Programmer to Programmer™

Professional

VB 2005

Bill Evjen, Rockford Lhotka, Billy Hollis, Bill Sheldon, Kent Sharkey,
Tim McCarthy, Rama Ramachandran

Updates, source code, and Wrox technical support at www.wrox.com

Professional VB 2005

Professional VB 2005

Bill Evjen, Billy Hollis, Rockford Lhotka,
Tim McCarthy, Rama Ramachandran,
Kent Sharkey, Bill Sheldon

WILEY
Wiley Publishing, Inc.

Professional VB 2005

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-7645-7536-5
ISBN-10: 0-7645-7536-8

Manufactured in the United States of America
10987654321

1B/SW/RQ/QV/IN

Library of Congress Cataloging-in-Publication Data:

Professional Visual Basic 2005 / Bill Evjen ... [et al.].
p.cm.

Includes index.

ISBN-13: 978-0-7645-7536-5 (paper /website)

ISBN-10: 0-7645-7536-8 (paper / website)

1. Microsoft Visual BASIC. 2. BASIC (Computer program language) 3. Microsoft .NET.
I. Evjen, Bill.

QA76.73.B3P7485 2005

005.2'768 — dc22

2005012585

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUIT-
ABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

www.wiley.com

About the Authors

Bill Evjen is an active proponent of NET technologies and community-based learning initiatives for
.NET. He has been actively involved with .NET since the first bits were released in 2000. In the same
year, Bill founded the St. Louis .NET User Group (www. st1lnet.org), one of the world’s first NET user
groups. Bill is also the founder and the executive director of the International .NET Association (INETA —
www . ineta. org), which represents more than 375,000 members worldwide.

Based in St. Louis, Missouri, Bill is an acclaimed author and speaker on ASPNET and XML Web Services.
He has written or coauthored more than 10 books, including Professional C# 2005 and Professional ASPNET
2.0 (Wrox), XML Web Services for ASP.NET, ASP.NET Professional Secrets (Wiley), and more.

Bill is a technical director for Reuters, the international news and financial services company, and he
travels the world speaking to major financial institutions about the future of the IT industry. He gradu-
ated from Western Washington University in Bellingham, Washington, with a Russian language degree.
When he isn’t tinkering on the computer, he can usually be found at his summer house in Toivakka,
Finland. You can reach Bill at evjen@yahoo. com.

To Kalle — Welcome to the family!

Billy Hollis is coauthor of the first book ever published on Visual Basic .NET, VB.NET Programming on
the Public Beta (Wrox Press) as well as numerous other books and articles on .NET. Billy is a Microsoft
regional director and an MVP, and he was selected as one of the original NET “Software Legends.” He
writes a monthly column for MSDN Online and is heavily involved in training, consultation, and soft-
ware development on the Microsoft .NET platform, focusing on smart-client development and commer-
cial packages. He frequently speaks at industry conferences such as Microsoft’s Professional Developer
Conference, TechEd, and COMDES. Billy is a member of the INETA speakers’ bureau and speaks at user
group meetings all over the United States.

Rockford Lhotka is the principal technology evangelist for Magenic Technologies (www.magenic. com),
a company focused on delivering business value through applied technology and one of the nation’s
premiere Microsoft Gold Certified Partners. Rockford is the author of several books, including Expert
Visual Basic .NET and C# Business Objects. He is a Microsoft Software Legend, regional director, MVP, and
INETA speaker. He is a columnist for MSDN Online and contributing author for Visual Studio Magazine,
and he regularly presents at major conferences around the world —including Microsoft PDC, Tech Ed,
VS Live! and VS Connections. For more information go to www. lhotka.net.

For my Mom and Dad, whose love and guidance have been invaluable in my life. Thank you!

Tim McCarthy is a principal engineer at InterKnowlogy, where he architects and builds highly scalable
n-tier web and smart-client applications utilizing the latest Microsoft platforms and technologies. Tim’s
expertise covers a wide range of Microsoft technologies, including, but not limited to: NET Framework
(ASP.NET/Smart Clients/Web Services), Active Directory, UDDI, SQL Server, Windows SharePoint
Services /SharePoint Portal Server 2003, and Service Oriented Architecture (SOA) applications. Tim has
worked as a project technical lead /member as well as in a technical consulting role for several Fortune
500 companies. He has held the Microsoft Certified Solution Developer (MCSD) and Microsoft Certified
Trainer (MCT) certifications for several years and was one of the first wave of developers to earn the
Microsoft Certified Application Developer (MCAD) for .NET and MCSD for .NET certifications. He also
holds the Microsoft Certified Database Administrator certification for SQL Server 2000.

Tim has been an author and technical reviewer for several books from Wrox Press and most recently was
a lead author on Professional VB.NET 2003. His other books include Professional Commerce Server 2000,
and Professional ADO 2.5 Programming. Tim is currently working as a lead author on the next edition of
Professional VB.NET. Tim has written numerous articles for the Developer NET Update newsletter, devel-
oped packaged presentations for MSDN, and has written a whitepaper for Microsoft on using COM+
services in .NET. He has also written articles for SQL Server Magazine and Windows & .NET Magazine.

Tim has spoken at technical conferences around the world and several San Diego area user groups (includ-
ing both .NET and SQL Server groups) and he has been a regular speaker at the Microsoft Developer Days
conference in San Diego for the last several years. Tim has also delivered MSDN webcasts, many of which

were repeat requests from Microsoft. Tim also teaches custom .NET classes to companies in need of expert

NET mentoring and training.

Tim holds a B.B.A. in marketing from the Illinois Institute of Technology as well as an M.B.A. in market-
ing from National University. Before becoming an application developer, Tim was an officer in the United
States Marine Corps. Tim’s passion for .NET is only surpassed by his passion for Notre Dame athletics.

I dedicate this book to everybody in my family who supports me. Jasmine, some day you will be writing
books, too!

Rama Ramachandran is a software architect at DKR Capital, a major hedge fund company in Stamford,
Connecticut. He is a Microsoft Certified Solutions Developer and Site-Builder and has excelled in
designing and developing WinForms and Web applications using .NET, ASP.NET, Visual Basic and SQL
Server. Rama has more than 15 years” experience with all facets of the software development lifecycle
and has cowritten Introducing .NET, Professional ASP Data Access, Professional Visual InterDev Programming
(all Wrox Press), and four books on classic Visual Basic.

Rama is also the “ASP Pro” at Devx. com, where he maintains ASP-related columns. He teaches .NET
Development and Web Development for Fairfield University’s master’s degree in software engineering,
and at the University of Connecticut. You can reach Rama at ramabeena@hotmail.com.

This book is dedicated to my wife, Beena, and our children, Ashish and Amit. They make my life whole.
I'm great at writing about technology but get tongue-tied trying to say how much I love and care about
the three of you. I am grateful to our prayer-answering God for your laughing, mischievous, adoring
lives. Thanks for being there, Beens. I love you.

Kent Sharkey. Born in an igloo and raised by wolves in a strange realm called “Manitoba,” Kent
Sharkey wandered the wilderness until found by a group of kind technical evangelists and migrated to
Redmond. He now is content strategist (yeah, he doesn’t know what he’s supposed to do either) for
ASP.NET content on MSDN. When not answering email he dreams of sleeping, complains to everyone
around (come to think of it, he does that while answering email as well), and attempts to keep his house-
mates (Babi, Cica, and Squirrel) happy.

As with all else, to Margaret. Thank you.

Bill Sheldon is a software architect and engineer originally from Baltimore, Maryland. Holding a degree
in Computer Science from the Illinois Institute of Technology (IIT) and a Microsoft Certified Solution
Developer (MCSD) qualification, Bill has been employed as an engineer since resigning his commission
with the U.S. Navy following the first Gulf War. Bill is involved with the San Diego .NET User Group
and writes for Windows and .NET magazines, including the twice monthly Developer .NET Update email
newsletter. He is also a frequent online presenter for MSDN and speaks at live events such as Microsoft
Developer Days. He lives with his wife, Tracie, in Southern California, where he is employed as a princi-
pal engineer with InterKnowlogy. You can reach Bill at bills@interknowlogy.com.

Credits

Acquisitions Editor Project Coordinator
Katie Mohr Ryan Steffen
Development Editors Graphics and Production Specialists
Eileen Bien Calabro Carrie A. Foster
Ami Frank Sullivan Lauren Goddard
Denny Hager
Technical Editor Barbara Moore
Brian Patterson Lynsey Osborn
Alicia South
Production Editor
Pamela Hanley Quality Control Technicians
Laura Albert
Copy Editor John Greenough
Foxxe Editorial Services Leeann Harney
Jessica Kramer
Editorial Manager Brian H. Walls
Mary Beth Wakefield
Proofreading
Vice President & Executive Group Publisher TECHBOOKS Production Services
Richard Swadley
Indexing
Vice President and Publisher Broccoli Information Management

Joseph B. Wikert

Contents

Introduction XXV
Chapter 1: What Is Microsoft .NET? 1
What Is .NET? 1
A Broad and Deep Platform for the Future 2
What’s Wrong with DNA and COM? 2
An Overview of the .NET Framework 3
The Common Language Runtime 4
Key Design Goals 5
Metadata 7
Multiple-Language Integration and Support 7

A Common Type System 8
Namespaces 8
The Next Layer—The .NET Class Framework 8
What Is in the .NET Class Framework? 9
User and Program Interfaces 10
Windows Forms 11
Web Forms 11
Console Applications 12
Web Services 12
XML as the .NET Metalanguage 12
The Role of COM 13
No Internal Use of COM 13
Some Things Never Change . . . 13
.NET Drives Changes in Visual Basic 14
How .NET Affects You 14
A Spectrum of Programming Models 14
Reducing Barriers to Internet Development 15
Libraries of Prewritten Functionality 15
Easier Deployment 15
The Future of .NET 16
Major Differences in .NET 2.0 16
Summary 17

Contents

Chapter 2: Introducing Visual Basic 2005 and Visual Studio 2005 19
Visual Studio .NET — Startup 20
Visual Studio .NET 21

The Solution Explorer 22
My Project 23
References 24
Assembly Information Screen 25
The New Code Window 26
The Properties Window 29
Dynamic Help 30
Working with Visual Basic 2005 31
Form Properties Set in Code 32
Enhancing the Sample Application 34
Adding a Control and Event Handler 34
Customizing the Code 35
Build Configurations 40
Building Applications 43
Useful Features of Visual Studio 46
The Task List 46
The Command Window 47
The Server Explorer 47
Recording and Using Macros in Visual Studio 2005 49
Summary 50

Chapter 3: Variables and Type 51
Differences of Value and Reference Types 52
Value Types (Structures) 54

Primitive Types 54
Explicit Conversions 63
Compiler Options 64
Performing Explicit Conversions 66
Reference Types (Classes) 68
The Object Class 68
The String Class 70
The DBNull Class and IsDBNull() Function 72
Arrays 73
Collections 76
Parameter Passing 78
Boxing 79

Contents

Retired Keywords and Methods 80
Elements of Visual Basic 6.0 Removed in .NET 80
Summary 81
Chapter 4: Object Syntax Introduction 83
Object-Oriented Terminology 84
Objects, Classes, and Instances 84
Composition of an Object 85
Working with Objects 88
Object Declaration and Instantiation 88
Object References 90
Dereferencing Objects 90
Early versus Late Binding 90
Creating Classes 94
Creating Basic Classes 94
Constructor Methods 114
Termination and Cleanup 115
Advanced Concepts 116
Overloading Methods 116
Overloading Constructor Methods 119
Shared Methods, Variables, and Events 120
Operator Overloading 125
Delegates 128
Classes versus Components 133
Summary 134
Chapter 5: Inheritance and Interfaces 137
Inheritance 138
Implementing Inheritance 140
Multiple Interfaces 187
Object Interfaces 187
Secondary Interfaces 189
Summary 195
Chapter 6: The Common Language Runtime 197
Elements of a .NET Application 198
Modules 198
Assemblies 199
Types 200

Xi

Contents

Versioning and Deployment 201
Better Support for Versioning 201
Better Deployment 202

Cross-Language Integration 203
The Common Type System 203
Metadata 204
Better Support for Metadata 205
Attributes 206
The Reflection API 208

IL Disassembler 209

Memory Management 210
Traditional “Garbage Collection” 211
Faster Memory Allocation for Objects 218
Garbage Collector Optimizations 220

Summary 222

Chapter 7: Applying Objects and Components 223

Abstraction 223

Encapsulation 227

Polymorphism 230
Method Signatures 230
Implementing Polymorphism 230

Inheritance 241
When to Use Inheritance 242
Inheritance and Multiple Interfaces 246
How Deep to Go? 252
Fragile Base Class Issue 254

Summary 257

Chapter 8: Generics 259

Using Generics 260
Generic Types 261
Generic Methods 265

Creating Generics 267
Generic Types 267
Generic Methods 275
Constraints 276
Generics and Late Binding 280

Summary 281

Xii

Contents

Chapter 9: Namespaces 283
What Is a Namespace? 284
Namespaces and References 287
Common Namespaces 289
Importing and Aliasing Namespaces 291
Importing Namespaces 292
Referencing Namespaces in ASPNET 293
Aliasing Namespaces 294
Creating Your Own Namespaces 295
My 298
My.Application 299
My.Computer 303
My.Forms 307
My.Resources 308
My.User 308
My.WebServices 308
Summary 309
Chapter 10: Exception Handling and Debugging 311
A Brief Review of Error Handling in VB6 312
Exceptions in .NET 314
Important Properties and Methods of an Exception 314
How Exceptions Differ from the Err Object in VB6 315
Structured-Exception-Handling Keywords in VB.NET 315
The Try, Catch, and Finally Keywords 316
The Throw Keyword 318
Throwing a New Exception 319
The Exit Try Statement 320
Nested Try Structures 321
The Message Property 323
The InnerException and TargetSite Properties 323
Interoperability with VB6-Style Error Handling 328
Error Logging 329
Writing to Trace Files 333
Analyzing Problems and Measuring Performance via the Trace Class 335
Summary 338

Xiii

Contents

Chapter 11: Data Access with ADO.NET 2.0 341
ADO.NET 2.0 Architecture Enhancements 342
ADO.NET Components 343
.NET Data Providers 344
Connection Object 344
Command Object 345
Using Stored Procedures with Command Objects 346
DataReader Object 350
Executing Commands Asynchronously 352
DataAdapter Objects 354
SQL Server .NET Data Provider 358
OLE DB .NET Data Provider 359
The DataSet Component 359
DataTableCollection 359
DataRelationCollection 360
ExtendedProperties 360
Creating and Using DataSet Objects 361
ADO.NET DataTable Objects 363
ADO.NET 2.0 Enhancements to the DataSet and DataTable 364
Working with the Common Provider Model 366
Connection Pooling Enhancements in ADO.NET 2.0 369
Building a Data Access Component 369
Constructors 370
Properties 371
Stored Procedure XML Structure 372
Methods 373
Using DataSet Objects to Bind to DataGrids 385
Summary 388
Chapter 12: Using XML in Visual Basic 2005 389
An Introduction to XML 391
XML Serialization 392
Source Code Style Attributes 397
System.Xml Document Support 399
XML Stream-Style Parsers 399
Writing an XML Stream 400
Reading an XML Stream 405
Using the MemoryStream Object 414
Document Object Model (DOM) 418

Xiv

Contents

XSLT Transforms 424
XSLT Transforming between XML Standards 429
Using XML in Visual Basic 2005 430
Other Classes and Interfaces in System.Xml.Xsl 432

ADO.NET 432
ADO.NET and SQL Server 2000’s Built-In XML Features 434
XML and SQL Server 2005 436

Summary 437

Chapter 13: Security in the .NET Framework 2.0 439

Security Concepts and Definitions 440

Permissions in the System.Security.Permissions Namespace 442
Code Access Permissions 445
Role-Based Permissions 446
Identity Permissions 449

Managing Code Access Permissions 449

Managing Security Policy 454
Figuring the Minimum Permissions Required for Your Application 465
Using Visual Studio to Figure Minimum Permissions 467
Security Tools 470
Dealing with Exceptions Using the SecurityException Class 471

Cryptography Basics 473
Hash Algorithms 474

Summary 495

Chapter 14: Windows Forms 497

The Importance of Windows Forms 498

Summary of Changes in Windows Forms version 2.0 498
Default Instances of Forms 498
Changes in Existing Controls 499
New Controls 500
Replacements for Older Windows Forms Controls 501

The System.Windows.Forms Namespace 502

Using Forms 502
Showing Forms via Sub Main 503
Setting the Startup Form 503
Startup Location 504
Form Borders 505
Always on Top — The TopMost Property 505
Owned Forms 505

XV

Contents

Making Forms Transparent and Translucent
Visual Inheritance
Scrollable Forms

Forms at Runtime

Controls

Control Tab Order

Control Arrays

Automatic Resizing and Positioning of Controls
FlowLayoutPanel Control

TableLayoutPanel Control

Extender Provider Controls

Advanced Capabilities for Data Entry
Validating Data Entry

Toolbars and the New ToolStrip Control

Menus

Common Dialogs

Drag and Drop

Panel and GroupBox Container Controls
Summary of Standard Windows.Forms Controls
Retired Controls

Using ActiveX Controls

Other Handy Programming Tips

MDI Forms

An MDI Example in VB.NET

Dialog Forms

Summary

Chapter 15: Windows Forms Advanced Features

507
508
509
509
510
511
511
513
517
520
520
523
526
528
531
533
535
538
539
543
543
543
544
545
547
549

551

Packaging Logic in Visual Controls
Developing Custom Controls in .NET

Inherit from an Existing Control
Build a Composite Control
Write a Control from Scratch

Inheriting from an Existing Control

Overview of the Process

Adding Additional Logic to a Custom Control

Other Useful Attributes

Defining a Custom Event for the Inherited Control

Creating a CheckedListBox that Limits the Number of Selected Items

The Control and UserControl Base Classes

Xvi

The Control Class
The UserControl Class

552
552
553
553
554
554
554
555
559
560
560
564
564
565

Contents

A Composite UserControl 566
Creating a Composite UserControl 567
How Does Resize Work? 568
Setting a Minimum Size 568
Exposing Properties of Subcontrols 568
Stepping Through the Example 569

Building a Control from Scratch 572
Painting a Custom Control with GDI+ 573

Attaching an Icon for the Toolbox 579

Embedding Controls in Other Controls 580

Summary 582

Chapter 16: Building Web Applications 583

A Web Site in Action 583
Setting Up the Environment 584
The HelloWorld Web Form 584

The Anatomy of a Web Form 590
Single-File Page Model 590
Code-Behind Page Model 591
The Template for Presentation 593

A More Complex Example 594

The Processing Flow of ASP.NET Web Forms 596

The Controls Available in Web Forms 598
The Concept of Server-Side Controls 598
HTML Server Controls 600
ASP.NET Server Controls 602
Validation Controls 604
User Controls 605

Events in Web Forms 606
The Web Form’s Lifecycle 607
Event Categories 608

Web Forms versus ASP 609

Transferring Control among Web Forms 611

A Final Example 611

Summary 625

Chapter 17: ASP.NET 2.0 Advanced Features 627

Applications and Pages 627
Cross-Page Posting 628
ASP.NET Advanced Compilation 632

XVii

Contents

Master Pages 634
Creating a Master Page 635
Creating the Content Page 637
Declaring the Master Page Application-Wide 641
Providing Default Content in Your Master Page 642

Data-Driven Applications 642
Using the GridView and SqlDataSource Controls 643
Allowing for Editing and Deleting of Records with the GridView 648
Don’t Stop There! 652

Navigation 653
Using the SiteMapPath Server Control 654
Menu Server Control 656
The TreeView Server Control 657

Membership and Role Management 661

Personalization 665

Configuring ASP.NET 666

Summary 668

Chapter 18: Assemblies 671

Assemblies 672

The Manifest 673
The ldentity Section 675
Referenced Assemblies 677

Assemblies and Deployment 678
Application-Private Assemblies 678
Shared Assemblies 679

Versioning Issues 681
Application Isolation 681
Side-by-Side Execution 682
Self-Describing 682
Version Policies 682
Configuration Files 684

Dynamic Loading of Assemblies 687
The Assembly Class 687
Putting Assemblies to Work 689

Summary 689

Chapter 19: Deployment 691

Application Deployment 692

Why Is Deployment Easier in .NET? 692

Xviii

Contents

XCOPY Deployment 694
Using the Windows Installer 694
Visual Studio .NET Deployment Projects 695
Project Templates 696
Creating a Deployment Project 698
Walkthroughs 698
Modifying the Deployment Project 710
Project Properties 711
The File System Editor 714
The Registry Editor 719
The File Types Editor 722
The User Interface Editor 723
The Custom Actions Editor 726
The Launch Conditions Editor 729
Building 732
Internet Deployment of Windows Applications 733
No-Touch Deployment 733
ClickOnce Deployment 735
Custom Deployment Options 745
Summary 745
Chapter 20: Working with Classic COM and Interfaces 747
Classic COM 748
COM and .NET in Practice 749
A Legacy Component 749
The .NET Application 752
Trying It All Out 754
Using TIbImp Directly 755
Late Binding 756
ActiveX Controls 761
A Legacy ActiveX Control 761

A .NET Application, Again 763
Trying It All Out, Again 766
Using .NET Components in the COM World 766
A .NET Component 767
RegAsm 769
TIbExp 772
Summary 772

Xix

Contents

Chapter 21: Enterprise Services

773

Transactions
The ACID Test
Transactional Components
An Example of Transactions
Other Aspects of Transactions
Just-In-Time
Object Pooling
Holding Things Up
Queued Components
An Example of Queued Components

Transactions with Queued Components

Summary

Chapter 22: Threading

774
774
775
776
791
791
792
792
792
793
799
801

803

What Is a Thread?
Processes, AppDomains, and Threads
Thread Scheduling
Thread Safety and Thread Affinity
When to Use Threads
Designing a Background Task
Interactive Applications
Implementing Threading
A Quick Tour
Threading Options
Manually Creating a Thread
Shared Data
Avoid Sharing Data
Sharing Data with Synchronization
Synchronization Objects
Summary

Chapter 23: XML Web Services

803
805
807
809
809
811
811
812
812
815
820
822
823
825
827
834

835

Introduction to Web Services
Early Architectural Designs
The Network Angle
Application Development
Merging the Two with the Web
The Foundations of Web Services

XX

835
837
837
837
837
838

Contents

The Problems 839
The Other Players 840
What All the Foundations Missed 841
Building a Web Service 844
A Realistic Example 848
Using Visual Studio 2005 to Build Web Services 848
Visual Basic and System.Web.Services 858
System.Web.Services Namespace 858
System.Web.Services.Description Namespace 859
System.Web.Services.Discovery Namespace 860
System.Web.Services.Protocols Namespace 860
Architecting with Web Services 861
Why Web Services? 861
How This All Fits Together 862
State Management for XML Web Services 862
Using DNS As a Model 863
Security in Web Services 866
The Secure Sockets Layer 867
Directory-Level Security 867
Other Types of Security 868
The Downside 868
Security 868
State 868
Transactions 868
Speed and Connectivity 868
Where We Go from Here 869
Summary 869
Chapter 24: Remoting 871
Remoting Overview 872
Basic Terminology 872
SingleCall, Singleton, and Activated Objects 875
Implementing Remoting 879
A Simple Example 879
Using IIS As a Remoting Host 890
Using Activator.GetObject 894
Interface-Based Design 895
Using Generated Proxies 897
Summary 898

XXi

Contents

Chapter 25: Windows Services

899

Example Windows Services
Characteristics of a Windows Service
Interacting with Windows Services
Creating a Windows Service
The .NET Framework Classes for Windows Services
Other Types of Windows Services
Creating a Windows Service with Visual Basic
Creating a Counter Monitor Service
Installing the Service
Starting the Service
Uninstalling the Service
Monitoring a Performance Counter
Creating a Performance Counter
Integrating the Counter into the Service
Changing the Value in the Performance Counter
Communicating with the Service
The ServiceController Class
Integrating a ServiceController into the Example
More About ServiceController
Custom Commands
Passing Strings to a Service
Creating a File Watcher
Writing Events Using an Eventlog
Creating a FileSystemWatcher
Debugging the Service
To Debug a Service
Summary

Chapter 26: Network Programming

899
9200
901
902
902
905
906
907
910
910
911
912
912
914
914
915
916
917
919
919
921
922
922
923
927
927
929

931

Getting Your Message Across: Protocols, Addresses, and Ports
Addresses and Names
Ports: They’re Not Just for Ships
Firewalls: Can’t Live with Them, Can’t Live without Them
The System.Net Namespace
Web Requests (and Responses)
Simplifying Common Web Requests with WebClient
Creating Your Own Web Server with HttpListener
Summary

XXii

931
933
934
934
935
935
952
955
963

Contents

Chapter 27: Visual Basic and the Internet

965

Downloading Internet Resources
Sockets
Building the Application
Creating Conversation Windows
Sending Messages
Shutting Down the Application
Using Internet Explorer in Your Applications
Windows Forms and HTML— No Problem!
Summary

Appendix A: The Visual Basic Compiler

965
969
970
972
980
986
9290
991
1000

1001

Appendix B: Visual Basic Resources

1017

Index

1019

XXiii

Introduction

In 2002, Visual Basic took the biggest leap in innovation since it was released, with the introduction of
Visual Basic .NET (as it was renamed). After more than a decade, Visual Basic was overdue for a major
overhaul. But .NET goes beyond an overhaul. It changes almost every aspect of software development.
From integrating Internet functionality to creating object-oriented frameworks, Visual Basic .NET chal-
lenged traditional VB developers to learn dramatic new concepts and techniques.

2005 brings us an enhanced Visual Basic language (renamed this time Visual Basic 2005). New features
have been added that cement this language’s position as a true object-oriented language. With Visual
Basic 2005, it is still going to be a challenge for the traditional VB6 developers to learn, but it is an easy
road and books like this are here to help you on your path.

First, it’s necessary to learn the differences between Visual Basic 2005 and the older versions. In some
cases, the same functionality is implemented in a different way. This was not done arbitrarily — there are
good reasons for the changes. But you must be prepared to unlearn old habits and form new ones.

Next, you must be open to the new concepts. Full object orientation, new component techniques, new
visual tools for both local and Internet interfaces —all of these and more must become part of your skill
set to effectively develop applications in Visual Basic.

In this book, we cover Visual Basic virtually from start to finish. We begin by looking at the .NET
Framework and end by looking at the best practices for deploying .NET applications. In between, we
look at everything from database access to integration with other technologies such as XML, along with
investigating the new features in detail. You will see that Visual Basic 2005 has emerged as a powerful
yet easy-to-use language that will allow you to target the Internet just as easily as the desktop.

The Importance of Visual Basic

Early in the adoption cycle of NET, Microsoft’s new language, C#, got the lion’s share of attention. But
as .NET adoption has increased, Visual Basic’s continuing importance has also been apparent. Microsoft
has publicly stated that they consider Visual Basic the language of choice for applications where devel-
oper productivity is one of the highest priorities.

Future development of Visual Basic is emphasizing capabilities that enable access to the whole expanse
of the NET Framework in the most productive way, while C# development is emphasizing the experi-
ence of writing code. That fits the traditional role of Visual Basic as the language developers use in the
real world to create business applications as quickly as possible.

This difference is more than academic. One of the most important advantages of the NET Framework is
that it allows applications to be written with dramatically less code. In the world of business applica-
tions, the goal is to concentrate on writing business logic and to eliminate routine coding tasks as much
as possible. The value in this new world is not in churning out lots of code —it is in writing robust, use-
ful applications with as little code as possible.

Introduction

Visual Basic is an excellent fit for this type of development, which makes up the bulk of software devel-
opment in today’s economy. And it will grow to be an even better fit as it is refined and evolved for
exactly that purpose.

Who Is This Book For?

This book is written to help experienced developers learn about Visual Basic 2005. From those who are
just starting the transition from earlier versions to those who have used Visual Basic for a while and
need to gain a deeper understanding, this book provides a discussion on the most common program-
ming tasks and concepts you need.

Professional Visual Basic 2005 offers a wide-ranging presentation of Visual Basic concepts, but the NET
Framework is so large and comprehensive that no single book can cover it all. The most important area
in which this book does not attempt to be complete is Web development. While chapters discussing the
basics of browser-based programming in Visual Basic are included, professional Web developers should
instead refer to Professional ASPNET 2.0 (Wrox Press).

What You Need to Use This Book

Although, it is possible to create Visual Basic applications using the command-line tools contained in
the NET Framework SDK, you will need Visual Studio 2005 (Professional or higher), which includes the
NET Framework SDK, to get the most out of this book. You may use Visual Studio .NET 2002 or Visual
Studio 2003 instead, but there may be cases where much of the lessons will just not work because func-
tionalities and capabilities will not be available in these older versions.

In addition:

Q Some chapters make use of SQL Server 2005. However, you can also run the example code using
Microsoft’s SQL Express, which ships with Visual Studio 2005.

Q Several chapters make use of Internet Information Services (IIS). IIS ships with Windows 2003
Server, Windows 2000 Server, Windows 2000 Professional, and Windows XP, although it is not
installed by default.

O Chapter 21 makes use of MSMQ to work with queued transactions. MSMQ ships with Windows
2003 Server, Windows 2000 Server, Windows 2000 Professional, and Windows XP, although it is
not installed by default.

What Does This Book Cover?

Chapter 1, “What Is Microsoft .NET?” — This chapter explains the importance of .NET and just how
much it changes application development. You gain an understanding of why you need .NET by looking
at what’s wrong with the current development technologies, including COM and the DNA architectural
model. Then, we look at how .NET corrects the drawbacks by using the common language runtime (CLR).

XXVi

Introduction

Chapter 2, “Introducing Visual Basic 2005 and Visual Studio 2005” — This chapter provides a first look
at a Visual Basic application. As we develop this application, you'll take a tour of some of the new fea-
tures of Visual Studio 2005.

Chapter 3, “Variables and Types” — This chapter introduces many of the types commonly used in
Visual Basic. The main goal of this chapter is to familiarize you with value and reference types and to
help those with a background in VB6 understand some of the key differences in how variables are
defined in Visual Basic.

Chapter 4, “Object Syntax Introduction” — This is the first of three chapters that explore object-
oriented programming in Visual Basic. This chapter will define objects, classes, instances, encapsulation,
abstraction, polymorphism, and inheritance.

Chapter 5, “Inheritance and Interfaces” — This chapter examines inheritance and how it can be used
within Visual Basic. We create simple and abstract base classes and demonstrate how to create base
classes from which other classes can be derived.

Chapter 6, “The Common Language Runtime” — This chapter examines the core of the .NET platform,
the common language runtime (CLR). The CLR is responsible for managing the execution of code com-
piled for the .NET platform. We cover versioning and deployment, memory management, cross-language
integration, metadata, and the IL Disassembler.

Chapter 7, “Applying Objects and Components” — This chapter puts the theory of Chapters 4 and 5
into practice. The four defining object-oriented concepts (abstraction, encapsulation, polymorphism,
inheritance) are discussed, and we explain how these concepts can be applied in design and develop-
ment to create effective object-oriented applications.

Chapter 8, “Generics” — This chapter focuses on one of the biggest enhancements to Visual Basic in this
version — generics. Generics enables you to make a generic collection that is still strongly typed — pro-
viding fewer chances for errors, increasing performance, and giving you Intellisense features when you
are working with your collections.

Chapter 9, “Namespaces” — This chapter introduces namespaces and their hierarchical structure. An
explanation of namespaces and some common ones are given. In addition, you learn how to create new
namespaces, and how to import and alias existing namespaces within projects. This chapter also looks at
the new My namespace that was made available in Visual Basic 2005.

