s check
out how ASP.NET handles this particular state management technique.

Creating Cookies
First of all, understand that ASP.NET cookies can be configured to be either persistent or temporary.
A persistent cookie is typically regarded as the classic definition of cookie data, in that the set of name/
value pairs is physically saved to the user’s hard drive. Temporary cookies (also termed session cookies)
contain the same data as a persistent cookie, but the name/value pairs are never saved to the user’s
machine; rather, they exist only within the HTTP header. Once the user logs off your site, all data
contained within the session cookie is destroyed.

■Note Most browsers support cookies of up to 4,096 bytes. Because of this size limit, cookies are best used to
store small amounts of data, such as a user ID that can be used to identify the user and pull details from a database.

5785ch27.qxd 3/31/06 12:44 PM Page 941

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES942

The System.Web.HttpCookie type is the class that represents the server side of the cookie data
(persistent or temporary). When you wish to create a new cookie, you access the Response.Cookies
property. Once the new HttpCookie is inserted into the internal collection, the name/value pairs
flow back to the browser within the HTTP header.

To check out cookie behavior firsthand, create a new ASP.NET web application (CookieStateApp)
and create the UI displayed in Figure 27-9.

Within the Button’s Click event handler, build a new HttpCookie and insert it into the Cookie
collection exposed from the HttpRequest.Cookies property. Be very aware that the data will not persist
itself to the user’s hard drive unless you explicitly set an expiration date using the HttpCookie.Expires
property. Thus, the following implementation will create a temporary cookie that is destroyed when
the user shuts down the browser:

Protected Sub btnNewCookie_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnNewCookie.Click

' Make a new (temp) cookie.

Dim theCookie As HttpCookie = _

New HttpCookie(txtCookieName.Text, _

txtCookieValue.Text)

Response.Cookies.Add(theCookie)

End Sub

Figure 27-9. The UI of CookiesStateApp

5785ch27.qxd 3/31/06 12:44 PM Page 942

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 943

However, the following generates a persistent cookie that will expire on March 26, 2009:

Protected Sub btnNewCookie_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnNewCookie.Click

' Make a new (persistent) cookie.

Dim theCookie As HttpCookie = _

New HttpCookie(txtCookieName.Text, _

txtCookieValue.Text)

theCookie.Expires = DateTime.Parse("03/26/2009")

Response.Cookies.Add(theCookie)

End Sub

If you were to run this application and insert some cookie data, the browser automatically
persists this data to disk. When you open this text file saved under your cookie folder, you will see
something similar to Figure 27-10.

Reading Incoming Cookie Data
Recall that the browser is the entity in charge of accessing persisted cookies when navigating to
a previously visited page. To interact with the incoming cookie data under ASP.NET, access the
HttpRequest.Cookies property. To illustrate, if you were to update your current UI with the means to
obtain current cookie data via a Button widget, you could iterate over each name/value pair and
present the information within a Label widget:

Protected Sub btnShowCookie_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnShowCookie.Click

Dim cookieData As String = ""

For Each s As String In Request.Cookies

cookieData += String.Format _

("Name: {0}, Value: {1}", _

s, Request.Cookies(s).Value)

Next

lblCookieData.Text = cookieData

End Sub

If you now run the application and click your new button, you will find that the cookie data has
indeed been sent by your browser (see Figure 27-11).

Figure 27-10. The persistent cookie data

5785ch27.qxd 3/31/06 12:44 PM Page 943

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES944

■Source Code The CookieStateApp files are included under the Chapter 27 subdirectory.

The Role of the <sessionState> Element
At this point in the chapter, you have examined numerous ways to remember information about your
users. As you have seen, view state and application, cache, session, and cookie data are manipulated
in more or less the same way (via a class indexer). As you have also seen, the HttpApplication type
is often used to intercept and respond to events that occur during your web application’s lifetime.

By default, ASP.NET will store session state using an in-process *.dll hosted by the ASP.NET
worker process (aspnet_wp.exe). Like any *.dll, the plus side is that access to the information is as
fast as possible. However, the downside is that if this AppDomain crashes (for whatever reason), all
of the user’s state data is destroyed. Furthermore, when you store state data as an in-process *.dll,
you cannot interact with a networked web farm. This default behavior is recorded in the <sessionState>
element of your web.config file like so:

<sessionState

mode="InProc"

stateConnectionString="tcpip=127.0.0.1:42626"

sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"

cookieless="false"

timeout="20"

/>

Figure 27-11. Viewing cookie data

5785ch27.qxd 3/31/06 12:44 PM Page 944

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 945

This default mode of storage works just fine if your web application is hosted by a single web
server. As you might guess, however, this model is not ideal for a farm of web servers, given that
session state is “trapped” within a given AppDomain.

Storing Session Data in the ASP.NET Session State Server
Under ASP.NET, you can instruct the runtime to host the session state *.dll in a surrogate process
named the ASP.NET session state server (aspnet_state.exe). When you do so, you are able to offload
the *.dll from aspnet_wp.exe into a unique *.exe, which can be located on any machine within the
web farm. Even if you intend to run the aspnet_state.exe process on the same machine as the web
server, you do gain the benefit of partitioning the state data in a unique process (as it is more durable).

To make use of the session state server, the first step in doing so is to start the aspnet_state.exe
Windows service on the target machine. To do so at the command line, simply type

net start aspnet_state

Alternatively, you can start aspnet_state.exe using the Services applet accessed from the
Administrative Tools folder of the Control Panel, as shown in Figure 27-12.

The key benefit of this approach is that you can configure aspnet_state.exe to start automati-
cally when the machine boots up using the Properties window. In any case, once the session state
server is running, alter the <sessionState> element of your Web.config file as follows:

<sessionState

mode="StateServer"

stateConnectionString="tcpip=127.0.0.1:42626"

sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"

cookieless="false"

timeout="20"

/>

Here, the mode attribute has been set to StateServer. That’s it! At this point, the CLR will host
session-centric data within aspnet_state.exe. In this way, if the AppDomain hosting the web appli-
cation crashes, the session data is preserved. Notice as well that the <sessionState> element can
also support a stateConnectionString attribute. The default TCP/IP address value (127.0.0.1) points

Figure 27-12. The Services applet

5785ch27.qxd 3/31/06 12:44 PM Page 945

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES946

to the local machine. If you would rather have the .NET runtime use the aspnet_state.exe service
located on another networked machine (again, think web farms), you are free to update this value.

Storing Session Data in a Dedicated Database
Finally, if you require the highest degree of isolation and durability for your web application, you
may choose to have the runtime store all your session state data within Microsoft SQL Server. The
appropriate update to the web.config file is simple:

<sessionState

mode="SQLServer"

stateConnectionString="tcpip=127.0.0.1:42626"

sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"

cookieless="false"

timeout="20"

/>

However, before you attempt to run the associated web application, you need to ensure that
the target machine (specified by the sqlConnectionString attribute) has been properly config-
ured. When you install the .NET Framework 2.0 SDK (or Visual Studio 2005), you will be provided
with two files named InstallSqlState.sql and UninstallSqlState.sql, located by default under
<%windir%>\Microsoft.NET\Framework\<version>. On the target machine, you must run the
InstallSqlState.sql file using a tool such as the SQL Server Query Analyzer (which ships with
Microsoft SQL Server).

Once this SQL script has executed, you will find a new SQL Server database has been created
(ASPState) that contains a number of stored procedures called by the ASP.NET runtime and a set of
tables used to store the session data itself (also, the tempdb database has been updated with a set of
tables for swapping purposes). As you would guess, configuring your web application to store session
data within SQL Server is the slowest of all possible options. The benefit is that user data is as durable
as possible (even if the web server is rebooted).

■Note If you make use of the ASP.NET session state server or SQL Server to store your session data, you must make
sure that any custom types placed in the HttpSessionState object have been marked with the <Serializable>
attribute.

Understanding the ASP.NET Profile API
At this point in the chapter, you have examined numerous techniques that allow you to remember
user-level and application-level bits of data. However, these techniques suffer from one major limi-
tation: they only exist as long as the user is in session and the web application is running! However,
many websites require the ability to persist user information across sessions. For example, perhaps
you need to provide the ability for users to build an account on your site. Maybe you need to persist
instances of a ShoppingCart class across sessions (for an online shopping site). Or perhaps you wish
to persist basic user preferences (themes, etc.).

While you most certainly could build a custom database (with several stored procedures) to
hold such information, you would then need to build a custom code library to interact with these
database atoms. This is not necessarily a complex task, but the bottom line is that you are the indi-
vidual in charge of building this sort of infrastructure. To help simplify matters, ASP.NET 2.0 ships
with an out-of-the box user profile management API and database system for this very purpose. In
addition to providing the necessary infrastructure, the profile API also allows you to define the data
to be persisted directly within your web.config file (for purposes of simplification); however, you are
also able to persist any <Serializable> type. Before we get too far ahead of ourselves, let’s check out
where the profile API will be storing the specified data.

5785ch27.qxd 3/31/06 12:44 PM Page 946

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 947

The ASPNETDB Database
Recall that every ASP.NET 2.0 website built with Visual Studio 2005 automatically provides an
App_Data subdirectory. By default, the profile API (as well as other services, such as the ASP.NET
role membership provider) is configured to make use of a local SQL Server 2005 database named
ASPNETDB.mdf, located within the App_Data folder. This default behavior is due to settings within the
machine.config file for the .NET 2.0 installation on your machine. In fact, when your code base makes
use of any ASP.NET service requiring the App_Data folder, the ASPNETDB.mdf data file will be automat-
ically created on the fly if a copy does not currently exist.

If you would rather have the ASP.NET runtime communicate with an ASPNETDB.mdf file located
on another networked machine, or you would rather install this database on an instance of MS SQL
Server 7.0 (or higher), you will need to manually build ASPNETDB.mdf using the aspnet_regsql.exe
command-line utility. Like any good command-line tool, aspnet_regsql.exe provides numerous
options; however, if you run the tool with no arguments:

aspnet_regsql

you will launch a GUI-based wizard to help walk you though the process of creating and installing
ASPNETDB.mdf on your machine (and version of SQL Server) of choice.

Now, assuming your site is not making use of a local copy of the database under the App_Data
folder, the final step is to update your web.config file to point to the unique location of your ASPNETDB.mdf.
Assume you have installed ASPNETDB.mdf on a machine named ProductionServer. The following (partial)
web.config file (for a website named ShoppingCart) could be used to instruct the profile API where
to find the necessary database items:

<configuration>

<connectionStrings>

<add name="SqlServices"

connectionString ="Data Source=ProductionServer;Integrated

Security=SSPI;Initial Catalog=aspnetdb;"

providerName="System.Data.SqlClient"/>

</connectionStrings>

<system.web>

<profile defaultProvider ="SqlProvider">

<providers>

<clear/>

<add name="AspNetSqlProfileProvider"

connectionStringName="LocalSqlServer"

applicationName="ShoppingCart"

type="System.Web.Profile.SqlProfileProvider, System.Web,

Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />

</providers>

</profile>

</system.web>

</configuration>

Like most *.config files, this is much worse than it looks. Basically we are defining
a <connectionString> element with the necessary data, followed by a named instance of the
SqlProfileProvider (this is the default provider used regardless of physical location of the ASPNETDB.mdf).
If you require further information regarding this configuration syntax, be sure to check out the .NET
Framework 2.0 SDK documentation.

■Note For simplicity, I will be assuming that you will simply make use of the autogenerated ASPNETDB.mdf
database located under your web application’s App_Data subdirectory.

5785ch27.qxd 3/31/06 12:44 PM Page 947

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES948

Defining a User Profile Within web.config
As mentioned, a user profile is defined within a web.config file. The really nifty aspect of this
approach is that you can interact with this profile in a strongly typed manner using the inherited
Profile property. To illustrate this, create a new website named FunWithProfiles and open your
web.config file for editing. Our goal is to make a profile that models the home address of the users
who are in session as well as the total number of times they have posted to this site. Not surprisingly,
profile data is defined within a <profile> element using a set of name/data type pairs. Consider the
following profile, which is created within the scope of the <system.web> element:

<profile>

<properties>

<add name="StreetAddress" type="System.String" />

<add name="City" type="System.String" />

<add name="State" type="System.String" />

<add name="TotalPost" type="System.Int32" />

</properties>

</profile>

Here, we have specified a name and CLR data type for each item in the profile (of course, we
could add additional items for ZIP code, name, and so forth, but I am sure you get the idea). Strictly
speaking, the type attribute is optional; however, the default is a System.String. As you would guess,
there are many other attributes that can be specified in a profile entry to further qualify how this
information should be persisted in ASPNETDB.mdf. Table 27-4 illustrates some of the core attributes.

Table 27-4. Select Attributes of Profile Data

Attribute Example Values Meaning in Life

Name String A unique identifier for this property.

Type Primitive | User-defined type A .NET primitive type or class. Class names
must be fully qualified (e.g., MyApp.UserData.
ColorPrefs).

serializeAs String | XML | Binary Format of value when persisting in data store.

allowAnonymous True | False Restricts or allows anonymous access to this
value. If set to false, anonymous users won’t
have access to this profile value.

Provider String The provider used to manage this value.
Overrides the defaultProvider setting in
web.config or machine.config.

defaultValue String Value to return if property has not been
explicitly set.

readOnly True | False Restricts or allows write access.

We will see some of these attributes in action as we modify the current profile. For now, let’s see
how to access this data programmatically from within our pages.

Accessing Profile Data Programmatically
Recall that the whole purpose of the ASP.NET profile API is to automate the process of writing data
to (and reading data from) a dedicated database. To test this out for yourself, update the UI of your
default.aspx file with a set of TextBoxes (and descriptive Labels) to gather the street address, city, and
state of the user. As well, add a Button type (named btnSubmit) and a final Label (named lblUserData)
that will be used to display the persisted data, as shown in Figure 27-13.

5785ch27.qxd 3/31/06 12:44 PM Page 948

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 949

Now, within the Click event hander of the button, make use of the inherited Profile property
to persist each point of profile data based on what the user has entered in the related TextBox. As
you can see from Figure 27-14, Visual Studio 2005 will expose each bit of profile data as a strongly
typed property. In effect, the web.config file has been used to define a custom structure!

Figure 27-13. The UI of the FunWithState default.aspx page

Figure 27-14. Profile data is strongly typed

5785ch27.qxd 3/31/06 12:44 PM Page 949

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES950

Once you have persisted each piece of data within ASPNETDB.mdf, read each piece of data out of
the database, and format it into a String that is displayed on the lblUserData Label type. Finally,
handle the page’s Load event, and display the same information on the Label type. In this way, when
users come to the page, they can see their current settings. Here is the complete code file:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

GetUserAddress()

End Sub

Protected Sub btnSubmit_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnSubmit.Click

' Database writes happening here!

Profile.City = txtCity.Text

Profile.StreetAddress = txtStreetAddress.Text

Profile.State = txtState.Text

' Get settings from database.

GetUserAddress()

End Sub

Private Sub GetUserAddress()

' Database reads happening here!

lblUserData.Text = String.Format("You live here: {0}, {1}, {2}", _

Profile.StreetAddress, Profile.City, Profile.State)

End Sub

End Class

Now, if you were to run this page, you would notice a lengthy delay the first time default.aspx
is requested. The reason: the ASPNETDB.mdf file is being created on the fly and placed within your
App_Data file. You can verify this for yourself by refreshing your Solution Explorer (see Figure 27-15).

You will also find that the first time you come to this page, the lblUserData Label does not dis-
play any profile data, as you have not yet entered your data into the correct table of ASPNETDB.mdf.
Once you enter values in the TextBox controls and post back to the server, you will find this Label is
formatted with the persisted data, as shown in Figure 27-16.

Figure 27-15. Behold! ASPNETDB.mdf

5785ch27.qxd 3/31/06 12:44 PM Page 950

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 951

Now, for the really interesting aspect of this technology. If you were to shut down your browser
and rerun your website, you will find that your previously entered profile data has indeed been per-
sisted, as the Label displays the correct information. This begs the following obvious question: How
were you remembered?

For this example, the profile API made use of your Windows network identity, which was obtained
by your current login credentials. However, when you are building public websites (where the users
are not part of a given domain), rest assured that the profile API integrates with the Forms-based
authentication model of ASP.NET and also supports the notion of “anonymous profiles,” which allow
you to persist profile data for users who do not currently have an active identity on your site.

■Note This text does not cover the details of ASP.NET security, so consult the .NET 2.0 Framework SDK
documentation for further details.

Grouping Profile Data and Persisting Custom Objects
To wrap up this chapter, allow me to make a few additional comments on how profile data may be
defined within a web.config file. The current profile simply defined four pieces of data that were
exposed directly from the profile type. When you build more complex profiles, it can be helpful to
group related pieces of data under a unique name. Consider the following update:

<profile>

<properties>

<group name ="Address">

<add name="StreetAddress" type="String" />

<add name="City" type="String" />

Figure 27-16. Our persisted user data

5785ch27.qxd 3/31/06 12:44 PM Page 951

<add name="State" type="String" />

</group>

<add name="TotalPost" type="Integer" />

</properties>

</profile>

This time we have defined a custom group named Address to expose the street address, city, and
state of our user. To access this data in our pages would now require us to update our code base by
specifying Profile.Address to get each subitem. For example, here is the updated GetUserAddress()
method (the Click event hander for the Button type would need to be updated in a similar manner):

Private Sub GetUserAddress()

' Database reads happening here!

lblUserData.Text = String.Format("You live here: {0}, {1}, {2}", _

Profile.Address.StreetAddress, Profile.Address.City, Profile.Address.State)

End Sub

■Note A profile can contain as many groups as you feel is necessary. Simply define multiple <group> elements
within your <properties> scope.

Finally, it is worth pointing out that a profile may also persist (and obtain) custom objects to
and from ASPNETDB.mdf. To illustrate, assume that you wanted to build a custom class (or structure)
that will represent the user’s address data. The only requirement expected by the profile API is that
the type be marked with the <Serializable> attribute. For example:

<Serializable()> _

Public Class UserAddress

Public street As String

Public city As String

Public state As String

End Class

With this class in place, our profile definition can now be updated as follows (notice I removed
the custom group, although this is not mandatory):

<profile>

<properties>

<add name="AddressInfo" type="UserAddress" serializeAs ="Binary"/>

<add name="TotalPost" type="Integer" />

</properties>

</profile>

Notice that when you are adding <Serializable> types to a profile, the type attribute is the fully
qualified named of the type being persisted. Thus, if you were adding an ArrayList to a profile, type
would be set to System.Collections.ArrayList. As well, you can control how this state data should
be persisted into ASPNETDB.mdf using the serializeAs attribute. As you will see from the Visual Studio
2005 IntelliSense, your core choices are binary, XML, or string data.

Now that we are capturing street address information as a custom class type, we would (once
again) need to update our code base. For example:

Private Sub GetUserAddress()

' Database reads happening here!

lblUserData.Text = String.Format("You live here: {0}, {1}, {2}", _

Profile.AddressInfo.street, Profile.AddressInfo.city, _

Profile.AddressInfo.state)

End Sub

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES952

5785ch27.qxd 3/31/06 12:44 PM Page 952

To wrap things up for this chapter, it is worth pointing out that there is much more to the profile
API than I have had space to cover here. For example, the Profile property actually encapsulates
a type named ProfileCommon. Using this type, you are able to programmatically obtain all informa-
tion for a given user, delete (or add) profiles to ASPNETDB.mdf, update aspects of a profile, and so forth.

As well, the profile API has numerous points of extensibility that can allow you to optimize how
the profile manager accesses the tables of the ASPNETDB.mdf database. As you would expect, there are
numerous ways to decrease the number of “hits” this database takes. I’ll assume interested readers
will consult the .NET Framework 2.0 SDK documentation for further details.

Summary
In this chapter, you rounded out your knowledge of ASP.NET by examining how to leverage the
HttpApplication type. As you have seen, this type provides a number of default event handlers that
allow you to intercept various application- and session-level events. The bulk of this chapter was
spent examining a number of state management techniques. Recall that view state is used to auto-
matically repopulate the values of HTML widgets between postbacks to a specific page. Next, you
checked out the distinction of application-and session-level data, cookie management, and the
ASP.NET application cache.

The remainder of this chapter exposed you to the ASP.NET profile API. As you have seen, this
technology provides an out-of-the-box solution to the issue of persisting user data across sessions.
Using your website’s web.config file, you are able to define any number of profile items (including
groups of items and <Seralizable> types) that will automatically be persisted into ASPNETDB.mdf.

CHAPTER 27 ■ ASP.NET 2.0 STATE MANAGEMENT TECHNIQUES 953

5785ch27.qxd 3/31/06 12:44 PM Page 953

5785ch27.qxd 3/31/06 12:44 PM Page 954

C H A P T E R 2 8

■ ■ ■

Understanding XML Web Services

Chapter 20 introduced you to the .NET remoting layer. As you have seen, this technology allows
any number of .NET-savvy computers to exchange information across process and machine bound-
aries. While this is all well and good, one possible limitation of the .NET remoting layer is the fact
that each machine involved in the exchange must have the .NET Framework installed, must under-
stand the CTS, and must speak the same wire format (such as TCP).

XML web services offer a more flexible alternative to distributed application development.
Simply put, an XML web service is a unit of code hosted by a web server that can be accessed using
industry standards such as HTTP and XML. As you would guess, using neutral technologies, XML web
services offer an unprecedented level of operating system, platform, and language interoperability.

In this final chapter, you will learn how to build XML web services using the .NET platform.
Along the way, you will examine a number of related topics, such as discovery services (UDDI and
DISCO), the Web Service Description Language (WSDL), and the Simple Object Access Protocol (SOAP).
Once you understand how to build an XML web service, you will examine various approaches to
generate client-side proxies that are capable of invoking “web methods” in a synchronous and
asynchronous fashion.

The Role of XML Web Services
From the highest level, you can define an XML web service as a unit of code that can be invoked via
HTTP requests. Unlike a traditional web application, however, XML web services are not (necessarily)
used to emit HTML back to a browser for display purposes. Rather, an XML web service often exposes
the same sort of functionality found in a standard .NET code library (e.g., crunch some numbers, fetch
a DataSet, return stock quotes, etc.).

Benefits of XML Web Services
At first glance, XML web services may seem to be little more than just another remoting technology.
While this is true, there is more to the story. Historically speaking, accessing remote objects required
platform-specific (and often language-specific) protocols (DCOM, Java RMI, etc.). The problem
with this approach is not the underlying technology, but the fact that each is locked into a specific
(often proprietary) wire format. Thus, if you are attempting to build a distributed system that involves
numerous operating systems, each machine must agree upon the packet format, transmission pro-
tocol, and so forth. To simplify matters, XML web services allow you to invoke members of a remote
object using standard HTTP requests. To be sure, of all the protocols in existence today, HTTP is the
one specific wire protocol that all platforms can agree on (after all, HTTP is the backbone of the World
Wide Web).

955

5785ch28.qxd 3/31/06 12:45 PM Page 955

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES956

Figure 28-1. XML web services in action

Another fundamental problem with proprietary remoting architectures is that they require the
sender and receiver to understand the same underlying type system. However, as I am sure you can
agree, a Java arrayList has little to do with a .NET ArrayList, which has nothing to do with a C++
array. XML web services provide a way for unrelated platforms, operating systems, and programming
languages to exchange information in harmony. Rather than forcing the caller to understand a specific
type system, information is passed between systems via XML data representation (which is little
more than a well-formatted string). The short answer is, if your operating system can go online and
parse character data, it can interact with an XML web service.

■Note A production-level Microsoft .NET XML web service is typically hosted under IIS using a unique virtual direc-
tory. As explained in Chapter 25, however, as of .NET 2.0 it is now possible to load web content from a local directory
(for development and testing purposes) using WebDev.WebServer.exe.

Defining an XML Web Service Client
One aspect of XML web services that might not be readily understood from the onset is the fact that
an XML web service consumer is not limited to a web page. Console-based and Windows Forms–based
clients (as well as a *.dll code library for that matter) can use a web service just as easily. In each
case, the XML web service consumer indirectly interacts with the distant XML web service through
an intervening proxy type.

An XML web service proxy looks and feels like the actual remote object and exposes the same
set of members of the actual web service. Under the hood, however, the proxy’s implementation code
forwards requests to the XML web service using standard HTTP. The proxy also maps the incoming
stream of XML back into .NET-specific data types (or whatever type system is required by the consumer
application). Figure 28-1 illustrates the fundamental nature of XML web services.

5785ch28.qxd 3/31/06 12:45 PM Page 956

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 957

The Building Blocks of an XML Web Service
In addition to the managed code library that constitutes the exposed functionality, an XML web
service requires some supporting infrastructure. Specifically, an XML web service involves the fol-
lowing core technologies:

• A discovery service (so clients can resolve the location of the XML web service)

• A description service (so clients know what the XML web service can do)

• A transport protocol (to pass the information between the client and the XML web service)

We’ll examine details behind each piece of infrastructure throughout this chapter. However, to
get into the proper frame of mind, here is a brief overview of each supporting technology.

Previewing XML Web Service Discovery
Before a client can invoke the functionality of a web service, it must first know of its existence and
location. Now, if you are the individual (or company) who is building the client and XML web ser-
vice, the discovery phase is quite simple given that you already know the location of the web service
in question. However, what if you wish to share the functionality of your web service with the world
at large?

To do this, you have the option of registering your XML web service with a Universal Description,
Discovery, and Integration (UDDI) server. Clients may submit requests to a UDDI catalog to find
a list of all web services that match some search criteria (e.g., “Find me all web services having to do
real-time weather updates”). Once you have identified a specific web server from the list returned via
the UDDI query, you are then able to investigate its overall functionality. If you like, consider UDDI
to be the yellow pages for XML web services.

In addition to UDDI discovery, an XML web service built using .NET can be located using DISCO,
which is a somewhat forced acronym standing for Discovery of Web Services. Using static discovery
(via a *.disco file) or dynamic discovery (via a *.vsdisco file), you are able to advertise the set of XML
web services that are located at a specific URL. Potential web service clients can navigate to a web
server’s *.disco file to see links to all the published XML web services.

Understand, however, that dynamic discovery is disabled by default, given the potential security
risk of allowing IIS to expose the set of all XML web services to any interested individual. Given this,
I will not comment on DISCO services for the remainder of this text.

Previewing XML Web Service Description
Once a client knows the location of a given XML web service, the client in question must fully under-
stand the exposed functionality. For example, the client must know that there is a method named
GetWeatherReport() that takes some set of parameters and sends back a given return value before
the client can invoke the method. As you may be thinking, this is a job for a platform-, language-, and
operating system–neutral metalanguage. Specifically speaking, the XML-based metadata used to
describe a XML web service is termed the Web Service Description Language (WSDL).

In a good number of cases, the WSDL description of an XML web service will be automatically
generated by Microsoft IIS when the incoming request has a ?wsdl suffix appended to the URL. As
you will see, the primary consumers of WSDL contracts are proxy generation tools. For example, the
wsdl.exe command-line utility (explained in detail later in this chapter) will generate a client-side
proxy class from a WSDL document.

For more complex cases (typically for the purposes of interoperability), many developers take
a “WSDL first” approach and begin building their web services by defining the WSDL document
manually. As luck would have it, the wsdl.exe command-line tool is also able to generate interface
descriptions for an XML web service based on a WSDL definition.

5785ch28.qxd 3/31/06 12:45 PM Page 957

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES958

Previewing the Transport Protocol
Once the client has created a proxy type to communicate with the XML web service, it is able to invoke
the exposed web methods. As mentioned, HTTP is the wire protocol that transmits this data. Specif-
ically, however, you can use HTTP GET, HTTP POST, or HTTP SOAP to move information between
consumers and web services.

By and large, SOAP will be your first choice, for as you will see, SOAP messages can contain XML
descriptions of complex types (including your custom types as well as types within the .NET base
class libraries). On the other hand, if you make use of the HTTP GET or HTTP POST protocols, you
are restricted to a more limited set of core data XML schema types.

The .NET XML Web Service Namespaces
Now that you have a basic understanding of XML web services, we can get down to the business of
building such a creature using the .NET platform. As you would imagine, the base class libraries
define a number of namespaces that allow you to interact with each web service technology (see
Table 28-1).

Table 28-1. XML Web Service–centric Namespaces

Namespace Meaning in Life

System.Web.Services This namespace contains the core types needed to build
an XML web service (including the all-important
<WebMethod> attribute).

System.Web.Services.Configuration These types allow you to configure the runtime behavior
of a .NET XML web service.

System.Web.Services.Description These types allow you to programmatically interact with
the WSDL document that describes a given web service.

System.Web.Services.Discovery These types allow a web consumer to programmatically
discover the web services installed on a given machine.

System.Web.Services.Protocols This namespace defines a number of types that represent
the atoms of the various XML web service wire protocols
(HTTP GET, HTTP POST, and SOAP).

■Note All XML web service–centric namespaces are contained within the System.Web.Services.dll assembly.

Examining the System.Web.Services Namespace
Despite the rich functionality provided by the .NET XML web service namespaces, the vast majority of
your applications will only require you to directly interact with the types defined in System.Web.Services.
As you can see from Table 28-2, the number of types is quite small (which is a good thing).

5785ch28.qxd 3/31/06 12:45 PM Page 958

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 959

Table 28-2. Members of the System.Web.Services Namespace

Type Meaning in Life

WebMethodAttribute Adding the <WebMethod> attribute to a method or property in
a web service class type marks the member as invokable via
HTTP and serializable as XML.

WebService This is an optional base class for XML web services built using
.NET. If you choose to derive from this base type, your XML web
service will have the ability to retain stateful information (e.g.,
session and application variables).

WebServiceAttribute The <WebService> attribute may be used to add information to
a web service, such as a string describing its functionality and
underlying XML namespace.

WebServiceBindingAttribute This attribute (new to .NET 2.0) declares the binding protocol
a given web service method is implementing (HTTP GET,
HTTP POST, or SOAP) and advertises the level of web services
interoperability (WSI) conformity.

WsiProfiles This enumeration (new to .NET 2.0) is used to describe the WSI
specification to which a web service claims to conform.

The remaining namespaces shown in Table 28-1 are typically only of direct interest to you if you
are interested in manually interacting with a WSDL document, discovery services, or the underlying
wire protocols. Consult the .NET Framework 2.0 SDK documentation for further details.

Building an XML Web Service by Hand
Like any .NET application, XML web services can be developed manually, without the use of an IDE
such as Visual Studio 2005. In an effort to demystify XML web services, let’s build a simple XML web
service by hand. Using your text editor of choice, create a new file named HelloWorldWebService.asmx
(by convention, *.asmx is the extension used to mark .NET web service files). Save it to a convenient
location on your hard drive (e.g., C:\HelloWebService) and enter the following type definition:

<%@ WebService Language="vb" Class="HelloService" %>

Imports System

Imports System.Web.Services

Public Class HelloService

<WebMethod()> _

Public Function HelloWorld() As String

Return "Hello!"

End Function

End Class

For the most part, this *.asmx file looks like any other VB 2005 class definition. The first noticeable
difference is the use of the <%@WebService%> directive, which at minimum must specify the name of the
managed language used to build the contained class definition and the fully qualified name of the class.
In addition to the Language and Class attributes, the <%@WebService%> directive may also take a Debug

attribute (to inform the ASP.NET compiler to emit debugging symbols) and an optional CodeBehind
value that identifies the associated code file within the optional App_Code directory (see Chapter 25
for details regarding App_Code). In this example, you have avoided the use of a code-behind file and
embedded all required logic directly within a single *.asmx file.