Chapter 10, “Exception Handling and Debugging” — This chapter covers how error handling and
debugging work in Visual Basic 2005 by discussing the CLR exception handler and the new Try . ..
Catch...Finally structure. We also look at error and trace logging, and how you can use these meth-
ods to obtain feedback on how your program is working.

Chapter 11, “Data Access with ADO.NET 2.0” — This chapter focuses on what you will need to know
about the ADO.NET object model to be able to build flexible, fast, and scalable data access objects and
applications. The evolution of ADO into ADO.NET is explored, and the main objects in ADO.NET that
you need to understand in order to build data access into your .NET applications are explained.

XXVii

Introduction

Chapter 12, “Using XML in Visual Basic 2005” — This chapter presents the features of the .NET
Framework that facilitate the generation and manipulation of XML. We describe the .NET Framework’s
XML-related namespaces, and a subset of the classes exposed by these namespaces is examined in detail.
This chapter also touches on a set of technologies that utilize XML, specifically ADO.NET and SQL Server.

Chapter 13, “Security in the .NET Framework 2.0” — This chapter examines the additional tools and func-
tionality with regard to the security provided by .NET. Caspol . exe and Permview. exe, which assist in
establishing and maintaining security policies, are discussed. The System. Security.Permissions
namespace is looked at, and we discuss how it relates to managing permissions. Finally, we examine the
System.Security.Cryptography namespace and run through some code to demonstrate the capabilities
of this namespace.

Chapter 14, “Windows Forms” — This chapter looks at Windows Forms, concentrating primarily on
forms and built-in controls. What is new and what has been changed from the previous versions of
Visual Basic are discussed, along with the System.Windows . Forms namespace.

Chapter 15, “Windows Forms Advanced Features” — This chapter looks at some of the more advanced
features that are available to you in building your Windows Forms applications.

Chapter 16, “Building Web Applications” — This chapter explores Web forms and how you can benefit
from their use. Using progressively more complex examples, this chapter explains how .NET provides
the power of Rapid Application Development (normally associated with Windows applications) for the
development of Web applications.

Chapter 17, “ASP.NET 2.0 Advanced Features” — This chapter looks at a lot of the new and advanced
features that have been made available to you with the latest release of ASP.NET 2.0. Examples of items
covered include cross-page posting, master pages, site navigation, personalization, and more.

Chapter 18, “Assemblies” — This chapter examines assemblies and their use within the CLR. The struc-
ture of an assembly, what it contains, and the information it contains is examined.

Chapter 19, “Deployment” — This chapter examines the manifest of the assembly, and its role in deploy-
ment will be looked at. We also look at what Visual Studio 2005 and the CLR have to offer you when you
come to deploy your applications.

Chapter 20, “Working with Classic COM and Interfaces” — This chapter discusses COM and .NET
component interoperability, and what tools are provided to help link the two technologies.

Chapter 21, “Enterprise Services” — This chapter explores the .NET component services —in particular,
transaction processing and queued components.

Chapter 22, “Threading” — This chapter explores threading and explains how the various objects in
the NET Framework enable any of its consumers to develop multithreaded applications. We examine
how threads can be created, how they relate to processes, and the differences between multitasking and
multithreading.

Chapter 23, “XML Web Services” — This chapter looks at how to create and consume Web services

using Visual Basic. The abstract classes provided by the CLR to set up and work with Web services are
discussed, as are some of the technologies that support Web services.

xxviii

Introduction

Chapter 24, “Remoting” — This chapter takes a detailed look at how to use remoting in classic three-tier
application design. We look at the basic architecture of remoting and build a basic server and client that
uses a singleton object for answering client requests into the business tier. We then look at how to use
serialization to return more complex objects from the server to the client, and how to use the call context
for passing extra data from the client to the server along with each call without having to change the
object model.

Chapter 25, “Windows Services” — This chapter examines how Visual Basic is used in the production of
Windows Services. The creation, installation, running, and debugging of Windows Services are covered.

Chapter 26, “Network Programming” — This chapter takes a look at working with some of the network-
ing protocols that are available to you in your development and how to incorporate a wider network
into the functionality of your applications.

Chapter 27, “Visual Basic and the Internet” — This chapter looks at how to download resources from
the Web, how to design your own communication protocols, and how to reuse the Web browser control
in your applications.

Appendix A, “The Visual Basic Compiler” — This appendix looks at the Visual Basic compiler vbc . exe
and the functionality it provides.

Appendix B, “Visual Basic Resources” — This appendix provides a short list of VB resources that are
out there for you.

Conventions

We have used a number of different styles of text and layout in this book to help differentiate between
the different kinds of information. Here are examples of the styles we use and an explanation of what
they mean:

Bullets appear indented, with each new bullet marked as follows:

Q New and important words are in italics.

QO Words that appear on the screen in menus such as File or Window are in a similar font to the
one that you see on screen.

Q Keyboard strokes are shown like this: Ctrl-A.

Q If you see something like Object, you'll know that it’s a filename, object name, or function
name.

Code in a gray box is new, important, pertinent code:

Dim objMyClass as New MyClass("Hello World")
Debug.WriteLine (objMyClass.ToString)

XXiX

Introduction

Sometimes you'll see code in a mixture of styles, such as:
Dim objVar as Object
objVar = Me
CType (objVar, Form).Text = "New Dialog Title Text"

The code with a white background is code we’ve already looked at and that we don’t wish to examine
further.

Advice, hints, and background information come in an italicized, indented paragraph like this.

Important pieces of information come in shaded boxes like this.

Customer Support

We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn’t like, and what you think we can do better next time. You can send us your
comments, either by returning the reply card in the back of the book or by email to feedback@wrox . com.
Please be sure to mention the book title in your message.

How to Download the Sample Code for the Book

When you visit the Wrox site, www . wrox . com, simply locate the title through our Search facility or by
using one of the title lists. Click Download in the Code column or click Download Code on the book’s
detail page.

The files that are available for download from our site have been archived using WinZip. When you have
saved the attachments to a folder on your hard drive, you need to extract the files using a decompression
program such as WinZip or PKUnzip. When you extract the files, the code is usually extracted into chap-
ter folders. When you start the extraction process, ensure that your software (WinZip, PKUnzip, and so
on) is set to use folder names.

Errata

We’ve made every effort to make sure that there are no errors in the text or in the code. However, no one
is perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for feedback. By sending in errata, you may save another
reader hours of frustration, and of course, you will be helping us provide even higher quality informa-
tion. Simply email the information to support@wrox.com; your information will be checked and if cor-
rect, posted to the errata page for that title, or used in subsequent editions of the book.

To find errata on the Web site, go to www.wrox. com, and simply locate the title through our Advanced
Search or title list. Click the Book Errata link, which is below the cover graphic on the book’s detail page.

XXX

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P mailing lists. Our unique system provides programmer to
programmer(tm) contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one
email support system. If you post a query to P2P, you can be confident that the many Wrox authors and
other industry experts who are present on our mailing lists are examining it. At p2p.wrox. com you will
find a number of different lists that will help you, not only while you read this book, but also as you
develop your own applications.

Particularly appropriate to this book are the vb_dotnet and pro_vb_dotnet lists.

To subscribe to a mailing list just follow these steps:

1. Gotohttp://p2p.wrox.com/.

Choose the appropriate category from the left menu bar.

Click the mailing list you wish to join.

Follow the instructions to subscribe and fill in your email address and password.

Reply to the confirmation email you receive.

L

Use the subscription manager to join more lists and set your email preferences.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum emailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXXi

What Is Microsoft .NET?

New technologies force change, nowhere more so than in computers and software. Occasionally, a
new technology is so innovative that it forces us to challenge our most fundamental assumptions.
In the computing industry, the latest such technology is the Internet. It has forced us to rethink
how software should be created, deployed, and used.

However, that process takes time. Usually, when a powerful new technology comes along, it is
first simply strapped onto existing platforms. So it has been for the Internet. Before the advent of
Microsoft .NET, developers used older platforms with new Internet capabilities “strapped on.”
The resulting systems worked, but they were expensive and difficult to produce, hard to use, and
difficult to maintain.

Realizing this several years ago, Microsoft decided it was time to design a new platform from the
ground up specifically for the post-Internet world. The result is called .NET. It represents a turning
point in the world of Windows software for Microsoft platforms. Microsoft has staked their future on
.NET and publicly stated that henceforth almost all their research and development will be done on
this platform. It is expected that, eventually, almost all Microsoft products will be ported to the NET
platform. (However, the name “.NET” will evolve, as you will see at the end of the chapter.)

Microsoft is now at version 2.0 of Microsoft .NET, and the development environment associated
with this version is called Visual Studio 2005. The version of Visual Basic in this version is, thus,
called Visual Basic 2005, and that’s what this book is all about.

What Is .NET?

Microsoft’s .NET initiative is broad-based and very ambitious. It includes the NET Framework,
which encompasses the languages and execution platform, plus extensive class libraries, provid-
ing rich built-in functionality. Besides the core NET Framework, the .NET initiative includes pro-
tocols (such as the Simple Object Access Protocol, commonly known as SOAP) to provide a new
level of software integration over the Internet, via a standard known as Web Services.

Chapter 1

Although Web Services are important (and are discussed in detail in Chapter 23), the foundation of all
NET-based systems is the .NET Framework. This chapter will look at the NET Framework from the
viewpoint of a Visual Basic developer. Unless you are quite familiar with the Framework already, you
should consider this introduction an essential first step in assimilating the information about Visual
Basic .NET that will be presented in the rest of this book.

The first released product based on the .NET Framework was Visual Studio .NET 2002, which was pub-
licly launched in February 2002, and included version 1.0 of the NET Framework. Visual Studio .NET
2003 was introduced a year later and included version 1.1 of the .NET Framework. As mentioned, the
current version is Visual Studio 2005. (Note that the “.NET” part of the name has been dropped for this
version.)

This book assumes that you are using VS.NET 2005. Some of the examples will work transparently with
VS.NET 2002 and VS.NET 2003, but you should not count on this, because the difference between 2.0
and the earlier versions is significant.

A Broad and Deep Platform for the Future

Calling the NET Framework a platform doesn’t begin to describe how broad and deep it is. It encom-
passes a virtual machine that abstracts away much of the Windows API from development. It includes a
class library with more functionality than any yet created. It makes available a development environ-
ment that spans multiple languages, and it exposes an architecture that makes multiple language inte-
gration simple and straightforward.

At first glance, some aspects of NET appear similar to previous architectures, such as UCSD Pascal
and Java. No doubt some of the ideas for .NET were inspired by these past efforts, but there are also
many brand new architectural ideas in .NET. Overall, the result is a radically new approach to software
development.

The vision of Microsoft .NET is globally distributed systems, using XML as the universal glue to allow
functions running on different computers across an organization or across the world to come together
in a single application. In this vision, systems from servers to wireless palmtops, with everything in
between, will share the same general platform, with versions of NET available for all of them, and with
each of them able to integrate transparently with the others.

This does not leave out classic applications as you have always known them, though. Microsoft NET
also aims to make traditional business applications much easier to develop and deploy. Some of the tech-
nologies of the NET Framework, such as Windows Forms, demonstrate that Microsoft has not forgotten
the traditional business developer. In fact, such developers will find it possible to Internet- enable their
applications more easily than with any previous platform.

What’s Wrong with DNA and COM?

The pre-.NET technologies used for development on Microsoft platforms encompassed the COM
(Component Object Model) standard for creation of components, and the DNA model for multitier soft-
ware architectures. As these technologies were extended into larger, more enterprise-level settings, and
as integration with the Internet began to be important, several major drawbacks became apparent. These
included:

What Is Microsoft .NET?

Q Difficulty in integrating Internet technologies:
Q Hard to produce Internet-based user interfaces
QO No standard way for systems and processes to communicate over the Internet
Q Expensive, difficult, and undependable deployment
Q Poor cross-language integration
QO Weaknesses in the most popular Microsoft tool — Visual Basic:

Q Lack of full object orientation, which made it impossible to produce frameworks in
Visual Basic

0 One threading model that did not work in some contexts
Q Poor integration with the Internet

0 Other weaknesses such as poor error-handling capabilities

It is important to note that all pre- NET platforms, such as Java, also have some of these drawbacks, as
well as unique ones of their own. The drawbacks related to the Internet are particularly ubiquitous.

Microsoft NET was created with the Internet in mind. It was also designed specifically to overcome the
limitations of COM and products such as Visual Basic 6 and Active Server Pages. As a result, all of the pre-
ceding limitations have been eliminated or significantly reduced in Microsoft .NET and Visual Studio 2005.

An Overview of the .NET Framework

First and foremost, .NET is a framework that covers all the layers of software development above the
operating system level. It provides the richest level of integration among presentation technologies, com-
ponent technologies, and data technologies ever seen on a Microsoft, or perhaps any, platform. Second,
the entire architecture has been created to make it as easy to develop Internet applications as it is to
develop for the desktop.

The NET Framework actually “wraps” the operating system, insulating software developed with .NET
from most operating system specifics such as file handling and memory allocation. This prepares for a
possible future in which the software developed for .NET is portable to a wide variety of hardware and
operating system foundations.

VS.NET supports Windows 2003, Windows XP, and all versions of Windows 2000. Programs created for
.NET can also run under Windows NT, Windows 98, and Windows Me, though VS.NET does not run on
these systems. Note that in some cases certain service packs are required to run .NET.

The major components of the Microsoft NET Framework are shown in Figure 1-1.
The framework starts all the way down at the memory management and component loading level and

goes all the way up to multiple ways of rendering user and program interfaces. In between, there are
layers that provide just about any system-level capability that a developer would need.

Chapter 1

ASP.NET Windows Forms
| Web Services | | Web Forms | | Controls | | Drawing |
| ASP.NET Application Services | | Windows Application Services |
.NET Framework Base Classes
| ADONET || XML | | Threading | | 10 |
|Component Model| | Security | | Diagnostics | | Etc. |
Common Language Runtime
| Memory Management | | Common Type System | | Lifecycle Monitoring
Figure 1-1

At the base is the common language runtime, often abbreviated to CLR. This is the heart of the .NET
Framework —it is the engine that drives key functionality. It includes, for example, a common system of
datatypes. These common types, plus a standard interface convention, make cross-language inheritance
possible. In addition to allocation and management of memory, the CLR also does reference tracking for
objects and handles garbage collection.

The middle layer includes the next generation of standard system Services such as classes that manage data
and Extensible Markup Language (XML). These services are brought under control of the Framework,
making them universally available and making their usage consistent across languages.

The top layer includes user and program interfaces. Windows Forms is a new and more advanced way to
do standard Win32 screens (often referred to as “’smart clients”). Web Forms provides a new Web-based
user interface. Perhaps the most revolutionary is Web Services, which provide a mechanism for programs
to communicate over the Internet, using SOAP. Web Services provide an analog of COM and DCOM for
object brokering and interfacing, but based on Internet technologies so that allowance is made even for
integration to non-Microsoft platforms. Web Forms and Web Services, which constitute the Internet inter-
face portion of .NET, are implemented by a part of the NET Framework referred to as ASP.NET.

All of these capabilities are available to any language that is based on the .NET platform, including, of
course, VB.NET.

The Common Language Runtime

We are all familiar with runtimes — they go back further than DOS languages. However, the common
language runtime (CLR) is as advanced over traditional runtimes as a machine gun is over a musket.
Figure 1-2 shows a quick diagrammatic summary of the major pieces of the CLR.

That small part in the middle of Figure 1-2 called Execution support contains most of the capabilities
normally associated with a language runtime (such as the VBRUNxxx . DLL runtime used with Visual
Basic). The rest is new, at least for Microsoft platforms.

What Is Microsoft .NET?

Common Type System
(Data types, etc.)

Intermediate Language (IL)
to native code compilers

Execution support
(traditional runtime
functions)

Security

Garbage collection, stack walk, code manager

Class loader and memory layout

Figure 1-2

Key Design Goals

The design of the CLR is based on the following primary goals:

a
a

a
a
a

Simpler, faster development

Automatic handling of system-level tasks such as memory management and process

communication
Excellent tool support
Simpler, safer deployment

Scalability

Notice that many of these design goals directly address the limitations of COM/DNA. Let’s look at
some of these in detail.

Simpler, Faster Development

Abroad, consistent framework allows developers to write less code, and reuse code more. Using less
code is possible because the system provides a rich set of underlying functionality. Programs in .NET
access this functionality in a standard, consistent way, requiring less “hardwiring” and customization
logic to interface with the functionality than is typically needed today.

Programming is also simpler in .NET because of the standardization of datatypes and interface conven-
tions. As will be discussed later, NET makes knowledge of the intricacies of COM much less important.

The net result is that programs written in VB.NET that take proper advantage of the full capabilities of
the NET Framework typically have significantly less code than equivalent programs written in earlier
versions of Visual Basic. Less code means faster development, fewer bugs, and easier maintenance.

Excellent Tool Support

Although much of what the CLR does is similar to operating system functionality, it is very much
designed to support development languages. It furnishes a rich set of object models that are useful to

Chapter 1

tools like designers, wizards, debuggers, and profilers, and since the object models are at the runtime
level, such tools can be designed to work across all languages that use the CLR. It is expected that third
parties will produce a host of such tools.

Simpler, Safer Deployment

It is hard for an experienced Windows component developer to see how anything can work without
registration, GUIDs, and the like, but the CLR does. Applications produced in the .NET Framework can
be designed to install with a simple XCOPY. That’s right —just copy the files onto the disk and run the
application (as long as the .NET Framework was previously installed, which is discussed in more detail
in the following sections). This hasn’t been seen in the Microsoft world since the days of DOS (and some
of us really miss it).

This works because compilers in the .NET Framework embed identifiers (in the form of metadata, to be
discussed later) into compiled modules, and the CLR manages those identifiers automatically. The iden-
tifiers provide all the information needed to load and run modules, and to locate related modules.

As a great by-product, the CLR can manage multiple versions of the same component (even a shared
component) and have them run side by side. The identifiers tell the CLR which version is needed for a
particular compiled module, because such information is captured at compile time. The runtime policy
can be set in a module to use the exact version of a component that was available at compile time, to use
the latest compatible version, or to specify an exact version. The bottom line is that .NET is intended to
eradicate DLL hell once and for all.

This has implications that might not be apparent at first. For example, if a program needed to run
directly from a CD or a shared network drive (without first running an installation program), that was
not feasible in Visual Basic after version 3. That capability reappears with VB.NET. This dramatically
reduces the cost of deployment in many common scenarios.

Another significant deployment benefit in .NET is that applications only need to install their own core
logic. An application produced in .NET does not need to install a runtime, for example, or modules for
ADO or XML. Such base functionality is part of the NET Framework, which is installed separately and
only once for each system. The .NET Framework will eventually be included with the operating system
and probably with various applications. Those four-disk installs for a VB “Hello world” program are a
thing of the past.

.NET programs can also be deployed across the Internet. Version 2.0 of the NET Framework includes a
new technology specifically for that purpose called ClickOnce. This is a new capability in .NET, supple-
menting the older “no touch deployment.” You can read about ClickOnce in Chapter 19.

The .NET Framework, which includes the CLR and the Framework base classes, is required on every
machine where you want to run .NET applications and code. For Windows 2003 and above, the NET
Framework is installed automatically as part of the operating system. For older operating systems, or to
install a newer version of the NET Framework, the NET Framework is a separate installation.
Deployment of NET applications is discussed in Chapter 19.

Scalability

Since most of the system-level execution functions are concentrated in the CLR, they can be optimized and
architected to allow a wide range of scalability for applications produced in the .NET Framework. As with
most of the other advantages of the CLR, this one comes to all applications with little or no effort.

What Is Microsoft .NET?

Memory and process management is one area where scalability can be built in. The memory manage-
ment in the CLR is self-configuring and tunes itself automatically. Garbage collection (reclaiming
memory that is no longer being actively used) is highly optimized, and the CLR supports many of the
component management capabilities of MTS/COM-+ (such as object pooling). The result is that compo-
nents can run faster and, thus, support more users.

This has some interesting side effects. For example, the performance and scalability differences among
languages become smaller. All languages compile to a standard bytecode called Microsoft Intermediate
Language (MSIL), often referred to simply as IL, and there is a discussion later on how the CLR executes
IL. With all languages compiling down to similar bytecode, it becomes unnecessary in most cases to look
to other languages when performance is an issue. The difference in performance among .NET languages is
minor — Visual Basic, for example, gives about the same performance as any of the other .NET languages.

Versions of the CLR are available on a wide range of devices. The vision is for .NET to be running at
all levels, from smart palmtop devices all the way up to Web farms. The same development tools work
across the entire range —news that will be appreciated by those who have tried to use older Windows
CE development kits.

Metadata

The NET Framework needs lots of information about an application to carry out several automatic func-
tions. The design of .NET requires applications to carry that information within them. That is, applica-
tions are self-describing. The collected information that describes an application is called metadata.

The concept of metadata is not new. For example, COM components use a form of it called a type library,
which contains metadata describing the classes exposed by the component and is used to facilitate OLE
Automation. A component’s type library, however, is stored in a separate file. In contrast, the metadata
in .NET is stored in one place —inside the component it describes. Metadata in .NET also contains more
information about the component and is better organized.

Chapter 6 on the CLR goes into more information about metadata. For now, the most important point
for you to internalize is that metadata is key to the easy deployment in .NET. When a component is
upgraded or moved, the necessary information about the component cannot be left behind. Metadata
can never get out of sync with a .NET component, because it is not in a separate file. Everything the
CLR needs to know to run a component is supplied with the component.

Multiple-Language Integration and Support

The CLR is designed to support multiple languages and allow unprecedented levels of integration
among those languages. By enforcing a common type system, and by having complete control over
interface calls, the CLR allows languages to work together more transparently than ever before. The
cross-language integration issues of COM simply don’t exist in .NET.

It is straightforward in the .NET Framework to use one language to subclass a class implemented in
another. A class written in Visual Basic can inherit from a base class written in C#, or in COBOL for that
matter. The VB program doesn’t even need to know the language used for the base class. .NET offers full
implementation inheritance with no problems that require recompilation when the base class changes.

Chapter 3 also includes more information on the multiple-language integration features of .NET.

Chapter 1

A Common Type System

A key piece of functionality that enables multiple-language support is a common type system, in which
all commonly used datatypes, even base types such as Long and Boolean, are actually implemented

as objects. Coercion among types can now be done at a lower level for more consistency between lan-
guages. Also, since all languages are using the same library of types, calling one language from another
doesn’t require type conversion or weird calling conventions.

This results in the need for some readjustment, particularly for VB developers. For example, what was
called an Integer in VB6 and earlier, is now known as a Short in VB.NET. The adjustment is worth it
to bring Visual Basic in line with everything else, though, and, as a by-product, other languages get the
same support for strings that Visual Basic has always had.

The CLR enforces the requirement that all datatypes satisfy the common type system. This has impor-
tant implications. For example, it is not possible with the common type system to get the problem
known in COM as a buffer overrun, which is the source of many security vulnerabilities. Programs writ-
ten on .NET should, therefore, have fewer such vulnerabilities, because .NET is not dependent on the
programmer to constantly check passed parameters for appropriate type and length. Such checking is
done by default.

Chapter 3 goes into detail about the new type system in .NET.

Namespaces

One of the most important concepts in Microsoft .NET is namespaces. Namespaces help organize object
libraries and hierarchies, simplify object references, prevent ambiguity when referring to objects, and
control the scope of object identifiers. The namespace for a class allows the CLR to unambiguously iden-
tify that class in the available .NET libraries that it can load.

Namespaces are discussed briefly in Chapter 3 and in more detail in Chapter 9. Understanding the con-
cept of a namespace is essential for your progress in .NET, so do not skip those sections if you are unfa-
miliar with namespaces.

The Next Layer — The .NET
Class Framework

The next layer up in the framework provides the services and object models for data, input/output,
security, and so forth. It is called the NET Class Framework, sometimes referred to as the .NET base
classes. For example, the next generation of ADO, called ADO.NET, resides here. Some of the additional
functionality in the NET Class Framework is listed below.

You might be wondering why .NET includes functionality that is, in many cases, duplication of existing
class libraries. There are several good reasons:

Q The .NET Class Framework libraries are implemented in the .NET Framework, making them
easier to integrate with .NET-developed programs.

What Is Microsoft .NET?

QO The .NET Class Framework brings together most of the system class libraries needed into one
location, which increases consistency and convenience.

QO The class libraries in the .NET Class Framework are much easier to extend than older class
libraries, using the inheritance capabilities in .NET.

Q Having the libraries as part of the NET Framework simplifies deployment of .NET applications.
Once the .NET Framework is on a system, individual applications don’t need to install base
class libraries for functions like data access.

What Is in the .NET Class Framework?

The .NET Class Framework contains literally thousands of classes and interfaces. Here are just some of
the functions of various libraries in the .NET Class Framework:

Q Data access and manipulation

Q Creation and management of threads of execution

(]

Interfaces from .NET to the outside world — Windows Forms, Web Forms, Web Services, and
console applications

Definition, management, and enforcement of application security

Encryption, disk file I/O, network I/O, serialization of objects, and other system-level functions
Application configuration

Working with directory services, event logs, performance counters, message queues, and timers

Sending and receiving data with a variety of network protocols

O 000 oo

Accessing metadata information stored in assemblies

Much of the functionality that a programmer might think of as being part of a language has been moved
to the base classes. For example, the old VB keyword sqr for extracting a square root is no longer avail-
able in .NET. It has been replaced by the System.Math.Sgrt () method in the framework classes.

It’s important to emphasize that all languages based on the .NET Framework have these framework
classes available. That means that COBOL, for example, can use the same function mentioned above for
getting a square root. This makes such base functionality widely available and highly consistent across
languages. All calls to sgrt look essentially the same (allowing for syntactical differences among lan-
guages) and access the same underlying code. Here are examples in VB.NET and C#:

' Example using Sgrt in Visual Basic .NET
Dim dblNumber As Double = 200

Dim dblSquareRoot As Double

dblSquareRoot = System.Math.Sgrt (dblNumber)
Labell.Text = dblSquareRoot.ToString

' Same example in C#

Double dblNumber = 200;

Double dblSquareRoot = System.Math.Sgrt (dblNumber) ;
dblSquareRoot = System.Math.Sgrt (dblNumber) ;
labell.Text = dblSquareRoot.ToString;

Chapter 1

Notice that the line using the sqrt () function is exactly the same in both languages.

As a side note, a programming shop can create its own classes for core functionality, such as globally
available, already compiled functions. This custom functionality can then be referenced in code the same
way as built-in NET functionality.

Much of the functionality in the base framework classes resides in a vast namespace called system. The
System.Math. Sgrt () method was just mentioned. The System namespace contains dozens of such
subcategories. The table below lists a few of the important ones, many of which you will be using in var-
ious parts of this book.

User and Program Interfaces

At the top layer, NET provides three ways to render and manage user interfaces:

Q Windows Forms

Q Web Forms

Q Console applications

Namespace What It Contains Example Classes and Subnamespaces
System.Collections Creation and management of Arraylist,
various types of collections Hashtable,
SortedList
System.Data Classes and types related to DataSet,
basic database management DataTable,
(see Chapter 11 for details) DataColumn,
System.Diagnostics Classes to debug an application Debug, Trace
and to trace the execution of code
System. IO Types that allow reading and File, FileStream, Path,
writing to and from files and StreamReader, StreamWriter
other data streams
System.Math Members to calculate common Sart (square root), Cos (cosine),
mathematical quantities, suchas Log (logarithm), Min (minimum)
trigonometric and logarithmic
functions
System.Reflection Capability to inspect metadata Assembly, Module
System.Security Types that enable security Cryptography, Permissions,
capabilities (see Chapter 24 Policy
for details)

10

What Is Microsoft .NET?

Windows Forms

Windows Forms is a more advanced and integrated way to do standard Win32 screens. All languages
that work on the NET Framework, including new versions of Visual Studio languages, use the Windows
Forms engine, which duplicates the functionality of the old VB forms engine. It provides a rich, unified
set of controls and drawing functions for all languages, as well as a standard API for underlying Windows
Services for graphics and drawing. It effectively replaces the Windows graphical API, wrapping it in
such a way that the developer normally has no need to go directly to the Windows API for any graphical
or screen functions.

In Chapter 14, you will look at Windows Forms in more detail and note significant changes in Windows
Forms versus older VB forms. Chapter 15 continues discussing advanced Windows Forms capabilities
such as creation of Windows Forms visual controls.

Client Applications versus Browser-Based Applications

Before .NET, many internal corporate applications were made browser-based simply because of the cost
of installing and maintaining a client application on hundreds or thousands of workstations. Windows
Forms and the .NET Framework change the economics of these decisions. A Windows Forms application
is much easier to install and update than an equivalent VB6 desktop application. With a simple XCOPY
deployment and no registration issues, installation and updating become much easier. Internet deploy-
ment via ClickOnce also makes applications more available across a wide geographic area, with auto-
matic updating of changed modules on the client.

That means that “smart client” applications with a rich user interface are more practical under .NET,
even for a large number of users. It may not be necessary to resort to browser-based applications just to
save on installation and deployment costs.

As a consequence, you should not dismiss Windows Forms applications as merely replacements for ear-
lier VB6 desktop applications. Instead, you should examine applications in .NET and explicitly decide
what kind of interface makes sense in a given case. In some cases, applications that you might have
assumed should be browser-based simply because of a large number of users and wide geographic
deployment instead can be smart-client-based, which can improve usability, security, and productivity.

Web Forms

The part of NET that handles communications with the Internet is called ASP.NET. It includes a forms
engine, called Web Forms, which can be used to create browser-based user interfaces.

Divorcing layout from logic, Web Forms consist of two parts:

Q A template, which contains HTML-based layout information for all user interface elements
QO A component, which contains all logic to be hooked to the user interface
It is as if a standard Visual Basic form was split into two parts, one containing information on controls

and their properties and layout, and the other containing the code. Just as in Visual Basic, the code oper-
ates “behind” the controls, with events in the controls activating event routines in the code.

11

Chapter 1

As with Windows Forms, Web Forms will be available to all languages. The component handling logic
for a form can be in any language that supports .NET. This brings complete, flexible Web interface capa-
bility to a wide variety of languages. Chapters 16 and 17 go into detail on Web Forms and the controls
that are used on them.

If you have used ASP.NET in previous versions of .NET, you should know that ASP.NET 2.0 has dra-
matic improvements. With even more built-in functionality for common browser tasks, applications can
be written with far less code in ASP.NET 2.0 as compared to earlier versions. Capabilities such as user
authentication can now be done with prebuilt ASPNET components, so you no longer have to write
such components yourself.

Console Applications

Although Microsoft doesn’t emphasize the ability to write character-based applications, the NET
Framework does include an interface for such console applications. Batch processes, for example, can
now have components integrated into them that are written to a console interface.

As with Windows Forms and Web Forms, this console interface is available for applications written in
any .NET language. Writing character-based applications in previous versions of Visual Basic, for exam-
ple, has always been a struggle, because it was completely oriented around a graphical user interface
(GUI). VB.NET can be used for true console applications.

Web Services

Application development is moving into the next stage of decentralization. The oldest idea of an appli-
cation is a piece of software that accesses basic operating system services, such as the file system and
graphics system. Then we moved to applications that used lots of base functionality from other system-
level applications, such as a database — this type of application added value by applying generic func-
tionality to specific problems. The developer’s job was to focus on adding business value, not on
building the foundation.

Web Services represent the next step in this direction. In Web Services, software functionality becomes
exposed as a service that doesn’t care what the consumer of the service is (unless there are security con-
siderations). Web Services allow developers to build applications by combining local and remote
resources for an overall integrated and distributed solution.