5785ch28.qxd 3/31/06 12:45 PM Page 959

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES960

Figure 28-2. Testing the XML web service

Beyond the use of the <%@WebService%> directive, the only other distinguishing characteristic of
this *.asmx file is the use of the <WebMethod> attribute, which informs the ASP.NET runtime that this
method is reachable via incoming HTTP requests and should serialize any return value as XML.

■Note Only public members that are adorned with <WebMethod> are reachable by HTTP. Members not marked
with the <WebMethod> attribute cannot be called by the client-side proxy.

Testing Your XML Web Service Using WebDev.WebServer.exe
Recall (again, from Chapter 25) that WebDev.WebServer.exe is a development ASP.NET web server that
ships with the .NET platform 2.0 SDK. While WebDev.WebServer.exe would never be used to host
a production-level XML web service, this tool does allow you to run web content directly from a local
directory. To test your service using this tool, open a Visual Studio 2005 command prompt and specify
an unused port number and physical path to the directory containing your *.asmx file:

WebDev.WebServer /port:1928 /path:"C:\HelloWebService"

Once the web server has started, open your browser of choice and specify the name of your
*.asmx file exposed from the specified port:

http://localhost:1928/HelloWorldWebService.asmx

At this point, you are presented with a list of all web methods exposed from this URL, as shown
in Figure 28-2.

If you click the HelloWorld link, you will be passed to another page that allows you to invoke
the <WebMethod> you just selected. Once you invoke HelloWorld(), you will be returned not a literal
.NET-centric System.String, but rather the XML data representation of the textual data returned
from the HelloWorld() web method:

<?xml version="1.0" encoding="utf-8" ?>

<string xmlns="http://tempuri.org/">Hello!</string>

5785ch28.qxd 3/31/06 12:45 PM Page 960

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 961

Testing Your Web Service Using IIS
Now that you have tested your XML web service using WebDev.WebServer.exe, you’ll transfer your
*.asmx file into an IIS virtual directory. Using the information presented in Chapter 25, create a new
virtual directory named HelloWS that maps to the physical folder containing the HelloWorldWebService.
asmx file. Once you do, you are able to test your web service by entering the following URL in your
web browser:

http://localhost/HelloWS/HelloWorldWebService.asmx

Viewing the WSDL Contract
As mentioned, WSDL is a metalanguage that describes numerous characteristics of the web meth-
ods at a particular URL. Notice that when you test an XML web service, the autogenerated test page
supplies a link named “Service Description.” Clicking this link will append the token ?wsdl to the
current request. When the ASP.NET runtime receives a request for an *.asmx file tagged with this
suffix, it will automatically return the underlying WSDL that describes each web method.

At this point, don’t be alarmed with the verbose nature of WSDL or concern yourself with the
format of a WSDL document. For the time being, just understand that WSDL describes how web
methods can be invoked using each of the current XML web service wire protocols.

The Autogenerated Test Page
As you have just witnessed, XML web services can be tested within a web browser using an autogen-
erated HTML page. When an HTTP request comes in that maps to a given *.asmx file, the ASP.NET
runtime makes use of a file named DefaultWsdlHelpGenerator.aspx to create an HTML display that
allows you to invoke the web methods at a given URL. You can find this *.aspx file under the follow-
ing directory (substitute <version> with your current version of the .NET Framework, of course):

C:\Windows\Microsoft.NET\Framework\<version>\CONFIG

Providing a Custom Test Page
If you wish to instruct the ASP.NET runtime to make use of a custom *.aspx file for the purposes of
testing your XML web services, you are free to customize this page with additional information (add
your company logo, additional descriptions of the service, links to a help document, etc.). To simplify
matters, most developers copy the existing DefaultWsdlHelpGenerator.aspx to their current project
as a starting point and modify the original markup.

As a simple test, copy the DefaultWsdlHelpGenerator.aspx file into the directory containing
HelloWorldWebService.asmx (e.g., C:\HelloWebService). Rename this copy to
MyCustomWsdlHelpGenerator.aspx and update some aspect of the HTML, such as the <title> tag.
For example, change this existing markup:

<title><%#ServiceName + " " + GetLocalizedText("WebService")%></title>

to the following:

<title>My Rocking <%#ServiceName + " " + GetLocalizedText("WebService")%></title>

Once you have modified the HTML content, create a web.config file and save it to your current
directory. The following XML elements instruct the runtime to make use of your custom *.aspx file,
rather than DefaultWsdlhelpGenerator.aspx:

5785ch28.qxd 3/31/06 12:45 PM Page 961

<!-- Here you are specifying a custom *.aspx file -->

<configuration>

<system.web>

<webServices>

<wsdlHelpGenerator href="MyCustomWsdlHelpGenerator.aspx" />

</webServices>

</system.web>

</configuration>

When you request your web service, you should see that the browser’s title has been updated
with your custom content. On a related note, if you wish to disable help page generation for a given
web service, you can do so using the following <remove> element within the web.config file:

<!-- Disable help page generation -->

<configuration>

<system.web>

<webServices>

<protocols>

<!-- This element also disables WSDL generation -->

<remove name="Documentation"/>

</protocols>

</webServices>

</system.web>

</configuration>

■Source Code The HelloWorldWebService files are included under the Chapter 28 subdirectory.

Building an XML Web Service Using Visual
Studio 2005
Now that you have created an XML web service by hand, let’s see how Visual Studio 2005 helps get
you up and running. Using the File ➤ New ➤ Web Site menu option, create a new VB 2005 XML web
service project named MagicEightBallWebService and save it to your local file system, as shown in
Figure 28-3.

Once you click the OK button, Visual Studio 2005 responds by generating a Service.asmx file
that defines the following <%@WebService%> directive:

<%@ WebService Language="vb"

CodeBehind="~/App_Code/Service.vb" Class="Service" %>

Note that the CodeBehind attribute is used to specify the name of the VB 2005 code file (placed
by default in your project’s App_Code directory) that defines the related class type. By default,
Service.vb is defined as follows:

Imports System.Web

Imports System.Web.Services

Imports System.Web.Services.Protocols

<WebService(Namespace:="http://tempuri.org/")> _

<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Public Class Service

Inherits System.Web.Services.WebService

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES962

5785ch28.qxd 3/31/06 12:45 PM Page 962

Figure 28-3. Visual Studio 2005 XML Web Service project

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 963

Unlike the previous HelloWorldWebService example, notice that the Service class now derives
from the System.Web.Services.WebService base class. You’ll examine the members defined by this
type in just a moment, but know for now that deriving from this base class is entirely optional.

Also notice that the Service class is adorned with two (also optional) attributes named <WebService>
and <WebServiceBinding>. Again, you’ll examine the role of these attributes a bit later in this chapter.

■Note The <DesignerGenerated> attribute has nothing to do with your XML web service or how the CLR han-
dles your *.asmx file. Rather, this attribute is used internally by the runtime compiler and can be safely deleted if
you so choose.

Implementing the TellFortune() Web Method
Your MagicEightBall XML web service will mimic the classic fortune-telling toy. To do so, add the
following new method to your Service class (feel free to delete the existing HelloWorld() web method):

<WebMethod> _

Public Function TellFortune(ByVal userQuestion As String) As String

Dim answers As String() = {"Future Uncertain", "Yes", _

"No", "Hazy", "Ask again later", "Definitely"}

<WebMethod()> _

Public Function HelloWorld() As String

Return "Hello World"

End Function

End Class

5785ch28.qxd 3/31/06 12:45 PM Page 963

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES964

Figure 28-4. Invoking the TellFortune() web method

' Return a random response to the question.

Dim r As Random = New Random

Return String.Format("{0}? {1}", _

userQuestion, answers(r.Next(answers.Length)))

End Function

To test your new XML web service, simply run (or debug) the project using Visual Studio 2005.
Given that the TellFortune() method requires a single input parameter, the autogenerated HTML
test page provides the required input field (see Figure 28-4).

Here is a possible response to the question “Will I get the sink fixed this weekend”:

<?xml version="1.0" encoding="utf-8" ?>

<string xmlns="http://tempuri.org/">

Will I get the sink fixed this weekend? Hazy

</string>

So, at this point you have created two simple XML web services: one by hand and the other
using Visual Studio 2005. Now that you know the basics, we can dig into the specifics, beginning
with the role of the WebService base class.

■Source Code The MagicEightBallWebService files are included under the Chapter 28 subdirectory.

5785ch28.qxd 3/31/06 12:45 PM Page 964

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 965

The Role of the WebService Base Class
As you saw during the development of the HelloWorldWebService service, a web service can derive
directly from System.Object. However, by default, web services developed using Visual Studio 2005
automatically derive from the System.Web.Service.WebService base class. Table 28-3 documents the
core members of this class type.

Table 28-3. Key Members of the System.Web.Services.WebService Type

Property Meaning in Life

Application Provides access to the HttpApplicationState object for the current HTTP request

Context Provides access to the HttpContext type that encapsulates all HTTP-specific
context used by the HTTP server to process web requests

Server Provides access to the HttpServerUtility object for the current request

Session Provides access to the HttpSessionState type for the current request

SoapVersion Retrieves the version of the SOAP protocol used to make the SOAP request to the
XML web service; new to .NET 2.0

As you may be able to gather, if you wish to build a stateful web service using application and
session variables (see Chapter 27), you are required to derive from WebService, given that this type
defines the Application and Session properties. On the other hand, if you are building an XML web
service that does not require the ability to “remember” information about the external users, extending
WebService is not required. We will revisit the process of building stateful XML web services during
our examination of the EnableSession property of the <WebMethod> attribute.

Understanding the <WebService> Attribute
An XML web service class may optionally be qualified using the <WebService> attribute (not to be
confused with the WebService base class). This attribute supports a few named properties, the first
of which is Namespace. This property can be used to establish the name of the XML namespace to
use within the WSDL document.

As you may already know, XML namespaces are used to scope custom XML elements within
a specific group (just like .NET namespaces). By default, the ASP.NET runtime will assign a dummy
XML namespace of http://tempuri.org for a given *.asmx file. As well, Visual Studio 2005 assigns
the Namespace value to http://tempuri.org by default via the <WebService> attribute.

Assume you have created a new XML web service project with Visual Studio 2005 named
CalculatorService that defines the following two web methods, named Add() and Subtract():

<WebService(Namespace:="http://tempuri.org/")> _

<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Public Class Service

Inherits System.Web.Services.WebService

<WebMethod()> _

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return a + b

End Function

<WebMethod()> _

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer

Return a - b

End Function

End Class

5785ch28.qxd 3/31/06 12:45 PM Page 965

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES966

Before you publish your XML web service to the world at large, you should supply a proper
namespace that reflects the point of origin, which is typically the URL of the site hosting the XML
web service. In the following code update, note that the <WebService> attribute also allows you to
set a named property termed Description that describes the overall nature of your web service:

<WebService(Namespace:="http://IntertechTraining.com/", _

Description:="The Amazing Calculator Web Service")> _

<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Public Class Service

...

End Class

The Effect of the Namespace and Description Properties
If you run the project, you will find that the warning to replace http://tempuri.org is no longer dis-
played in the autogenerated test page. Furthermore, if you click the Service Description link to view
the underlying WSDL, you will find that the TargetNamespace attribute has now been updated with
your custom XML namespace. Finally, the WSDL file now contains a <documentation> element that
is based on your Description value:

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

The Amazing Calculator Web Service

</wsdl:documentation>

The Name Property
The final property of the WebServiceAttribute type is Name, which is used to establish the name of
the XML web service exposed to the outside world. By default, the external name of a web service is
identical to the name of the class type itself (Service by default). However, if you wish to decouple
the .NET class name from the underlying WSDL name, you can update the <WebService> attribute
as follows:

<WebService(Namespace:="http://IntertechTraining.com/", _

Description:="The Amazing Calculator Web Service", _

Name:="CalculatorWebService")> _

<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Public Class Service

...

End Class

Figure 28-5 shows the test page generated by DefaultWsdlHelpGenerator.aspx based on the
<WebService> attribute.

5785ch28.qxd 3/31/06 12:45 PM Page 966

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 967

Figure 28-5. The CalculatorWebService

Understanding the <WebServiceBinding> Attribute
As of .NET 2.0, an XML web service can be attributed with <WebServiceBinding>. Among other things,
this new attribute is used to specify whether the XML web service conforms to “Web services inter-
operability (WSI) basic profile 1.1.” So, what exactly does that mean? Well, if you have been actively
working with XML web services, you may know firsthand that one of the frustrating aspects of this
technology is that early on, WSDL was an evolving specification. Given this fact, it was not uncommon
for the same WSDL element (or attribute) to be interpreted in different manners across development
tools (Visual Studio, WSAD), web servers (IIS, Apache), and architectures (.NET, J2EE).

Clearly this is problematic for an XML web service, as one of the motivating factors is to simplify
the way in which information can be processed in a multiplatform, multi-architecture, and multilan-
guage universe.To rectify the problem, theWSI initiative offers a nonproprietary web services specification
to promote the interoperability of web services across platforms. Under .NET 2.0, the ConformsToproperty
of <WebServiceBinding> can be set to any value of the WsiProfiles enumeration:

Public Enum WsiProfiles

' The web service makes no conformance claims.

None

' The web service claims to conform to the

' WSI Basic Profile version 1.1.

BasicProfile1_1

End Enum

By default, XML web services generated using Visual Studio 2005 are assumed to conform to the
WSI basic profile 1.1 (BP 1.1). Of course, simply setting the ConformsTo named property to WsiProfiles.

BasicProfile1_1 does not guarantee each web method is truly compliant. For example, one rule of
BP 1.1 states that every method in a WSDL document must have a unique name (overloading of exposed
web methods is not permitted under BP 1.1). The good news is that the ASP.NET runtime is able to
determine various BP 1.1 validations and will report the issue at runtime.

5785ch28.qxd 3/31/06 12:45 PM Page 967

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES968

Ignoring BP 1.1 Conformance Verification
As of .NET 2.0, XML web services are automatically checked against the WSI basic profile (BP) 1.1. In
most cases, this is a good thing, given that you are able to build software that has the greatest reach
possible. In some cases, however, you may wish to ignore BP 1.1 conformance (e.g., if you are
building in-house XML web services where interoperability is not much of an issue). To instruct
the runtime to ignore BP 1.1 violations, set the ConformsTo property to WsiProfiles.None and the
EmitConformanceClaims property to False:

<WebService(Namespace:="http://IntertechTraining.com/", _

Description:="The Amazing Calculator Web Service", _

Name:="CalculatorWebService")> _

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

<WebServiceBinding(ConformsTo:=WsiProfiles.None, _

EmitConformanceClaims:= False)> _

Public Class Service

...

End Class

As you might suspect, the value assigned to EmitConformanceClaims controls whether the
conformance claims expressed by the ConformsTo property are provided when a WSDL description
of the web service is published. With this, BP 1.1 violations will be permitted, although the autogen-
erated test page will still display warnings.

Disabling BP 1.1 Conformance Verification
If you wish to completely disable BP 1.1 verification for your XML web service, you may do so by
defining the following <conformanceWarnings> element within a proper web.config file:

<configuration>

<system.web>

<webServices>

<conformanceWarnings>

<remove name='BasicProfile1_1'/>

</conformanceWarnings>

</webServices>

</system.web>

</configuration>

■Note The <WebServiceBinding> attribute can also be used to define the intended binding for specific methods
via the Name property. Consult the .NET Framework 2.0 SDK documentation for further details.

Understanding the <WebMethod> Attribute
The <WebMethod> attribute must be applied to each method you wish to expose from an XML web
service. Like most attributes, the WebMethodAttribute type may take a number of optional named
properties. Let’s walk through each possibility in turn.

Documenting a Web Method via the Description Property
Like the <WebService> attribute, the Description property of the <WebMethod> attribute allows you to
describe the functionality of a particular web method:

5785ch28.qxd 3/31/06 12:45 PM Page 968

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 969

Public Class Service

Inherits System.Web.Services.WebService

<WebMethod(Description:="Adds two integers.")> _

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return a + b

End Function

<WebMethod(Description:="Subtracts two integers.")> _

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer

Return a - b

End Function

End Class

Under the hood, when you specify the Description property within a <WebMethod> attribute, the
WSDL contract is updated with a new <documentation> element scoped at the method name level:

<wsdl:operation name="Add">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Adds two integers.

</wsdl:documentation>

<wsdl:input message="tns:AddSoapIn" />

<wsdl:output message="tns:AddSoapOut" />

</wsdl:operation>

Avoiding WSDL Name Clashes via the MessageName Property
One of the rules of WSI BP 1.1 is that each method within a WSDL document must be unique. Therefore,
if you wish your XML web services to conform to BP 1.1, you should not overload public methods
adorned with the <WebMethod> attribute in your implementation logic. For the sake of argument,
however, assume that you have overloaded the Add() method so that the caller can pass two Integer
or Double data types. You would find the following runtime error:

Both Single Add(Single, Single) and Int32 Add(Int32, Int32)

use the message name 'Add'. Use the MessageName property

attribute to specify unique of the WebMethod

custom message names for the methods.

Again, the best approach is to simply not overload the Add() method in the first place. If you
must do so, the MessageName property of the <WebMethod> attribute can be used to resolve name clashes
in your WSDL documents:

Public Class Service

Inherits System.Web.Services.WebService

<WebMethod(Description:="Adds two doubles.", MessageName:="AddDoubles")> _

Public Function Add(ByVal a As Double, ByVal b As Double) As Double

Return a + b

End Function

<WebMethod(Description:="Adds two integers.", MessageName:="AddInts")> _

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return a + b

End Function

...

End Class

5785ch28.qxd 3/31/06 12:45 PM Page 969

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES970

Once you have done so, the generated WSDL document will internally refer to each overloaded
version of Add() uniquely (AddDoubles and AddInts). As far as the client-side proxy code is concerned,
however, there is only a single overloaded Add() method.

Building Stateful Web Services via the EnableSession Property
As you may recall from Chapter 27, the Application and Session properties allow an ASP.NET web
application to maintain stateful data. XML web services gain the exact same functionality via the
System.Web.Services.WebService base class. For example, assume your CalculatorService maintains
an application-level variable (and is thus available to each session) that holds the value of PI, as
shown here:

' This web method provides access to an app-level variable

' named SimplePI.

<WebMethod(Description:="Get the simple value of PI.")> _

Public Function GetSimplePI() As Double

Return CType(Application("SimplePI"), Double)

End Function

The initial value of the SimplePI application variable could be established with the
Application_Start() event handler defined in the Global.asax file. Insert a new global application
class to your project (by right-clicking your project icon within Solution Explorer and selecting Add
New Item) and implement Application_Start() as follows:

<%@ Application Language="VB" %>

<script runat="server">

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

Application("SimplePI") = 3.14

End Sub

...

</script>

In addition to maintaining application-wide variables, you may also make use of Session to
maintain session-centric information. For the sake of illustration, implement the Session_Start()
method in your Global.asax to assign a random number to each user who is logged on:

<%@ Application Language="VB" %>

<script runat="server">

...

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

' To prove session state data is available from a web service,

' simply assign a random number to each user.

Dim r As New Random()

Session("SessionRandomNumber") = r.Next(1000)

End Sub

...

</script>

For testing purposes, create a new web method in your Service class that returns the user’s
randomly assigned value:

<WebMethod(EnableSession:=True, _

Description:="Get your random number!")> _

Public Function GetMyRandomNumber() As Integer

Return CType(Session("SessionRandomNumber"), Integer)

End Function

5785ch28.qxd 3/31/06 12:45 PM Page 970

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 971

Note that the <WebMethod> attribute has explicitly set the EnableSession property to True. This
step is not optional, given that by default each web method has session state disabled. If you were
now to launch two or three browsers (to generate a set of session IDs), you would find that each
logged-on user is returned a unique numerical token. For example, the first caller may receive the
following XML:

<?xml version="1.0" encoding="utf-8" ?>

<int xmlns="http://www.IntertechTraining.com/WebServers">931</int>

while the second caller may find her value is 472:

<?xml version="1.0" encoding="utf-8" ?>

<int xmlns="http://www.IntertechTraining.com/WebServers">472</int>

Configuring Session State via Web.config
Finally, recall from Chapter 25 that a web.config file may be updated to specify where state should
be stored for the XML web service using the <sessionState> element.

<sessionState

mode="InProc"

stateConnectionString="tcpip=127.0.0.1:42424"

sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"

cookieless="false"

timeout="20"

/>

■Source Code The CalculatorService files are included under the Chapter 28 subdirectory.

Exploring the Web Service Description Language
(WSDL)
Over the last several examples, you have been exposed to partial WSDL snippets. Recall that WSDL
is an XML-based grammar that describes how external clients can interact with the web methods at
a given URL, using each of the supported wire protocols. In many ways, a WSDL document can be
viewed as a contract between the web service client and the web service itself. To this end, it is yet
another metalanguage. Specifically, WSDL is used to describe the following characteristics for each
exposed web method:

• The name of the XML web methods

• The number of, type of, and ordering of parameters (if any)

• The type of return value (if any)

• The HTTP GET, HTTP POST, and SOAP calling conventions

In most cases, WSDL documents are generated automatically by the hosting web server. Recall
that when you append the ?wsdl suffix to a URL that points to an *.asmx file, the hosting web server
will emit the WSDL document for the specified XML web service:

http://localhost/SomeWS/theWS.asmx?wsdl

Given that IIS will automatically generate WSDL for a given XML web service, you may wonder
if you are required to deeply understand the syntax of the generated WSDL data. The answer typically

5785ch28.qxd 3/31/06 12:45 PM Page 971

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES972

depends on how your service is to be consumed by external applications. For in-house XML web
services, the WSDL generated by your web server will be sufficient most of the time.

However, it is also possible to begin an XML web service project by authoring the WSDL document
by hand (as mentioned earlier, this is termed the WSDL first approach). The biggest selling point for
WSDL first has to do with interoperability concerns. Recall that prior to the WSI specification, it was
not uncommon for various web service tools to generate incompatible WSDL descriptions. If you take
a WSDL first approach, you can craft the document as required.

As you might imagine, taking a WSDL first approach would require you to have a very intimate
view of the WSDL grammar, which is beyond the scope of this chapter. Nevertheless, let’s get to know
the basic structure of a valid WSDL document. Once you understand the basics, you’ll better under-
stand the usefulness of the wsdl.exe command-line utility.

■Note To see the most recent information on WSDL, visit http://www.w3.org/tr/wsdl.

Defining a WSDL Document
A valid WSDL document is opened and closed using the root <definitions> element. The opening tag
typically defines various xmlns attributes. These qualify the XML namespaces that define various
subelements. At a minimum, the <definitions> element will specify the namespace where the WSDL
elements themselves are defined (http://schemas.xmlsoap.org/wsdl). To be useful, the opening
<definitions> tag will also specify numerous XML namespaces that define simple data WSDL types,
XML schema types, SOAP elements, and the target namespace. For example, here is the <definitions>
section for CalculatorService:

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tns="http://www.IntertechTraining.com/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

targetNamespace="http://www.IntertechTraining.com/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

...

</wsdl:definitions>

Within the scope of the root element, you will find five possible subelements. Thus, a bare-bones
WSDL document would look something like the following:

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions ...>

<wsdl:types>

<!-- List of types exposed from WS ->

<wsdl:/types>

<wsdl:message>

<!-- Format of the messages ->

<wsdl:/message>

<wsdl:portType>

<!-- Port information ->

<wsdl:/portType>

<wsdl:binding>

<!-- Binding information ->

5785ch28.qxd 3/31/06 12:45 PM Page 972

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 973

<wsdl:/binding>

<wsdl:service>

<!-- Information about the XML web service itself ->

<wsdl:/service>

< wsdl:/definitions>

As you would guess, each of these subelements will contain additional elements and attributes
to further describe the intended functionality. Let’s check out the key nodes in turn.

The <types> Element
First, we have the <types> element, which contains descriptions of any and all data types
exposed from the web service. As you may know, XML itself defines a number of “core” data types,
all of which are defined within the XML namespace: http://www.w3.org/2001/XMLSchema (which
appears in your <definitions> root element). For example, recall the Subtract() method of
CalculatorService took two Integer parameters. In terms of WSDL, the CLR System.Int32 is
described within a <complexType> element:

<s:element name="Subtract">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="x" type="s:int" />

<s:element minOccurs="1" maxOccurs="1" name="y" type="s:int" />

</s:sequence>

</s:complexType>

</s:element>

The Integer that is returned from the Subtract() method is also described within the <types>
element:

<s:element name="SubtractResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="SubtractResult" type="s:int" />

</s:sequence>

</s:complexType>

</s:element>

If you have a web method that returns or receives custom data types, they will also appear within
a <complexType> element. You will see the details of how to expose custom .NET data types via a given
web method a bit later in this chapter. For the sake of illustration, assume you have defined a web
method that returns a structure named Point:

Public Structure Point

Public x As Integer

Public y As Integer

Public pointName As String

End Structure

The WSDL description of this “complex type” would look like the following:

<s:complexType name="Point">

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="x" type="s:int" />

<s:element minOccurs="1" maxOccurs="1" name="y" type="s:int" />

<s:element minOccurs="0" maxOccurs="1" name="pointName" type="s:string" />

</s:sequence>

</s:complexType>

5785ch28.qxd 3/31/06 12:45 PM Page 973

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES974

The <message> Element
The <message> element is used to define the format of the request and response exchange for a given
web method. Given that a single web service allows multiple messages to be transmitted between
the sender and receiver, it is permissible for a single WSDL document to define multiple <message>

elements. Typically, these message definitions use the types defined in the <types> element.
Regardless of how many <message> elements are defined within a WSDL document, they tend

to occur in pairs. The first definition represents the input-centric format of the message, while the
second defines the output-centric format of the same message. For example, the Subtract() method
of CalculatorService is defined by the following <message> element:

<wsdl:message name="SubtractSoapIn">

<wsdl:part name="parameters" element="tns:Subtract" />

</wsdl:message>

<wsdl:message name="SubtractSoapOut">

<wsdl:part name="parameters" element="tns:SubtractResponse" />

</wsdl:message>

Here, you are only viewing the SOAP binding of the service. As you may recall from the begin-
ning of this chapter, XML web services can be invoked via SOAP, HTTP GET, and HTTP POST. Thus,
if you were to enable HTTP POST bindings (explained later), the generated WSDL would also show
the following <message> data:

<wsdl:message name="SubtractHttpPostIn">

<part name="n1" type="s:string" />

<part name="n2" type="s:string" />

<wsdl:/message>

<wsdl:message name="SubtractHttpPostOut">

<part name="Body" element="s0:int" />

<wsdl:/message>

In reality, <message> elements are not all that useful in and of themselves. However, these message
definitions are referenced by other aspects of a WSDL document.

■Note Not all web methods require both a request and response. If a web method is a one-way method, then
only a request <message> element is necessary. You can mark a web method as a one-way method by applying
the <SoapDocumentMethod> attribute.

The <portType> Element
The <portType> element defines the characteristics of the various correspondences that can occur
between the client and server, each of which is represented by an <operation> subelement. As you
might guess, the most common operations would be SOAP, HTTP GET, and HTTP POST. Additional
operations do exist, however. For example, the one-way operation allows a client to send a message
to a given web server but does not receive a response (sort of a fire-and-forget method invocation).
The solicit/response operation allows the server to issue a request while the client responds (which
is the exact opposite of the request/response operation).

To illustrate the format of a possible <operation> subelement, here is the WSDL definition for
the Subtract() method:

<wsdl:portType name="CalculatorWebServiceSoap">

<wsdl:operation name="Subtract">

<wsdl:input message="tns:SubtractSoapIn" />

<wsdl:output message="tns:SubtractSoapOut" />

</wsdl:operation>

<wsdl:/portType>

5785ch28.qxd 3/31/06 12:45 PM Page 974

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 975

Note how the <input> and <output> elements make reference to the related message name
defined within the <message> element. If HTTP POST were enabled for the Subtract() method, you
would find the following additional <operation> element:

<wsdl:portType name="CalculatorWebServiceHttpPost">

<wsdl:operation name="Subtract">

<wsdl:input message="s0:SubtractHttpPostIn" />

<wsdl:output message="s0:SubtractHttpPostOut" />

<wsdl:/operation>

<wsdl:/portType>

Finally, be aware that if a given web method has been described using the Description property,
the <operation> element will contain an embedded <documentation> element.

The <binding> Element
This element specifies the exact format of the HTTP GET, HTTP POST, and SOAP exchanges. By far
and away, this is the most verbose of all the subelements contained in the <definition> root. For
example, here is the <binding> element definition that describes how a caller may interact with the
MyMethod() web method using SOAP:

<wsdl:binding name="CalculatorWebServiceSoap12"

type="tns:CalculatorWebServiceSoap">

<soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="Subtract">

<soap12:operation soapAction="http://www.IntertechTraining.com/Subtract"

style="document" />

<wsdl:input>

<soap12:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap12:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

The <service> Element
Finally we have the <service> element, which specifies the characteristics of the web service itself
(such as its URL). The chief duty of this element is to describe the set of ports exposed from a given
web server. To do so, the <services> element makes use of any number of <port> subelements (not
to be confused with the <portType> element). Here is the <service> element for CalculatorService:

<wsdl:service name="CalculatorWebService">

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

The Amazing Calculator Web Service

</wsdl:documentation>

<wsdl:port name="CalculatorWebServiceSoap"

binding="tns:CalculatorWebServiceSoap">

<soap:address location="http://localhost:1109/CalculatorService/Service.asmx" />

</wsdl:port>

<wsdl:port name="CalculatorWebServiceSoap12"

binding="tns:CalculatorWebServiceSoap12">

<soap12:address location=

"http://localhost:1109/CalculatorService/Service.asmx" />

</wsdl:port>

</wsdl:service>

5785ch28.qxd 3/31/06 12:45 PM Page 975

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES976

So, as you can see, the WSDL automatically returned by IIS is not rocket science, but given that
WSDL is an XML-based grammar, it is a bit on the verbose side. Nevertheless, now that you have
a better understanding of WSDL’s place in the world, let’s dig a bit deeper into the XML web service
wire protocols.

■Note Recall that the System.Web.Services.Description namespace contains a plethora of types that allow
you to programmatically manipulate raw WSDL (so check it out if you are so interested).

Revisiting the XML Web Service Wire Protocols
Technically, XML web services can use any RPC protocol to facilitate communication (such as DCOM
or CORBA). However, most web servers bundle this data into the body of an HTTP request and
transmit it to the consumer using one of three core bindings (see Table 28-4).

Table 28-4. XML Web Service Bindings

Transmission Binding Meaning in Life

HTTP GET GET submissions append parameters to the query string of the URL.

HTTP POST POST transmissions embed the data points into the header of the HTTP
message rather than append them to the query string.

SOAP SOAP is a wire protocol that specifies how to submit data and invoke
methods across the wire using XML.

While each approach leads to the same result (invoking a web method), your choice of wire
protocol determines the types of parameters (and return types) that can be sent between each
interested party. The SOAP protocol offers you the greatest flexibility, given that SOAP messages
allow you to pass complex data types (as well as binary files) between the caller and XML web ser-
vice. However, for completeness, let’s check out the role of standard HTTP GET and POST.

HTTP GET and HTTP POST Bindings
Although GET and POST verbs may be familiar constructs, you must be aware that this method of
transportation is not rich enough to represent such complex items as structures or classes. When
you use GET and POST verbs, you can interact with web methods using only the types listed in
Table 28-5.

Table 28-5. Supported POST and GET Data Types

Data Types Meaning in Life

Enumerations GET and POST verbs support the transmission of .NET System.Enum types, given
that these types are represented as a static constant string.

Simple arrays You can construct arrays of any primitive type.

Strings GET and POST transmit all numerical data as a string token. String really refers
to the string representation of CLR primitives such as Int16, Int32, Int64,
Boolean, Single, Double, Decimal, and so forth.

5785ch28.qxd 3/31/06 12:45 PM Page 976

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 977

By default, HTTP GET and HTTP POST bindings are not enabled for remote XML web service
invocation. However, HTTP POST is enabled to allow a machine to invoke local web services (in
fact, this is exactly what the autogenerated help page is leveraging behind the scenes). These set-
tings are established in the machine.config file (see Chapter 13) using the <protocols> element.
Here is a partial snapshot:

<!-- In the machine.config file! -->

<webServices>

<protocols>

<add name="HttpSoap1.2" />

<add name="HttpSoap" />

<add name="Documentation" />

<!-- HTTP GET/POST disabled! -->

<!-- <add name="HttpPost"/> -->

<!-- <add name="HttpGet"/> -->

<!-- Used by the web service test page -->

<add name="HttpPostLocalhost" />

</protocols>

</webServices>

To re-enable HTTP GET or HTTP POST for a given web service, explicitly add in the HttpPost
and HttpGet names within a local web.config file:

<configuration>

<system.web>

<webServices>

<protocols>

<add name="HttpPost"/>

<add name="HttpGet"/>

</protocols>

</webServices>

</system.web>

</configuration>

Again, recall that if you make use of standard HTTP GET or HTTP POST, you are not able to
build web methods that take complex types as parameters or return values (e.g., an ADO.NET DataSet
or custom structure type). For simple web services, this limitation may be acceptable. However, if
you make use of SOAP bindings, you are able to build much more elaborate XML web services.

SOAP Bindings
Although a complete examination of SOAP is beyond the scope of this text, understand that SOAP
itself does not define a specific protocol and can thus be used with any number of existing Internet
protocols (HTTP, SMTP, and others). The general role of SOAP, however, remains the same: provide
a mechanism to invoke methods using complex types in a language- and platform-neutral manner.
To do so, SOAP encodes each complex method with a SOAP message.

A SOAP message defines two core sections. First, we have the SOAP envelope, which can be
understood as the conceptual container for the relevant information. Second, we have the rules
that are used to describe the information in said message (placed into the SOAP body). An optional
third section (the SOAP header) may be used to specify general information regarding the message
itself, such as security or transactional information.

5785ch28.qxd 3/31/06 12:45 PM Page 977

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES978

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<!-- Optional header information -->

</soap:Header>

<soap:Body>

<!-- Method invocation information -->

</soap:Body>

</soap:Envelope>

Viewing a SOAP Message
Although you are not required to understand the gory details of SOAP to build XML web services
with the .NET platform, you are able to view the format of the SOAP message for each exposed web
method using the autogenerated test page. For example, if you were to click the link for the Add()
method of CalculatorService, you would find the following SOAP 1.1 request:

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<Add xmlns="http://www.IntertechTraining.com ">

<x>int</x>

<y>int</y>

</Add>

</soap:Body>

</soap:Envelope>

The corresponding SOAP 1.1 response looks like this:

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<AddResponse xmlns="http://www.IntertechTraining.com ">

<AddResult>int</AddResult>

</AddResponse>

</soap:Body>

</soap:Envelope>

The wsdl.exe Command-Line Utility
Now that you’ve completed a primer on WSDL and SOAP, let’s begin to examine how to build client
programs that communicate with remote XML web services using the wsdl.exe command-line tool.
In a nutshell, wsdl.exe performs two major tasks:

• Generates a server-side file that functions as the skeleton for implementing an XML web
service

• Generates a client-side file that functions as the proxy to a remote XML web service

wsdl.exe supports a number of command-line flags, all of which can be viewed at the command
prompt by specifying the -? option. Table 28-6 points out some of the more common arguments.

5785ch28.qxd 3/31/06 12:45 PM Page 978

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 979

Table 28-6. Select Options of wsdl.exe

Command-Line Flag Meaning in Life

/appsettingurlkey Instructs wsdl.exe to build a proxy that does not make use of hard-coded
URLs. Instead, the proxy class will be configured to read the URL from
a client-side *.config file.

/language Specifies the language to use for the generated proxy class: CS (C#; default),
VB (Visual Basic 2005), JS (JScript), or VJS (Visual J#).

/namespace Specifies the namespace for the generated proxy or template. By default,
your type will not be defined within a namespace definition.

/out Specifies the file in which to save the generated proxy code. If the file is
not specified, the file name is based on the XML web service name.

/protocol Specifies the protocol to use within the proxy code; SOAP is the default.
However, you can also specify HttpGet or HttpPost to create a proxy that
communicates using simple HTTP GET or POST verbs.

/serverInterface Generates server-side interface bindings for an XML web service based
on the WSDL document.

■Note The /server flag of wsdl.exe has been deprecated under .NET 2.0. /serverInterface is now the
preferred method to generate server-side skeleton code.

Transforming WSDL into a Server-Side XML Web Service Skeleton
One interesting use of the wsdl.exe utility is to generate server-side skeleton code (via the
/serverInterface option) based on a WSDL document. Clearly, if you are interested in taking
a WSDL-first approach to building XML web services, this would be a very important option. Once
this source code file has been generated, you have a solid starting point to provide the actual imple-
mentation of each web method.

Assume you have created a valid WSDL document (CarBizObject.wsdl) that describes a single
subroutine named DeleteCar() that takes a single Integer as input. This method is exposed from an
XML web service named CarBizObject, which can be invoked using SOAP bindings.

To generate a server-side VB 2005 code file from this WSDL document, open a .NET-aware
command window and specify the /language and /serverInterface flags, followed by the name of
the WSDL document you wish to process. Note that the WDSL document may be contained in a local
*.wsdl file:

wsdl /serverInterface /language:VB CarBizObject.wsdl

or it can be obtained dynamically from a given URL via the ?wsdl suffix:

wsdl /serverInterface /language:VB http://localhost/CarService/CarBizObject.asmx?wsdl

Once wsdl.exe has processed the XML elements, you are presented with interface descriptions
for each web method. Here is a partial code snippet:

Public Interface ICarBizObjectSoap

...

Sub RemoveCar(ByVal carID As Integer)

End Interface

Using these interfaces, you can define a class that implements the various methods of the XML
web service.

5785ch28.qxd 3/31/06 12:45 PM Page 979

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES980

■Source Code The CarBizObject.wsdl file is included under the Chapter 28 subdirectory.

Transforming WSDL into a Client-Side Proxy
Although undesirable, it is completely possible to construct a client-side code base that manually
opens an HTTP connection, builds the SOAP message, invokes the web method via late binding,
and translates the incoming stream of XML back into CTS data types. A much-preferred approach is
to leverage wsdl.exe to generate a proxy class that maps to the web methods defined by a given
*.asmx file.

To do so, you will specify (at a minimum) the name and implementation language of the proxy
file to be generated (via the /out and /language flags) and the location of the WSDL document. You
should also be aware that by default, wsdl.exe generates a proxy that communicates with the remote
XML web service using SOAP bindings. If you wish to build a proxy that leverages straight HTTP GET
or HTTP POST, you may make use of the /protocol flag.

Another important point to be made regarding generating proxy code via wsdl.exe is that this
tool truly needs the WSDL of the XML web service, not simply the name of the *.asmx file. Given
this, understand that if you make use of WebDev.WebServer.exe to develop and test your services,
you will most likely want to copy your project’s content to an IIS virtual directory before generating
a client-side proxy.

For the sake of illustration, assume that you have created a new IIS virtual directory (CalcService),
which contains the content for the CalculatorService project developed earlier in this chapter. Once
you have done so, you can generate the client proxy code like so:

wsdl /out:proxy.vb /language:VB http://localhost/CalcService/Service.asmx?wsdl

As a side note, be aware that wsdl.exe will not define a .NET namespace to wrap the generated
VB 2005 types unless you specify the /n flag at the command prompt:

wsdl /out:proxy.vb /language:VB /n:CalculatorClient

http://localhost/CalcService/Service.asmx?wsdl

Examining the Proxy Code
If you open up the generated proxy file, you’ll find a type that derives from System.Web.Services.
Protocols.SoapHttpClientProtocol (unless, of course, you specified an alternative binding via the
/protocols option):

Public Partial Class CalculatorWebService

Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

...

End Class

This base class defines a number of members leveraged within the implementation of the
proxy type. Table 28-7 describes some (but not all) of these members.

Table 28-7. Core Members of the SoapHttpClientProtocol Type

Inherited Members Meaning in Life

BeginInvoke() This method starts an asynchronous invocation of the web method.

CancelAsync() This method (new to .NET 2.0) cancels an asynchronous call to an XML web
service method, unless the call has already completed.

5785ch28.qxd 3/31/06 12:45 PM Page 980

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 981

Inherited Members Meaning in Life

EndInvoke() This method ends an asynchronous invocation of the web method.

Invoke() This method synchronously invokes a method of the web service.

InvokeAsync() This method (new to .NET 2.0) is the preferred way to synchronously invoke
a method of the web service.

Proxy This property gets or sets proxy information for making a web service
request through a firewall.

Timeout This property gets or sets the timeout (in milliseconds) used for
synchronous calls.

Url This property gets or sets the base URL to the server to use for requests.

UserAgent This property gets or sets the value for the user agent header sent with each
request.

The Default Constructor
The default constructor of the proxy hard-codes the URL of the remote web service and stores it in
the inherited Url property:

Public Sub New()

MyBase.New

Me.Url = "http://localhost/CalcService/Service.asmx"

End Sub

The obvious drawback to this situation is that if the XML web service is renamed or relocated,
the proxy class must be updated and recompiled. To build a more flexible proxy type, wsdl.exe pro-
vides the /appsettingurlkey flag (which may be abbreviated to /urlkey). When you specify this flag
at the command line, the proxy’s constructor will contain logic that reads the URL using a key con-
tained within a client-side *.config file.

wsdl /out:proxy.vb /language:VB /n:CalcClient /urlkey:CalcUrl

http://localhost/CalcService/Service.asmx?wsdl

If you now check out the default constructor of the proxy, you will find the following logic (note
that if the correct key cannot be found, the hard-coded URL will be used as a backup):

Public Sub New()

Dim urlSetting As String = _

System.Configuration.ConfigurationManager.AppSettings("CalcUrl")

If (Not (urlSetting Is Nothing)) Then

Me.Url = urlSetting

Else

Me.Url = "http://localhost/CalcService/Service.asmx"

End If

End Sub

The corresponding client-side app.config file will look like this:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="CalcUrl" value="http://localhost/CalcService/Service.asmx"/>

</appSettings>

</configuration>

5785ch28.qxd 3/31/06 12:45 PM Page 981

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES982

Synchronous Invocation Support
The generated proxy also defines synchronous support for each web method. For example, the
synchronous implementation of the Subtract() method is implemented as follows:

Public Function Subtract(ByVal x As Integer, ByVal y As Integer) As Integer

Dim results As Object() = Me.Invoke("Subtract", New Object() {x, y})

Return CType((results(0)), Integer)

End Function

Notice that the caller passes in two Integer parameters that are packaged as an array of
System.Objects. Using late binding, the Invoke() method will pass these arguments to the Subtract
method located at the established URL. Once this (blocking) call completes, the incoming XML is
processed, and the result is cast back to the caller as Integer.

Asynchronous Invocation Support
Support for invoking a given web method asynchronously has changed quite a bit from .NET 1.x.
As you might recall from previous experience, .NET 1.1 proxies made use of BeginXXX()/EndXXX()
methods to invoke a web method on a secondary thread of execution. For example, consider the
following BeginSubtract() and EndSubtract() methods:

Public Function BeginSubtract(ByVal x As Integer, ByVal y As Integer, _

ByVal callback As System.AsyncCallback, _

ByVal asyncState As Object) As System.IAsyncResult

Return Me.BeginInvoke("Subtract", New Object() {x, y}, callback, asyncState)

End Function

Public Function EndSubtract(ByVal asyncResult As System.IAsyncResult) As Integer

Dim results As Object() = Me.EndInvoke(asyncResult)

Return CType((results(0)), Integer)

End Function

While wsdl.exe still generates these familiar Begin/End methods, under .NET 2.0 they have
been deprecated and are replaced by the new XXXAsync() methods:

Public Sub SubtractAsync(ByVal x As Integer, ByVal y As Integer)

Me.SubtractAsync(x, y, Nothing)

End Sub

These new XXXAsync() methods (as well as a related CancelAsync() method) work in conjunction
with an autogenerated helper method (being an overloaded version of a specific XXXAsync() method)
which handles the asynchronous operation using VB 2005 event syntax. If you examine the proxy
code, you will see that wsdl.exe has generated (for each web method) a custom delegate, custom
event, and custom “event args” class to obtain the result.

5785ch28.qxd 3/31/06 12:45 PM Page 982

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 983

Building the Client Application
Now that you better understand the internal composition of the generated proxy, let’s put it to use.
Create a new console application named CalculatorClient, insert your proxy.vb file into the project
using Project ➤ Add Existing Item, and add a reference to the System.Web.Services.dll assembly.
Next, update your Main() method as follows:

Module Program

Sub Main(ByVal args As String())

Console.WriteLine("***** Fun with WS Proxies *****")

Console.WriteLine()

' Make the proxy.

Dim ws As CalculatorWebService = New CalculatorWebService()

' Call the Add() method synchronously.

Console.WriteLine("10 + 10 = {0}", ws.Add(10, 10))

' Call the Subtract method asynchronously

' using the new .NET 2.0 event approach.

AddHandler ws.SubtractCompleted, AddressOf ws_SubtractCompleted

ws.SubtractAsync(50, 45)

Console.ReadLine()

End Sub

Sub ws_SubtractCompleted(ByVal sender As Object, _

ByVal e As SubtractCompletedEventArgs)

Console.WriteLine("Your answer is: {0}", e.Result)

End Sub

End Module

Notice that the new .NET 2.0 asynchronous invocation logic does indeed directly map to the VB
2005 event syntax, which as you might agree is cleaner than needing to work with BeginXXX()/EndXXX()
method calls, the IAsyncResult interface, and the AsyncCallback delegate.

■Source Code The CalculatorClient project can be found under the Chapter 28 subdirectory.

Generating Proxy Code Using Visual Studio 2005
Although wsdl.exe provides a number of command-line arguments that give you ultimate control
over how a proxy class will be generated, Visual Studio 2005 also allows you to quickly generate a proxy
file using the Add Web Reference dialog box (which you can activate from the Project menu). As you
can see from Figure 28-6, you are able to obtain references to existing XML web services located in
a variety of places.

5785ch28.qxd 3/31/06 12:45 PM Page 983

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES984

Figure 28-6. The Add Web Reference dialog box

■Note The Add Web Reference dialog box cannot reference XML web services hosted with WebDev.WebServer.exe.
This tool demands the web service be exposed from an IIS virtual directory.

Notice that not only are you able to obtain a list of XML web services on your local development
machine, but you may also query various UDDI catalogs (which you’ll do at the end of this chapter).
In any case, once you type a valid URL that points to a given *.wsdl or *.asmx file, your project will
contain a new proxy class. Do note that the proxy’s namespace (which is based on the URL of origin)
will be nested within your client’s .NET namespace. Thus, if you have a client named MyClientApp that
added a reference to a web service on your local machine, you would need to specify the following
VB 2005 using directive:

Imports MyClientApp.localhost

■Note As of Visual Studio 2005, the Add Web Reference dialog box automatically adds an app.config file to
your project that contains the URL of the referenced XML web service or updates an existing app.config file.

Exposing Custom Types from Web Methods
In the final example of this chapter, you’ll examine how to build web services that expose custom
types as well as more exotic types from the .NET base class libraries. To illustrate this, you’ll create
a new XML web service that is capable of processing arrays, custom types, and ADO.NET DataSets.
To begin, create a new XML web service named CarSalesInfoWS that is hosted under an IIS virtual
directory (e.g., http://localhost/CarSalesInfoWS).

5785ch28.qxd 3/31/06 12:45 PM Page 984

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 985

■Note Read that last sentence one more time. For this example, be sure to host your web service under IIS,
given that this will allow us to use the VS 2005 proxy generator. See Chapter 25 for details on creating an IIS virtual
directory.

Exposing Arrays
Update your Service class with a web method named GetSalesTagLines(), which returns an array of
strings that represent the current specials for various automobiles, and another named SortCarMakes(),
which allows the caller to pass in an array of unsorted strings and obtain a new array of sorted strings:

<WebMethod(Description:="Get current discount blurbs")> _

Public Function GetSalesTagLines() As String()

Dim currentDeals As String() = {"Colt prices slashed 50%!", _

"All BMWs come with standard 8-track", _

"Free Pink Caravans...just ask me!"}

Return currentDeals

End Function

<WebMethod(Description:="Sorts a list of car makes")> _

Public Function SortCarMakes(ByVal theCarsToSort As String()) As String()

Array.Sort(theCarsToSort)

Return theCarsToSort

End Function

■Note The default test page generated by DefaultWsdlHelpGenerator.aspx cannot invoke methods that
take arrays of types as parameters.

Exposing Structures
The SOAP protocol is also able to transport XML representations of custom data types (both classes
and structures). XML web services make use of the XmlSerializer type to encode the type as XML
(see Chapter 19 for details). Recall that the XmlSerializer

• Cannot serialize private data. It serializes only public fields and properties.

• Requires that each serialized class provide a default constructor.

• Does not require the use of the <Serializable> attribute.

This being said, our next web method will return an array of SalesInfoDetails structures,
defined like so:

' A custom type.

Public Structure SalesInfoDetails

Public info As String

Public dateExpired As DateTime

Public Url As String

End Structure

Another point of interest regarding the XmlSerializer is the fact that it allows you to have fine-
grained control over how the type is represented. By default, the SalesInfoDetails structure is
serialized by encoding each piece of field data as a unique XML element:

5785ch28.qxd 3/31/06 12:45 PM Page 985

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES986

<SalesInfoDetails>

<info>Colt prices slashed 50%!</info>

<dateExpired>2004-12-02T00:00:00.0000000-06:00</dateExpired>

<Url>http://www.CarsRUs.com</Url>

</SalesInfoDetails>

If you wish to change this default behavior, you can adorn your type definitions using attributes
found within the System.Xml.Serialization namespace (again, see Chapter 19 for full details):

Public Structure SalesInfoDetails

Public info As String

<XmlAttribute()> _

Public dateExpired As DateTime

Public Url As String

End Structure

This yields the following XML data representation:

<SalesInfoDetails dateExpired="2004-12-02T00:00:00">

<info>Colt prices slashed 50%!</info>

<Url>http://www.CarsRUs.com</Url>

</SalesInfoDetails>

The implementation of GetSalesInfoDetails() returns a populated array of this custom structure
as follows:

<WebMethod(Description:="Get details of current sales")> _

Public Function GetSalesInfoDetails() As SalesInfoDetails()

Dim theInfo(2) As SalesInfoDetails

theInfo(0).info = "Colt prices slashed 50%!"

theInfo(0).dateExpired = DateTime.Parse("12/02/04")

theInfo(0).Url = "http://www.CarsRUs.com"

theInfo(1).info = "All BMWs come with standard 8-track"

theInfo(1).dateExpired = DateTime.Parse("8/11/03")

theInfo(1).Url = "http://www.Bmws4U.com"

theInfo(2).info = "Free Pink Caravans...just ask me!"

theInfo(2).dateExpired = DateTime.Parse("12/01/09")

theInfo(2).Url = "http://www.AllPinkVans.com"

Return theInfo

End Function

Exposing ADO.NET DataSets
To wrap up your XML web service, here is one final web method that returns a DataSet populated
with the Inventory table of the Cars database you created during our examination of ADO.NET in
Chapter 24:

' Return all cars in inventory table.

<WebMethod(Description:= _

"Returns all autos in the Inventory table of the Cars database")> _

Public Function GetCurrentInventory() As DataSet

Dim sqlConn As SqlConnection = New SqlConnection

sqlConn.ConnectionString = _

"data source=localhost; initial catalog=Cars; uid=sa; pwd="

Dim myDA As SqlDataAdapter = _

New SqlDataAdapter("Select * from Inventory", sqlConn)

Dim ds As DataSet = New DataSet

myDA.Fill(ds, "Inventory")

Return ds

End Function

5785ch28.qxd 3/31/06 12:45 PM Page 986

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 987

■Source Code The CarsSalesInfoWS files can be found under the Chapter 28 subdirectory.

A Windows Forms Client
To test your new XML web service, create a Windows Forms application and reference CarsSalesInfoWS
using the Visual Studio 2005 Add Web References dialog box shown in Figure 28-7.

At this point, simply make use of the generated proxy to invoke the exposed web methods.
Here is one possible Form implementation:

Imports CarSalesInfoClient.localhost

Public Class MainWindow

Private ws As New CarSalesInfoWS

Private Sub btnGetTagLines_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGetTagLines.Click

Dim tagLines As String() = ws.GetSalesTagLines()

For Each tag As String In tagLines

listBoxTags.Items.Add(tag)

Next

End Sub

Figure 28-7. Referencing CarsSalesInfoWS

5785ch28.qxd 3/31/06 12:45 PM Page 987

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES988

Figure 28-8. The CarsSalesInfo client

Private Sub btnGetAllDetails_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGetAllDetails.Click

Dim theSkinny As SalesInfoDetails() = ws.GetSalesInfoDetails()

For Each s As SalesInfoDetails In theSkinny

Dim d As String = _

String.Format("Info: {0} URL:{1} Expiration Date:{2} ", _

s.info, s.Url, s.dateExpired)

MessageBox.Show(d, "Details")

Next

End Sub

Private Sub MainWindow_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

inventoryDataGridView.DataSource = ws.GetCurrentInventory.Tables(0)

End Sub

End Class

Figure 28-8 shows a possible test run.

Client-Side Type Representation
When clients set a reference to a web service that exposes custom types, the proxy class file also
contains language definitions for each custom public type. Thus, if you were to examine the client-side
representation of SalesInfoDetails (within the generated Reference.vb file), you would see that each
field has been encapsulated by a strongly typed property (also note that this type is now defined as
a class rather than a structure):

Partial Public Class SalesInfoDetails

Private infoField As String

Private urlField As String

Private dateExpiredField As Date

Public Property info() As String

Get

Return Me.infoField

End Get

Set

Me.infoField = value

End Set

End Property

5785ch28.qxd 3/31/06 12:45 PM Page 988

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES 989

Public Property Url() As String

Get

Return Me.urlField

End Get

Set

Me.urlField = value

End Set

End Property

<System.Xml.Serialization.XmlAttributeAttribute()> _

Public Property dateExpired() As Date

Get

Return Me.dateExpiredField

End Get

Set

Me.dateExpiredField = value

End Set

End Property

End Class

Now, understand, of course, that like .NET remoting, types that are serialized across the wire as
XML do not retain implementation logic. Thus, if the SalesInfoDetails structure supported a set of
public methods, the proxy generator will fail to account for them (as they are not expressed in the
WSDL document in the first place!). However, if you were to distribute a client-side assembly that
contained the implementation code of the client-side type, you would be able to leverage the type-
specific logic. Doing so would require a .NET-aware machine, of course.

■Source Code The CarSalesInfoClient projects can be found under the Chapter 28 subdirectory.

Understanding the Discovery Service Protocol (UDDI)
It is a bit ironic that the typical first step taken by a client to chat with a remote web service is the
final topic of this chapter. The reason for such an oddball flow is the fact that the process of identify-
ing whether or not a given web service exists using UDDI is not only optional, but also unnecessary
in a vast majority of cases.

Until XML web services becomes the de facto standard of distributed computing, most web serv-
ices will be leveraged by companies tightly coupled with a given vendor. Given this, the company
and vendor at large already know about each other, and therefore have no need to query a UDDI
server to see whether the web service in question exists. However, if the creator of an XML web
service wishes to allow the world at large to access the exposed functionality to any number of external
developers, the web service may be posted to a UDDI catalog.

UDDI is an initiative that allows web service developers to post a commercial web service to
a well-known repository. Despite what you might be thinking, UDDI is not a Microsoft-specific
technology. In fact, IBM and Sun Microsystems have an equal interest in the success of the UDDI
initiative. As you would expect, numerous vendors host UDDI catalogs. For example, Microsoft’s
official UDDI website can be found at http://uddi.microsoft.com. The official website of UDDI
(http://www.uddi.org) provides numerous white papers and SDKs that allow you to build internal
UDDI servers.

5785ch28.qxd 3/31/06 12:45 PM Page 989

CHAPTER 28 ■ UNDERSTANDING XML WEB SERVICES990

Interacting with UDDI via Visual Studio 2005
Recall that the Add Web Reference dialog box allows you not only to obtain a list of all XML web
services located on your current development machine (as well as a well-known URL), but also to
submit queries to UDDI servers. Basically, you have the following options:

• Browse for a UDDI server on your company intranet.

• Browse the Microsoft-sponsored UDDI production server.

• Browse the Microsoft-sponsored UDDI test server.

Assume that you are building an application that needs to discover the current weather forecast
on a per–zip code basis. Your first step would be to query a UDDI catalog with the following question:

• “Do you know of any web services that pertain to weather data?”

If it is the case that the UDDI server has a list of weather-aware web services, you are returned
a list of all registered URLs that export the functionality of your query. Referencing this list, you are
able to pick the specific web service you wish to communicate with and eventually obtain the WSDL
document that describes the functionality of the weather-centric functionality.

As a quick example, create a brand-new console application project and activate the Add Web
Reference dialog box. Next, select the Test Microsoft UDDI Directory link, which will bring you to
the Microsoft UDDI test server. At this point, enter weather as a search criterion. Once the UDDI cat-
alog has been queried, you will receive a list of all relevant XML web services. When you find an XML
web service you are interested in programming against, add a reference to your current project. As
you would expect, the raw WSDL will be parsed by the tool to provide you with a VB 2005 proxy.

■Note Understand that the UDDI test center is just that: a test center. Don’t be too surprised if you find a number
of broken links. When you query production-level UDDI servers, URLs tend to be much more reliable, given that
companies typically need to pay some sort of fee to be listed.

Summary
This chapter exposed you to the core building blocks of .NET web services. The chapter began by
examining the core namespaces (and core types in these namespaces) used during web service
development. As you learned, web services developed using the .NET platform require little more
than applying the <WebMethod> attribute to each member you wish to expose from the XML web
service type. Optionally, your types may derive from System.Web.Services.WebService to obtain
access to the Application and Session properties (among other things). This chapter also examined
three key related technologies: a lookup mechanism (UDDI), a description language (WSDL), and
a wire protocol (GET, POST, or SOAP).

Once you have created any number of <WebMethod>-enabled members, you can interact with
a web service through an intervening proxy. The wsdl.exe utility generates such a proxy, which can
be used by the client like any other VB 2005 type. As an alternative to the wsdl.exe command-line
tool, Visual Studio 2005 offers similar functionality via the Add Web Reference dialog box.