In .NET, Web Services are implemented as part of ASP.NET (see Figure 1-1), which handles all Web inter-
faces. It allows programs to talk to each other directly over the Web, using the SOAP standard. This has
the capacity to dramatically change the architecture of Web applications, allowing services running all
over the Web to be integrated into a local application.

Chapter 23 contains a detailed discussion of Web Services.

XML as the .NET Metalanguage

Much of the underlying integration of .NET is accomplished with XML. For example, Web Services
depend completely on XML for interfacing with remote objects. Looking at metadata usually means
looking at an XML version of it.

12

What Is Microsoft .NET?

ADO.NET, the successor to ADO, is heavily dependent on XML for the remote representation of data.
Essentially, when ADO.NET creates what it calls a dataset (a more complex successor to a recordset), the
data is converted to XML for manipulation by ADO.NET. Then, the changes to that XML are posted back
to the datastore by ADO.NET when remote manipulation is finished.

Chapter 12 discusses XML in .NET in more detail, and, as previously mentioned, Chapter 11 contains a
discussion of ADO.NET. With XML as an “entry point” into so many areas of .NET, integration opportu-
nities are multiplied. Using XML to expose interfaces to .NET functions allows developers to tie compo-
nents and functions together in new, unexpected ways. XML can be the glue that ties pieces together in
ways that were never anticipated, both to Microsoft and non-Microsoft platforms.

The Role of COM

When the .NET Framework was introduced, some uninformed journalists interpreted it as the death of
COM. That is completely incorrect. COM is not going anywhere for a while. In fact, Windows will not
boot without COM.

.NET integrates very well with COM-based software. Any COM component can be treated as a .NET
component by native .NET components. The .NET Framework wraps COM components and exposes an
interface that .NET components can work with. This is absolutely essential to the quick acceptance of
NET because it makes .NET interoperable with a tremendous amount of older COM-based software.

Going in the other direction, the .NET Framework can expose .NET components with a COM interface.
This allows older COM components to use .NET-based components as if they were developed using COM.

Chapter 20 discusses COM interoperability in more detail.

No Internal Use of COM

It is important, however, to understand that native .NET components do not interface using COM. The
CLR implements a new way for components to interface, one that is not COM-based. Use of COM is
only necessary when interfacing with COM components produced by non-.NET tools.

Over a long span of time, the fact that .NET does not use COM internally may lead to the decline of
COM, but for any immediate purposes, COM is definitely important.

Some Things Never Change . ..

Earlier, this chapter discussed the limitations of the pre-NET programming models. However, those mod-
els have many aspects that still apply to .NET development. Tiered layers in software architecture, for
example, were specifically developed to deal with the challenges in design and development of complex
applications and are still appropriate. Many persistent design issues, such as the need to encapsulate busi-
ness rules, or to provide for multiple user interface access points to a system, do not go away with .NET.

Applications developed in the .NET Framework will still, in many cases, use a tiered architecture.
However, the tiers will be a lot easier to produce in .NET. The presentation tier will benefit from the

13

Chapter 1

new interface technologies, especially Web Forms for Internet development. The middle tier will require
far less COM-related headaches to develop and implement. And richer, more distributed middle tier
designs will be possible by using Web Services.

The architectural skills that experienced developers have learned in earlier models are definitely still
important and valuable in the NET world.

-.NET Drives Changes in Visual Basic

This chapter previously covered the limitations of Visual Basic in earlier versions. To recap, they are:

Q No capability for multithreading
Lack of implementation inheritance and other object features
Poor error-handling ability

Q
Q
Q Poor integration with other languages such as C++
Q

No effective user interface for Internet-based applications

Since VB.NET is built on top of the NET Framework, all of these shortcomings have been eliminated.

In fact, Visual Basic gets the most extensive changes of any existing language in the VS.NET suite. These
changes pull Visual Basic in line with other languages in terms of datatypes, calling conventions, error
handling, and, most importantly, object orientation. Chapters 4, 5, and 7 go into detail about object-
oriented concepts in VB.NET, and Chapter 10 discusses error handling, which is known in .NET as
“exception handling.”

How .NET Affects You

A

14

One of the reasons you are probably reading this book is that you want to know how VB.NET will affect
you as an existing Visual Basic developer. Here are some of the most important implications.

Spectrum of Programming Models

In previous Microsoft-based development tools, there were a couple of quantum leaps required to move
from simple to complex. A developer could start simply with ASP pages and VBScript, but when those
became cumbersome, it was a big leap to learn component-based, three-tier development in Visual
Basic. And it was another quantum leap to become proficient in C++, ATL, and related technologies for
system-level work.

A key benefit of VB.NET and the NET Framework is that there exists a more gradual transition in pro-
gramming models from simple to full power. ASPNET pages are far more structured than ASP pages,
and code used in them is often identical to equivalent code used in a Windows Forms application.
Internet development can now be done using real Visual Basic code instead of VBScript.

Visual Basic itself becomes a tool with wider applicability, as it becomes easy to do a Web interface with
Web Forms, and it also becomes possible to do advanced object-oriented designs. Even system-level

What Is Microsoft .NET?

capabilities, such as Windows Services can be done with VB.NET (see Chapter 25). Old reasons for using
another language, such as lack of performance or flexibility, are mostly gone. Visual Basic will do almost
anything that other .NET languages can do.

This increases the range of applicability of Visual Basic. It can be used all the way from “scripts” (which
are actually compiled on the fly) written with a text editor up through sophisticated component and
Web programming in one of the most advanced development environments available.

Reducing Barriers to Internet Development

With older tools, programming for the Internet requires a completely different programming model than
programming systems that will be run locally. The differences are most apparent in user interface con-
struction, but that’s not the only area of difference. Objects constructed for access by ASP pages, for
example, must support Variant parameters, but objects constructed for access by Visual Basic forms
can have parameters of any datatype. Accessing databases over the Internet requires using technologies
like RDS instead of the ADO connections that local programming typically uses.

The .NET Framework erases many of these differences. Programming for the Internet and programming
for local systems are much more alike in .NET than with today’s systems. Differences remain — Web
Forms still have significant differences from Windows Forms, for example, but many other differences,
such as the way data is handled, are much more unified under .NET.

A big result of this similarity of programming models is to make Internet programming more practical
and accessible. With functionality for the Internet designed in from the start, developers don’t have to
know as much or do as much to produce Internet systems with the .NET Framework.

Libraries of Prewritten Functionality

The evolution of Windows development languages, including Visual Basic, has been in the direction of
providing more and more built-in functionality so that developers can ignore the foundations and con-
centrate on solving business problems. The .NET Framework continues this trend.

One particularly important implication is that the NET Framework extends the trend of developers
spending less time writing code and more time discovering how to do something with prewritten func-
tionality. Mainframe COBOL programmers could learn everything they ever needed to know about
COBOL in a year or two and very seldom need to consult reference materials after that. In contrast,
today’s Visual Basic developers already spend a significant portion of their time digging through refer-
ence material to figure out how to do something that they may never do again. The sheer expanse of
available functionality, plus the rapidly changing pace, makes it imperative for an effective developer to
be a researcher also. .NET accelerates this trend, and will probably increase the ratio of research time to
coding time for a typical developer.

Easier Deployment

A major design goal in Microsoft .NET is to simplify installation and configuration of software. With
DLL hell mostly gone, and with installation of compiled modules a matter of a simple file copy, develop-
ers should be able to spend less time worrying about deployment of their applications, and more time
concentrating on the functionality of their systems. The budget for the deployment technology needed
by a typical application will be significantly smaller.

15

Chapter 1

The Future of .NET

At the Professional Developer’s Conference (PDC) in Los Angeles in October of 2003, Microsoft gave the
first public look at their next-generation operating system, code-named Longhorn. It was clear from
even this early glimpse that .NET is at the heart of Microsoft’s operating system strategy going forward.

However, the naming of what is now known as .NET is going to change. While Web Services and related
technologies may still carry the .NET label going forward, the NET Framework is called WinFX in
Longhorn. This may cause some confusion in names going forward, but be assured that what you learn
today about the .NET Framework and VB.NET will be important for years to come in the world of
Microsoft applications.

Major Differences in .NET 2.0

If you are familiar with earlier versions of .NET, you will want to pay special attention to areas that have
been significantly changed. Here is a list of some of the most important additions and changes, with the
chapter you should check for more information:

Feature Description Chapter(s)
Edit and Allows you to make changes to code while you are running it 2
Continue in the integrated development environment (IDE) and have the

changes take effect immediately. (This feature was available in
VB6 and earlier, but was not available in Visual Basic 2002

or 2003.)
Partial classes Allows code for a class to be split over multiple code modules. 4
Generics Allows generic collections to handle specific types, declared 8

when the collection is created.

Data binding There are many new controls for data binding and new 15
designer support such as drag-and-drop of data fields onto
Windows Forms.

ClickOnce New deployment technology for deploying across the Internet, 19
with automatic updating.

“My” classes Provides quick access to commonly used classes in the .NET 2
Framework.

Nullable types Allows data types that can either hold a value or be null, 3
allowing .NET types to match up to database types more
transparently.

Operator Allows you to define operations between arbitrary types, such 5

overloading as the ability to define a “+” operation for two Account objects.

IsNot keyword Simplifies I £ statements that check if an object is Nothing. 2

16

What Is Microsoft .NET?

Feature Description Chapter(s)
Using keyword Automates disposing of objects created in a section of code. 4
IDE Exception manager, code snippets with automatic fill-in, 2
improvements improved IntelliSense, and autocorrect are a few of the new

capabilities of the IDE.

Summary

VB.NET is not like other versions of Visual Basic. It is built with completely different assumptions, on
a new platform that is central to Microsoft’s entire product strategy. This chapter discussed the reasons
Microsoft has created this platform and how challenges in earlier, pre-Internet technologies have been
met by .NET.

This chapter has also discussed in particular how this will affect VB developers. .NET presents many
new challenges for developers but simultaneously provides them with greatly enhanced functionality.
In particular, Visual Basic developers now have the ability to develop object-oriented and Web-based
applications far more easily and cheaply.

The next chapter takes a closer look at the VS.NET IDE, and discusses the basics of doing applications
in VB.NET.

17

|

Introducing Visual
Basic 2005 and
Visual Studio 2005

Chapter 1 introduced .NET and discussed how version 2.0 of the NET Framework is the next step
in the evolution of programming on the Windows platform. This chapter takes a practical look at
.NET. It starts with the creation of the standard “Hello World” Windows application using Visual
Studio 2005 (Visual Studio). After creating the initial application, you can step through simple
additions to this first application. You can compare your code at each stage to understand the
changes that have been made.

The chapter also covers several introductory topics associated with becoming familiar with Visual
Studio and creating a simple application, including:
Q Project templates
References
Code regions
Forms as classes
Class constructors
Setting form properties

Selecting a runtime environment

000000 o

Visual Studio environment

This chapter provides only a brief introduction to Visual Basic 2005 (VB) Windows Form applica-
tions. It will step you through creating your first NET project and review many of the elements
that are common to every .NET application. The discussion of several other project types, such as
Web projects, will be covered in later chapters.

C

hapter 2

If you are familiar with Visual Studio NET 2002 or Visual Studio 2003 and the NET Framework ver-
sion 1.x, note that while the updates to Visual Studio 2005 and the NET Framework version 2.0 are
significant, you may want to skim through this chapter, reviewing the changes.

Visual Studio .NET — Startup

20

Those of you making the move from COM to .NET will notice that Visual Studio 2005 has one entry for
the development environment in the Start menu — there are no separate entries for Visual Basic, Visual
C++, or Visual C#. All of the Visual Studio languages share the same integrated development environ-

ment (IDE). One of the changes from previous versions of Visual Studio .NET is that the environment
can now be customized by project type.

When Visual Studio 2005 is started, the window shown in Figure 2-1 is displayed to permit you to con-
figure your custom profile. Unlike previous versions of .NET, where you selected a set of preferences
that you would then use for all of your development, Visual Studio 2005 allows you to select either a

language-specific or task-specific profile. This book will use screen shots based on the Visual Basic
Developer setting.

Choose Default Environment Settings

- Visual Studio2005
Before you begin using Visual Studio For the First time, vou need to specify the type of
development activity vou engage in the most, such as Yisual Basic or Yisual C++. Wisual Studio
uses this infarmation to apply a predefined collection of settings ta the development
environment that is designed for your development activity,

‘ou can choose to use a different collection of settings at any time. From the Toals menu,
choose Import and Export Settings and then choose Reset IDE Settings.

Choose your default environment settings:

General Development Settings Description:
Project Management Settings
Tester Settings

| Basic Development Settings
isual C# Development Settings
Web Development Settings

Optimizes the environment so yvou can focus
on building world-class applications., This
collection of settings contains
customizations to the window lavout,
command menus and kevboard shortouts to
make common Yisual Basic commands more
accessible,

[start visual studic | [Ext visual Studio

Figure 2-1

Configuration of the settings is managed through the “Import and Export Settings . . .” menu option of
the Tools menu. This menu option opens a simple wizard, which first saves your current settings and
then allows you to select an alternate set of settings. By default, Visual Studio ships with settings for
Visual Basic, Web Development, and C# to name a few, but more importantly by exporting your settings
you can create and share your own custom settings files.

The Visual Studio settings file is an XML file that allows you to capture all of your Visual Studio configu-
ration settings. This might sound trivial, but it’s not. The fact is this feature allows for standardization of

Introducing Visual Basic 2005 and Visual Studio 2005

Visual Studio across different team members. The advantages of a team sharing settings go beyond just
using a common look and feel. To illustrate why this can be important, let’s look at a simple example of
how standardizing a portion of Visual Studio can impact team development.

Tracking changes to source code can be made more difficult simply from the way that Visual Basic refor-
mats code layout for readability. Most source control systems track code changes on a per line basis. Taking
just the simple example of changing the default tab value associated with the Text Editor and reducing

it from four characters to two or three characters can make code more readable and less likely to wrap.
Unfortunately, if someone on the team does pick a different value, then as each engineer checks out code
and makes modifications, he or she also resets the white space on every line of the source file. Thus, when
the source file is checked back in, instead of having the code changes that are easily highlighted, all of the
lines where the tabs were adjusted show up as changed and tracking changes becomes more difficult.

The solution is to provide a common settings file that defines settings such as the correct tab and layout
for Hypertext Markup Language (HTML) elements (to name a few common settings) so that everyone
starts from the same baseline. In this way developers who work together produce code that has the same
layout. Engineers can then customize other settings that are specific to their view of Visual Studio.

Visual Studio .NET

Once you have set up your profile, the next step is to create your first project. Selecting File > New
Project opens the New Project Dialog window, shown in Figure 2-2. One of the changes in Visual Studio
2005 is that once you have selected a default environment setting, you are presented with a setting-
specific project view. For Visual Basic this means that you are presented with Visual Basic project tem-
plates by default. A quick note, however: Not all project templates are listed within the New Project dia-
log. For example, if you want to create a Visual Basic Web site, you need to start that process by creating
a new Web site instead of creating a new project. Expanding the top level of the Visual Basic tree, you
may notice that this window separates project types into a series of categories. These categories include

0O Windows —Those projects used to create code that runs as part of the standard .NET
Framework. Since such projects can run on any operating system (OS) hosting the framework,
the category “Windows” is something of a throwback.

Q Office —The replacement for Visual Studio Tools for Office (VSTO). These are .NET applica-
tions that are hosted under Office 2003.

QO Smart Device — These are projects that target the NET Compact Framework. Such applications
may run on one or more handheld devices and make use of a different runtime environment
from full .NET applications.

QO Database — This template creates a project that supports classes that will run within SQL Server
2005. All versions of SQL Server 2005 (from Express through Enterprise) support the NET
Framework as part of their runtime, and such projects have a unique set of runtime constraints.
This is a very different project template from the Database project template provided under
Visual Studio 2003 and still available under the Other Project Types option.

Visual Studio has other categories for projects and you have access to Other development languages and

far more project types then we will cover in this one book. For now, you can select a Windows Application
project template.

21

Chapter 2

New Project (2%

Project bypes: Templates: HE

=3 | Visual Studio installed templates ot
Windows
- F E @ W
Va 7 2V =a¥a
+- Smart Device =) L.)—i| =5 =g |
Datahase Windows Class Libvary Windows Corsols Device
Starter Kits Application Control Library Apoiication Application
Test —
Distriwted System Solutiors | VEJ | @
+ Other Languages = Lo
& Oither Project Types Excel Wword
¥ Test Frojects Wiorkbook Document
My Templates

=N | i
A project For creating an application with a Windows usss inbesface

[ame: WindowsApplcationl

Figure 2-2

For this example, you can use ProVB.NET as the project name and then click the OK button. Visual
Studio then takes over and uses the Windows Application template to create a new Windows Forms pro-
ject. The project contains a blank form that can be customized and a variety of other elements that you
can explore. Before you start customizing any code, let’s first look at the elements of this new project.

The Solution Explorer

22

Those of you new to .NET but with previous Microsoft development tool experience will find a solution
similar to a project group. However, a .NET solution can contain projects of any .NET language and
also allows inclusion of the database, testing, and installation projects as part of the overall solution.

Before discussing these files in detail, let’s take a look at the next step, which is to reveal a few additional
details about your project. Click the second button from the left in Solution Explorer to show all of the
project files, as shown in Figure 2-3. As this image shows, there are many other files that make up your
project. Some of these, such as those under the My Project grouping, don’t require you to edit them
directly. Instead, you can double-click on the My Project entry in the Solution Explorer and open the user
interface to adjust your project settings. You do not need to change any of the default settings for this
project, but those of you familiar with Visual Studio 2003 should notice many of the new capabilities
provided by this window. These include the ability to add and manage your project references. Similar
to how a traditional Windows application allows you to reference COM components, .NET allows you to
create references to other components (those implemented both with a .NET language and with COM) to
extend the capabilities of your application.

The bin and obj directories that are shown in this display are used when building your project. The obj
directory contains the first pass object files used by the compiler to create your final executable file. The
“binary” or compiled version of your application is then placed in the bin directory by default. Of course,
referring to the Microsoft Intermediate Language (MSIL) code as binary is something of a misnomer,
since the actual translation to binary does not occur until runtime when your application is compiled by
the Just in Time Compiler. However, Microsoft continues to use the bin directory as the default output
directory for your project’s compilation.

Introducing Visual Basic 2005 and Visual Studio 2005

Solution Explorer” X Solution Explorer 5
= | (2] | [F] FE] S
2| Pro VB.NET 2=l Pro VB.NET
=d| My Project = [My Project
=] Formi.vb. = _"E Application. myapp

‘%] Applicatian.Designer . vb
18] ApplicationEvents, vb
18] AssemblyInfo.vb
= (2 Resources.resx
‘%] Resources.Designer.vb
= Settings,settings
‘%] Settings.Designer.vb
= | References
{0 Syskemn
{3 System. Deplovment
{3 Syskem.Drawing
3 Syskern, Windows. Farms
@ [bin

% Form1.Designer.vb

.:T;] Solution Expl... j] Daka Sources / i ._'g Solution Expl... 7 _j Data Sources

Figure 2-3

Additionally, Figure 2-3 shows that the project does not contain an app . config file by default. Most
experienced ASPNET developers are readily familiar with the use of web.config files. App.config
files work on the same principal in that they contain XML, which is used to store project-specific settings
such as database connection strings and other application-specific settings. Using a . config file instead
of having your settings in the Windows Registry allows your applications to run side by side with another
version of your application without the settings from either version impacting the other. Because each
version of your application will live in its own directory, its settings will be contained in the directory
with it, which enables the different versions to run with unique settings.

Finally, the Solution Explorer includes your actual source file(s). In this case, the Form1 . vb file is the pri-
mary file associated with the default Windows form. You’ll be customizing this form shortly, but before
looking at that, it seems appropriate to look at some of the settings exposed by the My Project element of
your new project.

My Project

Visual Studio displays a vertically tabbed display for editing your project settings. The My Project dis-
play shown in Figure 2-4 gives you access to several different aspects of your project. Most, such as
Signing, Security, Publishing, and so forth, will be covered in future chapters. For this chapter, it should
just be noted that this display makes it easier to carry out several tasks that once required engineers to
work outside of the Visual Studio environment. For your first application, notice that you can customize
your Assembly name from this screen as well as reset the type of application and object to be referenced
when starting your application.

23

Chapter 2

w5 Pro VB - Micresoft Visual Studio =[x

File Edt View Project Build Debug Data Tooks Test MWindow Community Help
250 dd) EREA R T ST N N o ke B Y91
- X

Pro VB.INET | Forml.vb [Design] | Stat Page

|| solution Ex... = B X%

xoqpol ¢ e

| -
= T{E=Y BT
Application o 2] Pro VB.NET
{ . Assembly name: Rook namespace: & (= My Project
Compile Pro VE.NET| ProVE.MET G- 28 References
B [bin
Debig Applcation bype: Tcon: _ & [oby
|Windowes Application w | |(Defaut Jzon) | %! D = [Famiab
References o o "% Form.Des
Startup form:
Settings |Foeml V: Aszernbly Infoemation. .
Resources Enable sppication framewark f<1 5
e - e [
gning Windows application framework properbes B
Security [] Enatle 3P visual styles Properties « § X
[Make single instance apphcation v
Futlish = Ealal
[¥] Save My.Settings on Shutdawn R M
Code Analysis Authentication mode:
windows]
Shutdown mode;
‘When startup foem closes ||
Splash screen:
(Mone) | ﬂ ‘iew Appication Events
Build succeeded
Figure 2-4

In addition, there is a button that will be discussed shortly for changing your Assembly information as
well as the ability to define a root namespace for your application classes. Namespaces are covered in
more detail in Chapter 9 and can be nested inside other namespaces. This nesting helps to organize
classes into a logical structure, which reduces confusion and aids the developer. Just as with COM com-
ponents, it’s a good idea to create your own root namespace and then build your custom classes under
that root. Similarly, your project already references some system namespaces.

References

It’s possible to add additional references as part of your project. Select the References tab in your My
Project display. From this tab, you can select other .NET class libraries and applications, as well as COM
components. There is even a Shortcut tab for selecting classes defined within other projects of your cur-
rent solution. Similar to the default code files that are created with a new project, each project has a
default set of referenced libraries. For Windows Forms applications, the list of default namespaces is
fairly short and is shown in the following table.

Reference Description

System Often referred to as the root namespace. All the base data types
(String, Object, and so on) are contained within the System name-
space. This namespace also acts as the root for all other System classes.

System.Deployment Classes used for One Touch Deployment. This namespace is covered
in more detail in Chapter 19.

24

Introducing Visual Basic 2005 and Visual Studio 2005

Reference Description

System.Drawing Provides access to the GDI+ graphics functionality.

System.Windows.Forms Classes used to create traditional Windows-based applications. This
namespace is covered in more detail in Chapter 14.

Assembly Information Screen

Selecting the Assembly Information button from within your My Project window opens the Assembly
Information dialog box. Within this dialog, shown in Figure 2-5 it is possible to define file properties,
such as your company’s name and versioning information, which will be embedded into the operating
system’s file attributes for your project’s output. The frame of the assembly file shows that by default

it contains several standard values. This dialog is new to Visual Studio 2005 and replaces the way that
engineers were forced to directly edit the XML contained in the AssemblyInfo.vb source file associated
with an application.

Assembly Information e
Title: Pro YB.NET
Drescriphion:
Comparny: {Interknowlogy
Product: Pro VB.NET
Copyright: Copyright @ Interknowlogy]| 2005
Tradermark:
Assembly Wersion: |1 i} 1] i}
File Yersion: 1 i} i} i}
GUID: 2687bed35-1936-45e4-047c-54cbb0ze1 1BF
Meutral Language: ;(None) v
[Make assembly COM-Visible
[0K l [Cancel

Figure 2-5

Assembly Attributes
The AssemblyInfo.vb file contains attribute blocks, which are used to set information about the assem-
bly. Each attribute block has an assembly modifier, for example:

<Assembly: AssemblyTitle("")>

All the attributes set within this file provide information that is contained within the assembly metadata.
These properties are displayed in the Assembly Information dialog. This dialog is opened from the pro-
ject’s properties page, on the Compile tab by selecting the Assembly Information button. The attributes
contained within the file are summarized in the following table.

25

Chapter 2

Attribute Description

Title Sets the name of the assembly, which appears within the file properties of
the compiled file as the Description.

Description This attribute is used to provide a textual description of the assembly,
which is added to the Comments property for the file.

Company Sets the name of the company that produced the assembly. The name set
here appears within the Version tab of the file properties.

Product Sets the product name of the resulting assembly. The product name will
appear within the Version tab of the file properties.

Copyright The copyright information of the assembly, this value appears on the
Version tab of the file properties.

Trademark Used to assign any trademark information to the assembly. This

information appears within the Version tab of the file properties.

Assembly Version This attribute is used to set the version number of the assembly.
Assembly version numbers can be generated, which is the default setting

for .NET applications. This is covered in more detail in Chapter 25.

This attribute is used to set the version number of the executable files.
This and other deployment-related settings are covered in more detail in

File Version

Chapter 25.

COMVisible This attribute is used to indicate whether this assembly should be
registered and made available to COM applications.

Guid If the assembly is to be exposed as a traditional COM object, then the

value of this attribute will become the ID of the resulting type library.

Not requiring developers to edit these settings directly at the XML level is one of the many ways that
Visual Studio 2005 has been designed to enhance developer productivity. Now that you've seen some of
your project settings, let’s look at the code.

The New Code Window

The Form Designer opens by default when a new project is created. If you have closed it, you can easily
reopen it by right-clicking Form1 . vb in the Solution Explorer and selecting View Designer from the
pop-up menu. From this window, you can also bring up the code view for this form. This can be done
either by right-clicking Forml . vb in the Solution Explorer and selecting code view, or by right-clicking
the form in the View Designer and selecting View Code from the pop-up menu.

By default you can see that the initial display of the form looks very simple. The Code Editor window
should be familiar from previous development environments. There is no code in the Forml . vb file.
This is a change from Visual Studio 2003, where you would have a generated section of code in a col-
lapsed region in your source file. Instead, Visual Studio 2005 introduces a capability called partial
classes. Partial classes will be discussed later in Chapter 4; for now you merely need to be aware that

26

Introducing Visual Basic 2005 and Visual Studio 2005

all of the generated source code for your form is located in the file Forml.Designer.vb. If you open
this file, you'll see that there is quite a bit of custom code generated by Visual Studio already in your

project. At this point, you will have a display similar to the one shown in Figure 2-6.

Frivate components As Systewm.ComponencModel.IContainer

> Pro VB - Micresoft Visual Studio =@
File Edt Yiew Project Build Debug Data Tooks Test ‘Window Community Help
2 7% E = | w3 R e amrm i
RS E @2 g | AR Lo R e P Y 2 |
;‘ Fn-rml'.l)esigner.vh' Formivb | ProVBRET Formlvb [Designj | Start Page - 3 || Solution Ex... » B X
:" “{3 Form1 + | |) (Declarations) ;v] .=||J_)J _ﬂ [&
% [<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _ 7’ _'_;] Pro YB.NET
S Partial Fublic Class Forml + (| My Project
Inherits System.Windows.Forms.Form P '—":_ererences
- |_j bin
o —_— - . % ha g BB [oby
orw overrides dispose to clean up the cowponent list. B Foritit
= [:E] Form1.v
<dystem.Diagnostics.DebuggerlonUseccCode (> _ = &) Fomi pes
Protected Overloads Owverrides Sub Dispose (ByVal disposing ks Boolean) =
1t disposing Andhil=o components IsNot Nothing Then
components.Dispose ()
End If
MyBasze,Dizpose (disposing)
End Sub) e
50, L Da.
'RBegquired by the Windows Form Designer | [Properties = n x

Forml Attributes =

= 'NOTE: The following procedure is regquired by the Windows Form Designer 25 ',H |
:Il|r. -*m: r.Pdrn.r;rn\.‘Inﬂ |.|.=|r.r['[]rr.9 rjnm-"-wt Form Designer. B com
i 5t AdLTY g e cod ditor.
T N0k ModirgrItiusingtae, Code eHItox oM Cla False
= <System.liagnostics.DebuggeritepThrough{}> COMVisi Trus
Private Sub InitializeComponent () S T
El Serialization
components = New Iystem.ComponsntModel . Container () Sevizlizat False
Me.hutoScalelode = System. Tindows.Forms. AutoScaleMode.Font
Me.Text = "Forml®
End Jub
-End Class COM Class
|| |Expose Class to COM,
A 2|
Ready Ll Col | chi NS
Figure 2-6

Modules inside source files in Visual Studio can be hidden on the screen —a feature known as outlining.
By default there is a minus sign next to every method (sub or function). This makes it easy to hide or
show code on a method-by-method basis. If the code for a method is hidden, the method declaration is
still shown and has a plus sign next to it to indicate that the body code is hidden. This feature is very
useful when a developer is working on a few key methods in a module and wishes to avoid scrolling
through many screens of code that are not relevant to the current task.

It is also possible to hide custom regions of code. The #Region directive is used for this within the IDE,
though it has no effect on the actual application. A region of code is demarcated by the #Region directive
at the top and the # End Region directive at the end. The #Region directive used to begin a region should
include a description. The description will appear next to the plus sign shown when the code is minimized.

The outlining enhancement was probably inspired by the fact that the Visual Studio designers generate a
lot of code when a project is started. Items that were hidden in Visual Basic 6 (such as the logic that sets
initial form properties) are actually inside the generated code in Visual Studio. However, seeing all of
these functions in the code is an improvement because it is easier for the developer to understand what
is happening, and possibly to manipulate the process in special cases.

27

Chapter 2

Outlining can also be turned off by selecting Edit = Outlining = Stop Outlining from the Visual Studio
menu. This menu also contains some other useful functions. A section of code can be temporarily hidden
by highlighting it and selecting Edit = Outlining = Hide Selection. The selected code will be replaced
with an ellipsis with a plus sign next to it, as if you had dynamically identified a region within the
source code. Clicking the plus sign displays the code again.

Tabs versus MDI

You may have noticed in Figure 2-6 that the Code View and Form Designer windows opened in a tabbed
environment. This tabbed environment is the default for working with the code windows inside Visual
Studio. However, it is possible to toggle this setting, allowing you to work with a more traditional MDI-
based interface. Such an interface opens each code window within a separate frame instead of anchoring
it to the tabbed display of the integrated development environment (IDE).

To change the arrangement that is used between the tabbed and MDI interface, use the Options dialog
box (accessible via Tools => Options). You can also force the development environment to use the MDI

as opposed to the tabbed interface (for a single session) by using the command line option /mdi when
Visual Studio is started.

Customizing the Text Editor

Visual Studio has a rich set of customizations related to the Text Editor. Go to the Tools menu and select
Options to open the Options dialog box, shown in Figure 2-7. Within the dialog box, ensure that the Show
All Settings check box is selected. Next select the Text Editor folder, and then select the All Languages
folder. This section allows you to make changes to the Text Editor, which are applied across every sup-
ported development language. Additionally, you can select the Basic folder. Doing so will allow you to
make changes that are specific to how the Text Editor will behave when you are editing VB source code.

Options B[
+- Environment Statemnent completion
+ Performance Toals Auto list members
+- Projects and Solutions [E] Hide: advanced members
g Source Contral Pararneker information
= Text Editar S

<

General

[ClEnable wirtual space

: [word wrap

General

Tabs Apply Cuk or Copy commands ta blank lines when there is na selection
=) Basic

General Display

1abs " [Line numbers
B c# VBB Enable single-click URL navigation
55 [E] Mavigation bar
[# HTML Mote: This page sets options For all languages. To change options Far only

Show all settings

one language, select the desired language From the tree on the left,

[QK] I Cancel

Figure 2-7

28

Introducing Visual Basic 2005 and Visual Studio 2005

From this dialog box, it is possible to modify the number of spaces that each tab will insert into your source
code and to manage several other elements of your editing environment. One little-known capability of the
Text Editor that can be useful is line numbering. Checking the line numbers check box will cause the editor
to number all lines, which provides an easy way to unambiguously reference lines of code.