5785ch28.qxd 3/31/06 12:45 PM Page 990

■Symbols and Numbers
#Const directive, 310
#define, preprocessor directive, 310, 312
#elif, preprocessor directive, 310–312
#else, preprocessor directive, 310–312
#Else directive, 310
#ElseIf directive, 310
#End If directive, 310
#End Region directive, 310
#endif, preprocessor directive, 310–312
#endregion, preprocessor directive, 310–311
#if, preprocessor directive, 310–312
#region, preprocessor directive, 310–311
#Region directive, 309
#undef, preprocessor directive, 310, 312
$ mask token, MaskedTextBox, 715
<%@Master%> directive, 893
<%@Page%> directive, 856, 875, 893, 899, 913,

923
<%@WebService%> directive, 959, 962
<%= .%> notation, 848
<%Import%> directive, 857
& symbol, 85
(@) symbol, 797
+ operator, 324
+ symbol, 85
+= operator, 616
= operator, 97, 326
<> operator, 97
0 mask token, MaskedTextBox, 715
, mask token, MaskedTextBox, 715
/ mask token, MaskedTextBox, 715
? mask token, MaskedTextBox, 715
9 mask token, MaskedTextBox, 715

■A
A method, Color type, 670
Abort() method, Thread type, 475
AboutToBlow event, 748
absolute position, 761
abstract base classes, 184, 189, 246–247, 276
abstract classes, 184–185
abstract members, 147, 185, 245, 247
abstract methods, 185–189
AcceptButton property, 624, 727
AcceptChanges() method, 805, 808, 816
AcceptsReturn property, TextBox, 713
access modifiers, 148

default, 149
and field data, 149–150

and nested types, 149
overview, 148–149

accessor method, 150
Account property, 607
action attribute, 842, 847, 869
Activate() method, Form Type, 624
Activated event, Form Type, 624–625
<activated> element, 598–599
Activator type, 580
Activator.CreateInstance() method, 422
Activator.GetObject() method, 580, 585
Active Server Page, 505
ActiveX *.dll server, 494
<Ad> element, 897
Add Reference context menu, 45
Add Reference dialog box, 376, 379–380, 496,

506
<add> elements, 404
AddArc() method, GraphicsPath class, 696
AddBezier() method, GraphicsPath class, 696
AddBeziers() method, GraphicsPath class, 696
AddCacheDependency() method,

HttpResponse, 872
AddClosedCurve() method, GraphicsPath class,

696
AddComplete() method, 471–472
AddCurve() method, GraphicsPath class, 696
Added value, DataRowState enumeration, 809
AddEllipse() method, GraphicsPath class, 696
adding and removing controls, ASP.NET,

887–888
AddLine() method, GraphicsPath class, 696
AddLines() method, GraphicsPath class, 696
AddOne() method, 487
AddParams type, 480
AddPath() method, GraphicsPath class, 697
AddPie() method, GraphicsPath class, 697
AddPolygon() method, GraphicsPath class, 697
AddRange() method, 277, 709, 722
AddRectangle() method, GraphicsPath class,

697
AddRectangles() method, GraphicsPath class,

697
AddRef() method, 501, 515–516
AddResource() method, ResXResourceWriter,

700
AddString() method, GraphicsPath class, 697
AddWithThreads application, 480
AdjustableArrowCap class,

System.Drawing.Drawing2D, 679

Index

991

5785chIDX.qxd 3/31/06 5:57 PM Page 991

ADO.NET
additional namespaces, 771–772
vs. ADO classic, 767–768
application configuration files, 777–778
asynchronous data access, 801–802
autogenerated data components, 833
autogenerating SQL commands, 825–826
autoincrementing, 807
binding DataTables to user interfaces,

813–815
Command object, 789–790
connected layer, 786
connected vs. disconnected layer, 768
connecting to database, Visual Studio 2005,

784
connection objects, 787–788
ConnectionStringBuilder object, 788–789
connectionStrings element, application

configuration, 782–783
data adapter objects, 820
data provider definition, 768
data providers overview, 768, 770
data wizards, 830–833
DataColumn objects, 805, 808
DataRelation objects, 826–829
DataRow objects, 808–809, 811
DataRow.RowState property, 809–810
DataSet class, 803–805
datasets in XML web services, 986
DataTable objects, 810
DataTableReader objects, 811–812
DataView objects, 819
DbDataReader object, 791–792
definition, 767–768
deleting records, 796
deleting rows, 816
disconnected layer, 802
example, data provider factory, 780–782
example database, 783
filling a DataSet, 821
filters, 816–817
Firebird Interbase data provider, 771
IBM DB2 Universal Database data providers,

771
IDbCommand interface, 773
IDbConnection interface, 773
IDbDataAdapter, IDataAdapter interface, 774
IDbDataParameter, IDataParameter

interface, 774
IDbDataReader, IDataReader interface, 775
IDbTransaction interface, 773
inserting records, 795
mapping DBMS names, 822
Microsoft data providers, 770–771
modifying tables, Command object, 793, 795
multiple result sets, DbDataReader object,

792–793
multitabled DataSet objects, 826, 828–829
MySQL data providers, 771
navigating between related tables, 829–830

overview, 767
parameterized command objects, 797
persisting datasets as XML, 812–813
PostgreSQL providers, 771
provider factory model, 778–780
sort order, 816–817
specifying DbParameter parameters, 797, 799
stored procedures using DbCommand,

799–800
strongly typed datasets, 832
System.Data, 772
third-party data providers, 771
updating records, 796
updating rows, 818
updating using data adapter objects, 822–825
using interfaces, 776–777
view objects, 819

AdRotator control, 894, 897
Advanced Compile Options dialog box, 312
AdvertisementFile property, 897
AfterSelect event, 741
aggregation, 178
alert() method, 846
al.exe tool, 402
All Windows Forms category, 629
AllKeys member, HttpApplicationState type, 928
AllKeys property, ASP.NET HttpApplicationState

members, 928
allocating objects, with New keyword, 130–131
allowAnonymous attribute, Profile Data, 948
AllowDBNull method, DataSet, 806
AllowDBNull property, ADO.NET DataColumn

object, 806
Alt property, KeyEventArgs type, 623
AlwaysBlink property, ErrorBlinkStyle, 738
Anchor property, 619, 762
anchoring, 707
AnchorStyles enumeration, 761–762
And operator, 98
AndAlso operator, 98
Animate property, 748, 754
animation in controls, 749
anonymous profiles, 951
App_Browsers subfolder, ASP.NET 2.0, 863
App_Code directory, 863–864, 959
App_Data directory, 863
App_GlobalResources directory, 863
App_LocalResources directory, 863
App_Themes directory, 863
App_WebReferences directory, 863
app.config file, 782, 830, 861
AppDomains, 469

advantages, 450
creation example code, 452
loading example code, 453
manipulation example code, 451
overview, 441
relationship to processes, 450
thread relationship, 463
unloading example code, 454

■INDEX992

5785chIDX.qxd 3/31/06 5:57 PM Page 992

Appearance property, CheckBox, 719
AppendText() method, FileInfo class, 535, 538
application cache, 919, 932–933
Application class, 612, 615–616
Application Configuration File item, 388
application configuration files, ADO.NET,

777–778
application development

cordbg.exe debugger, 31
csc.exe compiler, 31–32
guide to .NET 2.0 Framework SDK, 32
installing .NET 2.0 Framework SDK, 31–32
notepad.exe development editor, 31
overview, 31
SharpDevelop, 31
TextPad development editor, 39
vbc.exe compiler, 33–35

application directory, 386
application domain, 235, 573–574
application level state data, ASP.NET, 928–929
Application property, 868, 927, 929, 965, 970
application root categories, 229–230
application shutdown, ASP.NET, 932
Application tab, 68
Application type, 614
Application_End() event handler, 926
Application_End() method, 932
Application_Error() event handler, 926
Application_Start() event handler, 926, 929,

933, 970
Application_Start() method, 926
Application.Exit() method, 635
ApplicationExit event, Application class,

615–616
ApplicationId, RemotingConfiguration, 587
ApplicationId member, RemotingConfiguration

type, 587
ApplicationName member,

RemotingConfiguration type, 587
ApplicationPath member, HttpRequest Type,

869
Application.Run() method, 625, 632
applications vs. sessions, ASP.NET, 927
apply attribute, 402
AppSettings() method, ConfigurationManager

class, 780
<appSettings> element, 404, 777, 780, 782, 879,

882
AppSettingsReader class type, 405
/appsettingurlkey option, wsdl.exe, 979
arbitrary port ID, 583
ArgumentException exception, 269
arguments, optional, 106–107
Array class, 273
array manipulation

defining array of Objects, 113–114
defining lower bound of array, 114–115
multidimensional arrays, 116–117
overview, 112–113
Redim/Preserve syntax, 116

syntax, 113
System.Array base class, 117–118

arrayList, Java, 956
ArrayList, .NET, 956
ArrayList class, System.Collections, 276
ArrayList class type, 322
ArrayList System.Collections class type, 276
ArrayList type, 102
ArrayList.Add() method, 338
arrays

using interface types in, 256
in XML web services, 985

As keyword, 78, 355
as keyword

determining interface support, 252
determining type, 193

ASC (ascending), 817
*.asmx file, 959–960
<asp:> tag, 854
</asp> tag, 858
<asp> tag, 858
<asp:content> scope, 899
<asp:contentplaceholder> tag, 893–894
</asp:contentplaceholder> tag, 894
<asp:contentplaceholder> tag, 898–899
ASP.NET

<%@Page%> directive, 856
<%Import%> directive, 857
adding and removing controls, 887–888
AdRotator example, 897
AutoEventWireUp attribute, 875
AutoPostBack property, 884–885
browser statisics in HTTP Request

processing, 870
categories of web controls, 889, 891
classic ASP, 847, 849
classic ASP, problems, 849–850
client-side scripting, 845–846
client-side scripting example, 846
code-behind, description, 852
code-behind page model, 858–861
compilation cycle

multifile pages, 866–867
single-file pages, 865

debugging and tracing, 861
default.aspx content page example, 898, 900
detailed content page example, 904–905
Document Object Model (DOM), 845–846
Emitting HTML, 872
enumerating controls with Panel control, 886
Error event, 875
form control declarations, 858
GET and POST, 847
HTML document structure, 841
HTML form development, 842
HTML overview, 841
HTML web controls, 890
HTTP overview, 837–838
HTTP Request members, 869
HTTP Request processing, 869–871

■INDEX 993

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 993

HTTP Response members, 871
HTTP Response processing, 871–873
IIS virtual directories, 839
incoming form data, 870–871
inheritance chain, page type, 867–868
in-place editing example, 903
Internet Information Server (IIS),

description, 838
inventory content page example, 900–901
IsPostBack property in HTTP Request

processing, 871
life cycle of a web page, 873, 875, 877
master pages example, 892
menu control example, 894
overview, 837
page type inheritance chain, 867–868
redirecting users, 873
request/response cycle, HTTP, 837
round-trips (postbacks), 845
runat attribute, 858
script block, 858
server-side event handling, 884
simple web controls, 889
simple website example, 891–905
single file code model, 852
sorting and paging example, 903
stateless, 838
submitting form data, 847
System.Web.UI.Control, 885–888
System.Web.UI.Page, 868
System.Web.UI.WebControls namespace,

883–885
System.Web.UI.WebControls.WebControl,

888
user interface in HTML, 843–844
using web controls, 883–885
validating form data, 846–847
validation control properties, 907
validation controls, 907–911
version 1.x benefits, 850
version 2.0 benefits, 850–851
web application, description, 838
web development server, 840–841
web page code model, 852–856
web server, description, 838
WebControl base class properties, 888–889
website directory structure, 862–863
Windows XP Home Edition, 840–841

ASP.NET 2.0 namespaces, 851
ASP.NET 2.0 subdirectories, 863–864
ASP.NET profile API

accessing profile data programmatically,
948–951

ASPNETDB database, 947
defining user profile within web.config, 948
grouping profile data and persisting custom

objects, 951–953
overview, 946

ASP.NET website administration utility, 881–882
aspnet_regsql.exe command-line utility, 947

aspnet_state.exe process, 945
aspnet_wp.exe process, 945
<asp:TextBox> tag, 883
*.aspx file, 852, 855, 867, 883, 919, 923
*.aspx page, 922
aspx suffix, 865
assemblies

Add Reference dialog box, 376, 379–380
app.config file, 388
binary code reuse, 363
CIL code, 367, 378
client application example, 379–380
CLR file header, 366–367
code base config file element, 403–404
code library, 363
compared with legacy executables, 363
constructing custom .NET namespaces

building type aliases using Imports
keyword, 372–374

defining namespaces beyond root,
370–372

importing custom namespaces, 372
observing root namespace, 370–371
overview, 370

consuming shared assemblies, 396
cross-language inheritance, 382–383
definition, 363
dependentAssembly config file element,

400–401
download cache, 368
dynamic redirection to a specific version,

400–401
embedded resources, 368
example of version updating, 398–401
explicit load request, 386–388
flow of CLR external reference resolution, 405
global assembly cache (GAC), 25–26, 365
ildasm exploration of manifest, 377
implicit load request, 386–388
internal format, 365
language integration, 380–385
manifest, 364, 367, 376
manifest description, 11
metadata description, 11
module-level manifest, 384
modules, 368
multifile, 368, 383–385
.NET Framework Configuration utility,

389–391, 401
netmodule file extension, 368, 383–384
overview, 10, 363
private, 386–388
probing process, 386–388
publisher policy assemblies, 401–402
referencing external, 25–26
satellite assemblies, 368
self-describing, 364
shared assemblies, 391, 395, 397–398
single-file, 11–12, 368, 374–375
strong name code example, 393

■INDEX994

5785chIDX.qxd 3/31/06 5:57 PM Page 994

strong names, 364, 377, 392–393, 395
type metadata, 364, 367, 379
updating applications using shared

assemblies, 397–398
version number, 364
Visual Studio 2005 configuration, 388
Win32 file header, 365

assemblies and resource files, 701
<assemblies> element, 864
Assembly class, System.Reflection namespace,

412, 418–422
.assembly extern token, 377
assembly manifest, 15–16
assembly metadata, 367
<assemblyBinding> element, 388
<AssemblyCompany> attribute, 432, 616
AssemblyCompanyAttribute attribute, 432
AssemblyCopyright attribute, 432
AssemblyCopyrightAttribute attribute, 432
AssemblyCulture attribute, 432
AssemblyCultureAttribute attribute, 432
AssemblyDescription attribute, 432
AssemblyDescriptionAttribute attribute, 432
<AssemblyFileVersion> attribute, 399
<assemblyIdentity> element, 400, 403
AssemblyInfo.cs file, 431
AssemblyInfo.vb file, 377, 519
AssemblyKeyFile attribute, 432
AssemblyKeyFileAttribute attribute, 432
Assembly.Load() method, 419–420, 864
AssemblyLoad event, System.AppDomain, 451
AssemblyName class, System.Reflection

namespace, 412
assembly/namespace/type distinction, 22
AssemblyOperatingSystem attribute, 432
AssemblyOperatingSystemAttribute attribute,

432
AssemblyProcessor attribute, 432
AssemblyProcessorAttribute attribute, 432
AssemblyProduct attribute, 432
<AssemblyProduct> attribute, 616
AssemblyProductAttribute attribute, 432
AssemblyRef, 410
AssemblyResolve event, System.AppDomain,

451
AssemblyTrademark attribute, 432
AssemblyTrademarkAttribute attribute, 432
AssemblyVersion attribute, 432
[AssemblyVersion] attribute, 394
<AssemblyVersion> attribute, 378, 399
AssemblyVersionAttribute attribute, 432
AsyncCallback delegate, 470, 472
AsyncCallback interface, 983
AsyncCallbackDelegate project, 480
AsyncDelegate property, 472
asynchronous data access, ADO.NET, 801–802
asynchronous delegate call, 287
asynchronous I/O, 551–552
asynchronous method, 467
asynchronous multithreading using delegates, 287

Asynchronous Processing segment, 802
AsyncResult class, multithreaded applications,

472
AsyncWaitHandle property, 470
atomic operations, 464
Attribute token, 428
attribute-based programming

assembly, module level attributes, 431
AttributeUsage attribute, 430
C# attribute notation, 428
CLSCompliant attribute, 425
COM vs. .NET attributes, 424
constructor parameters, 427
custom attributes, 428
description, 424
DllImport attribute, 425
early binding, 432–433
example of custom attributes, 429
extensibility, 434–439
extensibility and dynamic loading, 434
late binding, 433–434
multiple attributes, 426
NonSerialized attribute, 425
Obsolete attribute, 425, 427–428
overview, 407
restricting attributes, 430
Serializable attribute, 425
serializing example, 426
summary of attribute key points, 428
Visual Basic snap-in example, 436–437
WebMethod attribute, 425
Windows forms example, 437–438

AttributedCarLibrary assembly, 432
AttributedCarLibrary class library, 428
attributes, assembly, module level, 432
Attributes property, FileSystemInfo class, 529,

531
AttributeTargets enumeration, 430
AttributeUsage attribute, 430
authentication element, Web.config, ASP.NET,

879
authorization element, Web.config, ASP.NET,

879
AutoCheck property, Button, 719
AutoCheck property, CheckBox, 719
AutoDispatch value, ClassInterfaceType

enumeration, 517
AutoDual, ClassInterfaceType enumeration, 517
AutoEventWireUp attribute, 875
autogenerating SQL commands, ADO.NET,

825–826
autoincrement, 807
AutoIncrement method, DataSet, 806
AutoIncrement property, 807
AutoIncrement property, ADO.NET

DataColumn object, 806
autoincrementing, ADO.NET, 807
AutoIncrementSeed method, DataSet, 806
AutoIncrementSeed property, 807
AutoIncrementStep method, DataSet, 806

■INDEX 995

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 995

AutoIncrementStep property, 807
AutoPostBack property, ASP.NET web controls,

884–885
AutoScroll property, 734
AutoSize property, Control type, 619

■B
B method, Color type, 670
BackColor property, 619, 636, 889
Background threads, 481
BackgroundImage property, Control type, 619
base class, 168, 328, 867

controlling creation with MyBase, 174–175
libraries, 60

base class/derived class casting rules
determining type of employee, 192–193
overview, 191–192

base keyword in class creation, 174–175
BaseDirectory(), System.AppDomain, 451
BasePriority, ProcessThread type, 448
BaseStream property

BinaryReader class, 547
BinaryWriter class, 547

BasicImages application, 694
BasicMath(Of T) class, 357
Beep() member, System.Console, 73
BeepOnError property, 716
BeginEdit() method, 808, 818
Begin/End methods, 982
BeginExecuteDataReader() method, 802
BeginInvoke() method, 467–468, 470, 472, 489,

610, 980
BeginSubtract() method, 982
BeginTransaction() method, 773, 787
BeginUpdate() method, 741
Bin directory, 863–864
\Bin subdirectory, .NET Framework 2.0 SDK

installation root, 32
binary code reuse, 363
BinaryFormatter, 425, 558, 560–561, 576, 589
BinaryOp delegate, 465, 471
BinaryReader class, 527, 547
BinaryWriter class, 547
binDebug directory, 389
binding DataTables to user interfaces,

ADO.NET, 813–815
binding element, 975
<bindingRedirect> subelement, 400
binebug directory, 496
Bitmap class, 690
Bitmap namespace, System.Drawing, 656
Bitmap type, 690
black box programming, 151
BlackAndWhiteBitMap instance, 260
Blend, 679
BlewUp event, 748
BlinkIfDifferentError property, ErrorBlinkStyle,

738
*.bmp file, 699, 704, 741
<body> section, 841, 844

Boolean data type, 77
Boolean parameters, 413
Boolean type default value, 79
\BootStrapper subdirectory, .NET Framework

2.0 SDK installation root, 32
BorderColor property, WebControl base class,

889
BorderStyle property, 734, 889
BorderWidth property, WebControl base class,

889
Bottom property, Control type, 619
Bottom value

AnchorStyles, 761
DockStyle, 762

bottomRect member, 747
Bounds property, Control type, 619
box opcode, 338
boxing and unboxing, 309, 321–323

CIL code, 338–339
generics issues, 337–339
.NET 1.1 solution, 339–340
.NET 2.0 solution, 342

boxing operation, 337
bread crumbs, 897
Browsable member, System.ComponentModel,

752
BrowsableAttribute, System.ComponentModel,

752
Browse tab, Add Reference dialog box, 379
Browser controls, 743–744
Browser member, HttpRequest Type, 869
Browser property, 870
browser statisics in HTTP Request processing,

ASP.NET, 870
browser-based presentation layers, 837
Brush class, 683
Brush property, Pen type, 680
btnOrder_Click() event handler, 724–725
btnShowAppVariables Button type, 930
BufferedGraphics namespace, System.Drawing,

656
BufferedStream type, input/output, System.IO,

527
bugs, 201
BuildCar.aspx content page, 904
BuildCarTreeView() method, 739, 742
BuildTableRelationship() method, 828
Button class, 612, 717
Button Click event handler, 744, 870
Button control

AutoCheck property, 719
CheckAlign property, 719
Checked property, 719
CheckState property, 719
FlatStyle property, 717, 719
Image property, 717
ImageAlign property, 717
TextAlign property, 717
ThreeState property, 719

Button icon, 47

■INDEX996

5785chIDX.qxd 3/31/06 5:57 PM Page 996

Button object, 523
Button property, MouseEventArgs type, 621
Button type, 710, 854–855, 860, 910, 914, 922,

931, 948
Button widget, 737, 886, 943
ButtonBase type, 717
ByRef keyword, 106
ByRef parameter modifier, 104–106
Byte, Integer variable, 91
Byte data type, 77
ByVal keyword, 106, 506
ByVal parameter modifier, 104–105
ByVal/ByRef parameter modifier, 111

■C
C command, Select Case statement, 793
C language deficiencies, 4
C or c string format, .NET, 75
C# code library, 436
C# Express, Visual C++ 2005 Express, 48
C# functions, 95
C# inheritance token, 382
C++ language deficiencies, 4
<c> code comment, XML Elements, 162
Cache, Page Type properties, ASP.NET, 868
Cache class, 937
cache mechanism, 937
Cache member variable, 934
Cache object, 933
Cache property

HttpResponse Type, 872
Page Type, 868

CacheDependency type, 934
CacheItemRemovedCallback, 935–936
Cache.NoSlidingExpiration field, 935
CacheState web application, 933
CalcInteropAsm.dll assembly, 507
CalculateAverage() method, 108
callback interfaces

event interface, 282–285
overview, 281
sink object, 282–285
two-way conversation, 281

callers, 132
Cancel() member, DbCommand type, 790
CancelAsync() method,

SoapHttpClientProtocol class, 980
CancelButton property, 624, 727
CancelEdit() method, 808, 818
CancelEventHandler delegate, 625
CanRead, CanSeek, CanWrite, Stream class,

System.IO, 541
CAO activation, remoting, 579–580
CAO types, 597
CAO/WKO-singleton, 600
Cap style property, Pen type, 680
Caption method, DataSet, 806
Caption property, ADO.NET DataColumn

object, 806
CarBizObject, 979

CarCollection(Of T) class, 352
CarControlLibrary.dll library, 751
CarGeneralAsm.dll code library, 594
carIDColumn DataColumn object, 810, 813
CarLibrary.dll assembly, 365, 408
CarLibrary.EngineState enumeration, 408
CarProvider.GetAllAutos() method, 610
Cars example database, ADO.NET, 783
carsDataSet.xml file, 812
CarService class type, 607
carsInventoryDS DataSet object, 810
CarWinService project, 606
Case Else statement, 98
case-sensitive programming language, 381
CaseSensitive property, 804, 810
case-sensitive string names, 416
CaseSensitive value, DataRowState

enumeration, 810
casting operations

explicit cast, 190
implicit cast, 191

casting-centric keywords, 309
Category member, System.ComponentModel,

752
<Category> attribute, 753
CategoryAttribute, System.ComponentModel,

752
CausesValidation property, Control class, 737
C-based header file, 367
CBool conversion function, 93
CByte() function, Visual Basic 2005, 93
CByte conversion function, 93
CChar conversion function, 93
cd command, 34
CDate conversion function, 93
CDbl conversion function, 93
CDec conversion function, 93
CenterToScreen() method, Form Type, 624
ChangeDatabase() method, DbConnection,

ADO.NET, 787
<channel> ref property, 593
channels, remoting, 576
<channels> element, 591
ChannelServices type, 585
ChannelServices.RegisterChannel() method,

576, 583
Char data type, 77
Char keyword, 82
Char type default value, 79
CharacterCasing property, 713–714
Chars property, String Class Meaning, 83
CheckAlign property, 719
CheckBox class, System.Windows.Forms

namespace, 612
CheckBox control, 719–722
Checked member, ToolStripMenuItem type, 639
Checked property, 719
CheckedListBox control, 722–723
CheckOnClick member, ToolStripMenuItem

type, 639

■INDEX 997

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 997

CheckState property, 719
child class, 168
child controls, 612, 650
child forms, in MDI applications, 652
ChildPrototypeForm type, 653
ChildRelations property, ADO.NET DataTable

object, 810
ChildRelations value, DataRowState

enumeration, 810
Choose Assembly button, 401
CInt conversion function, 93
Circle type, 185, 187
Class attribute, 959
class constructors, 159

default constructor revisited, 134–135
defining custom constructors, 133–134
overview, 131–132
role of default constructor, 132–133

Class Designer, 53–54, 57, 172
Class Details window, 54, 172
class diagram file, 164
Class Diagram icon, 171
class diagrams, revising, 171–172
Class file, 372
class hierarchy, 261
class interface, 516
Class keyword, 128
class library, 363
Class Library project, 374, 594
Class Library Reference node, 57
class name prefix, 158
Class suffix, 498
Class type, 69, 127
class types, 16
class variables, 130
classes, differences from objects and references,

225
classic ASP and ASP.NET, 847, 849–850
classical inheritance, 146, 168
<ClassInterface> attribute, 515, 517–518, 520,

522
CleanUp() method, 242
Clear() member

ControlCollection, 709
HttpApplicationState, 929
System.Array, 117
System.Console, 73

Clear() method
ControlCollection, 709
DataSet class, 805
Graphics class, 660
HTTP Response, 872
HttpApplicationState, 929
HttpResponse Type, 872

ClearError() method, HttpServerUtility, 876
ClearErrors(), 808
Click event, 619, 705, 714, 828, 846, 854, 883, 910
Click event hander, 949
Click event handler, 641, 736, 829, 854, 872, 887,

920, 929, 936, 938, 942

Click menu handler, 675
Clicked() event handler,

ContextMenuItemSelection, 639
Clicked handler, 675
ClickedImage custom enumeration, 694
Clicks property, MouseEventArgs type, 621
client and server definitions, 573
client assembly, 581
client-activated object (CAO), 579
client-activated remoting, 597, 599
ClientRectangle property, Control type, 619
client-side configuration files, remoting,

592–593
client-side lease sponsors, 600
client-side representation of XML web services,

988–989
client-side scripting, 845–846, 858
ClientTarget, Page Type properties, ASP.NET,

868
ClientTarget property, Page Type, 868
Clip property, Graphics class, 660
ClipBounds property, Graphics class, 660
CLng conversion function, 93
Clone() method, 247, 265, 267, 805
cloneable objects (ICloneable), 264–268
cloning process, 264
Close() method

BinaryReader class, 547
BinaryWriter class, 547
Form Type, 791
Stream class, System.IO, 541
TextWriter, System.IO, 543

Closed event, Form Type, 624
CloseFigure() method, 697
CloseMainWindow(),

System.Diagnostics.Process, 445
Closing event, Form Type, 624–625
<CLSCompilant> attribute, 425
CObj conversion function, 93
CoCalc coclass, 507–508
CoCar type, 512–513
__CoCar_BlewUpEventHandler, 514
__CoCar_Event type, 514
__CoCar_SinkHelper, 514
CoCarClass object, 513
coclass, 499, 505
code bases, 403
code conditional operators, 98
code libraries, 363, 863
code snippet, 74
code statements, building

defining multiple statements on single line,
96

overview, 94–95
statement continuation character, 95

<code> code comment, XML Elements, 162
<codeBase> element, 403
code-behind, 850, 852, 858–861
CodeBehind attribute, 962
CodeBehind value, 959

■INDEX998

5785chIDX.qxd 3/31/06 5:57 PM Page 998

CodeFile attribute, 859
code-generation tools, 4
CodePage attribute, <%@Page%> directive, 856
<codeSubDirectories> element, 864
Collection(Of T) class,

System.Collections.Generic, 343
collections

ICollection interface, 274
IDictionary interface, 274
IDictionaryEnumerator interface, 275
IList interface, 275
overview, 245

CollectionsUtil, System.Collections.Specialized,
279

CollectionsUtil member,
System.Collections.Specialized
Namespace, 279

colon character, 96
Color namespace, System.Drawing, 656
Color property, Pen type, 680
Color structure, 621
color values, GDI+, 669
ColorBlend, 679
ColorDialog class, 612, 670
ColorDialog type, 671, 678
ColorDlg project, 678
ColumnMapping method, DataSet, 806
ColumnMapping property, ADO.NET

DataColumn object, 806
ColumnName method, DataSet, 806
ColumnName property, ADO.NET DataColumn

object, 806
Columns property, 808
COM and .NET interoperability

attributes of
System.Runtime.InteropServices,
515–516

building more interesting VB 6.0 COM server
exposing inner object, 510–511
overview, 509
supporting additional COM interface, 510

building .NET types
defining strong name, 520–521
inserting COM object, 519–520
overview, 518–519

building Visual Basic 6.0 test client,
523–524

examining exported type information,
522–523

examining interop assembly
building VB 2005 client application,

511–512
interacting with CoCar type, 512–513
intercepting COM events, 514
overview, 511

example of, 494–497
generating type library and registering .NET

types, 521–522
.NET interop assembly, 497–499
overview, 493, 515

role of CCW, 516–517
role of COM IDL

attributes, 504
library statement, 505
observing generated IDL for VB COM

server, 503–504
overview, 502–503
parameter attributes, 506
role of [default] interface, 505
role of IDispatch, 505–506

role of .NET class interface, 517
Runtime Callable Wrapper (RCW)

exposing COM types as .NET types,
500

hiding low-level COM interfaces, 501
managing coclass's reference count, 501
overview, 499–500

scope of .NET interoperability, 493–494
using type library to build interop assembly

late binding to CoCalc Coclass, 507–508
overview, 506–507

COM Callable Wrapper (CCW), 493
Com Class, 519–520
COM globally unique identifier (GUID)

identification scheme, 392
combine, definition of, 43
Combine() method,

System.MulticastDelegate/System
Delegate, 289

ComboBox class, System.Windows.Forms
namespace, 612

ComboBox control, 725–726
ComboBox type, 735
ComCalc COM object, 496
ComCalc type, 497
ComCalcClass type, 497
<ComClass> attribute, 515, 520
command builder type, 825
Command object, 769, 773, 789–790
command set, 34
CommandBehavior.CloseConnection property,

791
command-line compilers, 32
command-line tools, 32
CommandText property, 790, 800
CommandTimeout member, DbCommand

type, 790
CommandType property, 789
Common Controls category, 629
common dialog boxes, 611
common intermediate language (CIL), 88

benefits, 14
compiling to specific platforms, 14
just-in-time (JIT) compiler, 14
memory management in, 227
new keyword, 227
overview, 12–13

Common Language Runtime (CLR), 463, 493
CLR file header in assemblies, 366–367
CLR-maintained thread pool, 473

■INDEX 999

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 999

hosts
CLR versions, 461
dotnetfx.exe, 459
hosting the CLR, 461
multiple .NET Framework versions, 460
.NET assembly activation under Windows

XP, 459
overview, 441
requiredRuntime config specification, 461
side-by-side execution, 460
specific CLR version specification, 461

mscoree.dll, 21
mscorlib.dll, 21
overview, 20

Common Language Specification (CLS)
compliance verification, 19–20
overview, 19

Common Type System (CTS), 89, 115, 337, 850
adornments, 18
class types, 16
delegate types, 17
enumeration types, 17
interface types, 17
intrinsic types, 18–19
overview, 16
structure types, 16
type members, 18

CommonSnappableTypes.dll assembly, 435
\CompactFramework subdirectory, .NET

Framework 2.0 SDK installation root, 32
<CompanyInfo> attribute, 439
CompanyName property, Application class, 615
comparable objects (IComparable), 268–270
Compare() property, String Class Meaning, 83
CompareExchange() method, 486–487
CompareTo() method, 270
CompareValidator control, ASP.NET, 907, 909
compilation cycle, ASP.NET 2.0

multifile pages, 866–867
overview, ASP.NET 2.0, 865
single-file pages, 865

compilation element, Web.config, ASP.NET, 879
<compilation> element, 861, 879
Compile tab, My Project dialog box, 92
compile time, 91, 159
CompilerOptions attribute, <%@Page%>

directive, 856
compile-time error, 251
Complain() method, 140
Complement() method, 659
complex expressions, building, 97–98
<complexType> element, 973
Component Object Model (COM), 5
components, 611
CompositingMode property, Graphics class, 660
Concat() method, String class, 85
concurrency, multithreaded applications, 464,

482, 484–486
*.config file, 388, 397, 401, 591, 596, 600, 602,

777, 781

configuration files, 365, 591
configuration inheritance, ASP.NET, 880
<configuration> element, 388, 864, 878
Configure() method, RemotingConfiguration

class, 587–588, 592
<conformanceWarnings> element, 968
ConformsTo named property, 967
ConformsTo property, 967–968
connected layer, 767–768, 786
Connection, DbCommand, ADO.NET, 790
Connection member, DbCommand type, 790
Connection object, ADO.NET data provider, 769
connection objects, ADO.NET, 787–788
Connection property, 790
connection string, 787
connection string builder objects, 788
ConnectionState enumeration, 788
ConnectionString property, 780, 787, 789, 901
<connectionString> element, 901, 947
ConnectionStringBuilder object, ADO.NET,

788–789
<connectionStrings> element, 405, 782–783,

830, 879
ConnectionTimeout() method, DbConnection,

ADO.NET, 787
Console class, 57, 73
console user interface (CUI), 73, 611, 795
console-based server hosts, 604
Const keyword, 158
constant data, 158–159
Constraint type, System.Data namespace, 772
Constraints property, ADO.NET DataTable

object, 810
Constraints value, DataRowState enumeration,

810
constructor chaining, 136
constructor logic, 139
constructors, 88, 127, 131
containers for ToolStrips, Visual Studio 2005,

649
containment/delegation, 167, 178

nested type definitions, 179–180
overview, 178–179

Contains() method, 658
Contains() property, String Class Meaning, 83
content page, 892
ContentAlignment enumeration, 717–718
ContentAlignmentInitializeComponent()

method, 718
ContentEncoding property, HttpResponse Type,

872
ContentPlaceHolderID value, 899
ContentType property, HttpResponse Type, 872
Context property, WebService base class, 965
context-agile, 456
context-bound, 456–457
ContextBoundObject, 487
ContextMenu class, System.Windows.Forms

namespace, 612
ContextMenuItemSelection, 639

■INDEX1000

5785chIDX.qxd 3/31/06 5:57 PM Page 1000

ContextMenuStrip class, System.Windows.
Forms namespace, 612

ContextMenuStrip control, Toolbox, 637
Contraint, System.Data, ADO.NET, 772
Control base class, 691
Control class, 246
control class properties, 737
Control parent class, 868
Control property, KeyEventArgs type, 623
control state, 924
Control type, 620, 707, 888
ControlBox property, Form type, 624
ControlCollection, 709
Control-derived class, 691
Control-derived type, 657, 679, 694, 711
controls, 611

adding using Visual Studio 2005, 710–711
animation, 749
basic, 711
Button, 717
CheckBox, RadioButton, GroupBox, 719–722
CheckedListBox, 722–723
ComboBox, 725–726
ControlCollection, 709–710
custom, 744–750

appearance of, 753
custom control icon, 755
hosts for, 751–752
using, 751–752

custom events, 748
custom properties, 748–751
DateTimePicker, 729
default input button, 727
DefaultEvent attribute, 754
DefaultProperty attribute, 754
DefaultValue attribute, 753
design time attributes of custom controls,

752
Designer.cs file, 710–711
Dock property, 762
dynamic positioning, 761
ErrorBlinkStyle properties, 738
ErrorProviders, 737
events, 748
image processing, 746–748
InitializeComponent() method, 711
Label, 711, 713
ListBox, 724
manually adding to forms, 708
MaskedTextBox, 715
mnemonic keys in Label, 712–713
MonthCalendar, 727–729
node images in TreeViews, 741
overview, 707
Panel, 734–735
properties, 748–751
tab order, 726
TabControl, 730–731
table and flow layout, 763–764
TabStop, TabIndex properties, 726

TextBox, 713–714
ToolTip, 729
TrackBar, 732–733
TreeView, 738–741
UpDown, 735–736
UserControl Test Container, 750
WebControl, 743–744

Controls member, System.Web.UI.Control, 885
Controls property, 619, 885–886
ControlState property, 924
ControlToValidate member, ASP.NET validator,

907
ControlToValidate property, 908
Convert class, 94
cookies creation, ASP.NET, 941
Cookies member, HttpRequest Type, 869
cookies overview, ASP.NET, 941
Cookies property, HttpRequest Type, 942–943
Cookies property, HttpResponse Type, 872
coordinate systems, GDI+, 665–666
Copy() method, DataSet, 805
CopyTo() member, 117, 535
core infrastructure, 611
Count, ControlCollection, 709
Count member

ControlCollection, 709
HttpApplicationState, 928

Count property, ASP.NET HttpApplicationState
members, 928

Create() method
DirectoryInfo class, 529, 532–533
FileInfo class, 535

CreateDataReader() method, 811
CreateDataTable() method, 815
CreateDataView() method, 819
CreateDomain() method, 451–452
CreateInstance() method, Array class, 115
CreateLabelControl method, 711
CreateObject() method, 505, 508
CreateObjRef() method,

System.MarshalByRefObject, 579
CreateStatusStrip() method, 642
CreateText() method, FileInfo class, 535–536,

538
CreationTime property, FileSystemInfo class,

529
cross-language inheritance, 382
CSByte conversion function, 93
csc.exe compiler, 31

command-line flags, 34
compile parameters, 34
default response file (csc.rsp), 39
/noconfig command-line flag, 39
/out command-line flag, 34
reasons for using, 32
response files, 38
/target command-line flag, 34

CSharpCarClientBinDebug directory, 391
CSharpSnapIn.dll assembly, 435, 438
CShort conversion function, 93

■INDEX 1001

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1001

CSng conversion function, 93
CssClass property, WebControl base class, 889
CssStyle property, 911
CStr conversion function, 93
CType() method, 192, 329, 333, 338
CType function, 94
CUInt conversion function, 93
CULng conversion function, 93
curly brackets, 113
currAlignment member variable, 718
currBalance field, 142
Currency data type, 89
CurrentContext property, Thread type, 474
CurrentContext shared member, Thread type,

474
CurrentDirectory property,

System.Environment, 73
CurrentLeaseTime member, ILease interface,

601
CurrentPriority, ProcessThread type, 448
CurrentState member, ILease interface, 601
CurrentThread property, Thread type, 474–475
CurrentThread shared member, Thread type,

474
currFrame variable, 747
currInterestRate class, 142
currInterestRate variable, 144
currMaxFrame variable, 747
Cursor property, Control type, 619
CUShort conversion function, 93
custom code snippets, 53
Custom Constants text box, 313
custom control hosts, 751–752
custom controls, 744–750
custom dialog boxes, 756, 758
custom events, 748
custom exceptions, structured exception

handling, 212–214
custom interfaces, defining, 247–249
custom narrowing conversion operation, 330
custom .NET namespaces

building type aliases using Imports keyword,
372–374

defining namespaces beyond root, 370–372
importing custom namespaces, 372
observing root namespace, 370–371
overview, 370

custom properties, 748–751
.custom tokens, 377
custom Tools menu item, 43
custom type conversion

conversions among related class types,
328–329

explicit keyword, 329–331
implicit conversions, 328
implicit keyword, 329–333
numerical converstions, 328

custom types in XML web services, 984
custom view states, state management in

ASP.NET, 924

custom web controls, 892
CustomEndCap property, Pen type, 680
<customErrors> element, web.config File,

879–880
CustomLineCap class, 679
CustomStartCap property, Pen type, 680
CustomValidator control, ASP.NET, 907

■D
D command, Select Case statement, 793
D or d string format, .NET, 75
daemon threads, 481
DashCap property, Pen type, 680
DashOffset property, Pen type, 680
DashPattern property, 680–681
DashStyle property, Pen type, 680
data adapters, 774, 803
data caching, ASP.NET, 933–937
Data property, System.Exception, 204, 210–211
data provider definition, ADO.NET, 768
data provider factory, 777–778
data providers, ADO.NET, 769
Data Source Configuration Wizard, 830
data type conversions, 89

narrowing (explicit) and widening (implicit)
data type conversions

explicit conversion functions, 93–94
Option Strict, 91–93
overview, 89–91
role of System.Convert, 94

data types. See system data types
DataAdapter object, ADO.NET data provider,

769
database management systems (DBMSs), 768
Database property, DbConnection type, 787
DatabaseReader class, 145, 347
DataBind() method, System.Web.UI.Control in

ASP.NET, 885
data-centric controls, 889
DataColumn, ADO.NET, 806
DataColumn, System.Data, ADO.NET, 772
DataColumn objects, ADO.NET, 805–806, 808
DataColumn type, System.Data namespace, 772
DataGrid control, 900
dataGridColtsView type, 819
DataGridView widget, 813, 818, 827–828, 830
DataProvider enumeration, 780
DataReader object, ADO.NET data providers,

769
DataRelation objects, ADO.NET, 772, 826,

828–829
DataRelation type, System.Data namespace,

772
DataRow, ADO.NET, 772

AcceptChanges() method, 808
Delete() method, 808
edit processing members, 808
error processing members, 808
IsNull() method, 808
ItemArray, 808

■INDEX1002

5785chIDX.qxd 3/31/06 5:57 PM Page 1002

RejectChanges() method, 808
RowState, 808
Table, 808

DataRow EndEdit() member, DataRow type, 808
DataRow objects, ADO.NET, 808–809, 811, 822
DataRow type, 772, 829
DataRowState enumeration, 809
DataSet class, ADO.NET, 772, 803–805, 932

AcceptChanges() method, 805
CaseSensitive property, 804
Clear() method, 805
Clone() method, 805
Copy() method, 805
DataSetName property, 804
EnforceConstraints property, 804
GetChanges() method, 805
GetChildRelations() method, 805
GetParentRelations() method, 805
HasChanges() method, 805
HasErrors property, 804
Merge() method, 805
ReadXml(), ReadXmlSchema() method, 805
RejectChanges() method, 805
RemotingFormat property, 804
WriteXml(), WriteXmlSchema() method, 805

DataSet method, 821
DataSet objects, 803
DataSet type, System.Data namespace, 772
DataSet value, DataRowState enumeration, 810
DataSetName property, ADO.NET DataSet class,

804
DataSets type, 767
DataSource property, 815
Datasource property, DbConnection, 787
DataSourceID property, 896, 900–901
DataTable, System.Data, ADO.NET, 772
DataTable object, 810, 822
DataTable type, System.Data namespace, 772
DataTableCollection property, 804
DataTableReader objects, ADO.NET, 811–812
DataTableReader type, System.Data

namespace, 772
DataType method, DataSet, 806
DataType property, ADO.NET DataColumn

object, 806
DataView objects, ADO.NET, 819
DataView type, System.Data namespace, 772
Date data type, 77
Date type default value, 79
DateTime reference, 728
DateTimePicker class, System.Windows.Forms

namespace, 612
DateTimePicker control, 729
DbCommand, ADO.NET, 790
DbCommand class, System.Data.Common

namespace, 778
DbCommand type, 790
DbConnection, ADO.NET, 787
DbConnection class, System.Data.Common

namespace, 778

DbDataAdapter class, 778, 820
DbDataReader object, ADO.NET, 791–792
DbParameter, ADO.NET, 798
<DbProviderFactories> element, 779
DbProviderFactory-derived type, 778
DbTransaction class, System.Data.Common

namespace, 778
DbType property, ADO.NET DbParameter, 798
Deactivate event, Form Type, 624–625
Debug attribute, 959
debug session, 861
DEBUG symbol, 312
Debug tab, My Project dialog box, 71
debugging, 196, 861
Decimal data type, 77
Decimal type, 89
DecimalPlaces property, NumericUpDown, 736
Declare statement, 494
Decrement() method, Interlocked type, 486
deep copy, cloneable objects (ICloneable),

267–268
“default” access level, 149
default constructor, 81, 132, 580, 588
default input button, 727
default interface, 505
default namespace, 370
default response file, 38
Default Web Site node, 839
[default] interface, 505
default.aspx content, 898–900
Default.aspx file, 855, 866, 915, 948
DefaultEvent attribute, controls, 754
DefaultEvent member,

System.ComponentModel, 753
DefaultEventAttribute,

System.ComponentModel, 753
default.htm file, 846–847
DefaultProperty attribute, controls, 754
DefaultProperty member,

System.ComponentModel, 753
<DefaultProperty> attribute, 754
DefaultPropertyAttribute,

System.ComponentModel, 753
defaultValue attribute, Profile Data, 948
DefaultValue member,

System.ComponentModel, 753
DefaultValue method, DataSet, 806
DefaultValue property, ADO.NET DataColumn

object, 806
<DefaultValue> attribute, 753
DefaultView value, DataRowState enumeration,

810
DefaultWsdlhelpGenerator.aspx, 961–962, 966
<definition> root, 975
<definitions> element, 972
Delegate keyword, 467, 514
delegate types, 17
delegates

asynchronous call, 287
asynchronous call vs. multithreading, 287

■INDEX 1003

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1003

CIL code for simple example, 290
compared with C-style callbacks, 285
delegate keyword, 286
description, 285–286
example, 292–294
information in, 285–286
multicasting, 288, 294–295
and multithreaded applications, 465, 467
NullReferenceException, 293–294
overview, 281
simple example, 289–290
synchronous call, 286
type safe, 290–291

delegation. See containment/delegation
Delete() method

DataRow object, 808
DirectoryInfo class, 529
FileInfo class, System.IO, 535

DeleteCommand member, DbDataAdapter
class, 820

DeleteCommand property, 823, 825
Deleted property, DataRowState, 825
Deleted value, DataRowState enumeration, 809
deleting

records, 796
rows, 816

Delta property, MouseEventArgs type, 621
<dependentAssembly> element, 400
deployment, .NET runtime, 28–29
Dequeue() member, Queue type, 277–278
derived class, 168, 328
derived types, 247
DESC (descending), 817
Description member,

System.ComponentModel, 752
Description property, 429, 966, 968, 975
<Description> attribute, 753
DescriptionAttribute,

System.ComponentModel, 752
Design tab, MainForm.vb code window, 47
Designer.cs file, 710–711
*.Designer.vb file, 710, 745, 760, 832
Detached value, DataRowState enumeration, 809
detailed content page example, ASP.NET,

904–905
developing software

as a C++/MFC programmer, 4
as a COM Programmer, 5
as a C/Win32 programmer, 3
as a Java/J2EE Programmer, 4
as a Visual Basic 6.0 programmer, 4
as a Windows DNA Programmer, 5

device coordinates, GDI+ coordinate systems,
665–666

dialog boxes
custom, 756, 758
programming, 756

DialogResult enumeration, 758
Dictionary(Of K, V) class,

System.Collections.Generic, 343

digital signatures, 392–393
Dim keyword, 78
DirectCast() keyword, 334
Direction member, DbParameter type, 798
Direction property, 798, 800
Directory type, System.IO, 533–534
DirectoryInfo class

Create(), CreateSubdirectory() methods,
529, 532–533

Delete() method, 529
GetDirectories() method, 529
GetFiles() method, 529, 531
MoveTo() method, 529
Parent property, 529
Root property, 529

DirectoryName, FileInfo class, System.IO, 535
dirty windows, Paint event, GDI+, 662
*.disco file, 957
disconnected layer, 767–768, 802
Discovery of Web Services (DISCO), 957
DispatchMessage() method, 586
<DispId> attribute,

System.Runtime.InteropServices
namespace, 515

Display member, ASP.NET validator, 907
display name, 420
Display property, 910
DisplayBanner() method, 66
DisplayCompanyData() function, 439
DisplayMessage() method, 582
DisplayTypes() method, 418
disposable objects, 234

code example, 238
Dispose() method, 238
IDisposable interface, 237–241

Dispose() method, 664
disposing Graphics objects, GDI+, 664–665
Distributed Component Object Model (DCOM),

604
*.dll assembly, 370, 374
DLL hell, 5
<DllImport> attribute, 425, 494
Do statements, 101
/doc compiler flag, 163
Dock Fill, Form option, 650
Dock property, 619, 762
docking, 707, 762
DockStyles enumeration values, 762
DOCTYPE processing instruction, 842
Document Object Model (DOM), 845–846
documentation of source code, with XML, 161–162
<documentation> element, 966, 969, 975
documenting VB 2005 source code via XML

overview, 161–164
transforming XML code comments via NDoc,

164
DoEvents() method, Application class, 615
Domain Name Service (DNS), 837
DomainUnload event, System.AppDomain,

451, 454

■INDEX1004

5785chIDX.qxd 3/31/06 5:57 PM Page 1004

DomainUpDown control, 735–736
dot operator, 226
DotNetCalc class, 518, 522
DotNetClass interface, 522
DotNetEnum, System.Enum, 121
dotnetfx.exe, .NET runtime deployment, 29
DotNetPerson type, 519, COM type
Double data type, 77
DoubleClick event, Control type, 619
Do/While and Do/Until looping constructs,

101–102
download cache, 368–369, 403
DpiX property, Graphics class, 660
DpiY property, Graphics class, 660
DragDrop event, Control type, 619
DragEnter event, Control type, 619
DragLeave event, Control type, 619
DragOver event, Control type, 619
Draw() method, 186, 249, 257, 259, 261
DrawArc() method, Graphics class, 660
DrawBezier() method, Graphics class, 660
DrawBeziers() method, Graphics class, 660
DrawCurve() method, Graphics class, 660
DrawEllipse() method, Graphics class, 660
DrawIcon() method, Graphics class, 660
DrawImage() method, Graphics class, 690
DrawLine() method, Graphics class, 660
DrawLines() method, Graphics class, 660
DrawPath() method, Graphics class, 660
DrawPie() method, Graphics class, 660
DrawRectangle() method, Graphics class, 660,

669
DrawRectangles() method, Graphics class, 660
DrawString() method, 657, 672
DrawString() method, Graphics class, 660
DriveInfo class, System.IO, 534
DriveInfo type, input/output, System.IO, 527
driverInfo property, 512
dsCarInventory object, 824
dumpbin.exe command-line utility, 365
Dynamic Help window, 57
dynamic loading, 418–419, 434
dynamic positioning, controls, 761–762
dynamic web service discovery using DISCO, 957

■E
E or e string format, .NET, 75
ECMA standardization, .NET Framework, 29
edit processing members, ADO.NET DataRow

object, 808
Else statements, 97
ElseIf keyword, 97
Embedded Resource, 755
EmitConformanceClaims control, 968
Emitting HTML, ASP.NET, 872
empAge using property syntax, 154
Employee class, 151
EmpType enumeration, 118, 122
EnableClientScript member, ASP.NET validator,

907

Enabled member, ToolStripMenuItem type, 639
Enabled property, 619, 644, 675, 889
EnableSession property, 965, 971
EnableThemeing member,

System.Web.UI.Control, 885
EnableTheming, ASP.NET <%@Page%>

directive attribute, 856
EnableTheming attribute, <%@Page%>

directive, 856
EnableViewState attribute, <%@Page%>

directive, 856, 923
EnableViewState property, 923–924
EnableVisualStyles() method, Application class,

615
encapsulation, 127, 145–146

class properties, 154–156
controlling visibility levels of property get/set

statements, 156
internal representation of properties,

154–156
overview, 150–151
read-only and write-only properties, 157
read-only class properties, 157
Shared properties, 157–158
static class properties, 157
using traditional accessors and mutators,

151–152
using type properties, 152–154
visibility of get/set statements, 156
write-only class properties, 157

End() method, HttpResponse Type, 872
End construct, 188
End keyword, 128
End Sub/End Function syntax, 248
EndCap property, Pen type, 680
EndEdit() method, 818
EndInvoke() method, 467–468, 470, 472, 610,

981
EndSubtract() method, 982
EndUpdate() method, 741
EnforceConstraints property, ADO.NET DataSet

class, 804
Engine objects, 327
Enqueue() member, Queue type, 277–278
Enter() method, Monitor, 486
Enter event, 721
Enter key, 183
Entry property, 275
Enum type, 121, 637
Enum variable, 120
enumerating controls with Panel control,

ASP.NET, 886
enumerations, 118

controlling underlying storage for Enum, 119
declaring and using Enums, 119–120
overview, 118–119
System.Enum class, 120–123
types, 17, 262–264

Enumerations data types, 976
Environment type, 72

■INDEX 1005

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1005

Equality operators, 97
Equals() method, 194, 196, 326
Error event, ASP.NET, 875
error icon (!), 737
Error List window, 427
error processing members, ADO.NET DataRow

object, 808
error processing, VB 6.0, 222–223
ErrorBlinkStyle properties, controls, 738
ErrorMessage member, ASP.NET validator, 907
ErrorMessage property, 908
ErrorProviders, 737
event interface, 282–285
Event keyword, 501
EventArgs parameter, 617
event-driven entity, 884
EventInfo class, System.Reflection namespace,

412
events

adding to custom controls, 748
compared with delegates, 296
event keyword, 296
Microsoft recommended pattern, 302–303
overview, 281

<example> code comment, XML Elements,
162

<exception> code comment, XML Elements,
162

exceptions, 201, 219
Exchange() method, Interlocked type,

multithreaded applications, 486–487
Exclude() method, 659
*.exe assembly, 604
exe compile target, 613
*.exe file, 368, 401
ExecutablePath property, Application class, 615
ExecuteAssembly(), System.AppDomain, 451
ExecuteNonQuery() method, 790, 793, 795, 800
ExecuteReader() method, 773, 790–791, 793
ExecuteScalar() method, 790
ExecuteXmlReader() method, 790
existing class definitions, 146
Exit() method, Application class, 615
ExitCode, System.Diagnostics.Process, 444
ExitTime, System.Diagnostics.Process, 444
ExoticControls project, 739
explicit casting, 190, 252
explicit conversion, 328, 331
explicit default value, 106
explicit keyword, custom type conversion,

329–331
explicit load request, 386
Expression method, DataSet, 806
Expression property, ADO.NET DataColumn

object, 806
ExtendedProperties property, 804
Extends metadata token, 408
Extension property, FileSystemInfo class, 529
external assemblies, 367
ExternalAssemblyReflector application, 419

■F
F or f string format, .NET, 75
Families property, InstalledFontCollection, 676
FieldInfo class, System.Reflection namespace,

412
File class, System.IO, 538, 540
File System option, 861
.file token, 384
File Transfer Protocol (FTP), 838
FileAttributes enum, FileSystemInfo class, 531
FileInfo class, System.IO, 535

AppendText() method, 535, 538
CopyTo() method, 535
Create() method, 535
CreateText() method, 535–536, 538
Delete() method, 535
Directory, 535
Length, 535
MoveTo() method, 535
Name, 535
Open() method, 535–537
OpenRead() method, 535, 537
OpenText() method, 535, 538
OpenWrite() method, 535, 537

FilePath member, HttpRequest Type, 869
FileStream class, System.IO, 541–542
FileStream type, input/output, System.IO, 528
FileSystemInfo class

Attributes property, 529, 531
CreationTime property, 529
Extension property, 529
FullName property, 529
LastAccessTime property, 529
LastWriteTime property, 529
Name property, 529

FileSystemWatcher class, System.IO, 549, 551
FileSystemWatcher type, input/output,

System.IO, 528
Fill() method, 775, 820, 821–822, 833
Fill value, DockStyle, 762
FillEllipse() method, Graphics class, 660
FillPath() method, 660, 696
FillPie() method, Graphics class, 660
FillPolygon() method, Graphics class, 660
FillRectangle() method, Graphics class, 660

= operator, 107
AboutToBlow() method, 298
AboutToBlow event, 300
AboutToBlow notification, 292
AboutToBlowEventHandler delegate, 298
Accelerate() method, 292, 297–298, 303
Add() method, 291
AddHandler statement, 301, 306
AddressOf keyword, 290
AddressOf keyword, VB 2005, 293
almostDeadList member variable, 293
ArrayList member variable, 306
BeginInvoke() method, 287
BinaryOp delegate, 286, 289
Boolean input parameters, 287

■INDEX1006

5785chIDX.qxd 3/31/06 5:57 PM Page 1006

ByRef parameters, 288
Car class, 292, 299
Car.Accelerate() method, 283
CarDelegate application, 296
CarDelegate delegate, 307
CarEventArgs class, 303
CarEventArgs parameter, 307
CarEventSink class, 282
Click event, 281
Combine() method, 289, 295
Connect() method, 282, 292
Custom keyword, 308
customizing event registration process

custom events using custom delegates,
307–308

defining custom event, 305–307
overview, 304–305

defining events in terms of, 304
defining in terms of delegates, 304
defining single handler for multiple events,

300
Delegate keyword, 288
delegate type, 285
Delegate.Combine() method, 298
delegates, 285
Disconnect() method, 282, 284, 292
DisplayDelegateInfo() method, 290
dynamically hooking into incoming events

with, 301–302
dynamically hooking into incoming events

with AddHandler/RemoveHandler,
301–302

EndInvoke() method, 287
EngineStart event, 305–306
Event keyword, 297, 300, 304
EventArgs instance, 303
events, 297–299
Exploded event, 300
Exploded notification, 292
explodedList member variable, 293
firing events using, 297
firing using RaiseEvent keyword, 297
GetInvocationList() method, 289–290
Handles keyword, 299
hooking into incoming events using

WithEvents and Handles, 299
IAsyncResult interface, 287
IEngineStatus interface, 281
Invoke() method, 286, 290, 306
As keyword, 304
Main() method, 283, 290–291, 301
mask token, MaskedTextBox, 715
Method property, 289
multicasting, 281, 300
OnAboutToBlow() method, 293
OnExploded() method, 293
overview, 281
Remove() method, 289, 295
RemoveHandler statement, 301, 306
Shared keywords, 291

SimpleMath class, 290
sink object, 282
SquareNumber() method, 290
Start() method, 306
Subtract method, 291
System.Delegate.Combine() method, 294
System.EventArgs base class, 302, 306
System.EventArgs parameter, 305
System.EventHander delegate, 306
System.EventHandler class library, 305
System.EventHandler delegate, 305
System.MulticastDelegate class, 286
System.Object argument, 302, 306
System.Threading namespace, 286, 308
Target property, 289, 291
textual identifier, 282
Thread object, 286
WithEvents keyword, 299, 301

filters, ADO.NET, 816–817
finalizable objects, 233–235
finalization details, 237
finalization queue, 237
finalization reachable table, 237
Finalize() method, 194, 235–237, 241
finally block, structured exception handling,

219
FindMembers() method, System.Type class,

413
FinishButtonClick event, 905
FlatStyle property, 717, 719
flow-control constructs

building complex expressions, 97–98
If/Then/Else statement, 96–97
overview, 96
Select/Case statement, 99

FlowLayoutPanel class, 612, 763–764
FlowLayoutPanel type, 763
Flush() method

BinaryWriter class, 547
HttpResponse, 872
Stream class, 541
TextWriter, 543

Focused property, Control type, 619
FolderBrowserDialog class, System.Windows.

Forms namespace, 612
Font namespace, System.Drawing, 656
Font object, 674
Font property, Control type, 619
Font property, WebControl base class, 889
FontDialog class, GDI+, 678
FontDialog class, System.Windows.Forms

namespace, 612
fontFace string variable, 675
FontFamily namespace, System.Drawing, 656
FontFamily type, 673
FontFamily.Name property, 676
fonts, 671–672

enumerating, 676–677
faces and sizes, 674–675
families, 672–673

■INDEX 1007

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1007

fontSizeContextStrip control, Properties
window, 637

For Each statement, 100
For looping construct, 100
For statement, 99
forcing, 232–234
For/Each loop, 100–101
ForeColor member, ASP.NET validator, 907
ForeColor property, 619, 889
Foreground threads, 481
Form, System.Windows.Forms, 612
Form class, 612

events, 624
example program, 625–626
life cycle, 625
methods, 624
properties, 623–624

form control declarations, ASP.NET, 858
form data, access in ASP.NET, 870–871
form inheritance, 707, 759
Form member, HttpRequest Type, 869
Form object inheritance chain, 618
Form property, 870
form statement, 869
Form type, 614, 637, 708
<form> element, 842, 847, 854, 858, 886, 899,

923
Format() method, 75, 83–84, 122
formatter objects, 576
formatting options, .NET String, 75
FormBorderStyle property, 624, 756, 761
Form-derived class, 687, 694, 697, 919
Form-derived type, 711, 751, 827
forms, 611
forms controls, 707
For/Next loop, 99–100
Friend access modifier, 148
Friend keyword, 379
friendly name, 386
friendly object model, 411
FromArgb() function, 733
FromArgb() method, 670
FromFile() method, Image type, 689
FromHdc() method, Graphics class, 660
FromHwnd() method, Graphics class, 660, 663
FromImage() method, Graphics class, 660
FromName() method, 670
FromStream() method, Image type, 689
FullName property, FileSystemInfo class, 529
fully qualified name, 194
Function keyword, 103
functions, 95. See also subroutines and

functions, defining
vs. subroutines, 103

FxCop development tool, .NET, 60

■G
G method, Color type, 670
G or g string format, .NET, 75
gacutil.exe command-line utility, 33, 395

garbage collection
AddMemoryPressure() method,

232
AddRef() not required, 227
application domain, 235
application roots, 229
code example, 232–234
Collect() method, 232–234
CollectionCount() method, 232
compared with C++, 227
finalizable objects, 235
finalization details, 237
forcing, 232–234
GetGeneration() method, 232
GetTotalMemory() method, 232
MaxGeneration property, 232
object generations, 230–231
object graph use, 229–230
overriding finalize(), 236–237
overview, 225
PInvoke, 235
reachable objects, 226
Release() not required, 227
SuppressFinalize() method, 232
System.GC, 231–232
threads suspended, 228
timing of, 227
unmanaged resources, 231, 235–237
WaitForPendingFinalizers() method, 232
when heap objects are removed, 226, 228

GC.Collect() method, 233
GDI+

color values, 669
ColorDialog class, 670
coordinate systems, 665–666
core namespaces, 655
custom point of origin, 668
disposing graphics objects, 664–665
font faces and sizes, 674–675
font families, 672–673
FontDialog class, 678
fonts, 671–672
fonts, enumerating, 676–677
hit testing nonrectangular images, 696, 698
hit testing rendered images, 694, 696
methods in FontFamily, 672
namespaces, 656
overview, 655
PageUnit property, custom unit of measure,

667–668
Pen properties, 679–680
Pens collection, 680
PictureBox type, 691–693
System.Drawing namespace, 656
System.Drawing.Brush, 683
System.Drawing.Brush, HatchBrush, 685
System.Drawing.Brush,

LinearGradientBrush, 688
System.Drawing.Brush, TextureBrush, 686
System.Drawing.Drawing2D, 679

■INDEX1008

5785chIDX.qxd 3/31/06 5:57 PM Page 1008

System.Drawing.Drawing2D, Pen types,
679–681

System.Drawing.Drawing2D, Pens, LineCap,
682

System.Drawing.Font, 671–672
System.Drawing.Graphics class, 659
System.Drawing.Image, 689–690
unit of measure, 666

general assembly, 581
Generate() method, 700
generics

boxing and unboxing issues, 337–342
constraining type parameters using where,

354–356
custom generic collections, 352–353
delegates, 358–359
generic methods, 348, 350
interfaces, 357
lack of operator constraints, 356–357
overview, 337
System.Collections.Generic.List<>, 341–343
uses of, 337–341

GET and POST, ASP.NET, 847
Get button, 920
Get scope, 153
get_SocialSecurityNumber() method, 156
GetAllAutos() method, 595, 601, 610
GetAssemblies(), System.AppDomain, 451
GetBoolFromDatabase() method, 347
GetBounds() member, 659, 689
GetBrightness() method, Color type, 670
GetCellAscent() method, FontFamily type, 672
GetCellDescent() method, 672
GetChanges() method, DataSet, 805
GetChannel() member, ChannelServices type,

586
GetChildRelations() method, DataSet, 805
GetChildRows() method, DataRow class, 829
GetColumnError() method, 808
GetColumnsInError() method, 808
GetCommandLineArgs() method, 69
GetConnection() method, 776
GetConstructors() method, System.Type class,

412
GetCurrentProcess() method,

System.Diagnostics.Process, 445
GetCurrentThreadId() method,

System.AppDomain, 451
GetDirectories() method, DirectoryInfo class,

529
GetDomain() method, Thread type, 474
GetEngine() method, 510
GetEnumerator() method, 117, 263–264, 352,

709
GetEvents() method, System.Type class, 412
GetFactory() method, 779
GetFactory() method, DbProviderFactories, 780
GetFields() method, System.Type class, 412
GetFiles() method, DirectoryInfo class, 529, 531
GetHashCode() method, 194, 197

GetHue() method, Color type, 670
GetIDsOfNames() method, 507
GetInterfaces() method, 412, 415
GetIntFromDatabase() method, 347
GetInvocationList() method, 289
GetJBCByIndex() method, 601
GetLastError() method, HttpServerUtility, 876
GetLifetimeService() method, 600
GetLifetimeServices() method, 579, 601
GetLineSpacing() method, 672
GetMembers() method, System.Type class, 412
GetMethods() method, System.Type class, 412
GetName() method, 672
GetNestedTypes() method, System.Type class,