A new feature of Visual Studio 2005 is the ability to track your changes as you edit. Enabling the Track
Changes setting under the Text Editor options causes Visual Studio to provide a colored indicator of
where you have modified a file. This indicator is a color bar, which resides in the left margin of your
display indicating which portions of a source file have been recently edited and whether or not those
changes have been saved to disk.

Extended IntelliSense

IntelliSense has always been a popular feature of Microsoft tools and applications. IntelliSense has been
enhanced in Visual Studio, allowing you to not only work with the methods of a class but also to auto-
matically display the list of possible values associated with an enumerated list of properties when one
has been defined. IntelliSense also provides a tooltip-like list of parameter definitions when you are
making a method call. You'll see an example of this feature later in this chapter.

Additionally, if you type Exit and a space, IntelliSense displays a drop-down list of keywords that
could follow Exit. Other keywords that have drop-down lists to present available options include Goto,
Implements, Option, and Declare. IntelliSense generally displays more tooltip information in the
environment than before and helps the developer match up pairs of parentheses, braces, and brackets.

The Properties Window

The Properties window, shown in Figure 2-8, is, by default, placed in the lower-right corner of the Visual
Studio display. Like many of the other windows in the IDE, if you close it, it can be accessed through the
View menu. Alternatively, you can use the F4 key to reopen this window. The Properties window is simi-
lar to the one with which you are probably familiar from previous development environments. It is used
to set the properties of the currently selected item control in the display.

For example, in the design view, select your form. You'll see the Properties window adjust to display the
properties of Form1, as shown in Figure 2-8. This is the list of properties associated with your form. For
example, if you want to limit how small a user can reduce the display area of your form, you can now
define this as a property. For your sample, go to the Text property and change the default of Form1 to
Professional VB.NET Intro. You'll see that once you have accepted the property change, the new value is
displayed as the caption of your form. Later in the section on setting form properties in code, you'll see
that unlike other environments, where properties you edit through the user interface are hidden in some
binary or proprietary portion of the project, NET properties are defined within your source file. Thus,
while the Properties window may look similar to that in other environments, such as Visual Basic 6,
you'll find that it is far more powerful under Visual Studio 2005.

Each control you place on your form has its own distinct set of properties. You'll notice that Visual Studio

displays the Toolbox tab on the left side of your display. This tab opens a pane containing a list of the
controls you can use on your form, as shown in Figure 2-9.

29

Chapter 2

Properties %5
Forml System.‘Windows, Forrns.Form -
AR
E Accessibility |
acressibleDescription |
AccessibleMame
AccessibleRole Default
B Appearance
BackColor [Contral
BackgroundImage |:| (none)
BackgroundImagelayout Tile
Cursor Default
Fonk Microsoft Sans Serif, &.25pt
ForeColor Bl ControlText
FormBorder Style Sizable
RightToLeft Mo
RightToLeftLayout False
Texk Professional YB.NET Intro
UsetaitCursor False
B Behavior
AllowDrop False
Autoyalidate EnablePreventFocusChange
ContextMenusStrip (nane)
DoubleBuffered False
Enabled True
ImeMode MoControl
E Data v
B {anrlicatinnSettinas) 1]
Text
The text contained in the contral,

Figure 2-8

Dynamic Help

The Properties window may not have changed much from Visual Basic 6, but the Dynamic Help tab
below the Properties window is new. Dynamic Help makes a guess at what you might be interested in
looking at, based on what you have done recently. The options in the Dynamic Help window are catego-
rized into three areas. The top category, entitled Help, makes a best guess on the features that the envi-
ronment thinks you might be trying to use. This best guess is the same as if you pressed F1 while
highlighting a keyword within your code.

Just below that is a section called Samples, and it points to a Help page that lists a variety of sample
applications. The third section is a category called Getting Started, which contains a variety of help
options on introductory material. One of the options in the Getting Started category is Visual Studio
Walkthroughs. This contains step-by-step guides on how to perform the basic tasks for the different
types of projects that can be created in Visual Studio.

30

Introducing Visual Basic 2005 and Visual Studio 2005

Toolbox E
";.-';iil.l-\-'o'indows Forms 1]
= Common Controls

k Pointer

ab| Bukton

CheckBox

B2 CheckedLlistBox

?ﬂ ComboBox

T DateTimePicker

A Label

A LinkLabel

|z ListBiox

237 Listview

#-] MaskedTextBox

5 MonthCalendar

] MotifyIcon

3 MumericUpDown
|8 PictureBox

] ProgressBar

(®) RadioButtan
&5 RichTextBox
|abll TextBox
%__-, ToolTip

T TreeView
i_j WebBrowser

i+l Containers

= Menus & Toolbars
+ Data

| Components

! Printing

| Dialogs
General

+H| = FH

E
Figure 2-9

Working with Visual Basic 2005

By now, you should be reasonably familiar with some of the key windows available to you in Visual
Studio. The next step is to look at the code in your sample form. Since you've already seen that the
Forml.vb file is empty, let’s open the Forml . Designer.vb file. To do this, go to the toolbar located

in the Solution Explorer window and select the Show All Files button. This will change your project dis-
play and a small plus sign will appear next to the Forml . vb file. Expanding this entry displays the
Forml.Design.vb file, and you can open this file within Visual Studio. Note that the contents of this
file are generated; for now don’t try to make any changes. Visual Studio will automatically regenerate
the entire file when a property is changed, and as a result, any changes may be lost. The following lines
start the declaration for your form in the file Forml .Designer.vb:

<Global .Microsoft.VisualBasic.CompilerServices.DesignerGenerated()>
Partial Public Class Forml
Inherits System.Windows.Forms.Form

31

Chapter 2

The first line is an attribute that can be ignored. Next is the line that actually declares a new class called
Forml. In VB, you can declare classes in any source file. This is a change from versions of Visual Basic
prior to .NET, which required that classes be defined in a class module (.c1s). You can also declare any
number of classes in a single source file; since classes are not defined by their source file, however, doing
so is considered a poor programming practice. This line also uses the Partial keyword. This keyword
will be covered in more detail in Chapter 5, but in short it tells the compiler that the code for this class
will exist in more than just one source file. The second line of the class declaration specifies the parent
for your class. In the preceding case, your sample Forml class is based on the Form class, which is con-
tained in the System.Windows . Forms namespace.

Forms are classes that derive from the System.Windows .Forms.Form class. This class is used to create
dialog boxes and windows for traditional Windows-based applications. Chapters 4 and 5 focus on many
of the new object-oriented keywords, such as Shared and Inherits, that you will use when developing
more robust VB applications.

As noted, the name of your class and the file in which it exists are not tightly coupled. Thus, your form
will be referenced in the code as Form1, unless you modify the name used in the class declaration.
Similarly, you can rename the file that contains the class without changing the actual name of the class.

One of the powerful results of forms being implemented as classes is that you can now derive one form
from another form. This technique is called visual inheritance, although the elements that are actually
inherited may not be displayed. This concept is covered in much more detail in Chapters 5, 14, and 15.

Running ProVB.NET

Now that you've reviewed the elements of your generated project, let’s test the code before you continue.
To run an application from within Visual Studio, there are several options: The first is to click the Start
button, which looks like the play button on a tape recorder. Alternatively, you can go to the Debug menu
and select Start. Finally, the most common way of launching applications is to press F5.

Once the application starts, you will see an empty form display with the standard control buttons (in the
upper-right corner) from which you can control the application. The form name should be Professional
VB.NET Intro, which you applied earlier. At this point, the sample doesn’t have any custom code to
examine, so the next step is to add some simple elements to this application.

Form Properties Set in Code

32

As noted in the section discussing the Properties window, Visual Studio keeps every object’s custom
property values in the source code. To do this, Visual Studio adds a method to your form class called
InitializeComponent. As the name suggests, this method handles the initialization of the components
contained on the form. A comment before the procedure warns you that the Form Designer modifies the
code contained in the procedure and that you should not modify the code directly. This module is part
of the Forml.Designer.vb source file, and Visual Studio updates this section as changes are made
through the IDE.

'NOTE: The following procedure is required by the Windows Form Designer

'It can be modified using the Windows Form Designer.

'Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> Private Sub _
InitializeComponent ()

Introducing Visual Basic 2005 and Visual Studio 2005

Me. SuspendLayout ()

'Forml

Me.AutoScaleDimensions = New System.Drawing.SizeF (6.0!, 13.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
Me.ClientSize = New System.Drawing.Size (292, 266)

Me.Name = "Forml"

Me.Text = "Professional VB.NET Intro"

Me.ResumeLayout (False)

End Sub

The seven lines of the InitializeComponent procedure assign values to the properties of your Forml
class. All the properties of the form and controls are now set directly in code. When you change the
value of a property of the form or a control through the Properties window, an entry will be added to
InitializeComponent that will assign that value to the property. Previously, while examining the
Properties window you set the Text property of the form to Professional VB.NET Intro, which caused
the following line of code to be added automatically:

Me.Text = "Professional VB.NET Intro"

The code accessing the properties of the form uses the Me keyword. The Me keyword acts as a variable
that refers to the instance of the current class in which it is used. When you are working within a control
that is used by your form, the Me keyword will refer to the control if the method you are working on is
part of the control class’s definition, even though that method may be called by your form class. The Me
keyword isn’t necessary, but it aids in the understanding of the code, so that you immediately recognize
that the property references are not simply local variables. The properties of the form class that are set in
InitializeComponent by default are shown in the following table.

Property Description

Suspend Layout This property tells the form to not make updates to what is
displayed to the user. It is called so that as each change is made
the form doesn’t seem to come up in pieces.

AutoScaleDimensions Initializes the size of the font used to lay out the form at design time.
At runtime, the font that is actually rendered is compared with this
property, and the form is scaled accordingly.

AutoScaleMode Indicates that the form will use fonts that are autoscaled based on
the display characteristics of the runtime environment.

ClientSize Sets the area in which controls can be placed (the client area). It is the
size of the form minus the size of the title bar and form borders.

Name This property is used to set the textual name of the form.

ResumelLayout Tells the form that it should resume the normal layout and
displaying of its contents.

33

Chapter 2

Enhancing the Sample Application

To start enhancing the application, you are going to use the control toolbox. Ensure that you have closed
the Forml.designer.vb file and switch your display to the Form1.vb [Design] tab. The Toolbox win-
dow is available whenever a form is in design mode. By default, the toolbar, shown in Figure 2-9, lives
on the left-hand side of Visual Studio as a tab. When you click this tab, the control window expands and
you can then drag controls onto your form. Alternatively, if you have closed the Toolbox tab, you can go
to the View menu and select Toolbox.

If you haven't set up the toolbox to be permanently visible, it will slide out of the way and disappear
whenever focus is moved away from it. This is a new feature of the IDE that has been added to help
maximize the available screen real estate. If you don’t like this feature and would like the toolbox to be
permanently visible, all you need to do is click the pushpin icon on the toolbox’s title bar.

Adding a Control and Event Handler

The button you've dragged onto the form is ready to go in all respects. However, Visual Studio has no
way of knowing how you want to customize it. Start by going to the Properties window and changing its
text property to “Hello World.” You can then change the button’s name property to ButtonHelloWorld.
Having made these changes, double-click the button in the display view. Double-clicking tells Visual
Studio that you want to add an event handler to this control, and by default Visual Studio adds an
On_Click event handler for buttons. The IDE then shifts the display to the code view so that you can
customize this handler (see Figure 2-10).

> Pro VB - Micresoft Visual Studio =
File Edt Yiew Project Build Debug Data Format Took Test MWindow Community Help

T WEALTEN® B A Ao G = R S N e R e R e P e £

Tookaoix » 1 X || Forml.vh [Design]*| Start Page - > | Soltion Explorer @ x
= -~ B =1l =1 B &
o nllw‘indmsw:ns J : o =] | D|E L ELELS
=} Enr?mon Controls | &= Prof al VB.MET Intro =)= =] _v; Pro VBNET

E Poirker 4 [Zd My Project

[ab]) Butten F- [Refererces

[¥] checkBox ®- | 3 bn

X Checkedlistsox #- [ot

=F o % [H] Formi.wb

TF DatelinePicker

A Label

A Lirkiabel

[=3 ListBox

117 List¥iew !

] MaskedTextBor S Soktio... (F]0atas...
[T MonthCalendsr == Properties ~ A X
i uitoe

) MetiFylean = J_’:I‘ Buttonl System.Windows.F +
113 MumericUpDown =y =

= = A= I |

|4 PictureBes St TV = SR
s ForeColor [l CortrolTe|s
[ProgressBar

= Image [(nane)

-;J RadoButton Imagedlign MddeCenter

' RichTestBox ImageInde:[| (none)

[abl] TenxtBox Imagekey [] (none)

by ToolTip Imagelist (none)

15 Treeiew RightTalefl No

- Texk Buttonl |8
= WebBrowses
7 Containers Text
5 Menus & Taolbars The test conkained in the

1 conkral.
= Data |
e i I
Ready 7178, 225 i 75223

Figure 2-10

Introducing Visual Basic 2005 and Visual Studio 2005

While the event handler can be added through the designer, it is also possible to add event handlers
from the Code view. After you double-click the button, Visual Studio will transfer you to the Code view
and display your new event handler. Notice that in the Code view there are drop-down boxes on the top
of the Edit window. The boxes indicate the current object on the left, in this case your new button, and
the current method on the right, in this case the Click event handler. It is possible to add new handlers
for other events on your button or form using these drop-down lists.

The drop-down box on the left-hand side lists the objects for which event handlers can be added. The
drop-down box on the right-hand side lists all the events for the selected object. This is similar to the
previous versions of Visual Basic, apart from an enhancement that allows you to handle the events of
the classes that have been overridden. For now, however, you have created a new handler for your but-
ton’s click event, and it’s time to look at customizing the code associated with this event.

Customizing the Code

With the Code window open to the newly added event handler for the “Hello World” button, you can
start to customize this handler. Note that adding a control and event handler involves elements of gener-
ated code. Visual Studio adds code to the Forml . Designer.vb file By definition, the name used in the
generated file for your control also links the control for which you have added this handler to the han-
dler. These changes occur in addition to the default method implementation you see here in the editable
portion of your source code.

Before you start adding new code to this method handler, however, you may want to reduce the com-
plexity of finding some of the Windows . Forms enumerations that will be used in your custom code. To
do this, you need to import a local reference to the System.Windows . Forms namespace.

Working with the Imports Statement

Go to the very first line of your code and add Imports statements to the generated code. The Imports
statement is similar to a file-based reference for local access to the classes contained in that namespace.
By default, to reference a class you need to provide its full namespace. However, when a namespace is
imported into a source file, you can instead reference that class by its short name. This topic will be cov-
ered in more detail in Chapter 8. For now, you can just add the following reference to the top of Forml.vb:

Imports System.Windows.Forms

This line of code means that if you want the list of possible MessageBox button values all you need to
reference is the enumeration MessageBoxBut tons. Without this statement, you would need to reference
System.Windows.Forms.MessageBoxButtons in order to use the same enumeration. An example of
this is shown in the next section, where you customize the event handler. The Imports statement has
additional capabilities to make it easy for you to work with the wide array of available namespaces in
.NET. The statement is covered in more detail in Chapter 9.

Adding XML Comments

One of the new features of Visual Studio 2005 is the ability to create XML comments. XML comments

are a much more powerful feature than you probably realize because they are also recognized by Visual
Studio for use in IntelliSense. To add a new XML comment to your handler, go to the line before the han-
dler and type three single quotation marks ' ' . This will trigger Visual Studio to replace your single

35

Chapter 2

quotation mark with the following block of comments. You can trigger these comments in front of any
method, class, or property in your code.

'Y <summary>

</summary>

<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>

Notice that Visual Studio has provided a template that offers a place to provide a summary of what this
method does. It also provides placeholders to describe each parameter that is part of this method. Not
only are the comments entered in these sections available within the source code, but also when it is
compiled, you'll find an XML file in the project directory summarizing all of your XML comments that
can be used to generate documentation and help files for said source code.

Customize the Event Handler

Now, customize the code for the button handler. This method doesn’t actually do anything by default.
To change this, add a command to open a message box and show the “Hello World” message. Use the
System.Windows.Forms.MessageBox class. Fortunately, since you’ve imported that namespace, you
can reference the MessageBox . Show method directly. The Show method has several different parame-
ters, and as you see in Figure 2-11, not only does Visual Studio provide a tooltip for the list of parameters
on this function, but it also provides help on the appropriate value for individual parameters.

% Pro VB - Microsoft Visual Studio =0E
File Edt View Project Build Debug Data Tools Test Window Community Help
gy : - 3 o= | Gm [| O R AT (% O
PR W= MEERN " - NI T - e W =N I IR Y 3 S [o5 | Bl sh ok 0 5
% Forml.vb*| Formlvh[Design]* | Start Page - X | Solution Explorer -~ 1 X
= | LeButtanHetoworld v || # diick
% Imports Syacem. Hindows. Forms) 71 ik Pro YBNET
“/| EPublic Class Forml =f| @ i My Project
L Pl ceummary F - [References
I g [Tibn
. & Asterisk #-] obj
o R @] Formiwvb
i ' @ Exclamation
= Hand
B el = {Infoemation |Svstem. Windows, Forms | Tcon, Information = 64
Frivate Jub ButtonHelloWorld Cl & mone The message box contains a symbol consisting of a lowercass letber §ina circle.
MessageBox.Show ("Hello Worl & Question [E
"h Firstc Loo & Stop -
MessageboxBu = Warning "
MessageBoxIcon. Information -"Zl Sokitlo... J Datas...
a1 af 16 % Show (text As String, caption As String, buttons As System Windows. Farms, MessageBoxButtons, _Prcperties -« 0 x
End hcon As System. Forms.F on,
End Clas| defaultEukton As System \indows, Forms, MessageBoxDefaulButtan, ButtonHelloWorlkd_Click 2 ~
options As System.Windows, Forms, MessageBoxOplions, displayHeloBiutthon As Boolsan) | Ty
Az System. windows, Forms DialogResult S A =)
icon: Cree of the System, Windows Forms.MessageBoxlcon values that specdfies which icon to display in the message box,
||
4| I | [
Ready Ln 13 Col 50 Chs0 NS
Figure 2-11

36

Introducing Visual Basic 2005 and Visual Studio 2005

The completed call to show should look similar to the following code snippet. Note that the underscore
character has been used to continue the command across multiple lines. Also note that unlike previous
versions of Visual Basic, where parentheses were sometimes unnecessary, in Visual Studio 2005 the syn-

tax now expects parentheses for every method call, but the good news is that it will automatically add
them if there are no parameters required for a given call.

MessageBox.Show("Hello World", _
"A First Look at VB.NET",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

Once you have entered this line of code, you may notice a squiggly line underneath some portion of
your text. This occurs if there is an error in the line you have typed. In previous versions of Visual Basic,
the development environment would interrupt your progress with a dialog box, but with Visual

Studio, the IDE works more like the latest version of Word. Instead of interrupting your progress, it
highlights the problem and allows you to continue working on your code.

Review the Code

Now that you have created a simple Windows application, let’s review the elements of the code that have
been added by Visual Studio. Following is the entire Forml . Designer . vb source listing. Highlighted in

this listing are the lines of code that have changed since the original template was used to generate this
project.

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Public Class Forml

Inherits System.Windows.Forms.Form

'Form overrides dispose to clean up the component list.
<System.Diagnostics.DebuggerNonUserCode () >

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing AndAlso components IsNot Nothing Then
components.Dispose ()
End If
MyBase.Dispose (disposing)
End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.Icontainer
'NOTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent ()

Me. ButtonHelloWorld = New System.Windows.Forms.Button ()
Me. SuspendLayout ()

'ButtonHelloWorld

37

Chapter 2

Me.ButtonHelloWorld.Location = New System.Drawing.Point (112, 112)
Me.ButtonHelloWorld.Name = "ButtonHelloWorld"
Me.ButtonHelloWorld.Size = New System.Drawing.Size (75, 23)
Me.ButtonHelloWorld.TabIndex = 0

Me.ButtonHelloWorld.Text = "Hello World"

'Forml

Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font Me.ClientSize =
New System.Drawing.Size(292, 273)

Me.Controls.Add (Me.ButtonHelloWorld)

Me.Name = "Forml"

Me.Text = "Professional VB.NET Intro"

Me.ResumeLayout (False)
End Sub
Friend WithEvents ButtonHelloWorld As System.Windows.Forms.Button
End Class

After the Class declaration in the generated file, the first change that has been made to the code is the
addition of a new variable to represent the new button:

Friend WithEvents ButtonHelloWorld As System.Windows.Forms.Button

When any type of control is added to the form, a new variable will be added to the form class. Controls
are represented by variables and, just as form properties are set in code, form controls are added in code.
The Button class in the System.Windows . Forms namespace implements the button control on the tool-
box. Each control that is added to a form has a class that implements the functionality of the control. For
the standard controls, these classes are usually found in the System.Windows . Forms namespace. The
withEvents keyword has been used in the declaration of the new variable so that it can respond to
events raised by the button.

The bulk of the code changes are in the InitializeComponent procedure. Eight lines of code have
been added to help set up and display the button control. The first addition to the procedure is a line
that creates a new instance of the Button class and assigns it to the button variable:

Me.ButtonHelloWorld = New System.Windows.Forms.Button ()

Before a button is added to the form, the form’s layout engine must be paused. This is done using the
next line of code:

Me. SuspendLayout ()

The next four lines of code set the properties of the button. The Location property of the Button class
sets the location of the top-left corner of the button within the form:

Me.ButtonHelloWorld.Location = New System.Drawing.Point (112, 112)

38

Introducing Visual Basic 2005 and Visual Studio 2005

The location of a control is expressed in terms of a Point structure. Next the Name property of the button
is set:

Me.ButtonHelloWorld.Name = "ButtonHelloWorld"

The Name property acts in exactly the same way as it did for the form, setting the textual name of the
button. The Name property has no effect on how the button is displayed on the form, but is used to
recognize the button’s context within the source code. The next two lines of code assign values to the
TabIndex and Text properties of the button:

Me.ButtonHelloWorld.TabIndex = 0
Me.ButtonHelloWorld.Text = "Hello World"

The TabIndex property of the button is used to set the order in which the control will be selected when
the user cycles through the controls on the form using the Tab key. The higher the number, the later the
control will get focus. Each control should have a unique number for its TabIndex property. The Text
property of a button sets the text that appears on the button.

Once the properties of the button have been set, it needs to be added to the form. This is accomplished
with the next line of code:

Me.Controls.Add (Me.ButtonHelloWorld)

This line of code adds the button to the collection of child controls for the form. The System.windows
.Forms.Form class (from which your Forml class is derived) has a property called Controls that keeps
track of all of the child controls of the form. Whenever you add a control to a form, a line similar to the
preceding one is added automatically to the form’s initialization process.

Finally, near the bottom of the initialization logic is the final code change. The form is given permission
to resume the layout logic:

Me.ResumeLayout (False)

In addition to the code that has been generated in the Forml . Designer.vb source file you have created
code that lives in the Form1 . vb source file. This code is shown here:

Imports System.Windows.Forms
Public Class Forml
'Y <summary>
'Y < /summary>
"' <param name="sender"></param>
''' <param name="e"></param>
"' <remarks></remarks>
Private Sub ButtonHelloWorld_Click (ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles ButtonHelloWorld.Click
MessageBox.Show("Hello World", _
"A First Look at VB.NET", _

39

Chapter 2

MessageBoxButtons.OK, _
MessageBoxIcon.Information)
End Sub
End Class

This code reflects the event handler added for the button. The code contained in the handler was already
covered, with the exception of the naming convention for event handlers. Event handlers have a naming
convention similar to that in previous versions of Visual Basic: The control name is followed by an under-
score and then the event name. The event itself may also have a standard set of parameters. At this
point, you can test the application, but first perhaps a review of build options is appropriate.

Build Configurations

Prior to .NET, a Visual Basic project had only one set of properties. There was no way to have one set of
properties for a debug build and a separate set for a release build. The result was that you had to manu-
ally change any properties that were environment-specific before you built the application. This has
changed with the introduction of build configurations, which allow you to have different sets of project
properties for debug and release builds. Visual Studio also does not limit you to only two build configu-
rations, it is possible to create additional custom configurations. The properties that can be set for a pro-
ject have been split into two groups: those that are independent of build configuration and therefore
apply to all build configurations, and those that apply only to the active build configuration. For exam-
ple, the Project Name and Project Location properties are the same irrespective of what build configura-
tion is active, whereas the code optimization options differ, depending on the active build configuration.
This isn’t a new concept and has been available to Visual C++ developers for some time, but NET was
the first time it was available for VB developers.

Currently under Visual Studio 2005, the default settings for Visual Basic developers do not include the
two build configuration settings in the project properties page. By default, Visual Basic applications are
built in release mode, however if a project’s build type is changed, the Visual Basic developer is by default
unaware and unable to change the setting. To display these settings in Visual Studio, go to the Tools menu
and select the Options menu item. On the Options dialog, select the “Projects and Solutions” tree item,
and on the settings for projects and solutions, you need to select the “Show advanced build configura-
tions” check box. This will update the user interface to properly display the build configurations.

The advantage of multiple configurations is that it is possible to turn off optimization while an application
is in development and add symbolic debug information that will help locate and identify errors. When
you are ready to ship the application, a single switch to the release configuration results in an executable
that is optimized. The settings associated with the various build configurations are stored in the project
properties. Unlike the project’s display properties, which show up in the Assembly Information window
discussed earlier in this chapter, project properties are accessed through the Compile tab on the project’s
Property pages. To access a project’s Property Pages dialog box, double-click or right-click My Project in
the Solution Explorer and select Open from the pop-up menu. Alternatively, it is possible to open the pro-
ject’s Property Pages dialog box by selecting Properties from the Project menu in Visual Studio.

At the top of this page is a drop-down list box labeled Configuration. Typically, four options are listed in

this box. The currently selected configuration listed as Active, the Debug and Release options, and a final
option listed as All Configurations. When changes are made on this screen, they are only applied to the

40

Introducing Visual Basic 2005 and Visual Studio 2005

selected configuration(s). Thus, on one hand, when Release is selected, any changes will be applied
only to the settings for the Release build. If, on the other hand, All Configurations is selected, then any
changes made will be applied to all of the configurations, Debug and Release, based on what is shown
in Figure 2-12. The second drop-down box, labeled Platform, allows the selection of a target platform
for the project.

The window below these two drop-downs displays the individual properties that are dependent on the
active build configuration. The first such setting is the location where your project’s binary files will be
sent. Notice that VB now defaults to having separate bin/debug and bin/release directories, so you can
keep separate copies of your executables. Below this is the Advanced button. This button opens a win-
dow that contains some low-level compiler optimizations. In most cases, you will never need to change
these settings, but for those working with low-level components, they are available.

Below these settings is the label All Configurations. It should be noted that this label is somewhat mis-
leading and would be better understood if it said: All of the available configuration settings. Of course
that’s a bit long, but the point is that while these settings can be different for each configuration, the grid
contains all of the primary configuration settings. Visual Basic 2005 supports the default configuration
elements Option Explicit and Option Strict, which will automatically reset several of the settings
that you see in the grid of settings. In most cases, it is recommended that you enable both O0ption
Explicit and Option Strict.

% Pro VB.NET - Microsoft Visual Studio
File Edt Yiew Project Build Debug Data Took Test Mindow Community Helo

i e R - R L. - - L b Debug - Ay CPU - | 2%
Pro VB.NET* -
bhl'
i
5 Aol Confi Active (Deb | Platform: | Acthve (Ary CPL
5 At : w i
all - Configuration ,q;::(e —Q;I | Platform: | Acthee (A CPU) S [Pro VB.NET
;-1 Compile® {Debug 3
z : Buikd outpest pat|Debug - Iy Project
= = Release 5] Fomiwvb
o Debug bniDebugl |l Configurations
o References
g Settings Al configurations
Oiption cit: ion gkrick: Option compare:
P Optien expict Option pion compare
lan w| |on | %] |Binery v|
s Condition Hatification
Irnpilicit conversion Er |
Security e) | Errer | :
Late binding; call could Fail 2 run bme Error w l50.. i Te
Pubiish - = = % ~ =
I t 3 of £ =
mpilcit type; object asoum | Error > g TS
Code Analysis Use of varisble prior to assignment Warning w
FunctionfOperatar wkhout reburn vake Warming w Al
Urissed local variable ‘Warring ¥ £
Instance varlable accesses shared member | Warming |
Recursive operator or property access ‘Warning M.
Duplicate or overlapping catch blocks ‘Warring |
[] Disable all warmings
[] Treat &l warnings &s errors
[+] Generate =ML documentation Fie
Buid Events...
Ready
Figure 2-12

41

Chapter 2

42

Below the grid of individual settings is a series of check boxes. The first two relate to warnings and nei-
ther is enabled. They are mutually exclusive, and the first makes warning messages disappear, which is
probably a bad idea. The alternative is to treat warnings like errors, which may cause more trouble than
it’s worth, especially when you consider some of the items that generate warnings. Next, notice that near
the bottom of Figure 2-12 is the option to generate XML comments for your assembly. These comments
are generated based on the XML comments that you enter for each of the classes, methods, and proper-
ties in your source file.

Note that all of these settings are project-specific. However, when working with a solution, it is possible
to have more than one project in the same solution. While you are forced to manage these settings inde-
pendently for each project, there is another form of project configuration related to multiple projects. You
are most likely to do this when working with integrated Setup projects, where you might only want to
build the Setup project when you are working on a release build.

To customize which projects are included in each build configuration, you need the Configuration Manager
for the solution. Projects are assigned to build configurations through the Configuration Manager. If, and
only if, your solution has multiple projects, it is possible to open the Configuration Manager from the Build
menu by selecting Configuration Manager. Alternatively, the Configuration Manager, shown in Figure 2-13,
can be opened using the drop-down list box to the right of the Run button on the Visual Studio toolbar. The
active configuration drop-down box contains the following options: Debug, Release, and Configuration
Manager. The first two default options are the currently available configurations. However, selecting the
bottom option, Configuration Manager, opens the dialog box shown in Figure 2-13.

Configuration Manager e
Active solution configuration: Active solution platform:
Debug || | &ny CPU |

Project contexts (check the project configurations to build or deploy):

| Project Configuration Platform EBuild
Pro YE.MET Release any CRU
ProvE.MNET v| any CPU 2]

Close

Figure 2-13

The Configuration Manager contains an entry for each project in the current solution. It is possible to
include a project or exclude it from the selected configuration by clearing the check box in the column of
the grid labeled Build. This is a valuable capability when a solution has multiple projects so that time
isn’t spent waiting while a project that isn’t being worked on is recompiled. The build configuration is

Introducing Visual Basic 2005 and Visual Studio 2005

commonly used when a Setup project is added to a solution. The normal plan is to rebuild only the Setup
package when a release version of the actual application project is created. It’s important to note that
regardless of the build configuration, it is possible to build any assembly by right-clicking that project
and selecting the Build option from the pop-up menu.

Building Applications

For this example, it is best to just build your sample application using the Debug build configuration.
The first step is to make certain that Debug is selected as the active configuration in the Configuration
drop-down list box discussed in the previous section. Visual Studio provides an entire Build menu with
the various options available for building an application. There are essentially two options for building
applications:

Q Build — Use the currently active build configuration to build the project.

QO Rebuild —Clean all intermediate files (object files) and the output directory before building the
project using the active build configuration.