412
GetNumberOfPoints() method, 247
GetObject() method, 705
GetObjectData() method, 568–570
GetParameters() method, 417
GetParentRelations() method, DataSet, 805
GetParentRows() method, 829
GetProcesses() method,

System.Diagnostics.Process, 445
GetProperties() method, System.Type class, 412
GetRandomNumber() method, 140
GetRegisteredActivatedClientTypes() method,

RemotingConfiguration, 587
GetRegisteredActivatedServiceTypes() method,

RemotingConfiguration, 587
GetRegisteredWellKnownClientTypes()

method, RemotingConfiguration, 587
GetRegisteredWellKnownServiceTypes()

method, RemotingConfiguration, 587
GetSalesInfoDetails() method, 986
GetSalesTagLines() method, 985
GetSaturation() method, Color type, 670
GetSchema() method, DbConnection,

ADO.NET, 787
get/set

accessor and mutator methods comparision,
154–155

visibility of statements, 156
GetString() method, 705
GetType() method, 114, 194, 349, 413
GetUnderlyingType() method, Enum class, 120
GetUrlsForObject() method, 586
GetUserAddress() method, 952
GetValue() method, 404, 434
GetValues() method, 122, 718
GetWeatherReport() method, 957
GiveBonus() method, 180
Global Assembly Cache (GAC), 25–26, 33, 363,

365, 391, 402
Global class, 933
Global.asax event handlers in ASP.NET, 926
Global.asax file, 919, 924, 925–926, 927, 933
<globalization> element, web.config File, 879
Globally Unique Identifier (GUID), 266–268,

494, 504
Global.Session_Start() method, 940

■INDEX 1009

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1009

godmode option, 70
Graphical Device Interface (GDI), Win32, 655
graphical user interface (GUI), 611
Graphics namespace, System.Drawing, 656
Graphics object, 655, 661, 663, 665
GraphicsPath class, 679, 696–697
GraphicsPath object, 696
GraphicsPathIterator, 679
GraphicsUnit enumeration, 667
GraphicsUnit.Point, 673
GreetUser() method, 66–68
GridView control, 900–901, 903
<group> element, 952
GroupBox control, 719–722, 734
GUID compared with strong names, 392–393
<Guid> attribute, 515, 518
guide to .NET 2.0 Framework SDK, 32
guidgen.exe utility, 518, 520

■H
Handle, System.Diagnostics.Process, 444
HandleCount, System.Diagnostics.Process, 444
Handled property, KeyEventArgs type, 623
Handles keyword, 514, 620, 874–875
happyDude.bmp image, 702
has-a relationship code example, 178
HasChanges() method, 805, 885
HasErrors, 804, 808
HasErrors property, ADO.NET DataSet class,

804
hash code, 197, 393
Hashtable class, System.Collections, 276
Hashtable System.Collections class type, 276
Hashtable type, 197
HasValue members, 347
HasValue property, 347
HatchBrush, 679, 685
HatchStyle enumeration, 685
/headers flag, 365
Headers member, HttpRequest Type, 869
HeaderText property, 910
heap, and reference types, 316
heap-allocated object, 338
Height method, Image type, 689
Height property, 619, 889
HelloMsg.vb file, 36
HelloWorld() method, 960
HelloWorldWebService.asmx file, 961
HelperFunctions module, 103, 106, 109
HelpLink property, System.Exception, 204,

209–210
Hexadecimal property, NumericUpDown, 736
Hexagon and Circle type, 185
Hexagon class, 146, 250
Hexagon type, 187, 247
Hide() method, Control class, 620
Hide Advanced Members, 194
historical overview of programming

C++/MFC, 4
Component Object Model (COM), 5

C/Win32, 3
Java/J2EE, 4
Visual Basic 6.0, 4
Windows DNA, 5

hit testing, 691
nonrectangular images, 696, 698
rendered images, 694, 696

HorizontalResolution method, Image type,
689

*.htm file, 841, 843
HTML and ASP.NET, overview, 841
HTML document structure, 841
HTML form, 842
<html> tag, 841
HTTP channel, 576
HTTP GET transmission binding, XML Web

Service, 976
HTTP POST transmission binding, XML Web

Service, 976
HTTP Request, ASP.NET, 869
HTTP Request processing, ASP.NET, 869–871
HTTP Response, ASP.NET, 871–873
HTTP transport of web service, 958
HttpApplication members, ASP.NET, 927
HttpApplication type, 883, 919, 926–928, 944
HttpApplication-derived type, 929, 937
HttpApplicationState members, ASP.NET

AllKeys property, 928
Clear() method, 929
Count property, 928
Lock(), Unlock() methods, 929
RemoveAll(), Remove(), RemoveAt()

methods, 929
HttpBrowserCapabilities object, 870
HttpChannel type, 576, 608
HttpCookie type, 940
HttpMethod member, HttpRequest Type, 869
HttpRequest class type, 869
HttpRequest type, 870
HttpRequest.QueryString property, 870
HttpResponse type, 871
HttpSessionState class type, 928
HttpSessionState object, 921, 937, 940, 946
HybridDictionary,

System.Collections.Specialized, 279
HyperLink widget, 886
Hypertext Transfer Protocol (HTTP), 837

■I
I command, Select Case statement, 793
/i option, gacutil.exe, 395
IAppFunctionality interface, 436, 438
IasyncResult interface, 287, 610, 983
IAsyncResult parameter, 472–473
IChannel interface, 576, 586
IChannelReceiver interface, 576
IChannelSender interface, 576
ICloneable interface, 194, 247, 265, 318
ICollection interface, System.Collections, 273
ICollection System.Collections interface, 273–274

■INDEX1010

5785chIDX.qxd 3/31/06 5:57 PM Page 1010

ICollection System.IDictionaryEnumerator
interface, 275

ICollection System.Idictionaryinterface, 274
ICollection System.IList interface, 275
IComparable interface, 326
IComparer helper class, 272
IComparer interface, 271, 273
Icon namespace, System.Drawing, 656
icons, custom controls, 755
ID property, System.Web.UI.Control in ASP.NET,

885
IDataAdapter, System.Data, ADO.NET, 772
IDataParameter, System.Data, ADO.NET, 772
IDataReader, System.Data, ADO.NET, 772
IDbCommand interface, ADO.NET, 773
IDbCommand type, System.Data namespace,

772
IDbConnection interface, 245–246, 773
IDbDataAdapter, System.Data, ADO.NET, 772
IDbTransaction interface, ADO.NET, 773
IDbTransaction type, System.Data namespace,

772
IdealProcessor, ProcessThread type, 448
identity, private assemblies, 386
IDictionary interface, System.Collections, 273
IDictionaryEnumerator interface,

System.Collections, 273
IDisposable interface, 237–239, 505–506, 664
Idle event, 615
IDraw3D interface, 254
IDriverInfo interface, 510, 512
IDropTarget interface, 246
IEnumerable interface, 101, 262–263, 273
IEnumerable(Of T) interface, 352
IEnumerator interface, 101, 262, 264, 273
IEnumVariant, CCW-implemented Interface,

516
If statement, 97, 130
If/Then/Else statement, 96–98
IHashCodeProvider interface,

System.Collections, 273
IKeyComparer interface, System.Collections,

273
ildasm exploration of manifest, 377
ildasm.exe utility, 240, 407
ILease interface remoting, 601
ILease-compatible object, 601
IList interface, System.Collections, 273
Image class, GDI+, 686
Image namespace, System.Drawing, 656
image processing in custom controls, 746–748
Image property, 644, 649, 691, 702, 717
Image type core members, 689
ImageAlign property, 717
ImageAnimator namespace, System.Drawing,

656
ImageClicked enumeration, 697
ImageList property, 742
images in ToolStrips, Visual Studio 2005,

648–649

Images property, 741
IMessage interface, 575
imgGraphics object, 665
Implements keyword, 249, 510

defining common implementation with, 259
hiding interface methods from object level

using, 259–260
name clashes with, 257–259

implicit cast, 191
implicit conversion, 328, 331
implicit keyword, custom type conversion,

329–333
implicit load request, 386
Import statements, 370
importing custom namespaces, 372
Imports keyword, 372–374, 478, 857
Imports keyword, VB 2005, 35
Imports statement, 59, 121, 860
[in] attribute, 506
<In> attribute, 515
Increment() method, 486–487
Increment property, NumericUpDown, 736
inheritance, 145–147, 167, 759, forms

adding sealed class, 176–177
base keyword in class creation, 174–175
colon operator, 173
containment/delegation inheritance model,

178
controlling base class creation with MyBase,

174–175
has-a relationship code example, 178
Inherits keyword, 168–169
is-a relationship code example, 172, 174
multiple base classes not allowed, 169
NotInheritable keyword, 169–171
overview, 167–168, 172–174
protected keyword, 176
regarding multiple base classes, 169
sealed classes, 176–177, 183

inheritance chain, page type in ASP.NET,
867–868

Inheritance icon, Class Designer Toolbox, 56
inheritance picker utility, 759
Inherited Form, 759
Inherited named property, 430
Inherits, ASP.NET <%@Page%> directive

attribute, 856
Inherits attribute, <%@Page%> directive, 856
Inherits keyword, 168–169, 193
Init event handler, System.Web.UI.Page base

class, 922
Init event, Page type, 874
Initialize event, 131
InitializeComponent() method, 631, 638,

710–711, 720, 866
InitializeLifetime() method, 603
InitializeLifetimeServices() method,

System.MarshalByRefObject, 579, 603
InitialLeaseTime member, ILease interface, 601
InitialValue property, 908

■INDEX 1011

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1011

inline editor, 634
InnerException property, System.Exception,

204
in-place editing example, ASP.NET, 903
input flags, 69
<input> element, 975
input/output, System.IO

asynchronous I/O, 551–552
BinaryReader, BinaryWriter, 527, 547
BufferedStream type, 527
Directory, DirectoryInfo types, 527–528
Directory type, 533–534
DriveInfo class, 534
DriveInfo type, 527
File, FileInfo types, 527–528
File class, 538–540
FileInfo class, 535
FileStream class, 541–542
FileStream type, 528
FileSystemWatcher class, 549, 551
FileSystemWatcher type, 528
MemoryStream type, 528
namespace description, 527
overview, 527
Path type, 528
reading from a text file, 544
Stream class, 540
StreamReader, StreamWriter, 542
StreamWriter, StreamReader types, 528
StringReader, StringWriter, 546
StringWriter, StringReader types, 528
writing to a text file, 544

Insert() method, 277, 933
Insert Comment menu option, 162
InsertCommand member, DbDataAdapter

class, 820
InsertCommand property, 823–824
inserting records, ADO.NET, 795
InsertNewCar() method, 823
InstalledFontCollection class, 676
installedFonts data member, 676
installedFonts string, 676
installing .NET 2.0 Framework SDK, 31–32
InstallSqlState.sql file, 946
instance data, 141
instance-level method, 484
Instancing property, 510
Instantiation options, MBR types, 581
Integer data type, 77, 128, 348
Integer member variables, 692
Integer parameter, 89
Integer type, 331
IntegerCollection custom collection, 341
integers, 323
integrated development environments (IDEs),

31
IntelliSense, 182
Interaction, VB 2005 Module type, 59
InterceptArrowKeys property, UpDownBase,

736

Interface Definition Language (IDL), 502
Interface hierarchies, 261
interface keyword, 245, 248
interface members, 260
interface methods, 258
interface types

contrasting to abstract base classes, 246–247
overview, 17

interface-based polymorphism, 776
InterfaceNameClash, 257
interfaces

in arrays, 256
cloneable objects (ICloneable), 264–268
colon operator, 249
comparable objects (IComparable), 268–270
custom, defining, 247–249
custom properties and sort types, 272
and data providers, ADO.NET, 776–777
deep copy, 267–268
definition, 245
designing hierarchies, 261–262
determining using as keyword, 252
determining using explicit cast, 252
enumerable types (IEnumerable and

IEnumerator), 262–264
implementing, 249
invoking objects based on, 251
muliple, types supporting, 251
multiple sort orders (IComparer), 271
overview, 245
shallow copy, 264–267
struct, derive from System.ValueType, 249
System.Collections interfaces, 273
System.Object base class, 249
using as parameter, 254–255
using as return value, 255–256

<InterfaceType> attribute,
System.Runtime.InteropServices
namespace, 515

Interlocked class type, 486
Interlocked type, multithreaded applications,

486
Interlocked type, System.Threading

Namespace, 474
Intermediate Language Disassembler utility

(ildasm.exe)
CIL code display, 26
icons, 26
manifest display, 28
overview, 26
type metadata display, 27

intermediate language (IL), 10
InternalsVisibleToAttribute class, 379
Internet Information Server (IIS), 838

default web site, 839
deployment, XML web service, 961
description, 838
virtual directories, 839

Internet Information Services applet, 839
interop assemblies, 495

■INDEX1012

5785chIDX.qxd 3/31/06 5:57 PM Page 1012

Interop option, 521, COM
Interop. prefix, 497
InterpolationMode property, Graphics class,

660
Interrupt() method, Thread type, 475
Intersect() member, 659
Interval property, 644, 746
intrinsic types in CTS, VB.NET, C#, C++, 18–19
intVal intVal, 487
Invalidate() method, 620, 650, 662, 675, 748
InvalidCastException object, 252
inventory content page example, ASP.NET,

900–901
Inventory table, 833
Inventory.aspx content page, 900–901
inventoryDataGridView control, DataGridView,

830
Invoke() method, 423, 465, 508, 981–982
InvokeAsync() method,

SoapHttpClientProtocol class, 981
InvokeMember() method, System.Type class,

413
IP address, 837
IPC channel, 576, 590
IpcChannel type, 576
IPointy interface, 248
IPointy-compatible classes, 250
IPointy-compatible objects, 257
IRenderToMemory interface, 261
is keyword, 192, 323
is-a relationship code example, 172, 174
IsAbstract, System.Type class, 412
IsAlive method, Thread type, 475
IsAnim data point, 747
IsArray, System.Type class, 412
IsBackground member, Thread type, 475
IsBackground method, Thread type, 475
IsBackground property, 481–482
IsClientConnected property, HttpResponse

Type, 872
IsClipEmpty property, Graphics class, 660
IsCOMObject, System.Type class, 412
IsCompleted property, 469
IsDBNull() method, IDataReader class, 776
IsDefined property, 122
isDragging Boolean, 693
IsEnum, System.Type class, 412
ISerializable interface, 566
IsGenericTypeDefinition, System.Type class,

412
isImageClicked member variable, 695
IsMdiContainer property, Properties window,

652
IsNestedPrivate, System.Type class, 412
IsNestedPublic, System.Type class, 412
IsNull() method, DataRow object, 808
IsNullable member, DbParameter type, 798
IsPostBack property in HTTP Request

processing, ASP.NET, 871
IsPostBack property, Page Type, 868

IsPrimitive, System.Type class, 412
IsSealed, System.Type class, 412
IsSecureConnection member, HttpRequest

Type, 869
IsStyleAvailable() method, 672
IsSystemColor method, Color type, 670
IsValueType, System.Type class, 412
IsVisible() method, 697
IsVisibleClipEmpty property, Graphics class,

660
IsWellKnownClientType() method,

RemotingConfiguration, 587
ItemArray, ADO.NET DataRow object, 808
Items property, 736, 905, 922
iteration constructs

With construct, 102
Do/While and Do/Until looping constructs,

101–102
For/Each loop, 100–101
For/Next loop, 99–100
overview, 99

IUnknown, Hidden COM Interface, 501

■J
javadoc utility, 161
Java/J2EE language deficiencies, 4
Jitter, just-in-time (JIT) compiler, 14
Join() method, Thread type, 475

■K
k flag, 393
KeyCode property, KeyEventArgs type, 623
KeyDown event, Control type, 619
KeyEventArgs parameter, 623
/keyf option, 402
/keyfile flag, 506
KeyPress event, Control type, 619
KeyUp event, Control type, 619
Key/Value properties, 275
Kill() method, 445, 450
KnownColor enumeration, 670

■L
L command, Select Case statement, 793
L mask token, MaskedTextBox, 715
/l option, gacutil.exe, 395
Label control, 711, 713
Label type, 855
Label widget, 873, 886, 888, 920, 943
language attribute, 856, 959
language fundamentals

boxing and unboxing, 321–323
is keyword, 323
parsing values from string data, 83
passing reference types by reference, 319
passing reference types by value, 318–319
static constructors, 144
static data, 141–143
static keyword, 140, 142–144
static methods, 140

■INDEX 1013

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1013

System data types, 80–81
System.Boolean, 82
System.Char, 82
System.Environment class, 72
System.ValueType, 314
unboxing custom value types, 323
value types and reference types, 313–321

/language option, wsdl.exe, 979
language-neutral code, 364
LargeChange property, TrackBar control, 732
LastAccessTime property, FileSystemInfo class,

529
LastWriteTime property, FileSystemInfo class,

529
late binding, 434

to CoCalc coclass, 507–508
description, 422
invoking methods with no parameters, 423
invoking methods with parameters, 423
overview, 407
System.Activator class, 422–423

layout, controls, 763–764
layout components, System.Windows.Forms,

612
layout managers, 612
LayoutMDI() method, 624, 652
lblOrder, Label type, 905
lblTextBoxText, Label widget, 888
lblUserData Label type, 950
LBound() helper function, 114
ldnull opcode, 228
ldstr opcode, 88
lease-based lifetimes, remoting, 599–602, 604
LeaseStats() method, 601
leaseTime property, 603
Leave event, 721
Left property, Control type, 619
Length() method, Stream class, System.IO, 541
Length member, System.Array, 117
Length property, String Class Meaning, 83
library keyword, 505
life cycle of a web page, ASP.NET, 873, 875, 877
Lifetime management, MBR types, 581
<lifetime> element, 602
lightning bolt icon, Properties window, 47
LinearGradientBrush, 679, 688
LinearGradientMode enumeration, 688
LineCap enumeration, 682
LinkedList(Of T) class,

System.Collections.Generic, 343
LinkLabel class, System.Windows.Forms

namespace, 612
<list> code comment, XML Elements, 162
ListBox class, System.Windows.Forms

namespace, 612
ListBox control, 724, 884, 905
ListBox type, 735
ListBox web control, 922
ListDictionary member, System.Collections.

Specialized Namespace, 279

ListFields() method, 414
ListInterfaces() method, 415
ListInventory() method, 795
ListMethods() method, 414
List(Of T) class, System.Collections.Generic, 343
List(Of T) type, 353
Load() method, 386, 451, 453
Load event, 624, 871, 874, 950
Load event handler, 625, 875, 923, 936
Load event, Page type, 874
LoadExternalModule() function, 437, 439
LoadFrom() method, 386
Loan snippet, 52
Lock() method, 929
lock token and multithreaded applications,

484–486
logical grouping, 842
lollipop notation, 250
Long data type, 77
Loop keyword, 101
looping constructs, 99
LostFocus event, 636
low-level COM interfaces, hiding, 501
Lutz Roeder’s Reflector for .NET development

tool, 60

■M
machine.config file, 405, 779, 857, 947, 977
MachineName, System.Diagnostics.Process,

444
MachineName property, System.Environment,

73
Main() method, 52, 66, 232, 267, 315, 338, 381,

418, 466, 482, 512, 583, 586–587, 632,
709, 777, 783, 823, 983

as function (not subroutine), 71
multithreaded applications, 472
overview, 69
processing command-line arguments using

System.Environment, 69–70
processing command-line arguments with,

70
simulating command-line arguments using

Visual Studio 2005, 71
MainForm class, 630
MainForm.vb code window, 47
MainForm.vb icon, 630
MainMenu class, System.Windows.Forms

namespace, 612
MainMenu control, 630
MainModule, System.Diagnostics.Process, 444
maintaining session data, ASP.NET, 937–938,

940
MainWindow class, 614, 708
MainWindowHandle,

System.Diagnostics.Process, 444
MainWindowTitle, System.Diagnostics.Process,

444
MakeACar() method, 227
managed code, 8, 493

■INDEX1014

5785chIDX.qxd 3/31/06 5:57 PM Page 1014

managed heap, 226–231
manifest, 367
manifest, assemblies, 364
MANIFEST icon, 410
MapPath() method, HttpRequest type, 869
mapping DBMS names, ADO.NET, 822
MarkedAsDeletable() method, 816
marshal-by-reference (MBR), 578, 599
MarshalByRefObject class, 579, 595, 600, 602
marshal-by-value (MBV), 578, 593–596
marshaling, 578
mask expression, 715
Mask property, 715
MaskedTextBox, 612, 715–716
MaskInputRejected type, 716
MaskInputRejectedEventArgs type, 716
master constructor, 137
*.master file, 892, 894, 899
master pages, 850, 892
MasterPageFile attribute, 856, 899
MasterPageFile property, Page Type, 868
Maximum property, NumericUpDown, 736
Maximum property, TrackBar control, 732
MaxValue property, 81
MDI applications, Visual Studio 2005, 651
MDIChildActive event, 624, Form Type
MdiLayout enumeration, 652
MdiParent property, 653
MdiWindowListItem property, 652
Me keyword, 135

chaining constructor calls using, 136–138
observing constructor flow, 138–139
overview, 135–136

member overloading, 110–112
member shadowing, 189–191
member variables, 127, 265
member-by-member copy, 314
MemberInfo class, System.Reflection

namespace, 412
MemberwiseClone() method, 194, 264, 266–267
memory management

Finalize() vs. IDisposable interface, 240–242
first rule, 226
fourth rule, 239
resource wrapper final code example, 240
resource wrapper Microsoft code example,

241–242
second rule, 228
third rule, 235

memory management in CIL, 227–228
MemoryStream type, input/output, System.IO,

528
Menu (or TreeView) widget, 894
Menu class, System.Windows.Forms

namespace, 612
menu components, System.Windows.Forms,

612
Menu control, 894, 896
Menu property, Form type, 624
Menu selection prompts, Visual Studio 2005, 646

menu sytems, Visual Studio 2005, 641, 643–644
Menu type, 896
MenuEventArgs parameter, 897
MenuItem class, System.Windows.Forms

namespace, 612
MenuItemClick event, 897
MenuStrip class, System.Windows.Forms

namespace, 612
MenuStrip component, 437
MenuStrip control, 630
Merge() method, DataSet, 805
merge menus, 651
message element, WSDL, 974
message object, 575
Message property, System.Exception, 204, 214
<message> element, 974
MessageBox class, 36, 375, 705
MessageName property, 969
metadata, 408, 414–418, 502
method attribute, 869
method hiding, 189
method overloading, 103, 110–112
method overriding, 181
Method property,

System.MulticastDelegate/System
Delegate, 289

method scope, 135
.method tag, 378
MethodInfo class, System.Reflection

namespace, 412
MethodInfo type, 417
methods in FontFamily, GDI+, 672
Microsoft Express IDEs, overview, 48–49
Microsoft Foundation Classes (MFC), 4
Microsoft recommended event pattern,

302–303
Microsoft.NET\Framework subdirectory, 32
Microsoft.SqlServer.Server namespaces,

ADO.NET-centric, 771
Microsoft.VisualBasic.dll assembly, 58, 85
Minimum property

NumericUpDown, 736
TrackBar, 732

MinimumCapacity value, DataRowState
enumeration, 810

MinValue property, 81
MinValue/MaxValue property, 81
mnemonic keys in Label control, 712–713
mode attribute, 945
Modified value, DataRowState enumeration,

809
ModifierKeys property, Control type, 619
Modifiers property, KeyEventArgs type, 623
modifying application data, ASP.NET, 931–932
modifying tables, Command object, ADO.NET,

793, 795
Module class, System.Reflection namespace,

412
module option, 383
module set for process example code, 448

■INDEX 1015

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1015

.module token, 378
Module type, 480

members of modules, 68–69
modules are not creatable, 67–68
overview, 65–66
projects with multiple modules, 66–67
renaming initial Module, 68

module-level manifest, 369, 384
Modules, System.Diagnostics.Process, 444
Monitor type, System.Threading Namespace,

474
MONO_BUILD symbol, 312
MonthCalendar class, System.Windows.Forms

namespace, 612
MonthCalendar control, 727–729
MouseButtons property, Control type, 619
MouseDown event, 619, 663
MouseDown event handler, 697
MouseEnter event, Control type, 619
MouseEventHandler delegate, 621
MouseHover event handler, 642
MouseHover events, 619, 646
MouseLeave event, Control type, 619
MouseMove event, 619, 884
MouseMove event handler, 692
MouseUp event, Control type, 619
MouseUp event handler, 622, 693
MouseWheel event, Control type, 619
MoveTo() method

DirectoryInfo class, 529
FileInfo class, 535

mscoree.dll, 21, 441
mscorlib.dll, 21, 35, 371, 574
MsgBox() global method, VB6, 59
multicast delegate call, 288
multicasting, delegates, 294–295
MultiColumn property, 723
multidimensional arrays, 116–117
multifile assemblies, 11–12, 368, 383–385
multiple base classes not allowed, 169
multiple document interface (MDI), 611
multiple exceptions, 215–216
multiple inheritance, 169
multiple interface members, 259
multiple interfaces, types supporting, 251
multiple modules, 368
multiple .NET Framework versions, 460
multiple result sets, DbDataReader object,

ADO.NET, 792–793
multiple sort orders (IComparer), 271
multiple statements on single line, defining, 96
multiple threads, 482
multiple-document interface (MDI)

application, 613
multitabled DataSet objects, ADO.NET, 826,

828–829
multithreaded applications

AsyncCallback delegate, 470
asynchronous operations, 467–469
AsyncResult class, 472

atomic operations, 464
BeginInvoke(), 467–468, 470, 472
CLR thread pool, 489–490
concurrency, 464, 482, 484–485
delegate review, 465, 467
EndInvoke(), 467–468
execution speed vs. responsiveness, 479
foreground vs. background threads,

481–482
lock keyword and synchronization,

486
Main() method, 472
overview, 463
secondary thread creation, 477
state data, 472
synchronization, 464
synchronization attribute, 487–488
synchronizing threads, 469–470
synchronous operations, 465, 467
SyncLock keyword and synchronization,

484–485
System.Threading Namespace, 473
System.Threading.Interlocked type and

synchronization, 486–487
Thread class, 463
thread relationship to process, AppDomain,

and context, 463–465
thread-volatile operations, 464
Timer callbacks, 488

MultiThreadedPrinting console application,
482

MustInherit keyword, 184–185, 188
MustOverride keyword, 185–189
mutator method, 150
Mutex type, System.Threading Namespace, 474
My Project dialog box, 68, 71, 92
My Project icon, Solution Explorer, 370
MyAsms directory, 404
MyBase keyword, 174–175, 927
myBounds variable, 115
MyCodeLibrary class, 372
MyCodeLibrary.dll assembly, 372
MyCodeLibrary.MyTypes.MyEnums root

namespace, 372
MyCustomWsdlHelpGenerator.aspx, 961
MyGenericDelegate(Of T) class, 359
myInt, Integer variable, 91
myInts array, 113
myLengths variable, 115
MyLibraries subdirectory, 387
MyMathModule, 67
MyMethod() web method, 975
myObjects, 114
MyPluggableApp.exe assembly, 435
MyPoint parameters, 325
MyPoint structure, 314, 323
MyRectangle value type, 316
MyResourceWrapper class, 236, 241
myShapes array, 189
MyTypeViewer program, 414

■INDEX1016

5785chIDX.qxd 3/31/06 5:57 PM Page 1016

■N
N or n string format, .NET, 75
name clashes, 257–259
name field, 135
Name method, Thread type, 475–476
Name property, 529, 631
Name shared member, Thread type, 475
named arguments, 107
named property, 429
NameOfTheClass class, 505
Namespace keyword, VB 2005, 370
/namespace option, wsdl.exe, 979
Namespace property, 965
namespaces. See also custom .NET namespaces

examples in C#, VB.NET, C++, 22–23
fully qualified names, 25
overview, 22
primary .NET namespaces, 23
programmatic access, 24–25

<namespaces> element, web.config File, 879
NameValueCollection member,

System.Collections.Specialized
Namespace, 279

NameValueCollection type, HttpRequest, 888
NAnt development tool, .NET, 60
Narrowing keyword, 329
narrowing operation, 91
navigating between related tables, ADO.NET,

829–830
NDoc development tool, 61, 164
nested types, 149, 179–180, 413
.NET. See also COM and .NET interoperability

runtime deployment, 28–29
.NET 1.x controls in Visual Studio 2005, 629
.NET 2.0 base class libraries, 343
.NET Assembly Browser tab, 45
.NET delegate type, 463
.NET development tools, 60
.NET Framework

base class libraries, 7
basic building blocks overview, 6
Common Language Infrastructure(CLI),

29–30
Common Language Runtime (CLR) overview, 6
Common Language Specification (CLS)

overview, 6
Common Type System (CTS) overview, 6
core features, 6
ECMA standardization, 29
interoperability with COM, 6
Mono, 30
.NET-aware programming languages, 8–9
non-Windows platforms, 29–30
overview, 6
Portable .NET, 30
as radical change, 6
Virtual Execution System (VES), 29
web links to .NET-aware languages, 8–9

.NET Framework 2.0 Software Development Kit
(SDK), 464

.NET Framework Configuration utility, 389–391,
401

.NET Framework Software Development Kit
(SDK), 31, 98

.NET programming languages, website about, 8

.NET remoting layer, 955

.NET type metadata, 14–15

.NET utility, 33
*.netmodule file, 368–369, 383–384, 385
NeverBlink property, ErrorBlinkStyle, 738
New Document Wizard, 40
New keyword, 67, 81, 88, 128, 130–131, 226, 314,

413, 580, 592
new keyword

CIL implementation, 227
references, 226

new object pointer, 227
“New-ing” intrinsic data types, 81
NewLine property, System.Environment,

73
newobj CIL instruction, 227
newobj instruction, 227
NewRow() method, DataTable, 808
newVersion attribute, 400–401
next object pointer, 227
NextResult() method, 792
/noconfig option, 39
node images in TreeViews, 741
Nodes property, 741
None, ClassInterfaceType enumeration,

517
nonrectangular images, GDI+, 696, 698
<NonSerialized> attribute, 425
non-Shared data, 141
normalToolStripMenuItem ToolStripMenuItem

member variable, 639
Not operator, 98
NotInheritable keyword, 169–171, 177, 183
NotOverridable keyword, 183–184
nullable data types

overview, 346–347
working with, 347–348

NullReferenceException, delegates, 293–294
Numeric data default value, 79
numerical data types, 81–82
NumericUpDown control, 735–736
Nunit development tool, 61

■O
Object Browser, 344
Object class, 193
object contexts

boundaries, 455
context 0, 455
context-agile, 456
context-bound, 456–457
overview, 441
program example, 457

Object data types, 77, 349
object generations, 230–231

■INDEX 1017

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1017

object graph
definition, 556
garbage collection, 229–230
reachable objects, 229–230
relationships, 557
simple example, 556–557

object keyword, boxing, 321–323
object lifetime

object generations, 230–231
overview, 225
System.GC, 231–232
when heap objects are removed, 226, 228

object oriented programming
self-referencing (this keyword), 135
this keyword, 135–136

Object parameter, 321
Object reference type, 77
object user, 238
Object.Equals() method, 326
objects

defining array of, 113–114
differences from classes and references, 225
setting references to Nothing, 228–229

<Obsolete> attribute, 425, 427
ObsoleteAttribute class, 428
Of T As Class constraint, Generic Type

Parameters, 355
Of T As NameOfBaseClass constraint, Generic

Type Parameters, 355
Of T As NameOfInterface constraint, Generic

Type Parameters, 355
Of T As New constraint, Generic Type

Parameters, 355
Of T As Structure constraint, Generic Type

Parameters, 355
oldVersion attribute, 401
OLE View utility, 503
oleautomation data types, 493
On option, 91
onclick attribute, 846, 854, 860
onclick event, 846
<OnDeserialized> attribute, 570
OnDeserializedAttribute, 566
<OnDeserializing> attribute, 570
OnDeserializingAttribute, 566
OnEnd() method, 605
OnPaint() method, 661
On-prefixed virtual methods, 620
<OnSerialed> attribute, 570
OnSerializedAttribute, 566
<OnSerializing> attribute, 570
OnSerializingAttribute, 567
OnStart() method, 605–606
OO design, 614
Opacity property, Control type, 619
Open() method, 145, 535–537
Open dialog box, 40
open source programming, 60
OpenFileDialog class, System.Windows.Forms

namespace, 612

OpenRead() method, FileInfo class, 535, 537
OpenText() method, FileInfo class, 535, 538
OpenWrite() method, FileInfo class, 535, 537
<operation> subelement, 974
operator constraints, lack of with generics,

356–357
Operator keyword, 325, 330
operator overloading

binary operators, 324–325
cautions, 327
comparison operators, 326–327
description, 323
equality operators, 325–326
operator keyword, 325

Operator property, 909
Option Strict, 91–93, 104
optional arguments, defining, 106–107
Optional keyword, 111
Optional parameter modifier, 104
optional resources, 699
OptionalFieldAttribute, serialization, 567
Or operator, 98
orderInfo string, 723
Ordinal method, DataSet, 806
Ordinal property, ADO.NET DataColumn

object, 806
OrElse operator, 98
Orientation property, TrackBar control, 732
origin point, GDI+, 668
[out, retval] attribute, 506
/out flag, 34, 402
/out option, VB 2005 compiler, 34
/out option, wsdl.exe, 979
<Out> attribute,

System.Runtime.InteropServices
namespace, 515

Output property, HttpResponse Type, 872
<output> element, 975
Output-centric options, of VB 2005 compiler, 34
OutputStream property, HttpResponse Type,

872
overloadable operators, 324
overloading methods, 110–112, 134, 348
Overloads keyword, 111
overridable keyword, 181–182
Overridable method, 236
override keyword, 181–186, 382
overrides keyword, 181, 190
overriding, 182–183

■P
PadLeft() property, String Class Meaning, 83
PadRight() property, String Class Meaning, 83
page coordinates, GDI+ coordinate systems,

665
page directive, 856
Page events, ASP.NET, 874–875
Page member, System.Web.UI.Control, 885
Page object, 920

■INDEX1018

5785chIDX.qxd 3/31/06 5:57 PM Page 1018

Page parent class, 868
Page property, System.Web.UI.Control in

ASP.NET, 885
Page type, 837, 871
Page Type properties, ASP.NET, 868
Page_Load() event, 886
Page_Load event handler, 936
Page_PreInit event, 916
Page-derived type, 873
<pages> element, 913
PageScale property, Graphics class, 660
PageUnit property, custom unit of measure,

GDI+, 667–668
PageUnit property, Graphics class, 660
Paint event, 619, 637, 655, 662, 749
Paint event handler, 650, 757
PaintEventArgs property, 661
PaintEventHandler delegate, 661
Palette method, Image type, 689
Panel control, 734–735
Panel type, 886
<param> elements, 162–163
ParamArray, 104, 108
parameter, interface used as, 254–255
parameter arrays, 108
Parameter modifier, 104
Parameter object, ADO.NET data providers, 769
ParameterInfo class, System.Reflection

namespace, 412
parameterized command objects, ADO.NET, 797
parameterized query, 797
ParameterizedThreadStart delegate, 474, 477, 480
ParameterName member, DbParameter type, 798
ParameterName property, ADO.NET

DbParameter, 798
Parameters, DbCommand, ADO.NET, 790
Parameters member, DbCommand type, 790
Parameters property, IDbCommand, 774
<paramref> code comment, XML Elements, 162
parent class, 168
parent forms in MDI applications, 652
Parent member, System.Web.UI.Control, 885
Parent property, DirectoryInfo class, 529
Parent property, System.Web.UI.Control in

ASP.NET, 885
ParentRelations value, DataRowState

enumeration, 810
parsing values from string data, 83
Partial keyword, 630
partial type modifier, 160–161
partial types, 160–161
passing reference types

by reference, 319
by value, 318–319

password character, 713
PasswordChar property, TextBox, 713
Path, setting, 33
Path type, input/output, System.IO, 528
Path variable, 33
PathData, 679

PathGradientBrush, 679
Peek() method, 277–278, 545
PeekChar() method, BinaryReader class, 547
Pen namespace, System.Drawing, 657
Pen properties, GDI+, 679–680
Pen type, 679
Pens collection, GDI+, 680
Pens namespace, System.Drawing, 657
PeopleCollection class, 340
performance-drive code, 339
<permission> code comment, XML Elements, 162
persistence of cookies, 941
Persistence property, 704
persisting datasets as XML, ADO.NET, 812–813
Person class, 318
Person variable, 195
PetName property, 748
philosophy of .NET, 3
PictureBox class, System.Windows.Forms

namespace, 612
PictureBox component, 702
PictureBox member variable, 692
PictureBox type, 691–693, 746
PictureBox widget, 704, 732
PictureBoxSizeMode enumeration, 692
PictureBoxSizeMode.StretchImage, 692
pillars of OOP, 4

encapsulation, 145–146
inheritance, 146–147, 172
overview, 145
polymorphism, 147–148, 180

PInvoke (platform invocation) services, 6, 235, 494
pixel unit of measure, GDI+, 666
PixelOffsetMode property, Graphics class, 660
placeholder parameter, 797
platform invocation, 494
Platform Invocation Services (PInvoke), 6, 235,

494
plus sign (+) icon, 401
Point class, 266
Point instance, 265
Point namespace, System.Drawing, 657
Point structure, 123, 351
Point type, 657
PointDescription reference type member

variable, 266
PointF namespace, System.Drawing, 657
PointF type, System.Drawing namespace, 657
Point(Of T) types, 351
Points property, 250
polygons, GDI+, 696, 698
polymorphic interface, 147, 167, 185, 189, 247,

867
polymorphic support

abstract classes and MustInherit keyword,
184–185

building polymorphic interface with
MustOverride, 185–189

member shadowing, 189–191
NotOverridable keyword, 183–184

■INDEX 1019

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1019

overridable and overrides keywords, 181–182
overriding with Visual Studio 2005, 182–183
overview, 180–181

polymorphism, 145, 147–148, 188
abstract classes, 184–185
abstract methods, 185–189
method hiding, 189
override keyword, 181
overview, 180
virtual keyword, 181

Pop() member, System.Collections.Stack type,
278

<port> subelements, 975
portType element, WSDL document elements,

974–975
Position, Stream class, System.IO, 541
POST and GET data types, 976
postbacks, 845
PreInit, ASP.NET Page events, 874
PreInit event, 874, 917
Prepare() member, DbCommand type, 790
preprocessor directives, 309–312
PreRender, ASP.NET Page events, 874
PreRender event, Page type, 874
primary module, 368, 383
primary thread, 442, 483
PrimaryKey value, DataRowState enumeration,

810
Print() method, 261
PrintDataSet() method, 811, 821–822
Printer class, 478
PrintFormattedMessage() method, 106
PrintLocalCounter() method, 109
PrintMessage() method, 105
PrintNumbers() method, 478, 481–482, 485, 490
PrintPreviewDialog class,

System.Windows.Forms namespace,
612

PrintState() method, 128
PrintTable() method, 811
PrintTime() method, 489
Priority method, Thread type, 475–477
Priority shared member, Thread type, 475
PriorityBoostEnabled,

System.Diagnostics.Process, 445
PriorityClass, System.Diagnostics.Process, 445
PriorityLevel, ProcessThread type, 448
Private access keyword, 151
private assemblies

configuration, 387–388
description, 386
identity, 386
probing, 386–388

private class member, 259
private data, 150
private key, 392–393
Private String variable, 510
privatePath attribute, 388, 390
<privatePath> element, 397
probing, private assemblies, 386–388

<probing> element, 388
process, definition, 441
Process class, System.Diagnostics namespace,

444
process identifier (PID), 441, 445–446
processes

module set example code, 448
overview, 441
process manipulation example code,

445–446
starting and stopping example code, 449–450
System.Diagnostics namespace, 443
thread examination example code, 446

ProcessExit event, System.AppDomain, 451, 454
ProcessId member, RemotingConfiguration

type, 587
ProcessModule type, System.Diagnostics

namespace, 444
ProcessModuleCollection, System.Diagnostics

namespace, 444
ProcessName, System.Diagnostics.Process, 445
ProcessorAffinity, ProcessThread type, 448
ProcessorCount property, System.Environment,

73
ProcessStartInfo, System.Diagnostics

namespace, 444
ProcessThread, System.Diagnostics namespace,

444
ProcessThreadCollection, System.Diagnostics

namespace, 444
production-level class definition, 150
ProductName property, Application class, 615
ProductVersion property, Application class, 615
Profile property, 948–949, 953
<profile> element, 948
Profile.Address, 952
ProfileCommon type, 953
Program class, 609
Program module, 414, 793, 823
programmatic identifier (ProgID), 494
Project ‰ Add Existing Item menu command,

594
Project Properties window, 51
projectless manner, 863
properties, 152

adding to custom controls, 748–751
internal representation, 154–156

Properties window, 47, 627, 713, 746
Property keyword, 152
.property tag, 378
PropertyInfo class, System.Reflection

namespace, 412
Protected access modifier, 148
protected data, 176
Protected field data, 176
Protected Friend access modifier, 148
protected keyword, 176
Protected subroutines, 176
/protocol option, wsdl.exe, 979
<protocols> element, 977

■INDEX1020

5785chIDX.qxd 3/31/06 5:57 PM Page 1020

Provider attribute, Profile Data, 948
provider factory model, ADO.NET, 778–780
proxies and messages, remoting, 575
Proxy() method, SoapHttpClientProtocol class,

981
proxy class, 980
proxy code using Visual Studio 2005, XML web

services, 983–984
Proxy member, SoapHttpClientProtocol type,

981
proxy.cs file, 983
Public access modifier, 128, 148
public key, 364, 392
Public keyword, 180, 379
public methods, 176
public properties, 176
public String field, 55
.publickey tag, 394
publicKeyToken attribute, 403
PublicNotCreatable property, 510
public/private key data, 392
publisher policy assemblies, 401–402
<publisherPolicy> element, 402
Push() member, System.Collections.Stack type,

278

■Q
Q command, Select Case statement, 793
Query Analyzer, SQL Server, 783
QueryInterface() method, 515
QueryString() method, 848
QueryString property, 870
Queue class, System.Collections, 276
Queue System.Collections class type,

276–278
Queue(Of T) class, System.Collections.Generic,

343
QueueUserWorkItem() method, 490

■R
R method, Color type, 670
RadioButton control, 719–722
RaiseEvent keyword, 501
RangeValidator control, ASP.NET, 907, 909
Rank member, System.Array, 117
RawUrl member, HttpRequest Type, 869
reachability objects, 231
reachable objects, 226
Read() method, 791

BinaryReader class, 547
Console type, 73
Stream class, 541
TextReader, 545

ReadBlock() method, TextReader, 545
reading cookies, 943–944
reading from text file, 544
reading resources, 704–705
ReadLine() method, 73, 482, 545
readOnly attribute, Profile Data, 948
read-only class properties, 157

read-only fields
overview, 159–160
shared read-only fields, 160

ReadOnly keyword, 150, 157
ReadOnly method, DataSet, 806
read-only property, 157
ReadOnly property

ADO.NET DataColumn object, 806
UpDownBase, 736

ReadOnlyCollection(Of T) class,
System.Collections.Generic, 343

ReadToEnd() method, TextReader, System.IO,
545

ReadXml() method, 805, 812
ReadXmlSchema() method, DataSet, 805, 812
ready state, Menu selection in Visual Studio

2005, 646
real proxy, 575
RealProxy base class type, 575
Recent tab, 376
Rectangle image, 693
Rectangle namespace, System.Drawing, 657
Rectangle type, 330, 657
RectangleF type, System.Drawing namespace,

658–659
Redim/Preserve syntax, 116
Redirect() method, 872
redirecting users, ASP.NET, 873
Refactor! development tool, .NET, 61
reference additional assemblies, 50
/reference flag, 36, 38
reference types, 86, 313, 320
references

differences from classes and objects, 225
memory management using, 226–227
new keyword, 226

References icon, Project Scout, 45
reflection, 411, 434
Reflector development tool, .NET, 60
RefreshGrid() function, 936
regasm.exe command-line tool, 521
Region class, System.Drawing namespace, 659
Region type, 657
Register() member, ILease interface, 601
RegisterActivatedClientType() method,

RemotingConfiguration, 587
RegisterChannel() member, ChannelServices

type, 586
registered data provider factories, ADO.NET,

779–780
RegisteredChannels member, ChannelServices

type, 586
RegisteredChannels property, remoting

ChannelServices, 586
RegisterWellKnownClientType() method,

RemotingConfiguration, 587
RegisterWellKnownServiceType() method,

RemotingConfiguration, 584, 586–587
RegistrationServices.RegisterActivatedClientType()

method, 599

■INDEX 1021

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1021

RegularExpressionValidator control, ASP.NET,
907, 909

RejectChanges() member, 805, 808, 816
RejectionHint property, 716
Relational operators, 97
Release() method, 227, 501, 515–516
<remarks> code comment, XML Elements, 162
RemoteMessageObject, 582, 584–585, 589
remoting, 573

alternative hosts, 604
assemblies required, 581–582
asynchronous invocation, 609–610
automatic server-side loading, 604
CAO activation, 579–580
channels, 576
ChannelServices, 586
client-activated, 597, 599
client-side configuration files, 592–593
configuration files, 591
default layers, 577
definition, 573
deploying remote server, 589
deployment, 581–582
determining MBR runtime information,

587–588
dispatcher, 577
example application, 582–584
formatters, 576
garbage collection, 599–602, 604
hosting using IIS, 608–609
HTTP channel, 576
IIS hosting, 604
installing Windows service, 606–607
IPC channel, 576, 590
lease configuration settings, 602–604
lease-based lifetimes, 599–602, 604
marshaling, 578
MBV objects, 593–596
namespaces, 574
.NET Framework architecture, 575
overview, 573
proxies and messages, 575
real proxy, 575
server-side configuration files, 591
singleton WKO activation, 580
singleton WKO and multiple clients, 588
TCP channel, 576, 589–590
transparent proxy, 575
Windows service construction, 604, 606
WKO activation, 579–580
WKO and CAO configuration summary, 581

remoting-centric namespaces, 574
RemotingConfiguration, 587
RemotingFormat, 804, 810
<remove> element, 962
RemoveAll() method, 929, 931, 940
RemoveAt() method, 709, 929
Renew() method, ILease interface, 601
RenewOnCallTime, ILease interface, 601
renewOnCallTime property, 603

Request, ASP.NET HttpApplication members,
927

Request, Page Type properties, ASP.NET, 868
Request object, 848, 869
Request property, 868, 927
Request.Form collection, 849
Request.QueryString() method, 849
request/response cycle, HTTP, 837
RequestType member, HttpRequest Type, 869
RequiredFieldValidator control, ASP.NET,

907–908
resgen.exe utility, 699, 701
/resource flag, 699
resource writers in .NET, 701
ResourceManager, 699, 704–705
ResourceReader method, System.Resources

namespace, 699
ResourceResolve event, System.AppDomain, 451
resources

in .NET, 699, 701
using Visual Studio 2005, 702–704

*.resources file, 701
ResourceWriter method, System.Resources

namespace, 699
Response, ASP.NET HttpApplication members,

927
Response, Page Type properties, ASP.NET, 868
response files, VB 2005, 37
Response objects, 848
Response property, 868, 871, 927
Resume() method, Thread type, 475
*.resx file, 699, 701–702, 742
ResXForm.resx file, 700
ResXResourceReader method,

System.Resources namespace, 699
ResXResourceWriter, 699, 701
Return keyword, 104
return value, interface used as, 255–256
ReturnMessage() method, 582
<returns> code comment, XML Elements, 162
ReturnType property, 417
Reverse() member, System.Array, 117
rich controls, 889
Right property, Control type, 619
root, application, 229
root namespace, 370–371
Root property, DirectoryInfo class, 529
RowError, 808
RowFilter property, 819
RowState, ADO.NET DataRow object, 808
RowState property, 822, 825
RPC protocol, 976
*.rsp files, 37
Run() method, 615
runat attribute, ASP.NET, 858
runat=“server” attribute, 858, 912
runtime, 91, 159
Runtime Callable Wrapper (RCW), 493, 497, 516

exposing COM types as .NET types, 500
hiding low-level COM interfaces, 501

■INDEX1022

5785chIDX.qxd 3/31/06 5:57 PM Page 1022

managing coclass's reference count, 501
overview, 499–500

<runtime> element, 388, 591
runtimes, MFC, VB 6, Java and .NET, 20

■S
S command, Select Case statement, 793
SalesInfoDetails, 985, 989
\Samples subdirectory, .NET Framework 2.0

SDK installation root, 32
satellite assemblies, 368
Save() method, Image type, 689
Save dialog box, 40
SaveAs() method, HttpRequest type, 869
SaveFileDialog class, System.Windows.Forms

namespace, 612
SavingsAccount class, 142, 144
SByte data type, 77
script code, 922
<script> block, 853, 865, 875, 883, 925
<script> scope, 852, 860
scripting languages, 845
ScrollableControl class, 734
ScrollBar class, System.Windows.Forms

namespace, 612
ScrollBars property, 713–714
sealed classes, 176–177, 183
sealing, 170
<see> code comment, XML Elements, 162
<seealso> code comment, XML Elements, 162
Seek() method

BinaryWriter class, 547
Stream class, 541

Select() method, 816, 824
Select Case statement, 793
Select statement, 98, 792
Select/Case statement, 99
SelectCommand member, DbDataAdapter

class, 820
SelectCommand property, 821
SelectedIndex property, DomainUpDown, 736
SelectedItem property, DomainUpDown, 736
SelectionEnd property, 728
SelectionStart property, 728
self-describing assemblies, 364
Semaphore type, System.Threading

Namespace, 474
SendAPersonByValue() method, 318
separation of concerns, 614
<Serializable> attribute, 425, 578, 581, 594, 597,

946, 952
serialization

BinaryFormatter object graph contents, 567
collections, 564–566
customizing using attributes, 570–571
customizing using ISerializable, 568–570
definition, 555
GetObjectData() method, 568–570
IFormatter interface, 559
ISerializable interface, 566

object graph, 556
OnDeserializedAttribute, 566
OnDeserializingAttribute, 566
OnSerializedAttribute, 566
OnSerializingAttribute, 567
OptionalFieldAttribute, 567
overview, 555
persisting user preferences example, 555–556
public and private fields, public properties,

558
Serializable attribute, 557–558
SerializationInfo, 567
System.Runtime.Serialization.Formatters.

Binary namespace, 558
type fidelity, 559–560

SerializationInfo, serialization, 567
Serialize() method, BinaryFormatter class, 425
serializeAs attribute, 948, 952
Serialized attribute, 425
Server, ASP.NET HttpApplication members, 927
Server, Page Type properties, ASP.NET, 868
server assembly, 581
server controls in ASP.NET, 883–885
Server property

Page Type, 868
System.Web.HttpApplication type, 927
System.Web.Services.WebService type, 965
WebService base class, 965

/serverInterface option, wsdl.exe, 979
server-side configuration files, remoting, 591
server-side lease sponsors, 600
server-side script, 847–848
ServerVariables member, HttpRequest Type, 869
Service class, 963, 970
Service Description link, 966
service element, WSDL document elements,

975–976
<service> element, 591
Service.asmx file, 962
ServiceInstaller1 type, 607
ServiceName property, 605, 607
Services applet, 607
session cookies, 941
session data, ASP.NET, 937–938, 940
Session property, 868, 921, 927, 965, 970
session state and web.config, XML web services,

971
session variable, 921
Session_End() event handler, 926, 937
Session_Start() event handler, 926, 937
Session_Start() method, 970
SessionID property, 940
<sessionState> element, 879, 971

overview, 944–945
storing session data in ASP.NET session state

server, 945–946
storing session data in dedicated database,

946
Set scope, 153
set_SocialSecurityNumber() method, 156

■INDEX 1023

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1023

SetDriverName() method, 135
SetLength() method, Stream class, 541
Setter/Getter tokens, 409
setup.exe program, 43
shadowing, 189
Shadows keyword, 190
shallow copy, cloneable objects (ICloneable),

264–267
Shape class, 146, 189, 249
Shape-compatible types, 252
shared assembly, 391
shared constructor, 144
Shared field data, 141
Shared keyword, 69, 139

overview, 140
Shared constructors, 144–145
Shared data, 141–144
Shared methods (and fields), 140–141

shared members, 65, 140
Shared method, 142
Shared properties, 157–158
SharpDevelop IDE, 31

Assembly Scouts, 46
download link, 43–44
features, 44–45
installing or compiling, 43–44
overview, 43–44
Project and Classes Scouts, 45–46
Windows Forms Designers, 47–48

Shift property, KeyEventArgs type, 623
shopping cart application, ASP.NET, 938, 940
ShoppingCart class, 946
Short data type, 77
Short variable, 89, 321
Show() method

Control class, 620
MessageBox, 478, 626

Show All Files button, Solution Explorer, 50
ShowConnectionStatus() method, Program

module, 788
ShowDialog() method, 624, 671, 678, 758
ShowInstructions() method, 794, 800
ShowInTaskbar property, 624, 757
ShowMessageBox property, 911
ShowSummary property, 911
Simple arrays data types, 976
simple controls, 889
Simple Object Access Protocol (SOAP), 955
SimpleComServer, 498, 503
SimpleDataSet project, 806
SimplePI application variable, 970
SimpleRemoteObjectClient application, 586
SimpleRemoteObjectServer application, 587
SimpleRemotingAsm.dll assembly, 582–584
single call object, 580
single call WKO activation, remoting, 580
Single data type, 77
single file code model, ASP.NET, 852
single logical parameter, 108
single-document interface (SDI) application, 613

single-file assemblies, 11–12, 368
single-file page model, 852
SinglePageModel, 866
singleton type, 580
singleton WKO activation, remoting, 580
sink object, callback interfaces, 282–285
*.sitemap file, 894
SiteMapNavigation type, 897
<siteMapNode> element, 895
SiteMapPath widget, 902
SiteMapProvider component, 896
Size member, DbParameter type, 798
Size method, Image type, 689
Size namespace, System.Drawing, 657
Size property, ADO.NET DbParameter, 798
Size type, 657
SizeF namespace, System.Drawing, 657
SkinID member, System.Web.UI.Control, 885
SkinID property, 885, 914
Sleep() method, Thread type, 474
SmallChange property, TrackBar control, 732
SmoothingMode property, Graphics class, 660
sn.exe, strong name utility, 392–393
*.snk file, 392, 520
SOAP bindings, 977–978
*.soap extension, 590
SOAP transmission binding, XML Web Service,

976
SOAP transport of web service, 958
SoapFormatter, 558, 561–562, 576
SoapHttpClientProtocol class, 980–981
soapsuds.exe command-line application, 582
SoapVersion property, WebService base class,

965
SocialSecurityNumber property, 155
solicit/response operation, 974
SomeClass class, 372
Sort() method, 117, 269
sort order of tables, ADO.NET, 816–817
SortCarMakes() method, 985
Sorted property, DomainUpDown, 736
SortedDictionary(Of K, V) class,

System.Collections.Generic, 343
SortedList class, System.Collections, 276
sorting and paging example, ASP.NET, 903
Source button, 853, 859
spawning child forms in MDI applications, 653
Speed property, 748
SpeedUp() method, 128
Splitter class, System.Windows.Forms

namespace, 612
SponsorshipTimeout, ILease interface, 601
SQL command autogenerating, ADO.NET,

825–826
SQL for Fill() and Update(), ADO.NET, data

adapter, 820
SQL Server 2005 Express, 48
SQL Server Enterprise Manager, 784
SqlCommand members, 801
SqlCommand object, 936

■INDEX1024

5785chIDX.qxd 3/31/06 5:57 PM Page 1024

SqlCommand type, 789, 825
SqlConnectionStringBuilder instance, 789
SqlDataAdapter parameter, 823
SqlDataSource type, 900
SqlParameter objects, 800
SqlParameter type, 825
SqlProfileProvider, 947
square brackets, 196, 437
Square type, 331
stack, and value based types, 313
Stack class, System.Collections, 276
Stack System.Collections class type, 276, 278
stack/heap memory transfer, 339
Stack(Of T) class, System.Collections.Generic,

343
StackTrace property, System.Exception, 204, 209
standard dialogs, System.Windows.Forms, 612
Start() method, 445, 450, 475, 478
StartAddress, ProcessThread type, 448
StartCap property, Pen type, 680
“starter kit” application, 49
StartFigure() method, 697
StartHere.htm, 32
starting and stopping a process example code,

449–450
StartPosition property, Form type, 624
StartTime, ProcessThread type, 448
StartTime, System.Diagnostics.Process, 445
startup object, 627
StartupPath property, Application class, 615
state data, multithreaded applications, 472
state management

overview, 883, 919
problems, 919–921

state management techniques, 921
application cache, 932–933
application level state data, 928–929
application shutdown, 932
applications vs. sessions, 927
ASP.NET profile API

acessing profile data programmatically,
948–951

ASPNETDB database, 947
defining user profile within web.config,

948
grouping profile data and persisting

custom objects, 951–953
overview, 946

control state, state management, 924
cookies overview, 941
custom view states, state management, 924
data caching, 933–937
Global.asax file, 925–926
HttpApplication type overview, 919
HttpSessionState members, 940
maintaining session data, 937–938, 940
modifying application data, 931–932
overview, 919
per user data stores, 937–938, 940
persistence of cookies, 941

problems in state management, 919–921
reading cookies, 943–944
role of <sessionState> element

overview, 944–945
storing session data in ASP.NET session

state server, 945–946
storing session data in dedicated

database, 946
session cookies, 941
session data, 937–938, 940
state management overview, 919
state management techniques, 921
view state, state management, 922–924
Web.config, 944–945

State property, DbConnection, ADO.NET, 787
State property, DbConnection type, 787
StateBag type, 924
stateConnectionString attribute, 945
stateful data, XML web services, 970–971
stateful web service, 965
stateless wire protocol, 838, 919
statement continuation character, 95–96
statements (in general), 94
static class properties, 157
static data, methods containing, 109–110
Static keyword, 109–110, 140, 142–144
static web service discovery using DISCO, 957
status bar, 641
StatusBar class, System.Windows.Forms

namespace, 612
StatusBar vs. StatusStrip, 641
StatusCode property, HttpResponse Type, 872
StatusDescription property, HttpResponse

Type, 872
StatusStrip, Visual Studio 2005, 641–644
Step keyword, 100
stored procedures using DbCommand,

ADO.NET, 799–800
Stream class, System.IO, 540–541
StreamReader, 542, 545
StreamWriter, 528
StretchBox() function, 747
String class, 197
string concatenation, 84
string data, parsing values from, 83
String data type, 69, 77, 86, 128, 500
String keyword, 82–83
String member variable, 921
String object, 86
String parameter, 175
String reference type, 77
String type, 82, 593
StringBuilder class, 88
StringBuilder instance, 651
StringCollection,

System.Collections.Specialized, 279
StringDictionary,

System.Collections.Specialized, 279
StringEnumerator,

System.Collections.Specialized, 279

■INDEX 1025

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1025

StringFormat namespace, System.Drawing, 657
StringReader, StringWriter, System.IO, 546
Strings data types, 976
StringTarget() method, 359
StringWriter, 528
strong names in assemblies, 364, 377, 392–393,

395
strongly-typed collection, 339
Structure keyword, 123
Structure type, 69, 123–124
structured exception handling

advantages, 202
application-level exceptions, 212–214
blending VB 6.0 error processing with,

222–223
bugs, description, 201
catching exceptions, 207–208
configuring exception state, 208
custom exceptions, 212–214
entities used in, 202
exceptions, description, 201
finally block, 219
generic exceptions, 206, 217
inner exceptions, 218–219
keywords used, 203
multiple exceptions, 215–216
overview, 201
possible .NET exceptions, 219
rethrowing exceptions, 217–218
simple example, 204–208
System.Exception, 203–208
system-level exceptions, 212
System.Serializable attribute, 214
template, exception, 215
throwing an exception, 206
traditional exception handling, 202
try/catch block, 207–208
typed exceptions, 220
unhandled exceptions, 220
user errors, description, 201
Visual Studio 2005 features, 219, 221–222

structures and enumerations, value based
types, 314

structures in XML web services, 985–986
style sheets, 911
Sub keyword, 103
Sub Main() method, 69, 633
subclasses, 187
subdirectories, 880
Submit button, 846, 910
submitting form data, ASP.NET, 847
subroutines and functions, defining

ByRef parameter modifier, 105–106
ByVal parameter modifier, 104–105
defining optional arguments, 106–107
method calling conventions, 109
methods containing static data, 109–110
overview, 103–104
working with ParamArrays, 108

Subtract() method, 965, 973–974, 982

<summary> code comment, XML Elements,
162

SuppressContent property, HttpResponse Type,
872

Suspend() method, Thread type, 475
Swap() method, 349, 351, 356
swellValue data member, 675
synchronization attribute, 457, 487–488
synchronization-centric types, 484
synchronizing threads, 469–470
synchronous call, 469
synchronous delegate call, 286
SyncLock keyword and synchronization,

484–485
SyncLock scope, 485
SyncLock statement, 932
system data types

data type class hierarchy, 79–81
default values of data types, 79
experimenting with numerical data types,

81–82
members of System.Boolean, 82
members of System.Char, 82
“New-ing” intrinsic data types, 81
overview, 76–77
parsing values from string data, 83
variable declaration and initialization,

78–79
System namespace, 76, 857
System Variables list box, 33
System.Activator class, late binding, 422–423
System.AppDomain class

AssemblyLoad event, 451
AssemblyResolve event, 451
BaseDirectory(), 451
CreateDomain(), 451–452
CreateInstance(), 451
DomainUnload event, 451
ExecuteAssembly(), 451
GetAssemblies(), 451
GetCurrentThreadId(), 451
Load(), 451, 453
ProcessExit event, 451
ResourceResolve event, 451
TypeResolve event, 451
UnhandledException event, 451
Unload(), 451, 454

System.ApplicationException, structured
exception handling, 212–214

System.Array class, 117–118, 269, 271
System.Attribute base class, 424
System.Boolean, 82, 346, 350, 692
System.Char, 82
SystemCLSCompliant() method, 20
System.Collections class types, 275