The Build menu supports doing each of these for either the current configuration or for only the cur-
rently selected project. Thus, you can choose to only build a single project in your solution, to rebuild all
of the supporting files for a single project, or to use the current configuration and build or rebuild all of
the projects that have been defined as part of that configuration. Of course, anytime you choose to test
run your application, the compiler will automatically attempt to perform a compilation so that you run
the most recent version of your code.

You can either select Build from the menu or use the Ctrl-Shift-B keyboard combination to initiate a
build. When you build your application, the Output window along the bottom edge of the development
environment will open. As shown in Figure 2-14, it displays status messages associated with the build
process. This window indicates your success in building your application. Once your application has
been built successfully, you will find the executable file located in the targeted directory. By default, for
.NET applications this is the \ bin subdirectory of your project files.

If there is a problem with building your application, Visual Studio provides a separate window to help
coordinate any list of problems. If an error occurs, the Task List window will open as a tabbed window
in the same region occupied by the Output window shown in Figure 2-14. Each error that is encountered
will trigger a separate item in the Task List, and if you double-click an error, Visual Studio will automati-
cally reposition you on the line with an error. Once your application has been built successfully, you can
run it.

Output

Sheows output From: Build =] | = | =
—————— Build started: Project: Pro VB.NET. Configuracion: Debuy iny CPU —-----
Vhc.exe /noconfig finports:Microsoft.VisualBasic,Systen,System.Collec
Fro VB.NET -» C:\Documents and Sevrings)\Billsi\ny documentsivisual studie Z005\Projects\Pro VE.NI
===zzs===== Build: 1 succesded or up—to-date, 0 failed, 0 skipped ==========

ns, Systen. Collections. Go

Figure 2-14

43

Chapter 2

Running an Application in the Debugger

As discussed earlier, there are several ways to start your application. Starting your application launches
a series of events. First, Visual Studio looks for any modified files and saves those files automatically. It
then verifies the build status of your solution and rebuilds any project that does not have an updated
binary, including dependencies. Finally, it initiates a separate process space and starts up your applica-
tion with the Visual Studio debugger attached to that process.

Once your application is running, the look and feel of Visual Studio’s IDE changes. New windows and
button bars associated with debugging become visible. While your solution and code remain visible, the
IDE displays additional windows such as the Autos, Locals, and Watch windows shown on the lower-
right side of Figure 2-15. These windows are used by the debugger for reviewing the current value of
variables within your code. On the lower-right side of Visual Studio, the Call Stack, Breakpoints,
Command, and Output windows open to provide feedback on what your application is doing. These
windows are discussed in more detail later in this chapter.

With your application running, select Visual Studio as the active window. Then click in the border along-
side the line of code you added to open a message box when the “Hello World” button is clicked. Doing
this will create a breakpoint on the selected line. If you return to your application and click the “Hello
World” button, you will see that Visual Studio takes the active focus and that within your code window,
the line with your breakpoint is now selected.

&0 Pro VB.NET (Running) - Micresoft Visual Studio
File Edt View Project Build Debug Data Format Tools Test Window Community Hel

(IR - B[HE e e = N, R u@ === Blpasgelad-s
Forml.vb ' Formil.vb [Design] » 3 Solution Explorer - 3 X
mg Professional VB.B=Z == VIR

wg Professional VB.NET Intro ookl

4[4 My Praject
F - [23] References
[ibin

#- [obj

% [H Formixb

| Helo Warld
A First Look at VB.NET | " -
— |pnEx.. []DataSources
- o
\]‘.‘) Hello World - x
loworld System, Windows =
v [tnoney [
T Cursor Dt ault
BackColor [|
TImagedlion MiddleCenter
Image [{nane}
Locals - R X
Textalign tddleCenter
Flatstyle Standard
Teuk Hello World
Irnagel sk (none)
UsetisusldtyleBs True bl

Text
The: text contained in the contral,
-2] Locals /5] Immediste Window
2l

Ready

Figure 2-15

44

Introducing Visual Basic 2005 and Visual Studio 2005

While in break mode, it is possible to update the application’s running values and view the current sta-
tus of your application. Chapter 10, which focuses on error handling, delves into many of the more
advanced capabilities of the Visual Studio debugger. At this point, you should have a basic understand-
ing of how to work in the Visual Studio environment. However, there are a few other elements of this
environment that you will use as you develop more complex applications.

Other Debug-Related Windows

As noted earlier in this chapter, when you run an application in debug mode, Visual Studio .NET 2005
opens up a series of windows. Each of these windows provides a view of a limited set of the overall
environment in which your application is running. From these windows, it is possible to find things like
the list of calls used to get to the current line of code or the present value of all of the variables that are

currently available. Visual Studio has a powerful debugger that is fully supported with IntelliSense, and
these windows extend the debugger.

Output

As noted earlier, the build process puts progress messages in this window. Similarly, your program can
also place messages in it. There are several options for accessing this window, which will be discussed in
later chapters, but at the simplest level, the Console object will echo its output to this window during a
debug session. For example, the following line of code can be added to your sample application:

Console.WriteLine("This is printed in the Output Window")

This line of code will cause the string This is printed in the Output Window to appear in the Output
window when your application is running. You can verify this by adding this line in front of the com-
mand to open the message box and then running your application and having the debugger stop on the
line where the message box is opened. Examining the contents of the Output window, you will find that
your string has been displayed.

Anything written to the Output window is shown only while running a program from the environment.
During execution of the compiled module, no Output window is present, so nothing can be written to it.
This is the basic concept behind other objects such as the Debug and Trace objects, which are covered in
more detail in Chapter 10.

Call Stack

The Call Stack window lists the procedures that are currently calling other procedures and waiting for
their return. The call stack represents the path through your code that has led to the currently executing
command. This can be a valuable tool when you are trying to determine what code is executing a line of

code that you didn’t expect to execute. This was accessed in Visual Basic 6 with a menu option on the
View menu.

Breakpoints

The Breakpoints window is an enhanced breakpoint handler in which breakpoints can be defined and
monitored. Earlier, you saw that you can add breakpoints directly to your code simply by selecting a
line. It is also possible to add specific properties to your breakpoints, defining that a given breakpoint
should only execute if a certain value is defined (or undefined) or only after it has been executed several
times. This is useful for debugging problems that occur only after a certain number of iterations of a rou-
tine. (Note that breakpoints are saved when a solution is saved by the IDE.) The breakpoint handler in
Visual Studio 2005 is significantly enhanced from previous versions of Visual Basic.

45

Chapter 2

Locals

The Locals window is used to monitor the value of all variables that are currently in scope. This is a
fairly self-explanatory window that shows a list of the current local variables and next to each item the
value of the variable. As in previous versions of Visual Studio, this display supports the examination of
the contents of objects and arrays via a tree-control interface.

Autos

The Autos window displays variables used in the statement currently being executed and the statement
just before it. These variables are identified and listed for you automatically, hence the window’s name.
This window will show more than just your local variables. For example, if you are in the Debugger
mode on the line to open the MessageBox in the ProVB.NET sample, you will see that the MessageBox
constants that are referenced on this line are shown in this window. This window allows you to see the
content of every variable involved in the currently executing command.

Watch Windows

There are four Watch windows, called Watch 1 to Watch 4. Each window can hold a set of variables or
expressions for which you want to monitor the value. It is also possible to modify the value of a variable
from within a Watch window. The display can be set to show variable values in decimal or hexadecimal
format. To add a variable to a Watch window, right-click the variable in the Code Editor and then select
Add Watch from the pop-up menu.

Useful Features of Visual Studio

The focus of most of this chapter has been on creating a simple application. When you are working with
a tool such as Visual Studio .NET 2003, often your task requires some features but not others. In the pre-
ceding example, there are four in particular that are worth covering:

Q The Task List

Q The Command window
Q The Server Explorer
a

Macros in Visual Studio

The Task List

The Task List is a great productivity tool that tracks not only errors but also pending changes and addi-
tions. It’s also a good way for the Visual Studio environment to communicate information that the devel-
oper needs to know, such as any current errors. The Task List is displayed by selecting the Task List from
the Other Windows option of the View menu, or if there are errors found during a build of your solu-
tion, the window opens automatically.

Although it isn’t immediately obvious, the Task List has several options. The quickest way to get a list of
these options is to go to the View menu and select the Show Tasks option. This will provide a list of the
different types of tasks that can be organized in the Task List. By default the Task List displays all tasks.
However, it is possible to change this default and screen the tasks that are displayed.

46

Introducing Visual Basic 2005 and Visual Studio 2005

The Comment option is used for tasks embedded in code comments. This is done by creating a standard
comment with the apostrophe and then starting the comment with the Visual Studio keyword ToODO:.
The keyword can be followed with any text that describes what needs to be done. Once entered, the text
of these comments shows up in the Task List if either the Comment option or the All option is selected.
Note that a user can create his or her own comment tokens in the options for Visual Studio via the

Tools => Options &> Environment = Task List menu.

Besides helping developers track these tasks, embedding the tasks in code results in another benefit. Just
as with errors, clicking a task in the Task List causes the Code Editor to jump right to the location of the
task without hunting through the code for it.

Finally, it is possible to enter tasks into the Task List manually. By selecting an open row of the Task List,
you can add additional tasks that might be needed but that may not be associated with a particular spot
in your source code. These user-entered tasks are displayed both when the View > Show Tasks = User
option is selected, and when all tasks are displayed.

The Command Window

The Command window is one of the windows that are displayed while in debug mode. It is also possi-
ble to open this window from the Other Windows section of the View menu. When opened, the window
displays a > prompt. This is a command prompt at which you can execute commands.

The Command window can be used to access Visual Studio menu options and commands by typing
them instead of selecting them in the menu structure. For example, if you type File.AddNewProject
and press Enter, the dialog box to add a new project will appear. Note that IntelliSense is available to
help you enter commands in the Command window.

The Command window also has an immediate mode in which expressions can be evaluated. This mode
is accessed by typing Immed at the prompt. In this mode, the window title changes to indicate that the
immediate mode is active. The key difference between modes of the Command window is how the
equal sign behaves. Normally, the equal sign is used as a comparison operator in the Command window.
Thus the statement a=Db is used to determine whether the value a is the same as b. In immediate mode,
the statement a=b attempts to assign the value of b to a. This can be very useful if you are working in the
debugger mode and need to modify a value that is part of a running application. To return to the com-
mand mode, type >cmd.

In the immediate mode, the Command window behaves very similarly to the Immediate window in
Visual Basic 6.

The Server Explorer

As development has become more server-centric, developers have a greater need to discover and manip-
ulate services on the network. The Server Explorer is a feature in Visual Studio that makes this easier.
Visual Interdev started in this direction with a Server Object section in the Interdev toolbox. The Server
Explorer in Visual Studio is more sophisticated in that it allows you to explore and even alter your appli-
cations database or your local registry values. With the assistance of an SQL Database project template
(part of the Other Project types), it is possible to fully explore and alter an SQL Server database. You can
define the tables, stored procedures, and other database objects as you might have previously done with
the SQL Enterprise Manager.

47

Chapter 2

48

However, the Server Explorer is not specific to databases. You open the Server Explorer similarly to how
you open the control toolbox. When you hover over or click the Server Explorer’s tab, the window will
expand from the left-hand side of the IDE. Once it is open, you will see a display similar to the one
shown in Figure 2-16.

It might at first seem as if this window is specific to SQL Server, but if you expand the list of available
servers, as shown in Figure 2-16, you will see that you have access to several server resources. The
Server Explorer even provides the ability to stop and restart services on the server. Notice the wide vari-
ety of server resources that are available for inspection or for use in the project. Having the Server
Explorer available means that you don’t have to go to an outside resource to find, for example, what
message queues are available.

By default, you have access to the resources on your local machine. However, if you are in a domain, it is
possible to add other machines, such as your Web server, to your display. The Add Server option allows
a new server to be selected and inspected. To explore the event logs and registry of a server, you need to
add this server to your display. Use the Add Server button shown in Figure 2-16 to open the Add Server
dialog box. In this dialog box, provide the name of your server and click the OK button. This will add
the new server to your display.

%

Server Explorer

253

,_]_J Data Connections

4 Servers

%I 3<pvm-ents

+ éﬂ Event Logs

- I Management Classes
- E%! Management Events
[+ _:If Message Queues
5

=

+- |0 Performance Counters

- @ Services

4 Server Explarer e Toolbo%_

Figure 2-16

Introducing Visual Basic 2005 and Visual Studio 2005

Recording and Using Macros in Visual Studio 2005

C++ developers have long had one feature that many VB developers craved — macros. In Visual Studio,
macros become part of the environment and are available to any language. Macro options are accessible
from the Tools => Macros menu. The concept of macros is simple: The idea is to record a series of keystrokes
and/or menu actions, and then play them back by pressing a certain keystroke combination.

For example, suppose that one particular function call with a complex set of arguments is constantly
being called on in code, and the function call usually looks the same except for minor variations in the
arguments. The keystrokes to code the function call could be recorded and played back as necessary,
which would insert code to call the function, which could then be modified as necessary.

Macros can be far more complex than this, containing logic as well as keystrokes. The macro capabilities
of Visual Studio are so comprehensive that macros have their own IDE (accessed using Tools => Macros =>
Macros IDE).

Macros can be developed from scratch in this environment, but more commonly they are recorded using
the Record Temporary Macro option on the Macros menu and then renamed and modified in the above
development environment. Here is an example of recording and modifying a macro:

1. Startanew window Application project.

2 In the new project, add a button to Forml, which was created with the project.
3. Double-click the button to get to its C1ick event routine.
4

Select Tool_Macros_Record Temporary Macro. A small toolbar will appear on top of the IDE
with a button to control the recording of a macro (Pause, Stop, and Cancel).

o

Press the Enter key, and then type the following line of code:

Console.WriteLine ("Macro test")

6. Press the Enter key again.

N

In the small toolbar, press the Stop button.

8. Select Tool = Macros = Record Temporary Macro. The Macro Explorer will appear (in the loca-
tion normally occupied by the Solution Explorer) with the new macro in it. You can name the
macro anything you like.

9. Right-click the macro and select Edit to get to the Macro Editor. You will see the following code
in your macro:

DTE.ActiveDocument.Selection.NewLine ()
DTE.ActiveDocument.Selection.Text = "Console.WriteLine(""A macro test"")"
DTE.ActiveDocument.Selection.NewLine ()

The code that appears in Step 9 can vary, depending on how you typed in the line. If you made a mistake
and backspaced, for example, those actions will have their own corresponding lines of code. As a result,
after you record a macro, it is often worthwhile to examine the code and remove any unnecessary lines.

The code in a macro recorded this way is just standard VB code, and it can be modified as desired.
However, there are some restrictions on what you can do inside the macro IDE. For example, you can-
not refer to the namespace for setting up database connections because this might constitute a security
violation.

49

Chapter 2

To run a macro, you can just double-click it in the Macro Explorer or select Tools => Macros => Run
Macro. You can also assign a keystroke to a macro in the Keyboard dialog box in the Tools => Options =>
Environment folder.

One final note on macros is that they essentially allow you to generate code that can then be transferred
to a Visual Studio Add-In project. An Add-In project is a project designed to extend the properties of
Visual Studio. To create a new Add-In project, open the New Project dialog and then go to Other Project
Types — Extensibility. You can then create a Visual Studio Add-In project. Such a project allows you to
essentially share your macro as a new feature of Visual Studio. For example, if Visual Studio 2005 didn’t
provide a standard way to get formatted comments, you might create an add-in that would allow you to
automatically generate your comment template, so you wouldn’t need to retype it repeatedly.

Summary

50

In this chapter, you have created your first sample VB application. Creating this example has helped you
to explore the new Visual Studio IDE and shown how powerful the features of the IDE are. Some of the
key points that were covered in this chapter include:

O How to create projects and the different project templates available

Q Code regions and how you can use them to conceal code

QO How to import a namespace into an application source file

QO How forms are classes and how the properties of forms are set in code

0 Some of the new object-oriented features of Visual Basic

Q Build configurations and how to modify the build configuration of your project

0O Running an application in debug mode and how to set a breakpoint
With .NET, Microsoft has brought different development languages and paradigms into a single develop-
ment environment, and it is a powerful one. Users of previous versions of Visual Basic, Visual Interdev, and

Visual Studio will generally find this environment familiar. The IDE offers many new features over previ-
ous development tools to help boost developer productivity.

You've also seen that Visual Studio is customizable. Various windows can be hidden, docked, or undocked;
layered in tabs; and moved within the IDE. There are many tools in Visual Studio at your disposal and it’s
worth the effort to learn how to use them effectively.

1

Variables and Type

Experienced developers generally consider integers, characters, Booleans, and strings to be the
basic building blocks of any language. In .NET, all objects share a logical inheritance from the base
Object class. One of the advantages of this common heritage is the ability to rely on certain com-
mon methods of every variable. Another is that this allows all of .NET to build on a common type
system. Having a common type system means that just as Visual Studio 2005 provides a common
development environment across .NET languages (as was discussed in the last chapter), Visual
Basic builds on a common type system shared across .NET languages.

Unlike the COM programming model, where different languages are needed to account for differ-
ences in how simple datatypes are stored, .NET languages can communicate without needing to
abstract data. Additionally, since all datatypes are based on the core Object class, every variable
can be ensured of having a set of common characteristics. However, this logical inheritance does
not require a common physical implementation for all variables. For example, what most pro-
grammers see as some of the basic underlying types, such as Integer, Long, Character, and
even Byte, are not implemented as classes. Instead .NET has a base type of object and then allows
simple structures to inherit from this base class. While everything in .NET is based on the 0bject
class, under the covers .NET has two major variable types: value and reference.

O Value types represent simple data storage located on the stack. They are what Visual Basic
6.0 developers would often refer to as datatypes.

0 Reference types are based on complex classes with implementation inheritance from their
parent classes, and custom storage on the managed heap.

Value and reference types are treated differently within assignment statements, and their memory
management is handled differently. It is important to understand how theses differences affect the
software you will write in Visual Basic 2005 (Visual Basic). Understanding the foundations of how
data is manipulated in the .NET Framework will enable you to build more reliable and better per-
forming applications.

Chapter 3

D

52

The main goal of this chapter is to familiarize you with value and reference types and to allow you to
understand some of the key differences in how variables are defined in Visual Basic as compared with
Visual Basic 6.0. The chapter begins by looking at value types, followed by providing a clear definition
of a logical grouping called primitive types. It then examines classes, how they work, and how some of
the basic classes are used. Specifically, this chapter covers:

(]

Value versus reference types

Value types (structures)

Primitive types

Reference types (classes)

Explicit conversions

Option Strict and Option Explicit
Parameter passing ByVal and ByRef

Boxing

U 0000000

Retired keywords and functions

ifferences of Value and Reference Types

When you start looking into the .NET Framework’s underlying type systems, you often hear a conflict-
ing set of statements. On one hand, you are told that all types inherit from the object class, and on the
other hand, you are told to beware when transitioning between value types and reference types. The key
is that while every type, whether it is a built-in structure such as an integer or string or a custom class
such as MyEmployee, does in fact inherit from the object class. The difference between value and refer-
ence types is an underlying implementation difference.

The difference between value types and reference types is an excellent place to start, because it is a rela-
tively simple difference. More important, as a .NET developer you generally don’t need to be concerned
with this difference, except in certain performance-related situations. Value and reference types behave
differently when data is assigned to them:

QO When data is assigned to a value type, the actual data is stored in the variable on the stack.

QO When data is assigned to a reference type, only a reference is stored in the variable. The actual
data is stored on the managed heap.

It is important to understand the difference between the stack and the heap. The stack is a comparatively
small memory area in which processes and threads store data of fixed size. An integer or decimal value
will need the same number of bytes to store their data, regardless of their actual value. This means that
the location of such variables on the stack can be efficiently determined. (When a process needs to
retrieve a variable, it has to search the stack. If the stack contains variables that had dynamic memory
sizes, such a search could take a long time.)

Variables and Type

Reference types do not have a fixed size. For example, a string could vary in size from 2 bytes to close to
all the memory available on a system. The dynamic size of reference types means that the data they con-
tain is stored on the heap rather than the stack. However, the address of the reference type (that is, the
location of the data on the heap) does have a fixed size, and so can be stored on the stack. By only stor-
ing a reference on the stack, the program as a whole runs much more quickly, since the process can
rapidly locate the data associated with a variable.

Storing the data contained in fixed and dynamically sized variables in different places results in dif-
ferences in the way that variables behave. This can be illustrated by comparing the behavior of the
System.Drawing.Point structure (a value type) and the System.Text.StringBuilder class

(a reference type).

The Point structure is used as part of the NET graphics library that is part of the System.Drawing
namespace. The StringBuilder class is part of the System. Text namespace and is used to improve
performance when you're editing strings. Namespaces are covered in detail in Chapter 8.

First, here is an example of how the System.Drawing.Point structure is used:

Dim ptX As New System.Drawing.Point (10, 20)
Dim ptY As New System.Drawing.Point

pty

= ptx
DtX.X =

200

Console.WriteLine (ptY.ToString())

The output from this operation will be {X = 10, Y = 20}, which seems logical. When the code copies ptx
into ptY, the data contained in ptX is copied into the location on the stack that is associated with ptv.
When later the value of ptX is changed, only the memory on the stack that is associated with ptXx is
altered. Altering the value of ptx had no effect on pty. This is not the case with reference types.
Consider the following code, which uses the System.Text.StringBuilder class:

Dim objX As New System.Text.StringBuilder ("Hello World")
Dim objY As System.Text.StringBuilder

objY = objX
objX.Replace("World", "Test")

Console.WriteLine (objY.ToString())

The output from this operation will be “Hello Test,” not “Hello World.” The previous example using
points demonstrated that when one value type is assigned to another, the data stored on the stack is
copied. Similarly, this example demonstrates that when ob3Y is assigned to objX, the data associated
with objX on the stack is copied to the data associated with objY on the stack. However, what is copied
in this case isn’t the actual data, but rather the address on the managed heap where the data is actually
located. This means that objY and objx now reference the same data. When the data on the heap is
changed, the data associated with every variable that holds a reference to that memory is changed. This
is the default behavior of reference types and is known as a shallow copy. Later in this chapter, you'll
see how this behavior has been overridden for strings (which perform a deep copy).

53

Chapter 3

The differences between value types and reference types go beyond how they behave when copied,
and you'll encounter some of the other features provided by objects later in this chapter. First though,
let’s take a closer look at some of the most commonly used value types and learn how .NET works
with them.

Value Types (Structures)

Value types aren’t as versatile as reference types, but they can provide better performance in many cir-
cumstances. The core value types (which include the majority of primitive types) are Boolean, Byte,
Char, DateTime, Decimal, Double, Guid, Int16, Int32, Int64, SByte, Single, and TimeSpan. These
are not the only value types, but rather the subset with which most Visual Basic developers will consis-
tently work. As you’ve seen, by definition value types store data on the stack.

Value types can also be referred to by their proper name: Structures. Previous versions of Visual Basic
supported the user-defined type (UDT). The UDT framework has been replaced by the ability to create
custom structures. The underlying principles and syntax of creating custom structures mirrors that of
creating classes, which will be covered in the next chapter. This section is going to focus on some of the
built-in types that are provided by the .NET Framework, and in particular, a special group of these built-
in types known as primitives.

Primitive Types

54

Visual Basic, in common with other development languages, has a group of elements such as integers
and strings that are termed primitive types. These primitive types are identified by keywords like
String, Long, and Integer, which are aliases for types defined by the .NET class library. This means
the line

Dim i As Long
is equivalent to the line
Dim i As System.Int64

The reason that these two different declarations are available has to do with long-term planning for your
application. In most cases (as was the case when Visual Basic transitioned to .NET), you want to use the
Short, Integer, and Long designations. When Visual Basic moved to .NET, the Integer type went
from 16 bits to 32 bits. Code written with this Integer type would automatically use the larger value if
you rewrote the code in .NET. Interestingly enough, however, the Visual Basic Migration Wizard actually
recast Visual Basic 6 Integer values to Visual Basic .NET Short values.

This is the same reason that Int16, Int32, and Int64 exist. These types specify a physical implementa-
tion, and therefore if your code is someday migrated to a version of .NET that maps the Integer value
to Int64, those values defined as Integer will reflect the new larger capacity, while those declared as
Int32 will not. This could be important if your code were manipulating part of an interface where
changing the physical size of the value could break the interface.

Variables and Type

The following table lists the primitive types that Visual Basic 2005 defines and the structures or classes
that they map to.

Primitive Type .NET Class or Structure
Byte System.Byte (structure)
Short System.Intl6 (structure)
Integer System.Int32 (structure)
Long System.Int64 (structure)
Single System. Single (structure)
Double System.Double (structure)
Decimal System.Decimal (structure)
Boolean System.Boolean (structure)
Date System.DateTime (structure)
Char System.Char (structure)
String System. String (class)

The string primitive type stands out from the other primitives. Strings are implemented as a class, not a
structure. More importantly strings are the one primitive type that is a reference type.

There are certain operations you can perform on primitive types that you cannot perform on other types.
For example, you can assign a value to a primitive type using a literal:

Dim i As Integer = 32
Dim str As String = "Hello"

It is also possible to declare primitive types as constant using the Const keyword. For example,
Dim Const str As String = "Hello"

The value of the variable str in the preceding line of code cannot be changed elsewhere in the applica-
tion containing this code at runtime. These two simple examples illustrate the key properties of primi-
tive types. As noted, most primitive types are, in fact, value types. So, the next step is to take a look at
the specific behavior of some of the common value types in Visual Basic.

Boolean

The .NET Boolean type has been implemented with three values, two for True, and one for False. Two
True values have been implemented for backward compatibility because, in contrast to most languages
(in which Boolean True equates to 1), Visual Basic converts a value of True to -1. This is one of the few
(but not the only) legacy carryovers from Visual Basic 6.0. This was done to save developers from having

55

Chapter 3

56

to examine every Boolean expression to ensure valid return values. Of course, at the lowest level, all
.NET languages operate on the basis that 0 is False and a nonzero value will be converted to True.
Visual Basic works as part of a multilanguage environment, with metadata-defining interfaces, so the
external value of True is as important as its internal value. Fortunately, Microsoft implemented Visual
Basic such that, while -1 is supported within Visual Basic, the NET standard of 1 is exposed from
Visual Basic methods to other languages.

Of course, this compromise involves making some decisions that add complexity to True or False eval-
uations. While a True value in a Boolean expression equates to -1, if converted to any other format, it
equates to 1. This is best illustrated by some sample Visual Basic code. Keep in mind though that this
code follows poor programming practice because it references Boolean values as integers (and does so
with implicit conversions):

Dim blnTrue As Boolean = True
Dim blnOne As Boolean = 1

Dim blnNegOne As Boolean = -1
Dim blnFalse As Boolean = False

The following condition, which is based on the implicit conversion of the Boolean, works even though
the blnoOne variable was originally assigned a value of 1.

If blnOne = -1 Then

Console.WriteLine (blnTrue)

Console.WriteLine (blnOne.ToString)

Console.WriteLine (Convert.ToString (Convert.ToInt32 (blnNegOne)))
End If

The key is that implicit conversions such as the one in the preceding example work differently from
explicit conversions. If you add sample code to explicitly convert the value of a Boolean type to an
Integer type, and then test the result, the integer will be a positive 1. The implicit and explicit conver-
sion of Boolean values is not consistent in Visual Basic. Converting blnNegOne to an integer results in
a positive value, regardless of what was originally assigned.

If Convert.ToIntl6 (blnNegOne) = 1 Then

Console.WriteLine (blnFalse)

Console.WriteLine (Convert.ToString (Convert.ToInt32 (blnFalse)))
End If

This code will not compile if you are using Option Strict (more on this later), but it is a good illustra-
tion of what you should expect when casting implicitly rather than explicitly. The output from this code
is shown in Figure 3-1.

Figure 3-1 illustrates the output when the two preceding conditionals are run as part of a test program
such as the ProVisual Basic sample you created in Chapter 2. The first conditional expression demon-
strates that if casting is performed between a Boolean and an Integer value then, regardless of how

a Boolean in Visual Basic is initialized, True is implicitly evaluated as —1. The three write statements
associated with this display the string representation (True) of a Boolean, both implicitly and explicitly,
as well as the explicitly converted value.

Variables and Type

= =
Outpukt | |
Debug .li
'ProVE._MET.exe': Loaded 'c:\windnwsiaEEEmthE{:J
True
True
1
False =
u]
I v
£ | il | (2]
(] Call Stack |EM Breakpaints... |E7 Command w... E] Output
Figure 3-1

The second conditional expression performs an explicit cast from a Boolean to an Integer value. Since
this condition succeeds, it demonstrates that the conversion results in a value of 1. Behind the scenes,
the reason for this is that the code used to do the explicit cast is part of the NET Framework and, in the
Framework the value of True is 1. The result is that the code displays the string and converted values
for a Boolean False.

This demonstrates the risk involved in relying on implicitly converted values. If at some point the
default value associated with True were to change, this code would execute differently. The difference
between an explicit and implicit conversion is subtle, and there are two steps to take in order to avoid
difficulty:

Q Always use the True and False constants in code.

Q If there is any doubt as to how the return value from a method will be handled, it should
be assigned to a Boolean variable. That Boolean variable can then be used in conditional
expressions.

The final area where this can be an issue is across languages. Now, you need to consider the behavior
of a referenced component within your Visual Basic code. You can look at a hypothetical class called
MyCSharpClass that might have a single method TestTrue (). The method doesn’t need any parame-
ters, it simply returns a Boolean, which is always True.

From the Visual Basic example, you can create an instance of MyCSharpClass and make calls to the
TestTrue () method:

Dim objMyClass as New MyCSharpClass.MyCSharpClass ()
If objMyClass.TestTrue() = 1 Then
Console.WriteLine ("CSharp uses a 1 for true but does it" & _

" implicitly convert to a 1 in VB?")
Else

57

Chapter 3

Th

Console.WriteLine("Even classes implemented in other .NET languages" & _
" are evaluated implicitly as -1 in Visual Basic")

End If
If objMyClass.TestTrue() = True Then

Console.WriteLine ("CSharp True always converts to Visual Basic True.")
End If

It’s probably unclear if the first conditional in this code will ever work; after all, C# uses a value of 1 to
represent True. However, this code is running in Visual Basic; therefore, the rules of Visual Basic apply.
Even when you return a Boolean from a .NET language that uses 1, not -1, to represent True, the
Visual Basic compiler will ensure that the value of True is implicitly interpreted as — 1. Figure 3-2 illus-
trates that the behavior of the second conditional is both clear and safe from future modifications of the
VB language. If Visual Basic is modified at some future date to no longer use -1 to equate to True, state-
ments that instead compare to the Boolean True will remain unaffected.

______ —_——————————

Debug Li

'ProWBE _HET_ exe': Loaded 'c:\Uindows\assem}:ly\gac\microsoft_visualhasic‘\?_D_SDDD_D_hDSfo'?[AJ
Even classes implemented in other _NET languages are evaluated ipplicitly as -1 in VE.NET g
CE8harp Trus always conwverts to Visual Basic True. [

| v
LﬁJ I _|>|
ﬁ Zall Skack, |@ Breakpoints !D Command Window E] output

Figure 3-2

To create reusable code, it is always better to avoid implicit conversions. In the case of Booleans, if the
code needs to check for an integer value, you should explicitly evaluate the Boolean and create an
appropriate integer — this code will be far more maintainable and prone to fewer unexpected results.
Now that Booleans have been covered in depth, the next step is to examine the Integer types that are
part of Visual Basic.

e Integer Types

In Visual Basic 6.0, there were two types of integer values: the Integer type was limited to a maximum
value of 32767 and the Long type supported a maximum value of 2147483647. The .NET Framework
adds a new integer type, the short. The Short is the equivalent of the Integer value from Visual Basic
6.0, the Integer has been promoted to support the range previously supported by the Long type, and
the Long type is bigger than ever. In addition, each of these types also has two alternative types. In all,
Visual Basic supports nine Integer types.

Type Allocated Memory Minimum Value Maximum Value
Short 2 bytes -32768 32767
Intl6 2 bytes -32768 32767
UIntlé 2 bytes 0 65535

58

Variables and Type

Type Allocated Memory =~ Minimum Value Maximum Value

Integer 4 bytes -2147483648 2147483647

Int32 4 bytes —2147483648 2147483647

UInt32 4 bytes 0 4294967295

Long 8 bytes -9223372036854775808 9223372036854775807

Int64 8 bytes -9223372036854775808 9223372036854775807

UInt64 8 bytes 0 184467440737095551615
Short

A short value is limited to the maximum value that can be stored in 2 bytes. This means there are 16
bits and that the value can range between —32768 and 32767. This limitation may or may not be based on
the amount of memory physically associated with the value; it is a definition of what must occur in the
.NET Framework. This is important, because there is no guarantee that the implementation will actually
use less memory than when using an Integer value. It is possible that, to optimize memory or process-
ing, the operating system will allocate the same amount of physical memory used for an Integer type
and then just limit the possible values.

The short (or Int16) value type can be used to map SQL smallint values.

Integer

An Integer is defined as a value that can be safely stored and transported in 4 bytes (not as a
4-byte implementation). This gives the Integer and Int32 value types a range from —2147483648 to
2147483647. This range is more than adequate to handle most tasks.

The main reason to use an Int32 in place of an integer value is to ensure future portability with inter-
faces. For example, the Integer value in Visual Basic 6.0 was limited to a 2-byte value, but is now a
4-byte value. In future 64-bit platforms, the Integer value will be an 8-byte value. Problems could
occur if an interface used a 64-bit Integer with an interface that expected a 32-bit Integer value. The
solution is to use Int32, which would remain a 32-bit value, even on a 64-bit platform.

The new Integer value type matches the size of an integer value in SQL Server, which means that you
can easily align the column type of a table with the variable type in your programs.

Long
The Long type is aligned with the Int64 value. Long’s have an 8-byte range, which means that their
value can range from -9223372036854775808 to 9223372036854775807.

This is a big range, but if you need to add or multiply Integer values, then you will often need a large
value to contain the result. It's common while doing math operations on one type of integer to use a
larger type to capture the result if there’s a chance that the result could exceed the limit of the types
being manipulated.

The Long value type matches the bigint type in SQL.

59

Chapter 3

Unsigned Types

Another way to gain additional range on the positive side of an integer type is to use one of the unsigned
types. The unsigned types provide a useful buffer that will hold a result that might exceed an operation
by a small amount, but that isn’t the main reason they exist. The UInt16 type happens to have the same
characteristics as the Character type, while the UInt32 type has the same characteristics as a system
memory pointer on a 32-byte system. Be forewarned that on a 64-bit system this changes to the UInt64
type. These types are used to interface with software that expects these values and are the underlying
implementation for other value types.

The Decimal Types

Just as there are a number of types to store integer values, there are three implementations of value types
to store real number values. The single and Double types work the same way in Visual Basic as they
did in Visual Basic 6.0. The difference is the Visual Basic 6.0 Currency type (which was a specialized
version of a Double type), which is now obsolete and a new Decimal value type takes its place for very
large real numbers.

Type Allocated Negative Range Positive Range
Memory
Single 4 bytes -3.402823E38 to —1.401298E-45 1.401298E-45 to 3.402823E38
Double 8 bytes -1.79769313486231E308 to 4.94065645841247E-324 to
—4.94065645841247E-324 1.79769313486232E308

Currency Obsolete — —

Decimal 16 bytes —79228162514264337593543950335 0.0000000000000000000000000001
to to
0.0000000000000000000000000001 79228162514264337593543950335

Single

60

The single type contains 4 bytes of data, and its precision can range anywhere from 1.401298E-45 to
3.402823E38 for positive values and from -3.402823E38 to —1.401298E-45 for negative values.

It can seem strange that a value that is stored using 4 bytes (the same as the Integer type) can store a
number that is larger than even the Long type. This is possible because of the way that the numbers are
stored —a real number can be stored with different levels of precision. Notice that there are six digits
after the decimal point in the definition of the Single type. When a real number gets very large or very
small, the stored value will contain fewer significant places.

For example, while it is possible to represent a Long with the value of 9223372036854775805, the Single
type rounds this value to 9.223372E18. This seems like a reasonable action to take, but it isn’t a reversible
action. The following code demonstrates how this loss of data can result in errors:

Variables and Type

Dim 1 As Long
Dim s As Single

1 = Long.MaxValue
Console.WriteLine (1)

s = Convert.ToSingle(1l)
s -= 1000000000000
1 = Convert.ToInt64(s)

Console.WriteLine (1)

This code creates a Long that has the maximum value possible and outputs this value. Then it stores the
value in a Single, subtracts 1000000000000, stores the value of the Single in the Long, and outputs the
results, as seen in Figure 3-3, Notice that the results aren’t consistent with what you might expect.

;I'flutpul: lj

Debug _Lj

'ProVE.NET . exe': Loaded 'c:‘gwindnm{i_‘
QZZ337EZ036854775807
SZZ337093734314803Z

|
j£]_m | el
B cal . (B grea... |E7) com... Bl output

Figure 3-3

Double

The behavior of the previous example changes dramatically if you replace the value type of single with
Double. A Double uses 8 bytes to store values and as a result has a greater precision and range. The
range for a Double is from 4.94065645841247E-324 to 1.79769313486232E308 for positive values and from
$-$1.79769313486231E308 to — 4.94065645841247E-324 for negative values. The precision has increased so
that a number can contain 15 digits before the rounding begins. This greater level of precision makes the
Double value type a much more reliable variable for use in math operations. It’s possible to represent
most operations with complete accuracy with this value.

Double wasn’t the only 8-byte decimal value in Visual Basic 6.0. One of the other variable types,
Currency, is now obsolete. The Currency type was a specialized version of the Double type and was
designed to support numbers using 19 available digits. While this was certainly better precision than the
15-digit precision available with the Double type, it pales in comparison to the new 28-digit Decimal
type available in the NET Framework.

61

Chapter 3

Decimal

The Decimal type (new in Visual Basic) is a hybrid that consists of a 12-byte integer value combined
with two additional 16-bit values that control the location of the decimal point and the sign of the
overall value. A Decimal value will consume 16 bytes in total and can store a maximum value of
79228162514264337593543950335. This value can then be manipulated by adjusting where the deci-
mal place is located. For example, the maximum value while accounting for four decimal places is
7922816251426433759354395.0335. This is because a Decimal isn’t stored as a traditional number, but is
rather stored as a 12-byte integer value, and the location of the decimal in relation to the available 28
digits. This means that a Decimal does not inherently round numbers the way a Double does.

As a result of the way values are stored, the closest precision to zero that a Decimal supports is
0.0000000000000000000000000001. And as the location of the decimal point is stored separately, it also
stores a value that indicates whether its value is positive or negative. This means that the positive and
negative ranges are exactly the same, regardless of the number of decimal places.

Thus, the system makes a tradeoff where the need to store a larger number of decimal places reduces the
maximum value that can be kept at that level of precision. This tradeoff makes a lot of sense. After all,
it’s not often that you will need to store a number with 15 digits on both sides of the decimal point, and
for those cases you can create a custom class that manages the logic and leverages one or more decimal
values as its properties.

Char and Byte

62

The default character set under Visual Basic is Unicode. So, when a variable is declared as type Char
Visual Basic creates a 2-byte value, since, by default, all characters in the Unicode character set require

2 bytes. Visual Basic supports the declaration of a character value in three ways. Placing a c following
a literal string informs the compiler that the value should be treated as a character, or the Chr and Chrw
methods can be used. The following code snippet shows that all three of these options work similarly,
with the difference between the Chr and chrw methods being the range of valid input values that is
available. The chrw method allows for a broader range of values based on wide character input.

Dim chrLtr_a As Char = "a"c
Dim chrAsc_a As Char = Chr(97)
Dim chrAsc_b as Char = ChrW(98)

To convert characters into a string that was suitable for an ASCII interface, the runtime library needed

to validate each character’s value to ensure it was within a valid range. This could have a performance
impact for certain serial arrays. Fortunately, Visual Basic supports the Byte value type. This type con-
tains a value between 0 and 255 that exactly matches the range of the ASCII character set. When inter-
facing with a system that uses ASCII, it is best to use a Byte array. The runtime knows that there is no
need to perform a Unicode-to-ASCII conversion for a Byte array, so the interface between the systems
will operate significantly faster.

In Visual Basic, the Byte value type expects a numeric value. Thus, to assign the letter “a” to a Byte, you
must use the appropriate character code. One option to get the numeric value of a letter is to use the Asc
method, as shown in the following line of code:

Dim bytLtrA as Byte = Asc("a")

Variables and Type

DateTime

The Visual Basic Date keyword has always supported a structure of both date and time. Under Visual
Basic, the Date structure has all of the same capabilities it had in Visual Basic 6.0 but is now implemented
as part of the DateTime structure. You can, in fact, declare data values using both the DateTime and
Date types. Of note, internally Visual Basic does not store date values as Doubles, it provides key
methods for converting the new internal date representation to the Visual Basic 6.0 Double type. The
ToOADate and FromOADate methods support backward compatibility during migration from previous
versions of Visual Basic.

Visual Basic also provides a set of shared methods that provide some common dates. The concept of
shared methods is covered in more detail in the next chapter, which is on object syntax, but, in short,
shared methods are available even when you don’t create an instance of a class. For the DateTime
structure, the Now () method returns a Date value with the local date and time. This method has not
been changed from Visual Basic 6.0, but Today () and UtcNow () methods have also been added. These
methods can be used to initialize a Date object with the current local date, or the date and time based
on Universal Coordinated Time (also known as Greenwich Mean Time) respectively. You can use these
shared methods to initialize your classes, as shown in the following code sample:

Dim dteNow as Date = Now()
Dim dteToday as Date = Today ()
Dim dteGMT as DateTime = DateTime.UtcNow ()

Explicit Conversions

So far this chapter has focused primarily on implicit conversions. With implicit conversions it is safe, for
example, to assign the value of a smaller type into a larger type. For example, in the following code the
value of a short is assigned to a Long.

Dim shtShort As Short = 32767
Dim lnhLong As Long = shtShort

However, the reverse of this will result in a compilation error, since the compiler doesn’t have any safe
way of handling the assignment when the larger value is outside the range of the smaller value. It is
still possible to cast a value from a larger type to a smaller type, as shown earlier in this chapter. Using
the cType method, it is possible to assign specific values. However, another of Visual Basic’s legacy
carryovers is the ability to implicitly cast across types that don’t fit the traditional implicit casting
boundaries.

The best way to understand how Visual Basic has maintained this capability is to understand one of the
new options in Visual Basic. Under Visual Basic 6.0 it was possible to define that a module should follow
the rules defined by option Explicit. This capability remains under Visual Basic, but now Option
Explicit is the default. Similarly, Visual Basic now provides a new option called option Strict. It
defines the support that your code should provide at compile time for implicit type conversions.

63

Chapter 3

Compiler Options

Visual Studio 2005 includes a tab on the Project Settings page to edit the compiler settings for an entire
project. You can access this screen by right-clicking the project in the Solution Explorer and selecting
Properties from the context menu. As noted in the preceding chapter, the Project Properties dialog has a
Compiler Options tab. When you select the Compiler Options tab, you should see a window similar to
the one shown in Figure 3-4.

> ProVB.Net - Microsoft Visual Studio ===
File Edt Yiew Projact Build Debug Data Tooks Test ‘Window Community Helo
e G NIEV RN I BRI .. N A=A P e B Wem 1 |
51| ProvBMet*| Foml.b[Desgn] | Start Page - ¥ | SoldtionEx.. » & X
g B 1.8
g = -ﬁl.v:‘]._- -]
3 #pplication | ProvB.Net
= b Build output path: 25 ProVE et
i T =4 My Project
Compie* binireleaset, Browsa. .. \ = Formivb
Debug Advanced Compile Options. .,
References
Option esgiclt: Option strict: Opition compare:
Resources on | jon f'l By il
Condition Maotiication
Settings o '
Impheit conwersion Erroe v
Signing Late binding; cal could fal &t run time Error ¥ |
Seaxky Impheit bype; object assumed Errce ¥ -.--:JSduh'..._ Bioea .
Use of variatle prior tg assignment .Warr!'r'.g v.' Properties -0 X
Publish Functionjoperator without return value Warring o -
Code finalyss Urused local variable Warring ~| -
Instance variable accesses shared member Warring w | =
Recursive operskor or property access Warning |
Dupicate or overlspping catch blocks Warring b
[bisable &l warnings
[Treat all warnings as errors
[#] Gererate KML documenitation file
Build Everks...
Ready
Figure 3-4

Aside from your default project file output directory, this page contains several compiler options. These
options are covered here because the Option Explicit and Option Strict settings directly impact
your variable usage.

Q option Explicit— This option has not changed from Visual Basic 6.0. When turned on it
ensures that any variable name is declared. Of course, if you are using Option Strict, then
this setting does not matter since the compiler would not recognize the type of an undeclared
variable. There is, to my knowledge, no good reason to ever turn this option off.

Q option strict— When this option is turned on, the compiler must be able to determine the
type of each variable. And if an assignment between two variables requires a type conversion —
for example, from Integer to Boolean— the conversion between the two types must be
expressed explicitly. This setting can be edited in two ways. The first is by adding an option
Strict declaration to the top of your source code file. The statement within a source file will
apply to all of the code entered in that source file, but only to the code in that file.

64

Variables and Type

QO Option Compare—This option determines whether strings should be compared as binary
strings or if the array of characters should be compared as text. In most cases, leaving this as
binary is appropriate. Doing a text comparison requires the system to convert the binary values
that are stored internally prior to comparison. However, the advantage of a text-based compari-
son is that the character “A” is equal to “a” because the comparison is case-insensitive. This
allows you to perform comparisons that don’t require an explicit case conversion of the com-
pared strings. In most cases, however, this conversion will still occur, so it’s better to use binary

comparison and explicitly convert the case as required.

In addition to setting Option Explicit, Option Strict, and Option Compare to either On or Of £ for
your project, Visual Studio 2005 allows you to customize specific compiler conditions that may occur in
your source file. Thus, unlike Visual Studio 2003, where you either turned options on or 0f £, with Visual
Studio 2005, it is possible to choose to leverage individual settings, such as requiring early binding as
opposed to runtime binding without limiting implicit conversions. These individual settings are part of
the table of individual compiler settings listed below the Option Strict setting.

Notice that as you change your Option Strict setting that the notifications with the top few conditions
is automatically updated to reflect the specific requirements of this new setting. In general, this table lists
a set of conditions that relate to programming practices that you might want to avoid or prevent and
should definitely be aware of. The use of warnings for the majority of these conditions is appropriate,
since there are valid reasons why you might want to use or avoid each.

The basic idea is that these conditions represent possible runtime error conditions that the compiler can’t
truly detect, except to identify that an increased possibility for error exists. When you select Warning

for a setting this is a way to avoid that practice since the compiler will warn you but allow the code to
remain. On the other hand setting a practice to error prevents compilation.

An example of why these conditions are noteworthy is the warning on accessing shared member vari-
ables, if you are unfamiliar with shared member values you will find them discussed as part of the dis-
cussion of classes in Chapter 4. At this point it’s just necessary to know that these values are shared
across all instances of a class. Thus, if a specific instance of a class is updating a shared member value, it
is appropriate to get a warning about this. Since new developers sometimes fail to realize that a shared
member value is common across all instances of a class and thus if one instance updates the value, the
new value is seen by all other instances, this action is one that can lead to errors.

While many of these conditions are only addressed as individual settings Visual Studio 2005 carries for-
ward the Option Strict setting. Most experienced developers agree that using Option Strict and
being forced to recognize when type conversions are occurring is a good thing. Certainly, when develop-
ing software that will be deployed in a production environment, anything that can be done that will
help prevent runtime errors is a good thing. However, Option Strict can slow the development of a
program because you are forced to explicitly define each conversion that needs to occur. If you are
developing a prototype or demo component that has a limited life, you might find this option limiting.

If that were the end of the argument, then many developers would simply turn the option off — the
current default—and forget about it. However, Option Strict has a runtime benefit. When type con-
versions are explicitly identified, the system does them faster. Implicit conversions require the runtime
system to first identify the types involved in a conversion and then obtain the correct handler.

65

Chapter 3

Another advantage of Option Strict is that during implementation developers are forced to consider
everywhere a conversion might occur. Perhaps the development team didn’t realize that some of the
assignment operations resulted in a type conversion. Setting up projects that require explicit conversions
means that the resulting code tends to have type consistency to avoid conversions and, thus, reduce the
number of conversions in the final code. The result is not only conversions that run faster but, hopefully,
a smaller number of conversions as well.

Performing Explicit Conversions

66

The following code is an example of how to convert between different Integer types when Option
Strict is enabled.

Dim shrShort As Short
Dim shrUIntl6 As UIntlé6
Dim shrIntl6 As Intlé6

Dim intInteger As Integer
Dim intUInt32 As UInt32
Dim intInt32 As Int32

Dim lngLong As Long

Dim lngInt64 As Int64

shrShort = 0

shrUIntl6é = Convert.ToUIntl6 (shrShort)
shrIntlé = shrShort

intInteger = shrShort

intUInt32 = Convert.ToUInt32 (shrShort)

intInt32 = shrShort
1ngInt64 = shrShort

IngLong = lngLong.MaxValue

If lngLong < Short.MaxValue Then
shrShort = Convert.ToIntlé (lngLong)

End If

intInteger = CInt (lngLong)

The preceding snippet provides some excellent examples of what might not be intuitive behavior. The
first thing to note is that you can’t implicitly cast from Short to UInt16, or any of the other unsigned
types for that matter. That is because with Option Strict the compiler will not allow an implicit con-
version that might result in a value out of range or in loss of data. Your first thought is that an unsigned
Short has a maximum that is twice the maximum of a signed sShort, but in this case, if the variable
shrshort contained a -1, then the value wouldn’t be in the allowable range for an unsigned type.

The second item illustrated in this code is the shared method Maxvalue. All of the integer and decimal
types have this method. As the name indicates, it returns the maximum value for the specified type.
There is a matching Minvalue method for getting the minimum value. As shared methods, the methods
can be called on either an instance of the class (LngLong . MaxValue) or by referencing the class

(Short .MaxValue).

One fact that isn’t apparent in the code above is that, whenever possible, conversions should be avoided.
Each of the Convert .MethodName methods has been overloaded to accept various types. However, the

Variables and Type

CcInt method (which most Visual Basic 6.0 programmers are familiar with) is defined to accept a param-
eter of type Object. This is important because it involves boxing the value type. As is noted later in this
chapter, repeated boxing of value types has performance implications.

Finally, although this code will compile, it will not always execute correctly. It illustrates a classic inter-
mittent error in that the final conversion statement does not check to ensure that the value being assigned
to intInteger is within the maximum range for an integer type. On those occasions when LngLong is
larger than the maximum allowed, this code will throw an exception.

Visual Basic has many ways to convert values. Some of them are updated versions of techniques that
are familiar from Visual Basic 6.0. Others, such as the ToString method, are an inherent part of every
class (although the .NET specification does not guarantee how a Tostring class is implemented for
each type).

The following set of conversion methods are based on the conversions supported by Visual Basic 6.0.
They coincide with the primitive datatypes described earlier.

CBool () CByte () CChar () CDhate ()
CDbl () CDec () CInt () CLng ()
CObj () CShort () CSng () CStr ()

Each of these methods has been designed to accept the input of the other primitive datatypes (as appro-
priate) and to convert that item to the type indicated by the method name. Thus, the cStr class is used
to convert a primitive type to a String. The disadvantage of these methods is that they have been
designed to support any object. This means that if a primitive type is used, the method automatically
boxes the parameter prior to getting the new value. This results in a loss of performance. Finally, although
these are available as methods within the VB language, they are actually implemented in a class (as with
everything in the .NET Framework). Because the class uses a series of type-specific overloaded methods,
the conversions run faster when the members of the Convert class are called explicitly.

Dim intMyShort As Integer = 200
Convert.ToInt32 (intMyShort)
Convert.ToDateTime ("9/9/2001")

The classes that are part of System. Convert implement not only the conversion methods listed earlier
but also other common conversions as well. These additional methods include standard conversions for
things like unsigned integers and pointers.

All of the preceding type conversions are great for value types and the limited number of classes to
which they apply. However, these implementations are oriented around a limited set of known types.

It is not possible to convert a custom class to an Integer using these classes. More importantly, there
should be no reason to have such a conversion. Instead, a particular class should provide a method that
returns the appropriate type —no type conversion will be required. However, when Option Strict

is enabled, the compiler will require you to cast an object to an appropriate type before triggering an
implicit conversion. But the Convert method isn’t the only way to indicate that a given variable can be
treated as another type.

67

Chapter 3

The CType Method

The cType method accepts two parameters. The first parameter is the object that is having its type cast,
and the second parameter is the name of the object to which it is being cast. This system allows us to cast
objects from parent to child or from child to parent types. There is a limitation in the second parameter
in that it can’t be a variable containing the name of the casting target. Casting occurs at compile time,
and any form of dynamic name selection must occur at runtime. An example of casting is shown as part
of the discussion of working with the object class later in this chapter.

Support for a runtime determination of object types is based on treating variables as objects and using
the object metadata and the TypeOf operator to verify that an object supports various method and prop-
erty calls. Alternatively, in Visual Basic it is possible to turn off Option Strict and as noted later in this
chapter, your application will automatically treat objects as objects allowing for a great deal of runtime
casting.

Reference Types (Classes)

Aot of the power of Visual Basic is harnessed in objects. An object is defined by its class, which describes
what data, methods, and other attributes that an instance of that class will support. There are thousands
of classes provided in the .NET Framework class library.

When code instantiates an object from a class, the object created is a reference type. You may recall ear-
lier how the data contained in value and reference types is stored in different locations, but this is not
the only difference between them. A class (which is the typical way to refer to a reference type) has addi-
tional capabilities, such as support for protected methods and properties, enhanced event-handling
capabilities, constructors, and finalizers, and can be extended with a custom base class via inheritance.
Classes can also be used to define how operators such as “ =” and “ +” work on an instance of the class.

The intention of this chapter is to introduce you to some commonly used classes, to complement your
knowledge of the common value types already covered. Chapters 4, 5, and 7 contain a detailed look

at object orientation in Visual Basic. In this chapter, you'll take a look at the features of the Object, String,
DBNull, and Array classes, as well as the Collection classes found in the System.Collections
namespace.

The Object Class

68

The Object class is the base class for every type in NET —both value and reference types. At their core,
every variable is an object and can be treated as such. The Visual Basic 6.0 runtime environment man-
aged the interpretation of variant objects for VB programmers. This is good in some ways because it
supported a situation in which the contents of the variant could be assumed and the developer just
worked as if they would be present. So long as the content of the memory area was an object of the
appropriate type, the call to a method on that object would succeed. While this was simple to do, it left
Visual Basic 6.0 programs open to some unusual runtime errors that are generally harder to diagnose
and debug. At the same time, in ASP pages and other scripted code, Variants were a requirement
because of the way these loosely typed languages worked. Of course, this runtime type evaluation came
with its own performance implications, but this was secondary to the ease of development.

Variables and Type

You can think of the Object class (in some ways) as the replacement for the Variant type from Visual
Basic 6.0, but take care. In Visual Basic 6.0, a Variant type represents a variant memory location; in
Visual Basic, an Object type represents a reference to an instance of the Object class. In Visual Basic
6.0, a Variant was implemented to provide a reference to a memory area on the heap, but its definition
didn’t define any specific ways of accessing this data area.

The following lines can work equally well in Visual Basic 6.0 and Visual Basic (so long as Option
Strict is not enabled in your Visual Basic project):

Dim varObj
Dim objVar

Interestingly enough, when not using Option Strict, the behavior of a Visual Basic 6.0 Variant and a
Visual Basic Object is almost identical. Since the Object class is the basis of all types, you can assign any
variable to an object. Reference types will maintain their current reference and implementation but will
be generically handled, while value types will be packaged into a box and placed into the memory loca-
tion associated with the 0bject. The new Object supports all of the capabilities that were available
from the variant type but it goes beyond the Visual Basic 6.0 variant type in its support for methods.
For example, there are instance methods that are available on Object, such as ToString. This method
will, if implemented, return a string representation of an instance value. Since the Object class defines
it, it can be called on any object.

Dim objMyClass as New MyClass("Hello World")

Console.WriteLine (objMyClass.ToString)

Which brings up the question of how does the 0bject class know how to convert custom classes to
String objects? The answer to this question is that it doesn’t. For this method to actually return the
data in an instance of a String, a class must override this method. Otherwise, when this code is run,
the default version of this method defined at the object level will return the name of the current class
(MyClass) as its string representation.

The object class continues to fill the role of the variant class even when Object Strict is enabled.
The declaration is more explicit; anything that can be done with Object Strict disabled can be done
with it enabled. The difference is that with Option Strict code must explicitly define the type of object
whose property or method it plans to access. Thus, if you don’t want to access only those methods avail-
able from the base Object class, you need to specify the actual type of the object to be used. An example
of this using the CType variable to explicitly cast an object and call a method is as follows:

Dim objVar as Object
objVar = Me
CType (objVar, Form).Text = "New Dialog Title Text"

This snippet shows how to create a generic object under the Option Strict syntax. It is then assigns a
copy of the current instance of a Visual Basic form. The name Me is reserved in Visual Basic, and its use
will be described further in Chapter 6. Once it has been assigned, in order to access the Text property of
this class, it must be cast from its base Object definition to a type that supports a Text property. The

69

Chapter 3

CType command (covered earlier) accepts the object as its first parameter and the class name (without
quotes) as its second parameter. In this case, the current instance variable is of type Form, and by casting
this variable, the code can reference the Text property of the current form.

The String Class

Another class that will play a large role in most development projects is the String class. Having
Strings defined as a class is more powerful than the Visual Basic 6.0 datatype of String with which
you may be familiar. The String class is special class within .NET, because it is the one primitive type
that is not a value type. To make String objects compatible with some of the underlying behavior in
NET, they have some interesting characteristics.

The following table lists a subset of the shared methods that are available from the String class.

These methods are shared, which means that the methods are not specific to any instance of a String.
The string class also contains several other methods that are called based on an instance of a specific
String object. The methods on the String class replace the functions that Visual Basic 6.0 had as part of
the language for string manipulation and perform operations such as inserting strings, splitting strings,
and searching strings.

The String() Method

70

The Visual Basic 6 String () method provided a single method for the creation of a String with a set
length and populated with a specific character. This method no longer exists in .NET, although the same
capability does exist. With the transition to classes, this capability has been added to the constructor to
the string class. In fact, the String class has several different constructors for those situations in which
you aren’t simply assigning an existing value to a new string. Below you first see the most common
default, which uses the default constructor (without any argument) to create a String, which is then
assigned the constant value ' ABC'. The second declaration uses one of the parameterized versions of the
String constructor. This constructor accepts two parameters, the first being a character and the second
being the number of times that character should be repeated in the string.

Dim strConstant as String = "ABC"
Dim strRepeat as New String("A"c, 20)

Shared Methods Description

Empty This is actually a property. It can be used when an empty Stringis
required. It can be used for comparison or initialization of a String.

Compare Compares two objects of type String.

CompareOrdinal Compares two Strings, without considering the local national

language or culture.

Concat Concatenates one or more Strings.
Copy Creates a new String with the same value as an instance provided.
Equals Determines whether two Strings have the same value.

Variables and Type

Shared Methods Description

Equality operator (=) An overloaded version of the equality operator that compares two
String objects.

Inequality operator A method that accepts two String objects for comparison. The

(op_Inequality) method returns True if the objects are not equal.

The second example of constructing a new string imitates the Visual Basic 6.0 String () method. Not
only have creation methods been encapsulated, but other string-specific methods, such as character and
substring searching, and case changes are now available from String objects.

The SubString Method

Although not removed, the Left, Right, and Mid methods are deprecated in Visual Basic. This is largely
due to the fact that the NET String class has a method called Substring. This single method replaces the
three methods that Visual Basic 6.0 programmers are accustomed to using to create substrings. Thanks to
overloading, which is covered in Chapter 5, there are two versions of this method: the first accepts a start-
ing position and the number of characters to retrieve, while the second accepts simply the starting location.
The following code shows examples of using both of these methods on an instance of a String.

Dim strMyString as String = "Hello World"

Console.WriteLine (strMystring.SubString(0,5))
Console.WriteLine (strMyString.SubString(6))

The PadLeft and PadRight Methods

The Lset and RSet statements from previous versions of Visual Basic have been removed. These func-
tions have been replaced by the PadLeft and PadrRight methods. These methods allow you to justify a
String so that it is left- or right-justified. As with subString, the PadLeft, and PadRight methods are
overloaded. The first version of these methods requires only a maximum length of the String and then
uses spaces to pad the String. The other version requires two parameters, the length of the returned
String and the character that should be used to pad the original String. An example of working with
the padLeft method is as follows:

Dim strMyString as String = "Hello World"

Console.WriteLine (strMyString.PadLeft (30))
Console.WriteLine (strMyString.PadLeft (20,"."c))

The String Class Is Inmutable

The Visual Basic String class isn’t entirely different from the String type that VB programmers have
used for years. The majority of String behaviors remain unchanged, and the majority of methods are now
available as methods. However, to support the default behavior that people associate with the String
primitive type, the String class isn’t declared the same way that several other classes are. Strings in .NET
do not allow editing of their data. When a portion of a String is changed or copied, the operating system
allocates a new memory location and copies the resulting String to this new location. This ensures that
when a String is copied to a second variable, the new variable references its own copy.

71

Chapter 3

To support this behavior in .NET, the String class is defined as an immutable class. This means that
each time a change is made to the data associated with a String, a new instance is created, and the origi-
nal referenced memory is released for garbage collection. This is an expensive operation, but the result
is that the string class behaves as people expect a primitive type to behave. Additionally, when a copy
of a String is made, the string class forces a new version of the data into the referenced memory. This
ensures that each instance of a String will reference only its own memory. Consider the following code:

Dim strMyString as String
Dim intLoop as Integer

For intLoop = 1 to 1000

strMyString = strMyString & "A very long string "
Next
Console.WriteLine (strMyString)

This code does not perform well. For each assignment operation on the strMyString variable, the system
allocates a new memory buffer based on the size of the new string and copies both the current value of
strMyString and the new text that is to be appended. The system then frees the previous memory that
must be reclaimed by the Garbage Collector. As this loop continues, the new memory allocation requires a
larger chunk of memory. The result is that operations such as this can take a long time. However, NET
offers an alternative in the System. Text . StringBuilder object shown in the following sample code.

Dim objMyStrBldr as New System.Text.StringBuilder ()
Dim intLoop as Integer

For intLoop = 1 to 1000
ObjMyStrBldr.Append ("A very long string ")

Next

Console.WriteLine (objMyStrBldr.ToString())

The preceding code works with strings but does not use the String class. The .NET class library con-
tains a class called System.Text.StringBuilder, which performs better when strings will be edited
repeatedly. This class does not store a string in the conventional manner — editing or appending more
characters does not involve allocating new memory for the entire string. Since the preceding code snip-
pet does not need to reallocate the memory used for the entire string, each time another set of characters
is appended it performs significantly faster. In the end, an instance of the String class is never explicitly
needed because the StringBuilder class implements the ToString method to roll up all of the charac-
ters into a string. While the concept of the StringBuilder class isn’t new, the fact that it is now avail-
able as part of the Visual Basic implementation means developers no longer need to create their own
string memory managers.