ArrayList, 276
Hashtable, 276
Queue, 276–278
SortedList, 276
Stack, 276, 278

■INDEX1026

5785chIDX.qxd 3/31/06 5:57 PM Page 1026

System.Collections interfaces, 263
ICollection, 273–274
IComparer, 273
IDictionary, 273–274
IDictionaryEnumerator, 273, 275
IEnumerable, 273
IEnumerator, 273
IHashCodePRovider, 273
IKeyComparer, 273
IList, 273, 275

System.Collections namespace, 102, 262, 273,
322, 339

System.Collections.ArrayList, 337, 340, 952
System.Collections.DictionaryEntry class type,

275
System.Collections.Generic namespace, 337,

352, 357, 595
System.Collections.Generic.List<>

generics, 341
classes

Collection<T>, 343
Comparer<T>, 343
Dictionary<K, V>, 343
LinkedLIst<T>, 343
List<T>, 343–345
List<T> example code, 344–345
Queue<T>, 343
ReadOnlyCollectionBase<T>, 343
SortedDictionary<K, V>, 343
Stack<T>, 343

nongeneric namespaces, 343–345
System.Collections.Generic.List(Of T) class,

341–342
System.Collections.Queue type, 277
System.Collections.Specialized, 279
System.Collections.Stack type, 278
SystemColors namespace, System.Drawing,

656
System.ComponentModel

BrowsableAttribute, 752
CategoryAttribute, 752
DefaultEventAttribute, 753
DefaultPropertyAttribute, 753
DefaultValueAttribute, 753
DescriptionAttribute, 752

System.ComponentModel.Component class,
618

System.Configuration namespace, 404, 777
System.Configuration.dll assembly, 780
System.Configuration.Install.Installer base

class, 607
System.Console class

basic input and output with, 73–74
formatting output, 74
.NET string formatting flags, 75–76
overview, 73

System.ContextBoundObject, 456
System.Convert, 94
System.Data, ADO.NET, 772
System.Data namespace, 767, 771

System.Data.Common namespace, 767, 771,
778, 782, 821

System.Data.Common.DataTableMapping
types, 822

System.Data.Common.DbProviderFactory, 778
System.Data.Design namespaces, ADO.NET-

centric, 772
System.Data.OleDb namespace, 770
System.Data.Sql namespaces, 772
System.Data.SqlClient namespace, 771, 821,

855, 857
System.Data.SqlTypes namespaces, ADO.NET-

centric, 772
System.Delegate base class, 288
System.Diagnostics namespace, 444
<system.diagnostics> element, 389
System.Diagnostics.Process, 444–445
SystemDirectory property,

System.Environment, 73
System.dll assembly, 613
System.Drawing namespace, 621, 672, 683, 706

core types, 656–657
GDI+, 656
PointF type, 657
RectangleF type, 658–659
Region class, 659
utility types, 657

System.Drawing.Brush, 683
System.Drawing.Color structure, 669
System.Drawing.Color type, 732
System.Drawing.Drawing2D namespace, 656,

679, 682, 685, 697
core classes, 679
Pen types, 679–681

System.Drawing.Font, 671–672
System.Drawing.Graphics class

methods, 659
Paint sessions, 661–662
properties, 660

System.Drawing.Graphics object, 657
System.Drawing.Image, 689–690
System.Drawing.Imaging, 656
System.Drawing.Point type, 657
System.Drawing.Printing namespace, 656
System.Drawing.Text namespace, 656, 676
System.Enum class, 120–123
System.Environment class, 69–73, 312
System.EventHandler, 617, 858
System.Exception, 926

Data property, 204, 210–211
HelpLink property, 204, 209–210
InnerException property, 204
Message property, 204, 214
StackTrace property, 204, 209
TargetSite property, 204, 208

System.GC, 231–232,
System.Guid, 266–268
System.IComparable interface, 268
SystemIcons namespace, System.Drawing, 656
System.IO namespace, 371

■INDEX 1027

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1027

System.MarshalByRefObject, 578–579, 583, 618
System.MulticastDelegate class, 288–289, 465
System.Nullable(Of T) generic type, 337
System.Object class, 80, 618, 661, Form

Inheritance
GetType() method, 413
overriding System.Object.Equals(), 196–197
overriding System.Object.GetHashCode(),

197
overriding System.Object.ToString(), 196
overview, 193–196
shared members of, 198–199
testing modified person class, 197–198

System.Object types, 339
System.Object variable, 321
System.Object.Equals() method, 196–197,

325–326
System.Object.Finalize() method, 225, 599
System.Object.GetHashCode() method, 197
System.Object.GetType() method, 114
System.Object.ToString() method, 196
System.OverflowException, 90
SystemPens namespace, System.Drawing,

657
System.Random member variable, 140
System.Reflection namespace, 407, 412, 418,

507
System.Reflection.Assembly class type, 386
System.Reflection.MethodInfo types, 414
System.Resources namespace, 699
System.Runtime.Remoting namespace, 574
<system.runtime.remoting> element, 591
System.Runtime.Remoting.Activation

namespace, 574
System.Runtime.Remoting.Channels

namespace, 574
System.Runtime.Remoting.Channels.

ChannelServices type, 585
System.Runtime.Remoting.Channels.Http

namespace, 574
System.Runtime.Remoting.Channels.Ipc

namespace, 574
System.Runtime.Remoting.Channels.Tcp

namespace, 574, 590
System.Runtime.Remoting.Contexts

namespace, 487, 574
System.Runtime.Remoting.dll assembly, 574,

583–584
System.Runtime.Remoting.Lifetime

namespace, 574
System.Runtime.Remoting.Lifetime.ILease

interface, 600
System.Runtime.Remoting.Messaging

namespace, 472, 574
System.Runtime.Remoting.Messaging.IMessage

interface, 575
System.Runtime.Remoting.Metadata

namespace, 574
System.Runtime.Remoting.MetadataServices

namespace, 574

System.Runtime.Remoting.Metadata.
W3cXsd2001 namespace, 574

System.Runtime.Remoting.Proxies namespace,
574

System.Runtime.Remoting.Services
namespace, 574

System.Serializable attribute, 214
System.String attribute, 948
System.String class, 88
System.String type, 86

basic String manipulation, 84
and equality, 86
overview, 83–84
string concatenation (and “Newline”

constant), 84–86
System.Text.StringBuilder type, 88–89

System.SystemException, structured exception
handling, 212

System.Text namespace, 88
System.Threading namespace, 463, 465, 473,

478, 484, 488–489, 932, 937
Interlocked type, 474
Monitor type, 474
Mutex type, 474
ParameterizedThreadStart delegate, 474, 477,

480
Semaphore type, 474
Thread type, 474
ThreadPool type, 474, 489–490
ThreadPriority enum, 474
ThreadStart delegate, 474, 477–478
ThreadState enum, 474
Timer type, 474
TimerCallback delegate, 474, 488

System.Threading.Monitor type, 486
System.Threading.Timer type, 488
System.Type class, 412–413

FindMembers() method, 413
GetConstructors() method, 412
GetEvents() method, 412
GetFields() method, 412
GetInterfaces() method, 412
GetMembers() method, 412
GetMethods() method, 412
GetNestedTypes() method, 412

System.ValueType class, 80, 249, 314
System.Web namespace, ASP.NET 2.0, 851
<system.web> element, 878, 913, 948
System.Web.Caching namespace, ASP.NET, 851
System.Web.Caching.Cache object, 932
System.Web.Hosting namespace, 851
System.Web.HttpApplication class, 926–927
System.Web.Management namespace, 851
System.Web.Profile namespace, 851
System.Web.Security namespace, 851
System.Web.Services namespace, 958
System.Web.Services.Configuration namespace,

958
System.Web.Services.Description namespace,

958

■INDEX1028

5785chIDX.qxd 3/31/06 5:57 PM Page 1028

System.Web.Services.Discovery namespace, 958
System.Web.Services.dll assembly, 983
System.Web.Services.Protocols namespace, 958
System.Web.Services.WebService class, 963, 970
System.Web.ServicesXML web services

namespaces, 958
System.Web.Service.WebService class, 965
System.Web.SessionState namespace, 851
System.Web.UI namespace, 851
System.Web.UI.Control class, 885, 923–924
System.Web.UI.HtmlControls namespace, 851
System.Web.UI.Page class, 868, 873, 922, 927,

937
System.Web.UI.TemplateControl class, 868
System.Web.UI.WebControls namespace, 851,

883–884
System.Web.UI.WebControls.Panel class, 886
System.Web.UI.WebControls.WebControl.

WebControl class, 884
System.Web.UI.x namespace, 851
System.Windows.Forms namespace, 35, 246,

611–612, 670, 707, 711, 719, 756, 884
System.Windows.Forms.ContainerControl

class, 618
System.Windows.Forms.Control class, 618–620
System.Windows.Forms.Control type, 707
System.Windows.Forms.dll assembly, 375, 613
System.Windows.Forms.Form class, 618
System.Windows.Forms.ScrollableControl, 618
System.Windows.Forms.ScrollableControl class,

618
System.Windows.Forms.TreeNode object, 740
System.Windows.Forms.WebBrowser widget,

743
System.Xml.Serialization namespace, 986

■T
tab order for controls, 726
TabControl control, 730–731
TabIndex property, 619, 712, 889
TabIndex value, 726
Table, ADO.NET DataRow object, 808
Table method, DataSet, 806
Table property, ADO.NET DataColumn object,

806
TableLayoutPanel class, 612, 763–764
TableMappings property, 775, 822
TableName property, 821
Tables property, DataSet, 804
TabOrder property, 726
TabStop property, 619, 726
Target property,

System.MulticastDelegate/System
Delegate, 289

TargetNamespace attribute, 966
TargetSite property, System.Exception, 204, 208
TCP channel, 576
tcp:// channel qualifier, 590
TCP channel, remoting, 576, 589–590
TcpChannel class, 576

TellFortune() method, 964
template, exception code expansion, 215
temporary cookie, 941
temporary object variable, 57
TestApp class, 36
TestApp.exe application, 34, 39
TestApp.rsp file, 38
TestApp.vb file, 35
text based Windows.Forms coding, 612
Text property, 646, 694, 712, 871, 888, 891

Control type, 619
Label widget, 873
UpDownBase, 736

TextAlign property
Button, 717
ButtonBase, 717
TextBox, 713
UpDownBase, 736

TextBox control, 713–714, 884
TextChanged event, 734, 885
TextPad development editor, 39

configuring for VB 2005, 39–42
executing programs, 42
predefined run commands, 42

TextPadTest.vb, 41
TextReader, System.IO, 545
TextRenderingHint property, Graphics class,

660
TextureBrush, System.Drawing.Brush, 686
TextWriter, System.IO, 543
Theme, Page Type properties, ASP.NET, 868
Theme property, Page Type, 868
themes, 851, 911
this keyword, 135–136
ThousandsSeparator property,

NumericUpDown, 736
ThousandsSeparatorHexadecimal property,

NumericUpDown, 736
Thread class, 463
Thread type

Abort() method, 475
CurrentContext property, 474
CurrentThread property, 474–475
GetDomain(), GetDomainD() methods, 474
Interrupt() method, 475
IsAlive method, 475
IsBackground method, 475
Join() method, 475
Name method, 475–476
Priority method, 475–477
Resume() method, 475
Sleep() method, 474
Start() method, 475
Suspend() method, 475
ThreadState method, 475

Thread type, System.Threading Namespace, 474
Thread.CurrentThread property, 463, 475
ThreadExit event, 615
Thread.GetDomain() method, 463–464
threading primitives, 464

■INDEX 1029

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1029

ThreadPool class type, 489
ThreadPool type, System.Threading

Namespace, 474, 489–490
ThreadPool.QueueUserWorkItem() method,

489
ThreadPriority property, 476
ThreadPriority type, System.Threading

Namespace, 474
threads, 228

example code, 446
hyperthreading, 443
multithreading, 442
overview, 442
suspended during garbage collection, 228
Thread Local Storage (TLS), 443
time slice, 443

Threads, System.Diagnostics.Process, 445
ThreadStart delegate, 474, 477–478, 480
ThreeDCircle type, 190
ThreeState property, 719
Tick event, 749
Tick handler, 677
TickFrequency property, TrackBar control, 732
TickStyle property, TrackBar control, 732
time slice, 443
Timeout() method, SoapHttpClientProtocol

class, 981
Timeout property, 940
Timer, Visual Studio 2005, 644–646
Timer class, 473–474, 488, 746, 749
Timer event handler, 645
Timer object, 674
TimerCallback delegate, System.Threading

namespace, 474, 488
Title member, System.Console, 73
<title> tags, 842, 961
/tlb flag, 521
tlbimp.exe utility, 506–507, 511, 514
To keyword, 114
ToArray() method, 277
tokens, 309, 715
ToolBar class, System.Windows.Forms

namespace, 612
ToolBar components in ToolStrips, 647–648
ToolBarButton types, 648
<ToolboxBitmap> attribute, 755
Tools Scout, 47
ToolStrip class, System.Windows.Forms

namespace, 612
ToolStripButton types, 648
ToolStripComboBox element, MenuStrip, 634
ToolStripDropDownButton type, 641
toolStripDropDownButtonDateTime member,

644
ToolStripItemCollection, MenuStrip, 634
ToolStripMenuItem class, 635, 638
ToolStripMenuItem element, MenuStrip, 634
ToolStripProgressBar type, 641
ToolStrips in Visual Studio 2005, 647–648
ToolStripSeparator element, MenuStrip, 634

ToolStripSplitButton type, 641
ToolStripStatusLabel type, 641
toolStripStatusLabelClock member variable,

645
toolStripStatusLabelMenuState member

variable, 646
ToolStripTextBox element, MenuStrip, 634
ToolTip control, 729
ToolTip property, WebControl base class,

889
tooManyCharactersErrorProvider, 738
Top property, Control type, 619
ToString() method, 121, 194–197, 266
TotalProcessorTime, ProcessThread type, 448
ToUpper() method, 86
Trace, ASP.NET <%@Page%> directive attribute,

856
Trace, Page Type properties, ASP.NET, 868
Trace attribute, 856, 861
trace element, Web.config, ASP.NET, 879
Trace property, 861, 868
<trace> element, web.config file, 879
tracing support, 861
TrackBar control, 732–733
transaction object, 769, 773
Transform() member, 659
Transform property, Graphics class, 660
Translate() member, 659
TranslateTransform() method, 666, 668
transparent proxy, 575
tree view control, Assembly Scout utility, 46
TreeView class, System.Windows.Forms

namespace, 612
TreeView control, 738–741, 896
TreeViewEventArgs object, 741
Trim() property, String Class Meaning, 84
triple tick (''') code comment notations, 162
Try/Catch logic, 252
TurboBoost() method, 374
type, determining, 192–193
type aliases, 372–374
type attribute, 844, 952
Type class, 413
type definition, 408
Type Libraries node, 503
type parameters, 337
type reference, 408
type reflection

AssemblyRef, 410
description, 411
example metadata, 409–410
external private assemblies, 418–419
fields and properties, 414
implemented interfaces, 415
metadata and type reflection, 407–408
method parameters and return values,

417–418
methods, 414
other metadata, 415
overview, 407

■INDEX1030

5785chIDX.qxd 3/31/06 5:57 PM Page 1030

shared assemblies, 420–422
TypeDef, 408
TypeRef, 408
User Strings, 411

typed exceptions, 220
TypeDef, 408
typeof operator, 414
TypeRef, 408
TypeResolve event, System.AppDomain, 451
types, five categories of, 16
<types> element, 973

■U
U command, Select Case statement,

793
/u option, gacutil.exe, 395
UBound() helper function, 114
ufo.cs file, 383
ufo.netmodule binary, 384
UInteger data type, 77
ULong data type, 77
unbound generic type, 354
unbound type parameters, 354
unboxing, 309, 323, 337–338
Unchanged value, DataRowState enumeration,

809
undefined value, 347
under bar (_) token, 95
underscore-prefixed interface, 511
unhandled exceptions, structured exception

handling, 220
UnhandledException event,

System.AppDomain, 451
UninstallSqlState.sql file, 946
Union() member, 659
Unique method, DataSet, 806
Unique property, ADO.NET DataColumn

object, 806
unit of measure, GDI+, 666
Universal Description, Discovery, and

Integration (UDDI) server, 957,
989–990

Unload, ASP.NET Page events, 875
Unload() method, System.AppDomain, 451
Unload event, Page type, 875
Unlock() member, HttpApplicationState type,

929
unmanaged code, 493
unmanaged resources, 225, 231, 235–242
Unregister() method, ILease interface, 601
UnregisterChannel() method, ChannelServices,

586
Until clause, 101
Update() method, 775, 820, 822, 825, 833
UpdateCarInventory() method, 935
UpdateCarPetName() method, 824
UpdateColor() function, 733
UpdateCommand member, DbDataAdapter

class, 820
UpdateCommand property, 823–824

updating
applications using shared assemblies, 397–398
records, ADO.NET, 796
rows, ADO.NET, 818
using data adapter objects, ADO.NET,

822–825
UpDown control, 735–736
UpDownAlign property, UpDownBase, 736
UpDownBase, 736
Url() method, SoapHttpClientProtocol class,

981
url property, 593, 599, 743
UseMnemonic property, 712
user errors, 201
user interface in HTML, 843–844
User Strings token, 411
UserAgent() method, SoapHttpClientProtocol

class, 981
UserControl Test Container, 750
UserControls, 892
UserHostAddress member, HttpRequest Type,

869
UserHostName member, HttpRequest Type, 869
UserMessageDialog instance, 759
UserName property, System.Environment, 73
UserShoppingCart class, 938
UserTheme session variable, 917
UseThisObject() method, 322
Using keyword, 239, 381
[uuid] attribute, IDL, 504

■V
Validated property, Control class, 737
ValidateInput() method, HttpRequest class, 869
validating form data, ASP.NET, 846–847
Validating property, Control, 737
validation controls, ASP.NET

CompareValidator control, 907, 909
CustomValidator control, 907
RangeValidator control, 907, 909
RegularExpressionValidator control, 907, 909
RequiredFieldValidator control, 907–908
ValidationSummary control, 907, 910

validation schemes, 842
ValidationExpression property, 909
ValidationSummary control, ASP.NET, 907, 910
ValidationSummary widget, 910
value and reference types, conversion, 321–323
Value member, DbParameter type, 798
Value members, 347
Value property, 347, 732, 736, 798, 891
value types and reference types, 313–317,

320–321
<value> code comment, XML Elements, 162
value-based semantics, 196
value-based types, 313
variant-compliant data types, 493
VB 2005 class type

allocating objects with New keyword, 130–131
overview, 127–129

■INDEX 1031

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1031

VB 2005 client application, building, 511–512
VB 2005 compiler flags, 35
VB 2005 console application, 50
VB 6.0 COM server

building more interesting server
exposing inner object, 510–511
overview, 509
supporting additional COM interface, 510

VB 6.0 Object Browser, 503
VB COM server, observing generated IDL for,

503–504
*.vb file, 33, 35–36, 371–372, 701
VB6 language deficiencies, 4
vbc.exe compiler, 31, 69

command-line flags, 34–35
compile parameters, 34–35
configuration, 33
default response file (vbc.rsp), 38–39
GAC utility, gacutil.exe, 33
mscorlib.dll, 35–36
multiple external assemblies, 37
multiple source files, 36–37
/noconfig command-line flag, 38–39
/nostdlib command-line flag, 35–36
Path, setting, 33
/reference command-line flag, 36
referencing external assemblies, using

keyword, 35–36
response files, 37–38
wildcard character, 37

vbdotnet8.zip download, 39
“VB.NET(6)” link option, 39
VbNetSnapIn.dll assembly, 435, 438
*.vbproj file, 863
VBScript support, 845
<VehicleDescription> attribute, 430
VehicleDescriptionAttribute class, 433
.ver directive, 377
.ver token, 394
version number of assemblies, 364
VerticalResolution method, Image type, 689
View In Browser menu option, 855
view objects, ADO.NET, 819
view state, 888, 922–924
VIEWSTATE field, 922–923
__VIEWSTATE form field, 850
ViewState property, 924, 929
Vil development tool, 61
virtual directory, 839
virtual keyword, description, 181
virtual methods, 147, 181–182, 185
Visible member, System.Web.UI.Control, 885
Visible property, 619, 735, 885
VisibleClipBounds property, Graphics class, 660
Visual Basic 6.0 compatibility assembly, 58–60
Visual Basic 2005 benefits and features,

overview, 7–8
Visual Basic 2005 Express, 48
Visual Basic .NET integration with C#, 380,

382–383, 385

Visual Basic snap-in example, 436–437
Visual J# 2005 Express, 48
Visual Studio 2005

additions available, 50
automated coding support, 52–53
Class View, 51
ContextMenuStrip controls, 633, 636–638
deprecated controls, 629
designer.cs form file, 630
form files in a project, 630
forms designer, 627
FxCop, 60
generating resources, 702–704
handling events, 631
images in ToolStrips, 648–649
integrated Help system, 57–58
Lutz Roeder’s Reflector for .NET, 60
MDI applications, 651
menu items in controls, 638
Menu selection prompts, 646
Menu selection ready state, 646
menu systems, 641, 643–644
MenuStrip controls, 633–634, 636
NAnt, 60
NDoc, 61
.NET 1.x controls, 629
Nunit, 61
Object Browser, 51
Object Test Bench, 57
overview, 49, 627
Program class, 632
project configuration (Project Properties),

50–51
project templates, 627
properties window, 629
Solution Explorer, 50
StatusStrip, 641–644
Timer, 644–646
Toolbox, 627
ToolStrip containers, 649
ToolStripMenuItem types, 638
ToolStrips, 647–648
Vil, 61
Visual Class Designer, 53–56

Visual Web Developer 2005 Express, 48
/vpath: option, 840

■W
WaitCallback delegate, 489
WaitOne() method, 470
WaitReason, ProcessThread type, 448
web applications in ASP.NET

configuration inheritance, 880
HttpApplication type overview, 883
overview, 883
state management overview, 883
Web.config, 877–880

web controls in ASP.NET, 883–885
web page code model, ASP.NET, 852–856
web paradigm, 850

■INDEX1032

5785chIDX.qxd 3/31/06 5:57 PM Page 1032

web parts, 851
web server, 608
Web Server, .NET platform SDK, 960
web service client architecture, 956
Web Service Description Language (WSDL),

955, 957, 971
document elements

binding element, 975
message element, 974
portType element, 974–975
service element, 975–976
types element, 973

name clashes, 970
Web services interoperability (WSI), 967
Web Site template, 863
web-centric primer, 849
Web.config, ASP.NET

appSetting element, 879
authentication element, 879
authorization element, 879
compilation element, 879
connectionStrings element, 879
customErrors element, 879–880
globalization element, 879
sessionState element, 879, 944–945
trace element, 879

web.config file, 837, 861, 864, 877–880, 919, 946,
949

defining user profile within, 948
web.config files, 851
WebControl base class, 888–889
WebControl controls, 743–744
WebDev.WebServer.exe utility, 840–841, 850,

855, 960–961, 980
<WebMethod> attribute, 425, 960, 965, 968,

970–971
WebMethodAttribute, XML

System.Web.Services namespace, 959
WebMethodAttribute member,

System.Web.Services namespace, 959
WebMethodAttribute type, 968
WebService class, 964–965
WebService member, System.Web.Services

namespace, 959
<WebService> attribute, 963, 965–966, 968
WebServiceAttribute, XML System.Web.Services

namespace, 959, 965
WebServiceAttribute type, 966
<WebServiceBinding> attribute, 963, 967–968
WebServiceBindingAttribute member,

System.Web.Services namespace, 959
website administration utility, ASP.NET, 881–882
website directory structure, ASP.NET, 862–863
Web.sitemap file, 895
WelcomeString, 703
well-known object (WKO), 579

activation, remoting, 579–580
types, 597

<wellknown> element, 591, 599
WellKnownObjectMode enumeration, 584

WellKnownServiceTypeEntry types, 588
Wend keyword, 101
where keyword, generics, 355
While clause, 101
widening conversions, 90
Widening keyword, 329, 332
Width method, Image type, 689
Width property, 619, 680, 889
wildcard character (*), 37
Win 32 binaries (*.dll or *.exe), 10
Win32 API threading primitives, 465
Win32 file header in assemblies, 365
Win32 thread scheduler, 463
Windows Application project, 710
Windows Control Library project, 750
Windows Distributed interNet Applications

Architecture (DNA) deficiencies, 5
Windows forms controls, 707
Windows forms snap-in example, 437–438
Windows objects and Graphics objects, GDI+, 663
Windows Open dialog box, 437
Windows service installation, 606–607
Windows XP Home Edition and ASP.NET,

840–841
Windows.Forms coding

+= operator, 616
Application class, 615
ApplicationExit event, 615–616
coding the main window, 613–614
Form class, 613
Form object inheritance chain, 617
keyboard input, 620, 623
mouse events, 621–622
overview, 612
reflecting static attributes, 615
responding to events, 620–621, 623
separating Main() method from main

window, 614
System.EventHandler, 617

WindowState property, 624, Form type
windowToolStripMenuItem member variable, 652
winexe compile target, 613
With construct, 102, 131
With keyword, 102
WithEvents keyword, 631
Wizard definition, 905
Wizard web control, 904
wizards, 4, 830–833
worker thread, 442
world coordinates, 665
Wrap property, DomainUpDown, 736
Write() method

BinaryWriter class, 547
Console type, 73
HttpResponse, 872

WriteFile() method, 872
WriteLine() method

Console class, 73–74, 84, 138, 265, 338, 384,
467, 470

TextWriter, 543

■INDEX 1033

Find it faster at http://superindex.apress.com
/

5785chIDX.qxd 3/31/06 5:57 PM Page 1033

write-only class properties, 157
WriteOnly keyword, 150, 157
write-only property, 157
WriteXml() method, DataSet, 805, 812
WriteXmlSchema() method, DataSet, 805, 812
writing to text file, 544
wsdl.exe utility, 957, 972, 979

/appsettingurlkey flag, 979
creating a client-side proxy, 980
generating server-side code, 979
/language flag, 979–980
/namespace flag, 979
/out flag, 979
/protocol flag, 979–980
/serverInterface flag, 979

WSI basic profile (BP 1.1) conformance, XML
web services, 968

WsiProfiles, 959, 967–968

■X
X or x string format, .NET, 75
X property, MouseEventArgs type, 621
Xcopy deployment, 386
XML

and ADO.NET, 767
/doc compiler flag, 163
documentation elements, 162
documenting VB 2005 source code via

overview, 161–164
transforming XML code comments via

NDoc, 164
source code documentation, 161–162

*.xml file, 163
XML System.Web.Services namespace, 959
XML web services

<%@WebService%> directive, 959
ADO.NET datasets using web methods, 986
arrays using web methods, 985
asynchronous invocation, wsdl.exe utility,

982–983
autogenerated test page, 961
benefits, 955–956
client architecture, 956
client-side representation, 988–989
custom test page, 961–962
custom types using web methods, 984
default constructor, wsdl.exe utility, 981
DefaultWsdlHelpGenerator.aspx, 961–962
Description property, 966
description service, description, 957
DISCO UDDI directory, 957
discovery service, description, 957
dynamic web service discovery using DISCO,

957
example application, wsdl.exe utility, 983
example web service, 963–964
HTTP GET, 976

HTTP POST, 976
HTTP SOAP, 976
HTTP transport, 958
HTTP use, 955–956
IIS deployment, 961
machine.config file, 977
manual web service coding, 959
Name property, 966
Namespace property, 966
namespaces, 958
overview, 309, 955
vs. proprietary wire protocols, 955–956
proxy code using Visual Studio 2005, 983–984
role, 955–956
session state and web.config, 971
SOAP body, 977
SOAP envelope, 977–978
SOAP transport, 958
stateful data, 970–971
static web service discovery using DISCO,

957
structures using web methods, 985–986
synchronous invocation, wsdl.exe utility, 982
System.Web.Services namespace, 958
transport protocal, description, 957
UDDI and Visual Studio .NET, 990
UDDI discovery, 957, 989
using Visual Studio.NET, 962–963
viewing SOAP messages, 978
Web Service Description Language (WSDL),

971
web.config and session state, 971
web.config file, 977
WebDev.WebServer.exe, 960
WebMethod attribute, 959, 968
WebService base class, 965
WebServiceAttribute, 965
WebServiceBinding attribute, 967
Windows Forms clients, 987
wire protocols, 976
WSDL description, 957
WSDL document, 973
WSDL document elements, 972–976
WSDL first approach, 972
WSDL name clashes, 970
WSDL Service Description, 961
wsdl.exe utility, 978–983
WSI basic profile (BP 1.1) conformance, 968

XML web services namespaces, 958
XmlAttributeAttribute, XmlSerializer, 564
XmlElementAttribute, XmlSerializer, 564
XmlEnumAttribute, XmlSerializer, 564
xmlns attributes, 842, 972
XmlRootAttribute, XmlSerializer, 564
XmlSerializer, 558, 562–564, 985
XmlTextAttribute, XmlSerializer, 564
XmlTypeAttribute, XmlSerializer, 564

■INDEX1034

5785chIDX.qxd 3/31/06 5:57 PM Page 1034

	Pro VB 2005 and the .NET 2.0 Platform
	Contents
	PART 1 Introducing Visual Basic 2005 and the .NET Platform
	CHAPTER 1 The Philosophy of .NET
	CHAPTER 2 Building Visual Basic 2005 Applications

	PART 2 Visual Basic 2005 Language Fundamentals
	CHAPTER 3 VB 2005 Programming Constructs, Part I
	CHAPTER 4 VB 2005 Programming Constructs, Part II

	PART 3 Core Object-Oriented Programming Techniques
	CHAPTER 5 Defining Encapsulated Class Types.
	CHAPTER 6 Understanding Inheritance and Polymorphism
	CHAPTER 7 Understanding Structured Exception Handling
	CHAPTER 8 Understanding Object Lifetime

	PART 4 Advanced Object-Oriented Programming Techniques
	CHAPTER 9 Working with Interfaces and Collections
	CHAPTER 10 Callback Interfaces, Delegates, and Events
	CHAPTER 11 Advanced VB 2005 Programming Constructs.
	CHAPTER 12 Understanding Generics and Nullable Data Types

	PART 5 Programming with .NET Assemblies
	CHAPTER 13 Introducing .NET Assemblies.
	CHAPTER 14 Type Reflection, Late Binding, and Attribute-based Programming.
	CHAPTER 15 Processes, AppDomains, Contexts, and CLR Hosts.
	CHAPTER 16 Building Multithreaded Applications
	CHAPTER 17 COM and .NET Interoperability

	PART 6 Exploring the .NET Base Class Libraries
	CHAPTER 18 The System.IO Namespace
	CHAPTER 19 Understanding Object Serialization.
	CHAPTER 20 The .NET Remoting Layer.
	CHAPTER 21 Building a Better Window with System.Windows.Forms
	CHAPTER 22 Rendering Graphical Data with GDI+
	CHAPTER 23 Programming with Windows Forms Controls
	CHAPTER 24 Database Access with ADO.NET

	PART 7 Web Applications and XML Web Services
	CHAPTER 25 Building ASP.NET 2.0 Web Pages
	CHAPTER 26 ASP.NET 2.0 Web Controls, Themes, and Master Pages
	CHAPTER 27 ASP.NET 2.0 State Management Techniques
	CHAPTER 28 Understanding XML Web Services.

	INDEX