The DBNull Class and IsDBNull() Function

72

The 1sNull and IsEmpty functions from Visual Basic 6.0 are now obsolete. Visual Basic provides alterna-
tive ways of determining if a variable has not been initialized. The first is the function IsDBNull (). The
IsDBNull method accepts an object as its parameter and returns a Boolean that indicates if the variable
has been initialized. In addition to this method, Visual Basic has access to the DBNul1 class. The class is part
of the System namespace, and to use it you declare a local variable with the DBNu11 type. This variable is
then used with an is comparison operator to determine if a given variable has been initialized.

Variables and Type

Dim sysNull As System.DBNull
Dim strMyString As String

If strMyString Is sysNull Then
strMyString = "Initialize my String"

End If

If Not IsDBNull (strMyString) Then
Console.WriteLine (strMyString)

End If

In this code the strMyString variable is declared but not yet initialized, making its value null (or noth-
ing). The first conditional is evaluated to True and as a result the string is initialized. The second condi-
tional then ensures that the declared variable has been initialized. Since this was accomplished in the
preceding code, this condition is also True. In both cases, the sysNull value is used not to verify the
type of the object, but to verify that it has not yet been instantiated with a value.

Arrays

When Visual Basic was first announced, a lot of significant changes were planned to the way that arrays
worked. A major reason for these changes involved getting rid of the Variant_Array structure. This
structure, introduced with COM, was hidden from most VB programmers, but was nevertheless ever
present. It was necessary because Visual Basic defined arrays in a unique way. The variant array has
been removed not only from Visual Basic but also from every .NET language. The reason it was removed
is that under .NET, arrays are handled in a consistent way. All .NET arrays at an index of zero have a
defined number of elements. However, the way that an array is declared in Visual Basic varies slightly
from other .NET languages such as C#.

When Visual Basic was announced, it was said that arrays would always begin at 0 and that they would
be defined based on the number of elements in the array. However, in Visual Basic 6.0 the Option Base
statement allowed arrays to be declared as starting at 1 or any other specified value. This meant that
arrays were defined based on their upper limit. The Visual Basic 6.0 Option Base This = statement
resulted in a problem when converting existing code to Visual Basic. To resolve this issue the engineers
at Microsoft decided on a compromise. All arrays in .NET begin at 0, but when an array is declared in
Visual Basic the definition is based on the upper limit of the array, not the number of elements. The main
result of this upper limit declaration is that arrays defined in Visual Basic have one more entry by defini-
tion than those defined with other .NET languages.

Overall, the result in the change in how arrays work means that some of the more esoteric declarations
that were available in Visual Basic 6.0, such as Dim intMyArr (15 to 30), are no longer supported. Still,
the majority of capabilities for arrays remain unchanged. It is still possible to declare an array with mul-
tiple indices. It is also possible to declare any type as an array of that type. Since an array is a modifier of
another type, the basic Array class is never explicitly declared for a variable’s type. The System.Array
class that serves as the base for all arrays is defined such that it cannot be created, but must be inherited.
As aresult, to create an Integer array a set of parentheses is added to the declaration of the variable.
These parentheses indicate that the system should create an array of the type specified. The parentheses
used in the declaration may be empty or may contain the size of the array. An array can be defined as
having a single dimension using a single number, or as having multiple dimensions.

73

Chapter 3

The following code illustrates some simple examples to demonstrate five different ways of creating
arrays, using a simple integer array as the basis for the comparison.

Dim arrMyIntArrayl
Dim arrMyIntArray?2
Dim arrMyIntArray3(4,2) as Integer
Dim arrMyIntArray4(,) as Integer = _

{ {1, 2, 3, 4},{(5, 6, 7, 8},{9, 10, 11, 12},{13, 14 , 15 , 16} }
Dim arrMyIntArray5() as Integer

0) as Integer

(2
() as Integer = {1, 2, 3, 4}
(4
(

In the first case, the code defines an array of integers that spans from arrMyIntArrayl (0) to
arrMyIntArrayl (20). This is a 21-element array, because all arrays start at 0 and end with the value
defined in the declaration as the upper bound. The second statement creates an array with four elements
numbered 0 through 3, containing the values 1 to 4. The third statement creates a multidimensional
array containing five elements at the first level with each of those elements containing three child ele-
ments. The challenge, of course, is that you have to remember that all subscripts go from 0 to the upper
bound, meaning that each array contains one more element than its upper bound. The result is an array
with 15 elements. The next line of code, the fourth, shows an alternative way of creating the same array,
but in this case there are four elements, each containing four elements, with subscripts from 0 to 3 at
each level. Finally, the last line demonstrates that it is possible to simply declare a variable and indicate
that the variable will be an array without specifying the number of elements in that array.

The UBound Function

Continuing to reference the arrays defined earlier, the declaration of arrMyIntArray?2 actually defined
an array that spans from arrMyIntArray2 (0) to arrMyIntArrayl (3). This is the case because when
you declare an array by specifying the set of values it still starts at 0. However, in this case you are not
specifying the upper bound, but rather initializing the array with a set of values. If this set of values
came from a database or other source it might not be clear what the upper limit on the array was. To ver-
ify the upper bound of an array, a call can be made to the UBound function:

Console.Writeline CStr (UBound (ArrMyIntArray2))
and

ArrMyIntArray2.GetUpperBound(0)
since it is preferable when using multi-dimension arrays.

The UBound function has a companion called LBound. The LBound function computes the lower bound for
a given array. However, since all arrays in Visual Basic are 0-based, it doesn’t have much value anymore.

Multidimensional Arrays

74

As shown earlier in the sample array declarations, the definition of arrMyIntArray3 is a multi-
dimensional array. This declaration creates an array with 15 elements (five in the first range, each con-
taining three elements) ranging from arrMyIntArray3 (0, 0) through arrMyIntArray3(2,1) to
arrMyIntArray3 (4,2).As with all elements of an array, when it is created without specific values,
the values of each of these elements is created with the default value for that type. This case also
demonstrates that the size of the different dimensions can vary. It is also possible to nest deeper than
two levels, but this should be done with care because such code is difficult to maintain.

Variables and Type

The fourth declaration shown previously creates arrMyIntArray4 (,) with predefined values. The val-
ues are mapped based on the outer set being the first dimension and the inner values being associated
with the next inner dimension. For example, the value of arrMyIntArray4 (0, 1) is 2, while the value
of arrMyIntArray4 (2, 3) is 12. The following code snippet illustrates this using a set of nested loops
to traverse the array. Additionally, it provides an example of calling the UBound method with a second
parameter to specify that you are interested in the upper bound for the second dimension of the array:

Dim intLoopl as Integer
Dim intLoop2 as Integer
For intLoopl = 0 to UBound(arrMyIntArray4)
For intLoop2 = 0 to UBound(arrMyIntArray4d, 2)
Console.WriteLine arrMyIntArray4 (intLoopl, intLoop2).ToString
Next
Next

The ReDim Statement

The final declaration demonstrated previously is for arrMyIntArray5 (). This is an example of an array
that has not yet been instantiated. If an attempt were made to assign a value into this array, it would
trigger an exception. The solution to this is to use the ReDim keyword. Although ReDim was part of
Visual Basic 6.0, it has changed slightly in Visual Basic. The first change is that code must first Dim an
instance of the variable; it is not acceptable to declare an array using the ReDim statement. The second
change is that code cannot change the number of dimensions in an array. For example, an array with
three dimensions cannot grow to an array of four dimensions nor can it be reduced to only two dimen-
sions. To further extend the example, code associated with arrays, consider the following code, which
manipulates some of the arrays previously declared.

Dim arrMyIntArray5() as Integer

' The statement below would compile but would cause a runtime exception.
'arrMyIntArray5(0) = 1

ReDim arrMyIntArray5(2)
ReDim arrMyIntArray3(5,4)
ReDim Preserve arrMyIntArray4 (UBound (arrMyIntArray4),2)

The ReDim of arrMyIntArray5 instantiates the elements of the array so that values can be assigned to
each element. The second statement redimensions the arrMyIntArray3 variable defined earlier. Note
that it is changing the size of both the first and the second dimension. While it is not possible to change
the number of dimensions in an array, it is possible to resize any of an array’s dimensions. This capabil-
ity is required if declarations such as Dim arrMyIntArray6(, , ,) As Integer are to be legal.

By the way, while it is possible to repeatedly ReDim a variable, this is the type of action that should ide-
ally be done only rarely and never within a loop. If you intend to loop through a set of entries and add
entries to an array, attempt to determine the number of entries you'll need before entering the loop or at
a minimum ReDim the size of your array in chunks to improve performance.

The Preserve Keyword

The last item in the code snippet in the preceding section illustrates an additional keyword associated
with redimensioning. The Preserve keyword indicates that the data that is stored in the array prior to

75

Chapter 3

redimensioning should be transferred to the newly created array. If this keyword is not used, then the
data that was stored in an array is lost. Additionally, in the preceding example, the ReDim statement
actually reduces the second dimension of the array. While this is a perfectly legal statement, it should
be noted that this means that even though you have asked to preserve the data, the data values 4, 8,
12, and 16 that were assigned in the original definition of this array will be discarded. These are lost
because they were assigned in the highest index of the second array. Since arrMyIntArray4 (1, 3) is
no longer valid, the value that resided at this location has been lost.

Arrays continue to be very powerful in Visual Basic. However, the basic array class is just that, basic.
While it provides a powerful framework it does not provide a lot of other features that would allow for
more robust logic to be built into the array. To achieve more advanced features, such as sorting and
dynamic allocation, the base Array class has been inherited by the classes that make up the
Collections namespace.

Collections

The collections namespace is part of the System namespace and provides a series of classes that
implement advanced array features. While being able to make an array of existing types is powerful,
sometimes more power is needed in the array itself. The ability to inherently sort or dynamically add
dissimilar objects in an array is provided by the classes of the Collections namespace. This namespace
contains a specialized set of objects that can be instantiated for additional features when working with a
collection of similar objects. The following table defines several of the objects that are available as part of
the System.Collections namespace.

Class Description

ArrayList Implements an array whose size increases automatically as elements are added.

BitArray Manages an array of Booleans that are stored as bit values.

Hashtable Implements a collection of values organized by key. Sorting is done based on a
hash of the key.

Queue Implements a first in, first out collection.

SortedList Implements a collection of values with associated keys. The values are sorted by
key and are accessible by key or index.

Stack Implements a last in, first out collection.

Each of the objects listed is focused on storing a collection of objects. This means that in addition to the
special capabilities each provides it also provides one additional capability not available to objects cre-
ated based on the Array class. In short, since every variable in .NET is based on the Object class, it is
possible to have a collection defined, because one of these objects contains elements that are defined
with different types. This is the case because each stores an array of objects, and since all classes are of
type Object, a string could be stored alongside an integer value. The result is that it’s possible within
the Collection classes for the actual objects being stored to be different. Consider the following exam-
ple code:

76

Variables and Type

Dim objMyArrList As New System.Collections.ArrayList()
Dim objItem As Object

Dim intLine As Integer = 1

Dim strHello As String = "Hello"

Dim objWorld As New System.Text.StringBuilder ("World")

' Add an integer value to the array list.
objMyArrList.Add (intLine)

' Add an instance of a string object
objMyArrList.Add (strHello)

' Add a single character cast as a character.
objMyArrList.Add (" "c)

' Add an object that isn't a primitive type.
objMyArrList.Add (objWorld)

' To balance the string, insert a break between the line
' and the string "Hello", by inserting a string constant.
objMyArrList.Insert(l, ". ")

For Each objItem In objMyArrList
' Output the values...
Console.Write(objItem.ToString())
Next

The preceding code is an example of implementing the new ArrayList collection class. The collection
classes, as this example shows, are more versatile than any similar structures in Visual Basic 6.0. The
preceding code creates a new instance of an ArrayList, along with some related variables to support
the demonstration. The code then shows four different types of variable being inserted into the same
ArrayList. The code then inserts another value into the middle of the list. At no time has the size of the
array been declared nor has a redefinition of the array size been required.

Part of the reason for this is that the Add and Insert methods on the ArrayList class are defined to
accept a parameter of type Object. This means that the ArrayList object can literally accept any value in
.NET. This comes at a slight performance cost for those variables that are value types because of boxing.

The System.Collections.Specialized Namespace and Generics

Visual Basic has additional classes available as part of the System.Collections.Specialized name-
space. These classes tend to be oriented around a specific problem. For example, the ListDictionary class
is designed to take advantage of the fact that while a hash table is very good at storing and retrieving a
large number of items, it can be costly when there are only a few items. Similarly, the StringCollection
and StringDictionary classes are defined so that when working with strings the time spent interpreting
the type of object is reduced and overall performance is improved. The idea is that each of the classes
defined in this namespace represents a specialized implementation that has been optimized for handling
specific datatypes.

This specialization is different from the specialization provided by one of Visual Studio 2005’s new
features, Generics. The basic idea of generics is that since there is a performance cost and reliability

77

Chapter 3

concerns when casting to and from the object type, collections should allow you to specify what specific
type they will contain. Generics not only prevent you from paying the cost of boxing for value types, but
add to the ability to create type-safe code at compile time. Generics are a powerful extension to the .NET
environment and are covered in detail in Chapter 8.

Parameter Passing

78

When an object’s methods or an assembly’s procedures and methods are called, it’s often appropriate

to provide input for the data to be operated on by the code. Visual Basic has changed the way that func-
tions, procedures, and methods are called and how those parameters are passed. The first change actu-
ally makes writing such calls more consistent. Under Visual Basic 6.0, the parameter list for a procedure
call didn’t require parentheses. On the other hand, a call to a method did require parentheses around the
parameter list. In Visual Basic, the parentheses are always required and the call keyword is obsolete.

Another change in Visual Basic is the way parameters with default values are handled. As with Visual
Basic 6.0, it is possible to define a function, procedure, or method that provides default values for the
last parameter(s). This way it is possible to call a method such as PadRight, passing either with a single
parameter defining the length of the string and using a default of space for the padding character, or
with two parameters, the first still defining the length of the string but the second now replacing the
default of space with a dash.

Public Function PadRight (ByVal intSize as Integer, _
Optional ByVal chrPad as Char = " "c)
End Function

To use default parameters, it is necessary to make them the last parameters in the function declaration.
Visual Basic also requires that every optional parameter have a default value. It is not acceptable to just
declare a parameter and assign it the Optional keyword. In Visual Basic, the Optional keyword must
be accompanied by a value that will be assigned if the parameter is not passed in.

How the system handles parameters is the most important change related to them in Visual Basic. In
Visual Basic 6.0, the default was that parameters were passed by reference. Passing a parameter by refer-
ence means that if changes are made to the value of a variable passed to a method, function, or proce-
dure call, these changes were to the actual variable and, therefore, are available to the calling routine.

Passing a parameter by reference sometimes results in unexpected changes being made to a parameter’s
value. It is partly because of this that parameters default to passing by value in Visual Basic. The advan-
tage of passing by value is that regardless of what a function might do to a variable while it is running,
when the function is completed, the calling code still has the original value.

However, under .NET passing a parameter by value only indicates how the top-level reference for that
object is passed. Sometimes referred to as a ‘shallow’ copy operation, the system only copies the top-
level reference value for an object passed by value. This is important to remember because it means
that referenced memory is not protected. Thus, while the reference passed as part of the parameter will
remain unchanged for the calling method, the actual values stored in referenced objects can be updated
even when an object is passed by reference.

Variables and Type

Boxing

Normally, when a conversion (implicit or explicit) occurs, the original value is read from its current
memory location and then the new value is assigned. For example, to convert a Short to a Long, the
system reads the 2 bytes of Short data and writes them to the appropriate bytes for the Long variable.
However, under Visual Basic if a value type needs to be managed as an object, then the system will per-
form an intermediate step. This intermediate step involves taking the value that is on the stack and
copying it to the heap, a process referred to as boxing. As noted earlier, the Object class is implemented
as a reference type. Therefore, the system needs to convert value types into reference types for them to
be objects. This doesn’t cause any problems or require any special programming, because boxing isn’t
something you declare or directly control. However, it does have an impact on performance.

In a situation where you are copying the data for a single value type, this is not a significant cost.
However, if you are processing an array that contains thousands of values, the time spent moving
between a value type and a temporary reference type can be significant.

There are ways to limit the amount of boxing that occurs. One method that has been shown to work well
is to create a class based on the value type you need to work with. On first thought, this seems counter-
intuitive because it costs more to create a class. The key is how often you reuse the data that is contained
in the class. By repeatedly using this object to interact with other objects, you will save on the creation of
a temporary boxed object.

There are two important areas to examine with examples to better understand boxing. The first involves
the use of arrays. When an array is created, the portion of the class that tracks the element of the array is
created as a reference object, but each of the elements of the array is created directly. Thus, an array of
integers consists of the array object and a set of Integer value types. When you update one of these val-
ues with another Integer value there is no boxing involved:

Dim arrInt(20) as Integer
Dim intMyValue as Integer = 1

arrInt (0) = 0
arrInt (1) = intMyValue

Neither of these assignments of an Integer value into the integer array that was defined previously
requires boxing. In each case, the array object identifies which value on the stack needs to be referenced,
and the value is assigned to that value type. The point here is that just because you have referenced

an object doesn’t mean you are going to box a value. The boxing only occurs when the values being
assigned are being transitioned from value to reference types:

Dim objStrBldr as New System.Text.StringBuilder ()
Dim objSortedList as New System.Collections.SortedList /()
Dim intCount as Integer
For intCount = 1 to 100
objStrBldr.Append (intCount)
objSortedList.Add (intCount, intCount)
Next

79

Chapter 3

The preceding snippet illustrates two separate calls to object interfaces. One of these calls requires box-
ing of the value intCount, while the other does not. There is nothing in the code to indicate which call
is which. The answer is that the Append method of StringBuilder has been overridden to include a
version that accepts an Integer, while the Add method of SortedList collection expects two objects.
While the Integer values can be recognized by the system as objects, doing so requires the runtime
library to box up these values so that they can be added to the sorted list.

The key to boxing isn’t that you are working with objects as part of an action, but that you are passing
a value to a parameter that expects an object or are taking an object and converting it to a value type.
However, one time that boxing does not occur is when you call a method on a value type. There is no
conversion to an object, so if you need to assign an Integer to a String using the ToString method,
there is no boxing of the integer value as part of the creation of the string. On the other hand, you are
explicitly creating a new String object, so the cost is similar.

Retired Keywords and Methods

This chapter has covered several changes from Visual Basic 6.0 that are part of Visual Basic under .NET.
They include the removal of the Currency type, String function, Rset, and Lset functions. Other
functions such as Left, Right, and Mid have been discussed as becoming obsolete, although they may
still be supported. Functions such as IsEmpty and IsNull have been replaced with new versions.
Additionally, this chapter has looked at some of the differences in how Visual Basic now works with
arrays.

Visual Basic has removed many keywords that won’t be missed. For example, the DefType statement
has been removed. This statement was a throwback to Fortran, allowing a developer to indicate, for
example, that all variables starting with the letters I, J, K, L, M, N would be integers. Most program-
mers have probably never used this function, and it doesn’t have a logical replacement in Visual Basic
under .NET.

One of the real advantages of Visual Basic under .NET is the way that it removed some of the more eso-
teric and obsolete functions from Visual Basic. The following list contains the majority of such functions.
As with others that have already been discussed, some have been replaced; for example, the math func-
tions are now part of the System.Math library, while others such as IsObject really don’t have much
more meaning than LBound in the context of NET, where everything is an object and the lower bound
of all arrays is 0.

Elements of Visual Basic 6.0 Removed in .NET

80

Also as previously noted, the UDT has also been removed from the Visual Basic vocabulary. Instead, the
ability to create a user-defined set of variables as a type has been replaced with the ability to create cus-
tom structures and classes in Visual Basic.

Remember that Visual Basic wasn’t revised to work with .NET. Instead Visual Basic was rebuilt from the
ground up as an entirely new language based on the .NET Framework and the syntax of Visual Basic.

Variables and Type

As Any

Atn function
Calendar property
Circle statement
Currency

Date function and statement
Date$ function
Debug.Assert method
Debug.Print method
DefType

DoEvents function
Empty

Eqv operator

GoSub statement

Imp operator
Initialize event
Instancing property
IsEmpty function
IsMissing function
IsNull function
IsObject function
Let statement

Line statement

Lset

Now function

Null keyword

On . . . GoSub

On . . .GoTo

Option Base

Option Private Module
Property Get, Property Let, and Property Set
PSet method

Rnd function

Round function

Rset

Scale method

Set statement

Sgn function

Sqr function

String function
Terminate event
Time function and statement
Time$ function

Timer function

Type statement
Variant datatype

VarType function

Wend keyword

Summary

This chapter looked at many of the basic building blocks of Visual Basic that are used throughout project
development. Understanding how they work will help you to write more stable and better performing
software. There are five specific points to take note of:

0 Beware of array sizes; all arrays start at 0 and are defined not by size but by the highest index.

O Remember to use the StringBuilder class for string manipulation.

81

Chapter 3

QO Useoption Strict;it’s notjust about style, it’s about performance.
0 Beware of parameters that are passed ByValue so changes are not returned.

Q Take advantage of the new collection classes.

While this chapter covered many other items such as how the new Decimal type works and how boxing
works, these five items are really the most important. Whether you are creating a new library of methods
or a new user interface, these five items will consistently turn up in some form. While .NET provides a
tremendous amount of power, this chapter has hopefully provided information on places where that
power comes at a significant performance cost.

82

Object Syntax Introduction

Visual Basic supports the four major defining concepts required for a language to be fully
object-oriented:

O Abstraction — Abstraction is merely the ability of a language to create “black box” code,
to take a concept and create an abstract representation of that concept within a program.
A Customer object, for instance, is an abstract representation of a real-world customer.
A DataTable object is an abstract representation of a set of data.

Q Encapsulation — This is the concept of a separation between interface and implementa-
tion. The idea is that you can create an interface (Public methods, properties, fields, and
events in a class), and, as long as that interface remains consistent, the application can
interact with your objects. This remains true even if you entirely rewrite the code within
a given method — thus, the interface is independent of the implementation.

Encapsulation allows you to hide the internal implementation details of a class. For exam-
ple, the algorithm you use to compute pi might be proprietary. You can expose a simple
API to the end user, but you hide all of the logic used by the algorithm by encapsulating
it within your class.

QO Polymorphism — Polymorphism is reflected in the ability to write one routine that can
operate on objects from more than one class — treating different objects from different
classes in exactly the same way. For instance, if both Customer and Vendor objects have
a Name property, and you can write a routine that calls the Name property regardless of
whether you're using a Customer or Vendor object, then you have polymorphism.

Visual Basic, in fact, supports polymorphism in two ways — through late binding (much
like Smalltalk, a classic example of a true object-orientated language) and through the
implementation of multiple interfaces. This flexibility is very powerful and is preserved
within Visual Basic.

Q Inheritance —Inheritance is the idea that a class can gain the preexisting interface and
behaviors of an existing class. This is done by inheriting these behaviors from the existing
class through a process known as subclassing.

Chapter 4

0

We'll discuss these four concepts in detail in Chapter 7, using this chapter and Chapter 6 to focus on the
syntax that enables us to utilize these concepts.

Visual Basic is also a component-based language. Component-based design is often viewed as a succes-
sor to object-oriented design. Due to this, component-based languages have some other capabilities.
These are closely related to the traditional concepts of object orientation.

Q Multiple interfaces — Each class in Visual Basic defines a primary interface (also called the
default or native interface) through its Public methods, properties, and events. Classes can also
implement other, secondary interfaces in addition to this primary interface. An object based on
this class then has multiple interfaces, and a client application can choose by which interface it
will interact with the object.

0 Assembly (component) level scoping — Not only can you define your classes and methods as
Public (available to anyone), Protected (available through inheritance), and private (avail-
able locally only), but you can also define them as Friend — meaning that they are available
only within the current assembly or component. This is not a traditional object-oriented concept,
but is very powerful when designing component-based applications.

In this chapter, you'll explore the creation and use of classes and objects in Visual Basic. You won't get
too deeply into code. However, it is important that you spend a little time familiarizing yourself with
basic object-oriented terms and concepts.

bject-Oriented Terminology

To start with, let’s take a look at the word object itself, along with the related class and instance terms.
Then we’ll move on to discuss the four terms that define the major functionality in the object-oriented
world —encapsulation, abstraction, polymorphism, and inheritance.

Objects, Classes, and Instances

84

An object is a code-based abstraction of a real-world entity or relationship. For instance, you might have
a Customer object that represents a real-world customer, such as customer number 123, or you might
have a File object that represents C: \ config.sys on your computer’s hard drive.

A closely related term is class. A class is the code that defines an object, and all objects are created based
on a class. A class is an abstraction of a real-world concept, and it provides the basis from which you cre-
ate instances of specific objects. For example, in order to have a Customer object representing customer
number 123, you must first have a Customer class that contains all of the code (methods, properties,
events, variables, and so on) necessary to create Customer objects. Based on that class, you can create
any number of objects, each one an instance of the class. Each object is identical to the others, except that
it may contain different data.

You can create many instances of Customer objects based on the same Customer class. All of the
Customer objects are identical in terms of what they can do and the code they contain, but each one
contains its own unique data. This means that each object represents a different physical customer.

Object Syntax Introduction

Composition of an Object

You use an interface to get access to an object’s data and behavior. The object’s data and behaviors are
contained within the object, so a client application can treat the object like a black box accessible only
through its interface. This is a key object-oriented concept called encapsulation. The idea is that any
program that makes use of this object won’t have direct access to the behaviors or data; rather, those
programs must make use of our object’s interface.

Let’s walk through each of the three elements in detail.

Interface

The interface is defined as a set of methods (Sub and Function routines), properties (Property routines),
events, and fields (variables) that are declared Public in scope.

You can also have Private methods and properties in your code. While these methods can be called by
code within your object, they are not part of the interface and cannot be called by programs written to
use our object. Another option is to use the Friend keyword, which defines the scope to be your current
project, meaning that any code within our project can call the method, but no code outside your project
(that is, from a different .NET assembly) can call the method. To complicate things a bit, you can also
declare methods and properties as Protected, which are available to classes that inherit from your
class. We'll discuss Protected in Chapter 6 along with inheritance.

For example, you might have the following code in a class:
Public Function CalculateValue() As Integer
End Function

Since this method is declared with the Public keyword, it is part of the interface and can be called by
client applications that are using the object. You might also have a method such as this:

Private Sub DoSomething ()

End Sub

This method is declared as being Private, and so it is not part of the interface. This method can only be
called by code within the class —not by any code outside the class, such as the code in a program that is
using one of the objects.

On the other hand, you can do something like this:
Public Sub CalculateValue()
DoSomething ()
End Sub
In this case, you're calling the Private method from within a Public method. While code using your

objects can’t directly call a Private method, you will frequently use Private methods to help structure
the code in a class to make it more maintainable and easier to read.

85

Chapter 4

Finally, you can use the Friend keyword:

Friend Sub DoSomething ()

End Sub

In this case, the DoSomething method can be called by code within the class, or from other classes or
modules within the current Visual Basic project. Code from outside the project will not have access to
the method.

The Friend scope is very similar to the Public scope in that it makes methods available for use by code
outside the object itself. However, unlike Public, the Friend keyword restricts access to code within
the current Visual Basic project, preventing code in other .NET assemblies from calling the method.

Implementation or Behavior

The code inside of a method is called the implementation. Sometimes it is also called behavioz, since it is
this code that actually makes the object do useful work.

For instance, you might have an Age property as part of the object’s interface. Within that method, you
might have some code:

Private mAge As Integer

Public ReadOnly Property Age() As Integer
Get
Return mAge
End Get
End Sub

In this case, the code is returning a value directly out of a variable, rather than doing something better
like calculating the value based on a birth date. However, this kind of code is often written in applica-
tions, and it seems to work fine for a while.

The key concept here is to understand that client applications can use the object even if you change the
implementation, as long as you don’t change the interface. As long as the method name and its parameter
list and return datatype remain unchanged, you can change the implementation any way you want.
The code necessary to call our Age property would look something like this:

theAge = myObject.Age
The result of running this code is that you get the Age value returned for your use. While the client
application will work fine, you'll soon discover that hard-coding the age into the application is a prob-
lem and so, at some point, you'll want to improve this code. Fortunately, you can change the implemen-
tation without changing the client code:

Private mBirthDate As Date

Public ReadOnly Property Age() As Integer
Get

86

Object Syntax Introduction

Return CInt (DateDiff (DateInterval.Year, mBirthDate, Now))
End Get
End Sub

You've changed the implementation behind the interface, effectively changing how it behaves, without
changing the interface itself. Now, when you run the client application, you'll find that the Age value
returned is accurate over time, whereas in the previous implementation it was not.

It is important to keep in mind that encapsulation is a syntactic tool —it allows the code to continue to
run without change. However, it is not semantic, meaning that just because the code continues to run,
that doesn’t mean it continues to do what you actually want it to do.

In this example, the client code may have been written to overcome the initial limitations of the imple-
mentation in some way, and, thus, the client code might not only rely on being able to retrieve the Age
value but also be counting on the result of that call being a fixed value over time.

While the update to the implementation won’t stop the client program from running, it may very well
prevent the client program from running correctly.

Fields or Instance Variables

The third key part of an object is its data, or state. In fact, it might be argued that the only important part of
an object is its data. After all, every instance of a class is absolutely identical in terms of its interface and its
implementation; the only thing that can vary at all is the data contained within that particular object.

Fields are variables that are declared so that they are available to all code within the class. Typically,
fields are Private in scope, available only to the code in the class itself. They are also sometimes
referred to as instance variables or as member variables.

You shouldn’t confuse fields with properties. In Visual Basic, a Property is a type of method that is
geared to retrieving and setting values, while a field is a variable within the class that may hold the
value exposed by a Property.

For instance, you might have a class that has fields:

Public Class TheClass

Private mName As String
Private mBirthDate As Date

End Class

Each instance of the class — each object— will have its own set of these fields in which to store data.
Because these fields are declared with the Private keyword, they are only available to code within each
specific object.

While fields can be declared as Public in scope, this makes them available to any code using the objects
in a manner you can’t control. Such a choice directly breaks the concept of encapsulation, since code out-
side our object can directly change data values without following any rules that might otherwise be set
in the object’s code.

87

Chapter 4

If you want to make the value of a field available to code outside of the object, you should use a property:

Public Class TheClass
Private mName As String
Private mBirthDate As Date

Public ReadOnly Property Name() As String
Get
Return mName
End Get
End Property

End Class

Since the Name property is a method, you are not directly exposing the internal variables to client code,
so you preserve encapsulation of the data. At the same time, through this mechanism, you are able to
safely provide access to your data as needed.

Fields can also be declared with the Friend scope, which means that they are available to all code in
your project. Like declaring them as Public, this breaks encapsulation and is strongly discouraged.

Now that you have a grasp of some of the basic object-oriented terminology, you're ready to explore the
creation of classes and objects. First, you'll see how Visual Basic allows you to interact with objects, and
then you’ll dive into the actual process of authoring those objects.

Working with Objects

In the .NET environment, and within Visual Basic in particular, you use objects all the time without even
thinking about it. Every control on a form —in fact, every form —is an object. When you open a file or
interact with a database, you are using objects to do that work.

Object Declaration and Instantiation

Objects are created using the New keyword, indicating that you want a new instance of a particular class.
There are a number of variations on how or where you can use the New keyword in your code. Each one
provides different advantages in terms of code readability or flexibility.

The most obvious way to create an object is to declare an object variable and then create an instance of
the object:

Dim obj As TheClass
obj = New TheClass ()

The result of this code is that you have a new instance of TheClass ready for use. To interact with this

new object, you will use the obj variable that you declared. The obj variable contains a reference to the
object, a concept you'll explore later.

88

Object Syntax Introduction

You can shorten this by combining the declaration of the variable with the creation of the instance:
Dim obj As New TheClass ()
In previous versions of Visual Basic, this was a very poor thing to do because it had both negative per-
formance and maintainability effects. However, in Visual Basic, there is no difference between the first

example and this one, other than that the code is shorter.

This code both declares the variable obj as datatype TheClass and creates an instance of the class,
immediately creating an object that you can use.

Another variation on this theme is:
Dim obj As TheClass = New TheClass ()
Again, this both declares a variable of datatype TheClass and creates an instance of the class.

This third syntax example provides a great deal of flexibility while remaining compact. Though itis a
single line of code, it separates the declaration of the variable’s datatype from the creation of the object.

Such flexibility is very useful when working with inheritance or with multiple interfaces. You might
declare the variable to be of one type —say, an interface —and instantiate the object based on a class that
implements that interface. You'll revisit this syntax when interfaces are covered in detail in Chapter 6.

So far you've been declaring a variable for new objects. However, sometimes you may simply need to
pass an object as a parameter to a method, in which case you can create an instance of the object right in
the call to that method:

DoSomething (New TheClass())

This calls the DoSomething method, passing a new instance of TheClass as a parameter.

This can be even more complex. Perhaps, instead of needing an object reference, your method needs an
Integer. You can provide that Integer value from a method on the object:

Public Class TheClass
Public Function GetValue() As Integer
Return 42
End Function
End Class

You can then instantiate the object and call the method all in one shot, thus passing the value returned
from the method as a parameter:

DoSomething (New TheClass () .GetValue())

Obviously, you need to carefully weigh the readability of such code against its compactness. At some
point, having more compact code can detract from readability rather than enhancing it.

89

Chapter 4

Object References

Typically, when you work with an object, you are using a reference to that object. On the other hand,
when you are working with simple datatypes, such as Integer, you are working with the actual value
rather than with a reference. Let’s explore these concepts and see how they work and interact.

When you create a new object using the New keyword, you store a reference to that object in a variable.
For instance:

Dim obj As New TheClass()

This code creates a new instance of TheClass. You gain access to this new object via the obj variable.
This variable holds a reference to the object. You might then do something like this:

Dim another As TheClass
another = obj

Now, you have a second variable, another, which also has a reference to the same object. You can use
either variable interchangeably, since they both reference the exact same object. You need to remember
that the variable you have is not the object itself but is just a reference or pointer to the object.

Dereferencing Objects

When you are done working with an object, you can indicate that you're through with it by dereferenc-
ing the object.

To dereference an object, you need to simply set the object reference to Nothing:

Dim obj As TheClass

obj
obj

New TheClass ()
Nothing

Once any or all variables that reference an object are set to Nothing, the NET runtime can tell that you
no longer need that object. At some point, the runtime will destroy the object and reclaim the memory
and resources consumed by the object.

Between the time that you dereference the object and the time that the NET Framework gets around to
actually destroying it, the object simply sits in the memory, unaware that it has been dereferenced. Right
before .NET destroys the object, the Framework will call the Finalize method on the object (if it has
one). The Finalize method will be discussed in Chapter 6.

Early versus Late Binding

20

One of the strengths of Visual Basic has long been that it provided access to both early and late binding
when interacting with objects.

Early binding means that code directly interacts with an object by directly calling its methods. Since the
Visual Basic compiler knows the object’s datatype ahead of time, it can directly compile code to invoke

Object Syntax Introduction

the methods on the object. Early binding also allows the IDE to use IntelliSense to aid development
efforts; it allows the compiler to ensure that you are referencing methods that exist and you are provid-
ing the proper parameter values.

Late binding means that your code interacts with an object dynamically at runtime. This provides a
great deal of flexibility since the code doesn’t care what type of object it is interacting with as long as the
object supports the methods you want to call. Because the type of the object isn’t known by the IDE or
compiler, neither IntelliSense nor compile-time syntax checking is possible, but in exchange you get
unprecedented flexibility.

If you enable strict type checking by using Option Strict On in the project properties dialog or at

the top of the code modules, then the IDE and compiler will enforce early binding behavior. By default,
Option Strict is turned off, so you have easy access to the use of late binding within the code. Chap-
ter 4 discussed Option Strict.

Implementing Late Binding

Late binding occurs when the compiler can’t determine the type of object that you'll be calling. This level
of ambiguity is achieved through the use of the 0Object datatype. A variable of datatype 0bject can
hold virtually any value, including a reference to any type of object. Thus, code such as the following
could be run against any object that implements a Dosomething method that accepts no parameters:

Option Strict Off

Module LateBind
Public Sub DoWork (ByVal obj As Object)
obj.DoSomething ()
End Sub

End Module

If the object passed into this routine does not have a DoSomething method that accepts no parameters,
then an exception will be thrown. Thus, it is recommended that any code that uses late binding always
provide exception handling;:

Option Strict Off

Module LateBind
Public Sub DoWork (ByVal obj As Object)
Try
obj.DoSomething ()
Catch ex As MissingMemberException
' do something appropriate given failure
' to call this method
End Try
End Sub
End Module

Here, the call to the DoSomething method has been put in a Try block. If it works, then the code in the
catch block is ignored, but in the case of a failure, the code in the Catch block is run. You need to write
code in the catch block to handle the case in which the object does not support the DoSomething
method call. This catch block only catches the MissingMemberException, which indicates that the
method doesn’t exist on the object.

91

Chapter 4

While late binding is flexible, it can be error prone and is slower than early bound code. To make a late
bound method call, the .NET runtime must dynamically determine if the target object actually has a
method that matches the one you're calling. It must then invoke that method on your behalf. This takes
more time and effort than an early bound call where the compiler knows ahead of time that the method
exists and can compile the code to make the call directly. With a late bound call, the compiler has to gen-
erate code to make the call dynamically at runtime.

Use of the CType Function

92

Whether you are using late binding or not, it can be useful to pass object references around using the
Object datatype, converting them to an appropriate type when you need to interact with them. This is
particularly useful when working with objects that use inheritance or implement multiple interfaces,
concepts that will be discussed in Chapter 6.

If option Strict is turned off, which is the default, you can write code that allows you to use a variable
of type Object to make an early bound method call:

Module LateBind
Public Sub DoWork (obj As Object)

Dim local As TheClass

local = obj
local.DoSomething ()
End Sub
End Module

This code uses a strongly typed variable, 1ocal, to reference what was a generic object value. Behind the
scenes, Visual Basic converts the generic type to a specific type so that it can be assigned to the strongly
typed variable. If the conversion can’t be done, you'll get a trappable runtime error.

The same thing can be done using the CType function. If Option Strict is enabled, then the previous
approach will not compile, and the CType function must be used. Here is the same code making use of
CType:

Module LateBind
Public Sub DoWork (obj As Object)

Dim local As TheClass
local = CType(obj, TheClass)
local.DoSomething ()
End Sub
End Module

This code declares a variable of type TheClass, which is an early bound datatype that you want to use.
The parameter you're accepting, though, is of the generic Object datatype, and so you use the CType ()
method to gain an early bound reference to the object. If the object isn’t of type TheClass, the call to
CType () will fail with a trappable error.

Once you have a reference to the object, you can call methods by using the early bound variable, 1ocal.

Object Syntax Introduction

This code can be shortened to avoid the use of the intermediate variable. Instead, you can simply call
methods directly from the datatype:

Module LateBind
Public Sub DoWork (obj As Object)
CType (obj, TheClass) .DoSomething ()
End Sub
End Module

Even though the variable you're working with is of type Object and, thus, any calls to it will be late
bound, you use the cType method to temporarily convert the variable into a specific type —in this case,
the type TheClass.

If the object passed as a parameter is not of type TheClass, you will get a trappable errot, so it is
always wise to wrap this code ina Try . . . Catch block.

As Chapter 6 discusses, the CType function can also be very useful when working with objects that
implement multiple interfaces. When an object has multiple interfaces, you can reference a single object
variable through the appropriate interface as needed.

Use of the DirectCast Function

Another function that is very similar to CType is DirectCast. DirectCast also converts values of one
type into another type. It is more restrictive in its working than cType, but the tradeoff is that it can be
somewhat faster than CType. DirectCast is used as shown in the following code:

Dim obj As TheClass

obj = New TheClass
DirectCast (obj, ITheInterface) .DoSomething ()

This is similar to the last example with cType, illustrating the parity between the two functions. There
are differences, however. First, DirectCast works only with reference types, while CType accepts both
reference and value types. For instance, CType can be used in the following code:

Dim int As Integer = CType(123.45, Integer)

Trying to do the same thing with DirectCast would result in a compiler error, since the value 123 .45
is a value type, not a reference type.

The other difference is that DirectCast is not as aggressive about converting types as CType. CType can
be viewed as an intelligent combination of all the other conversion functions (such as cInt, CStr, and

so on). DirectCast, on the other hand, assumes that the source data is directly convertible and it won't
take extra steps to convert the data.

As an example, consider the following code:

Dim obj As Object = 123.45

Dim int As Integer = DirectCast (obj, Integer)

93

Chapter 4

If you were using CType this would work, since CType would use cInt-like behavior to convert the
value to an Integer. DirectCast, however, will throw an exception because the value is not directly
convertible to Integer.

Use of the TryCast Function

A function that is similar to DirectCast is TryCast. TryCast converts values of one type into another
type, but unlike DirectcCast, if it can’t do the conversion, TryCast doesn’t throw an exception. Instead,
TryCast simply returns Nothing if the cast can’t be performed. Trycast only works with reference val-
ues, it cannot be used with value types such as Integer or Boolean.

Using TryCast, you can write code like this:

Module LateBind
Public Sub DoWork (obj As Object)
Dim temp As TheClass = TryCast (obj)
If temp Is Nothing Then
' the cast couldn't be accomplished
' so do no work
Else
temp.DoSomething ()
End If
End Sub
End Module

If you aren’t sure if a type conversion is possible, it is often best to use TryCast. This function avoids the
overhead and complexity of catching possible exceptions from CType or DirectCast and still provides
you with an easy way to convert an object to another type.

Creating Classes

Using objects is fairly straightforward and intuitive. It is the kind of thing that even the most novice pro-
grammers pick up and accept rapidly. Creating classes and objects is a bit more complex and interesting,
and that is covered throughout the rest of the chapter.

Creating Basic Classes

As discussed earlier, objects are merely instances of a specific template (a class). The class contains the
code that defines the behavior of its objects, as well as defining the instance variables that will contain
the object’s individual data.

Classes are created using the Class keyword and include definitions (declaration) and implementations
(code) for the variables, methods, properties, and events that make up the class. Each object created
based on this class will have the same methods, properties, and events, and will have its own set of data
defined by the fields in the class.

94

Object Syntax Introduction

The Class Keyword

If you want to create a class that represents a person—a Person class—you could use the Class
keyword like this:

Public Class Person

' implementation code goes here
End Class

As you know, Visual Basic projects are composed of a set of files with the .vb extension. Each file can
contain multiple classes. This means that, within a single file, you could have something like this:

Public Class Adult

' Implementation code goes here.
End Class

Public Class Senior

' Implementation code goes here.
End Class

Public Class Child

' Implementation code goes here.
End Class

The most common approach is to have a single class per file. This is because the Visual Studio .NET
(VS.NET) Solution Explorer and the code-editing environment are tailored to make it easy to navigate
from file to file to find code. For instance, if you create a single class file with all these classes, the
Solution Explorer simply displays a single entry, as shown in Figure 4-1.

People.vb L

~|solution Explorer

i;j 6;.&“')- [P i‘j(-
|===r S o ml RS
HPublic Class Adult _Jl -_113 ClLELS
L ' dimplementation code goes here _‘E Dh]ectlntlro
End Class = My Project

-

L]
<%

BRI K

[F Public Class Senior

‘ ' dmplementation code goes here
-End Class

E Public Class Child
L ! implementation code goez here
End Class

X Fj Class 'v'lew L;‘j Solution Expldrer

al

Figure 4-1

95

Chapter 4

However, the VS.NET IDE does provide the Class View window. If you do decide to put multiple classes
in each physical .vb file, you can make use of the Class View window to quickly and efficiently navigate

through the code, jumping from class to class without having to manually locate those classes in specific
code files, as shown in Figure 4-2.

~People.vb | = x
(o o 1 (e, | Class ¥iew '
| iZ1(General) | B Bl

D Public Class idult L LE o
L ' implementation code goes here <Search> - El |
End Class = i)
E Public Class Senior =14} ObjectIntro
‘ ' dmplementation code goes here [\45 Adule
-End Class g Child |
A% Forml :
O Pukblic Class Child R ALY r
L ' implementation code goes here 1% Senior
End Class |
3 _7‘5 Class Yiew L.? Solution EScpIorer /
£ B
Figure 4-2

The Class View window is incredibly useful even if you keep to one class per file, since it still provides
you with a class-based view of the entire application.

In this chapter, you'll stick with one class per file, because it is the most common approach. Open
the VS.NET IDE and create a new Windows Application project. Name it ObjectIntro. Choose the
Project = Add Class menu option to add a new class module to the project. You'll be presented with the

standard Add New Item dialog box. Change the name to Person. vb and click Open. The result will
be the following code, which defines the Person class:

Public Class Person

End Class

With the Person class created, you're ready to start adding code to declare the interface, implement the
behaviors, and declare the instance variables.

Fields

Fields are variables declared in the class that will be available to each individual object when the appli-
cation is run. Each object gets its own set of data—basically, each object gets its own copy of the fields.

96

Object Syntax Introduction

Earlier, this chapter discussed how a class is simply a template from which you create specific objects.
Variables that you define within the class are also simply templates —and each object gets its own copy
of those variables in which to store its data.

Declaring member variables is as easy as declaring variables within the class block structure. Add the
following code to our Person class:

Public Class Person

Private mName As String
Private mBirthDate As Date

End Class
You can control the scope of the fields by using the following keywords:

O Pprivate— Available only to code within the class
0O Friend— Available only to code within the project/component

QO Protected— Available only to classes that inherit from the class (discussed in detail in
Chapter 6)

O Protected Friend— Available to code within our project/component and classes that inherit
from the class whether in the project or not (discussed in detail in Chapter 6)

Q pPublic— Available to code outside the class and to any projects that reference the assembly

Typically, fields are declared using the Private keyword, making them available only to code within
each instance of the class. Choosing any other option should be done with great care, because all the
other options allow code outside the class to directly interact with the variable, meaning that the value
could be changed and your code would never know that a change took place.

One common exception to making fields Private is the use of the Protected keyword, as discussed
in Chapter 6.

Methods

Objects typically need to provide services (or functions) that can be called when working with the object.
Using their own data or data passed as parameters to the method, they manipulate information to yield
a result or to perform an action.

Methods declared as Public, Friend, or Protected in scope define the interface of the class. Methods
that are Private in scope are available to the code only within the class itself and can be used to provide
structure and organization to code. As discussed earlier, the actual code within each method is called
implementation, while the declaration of the method itself is what defines the interface.

Methods are simply routines that are coded within the class to implement the services that you want to
provide to the users of an object. Some methods return values or provide information to the calling code.
These are called interrogative methods. Others, called imperative methods, just perform an action and
return nothing to the calling code.

97

Chapter 4

In Visual Basic, methods are implemented using Sub (for imperative methods) or Function (for inter-
rogative methods) routines within the class module that defines the object. Sub routines may accept
parameters, but they don’t return any result value when they are complete. Function routines can also
accept parameters, and they always generate a result value that can be used by the calling code.

A method declared with the Sub keyword is merely one that returns no value. Add the following code to
the Person class:

Public Sub Walk()
' implementation code goes here
End Sub

The walk method presumably contains some code that performs some useful work when called but has
no result value to return when it is complete.

To use this method, you might write code such as:

Dim myPerson As New Person/()
myPerson.Walk ()

Once you've created an instance of the Person class, you can simply invoke the walk method.

Methods That Return Values

98

If you have a method that does generate some value that should be returned, you need to use the
Function keyword:

Public Function Age() As Integer
Return CInt (DateDiff (DateInterval.Year, mBirthDate, Now()))
End Function

Notice that you need to indicate the datatype of the return value when you declare a Function. In this
example, you are returning the calculated age as a result of the method. You can return any value of the
appropriate datatype by using the Return keyword.

You can also return the value without using the Return keyword, by setting the value of the function
name itself:

Public Function Age() As Integer

Age = CInt (DateDiff (DateInterval.Year, mBirthDate, Now()))
End Function

This is functionally equivalent to the previous code. Either way, you can use this method with code simi-
lar to the following;:

Dim myPerson As New Person/()
Dim age As Integer

age = myPerson.Age ()

Object Syntax Introduction

The Age method returns an Integer data value that you can use in the program as required; in this case,
you're just storing it in a variable.

Indicating Method Scope

Adding the appropriate keyword in front of the method declaration indicates the scope:
Public Sub Walk()

This indicates that Wwalk is a Public method and is, thus, available to code outside the class and even
outside the current project. Any application that references the assembly can use this method. Being
Public, this method becomes part of the object’s interface.

Alternately, you might choose to restrict the method somewhat:
Friend Sub Walk()

By declaring the method with the Friend keyword, you are indicating that it should be part of the
object’s interface only for code inside the project; any other applications or projects that make use of the
assembly will not be able to call the walk method.

Private Function Age() As Integer

The private keyword indicates that a method is only available to the code within our particular class.
Private methods are very useful to help organize complex code within each class. Sometimes the meth-
ods will contain very lengthy and complex code. In order to make this code more understandable, you
may choose to break it up into several smaller routines, having the main method call these routines in
the proper order. Moreover, you can use these routines from several places within the class, so, by mak-
ing them separate methods, you enable reuse of the code. These subroutines should never be called by
code outside the object, so you make them pPrivate.

Method Parameters

You will often want to pass information into a method as you call it. This information is provided via
parameters to the method. For instance, in the Person class, perhaps you want the Wwalk method to track
the distance the person walks over time. In such a case, the Wwalk method would need to know how far
the person is to walk each time the method is called. Add the following code to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As Date
Private mTotalDistance As Integer

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance
End Sub

Public Function Age() As Integer
Return CInt (DateDiff (DateInterval.Year, mBirthDate, Now()))
End Function
End Class

99

Chapter 4

With this implementation, a Person object will sum up all of the distances walked over time. Each time
the walk method is called, the calling code must pass an Integer value, indicating the distance to be
walked. Our code to call this method would be similar to the following code:

Dim myPerson As New Person/()
myPerson.Walk(12)

The parameter is accepted using the Byval keyword. This indicates that the parameter value is a copy of
the original value. This is the default way by which Visual Basic accepts all parameters. Typically, this is
desirable because it means that you can work with the parameter inside the code, changing its value
with no risk of accidentally changing the original value back in the calling code.

If you do want to be able to change the value in the calling code, you can change the declaration to pass
the parameter by reference by using the ByRef qualifier:

Public Sub Walk (ByRef distance As Integer)

In this case, you'll get a reference (or pointer) back to the original value rather than receiving a copy. This
means that any change you make to the Distance parameter will be reflected back in the calling code,
very similar to the way object references work, as discussed earlier in this chapter.

Using this technique can be dangerous, since it is not explicitly clear to the caller of the method that the
value will change. Such unintended side effects can be hard to debug and should be avoided.

Properties

The .NET environment provides for a specialized type of method called a property. A property is a
method specifically designed for setting and retrieving data values. For instance, you declared a variable
in the Person class to contain a name, so the Person class may include code to allow that name to be set
and retrieved. This can be done using regular methods:

Public Sub SetName (ByVal name As String)
mName = name
End Sub

Public Function GetName() As String

Return mName
End Function

Using methods like these, you write code to interact with the object, such as:
Dim myPerson As New Person/()

myPerson. SetName ("Jones")
MsgBox (myPerson.GetName ())

While this is perfectly acceptable, it is not as nice as it could be with the use of a property. A Property
style method consolidates the setting and retrieving of a value into a single structure, and also makes the
code within the class smoother overall. You can rewrite these two methods into a single property. Add
the following code to the Person class:

100

Object Syntax Introduction

Public Property Name() As String
Get
Return mName
End Get
Set (ByVal Value As String)
mName = Value
End Set
End Property

By using a property method instead, you can make the client code much more readable:

Dim myPerson As New Person()

myPerson.Name = "Jones"
MsgBox (myPerson .Name)

The property method is declared with both a scope and a datatype:
Public Property Name() As String

In this example, you've declared the property as Public in scope, but it can be declared using the same
scope options as any other method — Public, Friend, Private, or Protected.

The return datatype of this property is String. A property can return virtually any datatype appropriate
for the nature of the value. In this regard, a property is very similar to a method declared using the
Function keyword.

Though a Property method is a single structure, it is divided into two parts: a getter and a setter. The
getter is contained within a Get . .. End Get block and is responsible for returning the value of the prop-
erty on demand:

Get
Return mName
End Get

Though the code in this example is very simple, it could be more complex, perhaps calculating the value
to be returned or applying other business logic to change the value as it is returned.

Likewise, the code to change the value is contained within a Set ... End Set block:

Set (ByVal Value As String)
mName = Value
End Set

The set statement accepts a single parameter value that stores the new value. The code in the block can
then use this value to set the property’s value as appropriate. The datatype of this parameter must match
the datatype of the property itself. Having the parameter declared in this manner allows you to change
the name of the variable used for the parameter value if needed.

101

Chapter 4

By default, the parameter is named value. However, if you dislike the name value, you can change the
parameter name to something else, for example:

Set (ByVal NewName As String)
mName = NewName

End Set

In many cases, you can apply business rules or other logic within this routine to ensure that the new
value is appropriate before you actually update the data within the object.

It is also possible to restrict the scope of either the Get or set block to be more narrow than the scope of
the property itself. For instance, you may want to allow any code to retrieve the property value, but only
allow other code in your project to alter the value. In this case, you can restrict the scope of the Set block
to Friend, while the Property itself is scoped as Public:

Public Property Name() As String
Get
Return mName
End Get
Friend Set (ByVal Value As String)
mName = Value
End Set
End Property

The new scope must be more restrictive than the scope of the Property itself. Also, either the Get or
Set block can be restricted, not both. The one you don’t restrict uses the scope of the Property method.

Parameterized Properties

The Name property you created is an example of a single-value property. You can also create property
arrays or parameterized properties. These properties reflect a range, or array, of values. As an example,
a person will often have several phone numbers. You might implement a PhoneNumber property as a
parameterized property, storing not only phone numbers, but also a description of each number. To
retrieve a specific phone number you’d write code such as:

Dim myPerson As New Person/()
Dim homePhone As String

homePhone = myPerson.Phone ("home")
Or, to add or change a specific phone number, you'd write the following code:
myPerson.Phone ("work") = "555-9876"

Not only are you retrieving and updating a phone number property, but you're also updating a specific
phone number. This implies a couple of things. First, you're no longer able to use a simple variable to
hold the phone number, since you are now storing a list of numbers and their associated names. Second,
you've effectively added a parameter to your property. You're actually passing the name of the phone
number as a parameter on each property call.

102

Object Syntax Introduction

To store the list of phone numbers, you can use the Hashtable class. The Hashtable is very similar to
the standard VB Collection object, but it is more powerful —allowing you to test for the existence of a
specific element. Add the following declaration to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As Date
Private mTotalDistance As Integer

Private mPhones As New Hashtable

You can implement the Phone property by adding the following code to the Person class:

Public Property Phone(ByVal location As String) As String
Get
Return CStr (mPhones.Item(Location))
End Get
Set (ByVal Value As String)
If mPhones.ContainsKey (location) Then

mPhones.Item(location) = Value
Else
mPhones.Add (location, Value)
End If
End Set

End Property
The declaration of the Property method itself is a bit different from what you've seen:

Public Property Phone(ByVal location As String) As String
In particular, you've added a parameter, location, to the property itself. This parameter will act as the
index into the list of phone numbers and must be provided both when setting or retrieving phone num-

ber values.

Since the location parameter is declared at the Property level, it is available to all code within the
property, including both the Get and set blocks.

Within your Get block, you use the location parameter to select the appropriate phone number to
return from the Hashtable:

Get
Return mPhones.Item(location)
End Get

With this code, if there is no value stored matching the location, you'll get a trappable runtime error.
Similarly, in the Set block, you use the location to update or add the appropriate element in the
Hashtable. In this case, you're using the ContainsKey method of Hashtable to determine whether

the phone number already exists in the list. If it does, you’'ll simply update the value in the list; other-
wise, you'll add a new element to the list for the value:

103

Chapter 4

Set (ByVal Value As String)
If mPhones.ContainsKey(location) Then

mPhones.Item(location) = Value
Else
mPhones.Add (location, Value)
End If
End Set

In this way, you're able to add or update a specific phone number entry based on the parameter passed
by the calling code.

Read-Only Properties

There are times when you may want a property to be read-only, so that it can’t be changed. In the
Person class, for instance, you may have a read-write property for BirthDate, but just a read-only
property for Age. In such a case, the BirthDate property is a normal property, as follows:

Public Property BirthDate() As Date
Get
Return mBirthDate
End Get
Set (ByVal Value As Date)
mBirthDate = Value
End Set
End Property

The Age value, on the other hand, is a derived value based on BirthDate. This is not a value that should
ever be directly altered and, thus, is a perfect candidate for read-only status.

You already have an Age method implemented as a Function. Remove that code from the Person class,
because you'll be replacing it with a Property routine instead.

The difference between a Function routine and a ReadOnly Property is quite subtle. Both return a
value to the calling code and, either way, the object is running a subroutine defined by the class module
to return the value.

The difference is less a programmatic one than a design choice. You could create all your objects without
any Property routines at all, just using methods for all interactions with the objects. However, Property
routines are obviously attributes of an object, while a Function might be an attribute or a method. By
carefully implementing all attributes as ReadOnly Property routines, and any interrogative methods as
Function routines, you will create more readable and understandable code.

To make a property read-only, use the Readonly keyword and only implement the Get block:
Public ReadOnly Property Age() As Integer
Get
Return CInt (DateDiff (DateInterval.Year, mdtBirthDate, Now()))

End Get
End Property

Since the property is read-only, you'll get a syntax error if you attempt to implement a Set block.

104

Object Syntax Introduction

Write-Only Properties

As with read-only properties, there are times when a property should be write-only, where the value can
be changed, but not retrieved.

Many people have allergies, so perhaps the Person object should have some understanding of the ambi-
ent allergens in the area. This is not a property that should be read from the Person object, since aller-
gens come from the environment rather than from the person, but it is data that the Person object needs
in order to function properly. Add the following variable declaration to the class:

Public Class Person
Private mstrName As String
Private mdtBirthDate As Date
Private mintTotalDistance As Integer
Private colPhones As New Hashtable ()
Private mAllergens As Integer

you can implement an AmbientAllergens property as follows:

Public WriteOnly Property AmbientAllergens() As Integer
Set (ByVal Value As Integer)
mAllergens = Value
End Set
End Property

To create a write-only property, use the WriteOnly keyword and only implement a set block in the
code. Since the property is write-only, you'll get a syntax error if you attempt to implement a Get block.

The Default Property

Objects can implement a default property if desired. A default property can be used to simplify the use
of an object at times, by making it appear as if the object has a native value. A good example of this
behavior is the Collection object, which has a default property called Item that returns the value of
a specific item, allowing you to write code similar to:

Dim mData As New HashTable ()

Return mData (index)

Default properties must be parameterized properties. A property without a parameter cannot be marked
as the default. This is a change from previous versions of Visual Basic, where any property could be
marked as the default.

Our Person class has a parameterized property —the Phone property you built earlier. You can make
this the default property by using the Default keyword:

Default Public Property Phone(ByVal location As String) As String
Get
Return CStr (mPhones.Item(location))
End Get
Set (ByVal Value As String)

105

Chapter 4

If mPhones.ContainsKey (location) Then

mPhones.Item(location) = Value
Else
mPhones.Add (location, Value)
End If
End Set

End Property
Prior to this change, you would have needed code such as the following to use the Phone property:

Dim myPerson As New Person()

MyPerson.Phone ("home") = "555-1234"
But now, with the property marked as Default, you can simplify the code:
myPerson ("home") = "555-1234"

By picking appropriate default properties, you can potentially make the use of objects more intuitive.

Events

Both methods and properties allow you to write code that interacts with your objects by invoking
specific functionality as needed. It is often useful for objects to provide notification as certain activities
occur during processing. You see examples of this all the time with controls, where a button indicates
that it was clicked via a Click event, or a text box indicates that its contents have been changed via the
TextChanged event.

Objects can raise events of their own, providing a powerful and easily implemented mechanism by
which objects can notify client code of important activities or events. In Visual Basic, events are provided
using the standard .NET mechanism of delegates. Before discussing delegates, let’s explore how to work
with events in Visual Basic.

Handling Events
We are all used to seeing code in a form to handle the c1ick event of a button, such as the following

code:

Private Sub Buttonl_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Buttonl.Click

End Sub

Typically, we write our code in this type of routine without paying a lot of attention to the code created
by the VS.NET IDE. However, let’s take a second look at that code, since there are a couple of important
things to note here.

First, notice the use of the Handles keyword. This keyword specifically indicates that this method will

be handling the c1lick event from the Buttonl control. Of course, a control is just an object, so what is
indicated here is that this method will be handling the C1ick event from the Buttonl object.

106

Object Syntax Introduction

Also notice that the method accepts two parameters. The Button control class defines these parameters.
It turns out that any method that accepts two parameters with these datatypes can be used to handle the
Click event. For instance, you could create a new method to handle the event:

Private Sub MyClickMethod(ByVal s As System.Object, _
ByVal args As System.EventArgs) Handles Buttonl.Click

End Sub

Even though you’ve changed the method name, and the names of the parameters, you are still accepting
parameters of the same datatypes, and you still have the Handles clause to indicate that this method
will handle the event.

Handling Multiple Events

The Handles keyword offers even more flexibility. Not only can the method name be anything you
choose, but also a single method can handle multiple events if you desire. Again, the only requirement
is that the method and all the events being raised must have the same parameter list.

This explains why all the standard events raised by the .NET system class library have exactly two
parameters — the sender and an EventArgs object. Being so generic makes it possible to write very
generic and powerful event handlers than can accept virtually any event raised by the class library.

One common scenario where this is useful is when you have multiple instances of an object that raises
events, such as two buttons on a form:

Private Sub MyClickMethod(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Buttonl.Click, Button2.Click

End Sub

Notice that the Handles clause has been modified so that it has a comma-separated list of events to han-
dle. Either event will cause the method to run, providing a central location in which to handle these
events.

The WithEvents Keyword
The withEvents keyword tells Visual Basic that you want to handle any events raised by the object
within the code. For example:

Friend WithEvents Buttonl As System.Windows.Forms.Button

The withEvents keyword makes any events from an object available for use, while the Handles key-
word is used to link specific events to the methods so that you can receive and handle them. This is true
not only for controls on forms but also for any objects that you create.

The withEvents keyword cannot be used to declare a variable of a type that doesn’t raise events. In

other words, if the But ton class didn’t contain code to raise events, you’d get a syntax error when you
attempted to declare the variable using the withEvents keyword.

107

Chapter 4

The compiler can tell which classes will and won't raise events by examining their interface. Any class
that will be raising an event will have that event declared as part of its interface. In Visual Basic, this
means that you will have used the